ES2534572T3 - Métodos y aparato para tomografía de coherencia óptica de fuente de barrido - Google Patents
Métodos y aparato para tomografía de coherencia óptica de fuente de barrido Download PDFInfo
- Publication number
- ES2534572T3 ES2534572T3 ES08705540.6T ES08705540T ES2534572T3 ES 2534572 T3 ES2534572 T3 ES 2534572T3 ES 08705540 T ES08705540 T ES 08705540T ES 2534572 T3 ES2534572 T3 ES 2534572T3
- Authority
- ES
- Spain
- Prior art keywords
- laser
- gain
- sample clock
- frequency
- clock generator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/0209—Low-coherence interferometers
- G01B9/02091—Tomographic interferometers, e.g. based on optical coherence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0062—Arrangements for scanning
- A61B5/0066—Optical coherence imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0073—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by tomography, i.e. reconstruction of 3D images from 2D projections
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02001—Interferometers characterised by controlling or generating intrinsic radiation properties
- G01B9/02002—Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
- G01B9/02004—Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies using frequency scans
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02041—Interferometers characterised by particular imaging or detection techniques
- G01B9/02043—Imaging of the Fourier or pupil or back focal plane, i.e. angle resolved imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02055—Reduction or prevention of errors; Testing; Calibration
- G01B9/02062—Active error reduction, i.e. varying with time
- G01B9/02067—Active error reduction, i.e. varying with time by electronic control systems, i.e. using feedback acting on optics or light
- G01B9/02069—Synchronization of light source or manipulator and detector
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2290/00—Aspects of interferometers not specifically covered by any group under G01B9/02
- G01B2290/25—Fabry-Perot in interferometer, e.g. etalon, cavity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2290/00—Aspects of interferometers not specifically covered by any group under G01B9/02
- G01B2290/60—Reference interferometer, i.e. additional interferometer not interacting with object
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
- H01S3/1062—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using a controlled passive interferometer, e.g. a Fabry-Perot etalon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/14—External cavity lasers
- H01S5/141—External cavity lasers using a wavelength selective device, e.g. a grating or etalon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/14—External cavity lasers
- H01S5/146—External cavity lasers using a fiber as external cavity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/50—Amplifier structures not provided for in groups H01S5/02 - H01S5/30
- H01S5/5036—Amplifier structures not provided for in groups H01S5/02 - H01S5/30 the arrangement being polarisation-selective
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Pathology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Automation & Control Theory (AREA)
- Optics & Photonics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
- Eye Examination Apparatus (AREA)
Abstract
Un aparato de tomografía de coherencia óptica, adaptado para recogida de datos, incluyendo el aparato un láser que tiene una cavidad de láser, incluyendo el láser un elemento de sintonización de frecuencia en comunicación óptica con el primer elemento de ganancia, estando dispuesto el primer elemento de ganancia dentro de la cavidad de láser; y un segundo elemento de ganancia dispuesto fuera de la cavidad de láser dispuesto de modo que la luz generada por el láser sea transmitida a través del segundo elemento de ganancia, teniendo cada elemento de ganancia una dependencia de ganancia diferente de la polarización.
Description
15
25
35
45
55
65
E08705540
09-04-2015
DESCRIPCIÓN
Métodos y aparato para tomografía de coherencia óptica de fuente de barrido
Solicitudes relacionadas
Esta solicitud reivindica prioridad por la Solicitud de Patente Provisional de Estados Unidos 60/879.880 presentada el 10 de Enero de 2007.
Campo de la invención
Esta invención se refiere al campo de la formación de imágenes ópticas y más específicamente al diseño y a la implementación de sistemas de tomografía de coherencia óptica (OCT) que emplean láseres de barrido de frecuencia como fuentes de luz.
Antecedentes
La tomografía de coherencia óptica (OCT) es una técnica interferométrica de formación de imágenes con amplias aplicaciones en oftalmología, cardiología, gastroenterología y otros campos de la medicina. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, y Fujimoto JG, “Optical coherence tomography”, Science, Vol 254, 1178-1181 (1991). La capacidad de ver estructuras subsuperficiales con alta resolución (2-15 µm) a través de sondas de fibra óptica de diámetro pequeño hace que la OCT sea especialmente útil para formación de imágenes mínimamente invasiva de tejidos y órganos internos. Los sistemas OCT de dominio de tiempo disponibles en el mercado no proporcionan suficiente velocidad de exploración para visualización en tiempo real no impedida de órganos que se mueven rápidamente o que tienen grandes zonas superficiales. En el corazón latiente, por ejemplo, la formación de imágenes por OCT de las arterias coronarias es un reto, porque la formación de imágenes debe ser realizada de forma suficientemente rápida para permitir una clara visualización de un segmento largo (> 3 cm) de una arteria dentro del intervalo durante el que la sangre sale del campo de la visión de la sonda. La velocidad de adquisición de imágenes de la generación actual de sistemas OCT disponibles en el mercado para formación de imágenes de la arteria coronaria se limita a aproximadamente 15 imágenes/s. A esta velocidad de adquisición, se requiere la oclusión del flujo de sangre con un globo durante al menos 30 segundos para obtener imágenes de un segmento de 3 cm de la arteria deseada. Si la velocidad de adquisición de imágenes de los sistemas OCT se pudiese incrementar al menos un orden de magnitud, sin pérdida significativa de calidad de imagen, se podría evitar la oclusión con globo durante largos períodos. Entonces se podría obtener imágenes de un segmento de una arteria inyectando simplemente un bolo de salina en unos pocos segundos, simplificando por ello el procedimiento de formación de imágenes reduciendo al mismo tiempo el riesgo de isquemia de miocardio.
Los sistemas OCT de dominio de tiempo emplean una fuente de luz de banda ancha como una entrada a un interferómetro con un brazo de referencia accionado mecánicamente para exploración de longitud de trayecto. Las señales de interferencia generadas por reflejos de estructuras a diferentes profundidades se miden punto a punto cuando cambia la longitud de trayecto de referencia. En este esquema de medición, la velocidad de exploración máxima es limitada tanto por las limitaciones mecánicas dinámicas del accionador como por la densidad de potencia espectral de la fuente de luz. En tal sistema que usa una fuente de luz superluminescente que emite una potencia de salida de 25 mW en una anchura de banda espectral de 40-60 nm, la velocidad de exploración a profundidad máxima que se puede lograr manteniendo al mismo tiempo una relación de señal a ruido adecuada para formación de imágenes de tejidos (> 90 dB) es aproximadamente 25 m/s. Por lo tanto, se pueden adquirir imágenes de 512 líneas de un objeto profundo de 5 mm a una tasa no superior a 10 por segundo.
La OCT de dominio de frecuencia (también llamada de dominio Fourier) (FD) supera estas limitaciones de velocidad aprovechando los métodos de discriminación de frecuencia óptica en base a transformación de Fourier, que eliminan la necesidad de accionadores mecánicos de rango largo. Swanson EA y Chinn SR, “Method and Apparatus for Performing Optical Frequency Domain Reflectometry” Patente de estados Unidos número 6.160.826 (concedida el 12 de Diciembre de 2000); Choma MA, Sarunic MV, Yang C, y lzatt J, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography”, Opt. Express, Vol. 11, 2183-2189 (2003). En lugar de desperdiciar la potencia de fuente disponible interrogando la muestra punto por punto, la FD-OCT recoge información de múltiples profundidades simultáneamente y discrimina los reflejos de diferentes profundidades según las frecuencias ópticas de las señales que generan. La formación de imágenes FD-OCT puede ser realizada iluminando la muestra con una fuente de banda ancha y dispersando la luz reflejada con un espectrómetro sobre un detector en red. Alternativamente, la muestra puede ser iluminada con un láser de longitud de onda sintonizada rápida y la luz reflejada durante un barrido de longitud de onda recogida con un solo fotodetector. En ambos casos se obtiene un perfil de los reflejos de diferentes profundidades por transformación de Fourier de las señales de interferencia registradas. A causa de su potencial de lograr un rendimiento más alto a menor costo en la región espectral de 1300 nm, los sistemas FD-OCT basados en fuentes láser de barrido de frecuencia han atraído la máxima atención para aplicaciones médicas que requieren formación de imágenes subsuperficiales en tejidos de dispersión alta.
15
25
35
45
55
65
E08705540
09-04-2015
La viabilidad de la OCT de fuente de barrido (SS-OCT) ha quedado demostrada en varios estudios académicos de investigación. Chinn SR, Swanson EA, y Fujimoto JG, “Optical coherence tomography using a frequency-tunable optical source”, Opt. Lett., Vol. 22, 340-342 (1997); Yun SH, Tearney GJ, Bouma BE, Park BH, de Boer J F, “Highspeed spectral domain tomography at 1.3 µm wavelength,” Optics Express, Vol. 11, pp. 3598-3604 (2003); Choma MA, Hsu K, e Izatt J, “Swept source optical coherence tomography using an all-fiber 1300 nm ring laser source”, J. Biomed Optics, Vol. 10,m, p. 044009 (2005); Huber R, Wojtkowski, Taira K, Fujimoto JG, y Hsu K, “Amplified, frequency-swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express, Vol. 13, 3513-3528 (2005). La mayoría de los sistemas SS-OCT indicados emplean láseres de cavidad corta sintonizados rápidamente por un filtro de Fabry-Perot accionado electrónicamente o un filtro de rejilla movido por motor. Las implementaciones descritas hasta la fecha tienen los inconvenientes que desalientan la amplia comercialización de SS-OCT. Específicamente, las implementaciones actuales hacen difíciles la adquisición y visualización de datos en tiempo real, porque emplean esquemas de adquisición de datos que requieren el remuestreo después de la adquisición o la interpolación de datos registrados antes de la transformación de Fourier. Además, la longitud de coherencia relativamente corta y la tendencia a salto de modo de los láseres de cavidad corta reducen la señal a ruido y la resolución de imágenes a profundidades de exploración óptica superiores a 2-3 mm. Muchas aplicaciones médicas, incluyendo la formación de imágenes de la arteria coronaria, requieren una profundidad de exploración óptica superior a 5 mm.
El reciente desarrollo del bloqueo de modo en el dominio de Fourier (FDML) resuelve el problema de la degradación de la señal a ruido y la resolución de imágenes a grandes profundidades de exploración óptica. Huber R, Taira K, y Fujimoto J, “Mode Locking Methods and Apparatus”, Solicitud de Patente de Estados Unidos números 2006/0187537, (publicada el 24 de Agosto de 2006); Huber R, Wojtkowski M, y Fujimoro JG, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography”, Optics Express, Vol. 14, pp. 3225-3237 (2006). Sin embargo, la implementación práctica de un sistema SS-OCT basado en FDML presenta varios retos técnicos. La presente invención afronta estos retos y proporciona soluciones a los mismos.
Resumen de la invención
La presente invención describe dispositivos y métodos que permiten la operación estable, de bajo ruido y eficiente de sistemas OCT de fuente de barrido (SS-OCT) a alta velocidad, con visualización continua de imágenes en tiempo real. Los métodos aquí detallados superan las desventajas de las implementaciones anteriores de los sistemas SS-OCT, que incluyen rendimiento de ruido pobre, rango de exploración limitado, los efectos de las propiedades de birrefringencia y dispersión de la cavidad de láser, inestabilidad de fase, y limitaciones de la velocidad de muestreo.
En un aspecto, la invención se refiere a un aparato de tomografía de coherencia óptica, adaptado para recogida de datos. El aparato puede incluir un primer elemento de ganancia, un segundo elemento de ganancia, donde cada elemento de ganancia tiene una dependencia de ganancia diferente de la polarización, y un láser de bloqueo de modo en el dominio Fourier que define una cavidad. El láser puede incluir un elemento de sintonización de frecuencia en comunicación óptica con el primer elemento de ganancia, donde el primer elemento de ganancia se puede disponer dentro de la cavidad de láser y el segundo elemento de ganancia se puede disponer fuera de la cavidad, y la dependencia de ganancia de la polarización del primer elemento de ganancia es menor que la dependencia de ganancia de la polarización del segundo elemento de ganancia.
El aparato puede incluir un generador de reloj de muestra, donde el generador de reloj de muestra puede estar configurado para sincronizar un convertidor analógico a digital. El convertidor analógico a digital puede estar configurado para muestrear señales de interferencia en una salida de un interferómetro principal. El aparato puede incluir un sistema de control digital configurado para estabilizar una frecuencia de accionamiento del elemento de sintonización de frecuencia del láser de bloqueo de modo en el dominio Fourier usando al menos una señal de control derivada del generador de reloj de muestra. El láser de bloqueo de modo en el dominio Fourier puede incluir un elemento de retardo óptico que incluye un par de bobinas de fibra cuyas orientaciones relativas se regulan para reducir los efectos de la dispersión de modo de polarización.
El generador de reloj de muestra puede incluir un interferómetro de reloj de muestra, un fotorreceptor, un amplificador de control automático de ganancia, un multiplicador de frecuencia, un detector de cruce por cero, y/o un interruptor de reloj. El generador de reloj de muestra puede incluir un interferómetro de Mach-Zehnder, incluyendo un par de acopladores de fibra 2 x 2, un interferómetro de Michelson con longitudes desadaptadas en brazos de muestra y referencia, un interferómetro de Michelson de trayecto común, incluyendo un elemento con dos interfaces parcialmente reflectoras, y/o un interferómetro de Fabry-Perot. El generador de reloj de muestra puede incluir un multiplicador analógico. El multiplicador analógico puede estar configurado para realizar una función de cuadratura en una señal de interferencia de entrada. El generador de reloj de muestra puede incluir un multiplicador analógico para la multiplicación de un par de señales derivadas de una señal de interferencia transmitida a través de un divisor rf de potencia de cambio de fase. El generador de reloj de muestra puede incluir una puerta O exclusivo para la transmisión de un par de trenes de pulsos desfasados, derivándose los trenes de pulsos de un detector de cruce por cero aplicado a una señal de interferencia, y una réplica retardada de la salida del detector de cruce por cero. El generador de reloj de muestra puede incluir una puerta O exclusivo para la transmisión de un par de trenes de pulsos desfasados, donde los trenes de pulsos son derivados de un par de detectores de cruce por cero aplicados a
15
25
35
45
55
65
E08705540
09-04-2015
señales sinusoidales derivadas de un divisor de potencia de cambio de fase.
El interferómetro de reloj de muestra puede generar señales de interferencia desfasadas para modulación de frecuencia a partir de una combinación de un acoplador 2 x 2 y un acoplador 3 x 3. La relación de división de potencia del acoplador 3 x 3 se puede elegir para obtener un par de señales de interferencia cuyas fases difieren aproximadamente 90 grados. El interferómetro de reloj de muestra puede generar señales de interferencia desfasadas para modulación de frecuencia a partir de una combinación de un acoplador 2 x 2 y un acoplador 3 x 3, eligiéndose la relación de división de potencia del acoplador 3 x 3 para obtener un par de señales de interferencia cuyas fases difieren aproximadamente 90 grados. El aparato puede incluir además un acoplador de 4x4, generando el acoplador de 4x4 un par de señales equilibradas con una relación de fase en cuadratura, generando el generador de reloj de muestra una sola señal de reloj ADC. El generador de reloj de muestra puede generar señales de valor complejo para transformación de Fourier registrando datos OCT usando un par de señales de reloj ADC cuyas fases difieren 90 grados.
En un aspecto, la invención se refiere a un método de formación de imágenes por OCT. El método puede incluir generar luz a partir de un láser de bloqueo de modo en el dominio Fourier, donde el láser puede definir una cavidad e incluir un primer elemento de ganancia, y el primer elemento de ganancia se puede disponer dentro de la cavidad de láser. El método puede incluir transmitir la luz generada a través de un segundo elemento de ganancia, donde el segundo elemento de ganancia se puede disponer fuera de la cavidad y cada elemento de ganancia puede tener una dependencia de ganancia diferente de la polarización. La dependencia de ganancia de la polarización del primer elemento de ganancia puede ser menor que la dependencia de ganancia de la polarización del segundo elemento de ganancia. El método puede incluir muestrear señales de interferencia en una salida de un interferómetro principal usando un convertidor analógico a digital. El convertidor analógico a digital puede ser sincronizado usando un generador de reloj de muestra. El método puede incluir optimizar una frecuencia de accionamiento de un elemento de sintonización de frecuencia del láser con un sistema de control digital, donde al menos una señal de control deriva del generador de reloj de muestra.
El método puede incluir además el paso de generar un par de señales equilibradas con una relación de fase en cuadratura para adquisición de canal doble de señales OCT del interferómetro principal usando un acoplador 4 x 4, por lo que solamente se requiere una sola señal de reloj ADC del generador de reloj de muestra. El paso de optimizar la frecuencia de accionamiento puede incluir medir la amplitud RMS instantánea Φ(t) de la señal de interferencia en la salida del fotorreceptor de interferómetro de reloj de muestra en el tiempo τ indicado por la transmisión de un pulso a través de un filtro Bragg de fibra con una banda de paso estrecha cerca de la longitud de onda de dispersión cero del elemento de retardo óptico y regulando la frecuencia de un generador de síntesis digital directa (DDS) para maximizar el valor de Φ(t).
El paso de optimizar la frecuencia de accionamiento puede incluir medir el retardo deseado D entre tiempos de cruce por cero de una forma de onda de accionamiento y un barrido láser inicial y regular una polarización cc con un convertidor digital a analógico para mantener un retardo fijo τ-D, donde τ es el tiempo medido por transmisión del pulso a través de un filtro Bragg de fibra con una banda de paso estrecha cerca de la longitud de onda de dispersión cero del elemento de retardo óptico.
En otro aspecto, la invención se refiere a un aparato de recogida de datos por tomografía de coherencia óptica, el aparato incluye un interferómetro que tiene una entrada y una salida, un convertidor analógico a digital configurado para muestrear señales de interferencia procedentes de la salida, un primer elemento de ganancia, un segundo elemento de ganancia, donde cada elemento de ganancia puede tener una dependencia de ganancia diferente de la polarización, un láser de bloqueo de modo en el dominio Fourier que tiene una cavidad de láser, donde el láser puede estar en comunicación óptica con el interferómetro. El láser puede incluir un elemento de sintonización de frecuencia en comunicación óptica con el primer elemento de ganancia, el primer elemento de ganancia dispuesto dentro de la cavidad de láser, el segundo elemento de ganancia dispuesto fuera de la cavidad, un generador de reloj de muestra configurado para sincronizar un convertidor analógico a digital, y un sistema de control digital configurado para estabilizar una frecuencia de accionamiento del elemento de sintonización de frecuencia del láser, usando una señal de control derivada del generador de reloj de muestra. La dependencia de ganancia de la polarización del primer elemento de ganancia puede ser menor que la dependencia de ganancia de la polarización del segundo elemento de ganancia. El láser puede incluir un elemento de retardo óptico que incluye un par de bobinas de fibra cuyas orientaciones relativas se regulan para reducir los efectos de la dispersión de modo de polarización.
El generador de reloj de muestra puede incluir un interferómetro de reloj de muestra, un fotorreceptor, un amplificador de control automático de ganancia, un multiplicador de frecuencia opcional, un detector de cruce por cero, y/o un interruptor de reloj. El generador de reloj de muestra puede incluir un multiplicador analógico, donde el multiplicador analógico puede estar configurado para realizar una función de cuadratura en una señal de interferencia de entrada.
En un aspecto, la invención se refiere a un método de incrementar un ciclo de trabajo útil de un elemento de sintonización en una cavidad de un láser FDML. El método incluye los pasos de linearizar una porción de un ciclo de
15
25
35
45
55
65
E08705540
09-04-2015
trabajo de elemento de sintonización de frecuencia y mover un filtro. El filtro combina una pluralidad de ondas sinusoidales de bloqueo de fase que tienen una relación de frecuencia armónica, teniendo cada onda una amplitud y fase regulables. En una realización, dos de la pluralidad de ondas sinusoidales que tienen frecuencias f y 2f son generadas por un par de circuitos integrados de síntesis digital-directa de bloqueo de fase y cuya suma ponderada produce un desplazamiento a modo de rampa alisada de un filtro sintonizable de Fabry-Perot de sistemas piezoeléctricos o microelectromecánicos (MEMs). En otra realización, dos de la pluralidad de ondas sinusoidales que tienen frecuencias f y 3f son generadas por un par de circuitos integrados de síntesis digital-directa de bloqueo de fase y cuya suma ponderada produce un desplazamiento de onda triangular de un filtro sintonizable de Fabry-Perot de sistemas piezoeléctricos o microelectromecánicos (MEMs).
En una realización de la invención se elige un amplificador óptico de semiconductor (SOA) en un anillo láser para proporcionar ganancia dependiente de polarización baja (PDG) y se elige un amplificador óptico de semiconductor de refuerzo, fuera del anillo, para proporcionar ganancia dependiente de polarización alta. El uso de un amplificador óptico de semiconductor con ganancia dependiente de polarización baja casi elimina las variaciones en el estado de polarización de la luz en la salida del láser, pero no elimina las variaciones intrabarrido en el estado de polarización en la salida del láser, que pueden degradar el rendimiento del sistema SS-OCT. Algunas de las realizaciones aquí descritas superan las variaciones tanto en amplitud como en polarización, porque el amplificador óptico de semiconductor de refuerzo proporciona suficiente amplificación en un solo eje de polarización logrando saturación de ganancia en todas las longitudes de onda, a pesar de las variaciones de polarización en la salida del amplificador óptico de semiconductor de anillo de ganancia dependiente de polarización baja.
Un objetivo de esta invención es presentar métodos para la estabilización del estado de polarización de luz que circula dentro de la cavidad anular de trayecto largo de un láser FDML. Estos métodos mejoran el rendimiento y la manufacturabilidad de sistemas SS-OCT basados en el principio FDML.
Otro objetivo de la presente invención es describir métodos y dispositivos optoelectrónicos para generar un reloj de muestra estable para adquisición directa de sistemas interferométricos a partir de varios tipos de sistemas SS-OCT. Estos métodos reducen el ruido de fase, expanden el rango dinámico, y aumentan la velocidad de adquisición de las señales de interferencia adquiridas.
Otro objetivo de la presente invención es describir métodos y dispositivos para estabilización de realimentación de sistemas SS-OCT FDML. Se presenta una realización práctica que incluye un generador de forma de onda de síntesis digital directa (DDS) de frecuencia ágil y un microcontrolador digital configurado para optimización de una variable de realimentación electrónica. También se describe un método concomitante para estabilización de la longitud de onda inicial del barrido de longitud de onda del láser FDML.
Otro objetivo de la presente invención es describir métodos para linearizar y ampliar el ciclo de trabajo del barrido de frecuencia óptica de láseres sintonizables. Estos métodos, que operan a altas tasas de repetición de exploración, pueden ser aplicados a accionadores piezoeléctricos y microelectromecánicos (MEMs), incluyendo, aunque sin limitación, accionadores con propiedades mecánicas altamente resonantes.
Otro objetivo de la presente invención es reducir los artefactos de plegado. En una realización, un artefacto de plegado tiene lugar cuando una porción de muestra bajo investigación es proyectada sobre un lado contrario de la porción de muestra dando lugar a ambigüedades en cualquier imagen resultante. En el sentido en que se usa aquí, un artefacto de plegado también se refiere a cualquier reiniciación de fase, reiniciación cíclica, o ambigüedades basadas en distorsión asociadas con captura de datos OCT.
Los métodos y sistemas se explican mediante la descripción siguiente, los dibujos y las reivindicaciones.
Breve descripción de los dibujos
Los objetos y las características de la invención se pueden entender más plenamente con referencia a los dibujos descritos a continuación y las descripciones acompañantes. Los dibujos no están necesariamente a escala, poniéndose el énfasis en cambio por lo general en ilustrar los principios de la invención. En los dibujos, se usan números análogos para indicar partes análogas en las distintas vistas.
La figura 1 es un diagrama de bloques de un sistema SS-OCT según una realización ilustrativa de la invención.
La figura 2 representa una realización preferida de un láser FDML, configurado para producir una salida con estabilidad de polarización alta según una realización ilustrativa de la invención.
La figura 3 representa un diseño alternativo para el elemento de retardo óptico de la figura 2 que incluye un par de bobinas de fibra óptica orientadas en un ángulo α-90 grados para reducir la dispersión de modo de polarización según una realización ilustrativa de la invención.
La figura 4 representa una realización general de un generador de reloj de muestra según una realización ilustrativa
15
25
35
45
55
65
E08705540
09-04-2015
de la invención.
La figura 5 representa dos realizaciones específicas, 5(a) y 5(b), del multiplicador de frecuencia de la figura 4 según realizaciones ilustrativas de la invención.
La figura 6 representa dos realizaciones adicionales, 6(a) y 6(b), de multiplicadores de frecuencia según realizaciones ilustrativas de la invención.
La figura 7 es otra realización del generador de reloj de muestra en el que el interferómetro de reloj de muestra de Mach-Zehnder es sustituido por un interferómetro de división de fase de 3 x 3 según una realización ilustrativa de la invención.
La figura 8 es una versión modificada del generador de reloj de muestra representado en la figura 7, en el que las dos salidas de cuadratura se pasan primero por detectores de cruce por cero y luego se someten a O exclusivo para generar el reloj ADC de frecuencia doble según una realización ilustrativa de la invención.
La figura 9 es otra realización del generador de reloj de muestra según una realización ilustrativa de la invención.
La figura 10 representa una configuración en la que los relojes de muestra en cuadratura se emplean como relojes separados para detección en cuadratura de señales OCT procedentes del interferómetro principal según una realización ilustrativa de la invención.
La figura 11 ilustra la aplicación de un acoplador óptico de 4x4 para adquisición de canal doble de señales OCT de cuadratura equilibradas procedentes del interferómetro principal según una realización ilustrativa de la invención.
La figura 12 ilustra una realización específica de un bucle de realimentación digital para optimización y estabilización de la frecuencia de accionamiento de un sistema SS-OCT basado en FDML según una realización ilustrativa de la invención.
La figura 13 representa las amplitudes medidas y las formas de la señal de control de franja de reloj (amplitud de franja RMS) para regulación óptima y no óptima (demasiado baja o demasiado alta) de la frecuencia de la forma de onda que mueve el elemento de sintonización de frecuencia en el láser FDML según una realización específica de la invención.
La figura 14 ilustra una realización específica de un bucle de control de realimentación para optimización y estabilización del voltaje de polarización cc aplicado al elemento de sintonización en el láser FDML según una realización ilustrativa de la invención.
La figura 15 representa la respuesta de frecuencia altamente resonante típica de un filtro sintonizable de Fabry-Perot piezoaccionado según una realización ilustrativa de la invención.
La figura 16 ilustra el principio de la síntesis de Fourier en el que se base un método de linearización de accionador ejemplar según una realización ilustrativa de la invención.
La figura 17 representa un ejemplo de una configuración para linearización armónica sintetizada de un filtro sintonizable de Fabry-Perot piezoaccionado según una realización ilustrativa de la invención.
La figura 18 representa una realización específica de un circuito de linearización de filtro sintonizable según una realización ilustrativa de la invención.
Descripción detallada
La descripción siguiente se refiere a los dibujos acompañantes que ilustran algunas realizaciones de la invención. Otras realizaciones son posibles y se puede hacer modificaciones en las realizaciones sin apartarse del espíritu y alcance de la invención. Por lo tanto, la descripción detallada siguiente no tiene la finalidad de limitar la invención. Más bien, el alcance de la invención se define por las reivindicaciones anexas.
En general, la invención se refiere a un aparato y métodos para un sistema OCT de fuente de barrido mejorado adecuado para formación de imágenes de varias estructuras, tal como los de un cadáver u organismo vivo. Típicamente, estos sistemas se basan en un método de bloqueo de modo en el dominio de Fourier (FDML). La utilización del bloqueo de modo en el dominio de Fourier (FDML) al implementar los sistemas y métodos aquí descritos resuelve el problema de la degradada relación de señal a ruido y resolución de imagen a grandes profundidades de exploración óptica. Sin embargo, la implementación práctica de un sistema SS-OCT basado en FDML presenta varios retos técnicos.
En primer lugar, para asegurar la operación estable y de bajo ruido de un sistema SS-OCT basado en FDML, hay
15
25
35
45
55
65
E08705540
09-04-2015
que minimizar los efectos de las propiedades de birrefringencia y dispersión de la cavidad de láser. En segundo lugar, para mantener la condición de bloqueo de modo de frecuencia, el período de la forma de onda que mueve el filtro sintonizable debe tener inestabilidad de fase sumamente baja y debe estar adaptado exactamente al retardo de ida y vuelta a través de la cavidad de láser. Si el período de la forma de onda de accionamiento y el retardo de ida y vuelta difieren en más de una pequeña fracción (por ejemplo, 10 ppm), las propiedades de coherencia y ruido del láser se degradan fuertemente.
Además, para compensar las influencias medioambientales, el período de la forma de onda de accionamiento debe cambiar en respuesta a los cambios en la longitud de la cavidad. En tercer lugar, para asegurar características de fase y amplitud repetibles de las señales de interferencia adquiridas, la longitud de onda desde la que se inicia el barrido de longitud de onda, se debe mantener idéntica de un barrido a otro. En cuarto lugar, para permitir operación en tiempo real de un láser FDML, configurado para producir una salida con alta resolución, las señales de interferencia deben ser muestreadas a alta velocidad a intervalos de frecuencia óptica exactos.
Aspectos de la invención describen dispositivos y métodos que resuelven los problemas identificados anteriormente incorporando componentes específicos y regulando la configuración general de varios sistemas SS-OCT basados en FDML. Consiguientemente, los métodos y el aparato aquí descritos permiten la operación estable, de bajo ruido, y eficiente de sistemas OCT de fuente de barrido a alta velocidad, con visualización continua de imágenes en tiempo real. Los métodos aquí detallados superan las desventajas de las implementaciones anteriores de sistemas SS-OCT, que incluyen el alto costo y la complejidad del sistema, pobre rendimiento de ruido, y rango de exploración limitado.
En particular, dado que se usan uno o más bucles de fibra óptica largos en algunos de los sistemas aquí descritos para adaptar el tiempo de recorrido en un circuito óptico al tiempo de conmutación de un circuito eléctrico, las influencias medioambientales, tales como las variaciones de temperatura y el esfuerzo mecánico, pueden introducir efectos de polarización indeseados en los bucles de fibra óptica. En parte, las realizaciones aquí descritas superan las variaciones tanto en amplitud como polarización, mediante la implementación de amplificadores ópticos de semiconductor de refuerzo para proporcionar suficiente amplificación en un solo eje de polarización para lograr saturación de ganancia en todas las longitudes de onda, a pesar de las variaciones de polarización en la salida del amplificador óptico de semiconductor de anillo de ganancia dependiente de polarización baja. Así, la presencia de los amplificadores ópticos de semiconductor resuelve los problemas introducidos proporcionando largos tramos de fibra óptica para adaptar el recorrido óptico y los tiempos de conmutación electrónica.
Los aspectos generales de la invención y varias realizaciones que ilustran sistemas y métodos que resuelven los problemas expuestos anteriormente se describen con más detalle con respecto a las figuras acompañantes. La figura 1 ilustra una implementación general de un sistema basado en FDML S1 adecuado para uso con una sonda OCT. A su vez, la figura 2 proporciona detalles específicos relativos al uso de elementos de ganancia, tal como, aunque sin limitación, amplificadores ópticos de semiconductor, para contrarrestar los efectos de polarización indeseados. Además, el sistema de la figura 3 representa un diseño alternativo para el elemento de retardo óptico de la figura 2 que incluye un par de bobinas de fibra óptica orientadas en un ángulo α ~ 90 grados para reducir la dispersión de modo de polarización según una realización ilustrativa de la invención.
Volviendo a la figura 1, se ilustra un sistema OCT de fuente de barrido (SS-OCT) S1 que tiene varios componentes específicos. Los componentes principales del sistema en el que se basa una realización de la invención, se representan en la figura 1. Específicamente, la figura 1 incluye un láser sintonizable (de barrido de longitud de onda) L que incluye un elemento de retardo óptico 1; un elemento de sintonización de frecuencia óptica 2a; y un primer elemento de ganancia 2b. El elemento de sintonización de frecuencia óptica 2a tiene una o más entradas de control de un generador de forma de onda de síntesis digital directa de frecuencia ágil 3; y un convertidor digital a analógico
4. Este sistema S1 está configurado para lograr FDML y proporcionar los beneficios explicados anteriormente. La luz, procedente del láser L, avanza a un interferómetro principal que está en comunicación óptica con una sonda OCT. La luz recibida de la sonda OCT es transmitida de nuevo al interferómetro principal y capturada por un fotorreceptor y en último término convertida a datos de exploración.
Como se representa en la figura 1, un microcontrolador 5 para estabilización láser que recibe una entrada de sincronización de longitud de onda (sinc λ) de un filtro de rejilla Bragg de fibra 6 también es parte del sistema S1. Un generador de reloj de muestra 7 proporciona el reloj de muestra directamente al convertidor analógico a digital (ADC) principal. El sistema también incluye una entrada de control de franja de reloj del generador de reloj de muestra 7 que está en comunicación eléctrica con el microcontrolador 5. En general, todos los elementos representados en la figura 1 están en comunicación eléctrica u óptica a lo largo de los recorridos representados, según sea apropiado para una realización dada.
Como se representa en la figura, la luz procedente de un láser FDML L es dividida en un recorrido de referencia y muestra por el interferómetro principal. La señal de interferencia electrónica es detectada por un fotorreceptor equilibrado. A su vez, la señal de salida del fotorreceptor es procesada a alta velocidad por el ADC principal. Una pequeña fracción de la luz procedente del láser L entra en el generador de reloj de muestra 7, que produce 1) un reloj de muestra de baja perturbación oscilatoria para el ADC principal y 2) una señal de franja de reloj que sirve
15
25
35
45
55
65
E08705540
09-04-2015
como la variable de control para estabilización de la forma de onda de accionamiento ca del elemento de sintonización de frecuencia 2a.
Los ejemplos de elementos de sintonización de frecuencia incluyen filtros de Fabry-Perot piezoaccionados y filtros de rejilla accionados por galvanómetro. Otra fracción pequeña de la luz del láser L pasa a través de un filtro de rejilla Bragg de fibra de banda estrecha a un tercer fotorreceptor que genera un pulso de sincronización de longitud de onda. Este pulso de sincronización sirve como el marcador de tiempo de referencia para controlar el voltaje de polarización cc del elemento de sintonización de frecuencia. El microcontrolador realiza las tareas de adquisición de datos y procesado digital asociadas con el control de realimentación de la frecuencia de forma de onda de accionamiento ca y el voltaje de polarización cc. La frecuencia de accionamiento ca es controlada mediante una palabra de control digital (típicamente 4 bytes o más) generada por el microcontrolador al sintetizador de forma de onda de síntesis digital directa (DDS) (por ejemplo, Analog Devices AD9952).
Típicamente, el sintetizador DDS 3 está configurado para generar una sinusoide en el rango de 20-100 KHz, cuya frecuencia puede ser alterada rápidamente con una resolución superior a 0,05 Hz. Para producir una forma de onda con inestabilidad sumamente baja, se puede usar un oscilador de frecuencia alta (típicamente > 100 MHz), alta estabilidad (< 10 ppm), tal como un oscilador de cristal, como el reloj base para el sintetizador DDS 3. Una palabra de control digital adicional generada por el microcontrolador embebido y transmitida a un convertidor digital a analógico (4) controla la polarización cc del elemento de sintonización de frecuencia.
En contraposición al sistema general de la figura 1, la figura 2 representa una realización preferida de un láser FDML, configurado para proporcionar una salida con estabilidad de polarización alta. La realización de la figura 2 puede ser usada en el sistema de la figura 1. El láser FDML de la figura 2 resuelve los problemáticos efectos de polarización introducidos por los esfuerzos mecánicos y térmicos explicados anteriormente. Aunque la disposición general es similar a la descrita por Huber y colaboradores (Solicitud de Patente de Estados Unidos número 2006/0187537), los elementos de ganancia primero y segundo se eligen para cumplir requisitos específicos. En concreto, el amplificador óptico de semiconductor (SOA) en el anillo (cavidad) de fibra óptica, el primer elemento de ganancia, se elige para proporcionar ganancia dependiente de polarización baja (PDG). A su vez, el amplificador óptico de semiconductor de refuerzo, un segundo elemento de ganancia ejemplar, se elige para proporcionar ganancia dependiente de polarización alta. El uso de los términos “baja” y “alta” con respecto a los elementos de ganancia dependiente de polarización (PDG) indican el nivel relativo de dependencia de ganancia de polarización de modo que la dependencia de polarización del elemento PDG alto sea más grande que la dependencia de polarización del elemento PDG bajo.
En una realización, un elemento de ganancia, tal como un amplificador, con una PDG inferior a aproximadamente 3 dB, puede ser considerado un elemento de ganancia PDG baja. A la inversa, en una realización, un elemento de ganancia, tal como un amplificador, con una PDG mayor o igual a aproximadamente 3 dB, puede ser considerado un elemento de ganancia PDG alta. Además, en este contexto, una PDG de 3 dB significa que los dos estados de polarización ortogonal son amplificados dentro de 3 dB uno de otro.
En una disposición convencional en la que solamente se usa un solo SOA (una versión de PDG alta o PDG baja) dentro del anillo o se usan los SOAs con PDGs similares tanto para anillo como para refuerzo, tienen lugar grandes variaciones en el estado de polarización de luz en la salida del láser cuando el láser efectúa barrido a través de una banda ancha de longitudes de onda. La dependencia de longitud de onda de la dispersión de modo de polarización (PMD) dentro del elemento de retardo óptico y los otros elementos ópticos dentro del anillo es la fuente probable de estos efectos. Se ha de observar que el SOA de PDG bajo no elimina las variaciones intra barrido en el estado de polarización en la salida del láser, que pueden degradar el rendimiento del sistema SS-OCT.
La configuración descrita en la figura 2 supera las variaciones tanto en amplitud como en polarización, porque el SOA de refuerzo (segundo elemento de ganancia) proporciona suficiente amplificación en un solo eje de polarización para llegar a saturación de ganancia en todas las longitudes de onda, a pesar de las variaciones de polarización en la salida del SOA de anillo de PDG baja (primer elemento de ganancia).
Pasando ahora a la figura 3, se representa un diseño alternativo para el elemento de retardo óptico de la figura 2. Específicamente, en la figura 3, el elemento de retardo representado incluye un par de bobinas de fibra óptica orientadas en un ángulo φ ~-90 grados para reducir la dispersión de modo de polarización. La disposición de bobina dividida del elemento de retardo de fibra óptica representado en la figura 3 está diseñada para reducir más los efectos de PMD dentro del anillo de fibra óptica que se usa para adaptar el recorrido óptico y los tiempos de conmutación electrónica en un sistema FDML. Orientando las bobinas en un ángulo φ que sea sustancialmente igual a 90 grados, la diferencia de retardo de grupo entre los modos de polarización ortogonal en la primera bobina es compensada por una diferencia contraria en la segunda bobina. Este efecto compensador resulta de las orientaciones ortogonales de los ejes de birrefringencia de las dos bobinas. Así, la realización representada en la figura 3 reduce más los efectos de polarización indeseados en el anillo óptico más grande.
En general, los aspectos de la invención se refieren a la selección y adaptación de componentes para uso en un sistema FDML OCT. La selección del generador de reloj de muestra es otro aspecto de la invención. Como se
15
25
35
45
55
65
E08705540
09-04-2015
representa en la figura 1, el generador de reloj de muestra 7 está en comunicación con diferentes controles y el láser FDML. La función del reloj de muestra es doble. En primer lugar, se usa para generar un reloj de muestra para el convertidor analógico a digital principal y, en segundo lugar, para generar una señal de control de franja de reloj para uso por el microcontrolador 5.
Como se representa en la figura 1, el microcontrolador 5 usa la señal de control de franja de reloj para determinar una frecuencia de accionamiento sustancialmente óptima para controlar el elemento de sintonización de frecuencia conectado o integrado dentro del láser FDML. El generador de reloj de muestra deriva pulsos de reloj de baja perturbación oscilatoria a partir de las señales de interferencia sinusoidales generadas por el interferómetro de reloj de muestra. Aunque los intervalos de tiempo de los pulsos de reloj varían a medida que se barre la longitud de onda del láser, se mantiene una espaciación igual de los intervalos entre los bordes de reloj en el dominio de frecuencia óptica. Estas características permiten la sincronización directa de ciertos tipos de convertidores analógico a digital de alta velocidad, tal como convertidores A/D flash o convertidores A/D pipeline que aceptan un reloj de frecuencia variable (por ejemplo, AD9340), sin la necesidad de hardware de remuestreo complejo. Así, dado el significado de sincronizar trenes ópticos en un sistema FDML, la selección del generador de reloj y varias mejoras relativas a él mejoran la calidad general de los datos de exploración obtenidos de una sonda OCT. Detalles adicionales relativos a realizaciones del generador de reloj de muestra se describen y/o muestran con más detalle más adelante con respecto a las figuras 4-10.
La figura 4 representa una realización general de un generador de reloj de muestra 8 que deriva un reloj de convertidor analógico a digital (ADC) estable de las salidas equilibradas de un interferómetro de Mach-Zehnder 10. El multiplicador de frecuencia (4) (M =2, 3, …) permite sincronización ADC a tasas más altas que la frecuencia fundamental de las señales de interferencia de Mach-Zehnder. En una realización, el generador incluye un conjunto opcional de componentes tales como un oscilador de cristal 12 e interruptor de reloj RF 13 que permiten el uso de convertidores analógico a digital que proporcionan sincronización no interrumpida.
Como se ilustra, la figura 4 ilustra la configuración básica del generador de reloj de muestra 8. Un fotorreceptor convierte las señales ópticas de interferencia del interferómetro de reloj de muestra representado en esta realización como el interferómetro de Mach-Zehnder 10 con un desequilibrio de recorrido óptico igual a ΔL, a una forma de onda sinusoidal parásita. La forma de onda es filtrada para pasar la banda de frecuencias generadas barriendo el láser FDML entre sus límites de longitud de onda. Para igualar la amplitud de las señales de interferencia generadas durante el barrido y para reducir los errores de fase después de la detección de cruce por cero, la forma de onda filtrada pasa a través de un amplificador con control automático de ganancia (AGC).
Un multiplicador de frecuencia opcional 14 multiplica la frecuencia de la forma de onda de paso de banda, típicamente por un factor de 2 a 4. El multiplicador de frecuencia 14 (M = 2, 3, …) permite la sincronización ADC a tasas más altas que la frecuencia fundamental de las señales de interferencia de Mach-Zehnder. Dado que permite que láseres de fuente de barrido generen tasas de sincronización ADC síncrona superiores a la frecuencia Nyquist cuando el desequilibrio de longitud de recorrido se pone igual a la longitud de coherencia del láser, la multiplicación de frecuencia mejora la operación de generadores de reloj diseñados para uso con sistemas SS-OCT de alta resolución con rangos de exploración largos. Después de la multiplicación de frecuencia, la forma de onda es filtrada de nuevo para eliminar armónicos indeseados y los componentes de señal residuales a la frecuencia fundamental.
A su vez, en la realización de la figura 4, un detector de cruce por cero convierte la forma de onda a un tren de pulsos con espaciación variable en el dominio de tiempo, pero espaciación igual en el dominio de frecuencia óptica. Un interruptor de reloj opcional, compuesto por un oscilador de cristal y un interruptor RF, interpone un tren de pulsos de frecuencia fija entre trenes de pulsos de frecuencia variable generados durante el intervalo de barrido periódico. El interruptor de reloj permite el uso de convertidores analógico a digital que requieren sincronización no interrumpida.
Dos realizaciones alternativas del multiplicador de frecuencia de la figura 4 se ilustran en las figuras 5a y 5b. Específicamente, las dos realizaciones de multiplicador de frecuencia representadas están diseñadas para doblar (M = 2) la frecuencia de señales de interferencia sinusoidales con frecuencias que barren en el rango fL a fH durante el período de adquisición según realizaciones ilustrativas de la invención. En la figura 5a, un multiplicador analógico está configurado como un escuadrador, con sus dos entradas derivadas de la salida del fotorreceptor equilibrado en la figura 4.
En la figura 5a, el multiplicador de frecuencia es un multiplicador RF analógico (por ejemplo, Analog Devices AD834
o AD835) configurado como un doblador de frecuencia. Esta configuración realiza una función de cuadratura en una entrada sinusoidal para producir una sinusoide al doble de la frecuencia. Un filtro de paso de banda elimina la desviación introducida por el proceso de cuadratura. Otra versión de la realización de la figura 5a se representa en la figura 5b. En la figura 5b, el doblador de frecuencia divide la forma de onda sinusoidal de entrada en dos formas de onda con una diferencia de fase relativa de 90 grados.
En la figura 5b, se usa un divisor de potencia de cambio de fase para generar un par de señales sinusoidales con una diferencia de fase de 90 grados, aproximadamente independiente de la frecuencia. Las dos salidas son
15
25
35
45
55
65
E08705540
09-04-2015
alimentadas a un multiplicador analógico para producir una sinusoide al doble de la frecuencia. Las sinusoides desfasadas son multiplicadas conjuntamente para producir una sinusoide al doble de la frecuencia. A diferencia de la realización de la figura 5a, la realización de la figura 5b no requiere un filtro de paso de banda, porque el proceso de multiplicación no introduce desviación.
La figura 6 representa dos realizaciones de multiplicador de frecuencia adicionales que están diseñadas para doblar la frecuencia de reloj según realizaciones ilustrativas de la invención. En la realización de la figura 6a, un detector de cruce por cero convierte primero la salida sinusoidal del interferómetro de reloj de muestra a una onda cuadrada. Una versión retardada de la onda cuadrada se somete a continuación a O exclusivo consigo misma para producir un reloj ADC con el doble de la frecuencia de la forma de onda sinusoidal de entrada. El tren de pulsos retardado es generado por una línea de retardo digital, puesta a un retardo τ igual a 1/4 del intervalo entre pulsos más cortos.
En la realización de la figura 6b, se genera un par de señales sinusoidales con una diferencia de fase de 90 grados con un divisor de potencia de cambio de fase. Específicamente, la forma de onda sinusoidal de entrada es dividida por un divisor de potencia en dos formas de onda con una diferencia de fase relativa de 90 grados. Estas señales son convertidas entonces a ondas cuadradas que se someten a O exclusivo para producir el reloj ADC de frecuencia doble. Esta realización tiene la ventaja de que el reloj de muestra mantiene un ciclo de trabajo de 50% constante en un amplio rango de frecuencias. Para mejorar el rendimiento de la mayoría de los convertidores analógico a digital pipeline, son movidos con un ciclo de trabajo próximo a 50%.
El retardo requerido para multiplicación de frecuencia de las señales de interferencia puede ser realizado en el dominio óptico así como el dominio eléctrico, como ilustran las realizaciones de los generadores de reloj de muestra representados en las figuras 7-9. Estas realizaciones aprovechan las relaciones de fase entre señales ópticas que se combinan dentro de los interferómetros en base a acopladores de N x N fibras.
Por ejemplo, el interferómetro de división de fase de la figura 7 se fabrica sustituyendo el acoplador 2 x 2 de salida de un interferómetro de Mach-Zehnder convencional (que tiene un desequilibrio de recorrido óptico igual a ΔL) por un acoplador 3 x 3. Cuando el acoplador 3 x 3 tiene una relación de división específica (~ aproximadamente 29,3%: ~ aproximadamente 41,4%: ~ aproximadamente 29,3%), las señales de interferencia formadas en dos de sus salidas tienen una diferencia de fase relativa de 90 grados. En la realización de la figura 7, se elige la relación de división de potencia de aproximadamente 29,3%: aproximadamente 41,4%: aproximadamente 29,3% para proporcionar dos salidas de igual amplitud con fase en cuadratura. Estas dos salidas son multiplicadas y pasadas a través de un detector de cruce por cero. Así, las señales eléctricas pueden ser procesadas por separado y mezcladas en un multiplicador analógico para formar una forma de onda sinusoidal de frecuencia doble. Alternativamente, como se representa en la figura 8, las señales ópticas desfasadas pueden ser procesadas usando la técnica XOR digital (explicada anteriormente) para producir un reloj de muestra ADC de frecuencia doble.
En sistemas en los que se requiere fotodetección equilibrada para reducir la degradación de la señal de reloj producida por ruido de intensidad láser, puede ser preferible la realización de la figura 9. Como se representa, se forman dos pares de señales ópticas desfasadas con polaridades opuestas sustituyendo el acoplador 2 x 2 de salida de un interferómetro de Mach-Zehnder convencional por un acoplador 4 x 4 que divide la potencia óptica igualmente entre sus cuatro salidas. Esta realización se basa en un interferómetro de división de fase 4 x 4 que proporciona un par de salidas equilibradas con relación de fase en cuadratura. Como en la realización de la figura 8, las señales ópticas resultantes son procesadas digitalmente usando técnicas XOR para producir un reloj de muestra ADC de frecuencia doble.
La figura 10 ilustra otra realización del generador de reloj de muestra. A diferencia de las realizaciones de las figuras 4-9, esta realización produce dos relojes de muestra ADC separados con una relación de fase en cuadratura. Estos relojes de seno y coseno pueden ser usados para adquirir señales OCT de interferencia del interferómetro principal en canales ADC paralelos a la frecuencia de muestreo fundamental establecida por el desequilibrio de recorrido óptico (ΔL) del interferómetro de reloj de muestra.
La transformación de Fourier compleja de señales OCT permite la reconstrucción del perfil de profundidad de la muestra, al mismo tiempo que suprime los artefactos de imagen que surgen de ambigüedad conjugada compleja. Los sistemas SS-OCT que reconstruyen el perfil de profundidad mediante transformación de Fourier de señales de interferencia de valor real padecen los artefactos generados por la superposición de reflectores desviados distancias iguales a ambos lados del reflector de referencia. Como se representa en la figura 11, se puede usar un método de división de fase óptico análogo para recoger señales de cuadratura (complejas) del interferómetro principal usando un par de convertidores ADC sincronizados simultáneamente con el mismo reloj ADC.
En sistemas SS-OCT basados en un láser FDML, el control exacto de la forma de onda de accionamiento ca, que establece la tasa de repetición láser, y la polarización cc de elemento de sintonización de frecuencia, que establece la longitud de onda central del barrido, es necesaria para lograr una alta señal a ruido y un rango dinámico amplio. En una realización, la frecuencia de accionamiento ca óptima se define como la frecuencia a la que la anchura lineal instantánea del láser es mínima, lo que tiene lugar cuando concuerdan el tiempo de ida y vuelta en la cavidad y el período de la forma de onda. A esta frecuencia, medida en el tiempo t= τ en el que el láser explora a través de la
15
25
35
45
55
65
E08705540
09-04-2015
longitud de onda de dispersión cero del elemento de retardo óptico (típicamente 1310-1315 nm), la amplitud RMS instantánea Φ(t) de la señal de interferencia en la salida del fotorreceptor de interferómetro de reloj de muestra llega al máximo. Por lo tanto, la frecuencia de accionamiento óptimo se puede hallar regulando la frecuencia de accionamiento para maximizar Φ(τ).
La figura 12 representa una de las realizaciones preferidas de un bucle de realimentación digital, que se basa en un microcontrolador que registra (Φ)(t) con un convertidor analógico a digital en el tiempo indicado por la transmisión del pulso a través de un filtro Bragg de fibra con una banda de paso estrecha (típicamente < 1 nm) a 1310 nm. El microcontrolador regula la frecuencia de un generador de forma de onda DDS de frecuencia ágil, de baja perturbación parásita, hasta que el valor registrado de Φ(t) logra su valor máximo. Con respecto a la realización de la figura 12, la señal de control de franja de reloj se obtiene detectando la amplitud RMS instantánea a partir de la señal de interferencia de paso de banda filtrada procedente del fotorreceptor del generador de reloj de muestra. La amplitud RMS es muestreada por el ADC de control en el tiempo en que el elemento de sintonización de frecuencia explora a través de la longitud de onda de dispersión cero (1310 nm) del elemento de retardo óptico en el láser FDML.
Pasando ahora a la figura 13, la figura ilustra cómo la amplitud RMS instantánea de la señal de interferencia de reloj de muestra varía a la frecuencia de regulación óptima y a frecuencias por encima y por debajo de la óptima. La frecuencia de la forma de onda puede ser actualizada de forma continua o a intervalos intermitentes determinados por la deriva máxima del láser. Además de su forma de onda de accionamiento ca, la polarización cc del elemento de sintonización de frecuencia se regula para lograr un rendimiento óptimo del sistema SS-OCT basado en FDML.
Una realización de un bucle de control digital para optimizar la polarización cc se representa en la figura 14. Es decir, el bucle regula la amplitud de la polarización cc hasta el tiempo en el que el elemento de sintonización de frecuencia que explora a través de la longitud de onda de dispersión cero (1310 nm) coincide con un retardo fijo después de que la forma de onda de accionamiento ca cruza por cero. Este bucle regula la polarización cc de tal manera que la exploración de longitud de onda del láser empieza a una longitud de onda fija, independientemente de las influencias medioambientales que alteran la sensibilidad de voltaje del elemento de sintonización. Se emplea el mismo filtro Bragg de fibra que el empleado en el bucle de control de optimización de frecuencia (figura 13) como una referencia de longitud de onda. Regulando la polarización cc mediante un convertidor digital a analógico (DAC), el microcontrolador mantiene el intervalo de tiempo a un nivel constante entre los cruces por cero de la forma de onda de accionamiento ca del generador DDS y el borde del pulso generado por un comparador en la salida de un fotoamplificador conectado a filtro Bragg de fibra.
La relación y la viabilidad comercial asociadas con la generación de formas de onda, el diseño del filtro, y el comportamiento del láser es importante para considerar cuándo implementar los sistemas aquí descritos. Aunque
(1) las formas de onda sinusoidales son fáciles de generar con circuitos integrados DDS baratos y (2) la mayoría de los filtros sintonizables de velocidad muy alta con respuestas altamente resonantes operan mejor con un accionamiento sinusoidal, esta aplicación beneficiosa de sinusoides no se extiende a todos los láseres. Por ejemplo, los láseres con barridos de longitud de onda lineales, más bien que sinusoidales, proporcionan fuentes de luz de rendimiento más alto para sistemas SS-OCT. Con barrido de longitud de onda sinusoidal, la frecuencia de reloj de muestreo instantáneo varía en un amplio rango de frecuencia en proporción a la pendiente de la onda sinusoidal en su período. Típicamente, los convertidores analógico a digital de precisión de alta velocidad aceptan frecuencias de reloj en un rango preestablecido (por ejemplo, aproximadamente 40 -aproximadamente 210 MHz). En consecuencia, el ciclo de trabajo efectivo en el que se pueden adquirir mediciones interferométricas, se limita típicamente a aproximadamente 33%. Además, la frecuencia de muestreo Nyquist varía de forma continua y rápidamente en proporción a la frecuencia de reloj de muestreo. El uso de filtros de seguimiento y los métodos de linearización aquí descritos en varias realizaciones superan este límite del ciclo de trabajo efectivo.
Por lo tanto, en una realización, para evitar distorsión, que da lugar a artefactos de plegado objetables en imágenes OCT, la frecuencia de corte del filtro anti-distorsión aplicado a la señal de interferencia antes de la conversión analógica a digital se configura para rastrear 1/2 (o menos) de la frecuencia de muestreo instantáneo. Se puede montar filtros de seguimiento adecuados usando, por ejemplo, circuitos LC sintonizados por varactor. Sin embargo, el sincronismo apropiado del controlador de seguimiento requiere circuitería completa de control digital o analógico y para lograr la nitidez requerida, el filtro se construye típicamente a partir de múltiples etapas con componentes de tolerancia estrecha. En contraposición, linearizar el barrido de longitud de onda del filtro sintonizable en una fracción grande del barrido de longitud de onda puede proporcionar una solución alternativa en algunas realizaciones.
Usando los métodos de sincronización de Mach-Zehnder aquí descritos, un barrido de longitud de onda lineal de ciclo de trabajo alto produce gran número de pulsos de reloj de muestra con una distribución de frecuencia más estrecha que un barrido de longitud de onda sinusoidal. Así, se puede lograr formación de imágenes a velocidad más alta con menos artefactos de plegado a velocidades máximas de adquisición de datos más bajas. Por desgracia, el accionamiento lineal de filtros sintonizables de Fabry-Perot comercialmente disponibles a altas velocidades es difícil de lograr usando formas de onda triangulares o de rampa convencionales, porque tales formas de onda de banda ancha contienen frecuencias que excitan un fuerte comportamiento resonante de los accionadores. La excitación de los filtros con formas de onda de accionamiento de rampa o triangulares produce
10
15
20
25
30
35
40
45
50
E08705540
09-04-2015
oscilaciones casi sinusoidales a la frecuencia de resonancia mecánica más bien que la exploración lineal deseada.
Como ilustra la respuesta de frecuencia medida de la figura 15, los filtros piezoaccionados exhiben típicamente la resonancia mecánica con un factor de alta calidad (Q = 4-8) a frecuencias del rango de 40-75 KHz. Para lograr excitación triangular o de rampa de estos filtros, la forma de onda de accionamiento se adapta para proporcionar respuesta mecánica lineal en un período prolongado compensando al mismo tiempo las respuestas de amplitud y fase altamente no uniformes de un filtro dado.
Además, la figura 16 ilustra un medio nuevo de sintetizar una forma de onda de accionamiento en base a la suma de sinusoides armónicamente relacionadas según el principio de la síntesis de Fourier. El período de decadencia de amplitud casi lineal de la forma de onda de accionamiento se puede ampliar significativamente formando la suma ponderada de solamente 2 o 3 armónicos de la onda sinusoidal fundamental. Las formas de onda ejemplares se representan para f0= 45 KHz. Una primera ventaja de este método es que las frecuencias fundamental y armónica de las ondas sinusoidales se pueden elegir para evitar las resonancias fuertes en la respuesta mecánica del filtro. A su vez, una segunda ventaja de este método, como se ilustra en la figura 17, es que solamente se requiere un pequeño número de armónicos para sintetizar formas de onda triangulares o de rampa alisadas. Además, una tercera ventaja es que las amplitudes y fases de las ondas sinusoidales componentes pueden ser sintonizadas para compensar grande no uniformidades en las respuestas de amplitud y fase del filtro sintonizable.
Con respecto a la figura 17, las salidas de dos generadores de onda sinusoidal de síntesis digital directa (DDS) de bloqueo de fase se suman y amplifican para formar la forma de onda de accionamiento del piezoaccionador. Las fases y las amplitudes de los generadores DDS se regulan para obtener el ciclo de trabajo máximo y la linealidad de la porción de la forma de onda de accionamiento durante la que se muestrean las señales interferométricas.
Una realización específica de un circuito de linearización de filtro sintonizable en base a dos generadores de onda sinusoidal de síntesis digital directa (DDS) de bloqueo de fase se representa en la figura 18. El circuito está diseñado para generar desplazamiento de rampa alisado de un filtro de Fabry-Perot piezoaccionado con la respuesta de frecuencia representada en la figura 15. La frecuencia de excitación primaria del filtro (aproximadamente 45 KHz), que establece la tasa de repetición del láser, se selecciona típicamente de tal manera que esta frecuencia y su segundo armónico (aproximadamente 90 KHz) estén situados fuera de los picos resonantes principales de la respuesta del filtro. En la práctica, las amplitudes relativas de las ondas sinusoidales de aproximadamente 45 KHz y aproximadamente 90 KHz se regulan para obtener el rango más estrecho de frecuencias de reloj durante la porción descendente de la forma de onda de accionamiento.
Este proceso de sintonización puede ser realizado en tiempo real con un osciloscopio para visualizar la transformada Fourier controlada de la señal de reloj. Los resultados de las prueba demuestran que, en comparación con la forma de onda de accionamiento sinusoidal convencional, la forma de onda de accionamiento armónica sinusoidal doble reduce la frecuencia de reloj máxima aproximadamente 30% y la amplitud de frecuencia de reloj un factor de 3, manteniendo al mismo tiempo el mismo rango de barrido de aproximadamente 100 nm. Estas mejoras aumentan la relación de señal a ruido del sistema y reducen ciertos artefactos.
Se deberá apreciar que varios aspectos de la invención reivindicada se dirigen a subconjuntos y subconjuntos de las técnicas aquí descritas. Además, los términos y las expresiones aquí empleados se usan como términos de descripción y no de limitación, y no hay intención, en el uso de tales términos y expresiones, de excluir cualesquiera equivalentes de las características mostradas y descritas o porciones de las mismas, pero se reconoce que varias modificaciones son posibles dentro del alcance de la invención reivindicada. Consiguientemente, lo que se desea asegurar con patente es la invención definida y diferenciada en las reivindicaciones siguientes, incluyendo todos los equivalentes.
Claims (16)
- 5152535455565REIVINDICACIONES1. Un aparato de tomografía de coherencia óptica, adaptado para recogida de datos, incluyendo el aparatoun láser que tiene una cavidad de láser, incluyendo el láser un elemento de sintonización de frecuencia en comunicación óptica con el primer elemento de ganancia, estando dispuesto el primer elemento de ganancia dentro de la cavidad de láser; yun segundo elemento de ganancia dispuesto fuera de la cavidad de láser dispuesto de modo que la luz generada por el láser sea transmitida a través del segundo elemento de ganancia, teniendo cada elemento de ganancia una dependencia de ganancia diferente de la polarización.
-
- 2.
- El aparato de recogida de datos por tomografía de coherencia óptica de la reivindicación 1, donde la dependencia de ganancia de la polarización del primer elemento de ganancia es menor que la dependencia de ganancia de la polarización del segundo elemento de ganancia.
-
- 3.
- El aparato de recogida de datos por tomografía de coherencia óptica de la reivindicación 1 o 2, donde el aparato incluye además
un generador de reloj de muestra configurado para sincronizar un convertidor analógico a digital, estando configurado el convertidor analógico a digital para muestrear señales de interferencia en una salida de un interferómetro principal; yun sistema de control digital configurado para estabilizar una frecuencia de accionamiento del elemento de sintonización de frecuencia del láser usando al menos una señal de control derivada del generador de reloj de muestra. -
- 4.
- El aparato de la reivindicación 3 donde el generador de reloj de muestra incluye además un elemento seleccionado del grupo que consta de: un interferómetro de Mach-Zehnder incluyendo un par de acopladores de 2 x 2 fibras, un interferómetro de Michelson con longitudes desadaptadas en brazos de muestra y referencia, un interferómetro de Michelson de trayecto común incluyendo un elemento con dos interfaces parcialmente reflectoras y un interferómetro de Fabry-Perot.
-
- 5.
- El aparato de la reivindicación 3, donde el generador de reloj de muestra incluye además un multiplicador analógico para la multiplicación de un par de señales derivadas de una señal de interferencia transmitida a través de un divisor rf de potencia de cambio de fase.
-
- 6.
- El aparato de la reivindicación 3, donde el generador de reloj de muestra incluye además: una puerta O exclusivo para la transmisión de un par de trenes de pulsos desfasados, los trenes de pulsos derivados de un detector de cruce por cero aplicado a una señal de interferencia y una réplica retardada de la salida del detector de cruce por cero.
-
- 7.
- El aparato de la reivindicación 3, donde el interferómetro de reloj de muestra genera señales de interferencia desfasadas para modulación de frecuencia procedentes de una combinación de un acoplador 2 x 2 y un acoplador 3 x 3, eligiéndose la relación de división de potencia del acoplador 3 x 3 para obtener un par de señales de interferencia cuyas fases difieren aproximadamente 90 grados.
-
- 8.
- El aparato de la reivindicación 3, donde el aparato incluye además un acoplador 4 x 4, generando el acoplador 4 x 4 un par de señales equilibradas con una relación de fase en cuadratura, generando el generador de reloj de muestra una sola señal de reloj ADC.
-
- 9.
- El aparato de la reivindicación 3, donde el generador de reloj de muestra genera señales de valor complejo para transformación de Fourier registrando datos OCT usando un par de señales de reloj ADC cuyas fases difieren 90 grados.
-
- 10.
- El aparato de recogida de datos por tomografía de coherencia óptica de la reivindicación 1 o 2, incluyendo además:
un interferómetro que tiene una entrada y una salida, estando el láser en comunicación óptica con el interferómetro; yun convertidor analógico a digital configurado para muestrear señales de interferencia procedentes de la salida, incluyendo el láser:un generador de reloj de muestra incluyendo un interferómetro de reloj de muestra y un multiplicador de frecuencia, estando configurado el generador de reloj de muestra para sincronizar el convertidor analógico a digital; y13un sistema de control digital configurado para estabilizar una frecuencia de accionamiento del elemento de sintonización de frecuencia del láser, usando una señal de control derivada del generador de reloj de muestra.5 11. El aparato de recogida de datos por tomografía de coherencia óptica de la reivindicación 1, 2 o 10, donde el láser incluye además un elemento de retardo óptico que incluye un par de bobinas de fibra cuyas orientaciones relativas se regulan para reducir los efectos de la dispersión de modo de polarización. - 12. El aparato de recogida de datos por tomografía de coherencia óptica de la reivindicación 3 o 10, donde el10 generador de reloj de muestra incluye además un elemento seleccionado del grupo que consta de: un interferómetro de reloj de muestra, un fotorreceptor, un amplificador de control automático de ganancia, un multiplicador de frecuencia, un detector de cruce por cero, y un interruptor de reloj.
- 13. El aparato de recogida de datos por tomografía de coherencia óptica de la reivindicación 3 o 10, donde el15 generador de reloj de muestra incluye además un multiplicador analógico, estando configurado el multiplicador analógico para realizar una función de cuadratura en una señal de interferencia de entrada.
- 14. Un método de formación de imágenes por OCT incluyendo:20 generar luz a partir de un láser que tiene una cavidad de láser, incluyendo el láser un primer elemento de ganancia, estando dispuesto el primer elemento de ganancia dentro de la cavidad de láser;transmitir la luz generada a través de un segundo elemento de ganancia, estando dispuesto el segundo elemento de ganancia fuera de la cavidad de láser, teniendo cada elemento de ganancia una dependencia de ganancia diferente 25 de la polarización;muestrear señales de interferencia en una salida de un interferómetro principal usando un convertidor analógico a digital, sincronizándose el convertidor analógico a digital usando un generador de reloj de muestra; y30 optimizar una frecuencia de accionamiento de un elemento de sintonización de frecuencia del láser con un sistema de control digital, derivándose al menos una señal de control del generador de reloj de muestra.
- 15. El método de la reivindicación 14, donde la dependencia de ganancia de la polarización del primer elemento deganancia es menor que la dependencia de ganancia de la polarización del segundo elemento de ganancia. 35
- 16. El método de la reivindicación 14 o 15, incluyendo además el paso de generar un par de señales equilibradas con una relación de fase en cuadratura para adquisición de canal doble de señales OCT procedentes del interferómetro principal usando un acoplador 4 x 4, por lo que solamente se requiere una sola señal de reloj ADC procedente del generador de reloj de muestra.40
- 17. El método de la reivindicación 14 o 15, donde el paso de optimizar la frecuencia de accionamiento incluye además:medir la amplitud RMS instantánea Φ(t) de la señal de interferencia en la salida del fotorreceptor de interferómetro 45 de reloj de muestra en el tiempo τ indicado por transmisión de un pulso a través de un filtro Bragg de fibra con una banda de paso estrecha cerca de la longitud de onda de dispersión cero del elemento de retardo óptico; yregular la frecuencia de un generador de síntesis digital directa (DDS) para maximizar el valor de Φ(t).50 18. El método de la reivindicación 14 o 15, donde el paso de optimizar la frecuencia de accionamiento incluye además:medir el retardo deseado D entre tiempos de cruce por cero de una forma de onda de accionamiento y un barrido láser inicial, y55 regular una polarización cc con un convertidor digital a analógico para mantener un retardo fijo τ-D, donde τ es el tiempo medido por transmisión del pulso a través de un filtro Bragg de fibra con una banda de paso estrecha cerca de la longitud de onda de dispersión cero del elemento de retardo óptico.14
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US87988007P | 2007-01-10 | 2007-01-10 | |
US879880P | 2007-01-10 | ||
PCT/US2008/000341 WO2008086017A1 (en) | 2007-01-10 | 2008-01-10 | Methods and apparatus for swept-source optical coherence tomography |
Publications (1)
Publication Number | Publication Date |
---|---|
ES2534572T3 true ES2534572T3 (es) | 2015-04-24 |
Family
ID=39495523
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES08705540.6T Active ES2534572T3 (es) | 2007-01-10 | 2008-01-10 | Métodos y aparato para tomografía de coherencia óptica de fuente de barrido |
ES15156028T Active ES2847098T3 (es) | 2007-01-10 | 2008-01-10 | Métodos y aparato para tomografía de coherencia óptica de fuente de barrido |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES15156028T Active ES2847098T3 (es) | 2007-01-10 | 2008-01-10 | Métodos y aparato para tomografía de coherencia óptica de fuente de barrido |
Country Status (6)
Country | Link |
---|---|
US (5) | US7916387B2 (es) |
EP (3) | EP2897239B1 (es) |
JP (4) | JP5269809B2 (es) |
CN (3) | CN101600388B (es) |
ES (2) | ES2534572T3 (es) |
WO (1) | WO2008086017A1 (es) |
Families Citing this family (177)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7241286B2 (en) * | 2003-04-25 | 2007-07-10 | Lightlab Imaging, Llc | Flush catheter with flow directing sheath |
US8315282B2 (en) | 2005-01-20 | 2012-11-20 | Massachusetts Institute Of Technology | Fourier domain mode locking: method and apparatus for control and improved performance |
CN101594819B (zh) | 2006-11-08 | 2012-05-30 | 光学实验室成像公司 | 光声成像装置和方法 |
ES2534572T3 (es) * | 2007-01-10 | 2015-04-24 | Lightlab Imaging, Inc. | Métodos y aparato para tomografía de coherencia óptica de fuente de barrido |
US20100074504A1 (en) * | 2007-03-29 | 2010-03-25 | Koninklijke Philips Electronics N.V. | Method and apparatus for acquiring fusion x-ray images |
US7813609B2 (en) * | 2007-11-12 | 2010-10-12 | Lightlab Imaging, Inc. | Imaging catheter with integrated reference reflector |
US8582934B2 (en) * | 2007-11-12 | 2013-11-12 | Lightlab Imaging, Inc. | Miniature optical elements for fiber-optic beam shaping |
JP5538368B2 (ja) * | 2008-05-15 | 2014-07-02 | アクサン・テクノロジーズ・インコーポレーテッド | Octの結合プローブおよび一体化システム |
US8564783B2 (en) | 2008-05-15 | 2013-10-22 | Axsun Technologies, Inc. | Optical coherence tomography laser with integrated clock |
JP2011521747A (ja) * | 2008-06-02 | 2011-07-28 | ライトラブ イメージング, インコーポレイテッド | 光コヒーレンストモグラフィ画像から組織特徴を取得する定量的方法 |
DE102008029479A1 (de) * | 2008-06-20 | 2009-12-24 | Carl Zeiss Meditec Ag | Kurzkohärenz-Interferometerie zur Abstandsmessung |
DE102008045634A1 (de) * | 2008-09-03 | 2010-03-04 | Ludwig-Maximilians-Universität München | Wellenlängenabstimmbare Lichtquelle |
JP5778579B2 (ja) | 2008-10-14 | 2015-09-16 | ライトラボ・イメージング・インコーポレーテッド | 光コヒーレンス断層撮影法を使用するステントストラット検出ならびに関連する測定および表示のための方法 |
DE102008063225A1 (de) | 2008-12-23 | 2010-07-01 | Carl Zeiss Meditec Ag | Vorrichtung zur Swept Source Optical Coherence Domain Reflectometry |
FR2940540B1 (fr) * | 2008-12-23 | 2010-12-24 | Observatoire Paris | Systeme laser muni d'un asservissement de frequence. |
JP5384978B2 (ja) * | 2009-03-19 | 2014-01-08 | オリンパス株式会社 | 光パルス発生装置を含む光学システム |
KR101010818B1 (ko) | 2009-04-03 | 2011-01-25 | 박승광 | 스웹트 레이저의 발진 파수 선형 스위핑 제어 장치 및 방법 |
US8526472B2 (en) | 2009-09-03 | 2013-09-03 | Axsun Technologies, Inc. | ASE swept source with self-tracking filter for OCT medical imaging |
US8670129B2 (en) | 2009-09-03 | 2014-03-11 | Axsun Technologies, Inc. | Filtered ASE swept source for OCT medical imaging |
EP2742858B1 (en) | 2009-09-23 | 2024-06-05 | Light-Lab Imaging Inc. | Lumen morphology and vascular resistance measurements data collection systems, apparatus and methods |
US8412312B2 (en) * | 2009-09-23 | 2013-04-02 | Lightlab Imaging, Inc. | Apparatus, systems, and methods of in-vivo blood clearing in a lumen |
US20180344174A9 (en) | 2009-09-23 | 2018-12-06 | Lightlab Imaging, Inc. | Lumen Morphology and Vascular Resistance Measurements Data Collection Systems, Apparatus and Methods |
US9319214B2 (en) * | 2009-10-07 | 2016-04-19 | Rf Micro Devices, Inc. | Multi-mode power amplifier architecture |
US8926590B2 (en) | 2009-12-22 | 2015-01-06 | Lightlab Imaging, Inc. | Torque limiter for an OCT catheter |
US8206377B2 (en) * | 2009-12-22 | 2012-06-26 | Lightlab Imaging, Inc. | Torque limiter for an OCT catheter |
US8478384B2 (en) | 2010-01-19 | 2013-07-02 | Lightlab Imaging, Inc. | Intravascular optical coherence tomography system with pressure monitoring interface and accessories |
EP2547982B1 (en) | 2010-03-17 | 2017-09-13 | Lightlab Imaging, Inc. | Intensity noise reduction methods and apparatus for interferometric sensing and imaging systems |
JP5587648B2 (ja) * | 2010-03-30 | 2014-09-10 | テルモ株式会社 | 光画像診断装置 |
DE102010032138A1 (de) * | 2010-07-24 | 2012-01-26 | Carl Zeiss Meditec Ag | OCT-basiertes, ophthalmologisches Messsytem |
CN102062902B (zh) * | 2010-12-24 | 2012-11-21 | 华南师范大学 | 基于马赫-曾德干涉仪的可调谐平顶多信道光纤滤波器 |
US10371499B2 (en) | 2010-12-27 | 2019-08-06 | Axsun Technologies, Inc. | Laser swept source with controlled mode locking for OCT medical imaging |
US8687666B2 (en) * | 2010-12-28 | 2014-04-01 | Axsun Technologies, Inc. | Integrated dual swept source for OCT medical imaging |
US8437007B2 (en) * | 2010-12-30 | 2013-05-07 | Axsun Technologies, Inc. | Integrated optical coherence tomography system |
US9372339B2 (en) | 2011-01-05 | 2016-06-21 | Nippon Telegraph and Telephone Communications | Wavelength swept light source |
JP5296814B2 (ja) * | 2011-01-21 | 2013-09-25 | 日本電信電話株式会社 | 波長掃引光源 |
US20120188554A1 (en) * | 2011-01-24 | 2012-07-26 | Canon Kabushiki Kaisha | Light source device and imaging apparatus using the same |
US8569675B1 (en) * | 2011-03-10 | 2013-10-29 | Hrl Laboratories, Llc | Optical analog PPM demodulator |
US8582619B2 (en) | 2011-03-15 | 2013-11-12 | Lightlab Imaging, Inc. | Methods, systems, and devices for timing control in electromagnetic radiation sources |
US9164240B2 (en) | 2011-03-31 | 2015-10-20 | Lightlab Imaging, Inc. | Optical buffering methods, apparatus, and systems for increasing the repetition rate of tunable light sources |
EP2525194A1 (en) * | 2011-05-16 | 2012-11-21 | Knowles Electronics Asia PTE. Ltd. | Optical sensor |
CN106913358B (zh) | 2011-05-31 | 2021-08-20 | 光学实验室成像公司 | 多模式成像系统、设备和方法 |
JP2014523536A (ja) * | 2011-07-19 | 2014-09-11 | ザ ジェネラル ホスピタル コーポレイション | 光コヒーレンストモグラフィーにおいて偏波モード分散補償を提供するためのシステム、方法、装置およびコンピュータアクセス可能な媒体 |
US8582109B1 (en) * | 2011-08-01 | 2013-11-12 | Lightlab Imaging, Inc. | Swept mode-hopping laser system, methods, and devices for frequency-domain optical coherence tomography |
US10648918B2 (en) | 2011-08-03 | 2020-05-12 | Lightlab Imaging, Inc. | Systems, methods and apparatus for determining a fractional flow reserve (FFR) based on the minimum lumen area (MLA) and the constant |
ES2628456T3 (es) * | 2011-09-26 | 2017-08-02 | Wavelight Gmbh | Técnica de Tomografía de Coherencia Óptica |
JP6025317B2 (ja) * | 2011-10-24 | 2016-11-16 | 株式会社トプコン | モード同期レーザ光源装置及びこれを用いた光干渉断層撮影装置 |
US8953911B1 (en) | 2011-10-28 | 2015-02-10 | Lightlab Imaging, Inc. | Spectroscopic imaging probes, devices, and methods |
US8581643B1 (en) * | 2011-10-28 | 2013-11-12 | Lightlab Imaging, Inc. | Phase-lock loop-based clocking system, methods and apparatus |
US8831321B1 (en) | 2011-11-07 | 2014-09-09 | Lightlab Imaging, Inc. | Side branch detection methods, systems and devices |
US20130163003A1 (en) * | 2011-12-21 | 2013-06-27 | Ole Massow | Apparatus and method for optical swept-source coherence tomography |
WO2013123430A1 (en) | 2012-02-17 | 2013-08-22 | The Regents Of The University Of California | Directional optical coherence tomography systems and methods |
JP2013181790A (ja) * | 2012-02-29 | 2013-09-12 | Systems Engineering Inc | 周波数走査型oct用サンプリングクロック発生装置の使用方法、周波数走査型oct用サンプリングクロック発生装置 |
US9243885B2 (en) * | 2012-04-12 | 2016-01-26 | Axsun Technologies, LLC | Multi-speed OCT swept source with optimized k-clock |
EP2662661A1 (de) * | 2012-05-07 | 2013-11-13 | Leica Geosystems AG | Messgerät mit einem Interferometer und einem ein dichtes Linienspektrum definierenden Absorptionsmedium |
CN103427334B (zh) | 2012-05-14 | 2018-09-25 | 三星电子株式会社 | 用于发射波长扫描光的方法和设备 |
US9441944B2 (en) * | 2012-05-16 | 2016-09-13 | Axsun Technologies Llc | Regenerative mode locked laser swept source for OCT medical imaging |
US10506934B2 (en) | 2012-05-25 | 2019-12-17 | Phyzhon Health Inc. | Optical fiber pressure sensor |
CN104755908B (zh) * | 2012-07-27 | 2017-12-12 | 统雷有限公司 | 敏捷成像系统 |
US8687201B2 (en) * | 2012-08-31 | 2014-04-01 | Lightlab Imaging, Inc. | Optical coherence tomography control systems and methods |
CN102835948B (zh) * | 2012-09-12 | 2016-03-30 | 无锡微奥科技有限公司 | 一种扫频光源oct实时图像显示方法及其系统 |
US8953167B2 (en) * | 2012-11-07 | 2015-02-10 | Volcano Corporation | OCT system with tunable clock system for flexible data acquisition |
DE102012022343B4 (de) | 2012-11-15 | 2019-09-19 | Laser Zentrum Hannover E.V. | Verfahren zum Überwachen eines Schichtwachstums und Vorrichtung zum Beschichten |
ES2978868T3 (es) | 2012-11-19 | 2024-09-23 | Lightlab Imaging Inc | Dispositivos de interfaz, sistemas y métodos para sondas multimodales |
TWI473373B (zh) * | 2012-11-30 | 2015-02-11 | Ind Tech Res Inst | 間隔時間可調脈衝序列產生裝置 |
JP6038619B2 (ja) * | 2012-12-04 | 2016-12-07 | 株式会社日立エルジーデータストレージ | 偏光感受型光計測装置 |
WO2014085911A1 (en) | 2012-12-05 | 2014-06-12 | Tornado Medical Systems, Inc. | System and method for wide field oct imaging |
EP2929288A4 (en) * | 2012-12-06 | 2016-07-06 | Univ Lehigh | SPATIAL MULTIPLEXING OPTICAL COHERENCE TOMOGRAPHY APPARATUS |
ES2641487T3 (es) | 2012-12-12 | 2017-11-10 | Lightlab Imaging, Inc. | Aparato para la determinación automatizada de un contorno luminal de un vaso sanguíneo |
US10161738B2 (en) * | 2012-12-31 | 2018-12-25 | Axsun Technologies, Inc. | OCT swept laser with cavity length compensation |
JP6053138B2 (ja) * | 2013-01-24 | 2016-12-27 | 株式会社日立エルジーデータストレージ | 光断層観察装置及び光断層観察方法 |
US10398306B2 (en) | 2013-03-07 | 2019-09-03 | Nanyang Technological University | Optical imaging device and method for imaging a sample |
US9173591B2 (en) | 2013-03-08 | 2015-11-03 | Lightlab Imaging, Inc. | Stent visualization and malapposition detection systems, devices, and methods |
WO2014163601A1 (en) | 2013-03-11 | 2014-10-09 | Lightlab Imaging, Inc. | Friction torque limiter for an imaging catheter |
US9069396B2 (en) | 2013-03-12 | 2015-06-30 | Lightlab Imaging, Inc. | Controller and user interface device, systems, and methods |
US9351698B2 (en) | 2013-03-12 | 2016-05-31 | Lightlab Imaging, Inc. | Vascular data processing and image registration systems, methods, and apparatuses |
US9702762B2 (en) | 2013-03-15 | 2017-07-11 | Lightlab Imaging, Inc. | Calibration and image processing devices, methods, and systems |
US9833221B2 (en) | 2013-03-15 | 2017-12-05 | Lightlab Imaging, Inc. | Apparatus and method of image registration |
CN104207752B (zh) * | 2013-05-30 | 2017-03-15 | 乐普(北京)医疗器械股份有限公司 | 一种高速扫频光学相干断层成像系统 |
US9464883B2 (en) | 2013-06-23 | 2016-10-11 | Eric Swanson | Integrated optical coherence tomography systems and methods |
US9683928B2 (en) | 2013-06-23 | 2017-06-20 | Eric Swanson | Integrated optical system and components utilizing tunable optical sources and coherent detection and phased array for imaging, ranging, sensing, communications and other applications |
US10327645B2 (en) | 2013-10-04 | 2019-06-25 | Vascular Imaging Corporation | Imaging techniques using an imaging guidewire |
JP6257072B2 (ja) * | 2013-10-16 | 2018-01-10 | 国立大学法人 筑波大学 | 白色干渉計装置による表面形状の測定方法 |
KR20150054542A (ko) | 2013-11-12 | 2015-05-20 | 삼성전자주식회사 | 광대역 파장 가변광원 시스템 및 이를 적용한 장치 |
US10537255B2 (en) | 2013-11-21 | 2020-01-21 | Phyzhon Health Inc. | Optical fiber pressure sensor |
JP6125981B2 (ja) * | 2013-12-10 | 2017-05-10 | 株式会社トーメーコーポレーション | 光断層画像装置用サンプルクロック発生装置、および光断層画像装置 |
CN103720460A (zh) * | 2013-12-25 | 2014-04-16 | 天津大学 | 一种兼容光谱信息分析功能的光学相干层析装置和方法 |
US10317189B2 (en) | 2014-01-23 | 2019-06-11 | Kabushiki Kaisha Topcon | Detection of missampled interferograms in frequency domain OCT with a k-clock |
JP5855693B2 (ja) * | 2014-02-28 | 2016-02-09 | 富士重工業株式会社 | 振動検出装置及び振動検出方法 |
CN103853151B (zh) * | 2014-03-14 | 2016-11-02 | 陕西科技大学 | Deh点检仪正弦波发生装置 |
JP6252853B2 (ja) * | 2014-03-31 | 2017-12-27 | 株式会社東京精密 | 距離測定システム、距離測定装置、及び距離測定方法 |
CA3186992A1 (en) | 2014-04-04 | 2015-10-08 | St. Jude Medical Systems Ab | Intravascular pressure and flow data diagnostic systems, devices, and methods |
JP6349156B2 (ja) | 2014-06-03 | 2018-06-27 | 株式会社トプコン | 干渉計装置 |
EP3622884A1 (en) | 2014-07-24 | 2020-03-18 | Lightlab Imaging, Inc. | Stent and vessel visualization and diagnostic systems, devices, and methods |
JP6181013B2 (ja) * | 2014-08-08 | 2017-08-16 | 株式会社吉田製作所 | 光干渉断層画像生成装置及び光干渉断層画像生成方法 |
ES2730752T3 (es) | 2014-08-27 | 2019-11-12 | St Jude Medical Systems Ab | Sistema para evaluar un sistema cardíaco determinando la ratio Pd/Pa (presión distal/presión arterial) mínima |
US11311200B1 (en) | 2014-08-27 | 2022-04-26 | Lightlab Imaging, Inc. | Systems and methods to measure physiological flow in coronary arteries |
US10499813B2 (en) | 2014-09-12 | 2019-12-10 | Lightlab Imaging, Inc. | Methods, systems and apparatus for temporal calibration of an intravascular imaging system |
CN105629518B (zh) * | 2014-10-27 | 2019-04-05 | 北京邮电大学 | 偏振稳定控制装置及方法 |
US10258240B1 (en) | 2014-11-24 | 2019-04-16 | Vascular Imaging Corporation | Optical fiber pressure sensor |
KR101685375B1 (ko) * | 2014-11-25 | 2016-12-13 | 한국과학기술원 | 편광 다중 방식의 파장 가변 광원 장치 및 이를 이용한 편광민감 광간섭단층촬영 이미징 시스템 |
JP6824896B2 (ja) | 2014-12-12 | 2021-02-03 | ライトラボ・イメージング・インコーポレーテッド | 血管内の特徴を検出し且つ表示するためのシステム及び方法 |
JP6497921B2 (ja) * | 2014-12-15 | 2019-04-10 | 株式会社トーメーコーポレーション | 光断層画像装置用サンプルクロック発生装置、および光断層画像装置 |
CN107949311B (zh) | 2015-04-16 | 2021-04-16 | Gentuity有限责任公司 | 用于神经病学的微光探针 |
JP6584125B2 (ja) * | 2015-05-01 | 2019-10-02 | キヤノン株式会社 | 撮像装置 |
US20160357007A1 (en) | 2015-05-05 | 2016-12-08 | Eric Swanson | Fixed distal optics endoscope employing multicore fiber |
CN104794740A (zh) * | 2015-05-08 | 2015-07-22 | 南京微创医学科技有限公司 | 利用通用图像处理器处理oct信号的方法及系统 |
CN104825120A (zh) * | 2015-05-08 | 2015-08-12 | 南京微创医学科技有限公司 | Oct内窥扫描成像系统中使用的光学时钟信号发生系统和方法 |
CN104825121B (zh) * | 2015-05-08 | 2017-04-26 | 南京微创医学科技股份有限公司 | 内窥式oct微探头、oct成像系统及使用方法 |
US10222956B2 (en) | 2015-05-17 | 2019-03-05 | Lightlab Imaging, Inc. | Intravascular imaging user interface systems and methods |
US10109058B2 (en) | 2015-05-17 | 2018-10-23 | Lightlab Imaging, Inc. | Intravascular imaging system interfaces and stent detection methods |
US9996921B2 (en) | 2015-05-17 | 2018-06-12 | LIGHTLAB IMAGING, lNC. | Detection of metal stent struts |
US10646198B2 (en) | 2015-05-17 | 2020-05-12 | Lightlab Imaging, Inc. | Intravascular imaging and guide catheter detection methods and systems |
US10140712B2 (en) | 2015-05-17 | 2018-11-27 | Lightlab Imaging, Inc. | Detection of stent struts relative to side branches |
EP3324830B1 (en) | 2015-07-25 | 2023-01-04 | Lightlab Imaging, Inc. | Intravascular data visualization method and device |
AU2016297923B2 (en) | 2015-07-25 | 2021-02-18 | Lightlab Imaging, Inc. | Guidewire detection systems, methods, and apparatuses |
US10631718B2 (en) | 2015-08-31 | 2020-04-28 | Gentuity, Llc | Imaging system includes imaging probe and delivery devices |
JP6632266B2 (ja) * | 2015-09-04 | 2020-01-22 | キヤノン株式会社 | 撮像装置 |
CN105342558B (zh) * | 2015-09-30 | 2017-11-14 | 苏州大学 | 一种基于光学相干断层扫描成像中相位误差的校正方法 |
WO2017087821A2 (en) | 2015-11-18 | 2017-05-26 | Lightlab Imaging, Inc. | X-ray image feature detection and registration systems and methods |
JP6961589B2 (ja) | 2015-11-18 | 2021-11-05 | ライトラボ・イメージング・インコーポレーテッド | 側枝に対するステントストラットの検出 |
WO2017091598A1 (en) | 2015-11-23 | 2017-06-01 | Lightlab Imaging, Inc. | Detection of and validation of shadows in intravascular images |
CN105411530A (zh) * | 2015-12-17 | 2016-03-23 | 天津求实飞博科技有限公司 | 新型光学相干层析装置 |
JP6679340B2 (ja) * | 2016-02-22 | 2020-04-15 | キヤノン株式会社 | 光干渉断層計 |
DE102016205370B4 (de) * | 2016-03-31 | 2022-08-18 | Optomedical Technologies Gmbh | OCT-System |
CN109643449A (zh) | 2016-04-14 | 2019-04-16 | 光学实验室成像公司 | 血管分支的识别 |
US9839749B2 (en) * | 2016-04-27 | 2017-12-12 | Novartis Ag | Intraocular pressure sensing systems, devices, and methods |
WO2017201026A1 (en) | 2016-05-16 | 2017-11-23 | Lightlab Imaging, Inc. | Intravascular absorbable stent detection and diagnostic methods and systems |
JP6779662B2 (ja) * | 2016-05-23 | 2020-11-04 | キヤノン株式会社 | 撮像装置、撮像装置の制御方法、及びプログラム |
US10969571B2 (en) * | 2016-05-30 | 2021-04-06 | Eric Swanson | Few-mode fiber endoscope |
WO2018005623A1 (en) * | 2016-06-28 | 2018-01-04 | The Regents Of The University Of California | Fast two-photon imaging by diffracted swept-laser excitation |
US11206986B2 (en) * | 2016-08-15 | 2021-12-28 | New Jersey Institute Of Technology | Miniature quantitative optical coherence elastography using a fiber-optic probe with a fabry-perot cavity |
CN109716446B (zh) | 2016-09-28 | 2023-10-03 | 光学实验室成像公司 | 利用血管表象的支架规划系统及方法 |
US10608685B2 (en) * | 2016-10-28 | 2020-03-31 | Perspecta Labs Inc. | Photonics based interference mitigation |
FR3059438A1 (fr) * | 2016-11-30 | 2018-06-01 | Stmicroelectronics Sa | Generateur de signal d'horloge |
CN106650082B (zh) * | 2016-12-19 | 2020-02-07 | 北京联合大学 | 一种智能溯源电子秤评估系统 |
US10842589B2 (en) | 2017-03-21 | 2020-11-24 | Canon U.S.A., Inc. | Method for displaying an anatomical image of a coronary artery on a graphical user interface |
WO2018200712A1 (en) * | 2017-04-26 | 2018-11-01 | The Texas A&M University System | Electronic device for automatic calibration of swept-source optical coherence tomography systems |
CN107222171A (zh) * | 2017-05-19 | 2017-09-29 | 四川莱源科技有限公司 | 一种用于两路扫频信号高速输出双路扫频源 |
CN108042125B (zh) * | 2017-05-27 | 2023-04-21 | 天津恒宇医疗科技有限公司 | 一种高速内窥光学相干血流成像系统 |
JP6923371B2 (ja) | 2017-06-23 | 2021-08-18 | トヨタ自動車株式会社 | 燃料電池用電極触媒 |
WO2019014767A1 (en) | 2017-07-18 | 2019-01-24 | Perimeter Medical Imaging, Inc. | SAMPLE CONTAINER FOR STABILIZING AND ALIGNING EXCISED ORGANIC TISSUE SAMPLES FOR EX VIVO ANALYSIS |
US20190069849A1 (en) * | 2017-09-01 | 2019-03-07 | The Trustees Of Columbia University In The City Of New York | Compressed sensing enabled swept source optical coherence tomography apparatus, computer-accessible medium, system and method for use thereof |
CN107706737B (zh) * | 2017-09-18 | 2019-06-14 | 华东师范大学 | 一种用于半导体激光器的频率精密可调式脉冲发生电路 |
US20190099237A1 (en) | 2017-10-02 | 2019-04-04 | Lightlab Imaging, Inc. | Intravascular Data Collection Probes and Related Assemblies |
US11571129B2 (en) | 2017-10-03 | 2023-02-07 | Canon U.S.A., Inc. | Detecting and displaying stent expansion |
US10621748B2 (en) | 2017-10-03 | 2020-04-14 | Canon U.S.A., Inc. | Detecting and displaying stent expansion |
JP7146911B2 (ja) * | 2017-11-02 | 2022-10-04 | アルコン インコーポレイティド | 光コヒーレンストモグラフィにおけるエイリアシングを回避するためのkクロックによるデュアルエッジサンプリング |
EP3700406A4 (en) | 2017-11-28 | 2021-12-29 | Gentuity LLC | Imaging system |
CN108174122A (zh) * | 2017-11-28 | 2018-06-15 | 武汉华之洋科技有限公司 | 一种基于光纤传感的多路图像采集装置及方法 |
CN107991267B (zh) * | 2017-11-29 | 2020-03-17 | 珠海任驰光电科技有限公司 | 波长捷变的可调谐半导体激光吸收光谱气体检测装置及方法 |
CN107894325B (zh) * | 2017-12-28 | 2019-07-23 | 浙江嘉莱光子技术有限公司 | 一种激光器直接调制带宽及调制幅度测量方法 |
JP7075371B2 (ja) | 2018-05-03 | 2022-05-25 | キヤノン ユーエスエイ,インコーポレイテッド | マルチプルイメージングモダリティにわたって関心領域を強調するためのデバイス、システム、および方法 |
EP3811333A1 (en) | 2018-05-29 | 2021-04-28 | Lightlab Imaging, Inc. | Stent expansion display, systems, and methods |
US11382516B2 (en) | 2018-06-08 | 2022-07-12 | Canon U.S.A., Inc. | Apparatuses, methods, and storage mediums for lumen and artifacts detection in one or more images, such as in optical coherence tomography images |
KR102506833B1 (ko) * | 2018-07-30 | 2023-03-08 | 에스케이하이닉스 주식회사 | 램프 신호 발생 장치 및 그를 이용한 씨모스 이미지 센서 |
CN110068828B (zh) * | 2018-08-07 | 2023-10-17 | 天津大学 | 基于激光调频连续波远距离测距的装置及色散补偿方法 |
JP7284652B2 (ja) | 2018-08-23 | 2023-05-31 | 株式会社ミツトヨ | 測定装置および測定方法 |
CN111934178B (zh) * | 2018-08-24 | 2022-10-25 | 苏州曼德特光电技术有限公司 | 中红外飞秒光纤激光光源系统 |
CN109149341A (zh) * | 2018-08-28 | 2019-01-04 | 中国联合网络通信集团有限公司 | 被动谐波锁模光纤激光器 |
CN109506788A (zh) * | 2018-11-01 | 2019-03-22 | 中国科学院半导体研究所 | 基于傅里叶锁模激光器的光波长测量系统 |
CN109510055A (zh) * | 2018-11-13 | 2019-03-22 | 徐州诺派激光技术有限公司 | 光纤结构的脉冲源及其工作方法 |
CN109905309A (zh) * | 2019-02-15 | 2019-06-18 | 广州市高科通信技术股份有限公司 | 一种保持环网各节点状态一致的方法和网络节点 |
CN110148875B (zh) * | 2019-05-06 | 2020-06-09 | 北京图湃影像科技有限公司 | 傅里叶域锁模光纤激光器及其抖动消除方法 |
CN111466875B (zh) * | 2020-03-12 | 2021-08-24 | 西安电子科技大学 | 一种旋转式扩散光学成像系统 |
EP3900609B1 (en) * | 2020-04-23 | 2022-10-05 | Optos PLC | Swept source optical coherence tomography imaging system |
CN111528799B (zh) * | 2020-04-28 | 2021-08-24 | 中山大学 | 一种提高扫频光源光学相干层析成像系统动态范围的方法 |
US11681093B2 (en) | 2020-05-04 | 2023-06-20 | Eric Swanson | Multicore fiber with distal motor |
US11802759B2 (en) | 2020-05-13 | 2023-10-31 | Eric Swanson | Integrated photonic chip with coherent receiver and variable optical delay for imaging, sensing, and ranging applications |
KR20210150225A (ko) * | 2020-06-03 | 2021-12-10 | 삼성전자주식회사 | 파장 가변 레이저 광원 및 이를 포함하는 광 조향 장치 |
CN111780681B (zh) * | 2020-06-19 | 2021-07-16 | 厦门大学 | 一种矢量非线性光学空间滤波器 |
CN112704470B (zh) * | 2020-12-22 | 2022-03-15 | 电子科技大学 | 分光谱频域相干断层成像系统 |
US11943571B2 (en) | 2021-03-28 | 2024-03-26 | Newphotonics Ltd. | Optical switch with all-optical memory buffer |
CN113686441A (zh) * | 2021-07-30 | 2021-11-23 | 南方科技大学 | 一种基于傅里叶域锁模的相干光谱分析装置及分析方法 |
JPWO2024075266A1 (es) * | 2022-10-07 | 2024-04-11 | ||
CN116299325B (zh) * | 2023-01-12 | 2024-01-26 | 杭州温米芯光科技发展有限公司 | 光电锁相环 |
CN116499445B (zh) * | 2023-06-30 | 2023-09-12 | 成都市晶蓉微电子有限公司 | 一种mems陀螺数字输出单片集成系统 |
US12085387B1 (en) | 2023-09-23 | 2024-09-10 | Hamamatsu Photonics K.K. | Optical coherence tomography system for subsurface inspection |
Family Cites Families (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US550993A (en) * | 1895-12-10 | Bean-picker | ||
JPS6014526B2 (ja) * | 1980-05-10 | 1985-04-13 | アルプス電気株式会社 | Pll発振回路 |
US4712060A (en) * | 1986-08-29 | 1987-12-08 | Board Of Regents The University Of Texas System | Sampling average phase meter |
US4779975A (en) * | 1987-06-25 | 1988-10-25 | The Board Of Trustees Of The Leland Stanford Junior University | Interferometric sensor using time domain measurements |
US6111645A (en) * | 1991-04-29 | 2000-08-29 | Massachusetts Institute Of Technology | Grating based phase control optical delay line |
US6485413B1 (en) * | 1991-04-29 | 2002-11-26 | The General Hospital Corporation | Methods and apparatus for forward-directed optical scanning instruments |
US6134003A (en) * | 1991-04-29 | 2000-10-17 | Massachusetts Institute Of Technology | Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope |
US6564087B1 (en) * | 1991-04-29 | 2003-05-13 | Massachusetts Institute Of Technology | Fiber optic needle probes for optical coherence tomography imaging |
US5956355A (en) * | 1991-04-29 | 1999-09-21 | Massachusetts Institute Of Technology | Method and apparatus for performing optical measurements using a rapidly frequency-tuned laser |
WO1992019930A1 (en) * | 1991-04-29 | 1992-11-12 | Massachusetts Institute Of Technology | Method and apparatus for optical imaging and measurement |
US5748598A (en) * | 1995-12-22 | 1998-05-05 | Massachusetts Institute Of Technology | Apparatus and methods for reading multilayer storage media using short coherence length sources |
US5465147A (en) * | 1991-04-29 | 1995-11-07 | Massachusetts Institute Of Technology | Method and apparatus for acquiring images using a ccd detector array and no transverse scanner |
US6501551B1 (en) * | 1991-04-29 | 2002-12-31 | Massachusetts Institute Of Technology | Fiber optic imaging endoscope interferometer with at least one faraday rotator |
US5208817A (en) * | 1992-04-10 | 1993-05-04 | At&T Bell Laboratories | Modulator-based lightwave transmitter |
US5509093A (en) * | 1993-10-13 | 1996-04-16 | Micron Optics, Inc. | Temperature compensated fiber fabry-perot filters |
JPH0882554A (ja) * | 1994-09-12 | 1996-03-26 | Nippon Telegr & Teleph Corp <Ntt> | 波長監視装置 |
WO1997001167A1 (en) * | 1995-06-21 | 1997-01-09 | Massachusetts Institute Of Technology | Apparatus and method for accessing data on multilayered optical media |
US5930678A (en) * | 1996-05-13 | 1999-07-27 | Lucent Technologies Inc | Intermodulation distortion reduction method and apparatus |
GB9618764D0 (en) * | 1996-09-09 | 1996-10-23 | Univ Southampton | Wavelength-swept fiber laser with frequency shifted feedback |
DE69840791D1 (de) | 1997-06-02 | 2009-06-10 | Joseph A Izatt | Doppler-abbildung einer strömung mittels optischer kohaerenztomografie |
JPH1198865A (ja) * | 1997-07-24 | 1999-04-09 | Minolta Co Ltd | 電気機械変換素子を利用した駆動装置 |
JPH11101609A (ja) * | 1997-09-29 | 1999-04-13 | Yokogawa Electric Corp | レーザ測長装置 |
KR100269040B1 (ko) * | 1998-04-28 | 2000-10-16 | 서원석 | 파장이동 레이저 광원 및 파장이동 레이저 광 생성방법 |
US6449047B1 (en) * | 1998-11-13 | 2002-09-10 | Micron Optics, Inc. | Calibrated swept-wavelength laser and interrogator system for testing wavelength-division multiplexing system |
US6191862B1 (en) * | 1999-01-20 | 2001-02-20 | Lightlab Imaging, Llc | Methods and apparatus for high speed longitudinal scanning in imaging systems |
US6615072B1 (en) * | 1999-02-04 | 2003-09-02 | Olympus Optical Co., Ltd. | Optical imaging device |
US6445939B1 (en) * | 1999-08-09 | 2002-09-03 | Lightlab Imaging, Llc | Ultra-small optical probes, imaging optics, and methods for using same |
US6626589B1 (en) * | 1999-12-29 | 2003-09-30 | Nortel Networks Limited | Optical packet switching |
US6538748B1 (en) * | 2000-04-14 | 2003-03-25 | Agilent Technologies, Inc | Tunable Fabry-Perot filters and lasers utilizing feedback to reduce frequency noise |
JP2002009594A (ja) * | 2000-06-26 | 2002-01-11 | Ando Electric Co Ltd | 遅延時間安定化回路 |
AU2001279310A1 (en) * | 2000-08-02 | 2002-02-13 | Kvh Industries, Inc. | Reduction of linear birefringence in circular-core single-mode fiber |
US6768756B2 (en) * | 2001-03-12 | 2004-07-27 | Axsun Technologies, Inc. | MEMS membrane with integral mirror/lens |
US6570659B2 (en) * | 2001-03-16 | 2003-05-27 | Lightlab Imaging, Llc | Broadband light source system and method and light source combiner |
US6552796B2 (en) * | 2001-04-06 | 2003-04-22 | Lightlab Imaging, Llc | Apparatus and method for selective data collection and signal to noise ratio enhancement using optical coherence tomography |
US6486961B1 (en) * | 2001-05-08 | 2002-11-26 | Agilent Technologies, Inc. | System and method for measuring group delay based on zero-crossings |
US6879851B2 (en) * | 2001-06-07 | 2005-04-12 | Lightlab Imaging, Llc | Fiber optic endoscopic gastrointestinal probe |
US6891984B2 (en) * | 2002-07-25 | 2005-05-10 | Lightlab Imaging, Llc | Scanning miniature optical probes with optical distortion correction and rotational control |
US7877019B2 (en) * | 2002-10-16 | 2011-01-25 | Tyco Electronics Subsea Communications Llc | Optical receiver including a system and method of controlling gain of an optical amplifier |
US7241286B2 (en) * | 2003-04-25 | 2007-07-10 | Lightlab Imaging, Llc | Flush catheter with flow directing sheath |
CN103181753B (zh) * | 2003-10-27 | 2016-12-28 | 通用医疗公司 | 用于使用频域干涉测量法进行光学成像的方法和设备 |
CN1268289C (zh) * | 2003-11-03 | 2006-08-09 | 四川大学 | 光学相干断层成像系统中纵向扫描方法及其装置 |
JP4027359B2 (ja) * | 2003-12-25 | 2007-12-26 | キヤノン株式会社 | マイクロ揺動体、光偏向器、画像形成装置 |
US20050238067A1 (en) * | 2004-04-26 | 2005-10-27 | Choi Youngmin A | Simple fiber optic cavity |
WO2006037001A1 (en) * | 2004-09-24 | 2006-04-06 | Lightlab Imaging, Inc. | Fluid occluding devices and methods |
US7336366B2 (en) * | 2005-01-20 | 2008-02-26 | Duke University | Methods and systems for reducing complex conjugate ambiguity in interferometric data |
US7414779B2 (en) * | 2005-01-20 | 2008-08-19 | Massachusetts Institute Of Technology | Mode locking methods and apparatus |
EP1856777A4 (en) * | 2005-01-24 | 2009-04-29 | Thorlabs Inc | COMPACT MULTIMODE LASER WITH QUICK SPECTRAL SCAN |
WO2006086700A2 (en) * | 2005-02-10 | 2006-08-17 | Lightlab Imaging, Inc. | Optical coherence tomography apparatus and methods |
US7415049B2 (en) * | 2005-03-28 | 2008-08-19 | Axsun Technologies, Inc. | Laser with tilted multi spatial mode resonator tuning element |
EP1889037A2 (en) | 2005-06-01 | 2008-02-20 | The General Hospital Corporation | Apparatus, method and system for performing phase-resolved optical frequency domain imaging |
CN101594819B (zh) * | 2006-11-08 | 2012-05-30 | 光学实验室成像公司 | 光声成像装置和方法 |
ES2534572T3 (es) | 2007-01-10 | 2015-04-24 | Lightlab Imaging, Inc. | Métodos y aparato para tomografía de coherencia óptica de fuente de barrido |
JP2015099884A (ja) * | 2013-11-20 | 2015-05-28 | 日東電工株式会社 | Cigs太陽電池の製造方法 |
-
2008
- 2008-01-10 ES ES08705540.6T patent/ES2534572T3/es active Active
- 2008-01-10 EP EP15156028.1A patent/EP2897239B1/en not_active Not-in-force
- 2008-01-10 CN CN2008800019509A patent/CN101600388B/zh active Active
- 2008-01-10 EP EP08705540.6A patent/EP2106240B1/en active Active
- 2008-01-10 EP EP20200129.3A patent/EP3785615A1/en active Pending
- 2008-01-10 CN CN201210459064.9A patent/CN102973243B/zh active Active
- 2008-01-10 ES ES15156028T patent/ES2847098T3/es active Active
- 2008-01-10 WO PCT/US2008/000341 patent/WO2008086017A1/en active Application Filing
- 2008-01-10 US US12/008,403 patent/US7916387B2/en active Active
- 2008-01-10 JP JP2009545595A patent/JP5269809B2/ja active Active
- 2008-01-10 CN CN201510714070.8A patent/CN105581776B/zh active Active
-
2010
- 2010-12-30 US US12/981,697 patent/US8902941B2/en active Active
-
2011
- 2011-02-18 US US13/030,886 patent/US8325419B2/en active Active
-
2013
- 2013-05-08 JP JP2013098417A patent/JP5750138B2/ja active Active
-
2014
- 2014-11-07 US US14/535,489 patent/US9702687B2/en active Active
-
2015
- 2015-05-15 JP JP2015099884A patent/JP6130434B2/ja active Active
-
2017
- 2017-04-13 JP JP2017079496A patent/JP2017122740A/ja active Pending
- 2017-07-07 US US15/644,668 patent/US20180003482A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20180003482A1 (en) | 2018-01-04 |
US20080165366A1 (en) | 2008-07-10 |
CN101600388B (zh) | 2013-01-02 |
CN102973243A (zh) | 2013-03-20 |
US20110216325A1 (en) | 2011-09-08 |
US7916387B2 (en) | 2011-03-29 |
WO2008086017A1 (en) | 2008-07-17 |
JP6130434B2 (ja) | 2017-05-17 |
JP5750138B2 (ja) | 2015-07-15 |
CN102973243B (zh) | 2015-11-25 |
CN105581776B (zh) | 2018-10-16 |
US9702687B2 (en) | 2017-07-11 |
EP2897239A1 (en) | 2015-07-22 |
US20110101207A1 (en) | 2011-05-05 |
CN105581776A (zh) | 2016-05-18 |
EP2106240A1 (en) | 2009-10-07 |
US8902941B2 (en) | 2014-12-02 |
JP2013190438A (ja) | 2013-09-26 |
JP2010515919A (ja) | 2010-05-13 |
JP2017122740A (ja) | 2017-07-13 |
EP3785615A1 (en) | 2021-03-03 |
JP2015143721A (ja) | 2015-08-06 |
ES2847098T3 (es) | 2021-07-30 |
US8325419B2 (en) | 2012-12-04 |
JP5269809B2 (ja) | 2013-08-21 |
EP2897239B1 (en) | 2020-11-18 |
US20150192405A1 (en) | 2015-07-09 |
CN101600388A (zh) | 2009-12-09 |
EP2106240B1 (en) | 2015-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2534572T3 (es) | Métodos y aparato para tomografía de coherencia óptica de fuente de barrido | |
US9709379B2 (en) | Optical coherence tomography system that is reconfigurable between different imaging modes | |
US8049900B2 (en) | Apparatus and methods for uniform frequency sample clocking | |
US9243885B2 (en) | Multi-speed OCT swept source with optimized k-clock | |
KR101321413B1 (ko) | 주파수 영역 간섭법을 이용하여 광 영상화를 수행하는 방법및 장치 | |
WO2017048832A1 (en) | Apparatus and methods for one or more wavelength swept lasers and the detection of signals thereof | |
EP2892416A1 (en) | Optical coherence tomography control systems and methods | |
JP2007267927A (ja) | 光断層画像化方法および装置 | |
JP2012150081A (ja) | 波長掃引光源 | |
Adler | Applications of Fourier Domain Mode Locked lasers for optical coherence tomography imaging | |
Azimi et al. | Novel Calibration Method for Swept Source OCT with Improved Resolution and Dynamic Range |