JP2022101562A5 - - Google Patents

Download PDF

Info

Publication number
JP2022101562A5
JP2022101562A5 JP2022052186A JP2022052186A JP2022101562A5 JP 2022101562 A5 JP2022101562 A5 JP 2022101562A5 JP 2022052186 A JP2022052186 A JP 2022052186A JP 2022052186 A JP2022052186 A JP 2022052186A JP 2022101562 A5 JP2022101562 A5 JP 2022101562A5
Authority
JP
Japan
Prior art keywords
gene
cas9
fusion protein
grna
crispr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022052186A
Other languages
English (en)
Other versions
JP2022101562A (ja
Filing date
Publication date
Priority claimed from JP2016518017A external-priority patent/JP7085716B2/ja
Application filed filed Critical
Publication of JP2022101562A publication Critical patent/JP2022101562A/ja
Priority to JP2023131956A priority Critical patent/JP2023164823A/ja
Publication of JP2022101562A5 publication Critical patent/JP2022101562A5/ja
Pending legal-status Critical Current

Links

Description

技術分野
本開示は、集合等間隔配置短パリンドロームリピート(CRISPR)/CRISPR随伴(Cas)9-依拠システム及びウイルスデリバリーシステムを用いる、遺伝子発現変更、ゲノム操作及び遺伝子のゲノム変更の分野に関する。本開示はまた、筋肉(例えば骨格筋及び心筋)におけるゲノム操作及び遺伝子のゲノム変更の分野に関する。
本発明は、前記融合タンパク質及び少なくとも1つのガイドRNA(gRNA)を含むDNAターゲティングシステムを目的とする。少なくとも1つのgRNAは、標的DNA配列の12-22塩基対の相補性ポリヌクレオチド配列とその後に続くプロトスペーサー隣接モチーフを含むことができる。当該少なくとも1つのgRNAは、遺伝子のプロモーター領域、遺伝子のエンハンサー領域、又は遺伝子の転写領域を標的とすることができる。少なくとも1つのgRNAは遺伝子のイントロンを標的とすることができる。少なくとも1つのgRNAは遺伝子のエクソンを標的とすることができる。少なくとも1つのgRNAは、ASCL1、BRN2、MYT1L、NANOG、VEGFA、TERT、IL1B、IL1R2、IL1RN、HBG1、HBG2及びMYOD1から成る群から選択される遺伝子のプロモーター領域を標的とすることができる。少なくとも1つのgRNAは、配列番号:5-40、65-144、492-515、540-563及び585-625の少なくとも1つを含むことができる。
本発明は、ジストロフィン遺伝子と結合する、Cas9及び少なくとも1つのガイドRNA(gRNA)を含むDNAターゲティングシステムを目的とする。少なくとも1つのgRNAはジストロフィン遺伝子のイントロンを標的とすることができる。少なくとも1つのgRNAはジストロフィン遺伝子のエクソンを標的とすることができる。少なくとも1つのガイドRNAは、配列番号:5-40、65-144、492-515、540-563及び585-625の少なくとも1つを含むことができる。DNAターゲティングシステムは1つから10の異なるgRNAを含むことができる。
本発明は、前記融合タンパク質又は前記DNAターゲティングシステムをコードする単離ポリヌクレオチドを目的とする。
本発明は前記単離ポリヌクレオチドを含むベクターを目的とする。
本発明は、前記単離ポリヌクレオチド又は前記ベクターを含む細胞を目的とする。
本発明は細胞で哺乳動物遺伝子の発現を調整する方法を目的とする。前記方法は、細胞を前記融合タンパク質、前記DNAターゲティングシステム、前記単離ポリヌクレオチド、又は前記ベクターと接触させる工程を含む。遺伝子発現は誘導することができる。
本発明は、細胞をトランス分化させるか又は細胞の分化を誘発する方法を目的とする。前記方法は、細胞を前記融合タンパク質、前記DNAターゲティングシステム、前記単離ポリヌクレオチド、又は前記ベクターと接触させる工程を含む。細胞は線維芽細胞又は誘導多能性幹細胞であり得る。線維芽細胞はニューロン細胞又は筋原性細胞にトランス分化させ得る。DNAターゲティングシステムを細胞と接触させることができ、少なくとも1つのgRNAは、ASCL1、BRN2、MYOD1及びMYT1Lから成る群から選択される少なくとも1つの遺伝子のプロモーター領域を標的とする。DNAターゲティングシステムは、ASCL1遺伝子のプロモーター領域を標的とする少なくとも1つのgRNA、及びBRN2遺伝子のプロモーター領域を標的とする少なくとも1つのgRNAを含むことができる。DNAターゲティングシステムは1つから20の異なるgRNAを含むことができる。DNAターゲティングシステムは8から16の異なるgRNAを含むことができる。DNAターゲティングシステムはdCas9-VP64を含むことができる。DNAターゲティングシステムは細胞にウイルス的に又は非ウイルス的にデリバーされ得る。
本発明は細胞で変異遺伝子を修正する方法を目的とする。前記方法は、前記DNAターゲティングシステム、前記単離ポリヌクレオチド又は前記ベクターを含む細胞に投与する工程を含む。変異遺伝子の修正は相同性指向修繕(homology-directed repair)を含むことができる。前記方法はさらに細胞にドナーDNAを投与する工程を含むことができる。変異遺伝子は、未成熟終止コドン及び切端遺伝子生成物を生じさせるフレームシフト変異を含むことができる。変異遺伝子の修正は、ヌクレアーゼ媒介非相同性末端接合を含むことができる。変異遺伝子の修正は、未成熟終止コドンの欠失、スプライスアクセプター部位の破壊、1つ以上のエクソンの欠失又はスプライスドナー配列の破壊を含むことができる。1つ以上のエクソンの欠失はリーディングフレームの修正をもたらすことができる。
本発明は、その必要がある変異ジストロフィン遺伝子保有対象動物を治療する方法を目的とする。前記方法は、対象動物に前記DNAターゲティングシステム、前記単離ポリヌクレオチド又は前記ベクターを投与する工程を含む。対象動物はデュシェンヌ型筋ジストロフィーを罹患し得る。
本発明は、細胞で変異ジストロフィン遺伝子を修正する方法を目的とする。前記方法は、変異ジストロフィン遺伝子を含む細胞に前記DNAターゲティングシステム、前記単離ポリヌクレオチド、前記ベクター、又は前記細胞を投与する工程を含む。変異ジストロフィン遺伝子は、未成熟終止コドン、遺伝子欠損により破壊されたリーディングフレーム、異常なスプライスアクセプター部位、又は異常なスプライスドナー部位を含むことができ、ここで標的領域は、未成熟終止コドン、破壊されたリーディングフレーム、異常なスプライスアクセプター部位又は異常なスプライスドナー部位の上流又は下流に存在する。変異ジストロフィン遺伝子の修正は相同性指向修繕を含むことができる。前記方法はさらにドナーDNAを細胞に投与する工程を含むことができる。変異ジストロフィン遺伝子は、未成熟終止コドン及び切端遺伝子生成物を生じさせるフレームシフト変異を含むことができる。変異ジストロフィン遺伝子の修正は、ヌクレアーゼ媒介非相同性末端接合を含むことができる。変異ジストロフィン遺伝子の修正は、未成熟終止コドンの欠失、破壊されたリーディングフレームの修正、又はスプライスアクセプター部位の破壊若しくはスプライスドナー配列の破壊によるスプライシングの調整を含むことができる。変異ジストロフィン遺伝子の修正は、エクソン45-55又はエクソン51の欠失を含むことができる。
本発明は、前記融合タンパク質、前記DNAターゲティングシステム、前記単離ポリヌクレオチド、前記ベクター又は前記細胞を含むキットを目的とする。
本発明は、細胞で哺乳動物の遺伝子発現を調整する方法を目的とする。前記方法は、DNAターゲティングシステムをコードするポリヌクレオチドと細胞を接触させる工程を含む。DNAターゲティングシステムは、前記融合タンパク質及び少なくとも1つのガイドRNA(gRNA)を含む。DNAターゲティングシステムは1から10の異なるgRNAを含むことができる。異なるgRNAは標的遺伝子内の異なる領域と結合できる。当該標的領域は少なくとも1つのヌクレオチドで分離され得る。標的領域は約15から約700塩基対で分離され得る。異なるgRNAの各々は少なくとも1つの異なる標的遺伝子と結合できる。当該異なる標的遺伝子は同じ染色体に位置し得る。異なる標的遺伝子は異なる染色体に位置し得る。該少なくとも1つの標的領域は、ノンオープンクロマチン領域、オープンクロマチン領域、標的遺伝子のプロモーター領域、標的遺伝子のエンハンサー領域、標的遺伝子の転写領域、又は標的遺伝子の転写開始部位の上流領域内であり得る。該少なくとも1つの標的領域は、標的遺伝子の転写開始部位の約1から約1000塩基対上流に位置し得る。該少なくとも1つの標的領域は、標的遺伝子の転写開始部位の約1から約600塩基対上流に位置し得る。遺伝子発現は誘導することができる。DNAターゲティングシステムは、2つの異なるgRNA、3つの異なるgRNA、4つの異なるgRNA、5つの異なるgRNA、6つの異なるgRNA、7つの異なるgRNA、8つの異なるgRNA、9つの異なるgRNA、又は10の異なるgRNAを含むことができる。少なくとも1つのガイドRNAは、ASCL1、BRN2、MYT1L、NANOG、VEGFA、TERT、IL1B、IL1R2、IL1RN、HBG1、HBG2及びMYOD1から成る群から選択される遺伝子のプロモーター領域を標的とすることができる。少なくとも1つのガイドRNAは、配列番号:5-40、65-144、492-515、540-563及び585-625の少なくとも1つを含むことができる。少なくとも1つの標的領域は、標的遺伝子のイントロン又はエクソン内に存在し得る。
本発明は対象動物の筋肉でゲノム編集する組成物を目的とする。前記組成物は、改変されたアデノ随伴ウイルス(AAV)ベクター及び位置特異的ヌクレアーゼをコードするヌクレオチド配列を含む。筋肉は骨格筋又は心筋である。改変AAVベクターは心筋及び骨格筋組織向性が強化されてあってもよい。位置特異的ヌクレアーゼは、ジンクフィンガーヌクレアーゼ、TALエフェクターヌクレアーゼ、又はCRISPR/Cas9システムを含むことができる。位置特異的ヌクレアーゼは筋肉細胞内の遺伝子又は遺伝子座と結合できる。遺伝子又は遺伝子座はジストロフィン遺伝子であり得る。前記組成物はさらにドナーDNA又はトランスジーンを含むことができる。
本発明は、対象動物の筋肉でゲノム編集する前記組成物を含むキットを目的とする。
本発明は、対象動物の筋肉でゲノム編集する方法を目的とする。前記方法は、対象動物の筋肉でゲノム編集する前記組成物を筋肉に投与する工程を含み、ここで筋肉は骨格筋又は心筋である。ゲノム編集は変異遺伝子の修正又はトランスジーンの挿入を含むことができる。変異遺伝子の修正は、変異遺伝子の欠失、再編成又は取替えを含むことができる。変異遺伝子の修正は、ヌクレアーゼ媒介非相同性末端接合又は相同性指向修繕を含むことができる。
本発明は対象動物を治療する方法を目的とする。前記方法は、対象動物の筋肉でゲノム編集する前記組成物を対象動物の筋肉に投与する工程を含み、ここで筋肉は骨格筋又は心筋である。対象動物は骨格筋の症状又は遺伝子疾患を罹患し得る。対象動物はデュシェンヌ型筋ジストロフィーを罹患し得る。
本発明は対象動物で変異遺伝子を修正する方法を目的とし、前記方法は、対象動物の筋肉でゲノム編集する前記組成物を投与する工程を含む。筋肉は骨格筋又は心筋である。組成物は対象動物の骨格筋に注射できる。組成物は全身的に対象動物に注射することができる。骨格筋は前脛骨筋であり得る。
RNAガイドiCas9-VP64によるヒトIL1RN遺伝子の活性化を示す。(a、b)不活化Cas9(iCas9, D10A/H840A)をVP64トランス活性化ドメインに融合させて、RNAガイド転写アクチベーターを作製した。iCas9-VP64は、ガイドRNA(gRNA)と20bpの標的配列とのハイブリダイゼーションを介してゲノムの標的部位を認識する。(c)IL1RNプロモーター中の配列を標的とする4つのgRNA又はcrRNA/tracrRNAのための発現プラスミドを、iCas9-VP64発現プラスミドとともにHEK293T細胞にコトランスフェクトした。IL1RN発現の活性化は、qRT-PCRによって判定した。(d)4つのgRNA発現プラスミドをiCas9-VP64と個々に又は一緒にしてコトランスフェクトした。旺盛な遺伝子活性化は、一緒にしたgRNAに対する応答でのみqRT-PCRで観察された。(e)IL1RN発現の活性化は、培養液へのIL-1ra遺伝子生成物の分泌をELISAで判定することによって確認された。IL-1raは、一緒にしたgRNAで処置した6つのサンプルの3つでのみ検出された。(c-e)については、データは平均±s.e.m.として示される(n=3つの独立した実験)。一緒にしたgRNAによる処置は、チューキー(Tukey)検定によって他のすべての処置と統計的に相違した(*Pは0.02以下)。(f)RNA-seqを空発現ベクター処理サンプル(n=2)又はIL1RNを標的とするiCas9-VP64及び4つのgRNAのための発現プラスミドでコトランスフェクトしたサンプル(n=2)で実施した。これらの処置間における遺伝子発現の唯一の統計的に有意な変化は、4つのIL1RNアイソフォーム(偽発見率は3x10-4以下)における増加及びIL32における減少(偽発見率=0.03)であった。 細胞及び遺伝子療法、遺伝子再プログラミング、並びに再生医療と関連するヒト遺伝子のRNAガイド活性化を示す。HEK293T細胞にiCas9-VP64発現プラスミド及び4つのgRNAを個々に又は一緒にしてトランスフェクトした。標的遺伝子発現をqRT-PCRで測定し、GAPDH mRNAレベルで標準化した。データは平均±s.e.m.として示される(n=3つの独立した実験)。一緒にしたgRNAによる処置は、チューキー検定によって他のすべての処置と統計的に相違した(*P<0.05)。 iCas9-VP64の発現を示す。トランスフェクトされたHEK293細胞でのiCas9-VP64の発現は、N-末端Flagエピトープタグに対するウェスタンブロットによって確認した。wtCas9発現プラスミドはエピトープタグを含まない。 ヒト標的遺伝子のgRNA標的部位及びDNAse高感受性の位置を示す。各遺伝子座に対する4つのgRNA標的部位は上記各遺伝子のカスタムトラックとして示され、DNAse高感受性オープンクロマチン領域を示すDNase-seqデータは下記各遺伝子で示される。DNase-seqは、以前の記載のように(Song et al., Cold Spring Harbor protocols 2010, pdb prot5384, 2010;Song et al. Genome Res 21, 1757-1767, 2011)、HEK293T細胞で実施してDNase高感受性領域を同定した。結果は、オープンクロマチンはgRNAとiCas9-VP64との組み合わせによる遺伝子活性化のための要件ではないことを示している。 ヒト標的遺伝子のgRNA標的部位及びDNAse高感受性の位置を示す。各遺伝子座に対する4つのgRNA標的部位は上記各遺伝子のカスタムトラックとして示され、DNAse高感受性オープンクロマチン領域を示すDNase-seqデータは下記各遺伝子で示される。DNase-seqは、以前の記載のように(Song et al., Cold Spring Harbor protocols 2010, pdb prot5384, 2010;Song et al. Genome Res 21, 1757-1767, 2011)、HEK293T細胞で実施してDNase高感受性領域を同定した。結果は、オープンクロマチンはgRNAとiCas9-VP64との組み合わせによる遺伝子活性化のための要件ではないことを示している。 ヒト標的遺伝子のgRNA標的部位及びDNAse高感受性の位置を示す。各遺伝子座に対する4つのgRNA標的部位は上記各遺伝子のカスタムトラックとして示され、DNAse高感受性オープンクロマチン領域を示すDNase-seqデータは下記各遺伝子で示される。DNase-seqは、以前の記載のように(Song et al., Cold Spring Harbor protocols 2010, pdb prot5384, 2010;Song et al. Genome Res 21, 1757-1767, 2011)、HEK293T細胞で実施してDNase高感受性領域を同定した。結果は、オープンクロマチンはgRNAとiCas9-VP64との組み合わせによる遺伝子活性化のための要件ではないことを示している。 ヒト標的遺伝子のgRNA標的部位及びDNAse高感受性の位置を示す。各遺伝子座に対する4つのgRNA標的部位は上記各遺伝子のカスタムトラックとして示され、DNAse高感受性オープンクロマチン領域を示すDNase-seqデータは下記各遺伝子で示される。DNase-seqは、以前の記載のように(Song et al., Cold Spring Harbor protocols 2010, pdb prot5384, 2010;Song et al. Genome Res 21, 1757-1767, 2011)、HEK293T細胞で実施してDNase高感受性領域を同定した。結果は、オープンクロマチンはgRNAとiCas9-VP64との組み合わせによる遺伝子活性化のための要件ではないことを示している。 iCas9-VP64によるヌクレアーゼ活性は存在しないことを示す。野生型Cas9又は不活化(D10A、H840A)iCas9-VP64発現プラスミドを、IL1RNプロモーターを標的とする4つの異なるガイドRNAのための発現プラスミドとともにコトランスフェクトした。ヌクレアーゼ活性はサーベイヤーアッセイによって決定した(Guschin et al., Methods Mol Biol 649, 247-256, 2010)。ヌクレアーゼ活性の指標である低分子量バンド及び非相同性末端接合によるDNA修繕は野生型Cas9による処置後でのみ存在し、iCas9-VP64によるヌクレアーゼ活性の停止を支持した。 HBG1及びHBG2を標的とするgRNAで処置されたサンプルについてのRNA-seqを示す。RNA-seqは、コントロール空発現ベクターで処置したサンプル(n=3)、又はiCas9-VP64及びHBG1を標的とする4つのgRNAのための発現プラスミドをコトランスフェクトしたサンプル(n=2)で実施した。これらgRNAの3つはまたHBG2を標的とした。コントロールに対してHBG1及びHBG2の両方で増加が観察されたが、低い発現レベルのために統計的には有意ではなかった。これら処置間における遺伝子発現の唯一の統計的に有意な変化は、IL32(偽発見率=0.0007)及びTNFRS9(偽発見率=0.002)における減少であった。 iCas9-VP64によるAscl1及びγ-グロビンのアップレギュレーションを示す。HEK293T細胞にiCas9-VP64及びASCL1又はHBG1プロモーターを標的とする4つのgRNAをトランスフェクトした。対応するAscl1及びγ-グロビンタンパク質レベルをウェスタンブロットで判定した。これらのタンパク質の低レベルがHEK293T細胞で検出でき、発現増加は2つの別個の実験でiCas9-VP64処置後に検出できた。 iCas9-VP64で処置したネズミ胚線維芽細胞におけるAscl1の下流標的の活性化を示す。マウス胚線維芽細胞(MEF)にコントロールGFP発現プラスミド又はiCas9-VP64発現プラスミド及びASCL1を標的とする4つのgRNA発現プラスミドを50:50又は75:25の比率でトランスフェクトした。(a)ヒトASCL1プロモーター(配列番号:3)のgRNA標的部位はマウスASCL1プロモーター(配列番号:4)で保存されている。標的部位は実線で示され、転写領域は点線で示される。 iCas9-VP64で処置したネズミ胚線維芽細胞におけるAscl1の下流標的の活性化を示す。マウス胚線維芽細胞(MEF)にコントロールGFP発現プラスミド又はiCas9-VP64発現プラスミド及びASCL1を標的とする4つのgRNA発現プラスミドを50:50又は75:25の比率でトランスフェクトした。(b)MEFにおけるASCL1発現は、qRT-PCRで決定したときiCas9-VP64/gRNA処置後2日で増加した。(c-h)神経誘導培地で10日後に、細胞をAscl1及びTuj1(ニューロン分化の初期マーカー)のために(c-d)、又はTuj1及びMAP2(より成熟したニューロン分化のマーカー)のために(d-f)染色した。いくつかのTuj1陽性細胞はニューロンの形態をとり(f-g)、単独細胞はTuj1及びMAP2陽性であることが見出された(g)。(h)Tuj1陽性細胞はiCas9-VP64/gRNA処置培養で容易に特定されたが(~0.05%)、コントロールには存在しなかった。n=3つの独立実験でデータは平均±平均の標準誤差として示される。gRNA 75/25は、gRNA 50/50及びコントロールと有意に相違した(*P<0.01、チューキー検定)。 (a)iCas9-VP64タンパク質配列(配列番号:1)を示す。 (b)U6プロモーターを有するgRNA発現カセットの配列(配列番号:2)を示す。 qRT-PCRのための標準曲線を示す。各遺伝子について、最高の発現レベルを有する実験サンプルを標準曲線の作成のために希釈した。前記標準曲線を適切な動的範囲にわたって効率的な増幅を担保するためにqRT-PCRによってアッセイした。全増幅反応の効率は90-115%であった。 qRT-PCRのための標準曲線を示す。各遺伝子について、最高の発現レベルを有する実験サンプルを標準曲線の作成のために希釈した。前記標準曲線を適切な動的範囲にわたって効率的な増幅を担保するためにqRT-PCRによってアッセイした。全増幅反応の効率は90-115%であった。 図11(a)-11(b)はRNAガイド修繕の有効性を示す。図11(a)は、空ベクター(陰性コントロール)又はgRNAとともにCas9を細胞にコトランスフェクトしてから2日後に当該HEK293T細胞から採集したゲノムDNAのサーベイヤーアッセイの結果を示す。図11(b)はgRNA標的の位置を示す。図11(c)は各gRNAについて予想される切断サイズを示す。 サーベイヤーアッセイによって示されるDMD8036(del48-50)細胞におけるRNAガイド修繕を示す。 全遺伝子座にわたってPCRによって示されるDMD8036(del48-50)細胞におけるRNAガイド修繕を示す。野生型ジストロフィン遺伝子のPCRはサイズが1447bpのフラグメントを生じるが、DMD8036細胞株の変異遺伝子のPCRは約817bpの欠失を示す。CRISPR/Cas9依拠システムの導入後の欠失バンドは約630bpであった。 ウェスタンブロット(MANDYS8(抗ジストロフィン抗体)及びGAPDH抗体(陽性コントロール)を使用)によって示されるDMD8036(del48-50)細胞におけるRNAガイド修繕を示す。 IL1RNプロモーターを標的とするiCas9-VP64の特異的結合を示すChIP配列決定データを示す。HEK293T細胞にIL1RNプロモーターを標的とするiCas9-VP64がトランスフェクトされた。 ジストロフィン遺伝子を標的とするCRISPR/Cas9を示す。(A)遺伝子編集が極めて多様な患者特異的変異から生じるジストロフィン発現を修復できるように、ジストロフィン遺伝子のエクソン45-55の変異ホットスポット領域中の配列と結合するsgRNA配列が設計された。イントロン内の矢印は、ゲノムから全エクソンを欠失させるために設計されたsgRNA標的を示す。エクソン内の矢印は、ジストロフィン遺伝子内に標的となるフレームシフトを作成するために設計されたsgRNA標的を示す。(B)CR3 sgRNAを用いるエクソン51のNHEJ DNA修繕による小さな挿入又は欠失に続くフレーム修正の例。(C)エクソン48-50の欠失を有する患者変異で、エクソン51を欠失させジストロフィンリーディングフレームを修復するために設計された複合sgRNA標的の模式図。(D)多様なDMD患者変異に対応できるように、全エクソン45-55領域を欠失させるために設計された複合sgRNA標的の模式図。 表7の3日目遺伝子改変を測定するサーベイヤーアッセイの結果の定量に用いられるTBE-PAGEゲル像を示す。星印は、ヌクレアーゼ活性の指標となる予想バンドサイズを示す。 表7の10日目遺伝子改変を測定するサーベイヤーアッセイの結果の定量に用いられるTBE-PAGEゲル像を示す。星印は、ヌクレアーゼ活性の指標となる予想バンドサイズを示す。 遺伝的に改変されたDMD筋芽細胞を濃縮する蛍光活性化フロー選別を示す。(A)T2Aリボソームスキッピングペプチド配列を用いてGFPマーカーに連結されたヒトコドン最適化SpCas9タンパク質を発現するプラスミドを、sgRNA発現カセットを保持する1つ以上のプラスミドとともにヒトDMD筋芽細胞にコエレクトロポレートした。(B)表示のsgRNAを別個に、T2Aリボソームスキッピングペプチド配列によってSpCas9に連結されたGFPを有するSpCas9(下)又は前記のないSpCas9(上)を発現する別々のプラスミドとともにHEK239Tにコトランスフェクトした。遺伝子改変頻度をトランスフェクション3日後にサーベイヤーアッセイによって判定した。(C)ジストロフィン遺伝子のエクソン48-45の欠失を有するDMD筋芽細胞を、これらの患者細胞でジストロフィンリーディングフレームを修正するsgRNAで処置した。遺伝子改変は、エレクトロポレーション20日後に非選別(bulk)又はGFP+選別細胞で判定した。(D)表示の発現プラスミドによるエレクトロポレーション3日後のDMD筋芽細胞におけるGFPの発現。トランスフェクション効率及び選別細胞集団はゲート領域で示される。 CRISPR/Cas9を用いてジストロフィンのリーディングフレームを修復する標的のフレームシフトを示す。(A)エクソン51の5’領域が、sgRNA CR3(最初のアウトフレーム(out-of-frame)終止コドンの直近上流と結合する)を用いて標的とされた。PAM:プロトスペーサー隣接モチーフ。(B)エクソン51遺伝子座を、SpCas9及びCR3発現カセットで処理したHEK293T細胞からPCR増幅した。個々のクローンの配列をサンガーシークェンシングで決定した。一番上の配列(太字、エクソンは赤色)は天然の未改変配列である。各配列のクローンの数は括弧内に示されている。(C)全遺伝子編集効率及び(B)に示した遺伝子改変から生じるリーディングフレーム変換の要旨。(D)ジストロフィンリーディングフレームを修復する標的誘導フレームシフトを生じるSpCas9及びCR3 sgRNA発現カセット(図19C)で処理されたヒトDMD筋芽細胞でのジストロフィン発現についてのウェスタンブロット。ジストロフィン発現は、分化6日後にジストロフィンタンパク質のロッドドメインに対する抗体を用いて精査した。 複合CRISPR/Cas9遺伝子編集を用いたヒトゲノムのエクソン51の欠失を示す。(A)エクソン48-50の欠失を有するヒトDMD筋芽細胞におけるエクソン51全体のエンドポイントゲノムPCR。一番上の矢印は完全長PCRアンプリコンの予想される位置を示し、下の2つの矢印は、表示のsgRNAの組み合わせによって生じる欠失を有するPCRアンプリコンの予想される位置を示す。(B)(A)のPCR生成物をクローニングし、個々のクローンの配列を決定して標的遺伝子座に存在する挿入及び欠失を決定した。一番上の列は野生型の未改変配列を示し、三角はSpCas9切断部位を示す。右側には予想される欠失連結配列を示す代表的なクロマトグラフィー図である。(C)表示のsgRNAで処理したCRISPR/Cas9改変ヒトΔ48-50 DMD筋芽細胞におけるジストロフィンmRNA転写物のエンドポイントRT-PCR分析である。予想される欠失PCR生成物の代表的なクロマトグラフィー図が右に示される。星印:欠失生成物鎖と未改変鎖とのハイブリダイゼーションから生じるバンド。(D)CRISPR/Cas9ゲノム編集によるジストロフィンタンパク質発現の回復が、ジストロフィンタンパク質に対するウェスタンブロット(ローディングコントロールとしてGAPDHを使用)によって判定された。矢印は予想される修復ジストロフィンタンパク質バンドを示す。 複合CRISPR/Cas9遺伝子編集によるヒトDMD筋芽細胞における完全なエクソン45-55領域の欠失を示す。(A)表示のsgRNAによるHEK293T又はDMD筋芽細胞処理後のイントロン44とイントロン55の間の領域を検出する、ゲノムDNAのエンドポイントゲノムPCR。(B)(A)のDMD筋芽細胞由来の欠失のために予想されるサイズをもつPCR生成物の個々のクローンをサンガーシークェンシングで分析し、標的遺伝子座に存在するゲノムの欠失をもつ配列を決定した。下部は、予想される欠失連結配列を示す代表的なクロマトグラフィー図である。(C)表示のsgRNAで処理したCRISPR/Cas9改変ヒトΔ48-50 DMD筋芽細胞のジストロフィンmRNA転写物のエンドポイントRT-PCR分析。予想される欠失PCR生成物の代表的なクロマトグラフィー図は右に示されている。(D)イントロン44及び/又はイントロン55を標的とするsgRNAによるDMD筋芽細胞のエレクトロポレーション後のウェスタンブロットによる修復ジストロフィンタンパク質発現の分析。 in vivo細胞移植実験で使用される遺伝子改変DMD筋芽細胞のフローサイトメトリーによる濃縮の証明を示す。DMD筋芽細胞をCR1及びCR5のためのsgRNA発現ベクターの存在下又は非存在下でCas9により処理し、フローサイトメトリーでGFP+細胞を選別した。エクソン51遺伝子座における欠失は該遺伝子座にフランキングするプライマーを用いてエンドポイントPCRによって検出した。Neg ctrl:DMD筋芽細胞をCas9のみで処理しGFP+細胞について選別した。 CRISPR/Cas9処理ヒトDMD筋芽細胞の免疫不全マウスへの移植後に修復されたヒトジストロフィン発現を示す。ヒトΔ48-50DMD筋芽細胞をSpCas9、CR1及びCR5で処理しエクソン51を欠失させ、図19に示すようにGFP発現について選別した。これらの選別細胞及び未処理コントロール細胞を免疫不全マウスの後肢に注射し、移植から4週間後に筋肉線維におけるヒト特異的タンパク質発現について判定した。凍結切片を、表示のように抗ヒトスペクトリン(スペクトリンはマウス筋線維と融合した未修正及び修正筋芽細胞の両方で発現される)又は抗ヒトジストロフィン抗体で染色した。白い矢印はヒトジストロフィン陽性の筋肉線維を示す。 ヒトジストロフィン発現を精査したさらに別の免疫蛍光像を示す。抗ヒトスペクトリンで染色した連続切片は上部左に示される。(A-C)未処理ヒトDMD筋芽細胞を注射した筋肉の切片。(D-F)フローサイトメトリーで濃縮したCR1/5処理ヒトDMD筋芽細胞注射筋肉の切片。白い矢印はジストロフィン陽性線維を示す。 ヒト細胞におけるCRISPR/Cas9毒性及びエクソン51のCR1/CR5媒介欠失のオフターゲット作用の評価を示す。(A)ヒト最適化SpCas9及び表示のsgRNA構築物で処理したHEK293T細胞における細胞傷害性アッセイの結果。細胞傷害性は、表示のヌクレアーゼをコトランスフェクトされるGFP陽性細胞の生存を基準とする。I-SceIは特徴がよく調べられている非毒性メガヌクレアーゼであり、GZF3は公知の有毒なジンクフィンガーヌクレアーゼである。(B)Cas9及び表示のsgRNAをコードする発現カセットで処理された選別hDMD細胞におけるオフターゲット部位のサーベイヤー分析。hDMD細胞で試験したこれらの3つのオフターゲット部位は、HEK293T細胞で試験した50の予想部位のパネル(図27及び表4)から特定された。TGT:表示のsgRNAのオンターゲット遺伝子座。OT:オフターゲット遺伝子座。(C,D)Ca9及びCR1で処理したHEK293T細胞(C)又はCas9、CR1及びCR5で処理した選別hDMD細胞(D)で染色体転座を検出するエンドポイントネステッドPCR。模式図は、各転座事象のためにカスタマイズされたネステッドプライマー対の相対的な位置を示す。各バンドの予想されるサイズは、プライマーサイズ及び各遺伝子座における予想されるsgRNA切断部位の位置を基準に概算した。星印は予想サイズで検出されたバンドを示す。(C)のバンドの特定は各末端のサンガーシークェンシングによって立証した(図30)。HEK293T細胞のP2/P5転座の代表的なクロマトグラフィー図が示されている。 表4のオンターゲット及びオフターゲット遺伝子改変を測定するためにサーベイヤーアッセイの結果の定量に用いられるTBE-PAGEゲル像を示す。星印はヌクレアーゼ活性の指標であるバンドの予想サイズを示す。 ヒト細胞でCR3及びCR6/CR36に対してCRISPR/Cas9オフターゲット活性によってもたらされる染色体転座を検出するエンドポイントネステッドPCRを示す。ネステッドエンドポイントPCR分析を用いて、(A)表示のようにCas9及びCR3で処理したHEK239T又は選別hDMD細胞、(B)Cas9及びCR36単独で処理したHEK293T細胞、又は(C)Cas9、CR6及びCR36発現カセットで処理した選別hDMD細胞で転座を検出した。転座のための第二のネステッドPCR反応は、特異性を最大にするために各々予想される転座遺伝子座に対するカスタムプライマーを用いて増幅させた(表4参照)。模式図は、転座の存在について精査するために用いられるネステッドプライマー対の相対的位置を示す。各々可能な転座事象は、表示のsgRNAの存在下又は非存在下で処理した細胞から単離したゲノムDNAから第一に増幅された。第二のネステッドPCR反応は、転座から生じるであろうと予想されるPCRアンプリコン内のプライマーを用いて実施された。予想サイズは、表示のプライマー結合部位及び各遺伝子座の予想されるsgRNA切断部位を基準に概算した。*は、予想サイズで検出され、各末端のサンガーシークェンシングによって立証されたバンドを示す。#は、サンガーシークェンシングが予想した転座以外の配列を示した(おそらくはネステッドPCR時のミスプライミングの結果)アンプリコンを示す。 Cas9及びCR3遺伝子カセットで処理したHEK239T細胞でCR3及びCR3-OT1(それぞれ染色体X及び1上に存在)間の転座から生じる図28で検出されたバンドのサンガーシークェンシングクロマトグラフィー図を示す。矢印は、適切なsgRNAによってもたらされる予想される切断点近くの表示の染色体と相同性を有する領域を示す。配列決定の読みは、非相同性末端接合によるエラー多発性DNA修繕特性のために切断点近くでは一致しないことに留意されたい。 図26Cで検出されたバンドについてのサンガーシークェンシングクロマトグラフィー図を示す(前記バンドはCas9及びCR1遺伝子カセットで処理したHEK293T細胞のCR1及びCR1-OT1(それぞれ染色体X及び16に存在する)間の転座の結果である)。矢印は、適切なsgRNAによってもたらされる予想される切断点近くの表示染色体に対する相動性領域を示す。配列決定の読みは、非相同性末端接合によるエラー多発性DNA修繕特性のために切断点近くでは一致しないことに留意されたい。 in vivoでのAAV注射及び組織採集の大要を示す。 AAV-SASTG-ROSAデリバリー後の骨格筋におけるin vitro及びin vivoのRosa26 ZFN活性のサーベイヤー分析を示す。矢印はサーベイヤー切断から生じる予想されるバンドを示す。n.d.=検出されず。(a)増殖C2C12に表示の量のウイルスを形質導入し、感染4日後に採集した。矢印はサーベイヤー切断から生じる予想されるバンドサイズを示す。(b)C2C12を5日間分化培地でインキュベートし、続いて24ウェルプレートで表示の量のAAV-SASTG-ROSAウイルスを形質導入した。サンプルは形質導入10日後に収集した。(c)表示量のAAV-SASTG-ROSAをC57BL/6Jマウスの前脛骨筋に直接注射し、感染後4週間で筋肉を採集した。採集したTA筋をゲノムDNA分析のために8つの別々の細片に分けた。各々は別々のレーンに示されている。 Rosa T2A opt DNA配列(配列番号:434)及びRosa T2A optタンパク質配列(配列番号:435)を示す。 SASTGキャプシドDNA配列(配列番号:436)を示す。 SASTGキャプシドペプチド配列(配列番号:437)を示す。 DZF16 ZFN標的部位配列(配列番号:442)、DZF16-L6左完全アミノ酸配列(配列番号:443)及びDZF16-R6右完全アミノ酸配列(配列番号:444)を示す。 E51C3 ZFN標的部位配列(配列番号:445)、E51C3-3L左完全アミノ酸配列(配列番号:446)及びE51C3-3R右完全アミノ酸配列(配列番号:447)を示す。 DZF15 ZFN標的部位配列(配列番号:448)、DZF15-L6左完全アミノ酸配列(配列番号:449)、DZF15-R6右完全アミノ酸配列(配列番号:450)、DZF15-L5左完全アミノ酸配列(配列番号:451)、DZF15-R5右完全アミノ酸配列(配列番号:452)を示す。 E51C4 ZFN標的部位配列(配列番号:453)、E51C4-4L左完全アミノ酸配列(配列番号:454)及びE51C4-4R右完全アミノ酸配列(配列番号:455)を示す。 “単一ベクター、複合CRISPRシステム”、“二重ベクター、複合CRISPRシステム”及び“単一ベクター、単一gRNAシステム”の模式図を示す。 SaCas9-NLS(NLSには下線が付される)(配列番号:64)及びSaCas9 gRNA(配列番号:116)のヌクレオチド配列を示す。 NmCas9(NLS1は下線で、NLS2は下線付き太字で、HAタグは太字示される)、NmCas9ショートヘアピン(出典:Thomson PNAS 2013)(配列番号:118)、及びNmCas9ロングヘアピン(出典:Church Nature Biotech 2013)(配列番号:119)を示す。 sgRNA及びレンチウイルスCas9発現構築物の正当性の立証を示す。(a)AAVS1遺伝子座を標的とするsgRNAを発現する固有のPolIIIプロモーターをコードする構築物又は発現終止のために直後にポリ-チミジン(“ポリT”)が続くhU6プロモーターを含む構築物をHEK293T細胞にトランスフェクトした。エンドポイントRT-PCRを用いて、トランスフェクション2日後にそれぞれ表示のプロモーター/sgRNAの発現について精査した。-RT:逆転写酵素コントロール無し。(b)HEK293TにAAVS1ジンクフィンガーヌクレアーゼ又はCas9-T2A-GFPをコードする発現ベクター及び表示のプロモーター/sgRNA発現カセットをトランスフェクトし、トランスフェクション3日後にサーベイヤーアッセイを用いて遺伝子改変レベルを判定した。(c)表示のCas9-T2A-GFP構築物をコードするレンチウイルス構築物でsgRNAの非存在下にてHEK293T細胞を形質導入し、形質導入7日後にCas9タンパク質のN-末端のFLAGエピトープタグについて精査することによって、Cas9発現をウェスタンブロットで判定した。 単一レンチウイルスCRISPR/Cas9発現カセットのゴールデンゲートアッセンブリーを示す。 複合CRISPR/Cas9システムの単一レンチウイルスデリバリーを示す。(a)別個のゲノム遺伝子座を標的とする4つのsgRNAを、活性なCas9ヌクレアーゼを発現するレンチウイルスベクターでクローニングした。(b)HEK293及び初代ヒト皮膚線維芽細胞を表示のsgRNAを発現するレンチウイルスで形質導入し、サーベイヤーアッセイを用いて切断事象についてアッセイした。HEK293細胞は形質導入7日後にアッセイした。ヒト線維芽細胞は形質導入10日後にアッセイした。 dCas9-VP64を安定的に発現するHEK293Tにおける一過性遺伝子活性化を示す。HEK293Tにレンチウイルスを形質導入してdCas9-VP64を安定的に発現させ、続いて表示のsgRNAの組み合わせを発現するプラスミドをトランスフェクトした。デリバーされるsgRNAの数を変化させることによって、内因性IL1RN(a)及びHBG1(b)遺伝子座の調整可能な内因性遺伝子活性化がトランスフェクション3日後に達成された。内因性IL1RN(c)及びHBG1(d)のピークレベルはトランスフェクション後3-6日に観察され、活性化レベルは15から20日目にバックグラウンドレベルに復帰した。重要なことには、細胞株は第二のトランスフェクション後20日目に再活性化させることができたが、ただしレベルは以前に観察されたレベルより低かった。 単一レンチウイルス複合dCas9-VP64ベクターを用いたHEK293Tにおける安定的な遺伝子活性化を示す。HEK293Tにレンチウイルスを形質導入してdCas9-VP64及び表示のgRNA組合せを安定的に発現させた。デリバーされるsgRNAの数を変化させることによって、内因性IL1RN(a)及びHBG1(b)遺伝子座の調整可能な内因性遺伝子活性化が形質導入7日後に達成された。内因性IL1RN(c)及びHBG1(d)のピークレベルは形質導入後6日で観察され、該活性化レベルは21日目まで持続した。 IL1RN mRNA発現レベルを示す。 BAMニューロン転写因子の異所性発現による線維芽細胞のニューロンへの直接変換を表す模式図を示す。 (A)dCas9-VP64構築物の模式図を示す。dCas9-VP64は、VP16転写活性化ドメインのテトラマーに融合されたCas9タンパク質の触媒的に不活性な形である。(B)RNAによってガイドされるdCas9-VP64のゲノム標的への補充メカニズムを示す模式図である。(C)CRISPR/Cas9転写因子によりiNを生成する実験的プロトコルの模式図である。 dCas9-VP64を形質導入し、さらにASCL1プロモーター、ASCL1 cDNA又はルシフェラーゼを標的とするgRNAをトランスフェクトしたMEFで、(A)qRT-PCR又は(B)免疫蛍光によって全ASCL1タンパク質を決定した3日目の内因性ASCL1発現を示す。アステリスク(*)は、4つのgRNAと比較して8つのgRNAの共同デリバリーによるASCL1発現における有意な(p<0.05)増加を示す。ASCL1の異所性発現は、dCas9-VP64及びASCL1プロモーターを標的とする8つのgRNAによって誘導されるタンパク質よりも多くのタンパク質を生成したが、培養では3日目までに内因性遺伝子座を活性化しなかった。 異所性BAM因子によって又はdCas9-VP64及びBRN2とASCL1プロモーターを標的とするgRNAによって生じたTUJ1及びMAP2陽性細胞、(B)N3培地で11日目にhSyn-RFPレポーターを発現するニューロンの形態を有する細胞を示す。 (A)培養液中でKClの存在下(下)又は非存在下(上)でGCaMP5カルシウムインジケーターについて陽性であるニューロンの形態を有する細胞を示す。 図52は、dCas9-VP64転写因子を用いて線維芽細胞をニューロンに変換したときのiCas9-VP64処理ネズミ胚線維芽細胞におけるAscl1及びBrn2(すなわちマスター調節遺伝子)の下流標的の活性化を示す。ネズミ胚線維芽細胞(MEF)にコントロールGFP発現プラスミド又はiCas9-VP64発現プラスミド及びAsc11とBRN2を標的とする8つのgRNA発現プラスミドの組合せをトランスフェクトした。dCas9転写因子はウイルスによりデリバーした。神経誘導培地で10日後に、細胞をTuj1(ニューロン分化の初期マーカー)及びMAP2(より成熟したニューロンの分化マーカー)について染色した。ニューロンへの変換は効率的であった。 (B)KClの添加に応答して細胞の脱分極を示す、時間経過における標準化蛍光強度の記録を示す。 図52は、dCas9-VP64転写因子を用いて線維芽細胞をニューロンに変換したときのiCas9-VP64処理ネズミ胚線維芽細胞におけるAscl1及びBrn2(すなわちマスター調節遺伝子)の下流標的の活性化を示す。ネズミ胚線維芽細胞(MEF)にコントロールGFP発現プラスミド又はiCas9-VP64発現プラスミド及びAsc11とBRN2を標的とする8つのgRNA発現プラスミドの組合せをトランスフェクトした。dCas9転写因子はウイルスによりデリバーした。神経誘導培地で10日後に、細胞をTuj1(ニューロン分化の初期マーカー)及びMAP2(より成熟したニューロンの分化マーカー)について染色した。ニューロンへの変換は効率的であった。 哺乳動物遺伝子の調節制御のためのCRISPR/Cas9プラットフォームを示す。A.Cas9系エフェクターは、Cas9と複合体を形成する定常領域(標的部位特異性を付与する交換可能な20bpのプロトスペーサーが先行する)から成るキメラgRNA分子の存在下でゲノム配列と結合する。B.Cas9系合成転写因子は、RNAポリメラーゼ活性と干渉することによって又はプロモーター内で結合して内因性転写因子の結合部位をブロックすることによって標的遺伝子の転写を抑制する。調節エレメント(例えばエンハンサー)を標的とすることはまた多数の遠位遺伝子の発現をブロックする可能性がある。 CRISPR/dCas9-KRABを用いるHS2エンハンサーのターゲティングを示す。HS2領域は、10kbよりも下流のグロビン遺伝子の発現を遠位で調節できる強力なエンハンサーである。エンハンサー領域沿いの部位を標的とするために一組の単一gRNAを設計した。 HS2エンハンサーを標的とする単一gRNAはグロビン遺伝子の強力な転写抑制をもたらすことを示す。A.dCas9及びdCas9-KRABリプレッサーはレンチウイルスベクターでデリバーされる。スクリーニングのために単一gRNAを一過性にトランスフェクトした。 トランスフェクション後3日で定量的RT-PCRでアッセイしたとき、dCas9-KRABを発現するK562は、gRNA処理を受けなかったコントロール細胞と比較して、γ-グロビン遺伝子(B)、ε-グロビン遺伝子(C)及びβ-グロビン遺伝子(D)の80%までの抑制を達成した。 トランスフェクション後3日で定量的RT-PCRでアッセイしたとき、dCas9-KRABを発現するK562は、gRNA処理を受けなかったコントロール細胞と比較して、γ-グロビン遺伝子(B)、ε-グロビン遺伝子(C)及びβ-グロビン遺伝子(D)の80%までの抑制を達成した。 トランスフェクション後3日で定量的RT-PCRでアッセイしたとき、dCas9-KRABを発現するK562は、gRNA処理を受けなかったコントロール細胞と比較して、γ-グロビン遺伝子(B)、ε-グロビン遺伝子(C)及びβ-グロビン遺伝子(D)の80%までの抑制を達成した。 D.dCas9又はdCas9-KRABを発現しかつCr4又はCr8で処理された細胞でのタンパク質発現は、β-アクチンコントロールと比較して、3日目にγ-グロビン発現の穏やかな抑制を示す。 以下で処理した細胞に種々の用量のgRNAプラスミドをデリバーすることによるグロビン遺伝子座の遺伝子発現を示す:A.無レンチウイルス。デリバーされるCr4 gRNAプラスミドの用量の増加はdCas9-KRAB処理細胞における抑制を強化し、dCas9-KRABエフェクター及び標的に到達したgRNAの両方が抑制の達成に役割を果たすことを示唆している。 以下で処理した細胞に種々の用量のgRNAプラスミドをデリバーすることによるグロビン遺伝子座の遺伝子発現を示す:B.dCas9レンチウイルス。デリバーされるCr4 gRNAプラスミドの用量の増加はdCas9-KRAB処理細胞における抑制を強化し、dCas9-KRABエフェクター及び標的に到達したgRNAの両方が抑制の達成に役割を果たすことを示唆している。 以下で処理した細胞に種々の用量のgRNAプラスミドをデリバーすることによるグロビン遺伝子座の遺伝子発現を示す:C.dCas9-KRABレンチウイルス。デリバーされるCr4 gRNAプラスミドの用量の増加はdCas9-KRAB処理細胞における抑制を強化し、dCas9-KRABエフェクター及び標的に到達したgRNAの両方が抑制の達成に役割を果たすことを示唆している。 dCas9-KRABとともに単一gRNAを安定的にデリバーしてグロビン遺伝子の発現をサイレント化することを示す。A.dCas9及びdCas9-KRABリプレッサーを、単一gRNAとともにレンチウイルスベクターで共同発現させた。形質導入後7日で定量的RT-PCRによってアッセイしたとき、dCas9-KRABを発現するK562は、レンチウイルス処理を受けなかったコントロール細胞と比較して、γ-グロビン(B)、ε-グロビン(C)及びβ-グロビン(D)の95%までの抑制を達成した。 dCas9-KRABとともに単一gRNAを安定的にデリバーしてグロビン遺伝子の発現をサイレント化することを示す。A.dCas9及びdCas9-KRABリプレッサーを、単一gRNAとともにレンチウイルスベクターで共同発現させた。形質導入後7日で定量的RT-PCRによってアッセイしたとき、dCas9-KRABを発現するK562は、レンチウイルス処理を受けなかったコントロール細胞と比較して、γ-グロビン(B)、ε-グロビン(C)及びβ-グロビン(D)の95%までの抑制を達成した。 dCas9融合物のみを介するヒストン標的後成的改変のためのp300HAT“コア”の単離を示す。 化膿連鎖球菌(S.ピオゲネス(S. pyogenes))dCas9-VP64融合物(上)及びdCas9-p300コア融合物(下)の単純化模式図を示す。プロトスペーサー隣接モチーフ(PAM)は標的遺伝子の遺伝子座で矢印により示され、合成ガイドRNA(gRNA)は影付き矢印(hatched arrow)で示される。 60A-60Cは、dCas9-VP64及び一切の融合エフェクタードメインを持たないdCas9と比較して、ヒト293T細胞培養株でdCas9-p300を用いる活性化の有効性を明らかにする3つのヒト遺伝子座における代表的なデータを示す。 60A-60Cは、dCas9-VP64及び一切の融合エフェクタードメインを持たないdCas9と比較して、ヒト293T細胞培養株でdCas9-p300を用いる活性化の有効性を明らかにする3つのヒト遺伝子座における代表的なデータを示す。 60A-60Cは、dCas9-VP64及び一切の融合エフェクタードメインを持たないdCas9と比較して、ヒト293T細胞培養株でdCas9-p300を用いる活性化の有効性を明らかにする3つのヒト遺伝子座における代表的なデータを示す。 61A-61CはCas9構築物のアミノ酸配列を示す。図61A-61Cの全ての説明は図61Aに示されている。 61A-61CはCas9構築物のアミノ酸配列を示す。図61A-61Cの全ての説明は図61Aに示されている。 61A-61CはCas9構築物のアミノ酸配列を示す。図61A-61Cの全ての説明は図61Aに示されている。 HAT-dCas9-p300融合タンパク質は遺伝子発現を活性化できないことを示す。 gRNAはまたdCas9-p300コアと相乗的に作用することを示す。 dCas9-p300及びdCas9-VP64は、(異なる分子で)トランス活性化に累積的作用を全く持たない。 〔図65〕dCas9-p300はMyoD遠位調節領域を非相乗的に活性化することを示す。 〔図66〕ジストロフィン遺伝子に種々の欠損を保有するヒトDMD患者に由来する骨格筋芽細胞株のジストロフィンのDP427m骨格筋アイソフォームの5’UTRへのミニジストロフィンのTALEN媒介組込みを示す。DMD患者の細胞に5’UTRで活性なTALEN対をコードする構築物及びミニジストロフィン遺伝子を保有するドナー鋳型をエレクトロポレートした。(a)ミニジストロフィンが5’UTRにどのように組み込まれるかを示す模式図である。(b)ヒグロマイシン耐性クローン細胞株を単離し、(a)に示したプライマーを用いて5’UTRへの首尾よい位置特異的組込みについてPCRでスクリーニングした。星印は(c)での更なる分析のために選別されたクローンを示す。(c)組込み事象が検出されたクローン単離DMD筋芽細胞を6日間分化させ、ミニジストロフィンのC末端に融合させたHAタグの発現を判定した。
詳細な説明
本明細書に記載するように、ある種の方法及び操作されたCRISPR/CRISPR随伴(Cas)9依拠システム組成物は、遺伝子発現の変更、ゲノム操作、及び遺伝子疾患に関与する遺伝子の変異の作用を修正又は軽減させるために有用であることが見出された。CRISPR/Cas9依拠システムは、Cas9タンパク質及び少なくとも1つのガイドRNAを含む(ガイドRNAは当該システムのDNAターゲティング特異性を提供する)。特に、本開示は、CRISPR/Cas9依拠システムのDNA配列ターゲティング機能を追加の活性と一体化し、したがって遺伝子発現及び/又は後成的状況の変更を可能にするCas9融合タンパク質を記載する。このシステムはまたゲノム操作及び遺伝子変異による作用の修正又は軽減に用いられ得る。
本開示はまた、CRISPR/CRISPR随伴(Cas)9依拠システム及び1つ以上の内因性遺伝子を標的とする多種多様なgRNAをデリバーするある種の組成物及び方法を提供する。1つの単独プロモーターを標的とする多種多様なsgRNAのコトランスフェクションは相乗的活性化を可能にするが、しかしながら多種多様なプラスミドのコトランスフェクションはコピー数の相違のために各細胞で変動し得る発現レベルをもたらす。さらに、トランスフェクションに続く遺伝子活性化は、時間経過におけるプラスミドDNAの希釈のために一過性である。さらにまた、多くの細胞タイプが容易にはトランスフェクトされず、かつ一過性の遺伝子発現は治療効果を誘発するには十分ではないことがある。これらの制限に対応するために、別個のプロモーターからCas9及び4つまでのsgRNAを発現する単一レンチウイルスシステムが開発された。単一レンチウイルスベクターからCas9又はdCas9融合タンパク質及び4つまでのgRNAを発現するプラットフォームが開示される。このレンチウイルスベクターは、構成的又は誘導可能なCas9又はdCas9-VP64を、別個のプロモーターから発現される1つ、2つ、3つまたは4つのgRNAに加えて発現する。このシステムは、CRISPR/Cas9依拠遺伝子調節の規模及びタイミングの両方を制御することが可能である。さらにまた、該レンチウイルスプラットフォームは、初代細胞でのCRISPR/Cas9システムの治療的利用を促進する強力で持続的な遺伝子発現レベルを提供する。最後に、このシステムは、多種多様な遺伝子を同時に編集するために(例えばいくつかのオンコジーンの同時ノックアウトのために)用いることができる。
本開示はまた、改変アデノ随伴ウイルス(AAV)ベクターを用いて骨格筋及び心筋に位置特異的ヌクレアーゼをデリバーするある種の組成物及び方法を提供する。位置特異的ヌクレアーゼ(前記は操作可能である)は、遺伝子発現の変更、ゲノム操作、遺伝子疾患に関与する遺伝子における変異の作用の修正又は軽減、又は骨格筋若しくは心筋又は筋肉再生に影響する他の症状に関与する遺伝子のマニピュレーションに有用である。操作される位置特異的ヌクレアーゼにはジンクフィンガーヌクレアーゼ(ZFN)、TALエフェクターヌクレアーゼ(TALEN)、及び/又はゲノム編集用CRISPR/Cas9システムが含まれ得る。本明細書に記載するように、骨格筋組織の遺伝子はこの固有のデリバリーシステムを用いてin vivoで首尾よく編集された。本開示発明は、治療的利用のためにヒトゲノム書き改める手段、及び基礎的科学利用のために標的モデル種を提供する。
遺伝子編集は、細胞周期及び複雑なDNA修繕経路(前記は組織毎に変化する)に大いに左右される。骨格筋は非常に複雑な環境であり、細胞当たり100を超える核を有する大きな筋線維から成る。一般的に遺伝子治療及び生物製剤は、in vivoデリバリーにおけるハードルのために数十年間制限されてきた。これらの難問には、in vivoにおける担体の安定性、望み通りの組織へのターゲティング、十分な遺伝子発現及び活性をもつ遺伝子生成物の獲得、並びに活性を凌駕する可能性がある毒性(前記は遺伝子編集ツールでは一般的である)の回避が含まれる。他のデリバリーベヒクル(例えばプラスミドDNAの直接注射)は、他の関係では骨格筋及び心筋での遺伝子発現のために機能するが、これら位置特異的ヌクレアーゼに関しては遺伝子編集の検出可能なレベルの達成のためには十分に機能しない。
本明細書で互換的に用いられる“相同性指向修繕”又は“HDR”は、(大半が細胞周期のG2及びS期の)核内に相同なDNA片が存在するときに二本鎖DNA損傷を修繕する細胞内メカニズムを指す。HDRはドナーDNA鋳型を使用して修繕を誘導し、さらにHDRを用いてゲノムに特異的な配列変化(標的誘導による全遺伝子の付加を含む)を創出することができる。ドナー鋳型が位置特異的ヌクレアーゼ(例えばCRISPR/Cas9依拠システム)とともに供給されるならば、該細胞性機構は相同性組換えによって切断を修繕するであろう(前記組換えはDNA切断の存在で数桁強化される)。相同なDNA片が存在しないとき、非相同性末端接合が代わりに生じ得る。
本明細書で互換的に用いられる“ゲノム編集”は遺伝子の変更を指す。ゲノム編集は変異遺伝子の修正又は回復を含むことができる。ゲノム編集は遺伝子(例えば変異遺伝子又は正常遺伝子)のノックアウトを含むことができる。ゲノム編集を用いて、問題の遺伝子の変更により疾患を治療し又は筋肉の修繕を強化することができる。
2つ以上の核酸又はポリペプチド配列に関して本明細書で用いられる“同一”又は“同一性”は、当該配列が指定の領域にわたって指定のパーセンテージで同じ残基を有することを示す。パーセンテージは、2つの配列を最適に並べ、指定された領域にわたって当該2つの配列を比較し、同一残基が両配列で生じる位置の数を決定して一致する位置の数を入手し、一致する位置数を指定の領域の総位置数で割り、結果に100を乗じて配列同一性のパーセンテージを得ることによって計算できる。2つの配列の長さが異なるか又はアラインメントが1つ以上のずれた末端を生じて、指定の比較領域が単独配列のみを含む場合、単独配列の残基は計算の分母には含まれるが分子には含まれない。DNAとRNAを比較するとき、チミン(T)及びウラシル(U)は同等とみなすことができる。同一性は手動で又はコンピューター配列アルゴリズム(例えばBLAST又はBLAST2.0)を用いて実施できる。
本明細書で互換的に用いられる“反復可変性二残基(repeat variable diresidue)”又は“RVD”は、TALE DNA結合ドメインのDNA認識モチーフ(“RVDモジュール”としてもまた知られている、前記は33-35アミノ酸を含む)内の隣接する1対のアミノ酸残基を指す。RVDはRVDモジュールのヌクレオチド特異性を決定する。RVDモジュールは一緒になってRVD列を生じる。本明細書で用いられる“RVD列長”は、TALENによって認識されるTALEN標的領域(すなわち結合領域)内のヌクレオチド配列の長さと一致する、RVDモジュールの数を指す。
本明細書で用いられる“位置特異的ヌクレアーゼ”は、DNA配列を特異的に認識し切断することができる酵素を指す。位置特異的ヌクレアーゼは操作することができる。操作される位置特異的ヌクレアーゼの例にはジンクフィンガーヌクレアーゼ(ZFN)、TALエフェクターヌクレアーゼ(TALEN)、及びCRISPR/Cas9依拠システムが含まれる。
本明細書で用いられる“骨格筋”は横紋筋の一タイプを指し、前記は体神経系の制御下にあり、テンドンとして知られているコラーゲン線維束によって骨に接着される。骨格筋は、筋細胞(myocyte)又は“筋肉細胞(muscle cell)”として知られる(時には口語で“筋肉繊維”と呼ばれる)個々の成分で形成される。筋細胞は、筋形成として知られるプロセス時の発育中筋芽細胞(筋肉細胞を生じる胚性始原細胞の一タイプ)の融合で形成される。これらの長い筒状の多核細胞は筋線維とも称される。
2.ゲノム編集のための組成物
本発明は、ゲノム編集、ゲノム改変又は標的遺伝子の遺伝子発現の変更のための組成物を目的とする。本組成物は、ウイルスベクター及び融合タンパク質(例えば位置特異的ヌクレアーゼ又はCRISPR/Cas9システム)を少なくとも1つのgRNAとともに含むことができる。
a.筋肉でのゲノム編集のための組成物
本発明は、対象動物の骨格筋又は心筋で標的遺伝子をゲノム編集する組成物を目的とする。組成物は改変AAVベクター及び位置特異的ヌクレアーゼをコードするヌクレオチド配列を含む。組成物は骨格筋又は心筋に位置特異的ヌクレアーゼの活性形をデリバーする。組成物はさらにドナーDNA又はトランスジーンを含むことができる。これらの組成物は、ゲノム編集、ゲノム操作、及び遺伝子疾患及び/又は骨格筋若しくは心筋の症状に関与する遺伝子における変異の作用の修正又は軽減で用いることができる。
標的遺伝子は、細胞の分化又は遺伝子の活性化、抑制若しくは破壊が所望され得る任意の他のプロセスに関与し得るか、又は標的遺伝子は、変異(例えば欠失、不レムシフト変異又はナンセンス変異)を有し得る。標的遺伝子が、未成熟終止コドン、異常なスプライスアクセプター部位又は異常なスプライスドナー部位を生じる変異を有する場合、未成熟終止コドン、異常なスプライスアクセプター部位又は異常なスプライスドナー部位の上流又は下流のヌクレオチド配列を認識し結合するように、位置特異的ヌクレアーゼを設計することができる。位置特異的ヌクレアーゼはまた、スプライスアクセプター及びドナーを標的として未成熟終止コドンのスキッピングを導入することにより正常な遺伝子スプライシングを破壊するか、又は破壊されたリーディングフレームを回復させるために用いることができる。位置特異的ヌクレアーゼは、ゲノムのタンパク質コード領域へのオフターゲット変化を媒介することもしないこともある。
3.CRISPRシステム
本明細書で互換的に用いられる“集合等間隔配置短パリンドロームリピート”及び“CRISPR”は、配列決定した細菌の約40%及び配列決定した古細菌の約90%のゲノムで見出される多種多様な短い直接リピートを含む遺伝子座を指す。CRISPRシステムは、後天的免疫型を提供する侵入ファージ及びプラスミドに対抗する防御で必要とされる微生物のヌクレアーゼシステムである。微生物宿主のCRISPR遺伝子座は、CRISPR随伴(Cas)遺伝子の組合せを、CRISPR媒介核酸切断の特異性をプログラミングすることができる非コードRNAエレメントと同様に含む。外来遺伝子の短いセグメント(スペーサーと称される)がCRISPRリピートの間でゲノムに取り込まれ、過去の暴露の‘記憶’として働く。Cas9はsgRNAの3’末端により複合体を形成し、このタンパク質-RNAペアは、sgRNA配列の5’末端と予め規定した20bpのDNA配列(プロトスペーサーとして知られる)との間の相補的塩基対形成によってそのゲノム標的を認識する。この複合体は、crRNA内でコードされた領域(すなわちプロトスペーサー)及び病原体ゲノム内のプロトスペーサー隣接モチーフ(PAM)を介して病原体DNAの相同な遺伝子座に誘導される。非コードCRISPR列は転写され、直接リピート内で個々のスペーサー配列を含む短いcrRNAに切断される(前記はCasヌクレアーゼを標的部位(プロトスペーサー)に誘導する)。発現されたsgRNAの20bpの認識配列を単純に交換することによって、Cas9ヌクレアーゼは新しいゲノム標的へ誘導され得る。CRISPRスペーサーを用いて、真核生物におけるRNAiと同様な態様で外因性遺伝エレメントを認識しサイレント化することができる。
CRISPRシステムの3タイプ(I、II及びIII型エフェクターシステム)が知られている。II型エフェクターシステムは、標的誘導によるDNA二本鎖切断を4つの連続工程で単一エフェクター酵素Cas9をdsDNA切断に用いて実行する。I型及びIII型エフェクターシステムと比較して(前記システムは複合体として作動する多種多様な別個のエフェクターを必要とする)、II型エフェクターシステムはまた別の環境(例えば真核細胞)で機能し得る。II型エフェクターシステムは、長い前-crRNA(スペーサー含有CRISPR遺伝子座から転写される)、Cas9タンパク質及びtracrRNA(前-crRNAプロセッシングに必要である)から成る。tracrRNAは、前-crRNAのスペーサーを引き離すリピート領域とハイブリダイズし、したがって内因性RNase IIIによるdsRNA切断を開始する。この切断の後に、Cas9による各スペーサー内の第二の切断事象が続き、tracrRNAとCas9に随伴したままの成熟crRNAを生じ、Cas9:crRNA-tracrRNA複合体を形成する。
Cas9:crRNA-tracrRNA複合体はDNA二重鎖をほどいてcrRNAと一致する配列を検索して切断する。標的認識は、標的DNA内の“プロトスペーサー”配列とcrRNA内の残留スペーサー配列との間の相補性の検出に際して生じる。正確なプロトスペーサー隣接モチーフ(PAM)がまた該プロトスペーサーの3’末端に存在する場合に、Cas9は標的DNAの切断を媒介する。プロトスペーサーを標的とするために、当該配列のそのすぐ後に、プロトスペーサー隣接モチーフ(PAM)(DNA切断に必要なCas9ヌクレアーゼによって認識される短い配列)が続かねばならない。異なるII型システムは異なるPAMを要求する。化膿連鎖球菌CRISPRシステムは、このCas9(SpCas9)のためのPAM配列を5’-NRG-3’として有し得る(ここでRはA又はGであり、ヒト細胞でのこのシステムの特異性を特徴づける)。CRISPR/Cas9システムの固有の性能は、単一Cas9タンパク質を2つ以上のsgRNAとともに共同発現することによって多種多様な別個のゲノム遺伝子座を同時に標的とするこの直進的能力である。例えば、化膿連鎖球菌II型システムは自然では“NGG”配列(“N”は任意のヌクレオチドでよい)の使用を優先するが、操作システムでは他のPAM配列(例えば“NAG”)もまた許容する(Hsu et al., Nature Biotechnology (2013) doi:10.1038/nbt.2647)。同様に、髄膜炎菌(Neisseria meningitidis)由来のCas9(NmCas9)は通常ではNNNNGATTの天然のPAMを有するが、多様なRAM(高度に縮退したNNNNGNNN PAMを含む)に対して活性を有する(Esvelt et al. Nature Methods (2013) doi:10.1038/nmeth.2681)。
4.CRISPR/Cas9依拠システム
化膿連鎖球菌II型エフェクターシステムの操作形はヒト細胞でゲノム編集機能を果たすことが示された。このシステムでは、Cas9タンパク質は、合成により再構成された“ガイドRNA”(“gRNA”、前記はまた本明細書ではキメラ単一ガイドRNA(“sgRNA”)として互換的に用いられる)によってゲノムの標的部位に誘導された(前記ガイドRNAは、一般的にRNaseIII及びcrRNAプロセッシングの必要性を除去するcrRNA-tracrRNA融合物である(図53A参照))。本明細書では、ゲノム編集及び遺伝子疾患治療で使用されるCRISPR/Cas依拠操作システムが提供される。CRISPR/Cas9依拠操作システムは任意の遺伝子を標的とするように設計できる。前記遺伝子には、遺伝子疾患、加齢、組織再生又は創傷治癒に必要な遺伝子が含まれる。CRISPR/Cas9依拠システムはCas9タンパク質又はCas9融合タンパク質及び少なくとも1つのgRNAを含むことができる。Cas9融合タンパク質は、例えば異なる活性(Cas9にとって内因性である活性)を有するドメイン、例えばトランス活性化ドメインを含むことができる。
標的遺伝子は、細胞の分化又は遺伝子の活性化が所望され得る任意の他のプロセスに必要とされる得るか、又は変異(例えばフレームシフト変異又はナンセンス変異)を有し得る。標的遺伝子が未成熟終止コドン、異常なスプライスアクチベーター部位又は異常なスプライスドナー部位を生じる変異を有する場合、CRISPR/Cas9依拠システムは、未成熟終止コドン、異常なスプライスアクチベーター部位又は異常なスプライスドナー部位の上流又は下流のヌクレオチド配列を認識しこれと結合するように設計できる。またCRISPR/Cas9依拠システムを用いて、スプライスアクセプター及びドナーを標的にして未成熟終止コドンのスキッピングを導入して正常な遺伝子スプライシングを破壊するか又は破壊されたリーディングフレームを回復させることができる。CRISPR/Cas9依拠システムは、ゲノムのタンパク質コード領域へのオフターゲット変化を媒介することもしないこともある。
a.Cas9
CRISPR/Cas9依拠システムはCas9タンパク質又はCas9融合タンパク質を含むことができる。Cas9タンパク質は核酸を切断するエンドヌクレアーゼであり、CRISPR遺伝子座によってコードされ、II型CRISPRシステムで必要とされる。Cas9タンパク質は任意の細菌又は古細菌種(例えば化膿連鎖球菌)に由来し得る。Cas9タンパク質は、ヌクレアーゼ活性が不活化されるように変異させることができる。エンドヌクレアーゼ活性をもたない、化膿連鎖球菌由来不活化Cas9タンパク質(iCas9、“dCas9”とも称される)は最近、gRNA によって細菌、酵母、及びヒト細胞の遺伝子を標的にし、立体的妨害を通り抜けて遺伝子発現をサイレント化した。本明細書で用いられる“iCas9”及び“dCas9”は共に、アミノ酸置換D10A及びH840Aを有し、そのヌクレアーゼ活性が不活化されたCas9タンパク質を指す。例えば、CRISPR/Cas9依拠システムは配列番号:459又は461のCas9を含むことができる。
b.Cas9融合タンパク質
CRISPR/Cas9依拠システムは融合タンパク質を含むことができる。融合タンパク質は2つの異種ポリペプチドドメインを含むことができ、第一のポリペプチドドメインはCasタンパク質を含み、第二のポリペプチドドメインは、活性(例えば転写活性化活性、転写抑制活性、転写解除因子活性、ヒストン改変活性、ヌクレアーゼ活性、核酸結合活性、メチラーゼ活性又はデメチラーゼ活性)を有する。融合タンパク質はCas9タンパク質又は上記に記載の変異Cas9タンパク質を含むことができ、前記Cas9タンパク質は、例えば転写活性化活性、転写抑制活性、転写解除因子活性、ヒストン改変活性、ヌクレアーゼ活性、核酸結合活性、メチラーゼ活性、デメチラーゼ活性を有する第二のポリペプチドドメインに融合されてある。
(1)転写活性化活性
第二のポリペプチドドメインは転写活性化活性を有することができ、すなわちトランス活性化ドメインであり得る。例えば、内因性哺乳動物遺伝子(例えばヒト遺伝子)の遺伝子発現は、gRNAと一緒にiCas9とトランス活性化ドメインとの融合タンパク質を哺乳動物プロモーター標的に誘導することによって達成できる。トランス活性化ドメインは、1つのVP16タンパク質、多種多様なVP16タンパク質(例えばVP48ドメイン又はVP64ドメイン)、又はNFカッパB転写アクチベーター活性のp65ドメインを含むことができる。例えば、融合タンパク質はiCas9-VP64であり得る。
(2)転写抑制活性
第二のポリペプチドドメインは転写抑制活性を有することができる。第二のポリペプチドドメインは、クルッペル随伴ボックス活性(例えばKRABドメイン)、ERFリプレッサードメイン活性、Mxi1リプレッサードメイン活性、SID4Xリプレッサードメイン活性、Mad-SIDリプレッサードメイン活性、又はTATAボックス結合タンパク質活性を有することができる。例えば、融合タンパク質はdCas9-KRABであり得る。
c.gRNA
gRNAはCRISPR/Cas9依拠システムのターゲティングを提供する。gRNAは2つの非コードRNA(crRNA及びtracrRNA)の融合物である。sgRNAは、20bpのプロトスペーサー(所望のDNA標的との相補的な塩基対形成によりターゲティング特異性を付与する)をコードする配列を交換することによって所望される任意のDNA配列を標的とすることができる。gRNAは、天然に存在するcrRNA:tracrRNA複合体(II型エフェクターシステムに必要とされる)を模倣する。この二重体(例えば42ヌクレオチドのcrRNA及び75ヌクレオチドのtracrRNAを含むことができる)は、Cas9のためにガイドとして作用し、標的核酸を切断する。本明細書で互換的に用いられる“標的領域”、“標的配列”又は“プロトスペーサー”は、CRISPR/Cas9依拠システムが標的とする標的遺伝子の領域を指す。CRISPR/Cas9依拠システムは少なくとも1つのgRNAを含むことができ、ここでgRNAは異なるDNA配列を標的とする。標的DNA配列はオーバーラップしてもよい。標的配列又はプロトスペーサーは、該プロトスペーサーの3’末端にPAM配列を伴う。異なるII型システムは異なるPAMを要求する。例えば、化膿連鎖球菌II型システムは“NGG”配列を使用する(ここで“N”は任意のヌクレオチドであり得る)。
(2)ジストロフィンを標的とするCRISPR/Cas9依拠システム
ジストロフィン遺伝子に特異的なCRISPR/Cas9依拠システムが本明細書で開示される。該CRISPR/Cas9依拠システムは、Cas9及びジストロフィン遺伝子を標的とする少なくとも1つのgRNAを含むことができる。CRISPR/Cas9依拠システムは標的遺伝子と結合しこれを認識できる。標的領域は、修繕プロセス時の挿入又は欠失がフレーム変換によってジストロフィンリーディングフレームを回復させることができるように、存在し得るアウトフレーム終止コドンのすぐ上流で選択できる。標的領域はまた、修繕プロセス時の挿入又は欠失がスプライス部位の破壊及びエクソン除去によってスプライシングを破壊しジストロフィンリーディングフレームを回復することができるように、スプライスアクセプター部位又はスプライスドナー部位であってもよい。標的領域はまた、修繕プロセス時の挿入又は欠失が、終止コドンの除去又は破壊によってジストロフィンリーディングフレームを回復させることができるように異常な終止コドンであってもよい。
エクソン45-55の変異ホットスポットに狙いを定めて、エクソン内の小さな挿入及び欠失又は1つ以上のエクソンの大きな欠失のいずれかを導入することによって、単一又は複合sgRNAを設計しジストロフィンリーディングフレームを回復させることができる。Cas9及び1つ以上のsgRNAによる処置の後、ジストロフィン発現は、in vitroでデュシェンヌ型患者の筋肉細胞で回復させることができる。免疫不全マウスに遺伝的に修正された患者の細胞を移植した後、ヒトジストロフィンがin vivoで検出された。重大なことに、CRISPR/Cas9システムのこの唯一無比の複合遺伝子編集性能は、汎用又は患者特異的遺伝子編集アプローチによって患者の変異の62%までを修正できるこの変異ホットスポット領域で大きな欠失を効率的に作出することを可能にする。
CRISPR/Cas9依拠システムは種々の配列及び長さのgRNAを用いることができる。gRNAの例は表6で見つけることができる。CRISPR/Cas9依拠システムは配列番号:65-144又はその相補物の核酸配列を標的とすることができる。gRNAは、配列番号:65-144又はその相補物から成る群から選択されるヌクレオチド配列を含むことができる。例えば、開示のCRISPR/Cas9依拠システムを操作して、ジストロフィン遺伝子のエクソン51で高度に効率的な遺伝子編集が媒介された。これらのCRISPR/Cas9依拠システムは、DMD患者由来の細胞でジストロフィンタンパク質の発現を回復させた。
(a)エクソン51及び45-55
エクソン51はDMDでしばしばフレーム破壊欠損と隣接する。エクソンスキッピングによるジストロフィン転写物のエクソン51の除去を利用して、全DMD患者のほぼ15%を治療することができる。このクラスのDMD変異は、理想的にはNHEJ系ゲノム編集及びHDRによる永久的修正に適している。ヒトジストロフィン遺伝子のエクソン51の標的誘導改変のために、本明細書に記載するCRISPR/Cas9依拠システムを発展させた。これらのCRISPR/Cas9依拠システムをヒトDMD細胞にトランスフェクトし、効率的な遺伝子改変及び修正リーディングフレームへの変換を媒介させた。タンパク質の復元はフレーム回復に付随し、CRISPR/Cas9依拠システム処理細胞の混合集団で検出された。同様に、ジストロフィン転写物におけるエクソン45-55の除去を用いて、全DMD患者のほぼ62%が治療された。
(3)AAV/CRISPR構築物
AAVを用いて、多様な構築物構造を利用するCRISPRをデリバーできる(図39参照)。例えば、AAVはCas9及びgRNA発現カセットを別々のベクターでデリバーできる。また別には、小さなCas9タンパク質(黄色ブドウ球菌(Staphylococcus aureus)又は髄膜炎菌種に由来する)が用いられるならば、Cas9及び2つまでのgRNAカセットの両方を4.7kbのパッケージ制限内で単一AAVベクター中にまとめることができる(図39参照)。
5.複合CRISPR/Cas9依拠システム
本開示は、CRISPR/Cas9依拠システム(例えばCas9又はdCas9)及び1つ以上の内因性遺伝子を標的とする多種多様なgRNAを含む、複合CRISPR/Cas9依拠システムを目的とする。このプラットフォームは便利なゴールデンゲートクローニング方法を利用して、4つまでの独立したsgRNA発現カセットを単一レンチウイルスベクターに迅速に取り込む。各sgRNAは効率的に発現され、不朽化及び初代ヒト細胞株で分散した遺伝子座において複合的な遺伝子編集を媒介することができた。安定的にdCas9-VP64を発現する細胞株における一過性の転写活性化は、1つから4つのsgRNAによる相乗的活性化によって調製できることが示された。さらにまた、単一レンチウイルスベクターは、不朽化及び初代ヒト細胞で持続的で長期の内因性遺伝子発現を誘導できる。このシステムは、モデル及び初代細胞株で効率的な複合的遺伝子編集を可能にする単一レンチウイルスベクターの迅速なアッセンブリーを可能にする。
複合CRISPR/Cas9依拠システムは、転写活性化の潜在的能力及び転写活性化の調整可能な誘導を提供する。ゴールデンゲートアッセンブリーによって容易に生成したとき、最終的なベクターは、独立したプロモーターから発現される1つ、2つ、3つ又は4つのsgRNAに加えて構成的なCas9又はdCas9-VP64を発現する。各プロモーターはsgRNAを効率的に発現することができ、前記は類似レベルのCas9ヌクレアーゼ活性を誘導する。さらにまた、Cas9及び別個の遺伝子座を標的とする4つのsgRNAを発現する単一ベクターのレンチウイルス系デリバリーは、4つ全ての遺伝子座の同時複合遺伝子編集をもたらす。一過性及び安定的環境の両方で2つの内因性遺伝子の調整可能な転写活性化は、sgRNAを含む又はsgRNAを含まないCas9のレンチウイル系スデリバリーを用いて達成された。初代ヒト細胞で高度に効率的で長期の遺伝子活性化が達成される。このシステムは、したがってヒト細胞で複合的遺伝子編集及び長期の転写活性化を生じる有望で効率的な方法である。
複合CRISPR/Cas9依拠システムは、多種多様な遺伝子を同時に不活化する効率的な複合的遺伝子編集を可能にする。CRISPR/Cas9依拠システムは、ただ1つのCas9タンパク質を2つ以上のsgRNAと共同発現することによって、多種多様な別個のゲノム遺伝子座を同時に標的とすることができ、このシステムを複合遺伝子編集又は相乗的活性化の応用に唯一無比のものにする。CRISPR/Cas9依拠システムは、発現されるsgRNA 分子を単純に改変することによって、新しい部位への分子ターゲティングプロセスを大いに促進する。単一レンチウイルスベクターをこれらの成分の誘導可能な制御を達成する方法と(化学的又は光遺伝学的に)一緒にして、遺伝子調節の時間及び空間の両方における動的変化の解明を促進できる。
複合CRISPR/Cas9依拠システムは、2つ以上の内因性遺伝子を転写的に活性化することができる。複合CRISPR/Cas9依拠システムは、2つ以上の内因性遺伝子を転写的に抑制することができる。例えば、少なくとも2つの内因性遺伝子、少なくとも3つの内因性遺伝子、少なくとも4つの内因性遺伝子、少なくとも5つの内因性遺伝子、又は少なくとも10の内因性遺伝子を複合CRISPR/Cas9依拠システムによって活性化又は抑制することができる。2つから15の遺伝子、2つから10の遺伝子、2つから5つの遺伝子、5つから15の遺伝子、又は5つから10の遺伝子を複合CRISPR/Cas9依拠システムによって活性化又は抑制することができる。
(1)改変レンチウイルスベクター
複合CRISPR/Cas9依拠システムは改変レンチウイルスベクターを含むことができる。改変レンチウイルスベクターは、融合タンパク質をコードする第一のポリヌクレオチド配列及び少なくともの1つのsgRNAをコードする第二のポリヌクレオチド配列を含む。融合タンパク質は、上記に記載のCRISPR/Cas9依拠システムの融合タンパク質であり得る。第一のポリヌクレオチド配列はプロモーターに作動可能に連結され得る。プロモーターは、構成的プロモーター、誘導可能プロモーター、抑制可能プロモーター、又は調節可能プロモーターであり得る。
第二のポリヌクレオチド配列は少なくとも1つのsgRNAをコードする。例えば、第二のポリヌクレオチド配列は、少なくとも1つのsgRNA、少なくとも2つのsgRNA、少なくとも3つのsgRNA、少なくとも4つのsgRNA、少なくとも5つのsgRNA、少なくとも6つのsgRNA、少なくとも7つのsgRNA、少なくとも8つのsgRNA、少なくとも9つのsgRNA、少なくとも10のsgRNA、少なくとも11のsgRNA、少なくとも12のsgRNA、少なくとも13のsgRNA、少なくとも14のsgRNA、少なくとも15のsgRNA、少なくとも16のsgRNA、少なくとも17のsgRNA、少なくとも18のsgRNA、少なくとも19のsgRNA、少なくとも20のsgRNA、少なくとも25のsgRNA、少なくとも30のsgRNA、少なくとも35のsgRNA、少なくとも40のsgRNA、少なくとも45のsgRNA、少なくとも50のsgRNAをコードすることができる。第二のポリヌクレオチド配列は、1つのsgRNAから50のsgRNA、1つのsgRNAから45のsgRNA、1つのsgRNAから40のsgRNA、1つのsgRNAから35のsgRNA、1つのsgRNAから30のsgRNA、1つのsgRNAから異なる25のsgRNA、1つのsgRNAから20のsgRNA、1つのsgRNAから16のsgRNA、1つのsgRNAから8つの異なるsgRNA、4つの異なるsgRNAから50の異なるsgRNA、4つの異なるsgRNAから45の異なるsgRNA、4つの異なるsgRNAから40の異なるsgRNA、4つの異なるsgRNAから35の異なるsgRNA、4つの異なるsgRNAから30の異なるsgRNA、4つの異なるsgRNAから25の異なるsgRNA、4つの異なるsgRNAから20の異なるsgRNA、4つの異なるsgRNAから16の異なるsgRNA、4つの異なるsgRNAから8つの異なるsgRNA、8つの異なるsgRNAから50の異なるsgRNA、8つの異なるsgRNAから45の異なるsgRNA、8つの異なるsgRNAから40の異なるsgRNA、8つの異なるsgRNAから35の異なるsgRNA、8つの異なるsgRNAから30の異なるsgRNA、8つの異なるsgRNAから25の異なるsgRNA、8つの異なるsgRNAから20の異なるsgRNA、8つの異なるsgRNAから16の異なるsgRNA、16の異なるsgRNAから50の異なるsgRNA、16の異なるsgRNAから45の異なるsgRNA、16の異なるsgRNAから40の異なるsgRNA、16の異なるsgRNAから35の異なるsgRNA、16の異なるsgRNAから30の異なるsgRNA、16の異なるsgRNAから25の異なるsgRNA、16の異なるsgRNAから20の異なるsgRNAをコードすることができる。異なるsgRNAをコードするポリヌクレオチド配列の各々はプロモーターに作動可能に連結され得る。異なるsgRNAに作動可能に連結されるプロモーターは同じプロモーターでもよい。異なるsgRNAに作動可能に連結されるプロモーターは異なるプロモーターでもよい。プロモーターは、構成的プロモーター、誘導可能プロモーター、抑制可能プロモーター、又は調節可能プロモーターであり得る。
少なくとも1つのsgRNAが標的遺伝子又は遺伝子座と結合できる。2つ以上のsgRNAが含まれる場合は、sgRNAの各々は1つの標的遺伝子座内の異なる標的領域と結合するか、又はsgRNAの各々は異なる遺伝子の遺伝子座内の異なる標的と結合する。融合タンパク質は、Cas9タンパク質又はiCas9-VP64タンパク質を含むことができる。融合タンパク質は、VP64ドメイン、p300ドメイン、又はKRABドメインを含むことができる。
6.位置特異的ヌクレアーゼ
上記記載の組成物は、標的領域と結合しこれを切断する位置特異的ヌクレアーゼをコードするヌクレオチド配列を含む。位置特異的ヌクレアーゼは操作することができる。例えば、操作される位置特異的ヌクレアーゼはCRISPR/Cas9依拠システム、ZFN又はTALENであり得る。位置特異的ヌクレアーゼは、骨格筋又は心筋の細胞のゲノムの遺伝子又は遺伝子座と結合しこれを切断できる。例えば、該遺伝子又は遺伝子座はRosa26遺伝子座又はジストロフィン遺伝子であり得る。
a.CRISPR/Cas9依拠システム
上記に記載のCRISPR/Cas9依拠システムを用いて標的誘導ゲノム遺伝子座に位置特異的二本鎖切断を導入することができる。
b.ジンクフィンガーヌクレアーゼ(ZFN)
位置特異的ヌクレアーゼはZFNであり得る。単一ジンクフィンガーは約30アミノ酸を含み、該ドメインは、塩基対毎に一アミノ酸側鎖の相互作用を介してDNAの3つの連続する塩基対と結合することによって機能する。ジンクフィンガーモチーフのモジュール構造はいくつかのドメインの一連の結合を許容し、3ヌクレオチドの倍数の延長配列の認識及びターゲティングを可能にする。これらの標的誘導DNA結合ドメインをヌクレアーゼドメイン(例えばFokI)と一緒にして、位置特異的ヌクレアーゼを生成できる。前記は“ジンクフィンガーヌクレアーゼ”(ZFN)と称され、これを用いて標的誘導されたゲノム遺伝子座に位置特異的二本鎖切断を導入することができる。このDNA切断は天然のDNA修繕機構を刺激し、2つの可能な修繕経路(NHEJ及びHDR)の一方をもたらす。例えば、ZFNは、Rosa26遺伝子座(Perez-Pinera et al. Nucleic Acids Research (2012) 40:3741-3752)又はジストロフィン遺伝子を標的とすることができる。ZFNの例は表1及び図35-38に示される。表1では、DNA認識へリックスは下線が付され、“Fok ELD-S”及び“Fok KKR-S”はFokIヌクレアーゼドメインを指す(前記はジンクフィンガータンパク質DNA結合ドメインと融合される)。図35-38では、標的部位(すなわち配列番号:442、445、448及び453)内の標的DNA配列及びZFNアミノ酸配列(すなわち配列番号:443、444、446、447、449-452及び455)内のDNA認識ヘリックスはそれぞれ下線が付されている。
7.転写アクチベーター
上記記載の組成物は、標的遺伝子を活性化する転写アクチベーターをコードするヌクレオチド配列を含む。転写アクチベーターは操作することができる。例えば、操作された転写アクチベーターはCRISPR/Cas9依拠システム、ジンクフィンガー融合タンパク質、又はTALE融合タンパク質であり得る。
a.CRISPR/Cas9依拠システム
上記に記載のCRISPR/Cas9依拠システムを用いて、RNAとともに標的遺伝子の転写を活性化できる。CRISPR/Cas9依拠システムは上記記載の融合タンパク質を含むことができ、ここで第二のポリペプチドドメインは転写活性化活性又はヒストン改変活性を有する。例えば、第二のポリペプチドドメインはVP-64又はp300を含むことができる。
b.ジンクフィンガー融合タンパク質
転写アクチベーターはジンクフィンガー融合タンパク質であり得る。上記記載のジンクフィンガーの標的誘導DNA結合ドメインは、転写活性化活性又はヒストン改変活性を有するドメインと一緒にできる。例えば、該ドメインはVP64又はp300を含むことができる。
c.TALE融合タンパク質
TALE融合タンパク質を用いて標的遺伝子の転写を活性化できる。TALE融合タンパク質は、TALE DNA結合ドメイン及び転写活性化活性又はヒストン改変活性を有するドメインを含むことができる。例えば、該ドメインはVP64又はp300を含むことができる。
8.組成物
本発明は、遺伝子発現の変更及び細胞若しくは対象動物のゲノムDNAの操作又は変更のための組成物を目的とする。該組成物はまたウイルスデリバリーシステムを含むことができる。
a.筋肉におけるゲノム編集のための組成物
本発明は、対象動物の骨格筋又は心筋で標的遺伝子をゲノム編集する組成物を目的とする。該組成物は、改変されたAAVベクター及び位置特異的ヌクレアーゼをコードするヌクレオチド配列を含む。組成物は骨格筋又は心筋に位置特異的ヌクレアーゼの活性形をデリバーする。組成物はさらにドナーDNA又はトランスジーンを含むことができる。これらの組成物は、ゲノム編集、ゲノム操作、及び遺伝子疾患及び/又は他の骨格筋若しくは心筋の症状に関与する遺伝子の変異の作用の修正又は軽減で用いることができる。
標的遺伝子は、細胞の分化又は任意の他のプロセス(前記プロセスでは遺伝子の活性化抑制又は破壊が所望される)に関与し得るか、又は変異(例えば欠失、フレームシフト変異又はナンセンス変異)を有し得る。標的遺伝子が、未成熟終止コドン、異常なスプライスアクセプター部位又は異常なスプライスドナー部位を有する場合、該位置特異的ヌクレアーゼは、該未成熟終止コドン、異常なスプライスアクセプター部位又は異常なスプライスドナー部位から上流又は下流のヌクレオチド配列を認識してこれと結合するように設計され得る。また位置特異的ヌクレアーゼを用いて、スプライスアクセプター及びドナーを狙い撃ちして未成熟終止コドンのスキッピングを導入するか、又は破壊されたリーディングフレームを回復させることによって正常な遺伝子スプライシングを破壊することができる。位置特異的ヌクレアーゼは、オフターゲット変化をゲノムのタンパク質コード領域に媒介することもしないこともある。
b.アデノ随伴ウイルスベクター
上記に記載の組成物は改変されたアデノ随伴ウイルス(AAV)ベクターを含む。改変AAVベクターは強化された心筋及び骨格筋向性を有することができる。改変AAVベクターは哺乳動物細胞に位置特異的ヌクレアーゼをデリバーし、これを発現することができる。例えば、改変AAVベクターはAAV-SASTGベクターであり得る(Piacentino et al. (2012) Human Gene Therapy 23:635-646)。改変AAVベクターは骨格筋及び心筋にヌクレアーゼをin vivoでデリバーできる。改変AAVベクターは、いくつかのキャプシド(AAV1、AAV2、AAV5、AAV6、AAV8及びAAV9を含む)の1つ以上を土台にすることができる。改変AAVベクターは、また別の筋向性AAVキャプシドを含むAAV2シュードタイプを土台にできる。前記は例えばAAV2/1、AAV2/6、AAV2/7、AAV2/8、AAV2/9、AAV2.5及びAAV/SASTGベクターであり、全身的デリバリー又は局所的デリバリーによって骨格筋又は心筋に効率的に形質導入する(Seto et al. Current Gene Therapy (2012) 12:139-151)。
c.CRISPR/Cas9依拠システム
本開示はまた、上記に記載の少なくとも1つのCRISPR/Cas9依拠システムのDNAターゲティングシステム又は組成物を提供する。これらの組成物は、ゲノム編集、ゲノム操作、及び遺伝子疾患に関与する遺伝子の変異の作用の修正又は軽減で用いることができる。該組成物はCRISPR/Cas9依拠システムを含み、前記システムは、上記に記載のCas9タンパク質又はCas9融合タンパク質を含む。CRISPR/Cas9依拠システムはまた上記に記載の少なくとも1つのgRNAを含むことができる。
d.複合CRISPR/Cas9依拠システム
本開示はまた上記に記載の複合CRISPR/Cas9依拠システムを提供する。これらの組成物は、ゲノム編集、ゲノム操作、及び遺伝子疾患に関与する遺伝子の変異の作用の修正又は軽減で用いることができる。2つ以上の遺伝子を標的とするためにこれらの組成物を用いることができる。該組成物は改変レンチウイルスベクターを含み、前記ベクターは、上記に記載のCas9タンパク質又はCas9融合タンパク質を含むCRISPR/Cas9依拠システム、及び上記に記載の2つ以上のgRNAを含む。
11.CRISPR/Cas9依拠システムを使用する方法
CRISPR/Cas9依拠システムの可能な応用は科学及び生物工学の多くの領域にわたって広がっている。開示されたCRISPR/Cas9依拠システムを用いて、哺乳動物の遺伝子発現を調整することができる。開示のCRISPR/Cas9依拠システムを用いて、細胞をトランス分化させるか若しくは分化を導入するか、又は細胞で変異遺伝子を修正することができる。細胞及び遺伝子治療に関連する遺伝子の活性化、遺伝的再プログラミング並びに再生医療の例が提供される。RNAによってガイドされる転写アクチベーターを用いて、細胞系列の細目を再プログラムすることができる。これらの実験では再プログラミングは不完全で非効率的であったが、この方法を改善し得る多くの方法が存在する。前記にはiCas9-VP64/gRNA組合せ物の反復トランスフェクション、前記因子の安定的な発現、及びニューロン表現型へのトランス分化のためにAscl1に加えて多種多様な遺伝子(例えばBrn2及びMytl1)の標的誘導が含まれる。細胞の運命に関する重要な調節因子をコードする内因性遺伝子の活性化は、これら因子の強制的な過剰発現よりはむしろ、遺伝的再プログラミング及び細胞のトランス分化又は誘導分化のためにより迅速、効率的、安定的又は特異的な方法を潜在的にもたらし得る。最後に、Cas9と他のドメイン(抑制的及び後成的改変ドメインを含む)との融合は、RNAによってガイドされる転写調節因子のはるかに大きな多様性を提供し、哺乳動物細胞操作のための他のRNA系ツールを補完し得よう。
a.遺伝子発現を活性化する方法
本開示は、内因性遺伝子(例えば哺乳動物遺伝子)の発現を活性化するメカニズムを提供する。前記メカニズムは、上記に記載のCRISPR/Cas9依拠システムを用いRNAを介して転写アクチベーターをプロモーターに標的誘導することによる。これは、以前に記載された配列特異的DNA結合タンパク質の操作による方法とは基本的に異なり、標的誘導遺伝子調節の機会を提供できる。gRNA 発現プラスミドの生成は単純に2つの短いカスタムオリゴヌクレオチドの合成及び一クローニング工程を必要とするので、多くの新規な遺伝子アクチベーターを迅速かつ経済的に生成することができる。gRNAはまたin vitro転写に続いて細胞に直接トランスフェクトすることができる。単一プロモーターに標的誘導される多種多様なgRNAを示したが、多種多様なプロモーターへの同時標的誘導もまた可能であり得よう。タンパク質ではなくRNAによるゲノム標的部位の認識はまた、後成的に改変される部位(例えばメチル化DNA)を標的とすることの限界を回避し得る。
DNA結合タンパク質の操作による従来の方法とは対照的に、転写活性化ドメインと融合させたCas9はガイドRNA分子と一緒にすることによって標的へ誘導され、内因性ヒト遺伝子の発現を誘導することができる。標的誘導遺伝子活性化のためのこの単刀直入的で万能性を有するアプローチは新規なタンパク質を操作する必要性を回避し、広範囲に分散する合成遺伝子の調節を可能にする。
本方法は、細胞又は対象動物に、上記記載のCRISPR/Cas9依拠システム、前記CRISPR/Cas9依拠システムをコードするポリヌクレオチド若しくはベクター、又は少なくとも1つのCRISPR/Cas9依拠システムを含むDNAターゲティングシステム若しくは組成物を投与する工程を含むことができる。前記方法は、CRISPR/Cas9依拠システムの投与、例えば転写活性化ドメインを含むCas9融合タンパク質又は前記Cas9融合タンパク質をコードするヌクレオチド配列の投与を含むことができる。Cas9融合タンパク質は、転写活性化ドメイン(例えばVP16タンパク質)又は転写コアクチベーター(例えばp300タンパク質)を含むことができる。
(3)gRNA
本方法はまた細胞又は対象動物にCRISPR/Cas9依拠システム少なくとも1つのgRNAを投与する工程を含み、ここで該gRNAは異なるDNA配列を標的とする。標的DNA配列はオーバーラップしていてもよい。細胞に投与されるgRNAの数は、少なくとも1つのgRNA、少なくとも2つの異なるgRNA、少なくとも3つの異なるgRNA、少なくとも4つの異なるgRNA、少なくとも5つの異なるgRNA、少なくとも6つの異なるgRNA、少なくとも7つの異なるgRNA、少なくとも8つの異なるgRNA、少なくとも9つの異なるgRNA、少なくとも10の異なるgRNA、少なくとも11の異なるgRNA、少なくとも12の異なるgRNA、少なくとも13の異なるgRNA、少なくとも14の異なるgRNA、少なくとも15の異なるgRNA、少なくとも16の異なるgRNA、少なくとも17の異なるgRNA、少なくとも18の異なるgRNA、少なくとも18の異なるgRNA、少なくとも20の異なるgRNA、少なくとも25の異なるgRNA、少なくとも30の異なるgRNA、少なくとも35の異なるgRNA、少なくとも40の異なるgRNA、少なくとも45の異なるgRNA、少なくとも50の異なるgRNAであり得る。細胞に投与されるgRNAの数は、少なくとも1つのgRNAから少なくとも50の異なるgRNA、少なくとも1つのgRNAから少なくとも45の異なるgRNA、少なくとも1つのgRNAから少なくとも40の異なるgRNA、少なくとも1つのgRNAから少なくとも35の異なるgRNA、少なくとも1つのgRNAから少なくとも30の異なるgRNA、少なくとも1つのgRNAから少なくとも25の異なるgRNA、少なくとも1つのgRNAから少なくとも20の異なるgRNA、少なくとも1つのgRNAから少なくとも16の異なるgRNA、少なくとも1つのgRNAから少なくとも12の異なるgRNA、少なくとも1つのgRNAから少なくとも8つの異なるgRNA、少なくとも1つのgRNAから少なくとも4つの異なるgRNA、少なくとも4つのgRNAから少なくとも50の異なるgRNA、少なくとも4つの異なるgRNAから少なくとも45の異なるgRNA、少なくとも4つの異なるgRNAから少なくとも40の異なるgRNA、少なくとも4つの異なるgRNAから少なくとも35の異なるgRNA、少なくとも4つの異なるgRNAから少なくとも30の異なるgRNA、少なくとも4つの異なるgRNAから少なくとも25の異なるgRNA、少なくとも4つの異なるgRNAから少なくとも20の異なるgRNA、少なくとも4つの異なるgRNAから少なくともの16の異なるgRNA、少なくとも4つの異なるgRNAから少なくとも12の異なるgRNA、少なくとも4つの異なるgRNAから少なくとも8つの異なるgRNA、少なくとも8つの異なるgRNAから少なくとも50の異なるgRNA、少なくとも8つの異なるgRNAから少なくとも45の異なるgRNA、少なくとも8つの異なるgRNAから少なくとも40の異なるgRNA、少なくとも8つの異なるgRNAから少なくとも35の異なるgRNA、少なくとも8つの異なるgRNAから少なくとも30の異なるgRNA、少なくとも8つの異なるgRNAから少なくとも25の異なるgRNA、8つの異なるgRNAから少なくとも20の異なるgRNA、少なくとも8つの異なるgRNAから少なくとも16の異なるgRNA、8つの異なるgRNAから少なくとも12の異なるgRNA、少なくとも8つの異なるgRNAから少なくとも8つの異なるgRNAであり得る。
gRNAは、標的DNA配列の相補性ポリヌクレオチド配列とその後に続くNGGを含むことができる。gRNAは、該相補性ポリヌクレオチド配列の5’末端に“G”を含むことができる。gRNAは、標的DNA配列の少なくとも10塩基対、少なくとも11塩基対、少なくとも12塩基対、少なくとも13塩基対、少なくとも14塩基対、少なくとも15塩基対、少なくとも16塩基対、少なくとも17塩基対、少なくとも18塩基対、少なくとも19塩基対、少なくとも20塩基対、少なくとも21塩基対、少なくとも22塩基対、少なくとも23塩基対、少なくとも24塩基対、少なくとも25塩基対、少なくとも30塩基対、少なくとも35塩基対の相補性ポリヌクレオチド配列とその後に続くNGGを含むことができる。gRNAは、標的遺伝子のプロモーター領域、エンハンサー領域又は転写領域の少なくとも1つを標的とすることができる。gRNAは、配列番号:5-40、65-144、492-515、540-563及び585-625の少なくとも1つの核酸配列を含むことができる。
b.遺伝子発現を抑制する方法
本開示は、内因性遺伝子(例えば哺乳動物遺伝子)の発現を抑制するメカニズムを提供する。前記メカニズムは、上記に記載のCRISPR/Cas9依拠システムを用いRNAを介してゲノム調節エレメント(例えば遠位エンハンサー)を標的誘導することによる。Cas9融合タンパク質は、転写リプレッサー(例えばKRABリプレッサー)を含むことができる。Cas9融合タンパク質はdCas9-KRABであり得る。dCas9-KRABは、ヘテロクロマチン形成因子を標的誘導遺伝子座に補充することによって、後成的な遺伝子調節にさらに影響を与えることができる。CRISPR/Cas9-KRABシステムを用いて遺伝子の転写を抑制できるが、また前記を用いてゲノム調節エレメントを標的とすることができる(前記調節エレメントには伝統的な抑制方法(例えばRNA干渉)ではこれまでアクセス不能であった)(図53B)。gRNAとともに遠位エンハンサーに標的誘導されるdCas9-KRABのデリバリーは、標的誘導エンハンサーによって調節される多種多様な遺伝子の発現を破壊することができる(図53C参照)。標的誘導されるエンハンサーは遺伝子の任意のエンハンサー(例えばHS2エンハンサー)であり得る。
a.トランス分化又は誘導分化の方法
本開示は、上記に記載のCRISPR/Cas9依拠システムを用いRNAを介して内因性遺伝子を活性化することによって、細胞をトランス分化させるか、又は細胞の分化を誘導するメカニズムを提供する。
(1)トランス分化
CRISPR/Cas9依拠システムを用いて細胞をトランス分化させることができる。トランス分化(系列の再プログラミング又は直接変換としてもまた知られている)は、細胞が1つの分化細胞タイプから別の細胞タイプへ中間の多能性状態又は始原細胞タイプを経ることなく変換するプロセスである。前記は化生の一タイプであり、前記は全ての細胞の運命の切換えを含み、幹細胞の相互転換が含まれる。細胞のトランス分化は、疾患のモデリング、薬剤の発見、遺伝子治療、及び再生医療で潜在的に有用である。上記記載のCRISPR/Cas9依拠システムを用いれば、内因性遺伝子(例えばBRN2、MYT1L、ASCL1、NANOG及び/又はMYOD1)の活性化はいくつかの細胞タイプ(例えば線維芽細胞、心筋細胞、肝細胞、軟骨細胞、間葉系始原細胞、造血幹細胞又は平滑筋細胞)のそれぞれニューロン性又は筋原性表現型へのトランス分化をもたらすことができる。
(2)誘導分化
CRISPR/Cas9依拠システムを用いて、細胞(例えば幹細胞、心筋細胞、肝細胞、軟骨細胞、間葉系始原細胞、造血幹細胞又は平滑筋細胞)の分化を誘導することができる。例えば、幹細胞(例えば胚性幹細胞又は多能性幹細胞)を誘導して、筋細胞又は血管内皮細胞に分化させる(すなわちニューロン性又は筋原性分化を誘導する)ことができる。
12.複合CRISPR/Cas9依拠システムの使用
複合CRISPR/Cas9依拠システムはsgRNA設計の平易さ及び低コストを利用し、さらにCRISPR/Cas9技術を用いて高処理効率のゲノム研究における進歩の促進に有用であり得る。例えば、本明細書に記載する単一レンチウイルスは、種々の細胞株(例えば本明細書に記載する初代線維芽細胞)でCas9及び多数のsgRNAの発現に有用である(図47)。複合CRISPR/Cas9依拠システムを上記に記載のCRISPR/Cas9依拠システムと同じ態様で用いることができる。
記載した転写活性化及びヌクレアーゼの機能性に加えて、このシステムは、多様な目的(ゲノム構造及び内因性遺伝子調節の経路の調査を含む)のために後成的改変を制御する他の新規なCas9系エフェクターの発現に有用であろう。内因性遺伝子調節は多種多様な酵素間での微妙な均衡を要するので、種々の機能性をもつ複合Cas9システムは、種々の調節シグナル間における複雑な相互作用の試験を可能にするであろう。本明細書に記載するベクターは、アプタマー改変sgRNA及び直交性Cas9適合と適合し、単一セットのsgRNAを用いる別個の遺伝子操作を可能にするはずである。
複合CRISPR/Cas9依拠システムを用いて、細胞で少なくとも1つの内因性遺伝子を活性化できる。本方法は細胞を改変レンチウイルスベクターと接触させる工程を含む。内因性遺伝子は一過性に活性化されるか、又は安定的に活性化され得る。内因性遺伝子は一過性に抑制されるか、又は安定的に抑制され得る。融合タンパク質はsgRNAと類似のレベルで発現され得る。融合タンパク質はsgRNAと比較して異なるレベルで発現され得る。細胞は初代ヒト細胞であり得る。
複合CRISPR/Cas9依拠システムは細胞の複合遺伝子編集の方法で用いることができる。本方法は、細胞を改変レンチウイルスベクターと接触させる工程を含む。複合遺伝子編集は変異遺伝子の修正又はトランスジーンの挿入を含むことができる。変異遺伝子の修正は、変異遺伝子の欠失、再整理、又は取替えを含むことができる。変異遺伝子の修正は、ヌクレアーゼ媒介非相同性末端接合又は相同性指向修繕を含むことができる。複合遺伝子編集は少なくとも1つの遺伝子の欠失又は修正を含むことができ、ここで該遺伝子は内因性正常遺伝子又は変異遺伝子である。複合遺伝子編集は少なくとも2つの遺伝子の欠失又は修正を含むことができる。例えば、少なくとも2つの遺伝子、少なくとも3つの遺伝子、少なくとも4つの遺伝子、少なくとも5つの遺伝子、少なくとも6つの遺伝子、少なくとも7つの遺伝子、少なくとも8つの遺伝子、少なくとも9つの遺伝子、少なくとも10の遺伝子を欠失させ又は修正することができる。
複合CRISPR/Cas9依拠システムは細胞で遺伝子発現を複合調整する方法で用いることができる。本方法は、細胞を改変レンチウイルスベクターと接触させる工程を含む。本方法は少なくとも1つの遺伝子の遺伝子発現レベルの調整を含むことができる。すくなくとも1つの標的遺伝子の遺伝子発現は、該少なくとも1つの標的遺伝子の遺伝子発現レベルが、前記少なくとも1つの標的遺伝子に対する正常遺伝子の発現レベルと比較して増加又は低下するとき調整される。遺伝子発現レベルはRNA又はタンパク質レベルである。
a.ヌクレアーゼ媒介非相同性末端接合
内因性変異遺伝子のタンパク質発現の回復は、無鋳型NHEJ媒介DNA修繕を介することができる。標的遺伝子のRNAを標的とする一過性の方法とは対照的に、一過性に発現される位置特異的ヌクレアーゼによるゲノム内の標的遺伝子リーディングフレームの修正は、各改変細胞及びその子孫の全てによる標的遺伝子発現の永久的回復をもたらすことができる。
ヌクレアーゼ媒介NHEJ遺伝子修正は変異した標的遺伝子を修正することができ、HDR経路を超えるいくつかの潜在的利点を提供する。例えば、NHEJはドナー鋳型を必要としない(ドナー鋳型は非特異的挿入による変異導入を生じ得る)。HDRとは対照的に、NHEJは全細胞周期で効率的に作動し、したがって周期内細胞及び有糸分裂後細胞(例えば筋線維)の両方で効率的に利用され得る。これは、終止コドンのオリゴヌクレオチド依拠エクソンスキッピング又は薬理学的に強制されるリードスルーに代わる強靭で永久的な遺伝子回復を提供し、さらに理論的には一薬剤治療と同じ数少ない工程を必要とし得よう。CRISPR/Cas9依拠システムを用いるNHEJ系遺伝子修正は、メガヌクレアーゼ及びジンクフィンガーヌクレアーゼを含む他の操作ヌクレアーゼと同様に、細胞及び遺伝子系治療のための他の既存のex vivo及びin vivoプラットフォームを、本明細書に記載のプラスミドエレクトロポレーションアプローチに加えて一緒に用いることができる。例えば、mRNA系遺伝子移転によるか又は精製細胞透過性タンパク質としてのCRISPR/Cas9依拠システムのデリバリーは、挿入による変位導入の可能性を一切回避する無DNAゲノム編集アプローチを可能にし得よう。
c.CRISPR/Cas9を用いて変異遺伝子を修正し対象動物を治療する方法
本開示はまた、修繕鋳型又はドナーDNA(前記は完全な遺伝子又は変異を含む領域を取替えることができる)を用いて、完全に機能的な又は部分的に機能的なタンパク質の発現を回復させるためにCRISPR/Cas9依拠システムを用いるゲノム編集を目的とする。CRISPR/Cas9依拠システムを用いて、標的のゲノム遺伝子座に位置特異的二本鎖切断を導入することができる。位置特異的二本鎖切断は、CRISPR/Cas9依拠システムがgRNAを用いて標的DNA配列と結合しそれによって標的DNAの切断を許容するときに生じる。CRISPR/Cas9依拠システムは、首尾の良い効率的なそれらの高率の遺伝子改変により進歩的なゲノム編集の利点を有する。このDNA切断は天然のDNA修繕機構を刺激し、2つの可能な修繕経路(相同性指向修繕(HDR)又は非相同性末端接合(NHEJ)経路)の一方をもたらす。例えば、ジストロフィン遺伝子に誘導されるCRISPR/Cas9依拠システムは、配列番号:65-115のいずれか1つの核酸配列を有するgRNAを含むことができる。
本開示は、修繕鋳型を用いないCRISPR/Cas9依拠システムによるゲノム編集を目的とし、前記は、リーディングフレームを効率的に修正し、遺伝子疾患に関与する機能的タンパク質の発現を回復することができる。開示されたCRISPR/Cas9依拠システム及び方法は、相同性指向修繕又はヌクレアーゼ媒介非相同性末端接合(NHEJ)系修正アプローチを用いる工程を含むことができる(前記は、相同性組換え又は選別依拠遺伝子修正になじみにくい増殖制限初代細胞株での効率的な修正を可能にする)。本対処方法は、活性なCRISPR/Cas9依拠システムの迅速で強靭なアッセンブリーを、非本質的コード領域の変異(フレームシフト、未成熟な終止コドン、異常なスプライスドナー部位又は異常なスプライスアクセプター部位を生じる)によって生じる遺伝子疾患の治療のための効率的遺伝子編集と統合する。
本開示は、細胞で変異遺伝子を修正して遺伝子疾患(例えばDMD)を罹患する患者を治療する方法を提供する。本方法は、上記に記載のCRISPR/Cas9依拠システム、前記CRISPR/Cas9依拠システムをコードするポリヌクレオチド若しくはベクター、又は前記CRISPR/Cas9依拠システムの組成物を細胞又は対象動物に投与する工程を含む。本方法は、CRISPR/Cas9依拠システムを投与する工程、例えばCas9タンパク質又はヌクレアーゼ活性を有する第二のドメインを含むCas9融合タンパク質、前記Cas9タンパク質又はCas9融合タンパク質をコードするヌクレオチド、及び/又は少なくとも1つのgRNA(gRNAは異なるDNA配列を標的とする)を投与する工程を含むことができる。標的DNA配列はオーバーラップしてもよい。細胞に投与されるgRNAの数は、上記に記載された、少なくとも1つのgRNA、少なくとも2つの異なるgRNA、少なくとも3つの異なるgRNA、少なくとも4つの異なるgRNA、少なくとも5つの異なるgRNA、少なくとも6つの異なるgRNA、少なくとも7つの異なるgRNA、少なくとも8つの異なるgRNA、少なくとも9つの異なるgRNA、少なくとも10の異なるgRNA、少なくとも15の異なるgRNA、少なくとも20の異なるgRNA、少なくとも30の異なるgRNA、又は少なくとも50の異なるgRNAであり得る。gRNAは配列番号:65-115の少なくとも1つの核酸配列を含むことができる。本方法は、相同性指向修繕又は非相同性末端接合を含むことができる。
15.構築物及びプラスミド
上記に記載の組成物は、上記に記載のCRISPR/Cas9依拠システムをコードする遺伝子構築物を含むことができる。該遺伝子構築物(例えばプラスミド)は、CRISPR/Cas9依拠システム、例えばCas9タンパク質及びCas9融合タンパク質をコードする核酸、及び/又は少なくとも1つのgRNAを含むことができる。上記に記載の組成物は、改変AAVをコードする遺伝子構築物、及び上記に記載の位置特異的ヌクレアーゼをコードする核酸配列を含むことができる。該遺伝子構築物、例えばプラスミドは位置特異的ヌクレアーゼをコードする核酸を含むことができる。上記に記載の組成物は、本明細書に記載の改変レンチウイルスベクターをコードする遺伝子構築物を含むことができる。該遺伝子構築物、例えばプラスミドは、Cas9融合タンパク質をコードする核酸及び少なくとも1つのsgRNAを含むことができる。遺伝子構築物は機能性染色体外分子として細胞内に存在し得る。遺伝子構築物は、セントロメア、テロメアを含む線状ミニ染色体又はプラスミド若しくはコスミドであり得る。
遺伝子構築物はまた、組換えウイルスベクター(組換えレンチウイルス、組換えアデノウイルス、及び組換えアデノウイルス随伴ウイルスを含む)のゲノムの一部分であり得る。遺伝子構築物は、弱毒生微生物の遺伝物質の部分又は細胞内で生存している組換え微生物ベクターであり得る。遺伝子構築物は、該核酸のコード配列の遺伝子発現のための調節エレメントを含むことができる。調節エレメントはプロモーター、エンハンサー、開始コドン、終止コドン、又はポリアデニル化シグナルであり得る。
核酸配列は、ベクターであり得る遺伝子構築物を形成することができる。ベクターは、融合タンパク質、例えばCas9融合タンパク質又は位置特異的ヌクレアーゼを発現する能力を有し得る。ベクターは組換え体であり得る。ベクターは、融合タンパク質、例えばCas9融合タンパク質又は位置特異的ヌクレアーゼをコードする異種核酸を含むことができる。ベクターは、Cas9融合タンパク質又は位置特異的ヌクレアーゼをコードする核酸を細胞にトランスフェクトするために有用で、ここで形質転換宿主細胞は、Cas9融合タンパク質又は位置特異的ヌクレアーゼシステムの発現が生じる条件下で培養及び維持される。
コード配列は、安定性及び高レベル発現のために最適化され得る。いくつかの事例では、RNAの二次構造形成(例えば分子内結合のために形成される)を軽減するようにコドンが選択される。
ベクターはCRISPR/Cas9依拠システム又は位置特異的ヌクレアーゼをコードする異種核酸を含むことができ、さらにまた開始コドンを含むことができる(前記はCRISPR/Cas9依拠システム又は位置特異的ヌクレアーゼコード配列の下流に存在し得る)。開始及び終止コドンは、CRISPR/Cas9依拠システム又は位置特異的ヌクレアーゼコード配列とともにインフレームで存在し得る。ベクターはまた、CRISPR/Cas9依拠システム又は位置特異的ヌクレアーゼコード配列に作動可能に連結されるプロモーターを含むことができる。CRISPR/Cas9依拠システム又は位置特異的ヌクレアーゼコード配列に作動可能に連結されるプロモーターは、シミアンウイルス40(SV40)由来プロモーター、マウス乳がんウイルス(MMTV)プロモーター、ヒト免疫不全ウイルス(HIV)プロモーター、例えばウシ免疫不全ウイルス(BIV)ロングターミナルリピート(LTR)プロモーター、モロニーウイルスプロモーター、トリ白血病ウイルス(ALV)プロモーター、サイトメガロウイルス(CMV)プロモーター(例えばCMV最初期プロモーター)、エプスタイン-バーウイルス(EBV)プロモーター、又はラウス肉腫ウイルス(RSV)プロモーターであり得る。プロモーターはまた、ヒト遺伝子(例えばヒトユビキチンC(hUbC)、ヒトアクチン、ヒトミオシン、ヒトヘモグロビン、ヒト筋肉クレアチン、又はヒトメタロチオネイン)由来プロモーターでもよい。プロモーターはまた、組織特異的プロモーター、例えば筋肉若しくは皮膚特異的プロモーター、天然又は合成であり得る。そのようなプロモーターの例は米国特許出願公開広報No.US20040175727(前記文献は参照によりその全体が本明細書に含まれる)に記載されている。
ベクターはまたポリアデニル化シグナルを含むことができ、前記はCRISPR/Cas9依拠システム又は位置特異的ヌクレオチドの下流に存在し得る。ポリアデニル化シグナルは、SV40ポリアデニル化シグナル、LTRポリアデニル化シグナル、ウシ成長ホルモン(bGH)ポリアデニル化シグナル、ヒト成長ホルモン(hGH)ポリアデニル化シグナル、又はヒトβ-グロビンポリアデニル化シグナルであり得る。SV40ポリアデニル化シグナルはpCEP4ベクター(Invitrogen, San Diego, CA)由来のポリアデニル化シグナルであり得る。
ベクターはまた、CRISPR/Cas9依拠システム、すなわちCas9タンパク質又はCas9融合タンパク質又はsgRNA、又は位置特異的ヌクレアーゼの上流にエンハンサーを含むことができる。エンハンサーはDNA発現に必要であり得る。エンハンサーは、ヒトアクチン、ヒトミオシン、ヒトヘモグロビン、ヒト筋肉クレアチン又はウイルスエンハンサー(例えばCMV、HA、RSV又はEBV由来のエンハンサー)であり得る。ポリヌクレオチド機能エンハンサーは米国特許5,593,972号、5,962,428号及びWO94/016737に記載されている(各々の内容は参照により本明細書に含まれる)。ベクターはまた、染色体外にベクターを維持するために、及び細胞内でベクターの多数のコピーを生成するために哺乳動物の複製起点を含むことができる。ベクターはまた調節配列を含むことができ、前記配列は、ベクターが投与される哺乳動物細胞又はヒト細胞での遺伝子発現に良好に適合され得る。ベクターはまた、レポーター遺伝子(例えば緑色蛍光タンパク質(“GFP”))及び/又は選別可能マーカー(例えばヒグロマイシン(“Hygro”))を含むことができる。
ベクターは、日常的な技術及び容易に入手できる出発材料によるタンパク質製造のための発現ベクター又は発現系であり得る(前記は以下の文献に含まれる:Sambrook et al., Molecular Cloning and Laboratory Manual, Second Ed., Cold Spring Harbor, 1989(前記文献は参照によりその全体が本明細書に含まれる))。いくつかの実施態様では、ベクターはCRISPR/Cas9依拠システムをコードする核酸配列(Cas9タンパク質又はCas9融合タンパク質をコードする核酸配列を含む)、及び配列番号:5-40、65-144、492-515、540-563及び585-625の少なくとも1つの核酸配列を含む少なくとも1つのgRNAをコードする核酸配列を含むことができる。
16.医薬組成物
組成物は医薬組成物であり得る。医薬組成物は、CRISPR/Cas9依拠システム又はCRISPR/Cas9依拠システムタンパク質成分(すなわちCas9タンパク質又はCas9融合タンパク質)をコードするDNAの約1ngから約10mgを含むことができる。医薬組成物は、改変AAVベクターのDNA及び位置特異的ヌクレアーゼをコードするヌクレオチドの約1ngから約10mgを含むことができる。医薬組成物は、改変レンチウイルスベクターのDNAの約1ngから約10mgを含むことができる。本発明の医薬組成物は、用いられる投与態様にしたがって処方される。医薬組成物が注射可能な医薬組成物である場合には、それらは、無菌的で発熱因子フリー、及び粒状物フリーである。好ましくは等張性処方物が用いられる。一般的は、等張性のための添加物には塩化ナトリウム、デキストロース、マンニトール、ソルビトール及びラクトースが含まれる。いくつかの事例では、等張性溶液(例えばリン酸緩衝食塩水)が好まれる。安定化剤にはゼラチン及びアルブミンが含まれる。いくつかの実施態様では、血管収縮剤が処方物に転嫁される。
17.デリバリーの方法
本明細書で提供されるものは、遺伝子構築物を提供するための医薬処方物(好ましくは上記記載の組成物)をデリバリーする方法である。組成物のデリバリーは、細胞で発現され当該細胞の表面にデリバーされる核酸分子としての組成物のトランスフェクション又はエレクトロポレーションであり得る。該核酸分子は、バイオラドジーンパルサーXセル(BioRad Gene Pulser Xcell)又はアマクサヌクレオフェクターIIb(Amaxa Nucleofector IIb)装置を用いてエレクトロポレートすることができる。以下を含むいくつかの異なる緩衝液を用いることができる:バイオラドエレクトロポレーション溶液、シグマリン酸緩衝食塩水製品番号#D8537(PBS)、インビトロゲンオプチMEM(Invitrogen OptiMEM I)(OM)、又はアマクサヌクレオフェクター溶液V(N.V.)。トランスフェクションはトランスフェクション試薬(例えばリポフェクタミン(Lipofectamine)2000)を含むことができる。
組成物の組織へのさらにその後の哺乳動物細胞へのベクターのデリバリーに際して、トランスフェクトされた細胞は、融合タンパク質、例えばCRISPR/Cas9依拠システム及び/又は位置特異的ヌクレアーゼを発現するであろう。組成物を哺乳動物に投与して、遺伝子発現を変更するか、又はゲノムを再操作若しくは変更することができる。例えば、組成物を哺乳動物に投与して、哺乳動物でジストロフィン遺伝子を修正することができる。哺乳動物は、ヒト、非ヒト霊長類、乳牛、ブタ、ヒツジ、ヤギ、アンテロープ、バイソン、水牛、ウシ属の動物、シカ、ハリネズミ、ゾウ、ラマ、アルパカ、マウス、ラット、又はニワトリであり得る。哺乳動物は好ましくはヒト、乳牛、ブタ、又はニワトリであり得る。
a.CRISPR/Cas9依拠システム
CRISPR/Cas9依拠システムタンパク質成分(すなわちCas9タンパク質又はCas9融合タンパク質)をコードするベクターは、DNA注射(DNAワクチン免疫とも称される)によって哺乳動物にデリバーすることができ、前記は、in vivoエレクトロポレーション、リポソーム媒介、ナノ粒子支援、及び/又は組換えベクターを利用する場合もしない場合もある。組換えベクターは任意のウイルス系態様によってデリバーできる。ウイルス系態様は組換えレンチウイルス、組換えアデノウイルス、及び/又は組換えアデノ随伴ウイルスであり得る。
CRISPR/Cas9依拠システムタンパク質成分(すなわちCas9タンパク質又はCas9融合タンパク質)をコードするヌクレオチドを細胞に導入して、標的遺伝子を遺伝的に修正するか、又は遺伝子の遺伝子発現を変更する(例えば内因性遺伝子を活性化又は抑制する)ことができる。例えば、gRNAによって変異ジストロフィン遺伝子へ誘導される、CRISPR/Cas9依拠システムタンパク質成分(すなわちCas9タンパク質又はCas9融合タンパク質)をコードするヌクレオチドをDMD患者の筋芽細胞に導入できる。また別には、それらをDMD患者の線維芽細胞に導入し、遺伝的に修正された線維芽細胞をMyoDで処理して筋芽細胞への分化を誘導することができる(前記を対象動物(例えば対象動物の損傷筋肉)に移植して修正ジストロフィンタンパク質が機能的であることを立証するか、及び/又は対象動物を治療することができる)。改変される細胞は、幹細胞(例えば人工多能性幹細胞)、骨髄由来始原細胞、骨格筋始原細胞、DMD患者のヒト骨格筋筋芽細胞、CD133+細胞、メゾアンギオブラスト、及びMyoD-又はPax7-形質導入細胞、又は他の筋原性始原細胞でもよい。例えば、CRISPR/Cas9依拠システムは、人工多能性細胞のニューロン分化又は筋原性分化を惹起することができる。
20.キット
本明細書で提供されるものはキットであり、前記を用いて骨格筋又は心筋でゲノムを編集(例えば変異遺伝子を修正)することができる。キットは、上記に記載の骨格筋又は心筋でゲノム編集する組成物、及び前記組成物を使用する指示を含む。キットに含まれる指示は包装材料に添付さるか、又はパッケージ挿入物として含まれ得る。指示は典型的にはタイプ打ち又は印刷物であるが、ただしそのようなものに限定されない。本開示では、そのような指示を保存でき、さらに末端ユーザーにそれら指示を伝えることができる任意の媒体が意図される。そのような媒体には、電子保存媒体(例えば磁気ディスク、テープ、カートリッジ、チップ)、光学媒体(例えばCD ROM)などが含まれるが、ただし前記に限定されない。本明細書で用いられる“指示”という用語は当該指示を提供する対象サイトのアドレスを含むことができる。
骨格筋又は心筋でゲノム編集する組成物は、上記に記載の改変AAVベクター及び位置特異的ヌクレアーゼをコードするヌクレオチド配列を含むことができる。該位置特異的ヌクレアーゼは、上記記載のZFN、TALEN又はCRISPR/Cas9依拠システムを含むことができ、前記は特異的に変異遺伝子に結合しこれを切断する。上記に記載の位置特異的ヌクレアーゼは該キットに含まれ、変異遺伝子の特定の領域に特異的に結合しこれを標的とすることができる。位置特異的ヌクレアーゼは、上記に記載の変異ジストロフィン遺伝子に特異的であり得る。キットはさらに、上記に記載のドナーDNA、gRNA又はトランスジーンを含むことができる。
a.CRISPR/Cas9依拠システム
本明細書で提供されるものはキットであり、前記を用いて変異遺伝子を修正することができる。キットは、変異遺伝子を修正する少なくとも1つの成分、及びCRISPR/Cas9依拠システムを使用する指示を含む。キットに含まれる指示は包装材料に添付さるか、又はパッケージ挿入物として含まれ得る。指示は典型的にはタイプ打ち又は印刷物であるが、ただしそのようなものに限定されない。本開示では、そのような指示を保存でき、さらに末端ユーザーにそれら指示を伝えることができる任意の媒体が意図される。そのような媒体には、電子保存媒体(例えば磁気ディスク、テープ、カートリッジ、チップ)、光学媒体(例えばCD ROM)などが含まれるが、ただし前記に限定されない。本明細書で用いられる“指示”という用語は当該指示を提供する対象サイトのアドレスを含むことができる。
少なくとも1つの成分は上記に記載の少なくとも1つのCRISPR/Cas9依拠システムを含むことができ、前記は遺伝子を特異的に標的とする。キットは、Cas9タンパク質又はCas9融合タンパク質、前記Cas9又はCas9融合タンパク質をコードするヌクレオチド配列、及び/又は少なくとも1つのgRNAを含むことができる。上記に記載のCRISPR/Cas9依拠システムは該キットに含まれ、標的遺伝子のコード領域の上流、その中又は下流の特定の標的領域を標的とすることができる。例えば、CRISPR/Cas9依拠システムは標的遺伝子のプロモーター領域に特異的であり得るか、又はCRISPR/Cas9依拠システムは変異遺伝子(例えば上記に記載の変異ジストロフィン遺伝子)に特異的であり得る。キットは上記に記載のドナーDNAを含むことができる。
[実施例2]
結果
CRISPR/Cas9依拠転写活性化システムを作製するために、Cas9(D10A,H840A)の触媒性残基を変異させてiCas9を生成し、さらにC-末端VP64酸性トランス活性化ドメインと融合させた(図1a、b)。N-末端Flagエピトープタグのウェスタンブロットによって、活発なiCas9-VP64の発現がヒト胚腎(HEK)293T細胞でトランスフェクトされたプラスミドから観察された(図3)。CRISPRシステムは、gRNA中の20bp配列と相補性DNA標的との塩基対形成によりその標的を認識する(前記相補性DNA標的の後にはNGGプロトスペーサー隣接モチーフ(PAM)配列が続き、ここでNは任意の塩基対である)。内因性ヒトプロモーターに標的誘導される合成転写因子の組合せは相乗的で活発な遺伝子発現の活性化をもたらす。したがって、NGG PAM配列がその後に続く4つのgRNAが、転写開始部位の500bp以内でIL1RN遺伝子のプロモーターで同定された(図4、表2)。crRNA-及びgRNA-依拠ターゲティング方法を比較するために、4つの標的部位配列をcrRNA及びgRNA発現プラスミド17に導入し、iCas9-VP64発現プラスミドとともにHEK293T細胞にトランスフェクトした。実質的なIL1RN発現誘導はcrRNA組合せ処理サンプルのqRT-PCRでは観察されなかったが、gRNA組合せでははるかに高いレベルが達成された(図1c)。gRNA及びVP64を含まないiCas9の発現プラスミドで処理された細胞では遺伝子発現の変化は観察されず、遺伝子発現調整における活性化ドメインの決定的役割を示した(図1c)。これらの標的部位におけるヌクレアーゼ活性はiCas9-VP64システムでは停止していることがサーベイヤーアッセイを実施することによって確認された(前記アッセイはiCas9-VP64及び野生型Cas9で処理されたサンプルでDNA修繕事象を検出する)(図5)。4つのgRNAの各々を個々に又は一緒にしてトランスフェクトすることによって、gRNA組合せ物によるプロモーター中の多種多様な部位への標的誘導は遺伝子発現の激しい増加を示した(図1d)。高レベルのIL1RN発現は、操作された転写因子の他のクラスで観察されたように、gRNA組合せ物がiCas9-VP64とともにコトランスフェクトされた時だけ観察された(図1d)。同様に、IL1RN遺伝子によってコードされるIL-1受容体アンタゴニスト(IL-1ra)タンパク質の生成は、3つの別個の実験を通してgRNA組合せ物で処理した6サンプルのうち3つで観察されただけであったが、単一のgRNA又はコントロールプラスミドで処理されたサンプルでは全く検出されなかった(図1e)。iCas9-VP64による遺伝子活性化の特異性を調べるために、RNA-seqにより4つのgRNAの組合せ物で処理したHEK293T細胞の包括的遺伝子発現を判定した(図1f)。注目すべきことには、コントロールに対して有意に発現が増加したただ1つの遺伝子(偽発見率は3x10-4以下)は、IL1RN遺伝子座から発現された4つのアイソフォームであり(図4)、高レベルの遺伝子活性化の特異性が示された。
このシステムの汎用性を示すために、医学及び生物工学に関係がある他の8つの遺伝子(ASCL1、NANOG、HBG1/2、MYOD1、VEGFA、TERT、IL1B及びIL1R2を含む)のプロモーターの各々を標的とするように、4つのgRNAを設計した(図4、表2)。ASCL1及びMYOD1の強制発現は、いくつかの細胞タイプからニューロン性及び筋原性表現型へのトランス分化をそれぞれもたらす。NANOGは多能性のマーカーであり、前記はまた遺伝的再プログラミング方法で用いられる。ホモローグHBG1及びHBG2(胎児発育期にγ-グロビンをコードする)の活性化は、鎌状細胞疾患におけるβ-グロビン変異に対する治療方法として用いることができる。合成転写因子によるVEGFAのアップレギュレーションは、組織再生及び創傷治癒を強化する方法として探求されてきた。テロメラーゼ(TERT遺伝子によってコードされる)の強制発現は、細胞株の不朽化に用いることができる。IL1Bは、炎症及び自己免疫を媒介するIL-1βサイトカインをコードす。IL-1βシグナリングは、IL-1ra又はおとり受容体(IL1R2によってコードされる)の発現によってブロックされ得る。これら遺伝子の各々の発現は、qRT-PCRによって決定されたように、iCas9-VP64及び4つのgRNAのための発現プラスミドのHEK293T細胞へのコトランスフェクションによって強化された(図2)。いくつかの事例では、単一gRNAの発現は遺伝子発現の誘導に十分であったが、全ての事例で、4つのgRNAのコトランスフェクションは相乗的作用をもたらした(図2a-d)。注目すべきことには、DNase-seqによって決定されるクロマチンへの近づきやすさは遺伝子活性化成功の予想因子ではなかった(図4)。iCas9-VP64及び4つのgRNA(HBG1を標的としそのうちの3つはHBG2も標的とする)をトランスフェクトした細胞でRNA-seqを実施した。これは、特異的で再現性のあるHBG1及びHBG2双方(RNA-seqでは区別できない)の発現増加を示したが、ただし統計的有意は低い総発現レベルのために得られなかった(図6)。iCas9-VP64及び4つのgRNAによる処理の後で、Ascl1及びγ-グロビンのタンパク質発現の増加がウェスタンブロットで検出され(図7)、qRT-PCRによって観察されるより高いmRNAレベル(図2)を裏付けた。Ascl1及びγ-グロビンタンパク質の低い基準線レベルは空ベクターコントロールで検出可能であった。iCas9-VP64による遺伝子標的の活性化は遺伝子ネットワーク及び細胞表現型における二次的変化をもたらし得るということの予備的証拠として、iCas9-VP64及びASCL1を標的とする4つのgRNAのための発現プラスミドをネズミ胚線維芽細胞(MEF)にコトランスフェクトした(図8)。MEFにおけるAscl1の強制発現は、ニューロン遺伝子ネットワーク(下流標的Tuj1を含む)を部分的に活性化することが示された。gRNA標的部位はヒト及びマウスASCL1プロモーターで保存されているので(図8a)、ASCL1発現の活性化はまたiCas9-VP64及び4つのgRNAをコードするプラスミドで処理されたMEFで観察された(図8b)。さらにまた、Ascl1及びニューロンマーカーTuj1を発現する細胞は、トランスフェクション後12日の免疫蛍光によってiCas9-VP64/gRNA処理サンプルで容易に検出された(図8c-h)。Tuj1陽性細胞はコントロールプラスミド処理細胞では観察されなかった。
[実施例3]
ジストロフィン遺伝子を標的とするCRISPR-材料と方法
プラスミド構築物:以前に記載したように(Perez-Pinera et al., Nat Methods 10:973-976, 2013)、化膿連鎖球菌sgRNA及びヒトコドン最適化Cas9(hCas9)ヌクレアーゼの発現カセットを用いた。CRISPR/Cas9改変細胞を濃縮する蛍光レポーター系を作製するために、ジーンブロック(GeneBlok:IDT)を合成し、続いてhCas9発現ベクターでクローニングした(前記ジーンブロックは、マルチクローニング部位のすぐ上流のT2Aスキッピングペプチドに融合されたCas9コード配列の3’末端の一部分を含んでいる)。続いてeGFPレポーター遺伝子をT2Aベクターでクローニングして、Cas9及びeGFPタンパク質を同じ発現ベクター(hCas9-T2A-GFP、配列番号:116)から一緒に翻訳させた。
細胞培養及びトランスフェクション:デューク細胞培養施設(Duke Cell Culture Facility)を介して米国組織細胞集積所(ATCC)からHEK293T細胞を入手し、10%仔ウシ血清及び1%ペニシリン/ストレプトマイシン補充DMEMで維持した。不朽化筋芽細胞(Mamchaoui, K. et al. Skelet Muscle 1, 1-11, 2011)(1つは野生型ドナー由来、2つはΔ48-50DMD患者由来株)は、下記を補充した骨格筋培養液(PromoCell)で維持した:20%仔ウシ血清(Sigma)、50μg/mLフェチュイン、10ng/mLヒト上皮成長因子(Sigma)、1ng/mLヒト基底膜線維芽細胞成長因子(Sigma)、10μg/mLヒトインスリン(Sigma)、1%GlutaMAX(Invitrogen)、及び1%ペニシリン/ストレプトマイシン(Invitrogen)。初代DMD皮膚線維芽細胞はコリエル細胞集積所(Coriell Cell repository)(GM05162A、Δ46-50)から入手し、10%ウシ胎児血清、1ng/mLヒト基底膜線維芽細胞成長因子、及び1%ペニシリン/ストレプトマイシンを補充したDMEMで維持した。全ての細胞株は37℃及び5%CO2で維持した。
リポフェクタミン2000(Invirogen)を用いて、24ウェルプレートのHEK293T細胞に400ngの各発現ベクターを製造業者のプロトコルにしたがってトランスフェクトした。不朽化筋芽細胞及び初代線維芽細胞には、Gene Pulser XCell(BioRad)を用いてエレクトロポレーションによって5μgの各発現ベクターをトランスフェクトし、各株について最適化条件を用いエレクトロポレーション緩衝液としてPBSを使用した(図1)(Ousterout et al. Mol Ther 21:1718-1726, 2013)。トランスフェクション効率は、eGFP発現プラスミド(pmaxGFP, Clontech)のデリバリー及びフローサイトメトリーの使用によって測定した。これらの効率は日常的にHEK293T細胞で95%以上、初代線維芽細胞及び不朽化筋芽細胞で70%以上であった。エレクトロポレートされたプラスミドの表示の質量は、各CRISPR/Cas9依拠システムについて用いられた量と一致する。
内因性遺伝子改変のCel-I定量(サーベイヤーアッセイ):内因性標的部位におけるCRISPR/Cas9依拠システム誘導損傷は、サーベイヤーヌクレアーゼアッセイ(Guschin, D.Y. et al. Meth Mol Biol 649, 247-256, 2010)によって定量した(前記アッセイはヌクレアーゼ媒介NHEJの変異の特徴を検出できる)。トランスフェクション後に、細胞を3から10日間37℃でインキュベートし、ゲノムDNAをDNeasy血液組織キット(Qiagen)により抽出した。標的遺伝子座をAccuPrime High Fidelity PCRキット(Invitrogen)で35サイクルのPCRによって増幅した。各遺伝子座に特異的なプライマー、例えば、5’-GAGTTTGGCTCAAATTGTTACTCTT-3’(配列番号:60)及び5’-GGGAAATGGTCTAGGAGAGTAAAGT-3’(配列番号:61)を用いた(表4参照)。
[実施例3]
ジストロフィ遺伝子を標的とするCRISPR-結果
ジストロフィン遺伝子を標的とするようにCRISPR/Cas9依拠システムを設計した。ヒト及びマウスジストロフィン遺伝子の種々の領域を標的とするように、NNNNN NNNNN NNNNN NNNNN NGG及びGNNNN NNNNN NNNNN NNNNN NGGを土台にして多様なgRNAを選択した(表6、7及び8参照)。
特に400ngのCas9をHEK293T細胞に、400ngの空ベクター又はgRNA(エクソン51を包含する領域(すなわちCR1、CR2、CR3、CR4及びCR5)を標的とする)とともにコトランスフェクトした(図11(b)参照)。トランスフェクションの2日後にゲノムDNAを採集し、サーベイヤーアッセイを用いて分析した(図11(a)及び図11(c)参照)。
CRISPR/Cas9依拠システムをDMD8036(del48-50)細胞で用いて、当該システムが変異ジストロフィン遺伝子を修繕できるか否かを決定した。5μgのCas9を7.5μgの空ベクター又はgRNAとともにDMD8036(del48-50)細胞にコトランスフェクトした。特に、7.5μgのCR1(“DCR1”)、7.5μgのCR5(“DCR5”)、15μgのCR3(“DCR3”)又は7.5μgのCR1及びCR5(DCR1+DCR5)の組合せを用いた。トランスフェクションの3日後にゲノムDNAを採集し、サーベイヤーアッセイ(図12)又は全遺伝子座にわたってPCR分析(図13)を用いて分析した。この遺伝子座をPCRによって増幅した。CR1及びCR5のためのゲノム標的を含む領域にフランキングするプライマー(フォワードプライマー:5’-gagaggttatgtggctttacca(配列番号:457)、リバースプライマー:5’-ctgcgtagtgccaaaacaaa(配列番号:458))を用い、野生型遺伝子座のために1447bpバンド、又は欠失遺伝子座のためにほぼ630bpの予想のサイズが得られた。分化7日後には、処理細胞のウェスタンブロットはジストロフィンタンパク質の発現を示す(図14参照)。
[実施例5]
ヒトジストロフィン遺伝子のホットスポットへのCRISPR/Cas9の標的誘導
広範囲のジストロフィン変異の修正にCRISPR/Cas9遺伝子編集プラットフォームを利用するために、エクソン45-55間のホットスポット変異領域に標的誘導される多数のsgRNAを作製した(図16)。ヒトコドン最適化SpCas9ヌクレアーゼ及び効率的な位置特異的遺伝子編集をガイドするキメラ単一ガイドRNA(gRNA)を利用する化膿連鎖球菌系を用いた。実施例4のTALENによるエクソン51への標的誘導と同様に、エクソン45から55の5’及び3’末端を標的とするためにプロトスペーサーが選択された(前記はSpCas9の5’-NRG-3’PAM要求を満たす)。これらのエクソン内におけるNHEJ系DNA修繕によって生じる小さな挿入又は欠失は、標的誘導されたフレームシフト変異を生じることができる(前記変異は各エクソン周囲の多様なジストロフィン変異に対応する)(図16A-16B)。例えば、CR3は、小さな挿入又は欠失をエクソン51の5'末端に導入して下流のジストロフィンリーディングフレームを回復させることによって、エクソン51周囲のジストロフィン変異又は欠失を修正するように設計された(図16B)。加えて、sgRNAは、オリゴヌクレオチドによるエクソンスキッピングの方法と同様に、CRISPR/Cas9システムの複合的性能を利用し、さらに個々のエクソン又は一連のエクソンを特異的に欠失させてジストロフィンリーディングフレームを修復した。この目的のために、sgRNAは、エクソン51(図16C)又はエクソン45-55(図16D)周囲のイントロン領域を標的とした。これらのsgRNAは、生成転写物に含まれることが意図される下流又は上流のエクソンに最も近い部位を意図的に標的とし、バックグラウンドの患者欠失がイントロンのsgRNA標的部位を含む確率を最小限に抑えた。
[実施例8]
標的誘導フレームシフトによるジストロフィン遺伝子の修復
NHEJ DNA修繕によって生じる小さな挿入及び欠失を用いて標的誘導されるフレームシフトを作出し、異常なリーディングフレームを修正することができる。sgRNA,CR3を設計して、エクソン51内に小さな挿入及び欠失を導入することによりジストロフィンのリーディングフレームを修正した(図16B、20A)。この遺伝子座でCRISPR/Cas9によって生成される挿入及び欠失のタイプは、SpCas9及びCR3 sgRNAのための発現プラスミドをコトランスフェクトしたHEK293T細胞のゲノムDNAに由来する対立遺伝子のサンガーシークェンシングによって判定した(図20B)。注目に値することには、挿入及び欠失は3つのリーディングフレーム全てに対する変換をもたらした(図20B、20C)。関連する患者細胞株における遺伝子修正を示すために、SpCas9及びCR3 sgRNAのための発現プラスミドをエクソン48-50の欠失を有するDMD筋芽細胞株にエレクトロポレートした(前記欠失はエクソン51でフレームシフトを生成することによって修正できる)。処理細胞を選別してサーベイヤーアッセイによって遺伝子改変活性を有することを立証し(CR3、図19C選別集団)、さらに筋管に分化させてジストロフィン発現修復について試験した。ジストロフィンタンパク質の発現は、検出可能なヌクレアーゼ活性に付随して観察された(図20D)。化膿連鎖球菌CRISPR/Cas9システムは、標的誘導フレームシフトを迅速に生成し、多様な患者変異に対応してヒトジストロフィン遺伝子の発現を修復する強力な方法を提供する。
[実施例9]
複合CRISPR/Cas9遺伝子編集はエクソン51の遺伝子欠失を媒介し、ジストロフィンタンパク質発現を回復させる
CRISPR/Cas9システムの複合的性能は、標的誘導修正のために固有のエクソンの遺伝子欠失を効率的に生成する新規な方法を提供する。エクソン51スキッピングによって修正できるバックグラウンド欠失を有するDMD患者筋芽細胞を、エクソン51とフランキングするsgRNAの2つの組合せ(CR1/CR5又はCR2/CR5)で処理し、図19のように遺伝子編集細胞を濃縮するために選別した。これらの処理細胞のゲノムDNAのエンドポイントPCRによって検出されたように、予想されるゲノム欠失は、SpCas9を有する細胞に両sgRNAがエレクトロポレートされたときにのみ存在した(図21A)。サンガーシークェンシングによって、両欠失について遠位染色体セグメントの予想される連結が確認された(図21B)。選別筋芽細胞を分化させた後、mRNA転写物からエクソン51の欠失は両sgRNAで処理した細胞でのみ検出された(図21C)。最後に、ジストロフィンタンパク質発現の修復は、エクソン51のゲノムレベル及びmRNAレベルの欠失の観察に付随して処理細胞で検出された(図21D)。
[実施例10]
マルチエクソン大ゲノム欠失によるジストロフィンの回復
患者に特異的な変異に対応することはCRISPR/Cas9システムの強力な用途であるが、多数のありふれた患者欠失に対応できる単一方法を開発することは有益であろう。例えば、有望な方法は、既知の患者欠失の62%までを修正する方法としてエクソン45-55の全領域の除去である。複合CRISPR/Cas9依拠遺伝子編集を試験して、前記がヒト細胞でエクソン45-55の効率的欠失を生じる能力を有し得るか否かを決定した。HEK239T細胞へのトランスフェクション後に、~336,000bpの予想される欠失がゲノムDNAのPCRによって検出された(図22A)。同様にこの欠失は、エクソン48-50の未知の長さのバックグラウンド欠失を保持するDMD患者のSpCas9/sgRNA処理細胞のゲノムDNAのPCRによって検出された(図22A)。処理DMD細胞のゲノムDNAに由来するこの欠失バンドのサンガーシークェンシングは、sgRNA標的部位の直ぐそばに隣接するイントロン44とイントロン55の予想される連結を明示した(図22B)。処理DMDの分化後に、エクソン45-55の予想される欠失がジストロフィンmRNA転写物で検出され、サンガーシークェンシングによるエクソン44と56の融合であることが立証された(図22C)。修復されたタンパク質発現が、選別細胞集団(CRISPR/Cas9に誘導されたゲノムからのエクソン45-55の欠失及びその結果のmRNA転写物を含む)でウェスタンブロットによって観察された(図22D)。これらのデータは、複合CRISPR/Cas9編集は、DMD患者の60%を超える変異でジストロフィンリーディングフレームを修復する汎用単一方法を提供することを示している。
[実施例12]
オフターゲット及び細胞傷害性活性
以前に記載されたように(Ousterout et al., Mol Ther 21:1718-1726, 2013)フローサイトメトリー依拠GFP保持アッセイを適用して、CRISPR/Cas9システムの相対的細胞傷害性を精選sgRNAのためにヒト細胞で判定した。最小限の細胞傷害性が、ヒト細胞のトランスフェクション後にsgRNAとともに又はsgRNA無しに発現されたSpCas9について観察された(図26A)。sgRNAプロトスペーサー配列内のあるミスマッチの予想される位置的偏り及び意図される標的部位とのミスマッチの総数を基準にしてオフターゲットにおける潜在的CRISPR/Cas9活性を判定し重要なものから順に並べるために公的に利用できるツールが利用可能である(Hsu et al., Nat Biotechnol 31:827-826, 2013)。この公的なウェブサーバーを用いて、本実験でジストロフィン遺伝子を修正するために用いられるsgRNAについてもっともありそうなオフターゲット部位を予想した(表4)。上位10のオフターゲット部位を、SPCas9及びCR1、CR3、CR5、CR6又はCR36のための個々のsgRNA発現カセットで処理したHEK293T細胞でサーベイヤーアッセイによって判定した。CR1、CR3及びCR36はこれら10の予想されるオフターゲット遺伝子座の1つを有し、前記は有意なレベルの遺伝子改変を示す(表4及び図27)。興味深いことに、CR3オフターゲット配列は、意図されるオンターゲットに対して実質的な相同性及び同様な改変頻度を有した(OT-1で9.3%に対して意図される部位で13.3%)(表4及び図27)。注目すべきことには、CR3-OT1は、これら3つのオフターゲットのうちサーベイヤーアッセイによって選別hDMD細胞で有意なレベルの活性を示すただ1つのものであった(図26B)。
オフターゲット部位におけるヌクレアーゼ活性は、切断される標的と別箇の染色体上のオフターゲット遺伝子座との間の遠位再連結によって、意図しない染色体再整理を引き起こし得る。これは、2つ以上のヌクレアーゼを用いることによる(例えば複合CRISPR/Cas9遺伝子編集で)潜在的オフターゲット活性の増加のために、欠失依拠遺伝子修正方法について重大な懸念を生じる。非常に鋭敏なネステッドゲノムPCRアッセイを用いるために潜在的転座を精査し、単一CRISPR/Cas9及び複合CRISPR/Cas9編集方法の両方法で、実証済みオフターゲット遺伝子座で転座を検出した。このアッセイを用いて、モデルHEK293T細胞株でオンターゲット及びオフターゲット部位間で転座が容易に検出された(前記はまた高レベルのオフターゲット活性を示す)(図26C及び図28A、28B)。PCRアンプリコンのサンガーシークェンシングによって、各プライマーペアについて予想される転座事象の同一性が確認された(図29-30)。HEK293T細胞で検出された転座サブセットはまた、選別hDMD筋芽細胞でネステッドPCRによって検出可能であったが、ただしシグナルは顕著に弱く、配列同一性は生成物収量が低いために確認されなかった(図26D及び図28A、28C)。転座は、それぞれCR6又はCR6/CR36で処理したHEK293T細胞又は選別hDMD細胞ではこのアッセイを用いたときは検出されず(図28)、前記は低レベルのオフターゲット活性をHEK293T細胞でのみCR6-OT3で有した(表4)。これらの結果は、(特に複合編集の適用のために)高度に特異的なsgRNAを選択することの重要性を強調し、このアプローチはCRISPR/Cas9システムの特異性の改善のために現在進行中の研鑽から利益を得ることができることを示している。これらのデータは、選択されたsgRNAは、有意な毒性を示すことなく、かつ検出可能レベルの活性をもつはっきりと予想されるただ1つのオフターゲット部位を有する、ジストロフィン遺伝子修正能力を有することを提唱している。
[実施例13]
考察
ゲノム編集は遺伝子疾患を修正する強力なツールであり、CRISPR/Cas9システムの最近の開発はこの分野で劇的な速度で進行している。DMD(現在のところ承認された治療選択肢がないもっともありふれた遺伝子疾患)の修正を提示した。DMDのための多くの遺伝子依拠及び細胞依拠治療が前臨床開発及び臨床試験の段階で、ゲノム編集方法はこれらのアプローチの多くと適合し得る。例えば、ゲノム編集は患者特異的DMD用細胞依拠治療方法と組み合わせることができる。CRISPR/Cas9システムは、ヒト多能性幹細胞及び他のヒト細胞株だけでなく、提示のようにヒト骨格筋の筋芽細胞で機能し得る。重要なことには、CRISPR/Cas9による遺伝子編集は、in vitro及び免疫不全マウスへの移植後のin vivoでの効率的なジストロフィン発現によって示されるように、これらの細胞の筋形成能力を停止させない。したがって、この対処方法はDMD用細胞依拠治療方法と適合するはずである。
加えて、遺伝子修正細胞の濃縮プールは、免疫不全マウスへの移植に続いてin vivoでヒトジストロフィン発現を示した。CRISPR/Cas9遺伝子編集は、安定的な遺伝子編集頻度及びいくつかのsgRNAの最小限の細胞傷害性によって観察されるようにヒト筋芽細胞で顕著に有害な作用を持たない。しかしながら、遺伝子編集活性は、5つのsgRNA全体で50の予想されるオフターゲット部位のうち3つで確認され、オンターゲット及びオフターゲット部位間のCRISPR/Cas9誘導染色体転座を検出し得た。CRISPR/Cas9技術は、ジストロフィン変異の顕著な部分を修正する効率的で万能の方法であり、遺伝子疾患治療のための汎用プラットフォームとして供することができる。
加えて、本明細書で用いられるプラスミド依拠デリバリー方法と対照的に、sgRNA及びCas9 mRNAの直接的トランスフェクションを用いて、Cas9発現持続時間を短縮することにより、及びランダムなプラスミド組込みの可能性を排除することにより特異性及び安全性を高めることができる。また別には、in vivoゲノム編集及びこのアプローチの翻案のために、ウイルス、プラスミド又はRNAデリバリーベクターによる骨格筋及び/又は心筋へのCRISPR/Cas9システムの直接デリバリーを用いることができる。化膿連鎖球菌Cas9遺伝子の大きなサイズ(~4.2キロベース)はサイズが限定されるアデノ随伴ウイルスベクターでの前記の使用に対し難問を提示する。しかしながら、他の種(例えば髄膜炎菌及びS.サーモフィルス(thermophilus))由来のCas9遺伝子は、in vivo遺伝子編集への応用でCas9及びsgRNA発現カセットの両方を一AAVベクターに効率的に梱包するために十分に短い。
CRISPR/Cas9システムは被験標的のほぼ90%の効率的な改変を可能にし、多様な遺伝子座におけるこのシステムの活発な活性に関する他の報告と一致する。この技術の強力さ及び万能性は患者に特異的な遺伝子編集の自由自在な実施に向けて極めて大きな進歩である。低レベルのジストロフィン(わずかに4%の野生型発現を含む)が、マウスモデルで生存率、運動機能及び心筋機能の改善に十分であり得る。このCRISPR/Cas9活性レベルは治療的利益として十分であり得る。
エクソンの欠失に複合CRISPR/Cas9を使用することはまた機会と挑戦の固有の組合せを提供する。単一ヌクレアーゼの作用に続くNHEJ系DNA修復によって生成される小さなインデルによるジストロフィン遺伝子のリーディングフレームの修復とは対照的に、ジストロフィン発現を修復するためにゲノムの完全なエクソンの欠失が実施された。編集された遺伝子のタンパク質生成物は予想することが可能であり、天然に存在する欠失を有するベッカー筋ジストロフィー患者では既に特徴が明らかであるが、対照的に、単一ヌクレアーゼのエクソン内での作用によって生じるランダムなインデルは、それぞれのDNA修復事象に由来する新規なエピトープの生成をもたらすであろう。さらにまた、エクソン欠失から生じる生成物は遺伝子編集の成功毎に修復されたジストロフィンをもたらし、一方、エクソン内のランダムなインデルによる遺伝子の改変は、正確なリーディングフレームをもたらす編集事象の1/3で当該リーディングフレームを修復するだけであろう。
試験したsgRNAの全てが、ヒト細胞で顕著な細胞傷害性作用を随伴するわけではなかった。使用した5つのsgRNAについて検査した50の全部位のうち3つの潜在的オフターゲット部位がジストロフィン発現を修復することが認定された。さらにまた。意図されたオンターゲット部位とこれらのオフターゲット部位間の染色体転座が、高レベルのCas9及びsgRNAを発現するHEK293T細胞で極めて感度が高いネステッドPCRアッセイによって検出可能であった。注目すべきことには、HEK293T細胞(不朽化され、非常に高レベルのCas9及びsgRNAを発現する異数性細胞株)で認定されたオフターゲット活性及び転座は高レベルでは発生せず、hDMD筋芽細胞のいくつかの事例では検出不能であった。重要なことには、この特異性レベルは、DMDの重篤性、ヒト細胞での明白な細胞傷害性の欠如を所与のものとすれば許容され得よう。
[実施例15]
変異ジストロフィン遺伝子を標的とするAAV-CRISPR構築物
デュシェンヌ型筋ジストロフィー並びに骨格筋及び心筋の変性を引き起こすジストロフィン遺伝子の治療的修正のために、AAV構築物を設計した。AAVを用いてCRISPR/Cas9システムをデリバーし、エクソン51の欠失、エクソン45-55の欠失、スプライスドナー又はアクセプター部位の破壊、又はエクソン51内におけるフレームシフトの生成によってジストロフィンリーディングフレームを修復し(Ousterout et al., Molecular Therapy 2013)、ジストロフィンリーディングフレーム及びタンパク質発現を修復することができる。CRISPR/Cas9システムは配列番号:64又は114の配列を有するCas9を含むであろう(図40及び41参照)。これらのCas9と組み合わせることができるgRNA(それらの対応するPAM配列を標的とする)が提供される(図40及び41参照、表2及び3もまた参照されたい)。
[実施例16]
誘導ニューロン(iN)の生成
他の細胞系列から誘導ニューロン(iN)を生成することは、再生医療及び神経学的疾患の研究において潜在的な応用性を有する。マウス胚線維芽細胞(MEF)の機能的ニューロン細胞への直接変換は、3つのニューロン転写因子(BRN2、ASCL1及びMYT1L)のカクテル(BAM因子、図48)のデリバリーにより生じ得る。他の方法は、多様なサブタイプを誘導するために追加の因子を含むことができる。これらの実験は、転写因子の異所性デリバリー及びニューロン表現型の維持に対応する内因性遺伝子座の活性化を必要とする。RNAガイドメカニズムによりゲノム内の任意のプロモーターを標的とする性能を有し、哺乳動物細胞で内因性遺伝子を活性化する万能性転写因子としてCRISPR/Cas9システムを操作した(図49A、49B)。
材料と方法:CRISPR/Cas9転写因子を用いて、ASCL1及びBRN2をコードする内因性遺伝子を活性化し、MEFを機能的な誘導ニューロンに直接再プログラムした。
細胞培養:24ウェルTCPSプレート又はポリD-リジン/ラミニン被覆カバースリップにMEFをシードした。dCas9-VP64の形質導入及びgRNAのトランスフェクション(gRNAの配列については表10及び11参照)に続いて、細胞をMEF培養液(Adler et al. Mol Ther Nucleic Acids 1:e32, 2012)で24時間培養し、続いてN3神経誘導培養液(Vierbuchen et al. Nature 463:1035-1041 (2010)に実験の間ずっと移した(図49B)。
[実施例18]
複合CRISPR/Cas9適用のための単一レンチウイルスベクターの開発
従来のCRISPR/Cas9遺伝子編集システム(特にトランスアクチベーターシステム)の限界は、複合的遺伝子編集及び相乗的遺伝子活性化で、特にトランスフェクションが困難な細胞タイプで用いられる多種多様なsgRNA及びCas9タンパク質の同時かつ効率的なデリバリーである。この限界を克服するために、我々は、Cas9及び4つまでのsgRNAを効率的に発現する単一レンチウイルスベクターを開発した。各sgRNAの発現効率を最大にするために、このベクターは4つの独立したpol IIIプロモーター(ヒトU6プロモーター、マウスU6プロモーター、7SK、及びH1)から4つのsgRNAを発現する。我々は、エンドポイントRT-PCRを用いてAAVS1遺伝子座を標的とするsgRNAを検出して、各プロモーターからsgRNAが発現されることを立証した(図42A)。各sgRNA発現構築物の活性を試験するために、我々は、AAVS1を標的とするsgRNAを独立して発現する各プロモーター構築物を活性なCas9発現構築物とともにヒトHEK293T細胞にコトランスフェクトした。注目すべきことには、我々は、一定で高レベルの遺伝子改変を各sgRNAの標的遺伝子座で検出した(前記改変はAAVS1遺伝子座で高い活性を有し特徴が詳細に示されているジンクフィンガーヌクレアーゼに匹敵する)(図42B)。さらにまた、種々のCas9依拠構築物(活性なCas9ヌクレアーゼ、活性のない(dead)Cas9、及びVP64トランス活性化ドメインと融合された活性のないCas9を含む)のレンチウイルスデリバリーは、ウェスタンブロットで決定されるように、HEK293T細胞で完全長のCas9タンパク質の発現をもたらした(図42C)。
[実施例20]
レンチウイルスCas9依拠トランスアクチベーターを安定的に発現する細胞株の一過性RNAガイド遺伝子活性化
次に、我々は、安定的にCas9を発現するモデル細胞株にsgRNAをトランスフェクトすることによって一過性遺伝子活性化を可能にするシステムの開発に興味をもった。HEK293Tに異なるCas9-T2A-GFPを形質導入し、フローサイトメトリーを用いてGFP発現をモニターした。2-3日毎の正常な継代後に、各細胞株は形質導入後35日まで安定なGFP発現を示した。続いて、形質導入HEK293Tに1つから4つの別々のsgRNA発現構築物(IL1RN又はHBG1プロモーターのどちらかを標的とする)をトランスフェクトした。安定的なdCas9-VP64発現細胞株におけるこれらsgRNA構築物の一過性トランスフェクションは、調節可能な内因性遺伝子活性化をもたらした(図45A、45B)。dCas9-VP64を発現する細胞株のsgRNA構築物の一過性トランスフェクションに続く遺伝子活性化は、トランスフェクション後ほぼ3-6で最大活性化レベルに達し、トランスフェクション後20日までに検出不能レベルに降下した(図45C、45D)。さらにまた、我々は、各プロモーターを標的とする4つのsgRNA全ての第二のトランスフェクションによって各遺伝子を再活性化することができたが、ただし活性化レベルは第一のトランスフェクションで観察されたレベルより顕著に低かった(図45C、45D)。第二のトランスフェクション後の活性の低下は、ベクターの発現の低下又は非形質導入細胞の競合的増殖のためかもしれない。それにもかかわらず、これらのデータは、一過性sgRNAデリバリーと組み合わせたレンチウイルスCas9を万能システムとして用いて、Cas9を安定的に形質導入した細胞株で調節可能でかつ一過性に標的遺伝子を活性化及び再活性化できることを示している。
[実施例22]
HS2エンハンサーを標的とするdCas9-KRAB
HS2エンハンサーは、グロビン遺伝子座の活性化に必要な、特徴がよく調べられた遠位調節エレメントである。HS2エンハンサーを標的とするgRNAとともにdCas9-KRABをデリバーして、このシステムがK562ヒト赤血球系白血病細胞株でγ-、ε-及びβ-グロビン発現を抑制するか否かを決定した(図54)。HS2エンハンサー(配列番号:467)のコア領域とともに種々の部位を標的とする一組のgRNAを作製した。表12を参照されたい。
CRISPR/Cas9によるグロビン遺伝子座における単一gRNAのスクリーニング:U6-sgRNA発現をコードする5μgのプラスミドをエレクトロポレートする5-8日前、レンチウイルスによりdCas9及びdCas9-KRABエフェクターをデリバーした(図55A)。gRNAをエレクトロポレートしなかった細胞(no gRNA)及び異なる遺伝子座を標的とするgRNAで処理した細胞(IL1RN)をコントロールとして加えた。多種多様なgRNAが、トランスフェクション後3日でアッセイしたときε-、γ-及びβ-グロビン遺伝子の強力な抑制を示し、80%までのノックダウンを達成した(図55B、55C、55D)。dCas9又はdCas9-KRABと一緒にgRNAを発現することによってグロビン遺伝子座の遺伝子発現は抑制された。概して、dCas9-KRABによる処理は、dCas9単独と比較して与えられたgRNAに対してより強い抑制をもたらし、抑制を強化するヘテロクロマチン因子の補充におけるKRABドメインの重要な役割を示唆した。達成される抑制レベルは、dCas9-KRAB処理細胞でのみトランスフェクションでデリバーされるgRNAプラスミドの量に左右される(図56A、56B、56C)。Cr4 gRNAプラスミドの用量の10μgまでの増加は、dCas9-KRAB処理細胞におけるグロビン遺伝子のサイレンシングレベルを増加させる。
dCas9-KRABによるグロビン遺伝子の安定なサイレンシング:dCas9/dCas9-KRABを単一gRNAとともにレンチウイルスによりK562で共同発現させた(図57A)。レンチウイルスで処理しなかった細胞(NT)、gRNA無しにdCas9/dCas9-KRABで処理した細胞(no gRNA)、並びにdCas9/dCas9-KRAB及び異なる遺伝子座を標的とするgRNAで処理した細胞(IL1RN)をコントロールとして加えた。レンチウイルス処理細胞を4から7日で選択した。多種多様なgRNAが、形質導入後7日でアッセイしたときε-、γ-及びβ-グロビン遺伝子の強力な転写抑制を示し、95%までのノックダウンを達成した(図57B、57C、57D)。ε-グロビンの発現は、HS2エンハンサーを標的とするgRNAに応答して最も強くサイレンシングされた。gRNA及びdCas9-KRABによる処理は、dCas9及びgRNAによる処理よりも劇的に強い抑制をもたらした。
これらの発見は、gRNAによってHS2エンハンサーに標的誘導されるdCas9-KRABは遠位グロビン遺伝子の強力な抑制を達成することを示している。これは、哺乳動物細胞におけるCRISPR/Cas9システムによる遠位調節エレメントの後成的な標的誘導制御の最初の例である。エンハンサーは発生及び疾患を調節し、本開示はエンハンサー機能を精査及び制御する方法を提供し、さらに前記を用いてdCas9-KRABの特定の場所のクロマチンへの接近能力及びゲノムワイド発現における作用を決定できる。

Claims (47)

  1. 集合等間隔配置短パリンドローム配列リピート随伴9(Cas9)タンパク質を含む第一のポリペプチドドメイン、及び、転写活性化活性、転写抑制活性、転写解除因子活性、ヒストン改変活性、ヌクレアーゼ活性、核酸結合活性、メチラーゼ活性、デメチラーゼ活性から選択される活性を有する第二のポリペプチドドメインを含む、融合タンパク質であって、前記第二のポリペプチドドメインが、p300ドメイン、p300HATコアドメイン、少なくとも1つのVP16転写活性化ドメインリピート、VP64ドメイン、p65ドメイン、KRAB、Tet1、ERFリプレッサードメイン、Mxi1リプレッサードメイン、SID4Xリプレッサードメイン、又はMad-SIDリプレッサードメインを含む、前記融合タンパク質
  2. 第二のポリペプチドドメインが転写活性化活性を有する、請求項1に記載の融合タンパク質。
  3. Cas9タンパク質が、ヌクレアーゼ活性を不活化する少なくとも1つのアミノ酸変異を含む、請求項1又は2に記載の融合タンパク質。
  4. 集合等間隔配置短パリンドローム配列リピート随伴9(Cas9)タンパク質を含む第一のポリペプチドドメイン、及び、転写活性化活性を有する第二のポリペプチドドメインを含む、融合タンパク質であって、前記Cas9タンパク質が、ヌクレアーゼ活性を不活化する少なくとも1つのアミノ酸変異を含前記第二のポリペプチドドメインが、p300ドメイン、p300HATコアドメイン、少なくとも1つのVP16転写活性化ドメインリピート、VP64ドメイン、又はp65ドメインを含む、前記融合タンパク質。
  5. 前記少なくとも1つのアミノ酸変異がD10A及びH840Aの少なくとも1つである、請求項3又は4に記載の融合タンパク質。
  6. 前記少なくとも1つのアミノ酸変異がD10A及びH840Aを含む、請求項3からのいずれか1項に記載の融合タンパク質。
  7. Cas9が化膿連鎖球菌に由来する、請求項からのいずれか1項に記載の融合タンパク質。
  8. Cas9が配列番号:1のアミノ酸36-1403を含む、請求項からのいずれか1項に記載の融合タンパク質。
  9. Cas9が黄色ブドウ球菌に由来する、請求項からのいずれか1項に記載の融合タンパク質。
  10. 第二のポリペプチドドメインがp300ドメインを含む、請求項1からのいずれか1項に記載の融合タンパク質。
  11. 第二のポリペプチドドメインがp300HATコアを含む、請求項1から10のいずれか1項に記載の融合タンパク質。
  12. 第二のポリペプチドドメインが、少なくとも1つのVP16転写活性化ドメインリピートを含む、請求項1からのいずれか1項に記載の融合タンパク質。
  13. 第二のポリペプチドドメインが、少なくとも1つのVP16タンパク質、少なくとも2つのVP16タンパク質、少なくとも3つのVP16タンパク質、少なくとも4つのVP16タンパク質、少なくとも5つのVP16タンパク質、少なくとも6つのVP16タンパク質、少なくとも6つのVP16タンパク質、又は少なくとも10のVP16タンパク質を含む、請求項1から及び12のいずれか1項に記載の融合タンパク質。
  14. 第二のポリペプチドドメインがVP64ドメインを含む、請求項12又は13に記載の融合タンパク質。
  15. 第二のポリペプチドドメインがp65ドメインを含む、請求項1からのいずれか1項に記載の融合タンパク質。
  16. 第一のポリペプチドドメインを第二のポリペプチドドメインに結びつけるリンカーをさらに含む、請求項1から15のいずれか1項に記載の融合タンパク質。
  17. 請求項1から16のいずれか1項に記載の融合タンパク質及び少なくとも1つのガイドRNA(gRNA)を含むDNAターゲティングシステム
  18. 前記少なくとも1つのgRNAが、標的DNA配列に相補性の12-22ヌクレオチドを含む、請求項17に記載のDNAターゲティングシステム
  19. 前記少なくとも1つのgRNAが、遺伝子のプロモーター領域、遺伝子のエンハンサー領域、遺伝子の転写領域、遺伝子の転写開始部位の上流領域、遺伝子のイントロン、又は遺伝子のエクソンを標的とする、請求項17又は18に記載のDNAターゲティングシステム
  20. 前記少なくとも1つのgRNAが遺伝子の転写開始部位の上流領域を標的とし、前記領域が転写開始部位の1ら1000塩基対又は1から600塩基対上流に位置する、請求項17から19のいずれか1項に記載のDNAターゲティングシステム
  21. 前記少なくとも1つのgRNAが2、3、4、5、6、7、8、9、又は10の異なるgRNAを含む、請求項17から20のいずれか1項に記載のDNAターゲティングシステム
  22. 前記異なるgRNAが遺伝子の異なる領域を標的とする、請求項21に記載のDNAターゲティングシステム
  23. 前記異なる標的領域が15から700塩基対で分離される、請求項22に記載のDNAターゲティングシステム
  24. 前記異なるgRNAの少なくとも1つが、異なる遺伝子の標的領域と結合する、請求項21から23のいずれか1項に記載のDNAターゲティングシステム
  25. 前記少なくとも1つのgRNAが、ASCL1、BRN2、MYT1L、NANOG、VEGFA、TERT、IL1B、IL1R2、IL1RN、HBG1、HBG2、MYOD1、DMD、HS2、OCT4及びMYT1Lから選択される遺伝子を標的とする、請求項17から24のいずれか1項に記載のDNAターゲティングシステム
  26. 前記少なくとも1つのgRNAが、配列番号:5-40、65-144、467、492-515、540-563、564-584及び585-625の少なくとも1つを含む、請求項17から25のいずれか1項に記載のDNAターゲティングシステム
  27. 請求項1から16のいずれか1項に記載の融合タンパク質をコードするポリヌクレオチド。
  28. 請求項17から26のいずれか1項に記載のDNAターゲティングシステムをコードするポリヌクレオチド。
  29. 前記融合タンパク質及び前記少なくとも1つのgRNAがプロモーターに作動可能に連結される、請求項28に記載のポリヌクレオチド。
  30. 前記少なくとも1つのgRNAが2、3、4、5、6、7、8、9、又は10のgRNAを含み、各gRNAが独立してプロモーターに作動可能に連結される、請求項28又は29に記載のポリヌクレオチド。
  31. 請求項27から30のいずれか1項に記載のポリヌクレオチドを含むベクター。
  32. ウイルスベクターである、請求項31に記載のベクター。
  33. ウイルスベクターが、組換えレンチウイルス、組換えアデノウイルス、又は組換えアデノウイルス随伴ウイルス(AAV)である、請求項32に記載のベクター。
  34. 請求項27から30のいずれか1項に記載のポリヌクレオチド又は請求項31から33のいずれか1項に記載のベクターを含む細胞。
  35. 請求項1から16のいずれか1項に記載の融合タンパク質、請求項17から26のいずれか1項に記載のDNAターゲティングシステム、又は請求項27から30のいずれか1項に記載のポリヌクレオチド、又は請求項31から33のいずれか1項に記載のベクターを含む、組成物。
  36. 標的遺伝子の遺伝子発現を調整する組成物であって、請求項1から16のいずれか1項に記載の融合タンパク質、請求項17から26のいずれか1項に記載のDNAターゲティングシステム、又は請求項27から30のいずれか1項に記載のポリヌクレオチド、又は請求項31から33のいずれか1項に記載のベクターを含む、前記組成物。
  37. 細胞で哺乳動物の遺伝子発現を誘導する組成物であって、請求項1から16のいずれか1項に記載の融合タンパク質及び少なくとも1つのガイドRNA(gRNA)を含む、前記組成物。
  38. 遺伝子発現を活性化させる組成物であって、請求項1から16のいずれか1項に記載の融合タンパク質、請求項17から26のいずれか1項に記載のDNAターゲティングシステム、請求項27から30のいずれか1項に記載のポリヌクレオチド、又は請求項31から33のいずれか1項に記載のベクターを含む、前記組成物
  39. 細胞をトランス分化させるか又は細胞の分化を誘発する組成物であって、請求項1から16のいずれか1項に記載の融合タンパク質、請求項17から26のいずれか1項に記載のDNAターゲティングシステム、請求項27から30のいずれか1項に記載のポリヌクレオチド、又は請求項31から33のいずれか1項に記載のベクターを含む、前記組成物
  40. 細胞で複合遺伝子編集をするか又は変異遺伝子修正する組成物であって、請求項1から16のいずれか1項に記載の融合タンパク質、請求項17から26のいずれか1項に記載のDNAターゲティングシステム、請求項27から30のいずれか1項に記載のポリヌクレオチド、又は請求項31から33のいずれか1項に記載のベクターを含む、前記組成物
  41. 多種のgRNAが、細胞内の1つ以上の内因性遺伝子を標的として前記1つ以上の内因性遺伝子の発現を活性化させる、請求項38から40のいずれか1項に記載の組成物
  42. DNAターゲティングシステムが2つ以上の内因性遺伝子を転写的に活性化させる、請求項38から41のいずれか1項に記載の組成物
  43. 細胞での遺伝子発現の調整で使用するための、請求項1から16のいずれか1項に記載の融合タンパク質、請求項17から26のいずれか1項に記載のDNAターゲティングシステム、請求項27から30のいずれか1項に記載のポリヌクレオチド、請求項31から33のいずれか1項に記載のベクター、又は請求項35に記載の組成物。
  44. 細胞での遺伝子発現の活性化で使用するための、請求項1から16のいずれか1項に記載の融合タンパク質、請求項17から26のいずれか1項に記載のDNAターゲティングシステム、請求項27から30のいずれか1項に記載のポリヌクレオチド、請求項31から33のいずれか1項に記載のベクター、又は請求項35に記載の組成物。
  45. 細胞での複合遺伝子編集又は変異遺伝子修正で使用するための、請求項1から16のいずれか1項に記載の融合タンパク質、請求項17から26のいずれか1項に記載のDNAターゲティングシステム、請求項27から30のいずれか1項に記載のポリヌクレオチド、請求項31から33のいずれか1項に記載のベクター、又は請求項35に記載の組成物。
  46. 多種のgRNAが、細胞内の1つ以上の内因性遺伝子を標的として前記1つ以上の内因性遺伝子の発現を活性化させる、請求項43から45のいずれか1項に記載の融合タンパク質、DNAターゲティングシステム、ポリヌクレオチド、又はベクター。
  47. DNAターゲティングシステムが2つ以上の内因性遺伝子を転写的に活性化させる、請求項43から46のいずれか1項に記載の融合タンパク質、DNAターゲティングシステム、ポリヌクレオチド、又はベクター。
JP2022052186A 2013-06-05 2022-03-28 Rnaガイド遺伝子編集及び遺伝子調節 Pending JP2022101562A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023131956A JP2023164823A (ja) 2013-06-05 2023-08-14 Rnaガイド遺伝子編集及び遺伝子調節

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US201361831481P 2013-06-05 2013-06-05
US61/831,481 2013-06-05
US201361839127P 2013-06-25 2013-06-25
US61/839,127 2013-06-25
US201361904911P 2013-11-15 2013-11-15
US61/904,911 2013-11-15
US201461967466P 2014-03-19 2014-03-19
US61/967,466 2014-03-19
US201461981575P 2014-04-18 2014-04-18
US61/981,575 2014-04-18
JP2016518017A JP7085716B2 (ja) 2013-06-05 2014-06-05 Rnaガイド遺伝子編集及び遺伝子調節
PCT/US2014/041190 WO2014197748A2 (en) 2013-06-05 2014-06-05 Rna-guided gene editing and gene regulation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016518017A Division JP7085716B2 (ja) 2013-06-05 2014-06-05 Rnaガイド遺伝子編集及び遺伝子調節

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023131956A Division JP2023164823A (ja) 2013-06-05 2023-08-14 Rnaガイド遺伝子編集及び遺伝子調節

Publications (2)

Publication Number Publication Date
JP2022101562A JP2022101562A (ja) 2022-07-06
JP2022101562A5 true JP2022101562A5 (ja) 2024-04-30

Family

ID=52008753

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2016518017A Active JP7085716B2 (ja) 2013-06-05 2014-06-05 Rnaガイド遺伝子編集及び遺伝子調節
JP2019200973A Active JP7313055B2 (ja) 2013-06-05 2019-11-05 Rnaガイド遺伝子編集及び遺伝子調節
JP2022052186A Pending JP2022101562A (ja) 2013-06-05 2022-03-28 Rnaガイド遺伝子編集及び遺伝子調節
JP2023131956A Pending JP2023164823A (ja) 2013-06-05 2023-08-14 Rnaガイド遺伝子編集及び遺伝子調節

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2016518017A Active JP7085716B2 (ja) 2013-06-05 2014-06-05 Rnaガイド遺伝子編集及び遺伝子調節
JP2019200973A Active JP7313055B2 (ja) 2013-06-05 2019-11-05 Rnaガイド遺伝子編集及び遺伝子調節

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023131956A Pending JP2023164823A (ja) 2013-06-05 2023-08-14 Rnaガイド遺伝子編集及び遺伝子調節

Country Status (8)

Country Link
US (4) US10704060B2 (ja)
EP (3) EP3004370A4 (ja)
JP (4) JP7085716B2 (ja)
KR (4) KR102307280B1 (ja)
CN (2) CN105658805B (ja)
AU (4) AU2014274840B2 (ja)
CA (1) CA2914519A1 (ja)
WO (1) WO2014197748A2 (ja)

Families Citing this family (228)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9217155B2 (en) 2008-05-28 2015-12-22 University Of Massachusetts Isolation of novel AAV'S and uses thereof
US8734809B2 (en) 2009-05-28 2014-05-27 University Of Massachusetts AAV's and uses thereof
EP3318634A1 (en) 2011-04-21 2018-05-09 University of Massachusetts Raav-based compositions and methods for treating diseases involving dominant-negative or gain of function mutations
EP2734621B1 (en) 2011-07-22 2019-09-04 President and Fellows of Harvard College Evaluation and improvement of nuclease cleavage specificity
GB201122458D0 (en) * 2011-12-30 2012-02-08 Univ Wageningen Modified cascade ribonucleoproteins and uses thereof
WO2013119602A1 (en) 2012-02-06 2013-08-15 President And Fellows Of Harvard College Arrdc1-mediated microvesicles (armms) and uses thereof
EP2841572B1 (en) 2012-04-27 2019-06-19 Duke University Genetic correction of mutated genes
KR102121086B1 (ko) * 2012-11-01 2020-06-09 팩터 바이오사이언스 인크. 세포에서 단백질을 발현시키는 방법들과 생성물들
DK3327127T3 (da) 2012-12-12 2021-06-28 Broad Inst Inc Fremføring, modificering og optimering af systemer, fremgangsmåder og sammensætninger til sekvensmanipulation og terapeutiske anvendelser
EP2931892B1 (en) 2012-12-12 2018-09-12 The Broad Institute, Inc. Methods, models, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof
AU2014274840B2 (en) * 2013-06-05 2020-03-12 Duke University RNA-guided gene editing and gene regulation
EP4245853A3 (en) 2013-06-17 2023-10-18 The Broad Institute, Inc. Optimized crispr-cas double nickase systems, methods and compositions for sequence manipulation
EP3011033B1 (en) 2013-06-17 2020-02-19 The Broad Institute, Inc. Functional genomics using crispr-cas systems, compositions methods, screens and applications thereof
DK3011031T3 (da) 2013-06-17 2020-12-21 Broad Inst Inc Fremføring og anvendelse af crispr-cas-systemerne, vektorer og sammensætninger til levermålretning og -terapi
WO2014204729A1 (en) 2013-06-17 2014-12-24 The Broad Institute Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for targeting disorders and diseases using viral components
CA2915834A1 (en) 2013-06-17 2014-12-24 Massachusetts Institute Of Technology Delivery, engineering and optimization of tandem guide systems, methods and compositions for sequence manipulation
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9737604B2 (en) 2013-09-06 2017-08-22 President And Fellows Of Harvard College Use of cationic lipids to deliver CAS9
US9340800B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College Extended DNA-sensing GRNAS
US9322037B2 (en) 2013-09-06 2016-04-26 President And Fellows Of Harvard College Cas9-FokI fusion proteins and uses thereof
DE202014010413U1 (de) 2013-09-18 2015-12-08 Kymab Limited Zellen und Organismen
PT3066201T (pt) 2013-11-07 2018-06-04 Massachusetts Inst Technology Métodos e composições relacionadas com crispr com arng reguladores
WO2015089364A1 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Crystal structure of a crispr-cas system, and uses thereof
WO2015089351A1 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Compositions and methods of use of crispr-cas systems in nucleotide repeat disorders
AU2014361781B2 (en) 2013-12-12 2021-04-01 Massachusetts Institute Of Technology Delivery, use and therapeutic applications of the CRISPR -Cas systems and compositions for genome editing
WO2015089486A2 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Systems, methods and compositions for sequence manipulation with optimized functional crispr-cas systems
US20150165054A1 (en) 2013-12-12 2015-06-18 President And Fellows Of Harvard College Methods for correcting caspase-9 point mutations
WO2015127128A2 (en) 2014-02-19 2015-08-27 University Of Massachusetts Recombinant aavs having useful transcytosis properties
US11028388B2 (en) 2014-03-05 2021-06-08 Editas Medicine, Inc. CRISPR/Cas-related methods and compositions for treating Usher syndrome and retinitis pigmentosa
ES2745769T3 (es) 2014-03-10 2020-03-03 Editas Medicine Inc Procedimientos y composiciones relacionados con CRISPR/CAS para tratar la amaurosis congénita de Leber 10 (LCA10)
US11141493B2 (en) 2014-03-10 2021-10-12 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
US11339437B2 (en) 2014-03-10 2022-05-24 Editas Medicine, Inc. Compositions and methods for treating CEP290-associated disease
US20170106055A1 (en) * 2014-03-12 2017-04-20 Precision Biosciences, Inc. Dystrophin Gene Exon Deletion Using Engineered Nucleases
EP3750907A3 (en) 2014-03-18 2021-04-28 University of Massachusetts Raav-based compositions and methods for treating amyotrophic lateral sclerosis
US11242525B2 (en) 2014-03-26 2022-02-08 Editas Medicine, Inc. CRISPR/CAS-related methods and compositions for treating sickle cell disease
EP3134522B1 (en) 2014-04-25 2021-10-06 University of Massachusetts Recombinant aav vectors useful for reducing immunity against transgene products
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
WO2016025469A1 (en) * 2014-08-11 2016-02-18 The Board Of Regents Of The University Of Texas System Prevention of muscular dystrophy by crispr/cas9-mediated gene editing
WO2016049024A2 (en) * 2014-09-24 2016-03-31 The Broad Institute Inc. Delivery, use and therapeutic applications of the crispr-cas systems and compositions for modeling competition of multiple cancer mutations in vivo
WO2016054554A1 (en) 2014-10-03 2016-04-07 University Of Massachusetts Heterologous targeting peptide grafted aavs
WO2016054557A1 (en) 2014-10-03 2016-04-07 University Of Massachusetts Novel high efficiency library-identified aav vectors
JP7023108B2 (ja) 2014-10-21 2022-02-21 ユニバーシティ オブ マサチューセッツ 組み換えaavバリアントおよびその使用
US9816080B2 (en) 2014-10-31 2017-11-14 President And Fellows Of Harvard College Delivery of CAS9 via ARRDC1-mediated microvesicles (ARMMs)
WO2016073990A2 (en) 2014-11-07 2016-05-12 Editas Medicine, Inc. Methods for improving crispr/cas-mediated genome-editing
WO2016089866A1 (en) 2014-12-01 2016-06-09 President And Fellows Of Harvard College Rna-guided systems for in vivo gene editing
JP6529110B2 (ja) * 2014-12-01 2019-06-12 国立大学法人 東京大学 複数のユニットが多重に連結したdnaカセットおよび該カセットを含むベクターの製造方法
EP3230451B1 (en) 2014-12-12 2021-04-07 The Broad Institute, Inc. Protected guide rnas (pgrnas)
US10863730B2 (en) 2014-12-26 2020-12-15 Riken Gene knockout method
AU2015373893B2 (en) * 2014-12-31 2021-07-29 Synthetic Genomics, Inc. Compositions and methods for high efficiency in vivo genome editing
WO2016130600A2 (en) 2015-02-09 2016-08-18 Duke University Compositions and methods for epigenome editing
US10584321B2 (en) 2015-02-13 2020-03-10 University Of Massachusetts Compositions and methods for transient delivery of nucleases
US10738305B2 (en) 2015-02-23 2020-08-11 Vertex Pharmaceuticals Incorporated Materials and methods for treatment of hemoglobinopathies
ES2743512T3 (es) 2015-03-06 2020-02-19 Leibniz Inst Fuer Pflanzenbiochemie Ipb Biblioteca de promotores sintéticos para la expresión génica coordinada en células u organismos eucariotas
EP3748004A1 (en) * 2015-04-01 2020-12-09 Editas Medicine, Inc. Crispr/cas-related methods and compositions for treating duchenne muscular dystrophy and becker muscular dystrophy
GB201506509D0 (en) 2015-04-16 2015-06-03 Univ Wageningen Nuclease-mediated genome editing
US11674144B2 (en) * 2015-04-16 2023-06-13 California Institute Of Technology Fractional regulation of transcription
CA3021949C (en) 2015-04-24 2023-10-17 University Of Massachusetts Modified aav constructs and uses thereof
SG11201708653RA (en) 2015-04-24 2017-11-29 Editas Medicine Inc Evaluation of cas9 molecule/guide rna molecule complexes
EP3294896A1 (en) 2015-05-11 2018-03-21 Editas Medicine, Inc. Optimized crispr/cas9 systems and methods for gene editing in stem cells
CN116334142A (zh) 2015-06-09 2023-06-27 爱迪塔斯医药公司 用于改善移植的crispr/cas相关方法和组合物
US9790490B2 (en) * 2015-06-18 2017-10-17 The Broad Institute Inc. CRISPR enzymes and systems
WO2016205759A1 (en) 2015-06-18 2016-12-22 The Broad Institute Inc. Engineering and optimization of systems, methods, enzymes and guide scaffolds of cas9 orthologs and variants for sequence manipulation
US10648020B2 (en) 2015-06-18 2020-05-12 The Broad Institute, Inc. CRISPR enzymes and systems
EP3310395A4 (en) * 2015-06-18 2019-05-22 Robert D. Bowles REGULATION OF RNA GUIDED TRANSCRIPTION AND METHODS OF USE THEREOF FOR THE TREATMENT OF LOMBALGIA
TWI813532B (zh) 2015-06-18 2023-09-01 美商博得學院股份有限公司 降低脱靶效應的crispr酶突變
CN105255886B (zh) * 2015-07-09 2018-09-14 青岛市畜牧兽医研究所 一对靶向猪RelA基因的sgRNA
WO2017015637A1 (en) * 2015-07-22 2017-01-26 Duke University High-throughput screening of regulatory element function with epigenome editing technologies
CA2996001A1 (en) * 2015-08-25 2017-03-02 Duke University Compositions and methods of improving specificity in genomic engineering using rna-guided endonucleases
US11661583B2 (en) 2015-08-27 2023-05-30 University Of Washington Drug discovery platform for Duchenne cardiomyopathy
WO2017043647A1 (ja) * 2015-09-11 2017-03-16 国立研究開発法人理化学研究所 転写因子結合部位特異的なdna脱メチル化方法
WO2017049407A1 (en) * 2015-09-23 2017-03-30 UNIVERSITé LAVAL Modification of the dystrophin gene and uses thereof
AU2016326711B2 (en) 2015-09-24 2022-11-03 Editas Medicine, Inc. Use of exonucleases to improve CRISPR/Cas-mediated genome editing
WO2017053729A1 (en) 2015-09-25 2017-03-30 The Board Of Trustees Of The Leland Stanford Junior University Nuclease-mediated genome editing of primary cells and enrichment thereof
WO2017062723A1 (en) 2015-10-08 2017-04-13 President And Fellows Of Harvard College Multiplexed genome editing
WO2017066497A2 (en) 2015-10-13 2017-04-20 Duke University Genome engineering with type i crispr systems in eukaryotic cells
WO2017070516A1 (en) 2015-10-22 2017-04-27 University Of Massachusetts Prostate-targeting adeno-associated virus serotype vectors
EP3364997B1 (en) 2015-10-22 2024-01-17 University of Massachusetts Aspartoacylase gene therapy in the treatment of canavan disease
JP7067793B2 (ja) 2015-10-23 2022-05-16 プレジデント アンド フェローズ オブ ハーバード カレッジ 核酸塩基編集因子およびその使用
JP2019507579A (ja) * 2015-10-28 2019-03-22 クリスパー セラピューティクス アーゲー デュシェンヌ型筋ジストロフィーの処置のための材料および方法
EP3368054A4 (en) 2015-10-28 2019-07-03 Voyager Therapeutics, Inc. REGULATORY EXPRESSION USING THE ADENO-ASSOCIATED VIRUS (AAV)
KR20180081618A (ko) * 2015-11-30 2018-07-16 듀크 유니버시티 유전자 편집에 의한 인간 디스트로핀 유전자의 교정을 위한 치료용 표적 및 사용 방법
EA201891619A1 (ru) 2016-01-11 2019-02-28 Те Борд Оф Трастиз Оф Те Лилэнд Стэнфорд Джуниор Юниверсити Химерные белки и способы регулирования экспрессии генов
CN108463229B (zh) 2016-01-11 2023-10-17 斯坦福大学托管董事会 嵌合蛋白和免疫治疗方法
US20190010496A1 (en) * 2016-01-14 2019-01-10 The Brigham And Women`S Hospital, Inc. Genome Editing for Treating Glioblastoma
WO2017136536A1 (en) 2016-02-02 2017-08-10 University Of Massachusetts Method to enhance the efficiency of systemic aav gene delivery to the central nervous system
JP6998313B2 (ja) * 2016-02-11 2022-02-04 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 細胞のゲノムにおける変異ジストロフィン遺伝子を修飾する方法及び組成物
EP4094780A3 (en) 2016-02-12 2023-02-08 University of Massachusetts Anti-angiogenic mirna therapeutics for inhibiting corneal neovascularization
SG11201807859WA (en) * 2016-03-14 2018-10-30 Editas Medicine Inc Crispr/cas-related methods and compositions for treating beta hemoglobinopathies
EP3219799A1 (en) 2016-03-17 2017-09-20 IMBA-Institut für Molekulare Biotechnologie GmbH Conditional crispr sgrna expression
EP3433363A1 (en) 2016-03-25 2019-01-30 Editas Medicine, Inc. Genome editing systems comprising repair-modulating enzyme molecules and methods of their use
WO2017165862A1 (en) 2016-03-25 2017-09-28 Editas Medicine, Inc. Systems and methods for treating alpha 1-antitrypsin (a1at) deficiency
EP3440210A4 (en) 2016-04-05 2019-11-27 University of Massachusetts COMPOSITIONS AND METHODS FOR SELECTIVE INHIBITION OF EXPRESSION OF GRAINHEAD PROTEIN
US11236313B2 (en) 2016-04-13 2022-02-01 Editas Medicine, Inc. Cas9 fusion molecules, gene editing systems, and methods of use thereof
EP3443081A4 (en) * 2016-04-13 2019-10-30 Duke University CRISPR / CAS9-BASED REPRESSORS FOR IN VIVO SHUT-OFF OF GEN-TARGETS AND METHOD OF USE
WO2017181105A1 (en) 2016-04-15 2017-10-19 University Of Massachusetts Methods and compositions for treating metabolic imbalance
US20190134221A1 (en) * 2016-05-05 2019-05-09 Duke University Crispr/cas-related methods and compositions for treating duchenne muscular dystrophy
PT3272867T (pt) 2016-06-02 2019-12-04 Sigma Aldrich Co Llc Utilização de proteínas de ligação ao dna programáveis para intensificar a modificação de genoma direcionada
US11882815B2 (en) 2016-06-15 2024-01-30 University Of Massachusetts Recombinant adeno-associated viruses for delivering gene editing molecules to embryonic cells
CN106119269B (zh) * 2016-06-23 2019-12-06 百奥迈科生物技术有限公司 一种在大肠杆菌中制备线性单链dna的方法
CA3029860A1 (en) 2016-07-05 2018-01-11 The Johns Hopkins University Compositions and methods comprising improvements of crispr guide rnas using the h1 promoter
CA3032822A1 (en) 2016-08-02 2018-02-08 Editas Medicine, Inc. Compositions and methods for treating cep290 associated disease
JP7231935B2 (ja) 2016-08-03 2023-03-08 プレジデント アンド フェローズ オブ ハーバード カレッジ アデノシン核酸塩基編集因子およびそれらの使用
AU2017308889B2 (en) 2016-08-09 2023-11-09 President And Fellows Of Harvard College Programmable Cas9-recombinase fusion proteins and uses thereof
US20190194633A1 (en) * 2016-08-10 2019-06-27 Duke University Compositions, systems and methods for programming immune cell function through targeted gene regulation
JP2019524162A (ja) * 2016-08-18 2019-09-05 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア モジュラーAAV送達システムによるCRISPR−Casゲノム編集
SG11201901306XA (en) * 2016-08-19 2019-03-28 Toolgen Inc Artificially engineered angiogenesis regulatory system
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US10457940B2 (en) 2016-09-22 2019-10-29 University Of Massachusetts AAV treatment of Huntington's disease
CN107880132B (zh) * 2016-09-30 2022-06-17 北京大学 一种融合蛋白及使用其进行同源重组的方法
EP3518981A4 (en) 2016-10-03 2020-06-10 President and Fellows of Harvard College DELIVERING THERAPEUTIC RNAS VIA ARRDC1-MEDIATED MICROVESICLES
EP3526333A4 (en) 2016-10-13 2020-07-29 University of Massachusetts AAV CAPSIDE DESIGNS
KR20240007715A (ko) 2016-10-14 2024-01-16 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 핵염기 에디터의 aav 전달
CN106318947A (zh) * 2016-10-17 2017-01-11 北京大北农科技集团股份有限公司 基因组编辑系统及其用途
FR3058160A1 (fr) * 2016-10-28 2018-05-04 Universite Pierre Et Marie Curie - Paris 6 (Upmc) Procede de differenciation de cellules souches pluripotentes en cardiomyocytes
WO2018081978A1 (zh) * 2016-11-03 2018-05-11 深圳华大基因研究院 提高基因编辑效率的方法和系统
WO2018098480A1 (en) * 2016-11-28 2018-05-31 The Board Of Regents Of The University Of Texas System Prevention of muscular dystrophy by crispr/cpf1-mediated gene editing
KR20190085529A (ko) 2016-12-01 2019-07-18 상가모 테라퓨틱스, 인코포레이티드 Tau 조절제 및 그것의 전달을 위한 방법 및 조성물
WO2018110471A1 (ja) 2016-12-12 2018-06-21 アステラス製薬株式会社 転写調節融合ポリペプチド
WO2018119359A1 (en) 2016-12-23 2018-06-28 President And Fellows Of Harvard College Editing of ccr5 receptor gene to protect against hiv infection
JOP20190166A1 (ar) * 2017-01-05 2019-07-02 Univ Texas استراتيجية مثلى من أجل تعديلات تخطي إكسون باستخدام crispr/cas9 مع متواليات توجيه ثلاثي
TW201839136A (zh) * 2017-02-06 2018-11-01 瑞士商諾華公司 治療血色素異常症之組合物及方法
WO2018147343A1 (en) * 2017-02-07 2018-08-16 Edigene Corporation Method of treating diseases associated with elevated kras expression using crispr-gndm system
CN110312797A (zh) 2017-02-10 2019-10-08 齐默尔根公司 组装和编辑用于多个宿主的多个dna构建体的模块化通用质粒设计策略
WO2018156824A1 (en) * 2017-02-23 2018-08-30 President And Fellows Of Harvard College Methods of genetic modification of a cell
US10801038B2 (en) * 2017-02-28 2020-10-13 Trustees Of Boston University Opto-genetic modulator
US10687520B2 (en) 2017-03-07 2020-06-23 The Board Of Regents Of The University Of Texas System Generation and correction of a humanized mouse model with a deletion of dystrophin exon 44
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
EP3592777A1 (en) 2017-03-10 2020-01-15 President and Fellows of Harvard College Cytosine to guanine base editor
US11674138B2 (en) 2017-03-13 2023-06-13 President And Fellows Of Harvard College Methods of modulating expression of target nucleic acid sequences in a cell
EP3596217A1 (en) 2017-03-14 2020-01-22 Editas Medicine, Inc. Systems and methods for the treatment of hemoglobinopathies
US11771703B2 (en) 2017-03-17 2023-10-03 The Johns Hopkins University Targeted epigenetic therapy against distal regulatory element of TGFβ2 expression
KR20190130613A (ko) 2017-03-23 2019-11-22 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 핵산 프로그램가능한 dna 결합 단백질을 포함하는 핵염기 편집제
CN107012158B (zh) * 2017-03-28 2020-09-11 东南大学 一种端粒酶启动基因表达方法及其应用
EP3617311A4 (en) * 2017-03-30 2021-04-21 Kyoto University METHOD FOR THE INDUCTION OF EXON SKIPPING BY GENOME EDITIING
CN107058358B (zh) * 2017-04-01 2020-06-09 中国科学院微生物研究所 一种双spacer序列识别切割CRISPR-Cas9载体构建及其在疣孢菌中的应用
CN110088272B (zh) 2017-04-05 2023-08-04 阿斯加德治疗有限公司 用于将细胞重编程为树突状细胞或抗原呈递细胞的组合物、其方法和用途
EP3385373A1 (en) 2017-04-05 2018-10-10 Centro de Neurociências e Biologia Celular Compositions for reprogramming cells into dendritic cells or antigen presenting cells, methods and uses thereof
US11499151B2 (en) 2017-04-28 2022-11-15 Editas Medicine, Inc. Methods and systems for analyzing guide RNA molecules
JP7327803B2 (ja) 2017-05-09 2023-08-16 ユニバーシティ オブ マサチューセッツ 筋萎縮性側索硬化症(als)を処置する方法
WO2018209158A2 (en) * 2017-05-10 2018-11-15 Editas Medicine, Inc. Crispr/rna-guided nuclease systems and methods
WO2018209320A1 (en) 2017-05-12 2018-11-15 President And Fellows Of Harvard College Aptazyme-embedded guide rnas for use with crispr-cas9 in genome editing and transcriptional activation
WO2018220210A1 (en) * 2017-06-02 2018-12-06 Institut National De La Sante Et De La Recherche Medicale (Inserm) Recombinant lentiviral vector for stem cell-based gene therapy of sickle cell disorder
JP2020524497A (ja) 2017-06-09 2020-08-20 エディタス・メディシン,インコーポレイテッド 操作されたcas9ヌクレアーゼ
AU2018283372A1 (en) 2017-06-16 2020-02-06 Avery Therapeutics, Inc. Three dimensional tissue compositions and methods of use
US20200140896A1 (en) * 2017-06-30 2020-05-07 Novartis Ag Methods for the treatment of disease with gene editing systems
EP3652312A1 (en) 2017-07-14 2020-05-20 Editas Medicine, Inc. Systems and methods for targeted integration and genome editing and detection thereof using integrated priming sites
GB201711809D0 (en) 2017-07-21 2017-09-06 Governors Of The Univ Of Alberta Antisense oligonucleotide
JP2020534795A (ja) 2017-07-28 2020-12-03 プレジデント アンド フェローズ オブ ハーバード カレッジ ファージによって支援される連続的進化(pace)を用いて塩基編集因子を進化させるための方法および組成物
CN107488649A (zh) * 2017-08-25 2017-12-19 南方医科大学 一种Cpf1和p300核心结构域的融合蛋白、相应的DNA靶向激活系统和应用
WO2019139645A2 (en) 2017-08-30 2019-07-18 President And Fellows Of Harvard College High efficiency base editors comprising gam
WO2019055536A1 (en) * 2017-09-14 2019-03-21 The Children's Medical Center Corporation COMPOSITIONS AND METHODS FOR ENHANCING THE EFFICACY OF CELL TRANSPLANTATION
CN107513531B (zh) * 2017-09-21 2020-02-21 无锡市妇幼保健院 用于内源性过表达lncRNA-XIST的gRNA靶点序列及其应用
CN111448321A (zh) 2017-09-22 2020-07-24 马萨诸塞大学 Sod1双表达载体及其用途
US11572574B2 (en) 2017-09-28 2023-02-07 Toolgen Incorporated Artificial genome manipulation for gene expression regulation
CN107722125B (zh) * 2017-09-28 2021-05-07 中山大学 一种人工转录激活因子dCas9-TV及其编码基因与应用
WO2019079347A1 (en) 2017-10-16 2019-04-25 The Broad Institute, Inc. USES OF BASIC EDITORS ADENOSINE
WO2019089623A1 (en) * 2017-10-30 2019-05-09 Children's Hospital Medical Center Fusion proteins for use in improving gene correction via homologous recombination
WO2019090160A2 (en) * 2017-11-03 2019-05-09 Hunterian Medicine Llc Compositions and methods of use thereof for the treatment of duchenne muscular dystrophy
WO2019117662A2 (ko) * 2017-12-14 2019-06-20 단국대학교 산학협력단 Tert 프로모터 돌연변이에 특이적인 crispr 시스템 및 그의 이용
KR102589314B1 (ko) 2017-12-28 2023-10-13 다케다 야쿠힝 고교 가부시키가이샤 양이온성 지질
US20210371854A1 (en) 2017-12-28 2021-12-02 Kyoto University Composition for modifying target gene
CN108559731A (zh) * 2018-01-15 2018-09-21 南方医科大学 一种可调控基因表达的人类胚胎干细胞系及其应用
WO2019150203A1 (en) 2018-02-05 2019-08-08 Crispr Therapeutics Ag Materials and methods for treatment of hemoglobinopathies
CN110229814A (zh) * 2018-03-06 2019-09-13 中国科学院动物研究所 改进的向导rna
JP2021521788A (ja) 2018-04-19 2021-08-30 ザ・リージエンツ・オブ・ザ・ユニバーシテイー・オブ・カリフオルニア ゲノム編集のための組成物および方法
WO2019209869A2 (en) * 2018-04-23 2019-10-31 Duke University Downregulation of snca expression by targeted editing of dna-methylation
US20210238257A1 (en) * 2018-04-27 2021-08-05 The Regents Of The University Of California De Novo Formation of the Biliary System by Hepatocyte Transdifferentiation
CA3100019A1 (en) * 2018-05-11 2019-11-14 Beam Therapeutics Inc. Methods of substituting pathogenic amino acids using programmable base editor systems
WO2019222545A1 (en) 2018-05-16 2019-11-21 Synthego Corporation Methods and systems for guide rna design and use
US20220235104A1 (en) * 2018-07-06 2022-07-28 The Regents Of The University Of California Novel method to engineer translantable human tissues
CN109055375B (zh) * 2018-07-26 2021-11-12 东南大学 一种crispr辅助反式增强子激活基因表达的方法及其应用
CN110760511B (zh) * 2018-07-27 2021-09-07 广东赤萌医疗科技有限公司 一种用于治疗杜氏肌营养不良症的gRNA、表达载体、CRISPR-Cas9系统
AU2019316103A1 (en) 2018-08-02 2021-03-11 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating facioscapulohumeral muscular dystrophy
CA3108282A1 (en) 2018-08-02 2020-02-06 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating dystrophinopathies
US11168141B2 (en) 2018-08-02 2021-11-09 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating dystrophinopathies
GB201813011D0 (en) 2018-08-10 2018-09-26 Vib Vzw Means and methods for drought tolerance in crops
CA3107002A1 (en) * 2018-08-15 2020-04-30 Zymergen Inc. Applications of crispri in high throughput metabolic engineering
KR20210058816A (ko) * 2018-08-18 2021-05-24 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 원 위치에 유전자 편집
CN113166779A (zh) * 2018-10-09 2021-07-23 北卡罗来纳大学查佩尔希尔分校 调控的基因编辑系统
WO2020081604A2 (en) * 2018-10-15 2020-04-23 Avery Therapeutics, Inc. Cell-free compositions and methods for restoration or enhancement of tissue function
WO2020092725A1 (en) * 2018-11-01 2020-05-07 Montana State University Gene modulation with crispr system type i
WO2020097083A1 (en) * 2018-11-06 2020-05-14 Cellino Biotech, Inc. Systems for cell control
AU2019381460A1 (en) * 2018-11-16 2021-06-17 Astellas Pharma Inc. Method for treating muscular dystrophy by targeting Utrophin gene
EP3917573A4 (en) * 2019-01-28 2022-12-07 The Administrators of The Tulane Educational Fund CRISPR-BASED METHODS AND NEW COMPOSITIONS FOR THE TREATMENT OF VASCULAR DISORDERS
CA3236512A1 (en) 2019-02-13 2020-08-20 Beam Therapeutics Inc. Compositions and methods for treating hemoglobinopathies
CN109929865B (zh) * 2019-03-11 2022-03-08 东南大学 基于gal4-uas系统的crispr辅助反式增强子激活基因表达的方法及其应用
EP3942040A1 (en) 2019-03-19 2022-01-26 The Broad Institute, Inc. Methods and compositions for editing nucleotide sequences
US20220145249A1 (en) * 2019-04-11 2022-05-12 Agency For Science, Technology And Research A Method of Altering a Differentiation Status of a Cell
US20220177876A1 (en) * 2019-04-12 2022-06-09 The Regents Of The University Of California Compositions and Methods for Modifying Dystrophin Genes
TW202100748A (zh) * 2019-04-14 2021-01-01 美國公爵大學 恢復肌縮蛋白功能之基於crispr/cas之基因組編輯組合物
AR118670A1 (es) * 2019-04-14 2021-10-20 Univ Duke Eliminación mediada por vectores aav de grandes puntos de mutación para el tratamiento de la distrofia muscular de duchenne
US20220235348A1 (en) * 2019-05-15 2022-07-28 Board Of Regents, The University Of Texas System Crispr methods for treating cancers
AU2020280107A1 (en) * 2019-05-23 2021-12-23 American Molecular Laboratories, Inc. Methods for detecting a level of H. pylori in a fecal sample
CN112266418A (zh) * 2019-07-08 2021-01-26 中国科学院微生物研究所 改进的基因组编辑系统及其应用
WO2021011936A2 (en) 2019-07-18 2021-01-21 University Of Rochester Cell-type selective immunoprotection of cells
JP2022548044A (ja) * 2019-09-13 2022-11-16 ザ リージェンツ オブ ザ ユニバーシティ オブ コロラド,ア ボディー コーポレイト 細胞および組織の若返りのための方法および組成物
CN114466930A (zh) * 2019-09-23 2022-05-10 维格内罗有限责任公司 反式激活目的基因的同源基因的方法和诊断疾病的体外方法
BR112022008856A2 (pt) 2019-11-06 2022-08-23 Association Inst De Myologie Terapia combinada para doenças musculares
JP2023507174A (ja) * 2019-12-16 2023-02-21 プレジデント アンド フェローズ オブ ハーバード カレッジ Dmd変異の修正のための方法及び組成物
WO2021222314A1 (en) * 2020-04-27 2021-11-04 Duke University Gene editing of satellite cells in vivo using aav vectors encoding muscle-specific promoters
EP4126224A1 (en) * 2020-04-27 2023-02-08 Duke University A high-throughput screening method to discover optimal grna pairs for crispr-mediated exon deletion
WO2021226558A1 (en) 2020-05-08 2021-11-11 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
EP4149622A1 (en) * 2020-05-12 2023-03-22 Myogene Bio LLC Immunosuppressive agents and viral delivery re-dosing methods for gene therapy
WO2022008557A2 (en) 2020-07-08 2022-01-13 UCB Biopharma SRL Modulation of cftr expression
CN115011598A (zh) * 2020-09-02 2022-09-06 西湖大学 杜氏肌营养不良症相关的外显子剪接增强子、sgRNA、基因编辑工具及应用
US20230357795A1 (en) 2020-09-15 2023-11-09 Research Institute At Nationwide Children's Hospital Aav-mediated homology-independent targeted integration gene editing for correction of diverse dmd mutations in patients with muscular dystrophy
IL302123A (en) * 2020-10-15 2023-06-01 Univ Northeastern Transgenic cells for increased collagen production
JP2023549456A (ja) * 2020-10-21 2023-11-27 デューク ユニバーシティ デュシェンヌ型筋ジストロフィーの処置のための大きい変異ホットスポットの二重aavベクター媒介欠失
CN112662674B (zh) * 2021-01-12 2023-04-11 广州瑞风生物科技有限公司 靶向编辑VEGFA基因外显子区域的gRNA及其应用
CN114854791A (zh) * 2021-02-04 2022-08-05 北京中因科技有限公司 一种新型CRISPR-Cas9系统载体及其应用
CN112779259B (zh) * 2021-03-18 2023-05-26 新疆畜牧科学院生物技术研究所(新疆畜牧科学院中国-澳大利亚绵羊育种研究中心) 一种用于精准编辑绵羊OCT4基因的sgRNA、扩增用引物和应用
US11771776B2 (en) 2021-07-09 2023-10-03 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating dystrophinopathies
US11638761B2 (en) 2021-07-09 2023-05-02 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating Facioscapulohumeral muscular dystrophy
EP4377459A2 (en) 2021-07-30 2024-06-05 Tune Therapeutics, Inc. Compositions and methods for modulating expression of frataxin (fxn)
AU2022318664A1 (en) 2021-07-30 2024-02-29 Tune Therapeutics, Inc. Compositions and methods for modulating expression of methyl-cpg binding protein 2 (mecp2)
CN113637658A (zh) * 2021-08-19 2021-11-12 中国农业科学院棉花研究所 基于dCas9-oToV的基因转录系统及其应用
EP4377465A1 (en) * 2021-09-10 2024-06-05 The Regents of the University of California Temperature regulated crispr-cas systems and methods of use thereof
WO2023050158A1 (zh) * 2021-09-29 2023-04-06 深圳先进技术研究院 一种实现多碱基编辑的方法
WO2023137471A1 (en) 2022-01-14 2023-07-20 Tune Therapeutics, Inc. Compositions, systems, and methods for programming t cell phenotypes through targeted gene activation
WO2023137472A2 (en) 2022-01-14 2023-07-20 Tune Therapeutics, Inc. Compositions, systems, and methods for programming t cell phenotypes through targeted gene repression
EP4215614A1 (en) 2022-01-24 2023-07-26 Dynacure Combination therapy for dystrophin-related diseases
WO2023212594A2 (en) * 2022-04-26 2023-11-02 University Of Massachusetts SINGLE pegRNA-MEDIATED LARGE INSERTIONS
WO2023247789A1 (en) 2022-06-24 2023-12-28 European Molecular Biology Laboratory Crispr-based modular tool for the specific introduction of epigenetic modifications at target loci
WO2023250511A2 (en) 2022-06-24 2023-12-28 Tune Therapeutics, Inc. Compositions, systems, and methods for reducing low-density lipoprotein through targeted gene repression
WO2024015881A2 (en) 2022-07-12 2024-01-18 Tune Therapeutics, Inc. Compositions, systems, and methods for targeted transcriptional activation
US20240067968A1 (en) 2022-08-19 2024-02-29 Tune Therapeutics, Inc. Compositions, systems, and methods for regulation of hepatitis b virus through targeted gene repression
WO2024064642A2 (en) 2022-09-19 2024-03-28 Tune Therapeutics, Inc. Compositions, systems, and methods for modulating t cell function

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9206016D0 (en) * 1992-03-19 1992-04-29 Sandoz Ltd Improvements in or relating to organic compounds
EP0646178A1 (en) 1992-06-04 1995-04-05 The Regents Of The University Of California expression cassette with regularoty regions functional in the mammmlian host
AU675702B2 (en) 1993-01-26 1997-02-13 Leslie R. Coney Compositions and methods for delivery of genetic material
US5593972A (en) 1993-01-26 1997-01-14 The Wistar Institute Genetic immunization
US5962428A (en) 1995-03-30 1999-10-05 Apollon, Inc. Compositions and methods for delivery of genetic material
WO2001083783A2 (en) 2000-04-28 2001-11-08 Genzyme Corporation In vivo loading of mhc
MXPA05004860A (es) 2002-11-04 2005-08-18 Advisys Inc Promotores musculares sinteticos con actividades que exceden las secuencias reguladoras de origen natural en las celulas cardiacas.
DK1563069T3 (da) * 2002-11-22 2012-07-23 Inst Clayton De La Rech Sammensætninger og systemer til genregulering
WO2005014815A1 (en) 2003-08-08 2005-02-17 President And Fellows Of Harvard College siRNA BASED METHODS FOR TREATING ALZHEIMER’S DISEASE
EP4272748A3 (en) * 2004-06-28 2024-03-27 The University Of Western Australia Antisense oligonucleotides for inducing exon skipping and methods of use thereof
CA2667974A1 (en) 2006-07-05 2008-01-10 The Scripps Research Institute Chimeric zinc finger recombinases optimized for catalysis by directed evolution
DK2203173T3 (en) * 2007-10-26 2016-02-29 Academisch Ziekenhuis Leiden Materials and methods for prevention of muscle diseases
CN103725717A (zh) 2008-10-17 2014-04-16 焦耳无限科技公司 微生物的乙醇生产
EP2206723A1 (en) 2009-01-12 2010-07-14 Bonas, Ulla Modular DNA-binding domains
WO2011036640A2 (en) 2009-09-24 2011-03-31 Cellectis Meganuclease reagents of uses thereof for treating genetic diseases caused by frame shift/non sense mutations
CA2777753C (en) * 2009-10-22 2020-02-04 Dow Agrosciences Llc Engineered zinc finger proteins targeting plant genes involved in fatty acid biosynthesis
BR112012020257A8 (pt) 2010-02-11 2018-02-14 Recombinetics Inc métodos e aparelhos para produzir artiodátilos transgênicos
EP2569424A1 (en) 2010-05-12 2013-03-20 Cellectis Meganuclease variants cleaving a dna target sequence from the dystrophin gene and uses thereof
EP3156062A1 (en) 2010-05-17 2017-04-19 Sangamo BioSciences, Inc. Novel dna-binding proteins and uses thereof
IT1400425B1 (it) 2010-06-08 2013-05-31 Amsterdam Molecular Therapeutics Bv Modified snrnas for use in therapy.
CN102643852B (zh) * 2011-02-28 2015-04-08 华东理工大学 光可控的基因表达系统
EP2729567B1 (en) 2011-07-08 2016-10-05 Cellectis Method for increasing the efficiency of double-strand break-induced mutagenssis
EP4043039A1 (en) * 2012-01-27 2022-08-17 BioMarin Technologies B.V. Rna modulating oligonucleotides with improved characteristics for the treatment of duchenne and becker muscular dystrophy
EP2834357B1 (en) 2012-04-04 2017-12-27 Life Technologies Corporation Tal-effector assembly platform, customized services, kits and assays
EP2841572B1 (en) 2012-04-27 2019-06-19 Duke University Genetic correction of mutated genes
US9738879B2 (en) 2012-04-27 2017-08-22 Duke University Genetic correction of mutated genes
US9890364B2 (en) 2012-05-29 2018-02-13 The General Hospital Corporation TAL-Tet1 fusion proteins and methods of use thereof
US8884771B2 (en) * 2012-08-01 2014-11-11 Microchip Technology Incorporated Smoke detection using change in permittivity of capacitor air dielectric
LT2890780T (lt) * 2012-08-29 2020-11-10 Sangamo Therapeutics, Inc. Būdai ir kompozicijos, skirti genetinės būklės gydymui
KR102121086B1 (ko) * 2012-11-01 2020-06-09 팩터 바이오사이언스 인크. 세포에서 단백질을 발현시키는 방법들과 생성물들
US20140140969A1 (en) * 2012-11-20 2014-05-22 Sangamo Biosciences, Inc. Methods and compositions for muscular dystrophies
KR102243092B1 (ko) * 2012-12-06 2021-04-22 시그마-알드리치 컴퍼니., 엘엘씨 Crispr-기초된 유전체 변형과 조절
EP4286404A3 (en) 2012-12-12 2024-02-14 The Broad Institute Inc. Crispr-cas component systems, methods and compositions for sequence manipulation
US8697359B1 (en) * 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
JP6663841B2 (ja) 2013-03-15 2020-03-13 ブリット,エドワード,ジェー. エネルギー変換デバイスならびにその作成および使用方法
CN105683376A (zh) * 2013-05-15 2016-06-15 桑格摩生物科学股份有限公司 用于治疗遗传病状的方法和组合物
US9267135B2 (en) 2013-06-04 2016-02-23 President And Fellows Of Harvard College RNA-guided transcriptional regulation
AU2014274840B2 (en) * 2013-06-05 2020-03-12 Duke University RNA-guided gene editing and gene regulation
BR112015031611A2 (pt) 2013-06-17 2017-12-12 Massachusetts Inst Technology aplicação, manipulação e otimização de sistemas, métodos e composições para direcionamento e modelação de doenças e distúrbios de células pós-mitóticas

Similar Documents

Publication Publication Date Title
JP2022101562A5 (ja)
JP7313055B2 (ja) Rnaガイド遺伝子編集及び遺伝子調節
EP3452498B1 (en) Crispr/cas-related compositions for treating duchenne muscular dystrophy
EP3487523B1 (en) Therapeutic applications of cpf1-based genome editing
JP2016521555A5 (ja)
US20230257723A1 (en) Crispr/cas9 therapies for correcting duchenne muscular dystrophy by targeted genomic integration
US20210340508A1 (en) Genome Editing by Directed Non-Homologous DNA Insertion Using a Retroviral Integrase-Cas9 Fusion Protein
WO2022226296A2 (en) Genome editing by directed non-homologous dna insertion using a retroviral integrase-cas fusion protein and methods of treatment