JP2016167584A - 半導体装置およびその作製方法 - Google Patents

半導体装置およびその作製方法 Download PDF

Info

Publication number
JP2016167584A
JP2016167584A JP2016033757A JP2016033757A JP2016167584A JP 2016167584 A JP2016167584 A JP 2016167584A JP 2016033757 A JP2016033757 A JP 2016033757A JP 2016033757 A JP2016033757 A JP 2016033757A JP 2016167584 A JP2016167584 A JP 2016167584A
Authority
JP
Japan
Prior art keywords
insulator
conductor
transistor
semiconductor
oxide semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016033757A
Other languages
English (en)
Other versions
JP6705660B2 (ja
Inventor
岡本 悟
Satoru Okamoto
悟 岡本
慎也 笹川
Shinya Sasagawa
慎也 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2016167584A publication Critical patent/JP2016167584A/ja
Priority to JP2020085023A priority Critical patent/JP6919020B2/ja
Application granted granted Critical
Publication of JP6705660B2 publication Critical patent/JP6705660B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/38Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions
    • H01L21/385Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1207Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with devices in contact with the semiconductor body, i.e. bulk/SOI hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/22Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIBVI compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/408Electrodes ; Multistep manufacturing processes therefor with an insulating layer with a particular dielectric or electrostatic property, e.g. with static charges or for controlling trapped charges or moving ions, or with a plate acting on the insulator potential or the insulator charges, e.g. for controlling charges effect or potential distribution in the insulating layer, or with a semi-insulating layer contacting directly the semiconductor surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

【課題】微細なトランジスタを提供する。または、寄生容量の小さいトランジスタを提供する。または、周波数特性の高いトランジスタを提供する。または、該トランジスタを有する半導体装置を提供する。【解決手段】酸化物半導体と、第1の導電体と、第2の導電体と、第3の導電体と、第1の絶縁体と、第2の絶縁体と、を有し、第1の導電体は、第1の絶縁体を介して、第1の導電体と酸化物半導体とが互いに重なる領域を有し、第2の絶縁体は、開口部を有し、開口部内において第1の絶縁体を介して、第2の絶縁体の側面と第1の導電体の側面は互いに重なる領域を有し、第2の導電体の表面の一部および第3の導電体の表面の一部は、開口部内で第1の絶縁体と接し、酸化物半導体は、酸化物半導体と第2の導電体と互いに重なる領域と、酸化物半導体と第3の導電体と互いに重なる領域と、を有する半導体装置。【選択図】図1

Description

本発明は、例えば、トランジスタおよび半導体装置、ならびにそれらの製造方法に関する。または、本発明は、例えば、表示装置、発光装置、照明装置、蓄電装置、記憶装置、プロセッサ、電子機器に関する。または、表示装置、液晶表示装置、発光装置、記憶装置、電子機器の製造方法に関する。または、半導体装置、表示装置、液晶表示装置、発光装置、記憶装置、電子機器の駆動方法に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。表示装置、発光装置、照明装置、電気光学装置、半導体回路および電子機器は、半導体装置を有する場合がある。
近年は、酸化物半導体を用いたトランジスタが注目されている。酸化物半導体は、スパッタリング法などを用いて成膜できるため、大型の表示装置を構成するトランジスタの半導体に用いることができる。また、酸化物半導体を用いたトランジスタは、非晶質シリコンを用いたトランジスタの生産設備の一部を改良して利用することが可能であるため、設備投資を抑えられるメリットもある。
また、酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さいことが知られている。例えば、酸化物半導体を用いたトランジスタのリーク電流が低いという特性を応用した低消費電力のCPUなどが開示されている(特許文献1参照。)。
また、酸化物半導体を用いたトランジスタで、ゲート電極を開口部に埋め込んで作製する方法などが開示されている(特許文献2および特許文献3参照。)。
特開2012−257187号公報 特開2014−241407号公報 特開2014−240833号公報
微細なトランジスタを提供することを課題の一とする。または、寄生容量の小さいトランジスタを提供することを課題の一とする。または、周波数特性の高いトランジスタを提供することを課題の一とする。または、電気特性の良好なトランジスタを提供することを課題の一とする。または、電気特性の安定したトランジスタを提供することを課題の一とする。または、オフ時の電流の小さいトランジスタを提供することを課題の一とする。または、新規なトランジスタを提供することを課題の一とする。または、該トランジスタを有する半導体装置を提供することを課題の一とする。または、動作速度の速い半導体装置を提供することを課題の一とする。または、新規な半導体装置を提供することを課題の一とする。または、該半導体装置を有するモジュールを提供することを課題の一とする。または、該半導体装置、または該モジュールを有する電子機器を提供することを課題の一とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
(1)
本発明の一態様は、酸化物半導体と、第1の導電体と、第2の導電体と、第3の導電体と、第1の絶縁体と、第2の絶縁体と、を有し、第1の導電体は、第1の絶縁体を介して、第1の導電体と酸化物半導体とが互いに重なる領域を有し、第2の絶縁体は、開口部を有し、開口部内において第1の絶縁体を介して、第2の絶縁体の側面と第1の導電体の側面は互いに重なる領域を有し、第2の導電体の表面の一部および第3の導電体の表面の一部は、開口部内で第1の絶縁体と接し、酸化物半導体は、酸化物半導体と第2の導電体と互いに重なる領域と、酸化物半導体と第3の導電体と互いに重なる領域と、を有することを特徴とする半導体装置である。
(2)
本発明の一態様は、第1の導電体は、酸素を透過しにくい導電体を含む多層膜であることを特徴とする(1)に記載の半導体装置である。
である。
(3)
または、本発明の一態様は、第2の導電体および第3の導電体は、酸素を透過しにくい導電体を含む多層膜であることを特徴とする(1)または(2)に記載の半導体装置である。
(4)
または、本発明の一態様は、第3の絶縁体は、酸化物半導体と互いに重なる領域を有し、第3の絶縁体は、酸化物半導体の有する酸素以外の主成分元素の少なくとも一を有することを特徴とする(1)乃至(3)のいずれか一に記載の半導体装置である。
(5)
または、本発明の一態様は、第1の導電体は、トランジスタのゲート電極として機能する領域を有し、トランジスタは、ゲート線幅が、5nm以上60nm以下であることを特徴とする(1)乃至(4)のいずれか一に記載の半導体装置である。
(6)
または、本発明の一態様は、第1の絶縁体上に第2の絶縁体を成膜し、第2の絶縁体上に酸化物半導体を成膜し、酸化物半導体上に第1の導電体を成膜し、第1の導電体、酸化物半導体および第2の絶縁体の一部をエッチングすることで第1の導電体、酸化物半導体および第2の絶縁体を有する多層膜を形成し、第1の絶縁体上および多層膜上に第3の絶縁体を成膜し、第3の絶縁体および第1の導電体に、酸化物半導体を露出する開口部を形成することで第1の導電体を第1の導電体層と第2の導電体層と、に分離し、開口部を広げるように第3の絶縁体の一部をエッチングすることで、第1の導電体層の上面、および第2の導電体層の上面を露出させ、第3の絶縁体上、第1の導電体層上、第2の導電体層上および酸化物半導体上に第4の絶縁体を成膜し、第4の絶縁体上に第5の絶縁体を成膜し、第5の絶縁体上に第3の導電体を成膜し、第3の導電体、第5の絶縁体および第4の絶縁体を化学的機械研磨することで第3の絶縁体を露出し、第2絶縁体および第4の絶縁体は、酸化物半導体の有する酸素以外の主成分元素の少なくとも一を有することを特徴とする半導体装置の作製方法である。
(7)
または、本発明の一態様は、第1の絶縁体上に第2の絶縁体を成膜し、第2の絶縁体上に酸化物半導体を成膜し、酸化物半導体上に第1の導電体を成膜し、第1の導電体、酸化物半導体および第2の絶縁体の一部をエッチングすることで第1の導電体、酸化物半導体および第2の絶縁体を有する多層膜を形成し、第1の絶縁体上および多層膜上に第3の絶縁体を成膜し、第3の絶縁体および第1の導電体に、酸化物半導体を露出する開口部を形成することで第1の導電体を第1の導電体層と第2の導電体層と、に分離し、開口部を広げるように第3の絶縁体の一部をエッチングすることで、第1の導電体層の上面、および第2の導電体層の上面を露出させ、第3の絶縁体上、第1の導電体層上、第2の導電体層上および酸化物半導体上に第4の絶縁体を成膜し、第4の絶縁体上に第5の絶縁体を成膜し、第5の絶縁体上に第3の導電体を成膜し、第3の導電体、第5の絶縁体および第4の絶縁体を化学的機械研磨することで第3の絶縁体を露出し、第3の絶縁体上および第3の導電体上に、酸素を有するプラズマを用いて第6の絶縁体を成膜することで、プラズマ中の酸素を過剰酸素として第3の絶縁体中に添加し、熱処理を行うことで、過剰酸素を酸化物半導体に移動させ、第2絶縁体および第4の絶縁体は、酸化物半導体の有する酸素以外の主成分元素の少なくとも一を有することを特徴とする半導体装置の作製方法である。
(8)
または、本発明の一態様は、第1の絶縁体上に第2の絶縁体を成膜し、第2の絶縁体上に酸化物半導体を成膜し、酸化物半導体上に第1の導電体を成膜し、第1の導電体、酸化物半導体および第2の絶縁体の一部をエッチングすることで第1の導電体、酸化物半導体および第2の絶縁体を有する多層膜を形成し、第1の絶縁体上および多層膜上に第3の絶縁体を成膜し、第3の絶縁体に、多層膜を露出する開口部と、第1の絶縁体を露出する開口部と、を形成し、第1の絶縁体上、第3の絶縁体上、第3の絶縁体の側面、多層膜上および多層膜の側面に有機膜を成膜し、有機膜を第3の絶縁体の側面および多層膜の側面の有機膜を残してエッチングし、第1の導電体を少なくとも第3の絶縁体の側面に残った有機膜をマスクとしてエッチングすることで第1の導電体を第1の導電体層と第2の導電体層と、に分離し、第3の絶縁体の側面および多層膜の側面の有機膜を除去することで第1の導電体層の表面および第2の導電体層表面に達する開口部を形成し、第3の絶縁体上、第1の導電体層上、第2の導電体層上および酸化物半導体上に第4の絶縁体を成膜し、第4の絶縁体上に第5の絶縁体を成膜し、第5の絶縁体上に第3の導電体を成膜し、第3の導電体、第5の絶縁体および第4の絶縁体を化学的機械研磨することで第3の絶縁体を露出し、第3の絶縁体上および第3の導電体上に第6の絶縁体を成膜し、第2絶縁体および第4の絶縁体は、酸化物半導体の有する酸素以外の主成分元素の少なくとも一を有することを特徴とする半導体装置の作製方法である。
(9)
または、本発明の一態様は、第1の絶縁体上に第2の絶縁体を成膜し、第2の絶縁体上に酸化物半導体を成膜し、酸化物半導体上に第1の導電体を成膜し、第1の導電体、酸化物半導体および第2の絶縁体の一部をエッチングすることで第1の導電体、酸化物半導体および第2の絶縁体を有する多層膜を形成し、第1の絶縁体上および多層膜上に第3の絶縁体を成膜し、第3の絶縁体に、多層膜を露出する開口部と、第1の絶縁体を露出する開口部と、を形成し、第1の絶縁体上、第3の絶縁体上、第3の絶縁体の側面、多層膜上および多層膜の側面に有機膜を成膜し、有機膜を第3の絶縁体の側面および多層膜の側面の有機膜を残してエッチングし、第1の導電体を少なくとも第3の絶縁体の側面に残った有機膜をマスクとしてエッチングすることで第1の導電体を第1の導電体層と第2の導電体層と、に分離し、第3の絶縁体の側面および多層膜の側面の有機膜を除去することで第1の導電体層の表面および第2の導電体層表面に達する開口部を形成し、第3の絶縁体上、第1の導電体層上、第2の導電体層上および酸化物半導体上に第4の絶縁体を成膜し、第4の絶縁体上に第5の絶縁体を成膜し、第5の絶縁体上に第3の導電体を成膜し、第3の導電体、第5の絶縁体および第4の絶縁体を化学的機械研磨することで第3の絶縁体を露出し、第3の絶縁体上および第3の導電体上に、酸素を有するプラズマを用いて第6の絶縁体を成膜することで、プラズマ中の酸素を過剰酸素として第3の絶縁体中に添加し、熱処理を行うことで、過剰酸素を酸化物半導体に移動させ、第2絶縁体および第4の絶縁体は、酸化物半導体の有する酸素以外の主成分元素の少なくとも一を有することを特徴とする半導体装置の作製方法である。
(10)
または、本発明の一態様は、第1の導電体上に第1の導電体よりも酸素を透過しにくい第4の導電体を成膜することを特徴とする(6)乃至(9)のいずれか一に記載の半導体装置の作製方法である。
(11)
または、本発明の一態様は、第3の導電体下には、第3の導電体よりも酸素を透過しにくい第5の導電体を成膜することを特徴とする(6)乃至(10)のいずれか一に記載の半導体装置の作製方法である。
(12)
または、本発明の一態様は、有機膜は、炭素およびハロゲンを有するガスを含むガスによるプラズマによって成膜することを特徴とする(8)乃至(11)のいずれか一に記載の半導体装置の作製方法である。
(13)
または、本発明の一態様は、第6の絶縁体は、第1の絶縁体、第3の絶縁体および第5の絶縁体よりも酸素を透過し難い絶縁体を成膜することを特徴とする(6)乃至(12)のいずれか一に記載の半導体装置の作製方法である。
なお、本発明の一態様に係る半導体装置において、酸化物半導体を他の半導体に置き換えても構わない。
微細なトランジスタを提供することができる。または、寄生容量の小さいトランジスタを提供することができる。または、周波数特性の高いトランジスタを提供することができる。または、電気特性の良好なトランジスタを提供することができる。または、電気特性の安定したトランジスタを提供することができる。または、オフ時の電流の小さいトランジスタを提供することができる。または、新規なトランジスタを提供することができる。または、該トランジスタを有する半導体装置を提供することができる。または、動作速度の速い半導体装置を提供することができる。または、新規な半導体装置を提供することができる。または、該半導体装置を有するモジュールを提供することができる。または、該半導体装置、または該モジュールを有する電子機器を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタの一部を示す断面図。 本発明の一態様に係るトランジスタの一部を示す断面図。 本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタを示す断面図。 CAAC−OSの断面におけるCs補正高分解能TEM像、およびCAAC−OSの断面模式図。 CAAC−OSの平面におけるCs補正高分解能TEM像。 CAAC−OSおよび単結晶酸化物半導体のXRDによる構造解析を説明する図。 CAAC−OSの電子回折パターンを示す図。 In−Ga−Zn酸化物の電子照射による結晶部の変化を示す図。 本発明の一態様に係るトランジスタの作製方法を示す上面図および断面図。 本発明の一態様に係るトランジスタの作製方法を示す上面図および断面図。 本発明の一態様に係るトランジスタの作製方法を示す上面図および断面図。 本発明の一態様に係るトランジスタの作製方法を示す上面図および断面図。 本発明の一態様に係るトランジスタの作製方法を示す上面図および断面図。 本発明の一態様に係るトランジスタの作製方法を示す上面図および断面図。 本発明の一態様に係るトランジスタの作製方法を示す上面図および断面図。 本発明の一態様に係るトランジスタの作製方法を示す上面図および断面図。 本発明の一態様に係るトランジスタの作製方法を示す上面図および断面図。 本発明の一態様に係るトランジスタの作製方法を示す上面図および断面図。 本発明の一態様に係るトランジスタの作製方法を示す上面図および断面図。 本発明の一態様に係るトランジスタの作製方法を示す上面図および断面図。 本発明の一態様に係るトランジスタの作製方法を示す上面図および断面図。 本発明の一態様に係るトランジスタの作製方法を示す上面図および断面図。 本発明の一態様に係るトランジスタの作製方法を示す上面図および断面図。 本発明の一態様に係るトランジスタの作製方法を示す上面図および断面図。 本発明の一態様に係るトランジスタの作製方法を示す上面図および断面図。 本発明の一態様に係るトランジスタの作製方法を示す上面図および断面図。 本発明の一態様に係るトランジスタの作製方法を示す上面図および断面図。 本発明の一態様に係るトランジスタの作製方法を示す上面図および断面図。 本発明の一態様に係るトランジスタの作製方法を示す上面図および断面図。 本発明の一態様に係るトランジスタの作製方法を示す上面図および断面図。 本発明の一態様に係るトランジスタの作製方法を示す上面図および断面図。 本発明の一態様に係る記憶装置の回路図。 本発明の一態様に係る半導体装置を示す断面図。 本発明の一態様に係る半導体装置を示す断面図。 本発明の一態様に係る半導体装置を示す回路図および断面図。 本発明の一態様に係るCPUを示すブロック図。 本発明の一態様に係る記憶素子の回路図。 撮像装置を示す平面図。 撮像装置の画素を示す平面図。 撮像装置を示す断面図。 撮像装置を示す断面図。 RFタグの構成例を説明する図。 本発明に係る、半導体装置を示す回路図、上面図および断面図。 本発明に係る、半導体装置を示す回路図および断面図。 表示モジュールを説明する図。 リードフレーム型のインターポーザを用いたパッケージの断面構造を表す斜視図。 本発明の一態様に係る電子機器を示す図。 本発明の一態様に係る電子機器を示す図。 本発明の一態様に係る電子機器を示す図。 本発明に係る、RFタグの使用例。
本発明の実施の形態について、図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、その形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。また、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、図面を用いて発明の構成を説明するにあたり、同じものを指す符号は異なる図面間でも共通して用いる。なお、同様のものを指す際にはハッチパターンを同じくし、特に符号を付さない場合がある。
なお、図において、大きさ、膜(層)の厚さ、または領域は、明瞭化のために誇張されている場合がある。
なお、本明細書において、例えば、物体の形状を「径」、「粒径」、「大きさ」、「サイズ」、「幅」などで規定する場合、物体が収まる最小の立方体における一辺の長さ、または物体の一断面における円相当径と読み替えてもよい。物体の一断面における円相当径とは、物体の一断面と等しい面積となる正円の直径をいう。
なお、電圧は、ある電位と、基準の電位(例えば接地電位(GND)またはソース電位)との電位差のことを示す場合が多い。よって、電圧を電位と言い換えることが可能である。
なお、第1、第2として付される序数詞は便宜的に用いるものであり、工程順または積層順を示すものではない。そのため、例えば、「第1の」を「第2の」又は「第3の」などと適宜置き換えて説明することができる。また、本明細書等に記載されている序数詞と、本発明の一態様を特定するために用いられる序数詞は一致しない場合がある。
なお、半導体の不純物とは、例えば、半導体を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物である。不純物が含まれることにより、例えば、半導体のDOS(Density of State)が形成されることや、キャリア移動度が低下することや、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導体である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第14族元素、第15族元素、主成分以外の遷移金属などがあり、特に、例えば、水素(水にも含まれる)、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、窒素などがある。酸化物半導体の場合、例えば水素などの不純物の混入によって酸素欠損を形成する場合がある。また、半導体がシリコン膜である場合、半導体の特性を変化させる不純物としては、例えば、酸素、水素を除く第1族元素、第2族元素、第13族元素、第15族元素などがある。
なお、チャネル長とは、例えば、トランジスタの上面図において、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが互いに重なる領域、またはチャネルが形成される領域における、ソース(ソース領域またはソース電極)とドレイン(ドレイン領域またはドレイン電極)との間の距離をいう。なお、一つのトランジスタにおいて、チャネル長が全ての領域で同じ値をとるとは限らない。即ち、一つのトランジスタのチャネル長は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル長は、チャネルの形成される領域における、いずれか一の値、最大値、最小値または平均値とする。
チャネル幅とは、例えば、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが互いに重なる領域、またはチャネルが形成される領域における、ソースとドレインとが向かい合っている部分の長さをいう。なお、一つのトランジスタにおいて、チャネル幅がすべての領域で同じ値をとるとは限らない。即ち、一つのトランジスタのチャネル幅は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル幅は、チャネルの形成される領域における、いずれか一の値、最大値、最小値または平均値とする。
なお、トランジスタの構造によっては、実際にチャネルの形成される領域におけるチャネル幅(以下、実効的なチャネル幅と呼ぶ。)と、トランジスタの上面図において示されるチャネル幅(以下、見かけ上のチャネル幅と呼ぶ。)と、が異なる場合がある。例えば、立体的な構造を有するトランジスタでは、実効的なチャネル幅が、トランジスタの上面図において示される見かけ上のチャネル幅よりも大きくなり、その影響が無視できなくなる場合がある。例えば、微細かつ立体的な構造を有するトランジスタでは、半導体の側面に形成されるチャネル形成領域の割合が大きくなる場合がある。その場合は、上面図において示される見かけ上のチャネル幅よりも、実際にチャネルの形成される実効的なチャネル幅の方が大きくなる。
ところで、立体的な構造を有するトランジスタにおいては、実効的なチャネル幅の、実測による見積もりが困難となる場合がある。例えば、設計値から実効的なチャネル幅を見積もるためには、半導体の形状が既知という仮定が必要である。したがって、半導体の形状が正確にわからない場合には、実効的なチャネル幅を正確に測定することは困難である。
そこで、本明細書では、トランジスタの上面図において、半導体とゲート電極とが互いに重なる領域における、ソースとドレインとが向かい合っている部分の長さである見かけ上のチャネル幅を、「囲い込みチャネル幅(SCW:Surrounded Channel Width)」と呼ぶ場合がある。また、本明細書では、単にチャネル幅と記載した場合には、囲い込みチャネル幅または見かけ上のチャネル幅を指す場合がある。または、本明細書では、単にチャネル幅と記載した場合には、実効的なチャネル幅を指す場合がある。なお、チャネル長、チャネル幅、実効的なチャネル幅、見かけ上のチャネル幅、囲い込みチャネル幅などは、断面TEM像などを取得して、その画像を解析することなどによって、値を決定することができる。
なお、トランジスタの電界効果移動度や、チャネル幅当たりの電流値などを計算して求める場合、囲い込みチャネル幅を用いて計算する場合がある。その場合には、実効的なチャネル幅を用いて計算する場合とは異なる値をとる場合がある。
なお、本明細書において、AがBより迫り出した形状を有すると記載する場合、上面図または断面図において、Aの少なくとも一端が、Bの少なくとも一端よりも外側にある形状を有することを示す場合がある。したがって、AがBより迫り出した形状を有すると記載されている場合、例えば上面図において、Aの一端が、Bの一端よりも外側にある形状を有すると読み替えることができる。
なお、本明細書において、「平行」とは、二つの直線が−10°以上10°以下の角度で配置されている状態をいう。したがって、−5°以上5°以下の場合も含まれる。また、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう。したがって、85°以上95°以下の場合も含まれる。
なお、本明細書において、結晶が三方晶または菱面体晶である場合、六方晶系として表す。
(実施の形態1)
<トランジスタ構造1>
以下では、本発明の一態様に係る半導体装置が有するトランジスタの構造について説明する。
図1(A)、(B)および(C)は、本発明の一態様に係る半導体装置の上面図および断面図である。図1(A)は上面図である。図1(B)は、図1(A)に示す一点鎖線A1−A2に対応する断面図である。図1(C)は、図1(A)に示す一点鎖線A3−A4に対応する断面図である。なお、図1(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。また、図1(B)および(C)中には過剰酸素の経路を矢印で記した。
図1(B)および(C)において、本トランジスタは、基板400上の絶縁体402と、絶縁体402上の絶縁体406aと、絶縁体406a上の半導体406bと、半導体406bの上面と接する領域を有する導電体416a1および導電体416a2と、導電体416a1の上面および導電体416a2の上面と接する絶縁体410と、半導体406bの上面と接する絶縁体406cと、絶縁体406c上の絶縁体412と、絶縁体412および絶縁体406cを介して半導体406b上に配置する導電体404と、絶縁体410上、導電体404上、絶縁体412上および導電体404c上の絶縁体408と、絶縁体408を通り導電体404に達する開口部と、絶縁体408および絶縁体410を通り導電体416a1に達する開口部と、絶縁体408および絶縁体410を通り導電体416a2に達する開口部と、それぞれの開口部に埋め込まれた導電体437、導電体431および導電体429と、絶縁体408上の導電体437と接する領域を有する導電体438と、絶縁体408上の導電体431と接する領域を有する導電体432と、絶縁体408上の導電体429と接する領域を有する導電体430と、を有する。
なお、半導体406bは、半導体406bの上面と導電体416a1および導電体416a2と接する領域407を有する。
本トランジスタにおいて、導電体404はゲート電極としての機能を有する。また、導電体404は、酸素を透過しにくい機能を有する導電体と積層構造とすることができる。例えば酸素を透過しにくい導電体を下層に成膜することで導電体404の酸化による電気抵抗値の増加を防ぐことができる。絶縁体412はゲート絶縁体としての機能を有する。
また、導電体416a1および導電体416a2は、ソース電極またはドレイン電極としての機能を有する。また、導電体416a1および導電体416a2は、酸素を透過しにくい機能を有する導電体と積層構造とすることができる。例えば酸素を透過しにくい導電体を上層に成膜することで導電体416a1および導電体416a2の酸化による電気抵抗値の増加を防ぐことができる。なお、導電体の電気抵抗値の測定は、2端子法などを用いて測定することができる。
導電体404に印加する電位によって、半導体406bの抵抗を制御することができる。即ち、導電体404に印加する電位によって、導電体416a1と導電体416a2との間の導通・非導通を制御することができる。
図1(B)および(C)に示すように、半導体406bの上面は、導電体416a1および導電体416a2と接する。また、ゲート電極としての機能を有する導電体404の電界によって、絶縁体406aおよび半導体406bを電気的に取り囲むことができる。ゲート電極の電界によって、半導体を電気的に取り囲むトランジスタの構造を、surrounded channel(s−channel)構造とよぶ。そのため、半導体406bの全体にチャネルが形成される場合がある。s−channel構造では、トランジスタのソース−ドレイン間に大電流を流すことができ、導通時の電流(オン電流)を大きくすることができる。また、絶縁体406aおよび半導体406bが、導電体404の電界によって取り囲まれていることから、非導通時の電流(オフ電流)を小さくすることができる。
本トランジスタは、ゲート電極として機能する領域が、絶縁体410などによって形成される開口部を埋めるように自己整合(self align)的に形成されるので、TGSA s−channel FET(Trench Gate Self Aligned s−channel FET)と呼ぶこともできる。
図2(A)および(B)は、本トランジスタの中央部を拡大したものである。図2(A)において、ゲート電極としての機能を有する導電体404の底面が、絶縁体412および絶縁体406cを介して、半導体406bの上面と平行に面する領域の長さをゲート線幅404wとして示す。また、絶縁体410の開口部において絶縁体406cと導電体416a1の上面と接する領域の導電体416a1の底面と平行な長さを第1の開口部幅416w1として示す。また、絶縁体410の開口部において絶縁体406cと導電体416a2の上面と接する領域の導電体416a2の底面と平行な長さを第2の開口部幅416w2として示す。本発明の一態様に係るトランジスタは、第1の開口部幅416w1および第2の開口部幅416w2の長さによらず、半導体406bに達する開口部の長さは変わらない。また、半導体406bに達する開口部よりもゲート線幅404wを小さくすることができる。即ち、ゲート線幅404wを最小加工寸法よりも小さくすることができる。具体的には、ゲート線幅404wを、5nm以上60nm以下、好ましくは5nm以上30nm以下とすることができる。
なお、ゲート電極からの電界が他の導電体によって遮られると、トランジスタのスイッチング特性が悪化する場合がある。本トランジスタは、絶縁体406cおよび絶縁体412の膜厚によって導電体404と、導電体416a1および導電体416a2と、の位置関係が変化する。即ち、ソース電極およびドレイン電極としての機能を有する導電体416a1および導電体416a2の膜厚とゲート絶縁体としての機能を有する絶縁体412の膜厚の関係は、本トランジスタの電気特性に影響をおよぼすことがわかる。
図2(B)において導電体416a1と、導電体416a2の間の領域における絶縁体412の厚さを412hと表す。また、導電体416a1の厚さまたは導電体416a2の厚さを416hと表す。412hの厚さが416hの厚さ以下とすることで、ゲート電極からの電界がチャネル形成領域全体に掛かるのでトランジスタの動作が良好となり好ましい。412hの厚さは、30nm以下、好ましくは10nm以下とする。
また、本トランジスタの構成は、416hの厚さを小さい値とすることが可能である。導電体416a1の端部は絶縁体406cおよび絶縁体412を介して、導電体404と向かい合う領域を有する。または、導電体416a2の端部は絶縁体406cおよび絶縁体412を介して、導電体404と向かい合う領域を有する。これらの領域付近を図2(B)中の点線の丸で囲った部分で示すが、これらの領域の面積はより小さく抑えられる。したがって本トランジスタは、これらの領域の寄生容量は小さく抑えられている構成となっている。
なお、トランジスタを、水素などの不純物および酸素をブロックする機能を有する絶縁体で囲うことによって、トランジスタの電気特性を安定にすることができる。例えば絶縁体408として、水素などの不純物および酸素をブロックする機能を有する絶縁体を用いればよい。
水素などの不純物および酸素をブロックする機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。
また、例えば、絶縁体408としては、酸化アルミニウム、酸化マグネシウム、窒化酸化シリコン、窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウムまたは酸化タンタルを用いればよい。なお、絶縁体408は、酸化アルミニウムを有することが好ましい。例えば、絶縁体408は酸素を有するプラズマを用いて成膜すると絶縁体408の下地層となる絶縁体410へ酸素を添加することができる。または、絶縁体412の側面に酸素を添加することもできる。添加された酸素は、絶縁体410中または絶縁体412中で過剰酸素となる。絶縁体408が酸化アルミニウムを有することで、半導体406bに水素などの不純物が混入することを抑制することができる。また、例えば、絶縁体408が酸化アルミニウムを有することで、上述の絶縁体410および絶縁体412へ添加した過剰酸素の外方拡散を低減することができる。
絶縁体402としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。例えば、絶縁体402としては、酸化シリコンまたは酸化窒化シリコンを有することが好ましい。
なお、絶縁体410は、比誘電率の低い絶縁体を有することが好ましい。例えば、絶縁体410は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンまたは樹脂などを有することが好ましい。または、絶縁体410は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコンまたは空孔を有する酸化シリコンと、樹脂と、の積層構造を有することが好ましい。酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、樹脂と組み合わせることで、熱的に安定かつ比誘電率の低い積層構造とすることができる。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネートまたはアクリルなどがある。
絶縁体412としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。例えば、絶縁体412としては、酸化シリコンまたは酸化窒化シリコンを有することが好ましい。
なお、絶縁体412は、比誘電率の高い絶縁体を有することが好ましい。例えば、絶縁体412は、酸化ガリウム、酸化ハフニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、またはシリコンおよびハフニウムを有する酸化窒化物などを有することが好ましい。または、絶縁体412は、酸化シリコンまたは酸化窒化シリコンと、比誘電率の高い絶縁体と、の積層構造を有することが好ましい。酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため、比誘電率の高い絶縁体と組み合わせることで、熱的に安定かつ比誘電率の高い積層構造とすることができる。例えば、酸化アルミニウム、酸化ガリウムまたは酸化ハフニウムを絶縁体406c側に有することで、酸化シリコンまたは酸化窒化シリコンに含まれるシリコンが、半導体406bに混入することを抑制することができる。また、例えば、酸化シリコンまたは酸化窒化シリコンを絶縁体406c側に有することで、酸化アルミニウム、酸化ガリウムまたは酸化ハフニウムと、酸化シリコンまたは酸化窒化シリコンと、の界面にトラップセンターが形成される場合がある。該トラップセンターは、電子を捕獲することでトランジスタのしきい値電圧をプラス方向に変動させることができる場合がある。
導電体416a1および導電体416a2としては、例えば、ホウ素、窒素、酸素、フッ素、シリコン、リン、アルミニウム、チタン、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、モリブデン、ルテニウム、プラチナ、銀、インジウム、スズ、タンタルおよびタングステンを一種以上含む導電体を、単層で、または積層で用いればよい。例えば、合金膜や化合物膜であってもよく、アルミニウムを含む導電体、銅およびチタンを含む導電体、銅およびマンガンを含む導電体、インジウム、スズおよび酸素を含む導電体、またはチタンおよび窒素を含む導電体などを用いてもよい。または、酸素を透過しにくい機能を有する窒素を含むタンタルおよび窒素を含む導電体との積層膜とすることが好ましい。
導電体404としては、例えば、ホウ素、窒素、酸素、フッ素、シリコン、リン、アルミニウム、チタン、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、モリブデン、ルテニウム、銀、インジウム、スズ、タンタルおよびタングステンを一種以上含む導電体を、単層で、または積層で用いればよい。例えば、合金膜や化合物膜であってもよく、アルミニウムを含む導電体、銅およびチタンを含む導電体、銅およびマンガンを含む導電体、インジウム、スズおよび酸素を含む導電体、またはチタンおよび窒素を含む導電体などを用いてもよい。または、酸素を透過しにくい機能を有する窒素を含むタンタルおよび窒素を含む導電体との積層膜とすることが好ましい。
導電体429、導電体430、導電体431、導電体432、導電体437および導電体438としては、例えば、ホウ素、窒素、酸素、フッ素、シリコン、リン、アルミニウム、チタン、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、モリブデン、ルテニウム、銀、インジウム、スズ、タンタルおよびタングステンを一種以上含む導電体を、単層で、または積層で用いればよい。例えば、合金膜や化合物膜であってもよく、アルミニウムを含む導電体、銅およびチタンを含む導電体、銅およびマンガンを含む導電体、インジウム、スズおよび酸素を含む導電体、またはチタンおよび窒素を含む導電体などを用いてもよい。または、酸素を透過しにくい機能を有する窒素を含むタンタルおよび窒素を含む導電体との積層膜とすることが好ましい。
半導体406bとしては、酸化物半導体を用いることが好ましい。ただし、シリコン(歪シリコン含む)、ゲルマニウム、シリコンゲルマニウム、炭化シリコン、ガリウムヒ素、アルミニウムガリウムヒ素、インジウムリン、窒化ガリウムまたは有機半導体などを用いても構わない場合がある。
絶縁体406aおよび絶縁体406cとしては、半導体406bを構成する酸素以外の元素一種以上、または二種以上から構成される酸化物を用いることが望ましい。ただし、シリコン(歪シリコン含む)、ゲルマニウム、シリコンゲルマニウム、炭化シリコン、ガリウムヒ素、アルミニウムガリウムヒ素、インジウムリン、窒化ガリウムまたは有機半導体などを用いても構わない場合がある。
<トランジスタ構造2>
ここでは、図1と異なる構成のトランジスタについて、図4を用いて説明する。図4(A)、(B)および(C)は、本発明の一態様に係る半導体装置の上面図および断面図である。図4(A)は上面図である。図4(B)は、図4(A)に示す一点鎖線A1−A2に対応する断面図である。図4(C)は、図4(A)に示す一点鎖線A3−A4に対応する断面図である。なお、図4(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
図4(B)および(C)において、本トランジスタは、基板400上の絶縁体401と、絶縁体401上の導電体310と、絶縁体401の上面、導電体310の上面および導電体310の側面と接する絶縁体301と、絶縁体301上の絶縁体303と、絶縁体303上の絶縁体402と、絶縁体402上の絶縁体406aと、絶縁体406a上の半導体406bと、半導体406bの上面と接する領域を有する導電体416a1および導電体416a2と、導電体416a1の上面および導電体416a2の上面と接する絶縁体410と、半導体406bの上面と接する絶縁体406cと、絶縁体406c上の絶縁体412と、絶縁体412および絶縁体406cを介して半導体406b上に配置する導電体404と、絶縁体410上、導電体404上、絶縁体412上および絶縁体406c上の絶縁体408と、絶縁体408を通り導電体404に達する開口部と、絶縁体408および絶縁体410を通り導電体416a1に達する開口部と、絶縁体408および絶縁体410を通り導電体416a2に達する開口部と、それぞれの開口部に埋め込まれた導電体437、導電体431および導電体429と、絶縁体408上の導電体437と接する領域を有する導電体438と、絶縁体408上の導電体431と接する領域を有する導電体432と、絶縁体408上の導電体429と接する領域を有する導電体430と、を有する。
なお、半導体406bは、半導体406bの上面と導電体416a1および導電体416a2と接する領域407を有する。
本トランジスタにおいて、導電体404は第1のゲート電極としての機能を有する。また、導電体404は、酸素を透過しにくい機能を有する導電体と積層構造とすることができる。例えば酸素を透過しにくい導電体を下層に成膜することで導電体404の酸化による電気抵抗値の増加を防ぐことができる。絶縁体412はゲート絶縁体としての機能を有する。
また、導電体416a1および導電体416a2は、ソース電極またはドレイン電極としての機能を有する。また、導電体416a1および導電体416a2は、酸素を透過しにくい機能を有する導電体と積層構造とすることができる。例えば酸素を透過しにくい導電体を上層に成膜することで導電体416a1および導電体416a2の酸化による電気抵抗値の増加を防ぐことができる。
導電体404に印加する電位によって、半導体406bの抵抗を制御することができる。即ち、導電体404に印加する電位によって、導電体416a1と導電体416a2との間の導通・非導通を制御することができる。
また、導電体310は、第2のゲート電極としての機能を有する。また、導電体310は酸素を透過しにくい機能を有する導電膜を含む多層膜とすることもできる。酸素を透過しにくい機能を有する導電膜を含む多層膜とすることで導電体310の酸化による導電率の低下を防ぐことができる。絶縁体301、絶縁体303および絶縁体402は第2のゲート絶縁体としての機能を有する。導電体310へ印加する電位によって、本トランジスタのしきい値電圧を制御することができる。また、導電体310に印加する電位により、絶縁体303へ電子を注入させ本トランジスタのしきい値電圧を制御することができる。さらに第1のゲート電極と第2のゲート電極を電気的に接続することで、導通時の電流(オン電流)を大きくすることができる。なお、第1のゲート電極の機能と、第2のゲート電極の機能と、が入れ替わっても構わない。
図9に第1のゲート電極と第2のゲート電極を電気的に接続した一例を示す。絶縁体408を通って導電体404に達する開口部には、導電体440が埋め込まれており、導電体440の上面と絶縁体408上に形成した導電体444とは、電気的接続されている。一方、絶縁体408、絶縁体410、絶縁体402、絶縁体303および絶縁体301を通って導電体310に達する開口部には、導電体442が埋め込まれており、導電体442の上面と導電体444とは、電気的に接続されている。つまり、第1のゲート電極としての機能を有する導電体404は、導電体440、導電体444および導電体442を通して、第2のゲート電極としての機能を有する導電体310とは、電気的に接続される。
例えば、絶縁体401としては、酸化アルミニウム、酸化マグネシウム、窒化酸化シリコン、窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウムまたは酸化タンタルを用いればよい。なお、絶縁体401は、酸化アルミニウムまたは窒化シリコンを有することが好ましい。例えば、絶縁体401が酸化アルミニウムまたは窒化シリコンを有することで、半導体406bに水素などの不純物が混入することを抑制することができる。また、例えば、絶縁体401が酸化アルミニウムまたは窒化シリコンを有することで、酸素の外方拡散を低減することができる。
絶縁体301としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。例えば、絶縁体301としては、酸化シリコンまたは酸化窒化シリコンを有することが好ましい。
絶縁体303としては、例えば、電子注入層としての機能を有してもよい。絶縁体303としては例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。例えば、絶縁体303としては、窒化シリコン、酸化ハフニウムまたは酸化アルミニウムを有することが好ましい。
導電体310、導電体440、導電体442および導電体444としては、例えば、ホウ素、窒素、酸素、フッ素、シリコン、リン、アルミニウム、チタン、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、モリブデン、ルテニウム、銀、インジウム、スズ、タンタルおよびタングステンを一種以上含む導電体を、単層で、または積層で用いればよい。例えば、合金膜や化合物膜であってもよく、アルミニウムを含む導電体、銅およびチタンを含む導電体、銅およびマンガンを含む導電体、インジウム、スズおよび酸素を含む導電体、またはチタンおよび窒素を含む導電体などを用いてもよい。
本トランジスタは、第2のゲート電極としての機能を有する導電体310を有するところが、図1のトランジスタと構成が異なる。その他の構成は上述を参酌する。
<トランジスタ構造3>
ここでは、図1と異なる構成のトランジスタについて、図5を用いて説明する。図5(A)、(B)および(C)は、本発明の一態様に係る半導体装置の上面図および断面図である。図5(A)は上面図である。図5(B)は、図5(A)に示す一点鎖線A1−A2に対応する断面図である。図5(C)は、図5(A)に示す一点鎖線A3−A4に対応する断面図である。なお、図5(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
本トランジスタは、導電体416a1および導電体416a2の形状が異なるところが、図1のトランジスタと構成が異なる。以下に図3を用いて詳細を説明する。
図3は、図5に示すトランジスタの中央部を拡大したものである。基板と平行な面と導電体416a1と絶縁体406cとが接する導電体416a1の側面により形成される角度をテーパー角446とした場合、テーパー角446が90度以下である。または、基板と平行な面と導電体416a2と絶縁体406cと接する導電体の側面により形成される角度をテーパー角447とした場合、テーパー角447が90度以下である。テーパー角446およびテーパー角447が90度以下であることにより、該導電体416a1の側面上および該導電体416a2の側面上に形成される絶縁体406cおよびゲート絶縁体としての機能を有する絶縁体412の被覆性が向上する。絶縁体406cおよび絶縁体412の被覆性が向上すると、ゲート電極としての機能を有する導電体404とソース電極またはドレイン電極としての機能を有する導電体416a1または導電体416a2との間を流れるリーク電流を低く抑えることができる。または、ゲート電極としての機能を有する導電体404とチャネル形成領域を有する半導体406bとの間を流れるリーク電流を低く抑えることができる。テーパー角446およびテーパー角447は、10度以上90度以下、好ましくは30度以上80度以下とする。
また、第1の開口部幅416w1および第2の開口部幅416w2の長さによらず、半導体406bに達する開口部の長さは変わらない。また、半導体406bに達する開口部よりもゲート線幅404wを小さくすることができる。即ち、ゲート線幅404wを最小加工寸法よりも小さくすることができる。具体的には、ゲート線幅404wを、5nm以上60nm以下、好ましくは5nm以上30nm以下とすることができる。その他の構成は図1に示すトランジスタを参酌する。
<トランジスタ構造4>
ここでは、図1と異なる構成のトランジスタについて、図6を用いて説明する。図6(A)、(B)および(C)は、本発明の一態様に係る半導体装置の上面図および断面図である。図6(A)は上面図である。図6(B)は、図6(A)に示す一点鎖線A1−A2に対応する断面図である。図6(C)は、図6(A)に示す一点鎖線A3−A4に対応する断面図である。なお、図6(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
本トランジスタは、図5(A)、(B)および(C)に示したトランジスタの構成に第2のゲート電極としての機能を有する導電体310を加えた構成である。その他の構成は上述を参酌する。
<トランジスタ構造5>
ここでは、図4と異なる構成のトランジスタについて、図7を用いて説明する。図7(A)、(B)および(C)は、本発明の一態様に係る半導体装置の上面図および断面図である。図7(A)は上面図である。図7(B)は、図7(A)に示す一点鎖線A1−A2に対応する断面図である。図7(C)は、図7(A)に示す一点鎖線A3−A4に対応する断面図である。なお、図7(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
本トランジスタは、複数のチャネル形成領域を有するところが、図4(A)、(B)および(C)に示すトランジスタの構成と異なる。図7(A)、(B)および(C)は、3つのチャネル領域を有する一例を示すが、チャネル領域の数はこれに限定されない。その他の構成は、上述の図4(A)、(B)および(C)に示したトランジスタの構成を参酌する。
<トランジスタ構造6>
ここでは、図4と異なる構成のトランジスタについて、図8を用いて説明する。図8(A)、(B)および(C)は、本発明の一態様に係る半導体装置の上面図および断面図である。図8(A)は上面図である。図8(B)は、図8(A)に示す一点鎖線A1−A2に対応する断面図である。図8(C)は、図8(A)に示す一点鎖線A3−A4に対応する断面図である。なお、図8(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
本トランジスタは、チャネルの幅の大きさが図2(A)に示すゲート線幅404wよりも大きい構成の一例を示した。その他の構成は、上述の図4(A)、(B)および(C)に示したトランジスタの構成を参酌する。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態2)
<酸化物半導体の構造>
以下では、酸化物半導体の構造について説明する。
酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体とに分けられる。非単結晶酸化物半導体としては、CAAC−OS(C Axis Aligned Crystalline Oxide Semiconductor)、多結晶酸化物半導体、nc−OS(nanocrystalline Oxide Semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous like Oxide Semiconductor)、非晶質酸化物半導体などがある。
また別の観点では、酸化物半導体は、非晶質酸化物半導体と、それ以外の結晶性酸化物半導体とに分けられる。結晶性酸化物半導体としては、単結晶酸化物半導体、CAAC−OS、多結晶酸化物半導体、nc−OSなどがある。
非晶質構造の定義としては、一般に、準安定状態で固定化していないこと、等方的であって不均質構造を持たないことなどが知られている。また、結合角度が柔軟であり、短距離秩序性は有するが、長距離秩序性を有さない構造と言い換えることもできる。
逆の見方をすると、本質的に安定な酸化物半導体の場合、完全な非晶質(completely amorphous)酸化物半導体と呼ぶことはできない。また、等方的でない(例えば、微小な領域において周期構造を有する)酸化物半導体を、完全な非晶質酸化物半導体と呼ぶことはできない。ただし、a−like OSは、微小な領域において周期構造を有するものの、鬆(ボイドともいう。)を有し、不安定な構造である。そのため、物性的には非晶質酸化物半導体に近いといえる。
<CAAC−OS>
まずは、CAAC−OSについて説明する。
CAAC−OSは、c軸配向した複数の結晶部(ペレットともいう。)を有する酸化物半導体の一つである。
透過型電子顕微鏡(TEM:Transmission Electron Microscope)によって、CAAC−OSの明視野像と回折パターンとの複合解析像(高分解能TEM像ともいう。)を観察すると、複数のペレットを確認することができる。一方、高分解能TEM像ではペレット同士の境界、即ち結晶粒界(グレインバウンダリーともいう。)を明確に確認することができない。そのため、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。
以下では、TEMによって観察したCAAC−OSについて説明する。図10(A)に、試料面と略平行な方向から観察したCAAC−OSの断面の高分解能TEM像を示す。高分解能TEM像の観察には、球面収差補正(Spherical Aberration Corrector)機能を用いた。球面収差補正機能を用いた高分解能TEM像を、特にCs補正高分解能TEM像と呼ぶ。Cs補正高分解能TEM像の取得は、例えば、日本電子株式会社製原子分解能分析電子顕微鏡JEM−ARM200Fなどによって行うことができる。
図10(A)の領域(1)を拡大したCs補正高分解能TEM像を図10(B)に示す。図10(B)より、ペレットにおいて、金属原子が層状に配列していることを確認できる。金属原子の各層の配列は、CAAC−OSの膜を形成する面(被形成面ともいう。)または上面の凹凸を反映しており、CAAC−OSの被形成面または上面と平行となる。
図10(B)に示すように、CAAC−OSは特徴的な原子配列を有する。図10(C)は、特徴的な原子配列を、補助線で示したものである。図10(B)および図10(C)より、ペレット一つの大きさは1nm以上のものや、3nm以上のものがあり、ペレットとペレットとの傾きにより生じる隙間の大きさは0.8nm程度であることがわかる。したがって、ペレットを、ナノ結晶(nc:nanocrystal)と呼ぶこともできる。また、CAAC−OSを、CANC(C−Axis Aligned nanocrystals)を有する酸化物半導体と呼ぶこともできる。
ここで、Cs補正高分解能TEM像をもとに、基板5120上のCAAC−OSのペレット5100の配置を模式的に示すと、レンガまたはブロックが積み重なったような構造となる(図10(D)参照。)。図10(C)で観察されたペレットとペレットとの間で傾きが生じている箇所は、図10(D)に示す領域5161に相当する。
また、図11(A)に、試料面と略垂直な方向から観察したCAAC−OSの平面のCs補正高分解能TEM像を示す。図11(A)の領域(1)、領域(2)および領域(3)を拡大したCs補正高分解能TEM像を、それぞれ図11(B)、図11(C)および図11(D)に示す。図11(B)、図11(C)および図11(D)より、ペレットは、金属原子が三角形状、四角形状または六角形状に配列していることを確認できる。しかしながら、異なるペレット間で、金属原子の配列に規則性は見られない。
次に、X線回折(XRD:X−Ray Diffraction)によって解析したCAAC−OSについて説明する。例えば、InGaZnOの結晶を有するCAAC−OSに対し、out−of−plane法による構造解析を行うと、図12(A)に示すように回折角(2θ)が31°近傍にピークが現れる場合がある。このピークは、InGaZnOの結晶の(009)面に帰属されることから、CAAC−OSの結晶がc軸配向性を有し、c軸が被形成面または上面に略垂直な方向を向いていることが確認できる。
なお、CAAC−OSのout−of−plane法による構造解析では、2θが31°近傍のピークの他に、2θが36°近傍にもピークが現れる場合がある。2θが36°近傍のピークは、CAAC−OS中の一部に、c軸配向性を有さない結晶が含まれることを示している。より好ましいCAAC−OSは、out−of−plane法による構造解析では、2θが31°近傍にピークを示し、2θが36°近傍にピークを示さない。
一方、CAAC−OSに対し、c軸に略垂直な方向からX線を入射させるin−plane法による構造解析を行うと、2θが56°近傍にピークが現れる。このピークは、InGaZnOの結晶の(110)面に帰属される。CAAC−OSの場合は、2θを56°近傍に固定し、試料面の法線ベクトルを軸(φ軸)として試料を回転させながら分析(φスキャン)を行っても、図12(B)に示すように明瞭なピークは現れない。これに対し、InGaZnOの単結晶酸化物半導体であれば、2θを56°近傍に固定してφスキャンした場合、図12(C)に示すように(110)面と等価な結晶面に帰属されるピークが6本観察される。したがって、XRDを用いた構造解析から、CAAC−OSは、a軸およびb軸の配向が不規則であることが確認できる。
次に、電子回折によって解析したCAAC−OSについて説明する。例えば、InGaZnOの結晶を有するCAAC−OSに対し、試料面に平行にプローブ径が300nmの電子線を入射させると、図13(A)に示すような回折パターン(制限視野透過電子回折パターンともいう。)が現れる場合がある。この回折パターンには、InGaZnOの結晶の(009)面に起因するスポットが含まれる。したがって、電子回折によっても、CAAC−OSに含まれるペレットがc軸配向性を有し、c軸が被形成面または上面に略垂直な方向を向いていることがわかる。一方、同じ試料に対し、試料面に垂直にプローブ径が300nmの電子線を入射させたときの回折パターンを図13(B)に示す。図13(B)より、リング状の回折パターンが確認される。したがって、電子回折によっても、CAAC−OSに含まれるペレットのa軸およびb軸は配向性を有さないことがわかる。なお、図13(B)における第1リングは、InGaZnOの結晶の(010)面および(100)面などに起因すると考えられる。また、図13(B)における第2リングは(110)面などに起因すると考えられる。
上述したように、CAAC−OSは結晶性の高い酸化物半導体である。酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、逆の見方をするとCAAC−OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。
なお、不純物は、酸化物半導体の主成分以外の元素で、水素、炭素、シリコン、遷移金属元素などがある。例えば、シリコンなどの、酸化物半導体を構成する金属元素よりも酸素との結合力の強い元素は、酸化物半導体から酸素を奪うことで酸化物半導体の原子配列を乱し、結晶性を低下させる要因となる。また、鉄やニッケルなどの重金属、アルゴン、二酸化炭素などは、原子半径(または分子半径)が大きいため、酸化物半導体の原子配列を乱し、結晶性を低下させる要因となる。
酸化物半導体が不純物や欠陥を有する場合、光や熱などによって特性が変動する場合がある。例えば、酸化物半導体に含まれる不純物は、キャリアトラップとなる場合や、キャリア発生源となる場合がある。また、酸化物半導体中の酸素欠損は、キャリアトラップとなる場合や、水素を捕獲することによってキャリア発生源となる場合がある。
不純物および酸素欠損の少ないCAAC−OSは、キャリア密度の低い酸化物半導体である。具体的には、8×1011個/cm未満、好ましくは1×1011個/cm未満、さらに好ましくは1×1010個/cm未満であり、1×10−9個/cm以上のキャリア密度の酸化物半導体とすることができる。そのような酸化物半導体を、高純度真性または実質的に高純度真性な酸化物半導体と呼ぶ。CAAC−OSは、不純物濃度が低く、欠陥準位密度が低い。即ち、安定な特性を有する酸化物半導体であるといえる。
<nc−OS>
次に、nc−OSについて説明する。
nc−OSは、高分解能TEM像において、結晶部を確認することのできる領域と、明確な結晶部を確認することのできない領域と、を有する。nc−OSに含まれる結晶部は、1nm以上10nm以下、または1nm以上3nm以下の大きさであることが多い。なお、結晶部の大きさが10nmより大きく100nm以下である酸化物半導体を微結晶酸化物半導体と呼ぶことがある。nc−OSは、例えば、高分解能TEM像では、結晶粒界を明確に確認できない場合がある。なお、ナノ結晶は、CAAC−OSにおけるペレットと起源を同じくする可能性がある。そのため、以下ではnc−OSの結晶部をペレットと呼ぶ場合がある。
nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるペレット間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。例えば、nc−OSに対し、ペレットよりも大きい径のX線を用いた場合、out−of−plane法による解析では、結晶面を示すピークは検出されない。また、nc−OSに対し、ペレットよりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子回折を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OSに対し、ペレットの大きさと近いかペレットより小さいプローブ径の電子線を用いるナノビーム電子回折を行うと、スポットが観測される。また、nc−OSに対しナノビーム電子回折を行うと、円を描くように(リング状に)輝度の高い領域が観測される場合がある。さらに、リング状の領域内に複数のスポットが観測される場合がある。
このように、ペレット(ナノ結晶)間では結晶方位が規則性を有さないことから、nc−OSを、RANC(Random Aligned nanocrystals)を有する酸化物半導体、またはNANC(Non−Aligned nanocrystals)を有する酸化物半導体と呼ぶこともできる。
nc−OSは、非晶質酸化物半導体よりも規則性の高い酸化物半導体である。そのため、nc−OSは、a−like OSや非晶質酸化物半導体よりも欠陥準位密度が低くなる。ただし、nc−OSは、異なるペレット間で結晶方位に規則性が見られない。そのため、nc−OSは、CAAC−OSと比べて欠陥準位密度が高くなる。
<a−like OS>
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。
a−like OSは、高分解能TEM像において鬆が観察される場合がある。また、高分解能TEM像において、明確に結晶部を確認することのできる領域と、結晶部を確認することのできない領域と、を有する。
鬆を有するため、a−like OSは、不安定な構造である。以下では、a−like OSが、CAAC−OSおよびnc−OSと比べて不安定な構造であることを示すため、電子照射による構造の変化を示す。
電子照射を行う試料として、a−like OS(試料Aと表記する。)、nc−OS(試料Bと表記する。)およびCAAC−OS(試料Cと表記する。)を準備する。いずれの試料もIn−Ga−Zn酸化物である。
まず、各試料の高分解能断面TEM像を取得する。高分解能断面TEM像により、各試料は、いずれも結晶部を有することがわかる。
なお、どの部分を一つの結晶部と見なすかの判定は、以下のように行えばよい。例えば、InGaZnOの結晶の単位格子は、In−O層を3層有し、またGa−Zn−O層を6層有する、計9層がc軸方向に層状に重なった構造を有することが知られている。これらの近接する層同士の間隔は、(009)面の格子面間隔(d値ともいう。)と同程度であり、結晶構造解析からその値は0.29nmと求められている。したがって、格子縞の間隔が0.28nm以上0.30nm以下である箇所を、InGaZnOの結晶部と見なすことができる。なお、格子縞は、InGaZnOの結晶のa−b面に対応する。
図14は、各試料の結晶部(22箇所から45箇所)の平均の大きさを調査した例である。ただし、上述した格子縞の長さを結晶部の大きさとしている。図14より、a−like OSは、電子の累積照射量に応じて結晶部が大きくなっていくことがわかる。具体的には、図14中に(1)で示すように、TEMによる観察初期においては1.2nm程度の大きさだった結晶部(初期核ともいう。)が、累積照射量が4.2×10/nmにおいては2.6nm程度の大きさまで成長していることがわかる。一方、nc−OSおよびCAAC−OSは、電子照射開始時から電子の累積照射量が4.2×10/nmまでの範囲で、結晶部の大きさに変化が見られないことがわかる。具体的には、図14中の(2)および(3)で示すように、電子の累積照射量によらず、nc−OSおよびCAAC−OSの結晶部の大きさは、それぞれ1.4nm程度および2.1nm程度であることがわかる。
このように、a−like OSは、電子照射によって結晶部の成長が見られる場合がある。一方、nc−OSおよびCAAC−OSは、電子照射による結晶部の成長がほとんど見られないことがわかる。即ち、a−like OSは、nc−OSおよびCAAC−OSと比べて、不安定な構造であることがわかる。
また、鬆を有するため、a−like OSは、nc−OSおよびCAAC−OSと比べて密度の低い構造である。具体的には、a−like OSの密度は、同じ組成の単結晶の密度の78.6%以上92.3%未満となる。また、nc−OSの密度およびCAAC−OSの密度は、同じ組成の単結晶の密度の92.3%以上100%未満となる。単結晶の密度の78%未満となる酸化物半導体は、成膜すること自体が困難である。
例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、菱面体晶構造を有する単結晶InGaZnOの密度は6.357g/cmとなる。よって、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、a−like OSの密度は5.0g/cm以上5.9g/cm未満となる。また、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、nc−OSの密度およびCAAC−OSの密度は5.9g/cm以上6.3g/cm未満となる。
なお、同じ組成の単結晶が存在しない場合がある。その場合、任意の割合で組成の異なる単結晶を組み合わせることにより、所望の組成における単結晶に相当する密度を見積もることができる。所望の組成の単結晶に相当する密度は、組成の異なる単結晶を組み合わせる割合に対して、加重平均を用いて見積もればよい。ただし、密度は、可能な限り少ない種類の単結晶を組み合わせて見積もることが好ましい。
以上のように、酸化物半導体は、様々な構造をとり、それぞれが様々な特性を有する。なお、酸化物半導体は、例えば、非晶質酸化物半導体、a−like OS、nc−OS、CAAC−OSのうち、二種以上を有する多層膜であってもよい。
絶縁体406a、半導体406b、絶縁体406cなどに適用可能な酸化物について説明する。
半導体406bは、例えば、インジウムを含む酸化物半導体である。半導体406bは、例えば、インジウムを含むと、キャリア移動度(電子移動度)が高くなる。また、半導体406bは、元素Mを含むと好ましい。元素Mは、好ましくは、アルミニウム、ガリウム、イットリウムまたはスズなどとする。そのほかの元素Mに適用可能な元素としては、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステンなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。元素Mは、例えば、酸素との結合エネルギーが高い元素である。例えば、酸素との結合エネルギーがインジウムよりも高い元素である。または、元素Mは、例えば、酸化物半導体のエネルギーギャップを大きくする機能を有する元素である。また、半導体406bは、亜鉛を含むと好ましい。酸化物半導体は、亜鉛を含むと結晶化しやすくなる場合がある。
ただし、半導体406bは、インジウムを含む酸化物半導体に限定されない。半導体406bは、例えば、亜鉛スズ酸化物、ガリウムスズ酸化物、酸化ガリウムなどの、インジウムを含まず、亜鉛を含む酸化物半導体、ガリウムを含む酸化物半導体、スズを含む酸化物半導体などであっても構わない。
半導体406bは、例えば、エネルギーギャップが大きい酸化物を用いる。半導体406bのエネルギーギャップは、例えば、2.5eV以上4.2eV以下、好ましくは2.8eV以上3.8eV以下、さらに好ましくは3eV以上3.5eV以下とする。
例えば、絶縁体406aおよび絶縁体406cは、半導体406bを構成する酸素以外の元素一種以上、または二種以上から構成される酸化物である。半導体406bを構成する酸素以外の元素一種以上、または二種以上から絶縁体406aおよび絶縁体406cが構成されるため、絶縁体406aと半導体406bとの界面、および半導体406bと絶縁体406cとの界面において、界面準位が形成されにくい。
絶縁体406a、半導体406bおよび絶縁体406cが、インジウムを含む場合について説明する。なお、絶縁体406aがIn−M−Zn酸化物のとき、InおよびMの和を100atomic%としたとき、好ましくはInが50atomic%未満、Mが50atomic%より高く、さらに好ましくはInが25atomic%未満、Mが75atomic%より高くする。また、半導体406bがIn−M−Zn酸化物のとき、InおよびMの和を100atomic%としたとき、好ましくはInが25atomic%より高く、Mが75atomic%未満、さらに好ましくはInが34atomic%より高く、Mが66atomic%未満とする。また、絶縁体406cがIn−M−Zn酸化物のとき、InおよびMの和を100atomic%としたとき、好ましくはInが50atomic%未満、Mが50atomic%より高く、さらに好ましくはInが25atomic%未満、Mが75atomic%より高くする。なお、絶縁体406cは、絶縁体406aと同種の酸化物を用いても構わない。
半導体406bは、絶縁体406aおよび絶縁体406cよりも電子親和力の大きい酸化物を用いる。例えば、半導体406bとして、絶縁体406aおよび絶縁体406cよりも電子親和力の0.07eV以上1.3eV以下、好ましくは0.1eV以上0.7eV以下、さらに好ましくは0.15eV以上0.4eV以下大きい酸化物を用いる。なお、電子親和力は、真空準位と伝導帯下端のエネルギーとの差である。
なお、インジウムガリウム酸化物は、小さい電子親和力と、高い酸素ブロック性を有する。そのため、絶縁体406cがインジウムガリウム酸化物を含むと好ましい。ガリウム原子割合[Ga/(In+Ga)]は、例えば、70%以上、好ましくは80%以上、さらに好ましくは90%以上とする。
ただし、絶縁体406aまたは/および絶縁体406cが、酸化ガリウムであっても構わない。例えば、絶縁体406cとして、酸化ガリウムを用いると導電体416a1または導電体416a2と導電体404との間に生じるリーク電流を低減することができる。即ち、トランジスタのオフ電流を小さくすることができる。
このとき、ゲート電圧を印加すると、絶縁体406a、半導体406b、絶縁体406cのうち、電子親和力の大きい半導体406bにチャネルが形成される。
ここで、絶縁体406aと半導体406bとの間には、絶縁体406aと半導体406bとの混合領域を有する場合がある。また、半導体406bと絶縁体406cとの間には、半導体406bと絶縁体406cとの混合領域を有する場合がある。混合領域は、界面準位密度が低くなる。そのため、絶縁体406a、半導体406bおよび絶縁体406cの積層体は、それぞれの界面近傍において、エネルギーが連続的に変化する(連続接合ともいう。)バンド図となる。
このとき、電子は、絶縁体406a中および絶縁体406c中ではなく、半導体406b中を主として移動する。したがって、絶縁体406aおよび半導体406bの界面における界面準位密度、半導体406bと絶縁体406cとの界面における界面準位密度を低くすることによって、半導体406b中で電子の移動が阻害されることが少なく、トランジスタのオン電流を高くすることができる。
なお、トランジスタがs−channel構造を有する場合、半導体406bの全体にチャネルが形成される。したがって、半導体406bが厚いほどチャネル領域は大きくなる。即ち、半導体406bが厚いほど、トランジスタのオン電流を高くすることができる。例えば、20nm以上、好ましくは40nm以上、さらに好ましくは60nm以上、より好ましくは100nm以上の厚さの領域を有する半導体406bとすればよい。ただし、トランジスタを有する半導体装置の生産性が低下する場合があるため、例えば、300nm以下、好ましくは200nm以下、さらに好ましくは150nm以下の厚さの領域を有する半導体406bとすればよい。
また、トランジスタのオン電流を高くするためには、絶縁体406cの厚さは小さいほど好ましい。例えば、10nm未満、好ましくは5nm以下、さらに好ましくは3nm以下の領域を有する絶縁体406cとすればよい。一方、絶縁体406cは、チャネルの形成される半導体406bへ、隣接する絶縁体を構成する酸素以外の元素(水素、シリコンなど)が入り込まないようブロックする機能を有する。そのため、絶縁体406cは、ある程度の厚さを有することが好ましい。例えば、0.3nm以上、好ましくは1nm以上、さらに好ましくは2nm以上の厚さの領域を有する絶縁体406cとすればよい。また、絶縁体406cは、絶縁体402などから放出される酸素の外方拡散を抑制するために、酸素をブロックする性質を有すると好ましい。
また、信頼性を高くするためには、絶縁体406aは厚く、絶縁体406cは薄いことが好ましい。例えば、10nm以上、好ましくは20nm以上、さらに好ましくは40nm以上、より好ましくは60nm以上の厚さの領域を有する絶縁体406aとすればよい。絶縁体406aの厚さを、厚くすることで、隣接する絶縁体と絶縁体406aとの界面からチャネルの形成される半導体406bまでの距離を離すことができる。ただし、トランジスタを有する半導体装置の生産性が低下する場合があるため、例えば、200nm以下、好ましくは120nm以下、さらに好ましくは80nm以下の厚さの領域を有する絶縁体406aとすればよい。
例えば、酸化物半導体中のシリコンは、キャリアトラップやキャリア発生源となる場合がある。したがって、半導体406bのシリコン濃度は低いほど好ましい。例えば、半導体406bと絶縁体406aとの間に、例えば、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)において、1×1019atoms/cm未満、好ましくは5×1018atoms/cm未満、さらに好ましくは2×1018atoms/cm未満のシリコン濃度となる領域を有する。また、半導体406bと絶縁体406cとの間に、SIMSにおいて、1×1019atoms/cm未満、好ましくは5×1018atoms/cm未満、さらに好ましくは2×1018atoms/cm未満のシリコン濃度となる領域を有する。
また、半導体406bの水素濃度を低減するために、絶縁体406aおよび絶縁体406cの水素濃度を低減すると好ましい。絶縁体406aおよび絶縁体406cは、SIMSにおいて、2×1020atoms/cm以下、好ましくは5×1019atoms/cm以下、より好ましくは1×1019atoms/cm以下、さらに好ましくは5×1018atoms/cm以下の水素濃度となる領域を有する。また、半導体406bの窒素濃度を低減するために、絶縁体406aおよび絶縁体406cの窒素濃度を低減すると好ましい。絶縁体406aおよび絶縁体406cは、SIMSにおいて、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下の窒素濃度となる領域を有する。
なお、酸化物半導体に銅が混入すると、電子トラップを生成する場合がある。電子トラップは、トランジスタのしきい値電圧をプラス方向へ変動させる場合がある。したがって、半導体406bの表面または内部における銅濃度は低いほど好ましい。例えば、半導体406bは、銅濃度が1×1019atoms/cm以下、5×1018atoms/cm以下、または1×1018atoms/cm以下となる領域を有すると好ましい。
上述の3層構造は一例である。例えば、絶縁体406aまたは絶縁体406cのない2層構造としても構わない。または、絶縁体406aの上もしくは下、または絶縁体406c上もしくは下に、絶縁体406a、半導体406bおよび絶縁体406cとして例示した絶縁体または半導体のいずれか一を有する4層構造としても構わない。または、絶縁体406aの上、絶縁体406aの下、絶縁体406cの上、絶縁体406cの下のいずれか二箇所以上に、絶縁体406a、半導体406bおよび絶縁体406cとして例示した絶縁体または半導体のいずれか一を有するn層構造(nは5以上の整数)としても構わない。
基板400としては、例えば、絶縁体基板、半導体基板または導電体基板を用いればよい。絶縁体基板としては、例えば、ガラス基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)、樹脂基板などがある。また、半導体基板としては、例えば、シリコン、ゲルマニウムなどの単体半導体基板、または炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、酸化ガリウムからなる化合物半導体基板などがある。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えばSOI(Silicon On Insulator)基板などがある。導電体基板としては、黒鉛基板、金属基板、合金基板、導電性樹脂基板などがある。または、金属の窒化物を有する基板、金属の酸化物を有する基板などがある。さらには、絶縁体基板に導電体または半導体が設けられた基板、半導体基板に導電体または絶縁体が設けられた基板、導電体基板に半導体または絶縁体が設けられた基板などがある。または、これらの基板に素子が設けられたものを用いてもよい。基板に設けられる素子としては、容量素子、抵抗素子、スイッチ素子、発光素子、記憶素子などがある。
また、基板400として、可とう性基板を用いてもよい。なお、可とう性基板上にトランジスタを設ける方法としては、非可とう性の基板上にトランジスタを作製した後、トランジスタを剥離し、可とう性基板である基板400に転置する方法もある。その場合には、非可とう性基板とトランジスタとの間に剥離層を設けるとよい。なお、基板400として、繊維を編みこんだシート、フィルムまたは箔などを用いてもよい。また、基板400が伸縮性を有してもよい。また、基板400は、折り曲げや引っ張りをやめた際に、元の形状に戻る性質を有してもよい。または、元の形状に戻らない性質を有してもよい。基板400は、例えば、5μm以上700μm以下、好ましくは10μm以上500μm以下、さらに好ましくは15μm以上300μm以下の厚さとなる領域を有する。基板400を薄くすると、トランジスタを有する半導体装置を軽量化することができる。また、基板400を薄くすることで、ガラスなどを用いた場合にも伸縮性を有する場合や、折り曲げや引っ張りをやめた際に、元の形状に戻る性質を有する場合がある。そのため、落下などによって基板400上の半導体装置に加わる衝撃などを緩和することができる。即ち、丈夫な半導体装置を提供することができる。
可とう性基板である基板400としては、例えば、金属、合金、樹脂もしくはガラス、またはそれらの繊維などを用いることができる。可とう性基板である基板400は、線膨張率が低いほど環境による変形が抑制されて好ましい。可とう性基板である基板400としては、例えば、線膨張率が1×10−3/K以下、5×10−5/K以下、または1×10−5/K以下である材質を用いればよい。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネート、アクリルなどがある。特に、アラミドは、線膨張率が低いため、可とう性基板である基板400として好適である。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態3)
<トランジスタの作製方法1>
以下では、本発明に係る図1のトランジスタの作製方法を図15から図22を用いて説明する。
まず、基板400を準備する。
次に、絶縁体402を成膜する。絶縁体402の成膜は、スパッタリング法、化学気相成長(CVD:Chemical Vapor Deposition)法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法またはパルスレーザ堆積(PLD:Pulsed Laser Deposition)法、原子層堆積(ALD:Atomic Layer Deposition)法などを用いて行うことができる。
なお、CVD法は、プラズマを利用するプラズマCVD(PECVD:Plasma Enhanced CVD)法、熱を利用する熱CVD(TCVD:Thermal CVD)法、光を利用する光CVD(Photo CVD)法などに分類できる。さらに用いる原料ガスによって金属CVD(MCVD:Metal CVD)法、有機金属CVD(MOCVD:Metal Organic CVD)法に分けることができる。
プラズマCVD法は、比較的低温で高品質の膜が得られる。また、熱CVD法は、プラズマを用いないため、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。例えば、半導体装置に含まれる配線、電極、素子(トランジスタ、容量素子など)などは、プラズマから電荷を受け取ることでチャージアップする場合がある。このとき、蓄積した電荷によって、半導体装置に含まれる配線、電極、素子などが破壊される場合がある。一方、プラズマを用いない熱CVD法の場合、こういったプラズマダメージが生じないため、半導体装置の歩留まりを高くすることができる。また、熱CVD法では、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。
また、ALD法も、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。また、ALD法も、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。
CVD法およびALD法は、ターゲットなどから放出される粒子が堆積する成膜方法とは異なり、被処理物の表面における反応により膜が形成される成膜方法である。したがって、被処理物の形状の影響を受けにくく、良好な段差被覆性を有する成膜方法である。特に、ALD法は、優れた段差被覆性と、優れた厚さの均一性を有するため、アスペクト比の高い開口部の表面を被覆する場合などに好適である。ただし、ALD法は、比較的成膜速度が遅いため、成膜速度の速いCVD法などの他の成膜方法と組み合わせて用いることが好ましい場合もある。
CVD法およびALD法は、原料ガスの流量比によって、得られる膜の組成を制御することができる。例えば、CVD法およびALD法では、原料ガスの流量比によって、任意の組成の膜を成膜することができる。また、例えば、CVD法およびALD法では、成膜しながら原料ガスの流量比を変化させることによって、組成が連続的に変化した膜を成膜することができる。原料ガスの流量比を変化させながら成膜する場合、複数の成膜室を用いて成膜する場合と比べて、搬送や圧力調整に掛かる時間の分、成膜に掛かる時間を短くすることができる。したがって、半導体装置の生産性を高めることができる場合がある。
次に、絶縁体402に酸素を添加する処理を行っても構わない。酸素を添加する処理としては、例えば、イオン注入法、プラズマ処理法などがある。なお、絶縁体402に添加された酸素は、過剰酸素となる。
次に、絶縁体402上に絶縁体406aとなる絶縁体を成膜する。絶縁体406aとなる絶縁体の成膜は、スパッタリング法、CVD法、MBE法またはPLD法、ALD法などを用いて行うことができる。
次に、絶縁体406aとなる絶縁体に酸素を添加する処理を行っても構わない。酸素を添加する処理としては、例えば、イオン注入法、プラズマ処理法などがある。なお、絶縁体406aとなる絶縁体に添加された酸素は、過剰酸素となる。絶縁体406aとなる絶縁体に対応する層に酸素を添加する処理を行うと好ましい。次に絶縁体406aとなる絶縁体上に半導体406bとなる半導体を成膜する。
次に、第1の加熱処理を行うと好ましい。第1の加熱処理は、250℃以上650℃以下、好ましくは450℃以上600℃以下、さらに好ましくは520℃以上570℃以下で行えばよい。第1の加熱処理は、不活性ガス雰囲気、または酸化性ガスを10ppm以上、1%以上もしくは10%以上含む雰囲気で行う。第1の加熱処理は減圧状態で行ってもよい。または、第1の加熱処理は、不活性ガス雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上または10%以上含む雰囲気で加熱処理を行ってもよい。第1の加熱処理によって、半導体の結晶性を高めることや、水素や水などの不純物を除去することなどができる。または、第1の加熱処理において、減圧状態で酸素を含むプラズマ処理を行ってもよい。酸素を含むプラズマ処理は、例えばマイクロ波を用いた高密度プラズマを発生させる電源を有する装置を用いることが好ましい。または、基板側にRF(Radio Frequency)を印加する電源を有してもよい。高密度プラズマを用いることより高密度の酸素ラジカルを生成することができ、基板側にRFを印加することで高密度プラズマによって生成された酸素ラジカルを効率よく半導体406b内に導くことができる。または、この装置を用いて不活性ガスを含むプラズマ処理を行った後に脱離した酸素を補うために酸素を含むプラズマ処理を行ってもよい。
次に、半導体406bとなる半導体上に導電体415となる導電体を成膜する。導電体の成膜は、スパッタリング法、CVD法、MBE法またはPLD法、ALD法などを用いて行うことができる。次に、絶縁体406aとなる絶縁体、半導体406bとなる半導体および導電体415となる導電体をリソグラフィー法などによって加工し、絶縁体406a、半導体406bおよび導電体415を有する多層膜を形成する。ここで、導電体の成膜時に、半導体406bとなる半導体の上面にダメージを与えることで領域407が形成される。領域407は、半導体406bが低抵抗化された領域を有するので、導電体415と半導体406b間のコンタクト抵抗が低抵抗化される。なお、多層膜を形成する際、絶縁体402もエッチングされ、一部の領域が薄くなる場合がある。即ち、絶縁体402は、多層膜と接する領域に凸部を有する形状となる場合がある(図15(A)、(B)および(C)参照。)。
なお、リソグラフィー法では、まず、マスクを介してレジストを露光する。次に、露光された領域を、現像液を用いて除去または残存させてレジストマスクを形成する。次に、当該レジストマスクを介してエッチング処理することで導電体、半導体または絶縁体などを所望の形状に加工することができる。例えば、KrFエキシマレーザ光、ArFエキシマレーザ光、EUV(Extreme Ultraviolet)光などを用いて、レジストを露光することでレジストマスクを形成すればよい。また、基板と投影レンズとの間に液体(例えば水)を満たして露光する、液浸技術を用いてもよい。また、前述した光に代えて、電子ビームやイオンビームを用いてもよい。なお、電子ビームやイオンビームを用いる場合には、マスクは不要となる。なお、レジストマスクの除去には、アッシングなどのドライエッチング処理を行う、またはウエットエッチング処理を行う、またはドライエッチング処理後にウエットエッチング処理を行う、またはウエットエッチング処理後にドライエッチング処理を行うことができる。
ドライエッチング装置としては、平行平板型電極を有する容量結合型プラズマ(CCP:Capacitively Coupled Plasma)エッチング装置を用いることができる。平行平板型電極を有する容量結合型プラズマエッチング装置は、平行平板型電極の一方の電極に高周波電源を印加する構成でもよい。または平行平板型電極の一方の電極に複数の異なった高周波電源を印加する構成でもよい。または平行平板型電極それぞれに同じ周波数の高周波電源を印加する構成でもよい。または平行平板型電極それぞれに周波数の異なる高周波電源を印加する構成でもよい。または高密度プラズマ源を有するドライエッチング装置を用いることができる。高密度プラズマ源を有するドライエッチング装置は、例えば、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)エッチング装置などを用いることができる。
次に、絶縁体410aを成膜する。絶縁体410aの成膜は、スパッタリング法、CVD法、MBE法またはPLD法、ALD法などを用いて行うことができる。または、スピンコート法、ディップ法、液滴吐出法(インクジェット法など)、印刷法(スクリーン印刷、オフセット印刷など)、ドクターナイフ法、ロールコーター法またはカーテンコーター法などを用いて行うことができる。
絶縁体410aは、上面が平坦性を有するように形成してもよい。例えば、絶縁体410aは、成膜直後に上面が平坦性を有していてもよい。または、例えば、絶縁体410aは、成膜後に基板裏面などの基準面と平行になるよう絶縁体などを上面から除去していくことで平坦性を有してもよい。このような処理を、平坦化処理と呼ぶ。平坦化処理としては、化学的機械研磨(CMP:Chemical Mechanical Polishing)処理、ドライエッチング処理などがある。ただし、絶縁体410aの上面が平坦性を有さなくても構わない。
次に、絶縁体410a上にリソグラフィー法などによってレジストマスク411を形成する。ここで絶縁体410aの上面とレジストマスクとの間の密着性を向上するために、例えば、有機塗布膜を絶縁体410a上とレジストマスク411の間に設けても良い(図16(A)、(B)および(C)参照。)。
次に、絶縁体410aをドライエッチング法などを用いて開口部が導電体415の上面に達するまで第1の加工を行い絶縁体410を形成する。第1の加工のドライエッチングに使用するガスは、例えば、Cガス、CFガス、SFガスまたはCHFガスなどを用いることができる。または、上記ガスに酸素ガス、ヘリウムガス、アルゴンガスまたは水素ガスなどを適宜添加することができる。ここではCガスに酸素ガスを添加したものを用いることが好ましい。ドライエッチング装置は上述のドライエッチング装置を使用することができるが、平行平板型電極それぞれに周波数の異なる高周波電源を接続する構成のドライエッチング装置の使用が好ましい(図17(A)、(B)および(C)参照。)。
次に、導電体415をドライエッチング法などを用いて第2の加工をすることで、導電体416a1と導電体416a2に分離する。第2の加工のドライエッチングに使用するガスは、例えば、Cガス、CFガス、SFガス、Clガス、BClガス、SiClガスなどを単独または2以上を混合して用いることができる。また、上記ガスに酸素ガス、ヘリウムガス、アルゴンガスまたは水素ガスを適宜添加してもよい。ここでは、CFガス、Clガスおよび酸素ガスを混合して使用するとよい。ドライエッチング装置は、上述の第1の加工のドライエッチング装置を用いてもよい(図18(A)、(B)および(C)参照。)。
このとき、半導体406bは、露出した領域を有する。半導体406bの露出した領域の領域407は、上述の第2の加工により除去されることがある。また、第2の加工中、半導体406bの側面は絶縁体410に覆われているため、第2の加工に用いられるガスに曝されることが無い。すなわち、第2の加工中における半導体406bの側面がエッチングされることがなく、第2の加工後、第2の加工に用いられたガスの残留成分が半導体406bの側面に付着することが無い。よって、半導体406bの側面が保護されるため好ましい。
次に、絶縁体410となる絶縁体をドライエッチング法などを用いて開口部が絶縁体402に達するまで第3の加工を行うことで絶縁体410を形成する。第3の加工に使用するドライエッチングガスは、第1の加工と同様のガスであるCガスに酸素ガスを添加したものを使用すればよいが、第3の加工では、例えば、添加する酸素ガス流量を増加させるとよい。酸素ガスの流量を第1の加工よりも増加させることで、レジストマスク411の基板の裏面と平行な面に沿って横方向へのエッチング速度が第1の加工よりも速くなり、絶縁体410となる絶縁体の基板の裏面と平行な面に沿って横方向のエッチング速度が第1の加工よりも速くなる。従って、図19(B)および(C)中に点線で表記するように、絶縁体410の開口部は基板の裏面と平行な面に沿って横方向に広がるように形成することができる(図19(A)、(B)および(C)参照。)。
第3の加工に使用するドライエッチング装置は、例えば、第1の加工および第2の加工と同様のドライエッチング装置を使用することができる。平行平板型電極それぞれに周波数の異なる高周波電源を印加する構成のドライエッチング装置を用いる場合は、平行平板型電極のどちらか一方または両方に印加する高周波電源の電力を第1の加工よりも増加させるとよい。このことで、レジストマスク411の基板の裏面と平行な面に沿って横方向へのエッチング速度が第1の加工よりも速くなり、上述の添加する酸素ガス流量を増加させることによる効果と同様の効果が得られる。従って、絶縁体410の開口部は基板の裏面と平行な面に沿って横方向に広がるように形成することができる。
第3の加工を第1の加工および第2の加工と同じドライエッチング装置を用いることで大気に晒されることなく、第1の加工、第2の加工および第3の加工を連続的に行うことができるので基板への大気成分の付着による汚染や基板に残留するエッチングガスと大気成分の反応による絶縁体、半導体および導電体の腐食などを防ぐことができる。または第1の加工、第2の加工および第3の加工を連続的に行うことで生産性の向上が見込まれる。
第1の加工および第2の加工をドライエッチング法で行う場合、半導体406bの露出領域にエッチングガスの残留成分などの不純物が付着する場合がある。例えば、エッチングガスとして塩素系ガスを用いると、塩素などが付着する場合がある。また、エッチングガスとして炭化水素系ガスを用いると、炭素や水素などが付着する場合がある。第2の加工後に基板を大気に晒すと半導体406bの露出領域などが腐蝕することがある。そのため第2の加工後に連続して酸素ガスによるプラズマ処理を行うと上記不純物を除去することができて半導体406bの露出領域などの腐蝕を防ぐことができて好ましい。
または、不純物の低減は、例えば、希釈フッ化水素酸などを用いた洗浄処理またはオゾンなどを用いた洗浄処理を行ってもよい。なお、複数の洗浄処理を組み合わせてもよい。これにより、半導体406bの露出した領域、言い換えるとチャネル形成領域は高抵抗となる。
一方、導電体416a1および導電体416a2と、半導体406bの上面とが、互いに重なる領域407は、上述のように導電体416a1および導電体416a2と半導体406b間のコンタクト抵抗値が低くなり良好なトランジスタ特性を得ることができて好ましい。
次に、絶縁体406c_1を成膜し、絶縁体406c_1上に絶縁体412_1を成膜する。絶縁体406c_1および絶縁体412_1の成膜は、スパッタリング法、CVD法、MBE法またはPLD法、ALD法などを用いて行うことができる。絶縁体406c_1および絶縁体412_1は、絶縁体410、導電体416a1および導電体416a2によって形成される開口部の側面および底面に均一な厚さで成膜する。したがって、ALD法を用いることが好ましい。
次に、導電体404_1を成膜する。導電体404_1の成膜は、スパッタリング法、CVD法、MBE法またはPLD法、ALD法などを用いて行うことができる。導電体404_1は、絶縁体410などによって形成される開口部を埋めるように成膜する。したがって、CVD法(特にMCVD法)を用いることが好ましい。また、MCVD法で成膜する導電体の密着性を高めるために、ALD法などによって成膜した導電体と、CVD法で成膜した導電体との多層膜にすると好ましい場合がある。例えば、窒化チタンと、タングステンとがこの順に成膜された多層膜などを用いればよい(図20(A)、(B)および(C)参照。)。
次に導電体404_1の上面から、導電体404_1、絶縁体412_1および絶縁体406c_1をCMPなどを用いて絶縁体410の上面に達するまで研磨および平坦化することで、導電体404、絶縁体412および絶縁体406cを形成する。これにより、ゲート電極として機能を有する導電体404は、リソグラフィー法を用いることなく自己整合的に形成できる。また、ゲート電極として機能を有する導電体404とソース電極またはドレイン電極としての機能を有する導電体416a1および導電体416a2との位置合わせ精度を考慮することなくゲート電極として機能を有する導電体404を形成できるので半導体装置の面積を小さくすることができる。また、リソグラフィー工程が不要となるので工程簡略化による生産性の向上が見込まれる(図21(A)、(B)および(C)参照。)。
次に、絶縁体410上およびゲート電極上に絶縁体408となる絶縁体を成膜する。絶縁体408となる絶縁体の成膜は、スパッタリング法、CVD法、MBE法またはPLD法、ALD法などを用いて行うことができる。好ましくは、絶縁体408となる絶縁体として、酸素を有するプラズマを用いて酸化アルミニウムを成膜することで、該プラズマ中の酸素を過剰酸素として、絶縁体410の上面、絶縁体412の絶縁体408と接する領域および絶縁体406cの絶縁体408と接する領域へ添加することができる。このとき絶縁体408と絶縁体410の膜界面近傍に過剰酸素を多く含んだ混合領域414が形成されることがある。図22(B)および(C)中に過剰酸素が混合領域414付近に添加された様子を矢印で表記する。
絶縁体408となる絶縁体の成膜より後のいずれかのタイミングにおいて、第2の加熱処理を行っても構わない。第2の加熱処理を行うことで、絶縁体410および混合領域414に含まれる過剰酸素が絶縁体402および絶縁体406aを通過して半導体406bまで移動する。また、絶縁体410および混合領域414に含まれる過剰酸素が絶縁体412および/または絶縁体406cを通過して半導体406bまで移動する。このように2つの経路を通って過剰酸素が半導体406bまで移動するため、半導体406bの欠陥(酸素欠損)を低減することができる(図22(B)および(C)参照。)。
なお、第2の加熱処理は、絶縁体410および混合領域414に含まれる過剰酸素(酸素)が半導体406bまで拡散する温度で行えばよい。例えば、第1の加熱処理についての記載を参照しても構わない。または、第2の加熱処理は、第1の加熱処理よりも低い温度が好ましい。第1の加熱処理と第2の加熱処理の温度差は、20℃以上150℃以下、好ましくは40℃以上100℃以下とする。これにより、絶縁体402から余分に過剰酸素(酸素)が放出することを抑えることができる。なお、第2の加熱処理は、同等の加熱処理を各層の成膜時の加熱によって兼ねることができる場合、行わなくてもよい場合がある。
次に絶縁体408となる絶縁体および絶縁体410に導電体416a1および導電体416a2に達する開口部を形成し、それぞれの開口部に導電体431、導電体429を埋め込む。次に、絶縁体408となる絶縁体に導電体404に達する開口部を形成し、導電体437を埋め込み、絶縁体408を形成する。絶縁体408上、導電体431上、導電体429上および導電体437上に導電体432、導電体430および導電体438となる導電体を成膜し、リソグラフィー法などを用いて導電体432、導電体430および導電体438を形成する。尚、絶縁体408となる絶縁体および絶縁体410に導電体416a1および導電体416a2に達する開口部の形成と絶縁体408に導電体404に達する開口部の形成を同時に行ってもよい。同時に行うことにより、工程の簡略化による生産性の向上が見込まれる。
以上のようにして、図1に示したトランジスタを作製することができる。
<トランジスタの作製方法2>
以下では図1に示したトランジスタの構成と異なる構成である図5のトランジスタの作製方法について図3および図23から図26を用いて説明する。第2の加工までは、上述のトランジスタの作製方法1と同様である(図18(A)および(B)参照。)。
次に、絶縁体410となる絶縁体をドライエッチング法などを用いて絶縁体402に達するまで第3の加工を行うことで絶縁体410を形成する。第3の加工に使用するドライエッチングガスは、第1の加工と同様のガスであるCガスに酸素ガスを添加したものを使用すればよいが、第3の加工では、例えば、添加する酸素ガス流量を増加させるとよい。酸素ガスの流量を第1の加工よりも増加させることで、レジストマスク411の基板の裏面と平行な面に沿って横方向へのエッチング速度が第1の加工よりも速くなり、絶縁体410となる絶縁体の基板の裏面と平行な面に沿って横方向のエッチング速度が第1の加工よりも速くなる。また、Cガスおよび酸素ガスに導電体416a1および導電体416a2をエッチングするガス、例えば、SFガス、CFガスまたはClガスなどを一種以上含むガス添加すると、図23(B)および(C)中に点線で表記するように、絶縁体410の開口部は基板の裏面と平行な面に沿って横方向に広がるように形成すると同時に導電体416a1の側面および導電体416a2の側面がテーパー角446およびテーパー角447を有する領域を形成することができる。また、図示しないが、導電体416a1および導電体416a2の上端部のみがテーパー形状を有する断面でもよいし、導電体416a1および導電体416a2の上端部が丸みをおびた断面でもよい。
これにより、導電体416a1の側面上および導電体416a2の側面上に形成される絶縁体406cおよびゲート絶縁体としての機能を有する絶縁体412の被覆性が向上する。絶縁体406cおよび絶縁体412の被覆性が向上すると、ゲート電極としての機能を有する導電体404とソース電極またはドレイン電極としての機能を有する導電体416a1または導電体416a2との間を流れるリーク電流を低く抑えることができる。または、ゲート電極としての機能を有する導電体404とチャネル形成領域を有する半導体406bとの間を流れるリーク電流を低く抑えることができる。
テーパー角446およびテーパー角447は、10度以上90度以下、好ましくは30度以上80度以下とする。テーパー角446は、導電体416a1のエッチング速度と絶縁体410の基板の裏面に平行な面に沿って横方向へのエッチング速度とのエッチング速度比に応じて制御することができる。テーパー角447は、導電体416a2のエッチング速度と絶縁体410の基板の裏面に平行な面に沿って横方向へのエッチング速度とのエッチング速度比に応じて制御することができる。
。例えば、該エッチング速度比が1であればテーパー角446およびテーパー角447は45度となる。(図3参照。)。
第3の加工に使用するドライエッチング装置は、例えば、第1の加工と同様のドライエッチング装置を使用することができる。
第3の加工を第1の加工および第2の加工と同じドライエッチング装置を用いることで大気に晒されることなく、第1の加工、第2の加工および第3の加工を連続的に行うことができるので基板への大気成分の付着による汚染や基板に残留するエッチングガスと大気成分の反応による絶縁体、半導体および導電体の腐食などを防ぐことができる。または第1の加工、第2の加工および第3の加工を連続的に行うことで生産性の向上が見込まれる。
第1の加工および第2の加工をドライエッチング法で行う場合、半導体406bの露出領域にエッチングガスの残留成分などの不純物が付着する場合がある。例えば、エッチングガスとして塩素系ガスを用いると、塩素などが付着する場合がある。また、エッチングガスとして炭化水素系ガスを用いると、炭素や水素などが付着する場合がある。第2の加工後に基板を大気に晒すと半導体406bの露出領域などが腐蝕することがある。そのため第2の加工後に連続して酸素ガスによるプラズマ処理を行うと上記不純物を除去することができて半導体406bの露出領域などの腐蝕を防ぐことができて好ましい。
または、不純物の低減は、例えば、希釈フッ化水素酸などを用いた洗浄処理またはオゾンなどを用いた洗浄処理を行ってもよい。なお、複数の洗浄処理を組み合わせてもよい。これにより、半導体406bの露出した領域、言い換えるとチャネル形成領域は高抵抗となる。
一方、導電体416a1および導電体416a2と、半導体406bの上面とが、互いに重なる領域407は、上述のように導電体416a1および導電体416a2と半導体406b間のコンタクト抵抗値が低くなり良好なトランジスタ特性を得ることができて好ましい。
次に、絶縁体406c_1を成膜し、絶縁体406c_1上に絶縁体412_1を成膜する。絶縁体406c_1および絶縁体412_1の成膜は、スパッタリング法、CVD法、MBE法またはPLD法、ALD法などを用いて行うことができる。絶縁体406c_1および絶縁体412_1は、絶縁体410、導電体416a1および導電体416a2によって形成される開口部の側面および底面に均一な厚さで成膜する。したがって、ALD法を用いることが好ましい。
次に、導電体404_1を成膜する。導電体404_1の成膜は、スパッタリング法、CVD法、MBE法またはPLD法、ALD法などを用いて行うことができる。導電体404_1は、絶縁体410などによって形成される開口部を埋めるように成膜する。したがって、CVD法(特にMCVD法)を用いることが好ましい。また、MCVD法で成膜する導電体の密着性を高めるために、ALD法などによって成膜した導電体と、CVD法で成膜した導電体との多層膜にすると好ましい場合がある。例えば、窒化チタンと、タングステンとがこの順に成膜された多層膜などを用いればよい(図24(A)、(B)および(C)参照。)。
次に導電体404_1の上面から、導電体404_1、絶縁体412_1および絶縁体406c_1をCMPなどを用いて絶縁体410の上面に達するまで研磨および平坦化することで、導電体404、絶縁体412および絶縁体406cを形成する。これにより、ゲート電極として機能を有する導電体404は、リソグラフィー法を用いることなく自己整合的に形成できる。また、ゲート電極として機能を有する導電体404とソース電極またはドレイン電極としての機能を有する導電体416a1および導電体416a2との位置合わせ精度を考慮することなくゲート電極として機能を有する導電体404を形成できるので半導体装置の面積を小さくすることができる。また、リソグラフィー工程が不要となるので工程簡略化による生産性の向上が見込まれる(図25(A)、(B)および(C)参照。)。
次に、絶縁体410上およびゲート電極上に絶縁体408となる絶縁体を成膜する。絶縁体408となる絶縁体の成膜は、スパッタリング法、CVD法、MBE法またはPLD法、ALD法などを用いて行うことができる。好ましくは、絶縁体408となる絶縁体として、酸素を有するプラズマを用いて酸化アルミニウムを成膜することで、該プラズマ中の酸素を過剰酸素として、絶縁体410の上面、絶縁体412の絶縁体408と接する領域および絶縁体406cの絶縁体408と接する領域へ添加することができる。このとき絶縁体408と絶縁体410の膜界面近傍に過剰酸素を多く含んだ混合領域414が形成されることがある。図26(B)および(C)中に過剰酸素が混合領域414付近に添加された様子を矢印で表記する。
絶縁体408となる絶縁体の成膜より後のいずれかのタイミングにおいて、第2の加熱処理を行っても構わない。第2の加熱処理を行うことで、絶縁体410および混合領域414に含まれる過剰酸素が絶縁体402および絶縁体406aを通過して半導体406bまで移動する。また、絶縁体410および混合領域414に含まれる過剰酸素が絶縁体412および/または絶縁体406cを通過して半導体406bまで移動する。このように2つの経路を通って過剰酸素が半導体406bまで移動するため、半導体406bの欠陥(酸素欠損)を低減することができる(図26(A)および(B)参照。)。
なお、第2の加熱処理は、絶縁体410および混合領域414に含まれる過剰酸素(酸素)が半導体406bまで拡散する温度で行えばよい。例えば、第1の加熱処理についての記載を参照しても構わない。または、第2の加熱処理は、第1の加熱処理よりも低い温度が好ましい。第1の加熱処理と第2の加熱処理の温度差は、20℃以上150℃以下、好ましくは40℃以上100℃以下とする。これにより、絶縁体402から余分に過剰酸素(酸素)が放出することを抑えることができる。なお、第2の加熱処理は、同等の加熱処理を各層の成膜時の加熱によって兼ねることができる場合、行わなくてもよい場合がある。
次に絶縁体408となる絶縁体および絶縁体410に導電体416a1および導電体416a2に達する開口部を形成し、それぞれの開口部に導電体431、導電体429を埋め込む。次に、絶縁体408となる絶縁体に導電体404に達する開口部を形成し、導電体437を埋め込み、絶縁体408を形成する。絶縁体408上、導電体431上、導電体429上および導電体437上に導電体432、導電体430および導電体438となる導電体を成膜し、リソグラフィー法などを用いて導電体432、導電体430および導電体438を形成する。尚、絶縁体408となる絶縁体および絶縁体410に導電体416a1および導電体416a2に達する開口部の形成と絶縁体408に導電体404に達する開口部の形成を同時に行ってもよい。同時に行うことにより、工程の簡略化による生産性の向上が見込まれる。
以上のようにして、図5に示したトランジスタを作製することができる。
<トランジスタの作製方法3>
以下では図1に示したトランジスタをトランジスタの作製方法1と異なる作製方法について図27から図33を用いて説明する。絶縁体406a、半導体406bおよび導電体415を有する多層膜を形成するところまでは、上述のトランジスタの作製方法1およびトランジスタの作製方法2と同様である(図15(A)および(B)参照。)。
次に、絶縁体410aを成膜する。絶縁体410aの成膜は、スパッタリング法、CVD法、MBE法またはPLD法、ALD法などを用いて行うことができる。または、スピンコート法、ディップ法、液滴吐出法(インクジェット法など)、印刷法(スクリーン印刷、オフセット印刷など)、ドクターナイフ法、ロールコーター法またはカーテンコーター法などを用いて行うことができる。
絶縁体410aは、上面が平坦性を有するように形成してもよい。例えば、絶縁体410aは、成膜直後に上面が平坦性を有していてもよい。または、例えば、絶縁体410aは、成膜後に基板裏面などの基準面と平行になるよう絶縁体などを上面から除去していくことで平坦性を有してもよい。このような処理を、平坦化処理と呼ぶ。平坦化処理としては、化学的機械研磨(CMP:Chemical Mechanical Polishing)処理、ドライエッチング処理などがある。ただし、絶縁体410aの上面が平坦性を有さなくても構わない。
次に、絶縁体410a上にリソグラフィー法などによってレジストマスク411を形成する。ここで絶縁体410aの上面とレジストマスクとの間の密着性を向上するために、例えば、有機塗布膜を絶縁体410a上とレジストマスク411の間に設けても良い。また、レジストマスク411は、トランジスタの作製方法1およびトランジスタの作製方法2の方法よりも開口部を大きく形成する(図27(A)、(B)および(C)参照。)。
次に、絶縁体410aをドライエッチング法などを用いて開口部が導電体415の上面に達するまでおよび絶縁体402に達するまで第1の加工を行い絶縁体410を形成する。第1の加工のドライエッチングに使用するガスは、例えば、Cガス、CFガス、SFガスまたはCHFガスなどを用いることができる。または、上記ガスに酸素ガス、ヘリウムガス、アルゴンガスまたは水素ガスなどを適宜添加することができる。ここではCガスに酸素ガスを添加したものを用いることが好ましい。ドライエッチング装置は上述のドライエッチング装置を使用することができるが、平行平板型電極それぞれに周波数の異なる高周波電源を接続する構成のドライエッチング装置の使用が好ましい(図28(A)、(B)および(C)参照。)。
次に、ドライエッチング装置を用いて、炭素およびハロゲンを有するガスによってプラズマを生成し、プラズマによって、有機物413をレジストマスク411上、半導体406b上および絶縁体410の側面に堆積する。使用するガスは例えば、CHFまたはCなどを使用する。ドライエッチング装置は、第1の加工と同じドライエッチング装置を用いてもよい。または、高密度プラズマ源を有するドライエッチング装置を用いてもよく、例えば、誘導結合型プラズマエッチング装置を用いることができる(図29(A)、(B)および(C)参照。)。上記は、ドライエッチング装置を用いた有機膜の成膜方法であるが、これに限らずドライエッチング装置と異なる装置を用いてもよい。または無機膜を成膜してもよい。
次に、導電体415をドライエッチング法などを用いて第2の加工をすることで、導電体416a1と導電体416a2に分離する。また、絶縁体410の側面は有機物413を有しているため、絶縁体410の側面の有機物413の側面にそって導電体415がエッチングされ、図30(B)に示すように絶縁体410の側面より内側に導電体416a1の側面および導電体416a2の側面が配される。第2の加工のドライエッチングに使用するガスは、例えば、Cガス、CFガス、SFガス、Clガス、BClガス、SiClガスなどを単独または2以上を混合して用いることができる。また、上記ガスに酸素ガス、ヘリウムガス、アルゴンガスまたは水素ガスを適宜添加してもよい。ここでは、CFガス、Clガスおよび酸素ガスを混合して使用するとよい(図30(A)、(B)および(C)参照。)。
第2の加工に使用するドライエッチング装置は、例えば、第1の加工と同様のドライエッチング装置を使用することができる。
有機物413の堆積と第2の加工を第1の加工と同じドライエッチング装置を用いることで大気に晒されることなく、第1の加工、有機物413の堆積および第2の加工を連続的に行うことができるので基板への大気成分の付着による汚染や基板に残留するエッチングガスと大気成分の反応による絶縁体、半導体および導電体の腐食などを防ぐことができる。または第1の加工、有機物413の堆積および第2の加工を連続的に行うことで生産性の向上が見込まれる。
第1の加工、有機物413の堆積および第2の加工をドライエッチング法で行う場合、半導体406bの露出領域にエッチングガスの残留成分などの不純物が付着する場合がある。例えば、エッチングガスとして塩素系ガスを用いると、塩素などが付着する場合がある。また、エッチングガスとして炭化水素系ガスを用いると、炭素や水素などが付着する場合がある。第2の加工後に基板を大気に晒すと半導体406bの露出領域などが腐蝕することがある。そのため第2の加工後に連続して酸素ガスによるプラズマ処理を行うと上記不純物を除去することができて半導体406bの露出領域などの腐蝕を防ぐことができて好ましい。また、酸素ガスによるプラズマ処理によって絶縁体410の側面の有機物413を除去することができる。
または、不純物の低減は、例えば、希釈フッ化水素酸などを用いた洗浄処理またはオゾンなどを用いた洗浄処理を行ってもよい。なお、複数の洗浄処理を組み合わせてもよい。これにより、半導体406bの露出した領域、言い換えるとチャネル形成領域は高抵抗となる。
一方、導電体416a1および導電体416a2と、半導体406bの上面とが、互いに重なる領域407は、上述のように導電体416a1および導電体416a2と半導体406b間のコンタクト抵抗値が低くなり良好なトランジスタ特性を得ることができて好ましい。
次に、絶縁体406c_1を成膜し、絶縁体406c_1上に絶縁体412_1を成膜する。絶縁体406c_1および絶縁体412_1の成膜は、スパッタリング法、CVD法、MBE法またはPLD法、ALD法などを用いて行うことができる。絶縁体406c_1および絶縁体412_1は、絶縁体410、導電体416a1および導電体416a2によって形成される開口部の側面および底面に均一な厚さで成膜する。したがって、ALD法を用いることが好ましい。
次に、導電体404_1を成膜する。導電体404_1の成膜は、スパッタリング法、CVD法、MBE法またはPLD法、ALD法などを用いて行うことができる。導電体404_1は、絶縁体410などによって形成される開口部を埋めるように成膜する。したがって、CVD法(特にMCVD法)を用いることが好ましい。また、MCVD法で成膜する導電体の密着性を高めるために、ALD法などによって成膜した導電体と、CVD法で成膜した導電体との多層膜にすると好ましい場合がある。例えば、窒化チタンと、タングステンとがこの順に成膜された多層膜などを用いればよい(図31(A)、(B)および(C)参照。)。
次に導電体404_1の上面から、導電体404_1、絶縁体412_1および絶縁体406c_1をCMPなどを用いて絶縁体410の上面に達するまで研磨および平坦化することで、導電体404、絶縁体412および絶縁体406cを形成する。これにより、ゲート電極として機能を有する導電体404は、リソグラフィー法を用いることなく自己整合的に形成できる。また、ゲート電極として機能を有する導電体404とソース電極またはドレイン電極としての機能を有する導電体416a1および導電体416a2との位置合わせ精度を考慮することなくゲート電極として機能を有する導電体404を形成できるので半導体装置の面積を小さくすることができる。また、リソグラフィー工程が不要となるので工程簡略化による生産性の向上が見込まれる(図32(A)、(B)および(C)参照。)。
次に、絶縁体410上およびゲート電極上に絶縁体408となる絶縁体を成膜する。絶縁体408となる絶縁体の成膜は、スパッタリング法、CVD法、MBE法またはPLD法、ALD法などを用いて行うことができる。好ましくは、絶縁体408となる絶縁体として、酸素を有するプラズマを用いて酸化アルミニウムを成膜することで、該プラズマ中の酸素を過剰酸素として、絶縁体410の上面、絶縁体412の絶縁体408と接する領域および絶縁体406cの絶縁体408と接する領域へ添加することができる。このとき絶縁体408と絶縁体410の膜界面近傍に過剰酸素を多く含んだ混合領域414が形成されることがある。図33(B)および(C)中に過剰酸素が混合領域414付近に添加された様子を矢印で表記する。
絶縁体408となる絶縁体の成膜より後のいずれかのタイミングにおいて、第2の加熱処理を行っても構わない。第2の加熱処理を行うことで、絶縁体410および混合領域414に含まれる過剰酸素が絶縁体402および絶縁体406aを通過して半導体406bまで移動する。また、絶縁体410および混合領域414に含まれる過剰酸素が絶縁体412および/または絶縁体406cを通過して半導体406bまで移動する。このように2つの経路を通って過剰酸素が半導体406bまで移動するため、半導体406bの欠陥(酸素欠損)を低減することができる(図33(A)および(B)参照。)。
なお、第2の加熱処理は、絶縁体410および混合領域414に含まれる過剰酸素(酸素)が半導体406bまで拡散する温度で行えばよい。例えば、第1の加熱処理についての記載を参照しても構わない。または、第2の加熱処理は、第1の加熱処理よりも低い温度が好ましい。第1の加熱処理と第2の加熱処理の温度差は、20℃以上150℃以下、好ましくは40℃以上100℃以下とする。これにより、絶縁体402から余分に過剰酸素(酸素)が放出することを抑えることができる。なお、第2の加熱処理は、同等の加熱処理を各層の成膜時の加熱によって兼ねることができる場合、行わなくてもよい場合がある。
次に絶縁体408となる絶縁体および絶縁体410に導電体416a1および導電体416a2に達する開口部を形成し、それぞれの開口部に導電体431、導電体429を埋め込む。次に、絶縁体408となる絶縁体に導電体404に達する開口部を形成し、導電体437を埋め込み、絶縁体408を形成する。絶縁体408上、導電体431上、導電体429上および導電体437上に導電体432、導電体430および導電体438となる導電体を成膜し、リソグラフィー法などを用いて導電体432、導電体430および導電体438を形成する。尚、絶縁体408となる絶縁体および絶縁体410に導電体416a1および導電体416a2に達する開口部の形成と絶縁体408に導電体404に達する開口部の形成を同時に行ってもよい。同時に行うことにより、工程の簡略化による生産性の向上が見込まれる。
以上のようにして、トランジスタの作製方法1と異なる作製方法で図1に示したトランジスタを作製することができる。
<トランジスタの作製方法4>
以下では図5に示したトランジスタの作製方法をトランジスタの作製方法2と異なる作製方法について図3および図34から図37を用いて説明する。有機物413をレジストマスク411上、半導体406b上および絶縁体410の側面に堆積するまでは、上述のトランジスタの作製方法3と同様である(図29(A)および(B)参照。)。
次に、導電体415をドライエッチング法などを用いて第2の加工をすることで、導電体416a1と導電体416a2に分離する。第2の加工のドライエッチングに使用するガスは、例えば、Cガス、CFガス、SFガス、Clガス、BClガス、SiClガスなどを単独または2以上を混合して用いることができる。また、上記ガスに酸素ガス、ヘリウムガス、アルゴンガスまたは水素ガスを適宜添加してもよい。ここでは、トランジスタの作製方法3で第2の加工で使用したエッチングガスより、酸素ガス流量を増加させると良い。酸素ガス流量を増加させることで、絶縁体410の側面に堆積した有機膜の基板の裏面に平行な面に沿って横方向へのエッチング速度が、トランジスタの作製方法3での第2の加工よりも速くなり、図34(B)および(C)中に点線で表記するように、絶縁体410の側面に有する有機物413は基板の裏面に平行な面に沿って横方向にエッチングされると同時に導電体416a1の側面および導電体416a1の側面がテーパー角446およびテーパー角447を有する領域を形成することができる。また、図示しないが、導電体416a1および導電体416a2の上端部のみがテーパー形状を有する断面でもよいし、導電体416a1および導電体416a2の上端部が丸みをおびた断面でもよい。
これにより、導電体416a1の側面上および導電体416a2の側面上に形成される絶縁体406cおよびゲート絶縁体としての機能を有する絶縁体412の被覆性が向上する。絶縁体406cおよび絶縁体412の被覆性が向上すると、ゲート電極としての機能を有する導電体404とソース電極またはドレイン電極としての機能を有する導電体416a1または導電体416a2との間を流れるリーク電流を低く抑えることができる。または、ゲート電極としての機能を有する導電体404とチャネル形成領域を有する半導体406bとの間を流れるリーク電流を低く抑えることができる。
テーパー角446およびテーパー角447は、10度以上90度以下、好ましくは30度以上80度以下とする。テーパー角446は、導電体416a1のエッチング速度と絶縁体410の側面に堆積した有機物413の基板の裏面に平行な面に沿って横方向へのエッチング速度とのエッチング速度比に応じて制御することができる。テーパー角447は、導電体416a2のエッチング速度と絶縁体410の側面に堆積した有機物413の基板の裏面に平行な面に沿って横方向へのエッチング速度とのエッチング速度比に応じて制御することができる。例えば、該エッチング速度比が1であればテーパー角446およびテーパー角447は45度となる。(図3参照。)。
第2の加工に使用するドライエッチング装置は、例えば、第1の加工と同様のドライエッチング装置を使用することができる。
有機物413の堆積と第2の加工を第1の加工と同じドライエッチング装置を用いることで大気に晒されることなく、第1の加工、有機物413の堆積および第2の加工を連続的に行うことができるので基板への大気成分の付着による汚染や基板に残留するエッチングガスと大気成分の反応による絶縁体、半導体および導電体の腐食などを防ぐことができる。または第1の加工、第2の加工および第3の加工を連続的に行うことで生産性の向上が見込まれる。
第1の加工、有機物413の堆積および第2の加工をドライエッチング法で行う場合、半導体406bの露出領域にエッチングガスの残留成分などの不純物が付着する場合がある。例えば、エッチングガスとして塩素系ガスを用いると、塩素などが付着する場合がある。また、エッチングガスとして炭化水素系ガスを用いると、炭素や水素などが付着する場合がある。第2の加工後に基板を大気に晒すと半導体406bの露出領域などが腐蝕することがある。そのため第2の加工後に連続して酸素ガスによるプラズマ処理を行うと上記不純物を除去することができて半導体406bの露出領域などの腐蝕を防ぐことができて好ましい。また、酸素ガスによるプラズマ処理によって絶縁体410の側面の有機物413を除去することができる。
または、不純物の低減は、例えば、希釈フッ化水素酸などを用いた洗浄処理またはオゾンなどを用いた洗浄処理を行ってもよい。なお、複数の洗浄処理を組み合わせてもよい。これにより、半導体406bの露出した領域、言い換えるとチャネル形成領域は高抵抗となる。
一方、導電体416a1および導電体416a2と、半導体406bの上面とが、互いに重なる領域407は、上述のように導電体416a1および導電体416a2と半導体406b間のコンタクト抵抗値が低くなり良好なトランジスタ特性を得ることができて好ましい。
次に、絶縁体406c_1を成膜し、絶縁体406c_1上に絶縁体412_1を成膜する。絶縁体406c_1および絶縁体412_1の成膜は、スパッタリング法、CVD法、MBE法またはPLD法、ALD法などを用いて行うことができる。絶縁体406c_1および絶縁体412_1は、絶縁体410、導電体416a1および導電体416a2によって形成される開口部の側面および底面に均一な厚さで成膜する。したがって、ALD法を用いることが好ましい。
次に、導電体404_1を成膜する。導電体404_1の成膜は、スパッタリング法、CVD法、MBE法またはPLD法、ALD法などを用いて行うことができる。導電体404_1は、絶縁体410などによって形成される開口部を埋めるように成膜する。したがって、CVD法(特にMCVD法)を用いることが好ましい。また、MCVD法で成膜する導電体の密着性を高めるために、ALD法などによって成膜した導電体と、CVD法で成膜した導電体との多層膜にすると好ましい場合がある。例えば、窒化チタンと、タングステンとがこの順に成膜された多層膜などを用いればよい(図35(A)、(B)および(C)参照。)。
次に導電体404_1の上面から、導電体404_1、絶縁体412_1および絶縁体406c_1をCMPなどを用いて絶縁体410の上面に達するまで研磨および平坦化することで、導電体404、絶縁体412および絶縁体406cを形成する。これにより、ゲート電極として機能を有する導電体404は、リソグラフィー法を用いることなく自己整合的に形成できる。また、ゲート電極として機能を有する導電体404とソース電極またはドレイン電極としての機能を有する導電体416a1および導電体416a2との位置合わせ精度を考慮することなくゲート電極として機能を有する導電体404を形成できるので半導体装置の面積を小さくすることができる。また、リソグラフィー工程が不要となるので工程簡略化による生産性の向上が見込まれる(図36(A)、(B)および(C)参照。)。
次に、絶縁体410上およびゲート電極上に絶縁体408となる絶縁体を成膜する。絶縁体408となる絶縁体の成膜は、スパッタリング法、CVD法、MBE法またはPLD法、ALD法などを用いて行うことができる。好ましくは、絶縁体408となる絶縁体として、酸素を有するプラズマを用いて酸化アルミニウムを成膜することで、該プラズマ中の酸素を過剰酸素として、絶縁体410の上面、絶縁体412の絶縁体408と接する領域および絶縁体406cの絶縁体408と接する領域へ添加することができる。このとき絶縁体408と絶縁体410の膜界面近傍に過剰酸素を多く含んだ混合領域414が形成されることがある。図37(B)および(C)中に過剰酸素が混合領域414付近に添加された様子を矢印で表記する。
絶縁体408となる絶縁体の成膜より後のいずれかのタイミングにおいて、第2の加熱処理を行っても構わない。第2の加熱処理を行うことで、絶縁体410および混合領域414に含まれる過剰酸素が絶縁体402および絶縁体406aを通過して半導体406bまで移動する。また、絶縁体410および混合領域414に含まれる過剰酸素が絶縁体412および/または絶縁体406cを通過して半導体406bまで移動する。このように2つの経路を通って過剰酸素が半導体406bまで移動するため、半導体406bの欠陥(酸素欠損)を低減することができる(図37(A)および(B)参照。)。
なお、第2の加熱処理は、絶縁体410および混合領域414に含まれる過剰酸素(酸素)が半導体406bまで拡散する温度で行えばよい。例えば、第1の加熱処理についての記載を参照しても構わない。または、第2の加熱処理は、第1の加熱処理よりも低い温度が好ましい。第1の加熱処理と第2の加熱処理の温度差は、20℃以上150℃以下、好ましくは40℃以上100℃以下とする。これにより、絶縁体402から余分に過剰酸素(酸素)が放出することを抑えることができる。なお、第2の加熱処理は、同等の加熱処理を各層の成膜時の加熱によって兼ねることができる場合、行わなくてもよい場合がある。
次に絶縁体408となる絶縁体および絶縁体410に導電体416a1および導電体416a2に達する開口部を形成し、それぞれの開口部に導電体431、導電体429を埋め込む。次に、絶縁体408となる絶縁体に導電体404に達する開口部を形成し、導電体437を埋め込み、絶縁体408を形成する。絶縁体408上、導電体431上、導電体429上および導電体437上に導電体432、導電体430および導電体438となる導電体を成膜し、リソグラフィー法などを用いて導電体432、導電体430および導電体438を形成する。尚、絶縁体408となる絶縁体および絶縁体410に導電体416a1および導電体416a2に達する開口部の形成と絶縁体408に導電体404に達する開口部の形成を同時に行ってもよい。同時に行うことにより、工程の簡略化による生産性の向上が見込まれる。
以上のようにして、トランジスタの作製方法2と異なる作製方法で図5に示したトランジスタを作製することができる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態4)
<記憶装置1>
本発明の一態様に係るトランジスタを用いた、電力が供給されない状況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い半導体装置(記憶装置)の一例を図38に示す。
図38(A)に示す半導体装置は、第1の半導体を用いたトランジスタ3200と第2の半導体を用いたトランジスタ3300、および容量素子3400を有している。なお、トランジスタ3300としては、上述したトランジスタを用いることができる。
トランジスタ3300は、オフ電流の小さいトランジスタが好ましい。トランジスタ3300は、例えば、酸化物半導体を用いたトランジスタを用いることができる。トランジスタ3300のオフ電流が小さいことにより、半導体装置の特定のノードに長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作を必要としない、またはリフレッシュ動作の頻度が極めて少なくすることが可能となるため、消費電力の低い半導体装置となる。
図38(A)において、第1の配線3001はトランジスタ3200のソースと電気的に接続され、第2の配線3002はトランジスタ3200のドレインと電気的に接続される。また、第3の配線3003はトランジスタ3300のソース、ドレインの一方と電気的に接続され、第4の配線3004はトランジスタ3300のゲートと電気的に接続されている。そして、トランジスタ3200のゲート、およびトランジスタ3300のソース、ドレインの他方は、容量素子3400の一方の電極と電気的に接続され、第5の配線3005は容量素子3400の他方の電極と電気的に接続されている。
図38(A)に示す半導体装置は、トランジスタ3200のゲートの電位が保持可能という特性を有することで、以下に示すように、情報の書き込み、保持、読み出しが可能である。
情報の書き込みおよび保持について説明する。まず、第4の配線3004の電位を、トランジスタ3300が導通状態となる電位にして、トランジスタ3300を導通状態とする。これにより、第3の配線3003の電位が、トランジスタ3200のゲート、および容量素子3400の一方の電極と電気的に接続するノードFGに与えられる。即ち、トランジスタ3200のゲートには、所定の電荷が与えられる(書き込み)。ここでは、異なる二つの電位レベルを与える電荷(以下Lowレベル電荷、Highレベル電荷という。)のどちらかが与えられるものとする。その後、第4の配線3004の電位を、トランジスタ3300が非導通状態となる電位にして、トランジスタ3300を非導通状態とすることにより、ノードFGに電荷が保持される(保持)。
トランジスタ3300のオフ電流が小さいため、ノードFGの電荷は長期間にわたって保持される。
次に情報の読み出しについて説明する。第1の配線3001に所定の電位(定電位)を与えた状態で、第5の配線3005に適切な電位(読み出し電位)を与えると、第2の配線3002は、ノードFGに保持された電荷量に応じた電位をとる。これは、トランジスタ3200をnチャネル型とすると、トランジスタ3200のゲートにHighレベル電荷が与えられている場合の見かけ上のしきい値電圧Vth_Hは、トランジスタ3200のゲートにLowレベル電荷が与えられている場合の見かけ上のしきい値電圧Vth_Lより低くなるためである。ここで、見かけ上のしきい値電圧とは、トランジスタ3200を「導通状態」とするために必要な第5の配線3005の電位をいうものとする。したがって、第5の配線3005の電位をVth_HとVth_Lの間の電位Vとすることにより、ノードFGに与えられた電荷を判別できる。例えば、書き込みにおいて、ノードFGにHighレベル電荷が与えられていた場合には、第5の配線3005の電位がV(>Vth_H)となれば、トランジスタ3200は「導通状態」となる。一方、ノードFGにLowレベル電荷が与えられていた場合には、第5の配線3005の電位がV(<Vth_L)となっても、トランジスタ3200は「非導通状態」のままである。このため、第2の配線3002の電位を判別することで、ノードFGに保持されている情報を読み出すことができる。
なお、メモリセルをアレイ状に配置する場合、読み出し時には、所望のメモリセルの情報を読み出さなくてはならない。情報を読み出さないメモリセルにおいては、ノードFGに与えられた電荷によらずトランジスタ3200が「非導通状態」となるような電位、つまり、Vth_Hより低い電位を第5の配線3005に与えることで所望のメモリセルの情報のみを読み出せる構成とすればよい。または、情報を読み出さないメモリセルにおいては、ノードFGに与えられた電荷によらずトランジスタ3200が「導通状態」となるような電位、つまり、Vth_Lより高い電位を第5の配線3005に与えることで所望のメモリセルの情報のみを読み出せる構成とすればよい。
<半導体装置の構造1>
図39は、図38(A)に対応する半導体装置の断面図である。図39に示す半導体装置は、トランジスタ3200と、トランジスタ3300と、容量素子3400と、を有する。また、トランジスタ3300および容量素子3400は、トランジスタ3200の上方に配置する。なお、トランジスタ3300としては、図1に示したトランジスタを用いた例を示しているが、本発明の一態様に係る半導体装置は、これに限定されるものではない。よって適宜上述したトランジスタについての記載を参酌する。
また、図39に示すトランジスタ3200は、半導体基板450を用いたトランジスタである。トランジスタ3200は、半導体基板450中の領域474aと、半導体基板450中の領域474bと、絶縁体462と、導電体454と、を有する。
トランジスタ3200において、領域474aおよび領域474bは、ソース領域およびドレイン領域としての機能を有する。また、絶縁体462は、ゲート絶縁体としての機能を有する。また、導電体454は、ゲート電極としての機能を有する。したがって、導電体454に印加する電位によって、チャネル形成領域の抵抗を制御することができる。即ち、導電体454に印加する電位によって、領域474aと領域474bとの間の導通・非導通を制御することができる。
半導体基板450としては、例えば、シリコン、ゲルマニウムなどの単体半導体基板、または炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、酸化ガリウムからなる化合物半導体基板などを用いればよい。好ましくは、半導体基板450として単結晶シリコン基板を用いる。
半導体基板450は、n型の導電型を付与する不純物を有する半導体基板を用いる。ただし、半導体基板450として、p型の導電型を付与する不純物を有する半導体基板を用いても構わない。その場合、トランジスタ3200となる領域には、n型の導電型を付与する不純物を有するウェルを配置すればよい。または、半導体基板450がi型であっても構わない。
半導体基板450の上面は、(110)面を有することが好ましい。こうすることで、トランジスタ3200のオン特性を向上させることができる。
領域474aおよび領域474bは、p型の導電型を付与する不純物を有する領域である。このようにして、トランジスタ3200はpチャネル型トランジスタを構成する。
トランジスタ3200がpチャネル型トランジスタである場合について説明したが、トランジスタ3200がnチャネル型トランジスタであっても構わない。
なお、トランジスタ3200は、領域460などによって隣接するトランジスタと分離される。領域460は、絶縁性を有する領域である。
図39に示す半導体装置は、絶縁体464と、絶縁体466と、絶縁体468と、絶縁体470と、絶縁体472と、絶縁体475と、絶縁体402と、絶縁体410と、絶縁体408と、絶縁体428と、絶縁体465と、絶縁体467と、絶縁体469と、絶縁体498と、導電体480aと、導電体480bと、導電体480cと、導電体478aと、導電体478bと、導電体478cと、導電体476aと、導電体476bと、導電体476cと、導電体479aと、導電体479bと、導電体479cと、導電体477aと、導電体477bと、導電体477cと、導電体484aと、導電体484bと、導電体484cと、導電体484dと、導電体483aと、導電体483bと、導電体483cと、導電体483dと、導電体483eと、導電体483fと、導電体485aと、導電体485bと、導電体485cと、導電体485dと、導電体487aと、導電体487bと、導電体487cと、導電体488aと、導電体488bと、導電体488cと、導電体490aと、導電体490bと、導電体489aと、導電体489bと、導電体491aと、導電体491bと、導電体491cと、導電体492aと、導電体492bと、導電体492cと、導電体494と、導電体496と、絶縁体406a、半導体406b、絶縁体406cと、を有する。
絶縁体464は、トランジスタ3200上に配置する。また、絶縁体466は、絶縁体464上に配置する。また、絶縁体468は、絶縁体466上に配置する。また、絶縁体470は、絶縁体468上に配置する。また、絶縁体472は、絶縁体470上に配置する。また、絶縁体475は、絶縁体472上に配置する。また、トランジスタ3300は、絶縁体475上に配置する。また、絶縁体408は、トランジスタ3300上に配置する。また、絶縁体428は、絶縁体408上に配置する。また、絶縁体465は、絶縁体428上に配置される。また、容量素子3400は、絶縁体465上に配置される。また、絶縁体469は、容量素子3400上に配置される。
絶縁体464は、領域474aに達する開口部と、領域474bに達する開口部と、導電体454に達する開口部と、を有する。また、開口部には、それぞれ導電体480a、導電体480bまたは導電体480cが埋め込まれている。
また、絶縁体466は、導電体480aに達する開口部と、導電体480bに達する開口部と、導電体480cに達する開口部と、を有する。また、開口部には、それぞれ導電体478a、導電体478bまたは導電体478cが埋め込まれている。
また、絶縁体468は、導電体478aに達する開口部と、導電体478bに達する開口部と、導電体478cに達する開口部と、を有する。また、開口部には、それぞれ導電体476a、導電体476bまたは導電体476cが埋め込まれている。
また、絶縁体468上に、導電体476aと接する導電体479aと、導電体476bと接する導電体479bと、導電体476cと接する導電体479cと、を有する。また、絶縁体472は、絶縁体470を通って導電体479aに達する開口部と、絶縁体470を通って導電体479bに達する開口部と、絶縁体470を通って導電体479cに達する開口部と、を有する。また、開口部には、それぞれ導電体477a、導電体477bまたは導電体477cが埋め込まれている。
また、絶縁体475は、トランジスタ3300のチャネル形成領域と重なる開口部と、導電体477aに達する開口部と、導電体477bに達する開口部と、導電体477cに達する開口部と、を有する。また、開口部には、それぞれ導電体484a、導電体484b、導電体484cまたは導電体484dが埋め込まれている。
また、導電体484dは、トランジスタ3300のボトムゲート電極としての機能を有しても構わない。または、例えば、導電体484dに一定の電位を印加することで、トランジスタ3300のしきい値電圧などの電気特性を制御しても構わない。または、例えば、導電体484dとトランジスタ3300のトップゲート電極とを電気的に接続しても構わない。こうすることで、トランジスタ3300のオン電流を大きくすることができる。また、パンチスルー現象を抑制することができるため、トランジスタ3300の飽和領域における電気特性を安定にすることができる。
また、絶縁体402は、導電体484aに達する開口部と、導電体484cに達する開口部と、導電体484bに達する開口部と、を有する。
また、絶縁体428は、絶縁体408、絶縁体410および絶縁体402を通って導電体484aおよび導電体484bに達する2つの開口部と、絶縁体408および絶縁体410を通ってトランジスタ3300のソース電極またはドレイン電極の一方の導電体に達する2つの開口部と、絶縁体408を通ってトランジスタ3300のゲート電極の導電体に達する開口部と、を有する。また、開口部には、それぞれ導電体483a、導電体483c、導電体483e、導電体483fまたは導電体483dが埋め込まれている。
また、絶縁体428上に、導電体483aおよび483eと接する導電体485aと、導電体483bと接する導電体485bと、導電体483cおよび導電体483fと接する導電体485cと、導電体483dと接する導電体485dと、を有する。また、絶縁体465は、導電体485aに達する開口部と、導電体485bに達する開口部と、導電体485cに達する開口部と、を有する。また、開口部には、それぞれ導電体487a、導電体487bまたは導電体487cが埋め込まれている。
また絶縁体465上に、導電体487aと接する導電体488aと、導電体487bと接する導電体488bと、導電体487cと接する導電体488cと、を有する。また、絶縁体467は、導電体488aに達する開口部と、導電体488bに達する開口部と、を有する。また、開口部には、それぞれ導電体490aまたは導電体490bが埋め込まれている。また、導電体488cは容量素子3400の一方の電極の導電体494と接している。
また、絶縁体467上に、導電体490aと接する導電体489aと、導電体490bと接する導電体489bと、を有する。また、絶縁体469は、導電体489aに達する開口部と、導電体489bに達する開口部と、容量素子3400の他方の電極である導電体496に達する開口部と、を有する。また、開口部には、それぞれ導電体491a、導電体491bまたは導電体491cが埋め込まれている。
また、絶縁体469上には、導電体491aと接する導電体492aと、導電体491bと接する導電体492bと、導電体491cと接する導電体492cと、を有する。
絶縁体464、絶縁体466、絶縁体468、絶縁体470、絶縁体472、絶縁体475、絶縁体402、絶縁体410、絶縁体408、絶縁体428、絶縁体465、絶縁体467、絶縁体469および絶縁体498としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。例えば、絶縁体401としては、酸化アルミニウム、酸化マグネシウム、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウムまたは酸化タンタルを用いればよい。
絶縁体464、絶縁体466、絶縁体468、絶縁体470、絶縁体472、絶縁体475、絶縁体402、絶縁体410、絶縁体408、絶縁体428、絶縁体465、絶縁体467、絶縁体469または絶縁体498の一以上は、水素などの不純物および酸素をブロックする機能を有する絶縁体を有することが好ましい。トランジスタ3300の近傍に、水素などの不純物および酸素をブロックする機能を有する絶縁体を配置することによって、トランジスタ3300の電気特性を安定にすることができる。
水素などの不純物および酸素をブロックする機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。
導電体480a、導電体480bと、導電体480c、導電体478a、導電体478b、導電体478c、導電体476a、導電体476b、導電体476c、導電体479a、導電体479b、導電体479c、導電体477a、導電体477b、導電体477c、導電体484a、導電体484b、導電体484c、導電体484d、導電体483a、導電体483bと、導電体483c、導電体483d、導電体483e、導電体483f、導電体485a、導電体485b、導電体485c、導電体485d、導電体487a、導電体487b、導電体487c、導電体488a、導電体488b、導電体488c、導電体490a、導電体490bと、導電体489a、導電体489bと、導電体491a、導電体491b、導電体491c、導電体492a、導電体492b、導電体492c、導電体494および導電体496としては、例えば、ホウ素、窒素、酸素、フッ素、シリコン、リン、アルミニウム、チタン、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、モリブデン、ルテニウム、銀、インジウム、スズ、タンタルおよびタングステンを一種以上含む導電体を、単層で、または積層で用いればよい。例えば、合金や化合物であってもよく、アルミニウムを含む導電体、銅およびチタンを含む導電体、銅およびマンガンを含む導電体、インジウム、スズおよび酸素を含む導電体、チタンおよび窒素を含む導電体などを用いてもよい。
半導体406bとしては、酸化物半導体を用いることが好ましい。ただし、シリコン(歪シリコン含む)、ゲルマニウム、シリコンゲルマニウム、炭化シリコン、ガリウムヒ素、アルミニウムガリウムヒ素、インジウムリン、窒化ガリウムまたは有機半導体などを用いても構わない場合がある。
絶縁体406aおよび絶縁体406cとしては、半導体406bを構成する酸素以外の元素一種以上、または二種以上から構成される酸化物を用いることが望ましい。ただし、シリコン(歪シリコン含む)、ゲルマニウム、シリコンゲルマニウム、炭化シリコン、ガリウムヒ素、アルミニウムガリウムヒ素、インジウムリン、窒化ガリウムまたは有機半導体などを用いても構わない場合がある。
トランジスタ3200のソースまたはドレインは、導電体480aと、導電体478aと、導電体476aと、導電体479aと、導電体477aと、導電体484aと、導電体483aと、導電体485aと、導電体483eと、を介してトランジスタ3300のソース電極またはドレイン電極の一方である導電体と電気的に接続する。また、トランジスタ3200のゲート電極である導電体454は、導電体480cと、導電体478cと、導電体476cと、導電体479cと、導電体477cと、導電体484cと、導電体483cと、導電体485cと、導電体483fと、を介してトランジスタ3300のソース電極またはドレイン電極の他方である導電体と電気的に接続する。
容量素子3400は、トランジスタ3300のソース電極またはドレイン電極の一方の電極と、導電体483fと、導電体485cと、導電体487cと、導電体488cと、を介して電気的に接続する、容量素子3400の一方の電極である導電体494と、絶縁体498と、容量素子3400の他方の電極である導電体496と、を有する。なお、容量素子3400は、トランジスタ3300の上方または下方に形成することで、半導体装置の大きさを縮小することができて好適である。
そのほかの構造については、適宜図1などについての記載を参酌することができる。
なお、図40に示す半導体装置は、図39に示した半導体装置のトランジスタ3200の構造が異なるのみである。よって、図40に示す半導体装置については、図39に示した半導体装置の記載を参酌する。具体的には、図40に示す半導体装置は、トランジスタ3200がFin型である場合を示している。トランジスタ3200をFin型とすることにより、実効上のチャネル幅が増大することによりトランジスタ3200のオン特性を向上させることができる。また、ゲート電極の電界の寄与を高くすることができるため、トランジスタ3200のオフ特性を向上させることができる。なお、トランジスタ3200はpチャネル型トランジスタであってもnチャネル型トランジスタであっても構わない。
本実施の形態では、トランジスタ3200上にトランジスタ3300を有し、トランジスタ3300上に容量素子3400を有する半導体装置の一例を示したが、トランジスタ3200上にトランジスタ3330と同様の半導体を有するトランジスタを一以上有する構成としても構わない。このような構成とすることで半導体装置の集積度をより高めることができる。
<記憶装置2>
図38(B)に示す半導体装置は、トランジスタ3200を有さない点で図38(A)に示した半導体装置と異なる。この場合も図38(A)に示した半導体装置と同様の動作により情報の書き込みおよび保持動作が可能である。
図38(B)に示す半導体装置における、情報の読み出しについて説明する。トランジスタ3300が導通状態になると、浮遊状態である第3の配線3003と容量素子3400とが導通し、第3の配線3003と容量素子3400の間で電荷が再分配される。その結果、第3の配線3003の電位が変化する。第3の配線3003の電位の変化量は、容量素子3400の一方の電極の電位(または容量素子3400に蓄積された電荷)によって、異なる値をとる。
例えば、容量素子3400の一方の電極の電位をV、容量素子3400の容量をC、第3の配線3003が有する容量成分をCB、電荷が再分配される前の第3の配線3003の電位をVB0とすると、電荷が再分配された後の第3の配線3003の電位は、(CB×VB0+C×V)/(CB+C)となる。したがって、メモリセルの状態として、容量素子3400の一方の電極の電位がV1とV0(V1>V0)の2つの状態をとるとすると、電位V1を保持している場合の第3の配線3003の電位(=(CB×VB0+C×V1)/(CB+C))は、電位V0を保持している場合の第3の配線3003の電位(=(CB×VB0+C×V0)/(CB+C))よりも高くなることがわかる。
そして、第3の配線3003の電位を所定の電位と比較することで、情報を読み出すことができる。
この場合、メモリセルを駆動させるための駆動回路に上記第1の半導体が適用されたトランジスタを用い、トランジスタ3300として第2の半導体が適用されたトランジスタを駆動回路上に積層して配置する構成とすればよい。
以上に示した半導体装置は、酸化物半導体を用いたオフ電流の小さいトランジスタを適用することで、長期にわたって記憶内容を保持することが可能となる。つまり、リフレッシュ動作が不要となるか、またはリフレッシュ動作の頻度を極めて低くすることが可能となるため、消費電力の低い半導体装置を実現することができる。また、電力の供給がない場合(ただし、電位は固定されていることが好ましい)であっても、長期にわたって記憶内容を保持することが可能である。
また、該半導体装置は、情報の書き込みに高い電圧が不要であるため、素子の劣化が起こりにくい。例えば、従来の不揮発性メモリのように、フローティングゲートへの電子の注入や、フローティングゲートからの電子の引き抜きを行わないため、絶縁体の劣化といった問題が生じない。即ち、本発明の一態様に係る半導体装置は、従来の不揮発性メモリで問題となっている書き換え可能回数に制限はなく、信頼性が飛躍的に向上した半導体装置である。さらに、トランジスタの導通状態、非導通状態によって、情報の書き込みが行われるため、高速な動作が可能となる。本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態5)
<半導体装置の構造2>
本実施の形態では、本発明の一態様のトランジスタを利用した回路の一例について図面を参照して説明する。
<断面構造>
図41(A)および(B)に本発明の一態様の半導体装置の断面図を示す。図41(A)において、X1−X2方向はチャネル長方向、図41(B)において、Y1−Y2方向はチャネル幅方向を示す。図41(A)および(B)に示す半導体装置は、下部に第1の半導体材料を用いたトランジスタ2200を有し、上部に第2の半導体材料を用いたトランジスタ2100を有している。図41(A)および(B)では、第2の半導体材料を用いたトランジスタ2100として、図1に例示したトランジスタを適用した例を示している。
第1の半導体材料と第2の半導体材料は異なる禁制帯幅を持つ材料とすることが好ましい。例えば、第1の半導体材料を酸化物半導体以外の半導体材料(シリコン(歪シリコン含む)、ゲルマニウム、シリコンゲルマニウム、炭化シリコン、ヒ化ガリウム、ヒ化アルミニウムガリウム、リン化インジウム、窒化ガリウム、有機半導体など)とし、第2の半導体材料を酸化物半導体とすることができる。酸化物半導体以外の材料として単結晶シリコンなどを用いたトランジスタは、高速動作が容易である。一方で、酸化物半導体を用いたトランジスタは、先の実施の形態で例示したトランジスタを適用することで、優れたサブスレッショルド特性が得られ、微細なトランジスタとすることが可能である。また、スイッチ速度が速いため高速動作が可能であり、オフ電流が低いためリーク電流が小さい。
トランジスタ2200は、nチャネル型のトランジスタまたはpチャネル型のトランジスタのいずれであってもよく、回路によって適切なトランジスタを用いればよい。また、酸化物半導体を用いた本発明の一態様のトランジスタを用いるほかは、用いる材料や構造など、半導体装置の具体的な構成をここで示すものに限定する必要はない。
図41(A)および(B)に示す構成では、トランジスタ2200の上部に、絶縁体2201、絶縁体2207および絶縁体2208を介してトランジスタ2100が設けられている。また、トランジスタ2200とトランジスタ2100の間には、複数の配線2202が設けられている。また、各種絶縁体に埋め込まれた複数のプラグ2203により、上層と下層にそれぞれ設けられた配線や電極が電気的に接続されている。また、トランジスタ2100を覆う絶縁体2204と、絶縁体2204上に配線2205と、が設けられている。
このように、2種類のトランジスタを積層することにより、回路の占有面積が低減され、より高密度に複数の回路を配置することができる。
ここで、下層に設けられるトランジスタ2200にシリコン系半導体材料を用いた場合、トランジスタ2200の半導体膜の近傍に設けられる絶縁体中の水素はシリコンのダングリングボンドを終端し、トランジスタ2200の信頼性を向上させる効果がある。一方、上層に設けられるトランジスタ2100に酸化物半導体を用いた場合、トランジスタ2100の半導体膜の近傍に設けられる絶縁体中の水素は、酸化物半導体中にキャリアを生成する要因の一つとなるため、トランジスタ2100の信頼性を低下させる要因となる場合がある。したがって、シリコン系半導体材料を用いたトランジスタ2200の上層に酸化物半導体を用いたトランジスタ2100を積層して設ける場合、これらの間に水素の拡散を防止する機能を有する絶縁体2207を設けることは特に効果的である。絶縁体2207により、下層に水素を閉じ込めることでトランジスタ2200の信頼性が向上することに加え、下層から上層に水素が拡散することが抑制されることでトランジスタ2100の信頼性も同時に向上させることができる。
絶縁体2207としては、例えば酸化アルミニウム、酸化窒化アルミニウム、酸化ガリウム、酸化窒化ガリウム、酸化イットリウム、酸化窒化イットリウム、酸化ハフニウム、酸化窒化ハフニウム、イットリア安定化ジルコニア(YSZ)等を用いることができる。
また、酸化物半導体膜を含んで構成されるトランジスタ2100を覆うように、トランジスタ2100上に水素の拡散を防止する機能を有するブロック膜を形成することが好ましい。当該ブロック膜としては、絶縁体2207と同様の材料を用いることができ、特に酸化アルミニウムを適用することが好ましい。酸化アルミ膜は、その成膜中に下層の絶縁体に過剰酸素を添加することができ、熱工程によって、過剰酸素がトランジスタ2100の酸化物半導体層に移動し、酸化物半導体層中の欠陥を修復する効果がある。さらに酸化アルミニウム膜は、水素、水分などの不純物および酸素の双方に対して膜を透過させない遮断(ブロッキング)効果が高い。したがって、トランジスタ2100を覆う当該ブロック膜として酸化アルミニウム膜を用いることで、トランジスタ2100に含まれる酸化物半導体膜からの酸素の脱離を防止するとともに、酸化物半導体膜への水および水素の混入を防止することができる。なお、当該ブロック膜は、絶縁体2204を積層にすることで用いてもよいし、絶縁体2204の下側に設けてもよい。
なお、トランジスタ2200は、プレーナ型のトランジスタだけでなく、様々なタイプのトランジスタとすることができる。例えば、FIN(フィン)型、TRI−GATE(トライゲート)型などのトランジスタなどとすることができる。その場合の断面図の例を、図41(E)および(F)に示す。半導体基板2211の上に、絶縁体2212が設けられている。半導体基板2211は、先端の細い凸部(フィンともいう)を有する。なお、凸部の上には、絶縁体が設けられていてもよい。その絶縁体は、凸部を形成するときに、半導体基板2211がエッチングされないようにするためのマスクとして機能するものである。なお、凸部は、先端が細くなくてもよく、例えば、略直方体の凸部であってもよいし、先端が太い凸部であってもよい。半導体基板2211の凸部の上には、ゲート絶縁体2214が設けられ、その上には、ゲート電極2213が設けられている。半導体基板2211には、ソース領域およびドレイン領域2215が形成されている。なお、ここでは、半導体基板2211が、凸部を有する例を示したが、本発明の一態様に係る半導体装置は、これに限定されない。例えば、SOI基板を加工して、凸部を有する半導体領域を形成しても構わない。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態6)
〔CMOS回路〕
図41(C)に示す回路図は、pチャネル型のトランジスタ2200とnチャネル型のトランジスタ2100を直列に接続し、かつそれぞれのゲートを接続した、いわゆるCMOS回路の構成を示している。
〔アナログスイッチ〕
また図41(D)に示す回路図は、トランジスタ2100とトランジスタ2200のそれぞれのソースとドレインを接続した構成を示している。このような構成とすることで、いわゆるアナログスイッチとして機能させることができる。本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態7)
<CPU>
以下では、上述したトランジスタや上述した記憶装置などの半導体装置を含むCPUについて説明する。
図42は、上述したトランジスタを一部に用いたCPUの一例の構成を示すブロック図である。
図42に示すCPUは、基板1190上に、ALU1191(ALU:Arithmetic logic unit、演算回路)、ALUコントローラ1192、インストラクションデコーダ1193、インタラプトコントローラ1194、タイミングコントローラ1195、レジスタ1196、レジスタコントローラ1197、バスインターフェース1198、書き換え可能なROM1199、およびROMインターフェース1189を有している。基板1190は、半導体基板、SOI基板、ガラス基板などを用いる。ROM1199およびROMインターフェース1189は、別チップに設けてもよい。もちろん、図42に示すCPUは、その構成を簡略化して示した一例にすぎず、実際のCPUはその用途によって多種多様な構成を有している。例えば、図42に示すCPUまたは演算回路を含む構成を一つのコアとし、当該コアを複数含み、それぞれのコアが並列で動作するような構成としてもよい。また、CPUが内部演算回路やデータバスで扱えるビット数は、例えば8ビット、16ビット、32ビット、64ビットなどとすることができる。
バスインターフェース1198を介してCPUに入力された命令は、インストラクションデコーダ1193に入力され、デコードされた後、ALUコントローラ1192、インタラプトコントローラ1194、レジスタコントローラ1197、タイミングコントローラ1195に入力される。
ALUコントローラ1192、インタラプトコントローラ1194、レジスタコントローラ1197、タイミングコントローラ1195は、デコードされた命令に基づき、各種制御を行なう。具体的にALUコントローラ1192は、ALU1191の動作を制御するための信号を生成する。また、インタラプトコントローラ1194は、CPUのプログラム実行中に、外部の入出力装置や、周辺回路からの割り込み要求を、その優先度やマスク状態から判断し、処理する。レジスタコントローラ1197は、レジスタ1196のアドレスを生成し、CPUの状態に応じてレジスタ1196の読み出しや書き込みを行なう。
図42に示すCPUでは、レジスタ1196に、メモリセルが設けられている。レジスタ1196のメモリセルとして、上述したトランジスタや記憶装置などを用いることができる。
図42に示すCPUにおいて、レジスタコントローラ1197は、ALU1191からの指示に従い、レジスタ1196における保持動作の選択を行う。即ち、レジスタ1196が有するメモリセルにおいて、フリップフロップによるデータの保持を行うか、容量素子によるデータの保持を行うかを、選択する。フリップフロップによるデータの保持が選択されている場合、レジスタ1196内のメモリセルへの、電源電圧の供給が行われる。容量素子におけるデータの保持が選択されている場合、容量素子へのデータの書き換えが行われ、レジスタ1196内のメモリセルへの電源電圧の供給を停止することができる。
図43は、レジスタ1196として用いることのできる記憶素子の回路図の一例である。記憶素子1200は、電源遮断で記憶データが揮発する回路1201と、電源遮断で記憶データが揮発しない回路1202と、スイッチ1203と、スイッチ1204と、論理素子1206と、容量素子1207と、選択機能を有する回路1220と、を有する。回路1202は、容量素子1208と、トランジスタ1209と、トランジスタ1210と、を有する。なお、記憶素子1200は、必要に応じて、ダイオード、抵抗素子、インダクタなどのその他の素子をさらに有していてもよい。
ここで、回路1202には、上述した記憶装置を用いることができる。記憶素子1200への電源電圧の供給が停止した際、回路1202のトランジスタ1209のゲートにはGND(0V)、またはトランジスタ1209がオフする電位が入力され続ける構成とする。例えば、トランジスタ1209のゲートが抵抗等の負荷を介して接地される構成とする。
スイッチ1203は、一導電型(例えば、nチャネル型)のトランジスタ1213を用いて構成され、スイッチ1204は、一導電型とは逆の導電型(例えば、pチャネル型)のトランジスタ1214を用いて構成した例を示す。ここで、スイッチ1203の第1の端子はトランジスタ1213のソースとドレインの一方に対応し、スイッチ1203の第2の端子はトランジスタ1213のソースとドレインの他方に対応し、スイッチ1203はトランジスタ1213のゲートに入力される制御信号RDによって、第1の端子と第2の端子の間の導通または非導通(つまり、トランジスタ1213の導通状態または非導通状態)が選択される。スイッチ1204の第1の端子はトランジスタ1214のソースとドレインの一方に対応し、スイッチ1204の第2の端子はトランジスタ1214のソースとドレインの他方に対応し、スイッチ1204はトランジスタ1214のゲートに入力される制御信号RDによって、第1の端子と第2の端子の間の導通または非導通(つまり、トランジスタ1214の導通状態または非導通状態)が選択される。
トランジスタ1209のソースとドレインの一方は、容量素子1208の一対の電極のうちの一方、およびトランジスタ1210のゲートと電気的に接続される。ここで、接続部分をノードM2とする。トランジスタ1210のソースとドレインの一方は、低電源電位を供給することのできる配線(例えばGND線)に電気的に接続され、他方は、スイッチ1203の第1の端子(トランジスタ1213のソースとドレインの一方)と電気的に接続される。スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方)はスイッチ1204の第1の端子(トランジスタ1214のソースとドレインの一方)と電気的に接続される。スイッチ1204の第2の端子(トランジスタ1214のソースとドレインの他方)は電源電位VDDを供給することのできる配線と電気的に接続される。スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方)と、スイッチ1204の第1の端子(トランジスタ1214のソースとドレインの一方)と、論理素子1206の入力端子と、容量素子1207の一対の電極のうちの一方と、は電気的に接続される。ここで、接続部分をノードM1とする。容量素子1207の一対の電極のうちの他方は、一定の電位が入力される構成とすることができる。例えば、低電源電位(GND等)または高電源電位(VDD等)が入力される構成とすることができる。容量素子1207の一対の電極のうちの他方は、低電源電位を供給することのできる配線(例えばGND線)と電気的に接続される。容量素子1208の一対の電極のうちの他方は、一定の電位が入力される構成とすることができる。例えば、低電源電位(GND等)または高電源電位(VDD等)が入力される構成とすることができる。容量素子1208の一対の電極のうちの他方は、低電源電位を供給することのできる配線(例えばGND線)と電気的に接続される。
なお、容量素子1207および容量素子1208は、トランジスタや配線の寄生容量等を積極的に利用することによって省略することも可能である。
トランジスタ1209の第1ゲート(第1のゲート電極)には、制御信号WEが入力される。スイッチ1203およびスイッチ1204は、制御信号WEとは異なる制御信号RDによって第1の端子と第2の端子の間の導通状態または非導通状態を選択され、一方のスイッチの第1の端子と第2の端子の間が導通状態のとき他方のスイッチの第1の端子と第2の端子の間は非導通状態となる。
トランジスタ1209のソースとドレインの他方には、回路1201に保持されたデータに対応する信号が入力される。図43では、回路1201から出力された信号が、トランジスタ1209のソースとドレインの他方に入力される例を示した。スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方)から出力される信号は、論理素子1206によってその論理値が反転された反転信号となり、回路1220を介して回路1201に入力される。
なお、図43では、スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方)から出力される信号は、論理素子1206および回路1220を介して回路1201に入力する例を示したがこれに限定されない。スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方)から出力される信号が、論理値を反転させられることなく、回路1201に入力されてもよい。例えば、回路1201内に、入力端子から入力された信号の論理値が反転した信号が保持されるノードが存在する場合に、スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方)から出力される信号を当該ノードに入力することができる。
また、図43において、記憶素子1200に用いられるトランジスタのうち、トランジスタ1209以外のトランジスタは、酸化物半導体以外の半導体でなる膜または基板1190にチャネルが形成されるトランジスタとすることができる。例えば、シリコン膜またはシリコン基板にチャネルが形成されるトランジスタとすることができる。また、記憶素子1200に用いられるトランジスタ全てを、チャネルが酸化物半導体で形成されるトランジスタとすることもできる。または、記憶素子1200は、トランジスタ1209以外にも、チャネルが酸化物半導体で形成されるトランジスタを含んでいてもよく、残りのトランジスタは酸化物半導体以外の半導体でなる層または基板1190にチャネルが形成されるトランジスタとすることもできる。
図43における回路1201には、例えばフリップフロップ回路を用いることができる。また、論理素子1206としては、例えばインバータやクロックドインバータ等を用いることができる。
本発明の一態様に係る半導体装置では、記憶素子1200に電源電圧が供給されない間は、回路1201に記憶されていたデータを、回路1202に設けられた容量素子1208によって保持することができる。
また、酸化物半導体にチャネルが形成されるトランジスタはオフ電流が極めて小さい。例えば、酸化物半導体にチャネルが形成されるトランジスタのオフ電流は、結晶性を有するシリコンにチャネルが形成されるトランジスタのオフ電流に比べて著しく低い。そのため、当該トランジスタをトランジスタ1209として用いることによって、記憶素子1200に電源電圧が供給されない間も容量素子1208に保持された信号は長期間にわたり保たれる。こうして、記憶素子1200は電源電圧の供給が停止した間も記憶内容(データ)を保持することが可能である。
また、スイッチ1203およびスイッチ1204を設けることによって、プリチャージ動作を行うことを特徴とする記憶素子であるため、電源電圧供給再開後に、回路1201が元のデータを保持しなおすまでの時間を短くすることができる。
また、回路1202において、容量素子1208によって保持された信号はトランジスタ1210のゲートに入力される。そのため、記憶素子1200への電源電圧の供給が再開された後、容量素子1208によって保持された信号を、トランジスタ1210の状態(導通状態、または非導通状態)に変換して、回路1202から読み出すことができる。それ故、容量素子1208に保持された信号に対応する電位が多少変動していても、元の信号を正確に読み出すことが可能である。
このような記憶素子1200を、プロセッサが有するレジスタやキャッシュメモリなどの記憶装置に用いることで、電源電圧の供給停止による記憶装置内のデータの消失を防ぐことができる。また、電源電圧の供給を再開した後、短時間で電源供給停止前の状態に復帰することができる。よって、プロセッサ全体、もしくはプロセッサを構成する一つ、または複数の論理回路において、短い時間でも電源停止を行うことができるため、消費電力を抑えることができる。
記憶素子1200をCPUに用いる例として説明したが、記憶素子1200は、DSP(Digital Signal Processor)、カスタムLSI、PLD(Programmable Logic Device)等のLSI、RF−Tag(Radio Frequency Tag)にも応用可能である。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態8)
<撮像装置>
図44(A)は、本発明の一態様に係る撮像装置200の例を示す上面図である。撮像装置200は、画素部210と、画素部210を駆動するための周辺回路260と、周辺回路270、周辺回路280と、周辺回路290と、を有する。画素部210は、p行q列(pおよびqは2以上の整数)のマトリクス状に配置された複数の画素211を有する。周辺回路260、周辺回路270、周辺回路280および周辺回路290は、それぞれ複数の画素211に接続し、複数の画素211を駆動するための信号を供給する機能を有する。なお、本明細書等において、周辺回路260、周辺回路270、周辺回路280および周辺回路290などの全てを指して「周辺回路」または「駆動回路」と呼ぶ場合がある。例えば、周辺回路260は周辺回路の一部といえる。
また、撮像装置200は、光源291を有することが好ましい。光源291は、検出光P1を放射することができる。
また、周辺回路は、少なくとも、論理回路、スイッチ、バッファ、増幅回路、または変換回路の1つを有する。また、周辺回路は、画素部210を形成する基板上に形成してもよい。また、周辺回路は、その一部または全部にICチップ等の半導体装置を用いてもよい。なお、周辺回路は、周辺回路260、周辺回路270、周辺回路280および周辺回路290のいずれか一以上を省略してもよい。
また、図44(B)に示すように、撮像装置200が有する画素部210において、画素211を傾けて配置してもよい。画素211を傾けて配置することにより、行方向および列方向の画素間隔(ピッチ)を短くすることができる。これにより、撮像装置200における撮像の品質をより高めることができる。
<画素の構成例1>
撮像装置200が有する1つの画素211を複数の副画素212で構成し、それぞれの副画素212に特定の波長帯域の光を透過するフィルタ(カラーフィルタ)を組み合わせることで、カラー画像表示を実現するための情報を取得することができる。
図45(A)は、カラー画像を取得するための画素211の一例を示す上面図である。図45(A)に示す画素211は、赤(R)の波長帯域の光を透過するカラーフィルタが設けられた副画素212(以下、「副画素212R」ともいう)、緑(G)の波長帯域の光を透過するカラーフィルタが設けられた副画素212(以下、「副画素212G」ともいう)および青(B)の波長帯域の光を透過するカラーフィルタが設けられた副画素212(以下、「副画素212B」ともいう)を有する。副画素212は、フォトセンサとして機能させることができる。
副画素212(副画素212R、副画素212G、および副画素212B)は、配線231、配線247、配線248、配線249、配線250と電気的に接続される。また、副画素212R、副画素212G、および副画素212Bは、それぞれが独立した配線253に接続している。また、本明細書等において、例えばn行目の画素211に接続された配線248および配線249、および配線250を、それぞれ配線248[n]、配線249[n]、および配線250[n]と記載する。また、例えばm列目の画素211に接続された配線253を、配線253[m]と記載する。なお、図45(A)において、m列目の画素211が有する副画素212Rに接続する配線253を配線253[m]R、副画素212Gに接続する配線253を配線253[m]G、および副画素212Bに接続する配線253を配線253[m]Bと記載している。副画素212は、上記配線を介して周辺回路と電気的に接続される。
また、撮像装置200は、隣接する画素211の、同じ波長帯域の光を透過するカラーフィルタが設けられた副画素212同士がスイッチを介して電気的に接続する構成を有する。図45(B)に、n行(nは1以上p以下の整数)m列(mは1以上q以下の整数)に配置された画素211が有する副画素212と、該画素211に隣接するn+1行m列に配置された画素211が有する副画素212の接続例を示す。図45(B)において、n行m列に配置された副画素212Rと、n+1行m列に配置された副画素212Rがスイッチ201を介して接続されている。また、n行m列に配置された副画素212Gと、n+1行m列に配置された副画素212Gがスイッチ202を介して接続されている。また、n行m列に配置された副画素212Bと、n+1行m列に配置された副画素212Bがスイッチ203を介して接続されている。
なお、副画素212に用いるカラーフィルタは、赤(R)、緑(G)、青(B)に限定されず、それぞれシアン(C)、黄(Y)およびマゼンダ(M)の光を透過するカラーフィルタを用いてもよい。1つの画素211に3種類の異なる波長帯域の光を検出する副画素212を設けることで、フルカラー画像を取得することができる。
または、それぞれ赤(R)、緑(G)および青(B)の光を透過するカラーフィルタが設けられた副画素212に加えて、黄(Y)の光を透過するカラーフィルタが設けられた副画素212を有する画素211を用いてもよい。または、それぞれシアン(C)、黄(Y)およびマゼンダ(M)の光を透過するカラーフィルタが設けられた副画素212に加えて、青(B)の光を透過するカラーフィルタが設けられた副画素212を有する画素211を用いてもよい。1つの画素211に4種類の異なる波長帯域の光を検出する副画素212を設けることで、取得した画像の色の再現性をさらに高めることができる。
また、例えば、図45(A)において、赤の波長帯域を検出する副画素212、緑の波長帯域を検出する副画素212、および青の波長帯域を検出する副画素212の画素数比(または受光面積比)は、1:1:1でなくても構わない。例えば、画素数比(受光面積比)を赤:緑:青=1:2:1とするBayer配列としてもよい。または、画素数比(受光面積比)を赤:緑:青=1:6:1としてもよい。
なお、画素211に設ける副画素212は1つでもよいが、2つ以上が好ましい。例えば、同じ波長帯域を検出する副画素212を2つ以上設けることで、冗長性を高め、撮像装置200の信頼性を高めることができる。
また、可視光を吸収または反射して、赤外光を透過するIR(IR:Infrared)フィルタを用いることで、赤外光を検出する撮像装置200を実現することができる。
また、ND(ND:Neutral Density)フィルタ(減光フィルタ)を用いることで、光電変換素子(受光素子)に大光量光が入射した時に生じる出力飽和することを防ぐことができる。減光量の異なるNDフィルタを組み合わせて用いることで、撮像装置のダイナミックレンジを大きくすることができる。
また、前述したフィルタ以外に、画素211にレンズを設けてもよい。ここで、図46の断面図を用いて、画素211、フィルタ254、レンズ255の配置例を説明する。レンズ255を設けることで、副画素212中に設けられた光電変換素子が入射光を効率よく受光することができる。具体的には、図46(A)に示すように、画素211に形成したレンズ255、フィルタ254(フィルタ254R、フィルタ254Gおよびフィルタ254B)、および画素回路230等を通して光256を光電変換素子220に入射させる構造とすることができる。
ただし、一点鎖線で囲んだ領域に示すように、矢印で示す光256の一部が配線257の一部によって遮光されてしまうことがある。したがって、図46(B)に示すように光電変換素子220側にレンズ255およびフィルタ254を配置して、光電変換素子220が光256を効率良く受光させる構造が好ましい。光電変換素子220側から光256を光電変換素子220に入射させることで、検出感度の高い撮像装置200を提供することができる。
図46に示す光電変換素子220として、pn型接合またはpin型の接合が形成された光電変換素子を用いてもよい。
また、光電変換素子220を、放射線を吸収して電荷を発生させる機能を有する物質を用いて形成してもよい。放射線を吸収して電荷を発生させる機能を有する物質としては、セレン、ヨウ化鉛、ヨウ化水銀、ヒ化ガリウム、テルル化カドミウム、カドミウム亜鉛合金等がある。
例えば、光電変換素子220にセレンを用いると、可視光や、紫外光、赤外光に加えて、X線や、ガンマ線といった幅広い波長帯域にわたって光吸収係数を有する光電変換素子220を実現できる。
ここで、撮像装置200が有する1つの画素211は、図46に示す副画素212に加えて、第1のフィルタを有する副画素212を有してもよい。
<画素の構成例2>
以下では、シリコンを用いたトランジスタと、本発明に係る酸化物半導体を用いたトランジスタと、を用いて画素を構成する一例について説明する。
図47(A)および(B)は、撮像装置を構成する素子の断面図である。
図47(A)に示す撮像装置は、シリコン基板300に設けられたシリコンを用いたトランジスタ351上に積層して配置された酸化物半導体を用いたトランジスタ353およびトランジスタ354、ならびにシリコン基板300に設けられた、アノード361と、カソード362を有するフォトダイオード360を含む。各トランジスタおよびフォトダイオード360は、種々のプラグ370および配線371と電気的な接続を有する。また、フォトダイオード360のアノード361は、低抵抗領域363を介してプラグ370と電気的に接続を有する。
また撮像装置は、シリコン基板300に設けられたトランジスタ351およびフォトダイオード360を有する層305と、層305と接して設けられ、配線371を有する層320と、層320と接して設けられ、トランジスタ353およびトランジスタ354を有する層331と、層331と接して設けられ、配線372および配線373を有する層340を備えている。
なお、図47(A)の断面図の一例では、シリコン基板300において、トランジスタ351が形成された面とは逆側の面にフォトダイオード360の受光面を有する構成とする。該構成とすることで、各種トランジスタや配線などの影響を受けずに光路を確保することができる。そのため、高開口率の画素を形成することができる。なお、フォトダイオード360の受光面をトランジスタ351が形成された面と同じとすることもできる。
なお、酸化物半導体を用いたトランジスタのみを用いて画素を構成する場合には、層305を、酸化物半導体を用いたトランジスタを有する層とすればよい。または層305を省略し、酸化物半導体を用いたトランジスタのみで画素を構成してもよい。
また、図47(A)の断面図において、層305に設けるフォトダイオード360と、層331に設けるトランジスタとを重なるように形成することができる。そうすると、画素の集積度を高めることができる。すなわち、撮像装置の解像度を高めることができる。
また、図47(B)は、撮像装置は層340側にフォトダイオード365をトランジスタの上に配置した構造とすることができる。図47(B)において、例えば層305には、シリコンを用いたトランジスタ351およびトランジスタ352を有し、層320には配線371を有し、層331には酸化物半導体層を用いたトランジスタ353、トランジスタ354を有し、層340にはフォトダイオード365有しており、フォトダイオード365は半導体層366、半導体層367、半導体層368で構成されており、配線373と、プラグ370を介した配線374と電気的に接続している。
図47(B)に示す素子構成とすることで、開口率を広くすることができる。
また、フォトダイオード365には、非晶質シリコン膜や微結晶シリコン膜などを用いたpin型ダイオード素子などを用いてもよい。フォトダイオード365は、n型の半導体層368、i型の半導体層367、およびp型の半導体層366が順に積層された構成を有している。i型の半導体層367には非晶質シリコンを用いることが好ましい。また、p型の半導体層366およびn型の半導体層368には、それぞれの導電型を付与するドーパントを含む非晶質シリコンまたは微結晶シリコンなどを用いることができる。非晶質シリコンを光電変換層とするフォトダイオード365は可視光の波長領域における感度が高く、微弱な可視光を検知しやすい。
ここで、トランジスタ351およびフォトダイオード360を有する層305と、トランジスタ353およびトランジスタ354を有する層331と、の間には絶縁体380が設けられる。ただし、絶縁体380の位置は限定されない。
トランジスタ351のチャネル形成領域近傍に設けられる絶縁体中の水素はシリコンのダングリングボンドを終端し、トランジスタ351の信頼性を向上させる効果がある。一方、トランジスタ353およびトランジスタ354などの近傍に設けられる絶縁体中の水素は、酸化物半導体中にキャリアを生成する要因の一つとなる。そのため、トランジスタ353およびトランジスタ354などの信頼性を低下させる要因となる場合がある。したがって、シリコン系半導体を用いたトランジスタの上層に酸化物半導体を用いたトランジスタを積層して設ける場合、これらの間に水素をブロックする機能を有する絶縁体380を設けることが好ましい。絶縁体380より下層に水素を閉じ込めることで、トランジスタ351の信頼性が向上させることができる。さらに、絶縁体380より下層から、絶縁体380より上層に水素が拡散することを抑制できるため、トランジスタ353およびトランジスタ354などの信頼性を向上させることができる。また、トランジスタ353およびトランジスタ354上に絶縁体381を設けることにより、酸化物半導体中の酸素の拡散を防ぐことができて好ましい。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態9)
<RFタグ>
本実施の形態では、先の実施の形態で説明したトランジスタ、または記憶装置を含むRFタグについて、図48を参照して説明する。
本実施の形態におけるRFタグは、内部に記憶回路を有し、記憶回路に必要な情報を記憶し、非接触手段、例えば無線通信を用いて外部と情報の授受を行うものである。このような特徴から、RFタグは、物品などの個体情報を読み取ることにより物品の識別を行う個体認証システムなどに用いることが可能である。なお、これらの用途に用いるためには極めて高い信頼性が要求される。
RFタグの構成について図48を用いて説明する。図48は、RFタグの構成例を示すブロック図である。
図48に示すようにRFタグ800は、通信器801(質問器、リーダ/ライタなどともいう)に接続されたアンテナ802から送信される無線信号803を受信するアンテナ804を有する。またRFタグ800は、整流回路805、定電圧回路806、復調回路807、変調回路808、論理回路809、記憶回路810、ROM811を有している。なお、復調回路807に含まれる整流作用を示すトランジスタに逆方向電流を十分に抑制することが可能な材料、例えば、酸化物半導体、が用いられた構成としてもよい。これにより、逆方向電流に起因する整流作用の低下を抑制し、復調回路の出力が飽和することを防止できる。つまり、復調回路の入力に対する復調回路の出力を線形に近づけることができる。なお、データの伝送形式は、一対のコイルを対向配置して相互誘導によって交信を行う電磁結合方式、誘導電磁界によって交信する電磁誘導方式、電波を利用して交信する電波方式の3つに大別される。本実施の形態に示すRFタグ800は、そのいずれの方式に用いることも可能である。
次に各回路の構成について説明する。アンテナ804は、通信器801に接続されたアンテナ802との間で無線信号803の送受信を行うためのものである。また、整流回路805は、アンテナ804で無線信号を受信することにより生成される入力交流信号を整流、例えば、半波2倍圧整流し、後段に設けられた容量素子により、整流された信号を平滑化することで入力電位を生成するための回路である。なお、整流回路805の入力側または出力側には、リミッタ回路を設けてもよい。リミッタ回路とは、入力交流信号の振幅が大きく、内部生成電圧が大きい場合に、ある電力以上の電力を後段の回路に入力しないように制御するための回路である。
定電圧回路806は、入力電位から安定した電源電圧を生成し、各回路に供給するための回路である。なお、定電圧回路806は、内部にリセット信号生成回路を有していてもよい。リセット信号生成回路は、安定した電源電圧の立ち上がりを利用して、論理回路809のリセット信号を生成するための回路である。
復調回路807は、入力交流信号を包絡線検出することにより復調し、復調信号を生成するための回路である。また、変調回路808は、アンテナ804より出力するデータに応じて変調を行うための回路である。
論理回路809は復調信号を解析し、処理を行うための回路である。記憶回路810は、入力された情報を保持する回路であり、ロウデコーダ、カラムデコーダ、記憶領域などを有する。また、ROM811は、固有番号(ID)などを格納し、処理に応じて出力を行うための回路である。
なお、上述の各回路は、必要に応じて、適宜、取捨することができる。
ここで、先の実施の形態で説明した記憶回路を、記憶回路810に用いることができる。本発明の一態様の記憶回路は、電源が遮断された状態であっても情報を保持できるため、RFタグに好適に用いることができる。さらに本発明の一態様の記憶回路は、データの書き込みに必要な電力(電圧)が従来の不揮発性メモリに比べて著しく小さいため、データの読み出し時と書込み時の最大通信距離の差を生じさせないことも可能である。さらに、データの書き込み時に電力が不足し、誤動作または誤書込みが生じることを抑制することができる。
また、本発明の一態様の記憶回路は、不揮発性のメモリとして用いることが可能であるため、ROM811に適用することもできる。その場合には、生産者がROM811にデータを書き込むためのコマンドを別途用意し、ユーザーが自由に書き換えできないようにしておくことが好ましい。生産者が出荷前に固有番号を書込んだのちに製品を出荷することで、作製したRFタグすべてについて固有番号を付与するのではなく、出荷する良品にのみ固有番号を割り当てることが可能となり、出荷後の製品の固有番号が不連続になることがなく出荷後の製品に対応した顧客管理が容易となる。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態10)
<表示装置>
以下では、本発明の一態様に係る表示装置について、図49および図50を用いて説明する。
表示装置に用いられる表示素子としては液晶素子(液晶表示素子ともいう。)、発光素子(発光表示素子ともいう。)などを用いることができる。発光素子は、電流または電圧によって輝度が制御される素子をその範疇に含んでおり、具体的には無機EL(Electroluminescence)、有機ELなどを含む。以下では、表示装置の一例としてEL素子を用いた表示装置(EL表示装置)および液晶素子を用いた表示装置(液晶表示装置)について説明する。
なお、以下に示す表示装置は、表示素子が封止された状態にあるパネルと、該パネルにコントローラを含むICなどを実装した状態にあるモジュールとを含む。
また、以下に示す表示装置は画像表示デバイス、または光源(照明装置含む)を指す。また、コネクター、例えばFPC、TCPが取り付けられたモジュール、TCPの先にプリント配線板を有するモジュールまたは表示素子にCOG方式によりIC(集積回路)が直接実装されたモジュールも全て表示装置に含むものとする。
図49は、本発明の一態様に係るEL表示装置の一例である。図49(A)に、EL表示装置の画素の回路図を示す。図49(B)は、EL表示装置全体を示す上面図である。また、図49(C)は、図49(B)の一点鎖線M−Nの一部に対応するM−N断面である。
図49(A)は、EL表示装置に用いられる画素の回路図の一例である。
なお、本明細書等においては、能動素子(トランジスタ、ダイオードなど)、受動素子(容量素子、抵抗素子など)などが有するすべての端子について、その接続先を特定しなくても、当業者であれば、発明の一態様を構成することは可能な場合がある。つまり、接続先を特定しなくても、発明の一態様が明確であるといえる。そして、接続先が特定された内容が、本明細書等に記載されている場合、接続先を特定しない発明の一態様が、本明細書等に記載されていると判断することが可能な場合がある。特に、端子の接続先として複数の箇所が想定される場合には、その端子の接続先を特定の箇所に限定する必要はない。したがって、能動素子(トランジスタ、ダイオードなど)、受動素子(容量素子、抵抗素子など)などが有する一部の端子についてのみ、その接続先を特定することによって、発明の一態様を構成することが可能な場合がある。
なお、本明細書等においては、ある回路について、少なくとも接続先を特定すれば、当業者であれば、発明を特定することが可能な場合がある。または、ある回路について、少なくとも機能を特定すれば、当業者であれば、発明を特定することが可能な場合がある。つまり、機能を特定すれば、発明の一態様が明確であるといえる。そして、機能が特定された発明の一態様が、本明細書等に記載されていると判断することが可能な場合がある。したがって、ある回路について、機能を特定しなくても、接続先を特定すれば、発明の一態様として開示されているものであり、発明の一態様を構成することが可能である。または、ある回路について、接続先を特定しなくても、機能を特定すれば、発明の一態様として開示されているものであり、発明の一態様を構成することが可能である。
図49(A)に示すEL表示装置は、スイッチ素子743と、トランジスタ741と、容量素子742と、発光素子719と、を有する。
なお、図49(A)などは、回路構成の一例であるため、さらに、トランジスタを追加することが可能である。逆に、図49(A)の各ノードにおいて、トランジスタ、スイッチ、受動素子などを追加しないようにすることも可能である。
トランジスタ741のゲートはスイッチ素子743の一端および容量素子742の一方の電極と電気的に接続される。トランジスタ741のソースは容量素子742の他方の電極と電気的に接続され、発光素子719の一方の電極と電気的に接続される。トランジスタ741のドレインは電源電位VDDが与えられる。スイッチ素子743の他端は信号線744と電気的に接続される。発光素子719の他方の電極は定電位が与えられる。なお、定電位は接地電位GNDまたはそれより小さい電位とする。
スイッチ素子743としては、トランジスタを用いると好ましい。トランジスタを用いることで、画素の面積を小さくでき、解像度の高いEL表示装置とすることができる。また、スイッチ素子743として、トランジスタ741と同一工程を経て作製されたトランジスタを用いると、EL表示装置の生産性を高めることができる。なお、トランジスタ741または/およびスイッチ素子743としては、例えば、図1に示すトランジスタを適用することができる。
図49(B)は、EL表示装置の上面図である。EL表示装置は、基板700と、基板750と、シール材734と、駆動回路735と、駆動回路736と、画素737と、FPC732と、を有する。シール材734は、画素737、駆動回路735および駆動回路736を囲むように基板700と基板750との間に配置される。なお、駆動回路735または/および駆動回路736をシール材734の外側に配置しても構わない。
図49(C)は、図49(B)の一点鎖線M−Nの一部に対応するEL表示装置の断面図である。
図49(C)には、トランジスタ741として、基板700上の絶縁体712aと、導電体704aと、を有し、絶縁体712aおよび導電体704a上にあり導電体704aと一部が重なる領域を有する絶縁体706aと、絶縁体706a上の半導体706bと、半導体706bの上面と接する導電体716a1および導電体716a2と、導電体716a1上および導電体716a2上の絶縁体710と、半導体706b上の絶縁体706cと、絶縁体706c上の絶縁体718bと、絶縁体718b上にあり半導体706bと重なる導電体714aと、を有する構造を示す。なお、トランジスタ741の構造は一例であり、図49(C)に示す構造と異なる構造であっても構わない。
図49(C)に示すトランジスタ741において、導電体704aはゲート電極としての機能を有し、絶縁体712aはゲート絶縁体としての機能を有し、導電体716a1はソース電極としての機能を有し、導電体716a2はドレイン電極としての機能を有し、絶縁体718bはゲート絶縁体としての機能を有し、導電体714aはゲート電極としての機能を有する。なお、絶縁体706a、半導体706bおよび絶縁体706cは、光が当たることで電気特性が変動する場合がある。したがって、導電体704a、導電体716a1、導電体716a2または導電体714aのいずれか一以上が遮光性を有すると好ましい。
図49(C)には、容量素子742として、基板700上の導電体704b上にあり導電体704bと一部が重なる領域を有する絶縁体706dと、絶縁体706d上の半導体706eと、半導体706eの上面と接する導電体716a3および導電体716a4と、導電体716a3上および導電体716a4上の絶縁体710と、半導体706e上の絶縁体706fと、絶縁体706f上の絶縁体718bと、絶縁体718b上にあり半導体706eと重なる導電体714bと、を有する構造を示す。
容量素子742において、導電体704bは一方の電極として機能し、導電体714bは他方の電極として機能する。
容量素子742は、トランジスタ741と共通する膜を用いて作製することができる。また、導電体704aおよび導電体704bを同種の導電体とすると好ましい。その場合、導電体704aおよび導電体704bは、同一工程を経て形成することができる。また、導電体714aおよび導電体714bを同種の導電体とすると好ましい。その場合、導電体714aおよび導電体714bは、同一工程を経て形成することができる。
図49(C)に示す容量素子742は、占有面積当たりの容量が大きい容量素子である。したがって、図49(C)は表示品位の高いEL表示装置である。なお、容量素子742の構造は一例であり、図49(C)に示す構造と異なる構造であっても構わない。
トランジスタ741および容量素子742上には、絶縁体728が配置され、絶縁体728上には絶縁体720が配置される。ここで、絶縁体728および絶縁体720は、トランジスタ741のソース電極として機能する導電体716a1に達する開口部を有してもよい。絶縁体720上には、導電体781が配置される。導電体781は、絶縁体728および絶縁体720の開口部を介してトランジスタ741と電気的に接続してもよい。
導電体781上には、導電体781に達する開口部を有する隔壁784が配置される。隔壁784上には、隔壁784の開口部で導電体781と接する発光層782が配置される。発光層782上には、導電体783が配置される。導電体781、発光層782および導電体783の重なる領域が、発光素子719となる。図49(C)において、FPC732は、端子731を介して配線733aと接続される。なお、配線733aは、トランジスタ741を構成する導電体または半導体のいずれかと同種の導電体または半導体を用いてもよい。
ここまでは、EL表示装置の例について説明した。次に、液晶表示装置の例について説明する。
図50(A)は、液晶表示装置の画素の構成例を示す回路図である。図50(A)に示す画素は、トランジスタ751と、容量素子752と、一対の電極間に液晶の充填された素子(液晶素子)753とを有する。
トランジスタ751では、ソース、ドレインの一方が信号線755に電気的に接続され、ゲートが走査線754に電気的に接続されている。
容量素子752では、一方の電極がトランジスタ751のソース、ドレインの他方に電気的に接続され、他方の電極が共通電位を供給する配線に電気的に接続されている。
液晶素子753では、一方の電極がトランジスタ751のソース、ドレインの他方に電気的に接続され、他方の電極が共通電位を供給する配線に電気的に接続されている。なお、上述した容量素子752の他方の電極が電気的に接続する配線に与えられる共通電位と、液晶素子753の他方の電極に与えられる共通電位とが異なる電位であってもよい。
なお、液晶表示装置も、上面図はEL表示装置と同様として説明する。図49(B)の一点鎖線M−Nに対応する液晶表示装置の断面図を図50(B)に示す。図50(B)において、FPC732は、端子731を介して配線733aと接続される。なお、配線733aは、トランジスタ751を構成する導電体または半導体のいずれかと同種の導電体または半導体を用いてもよい。
トランジスタ751は、トランジスタ741についての記載を参照する。また、容量素子752は、容量素子742についての記載を参照する。なお、図50(B)には、図49(C)の容量素子742に対応した容量素子752の構造を示したが、これに限定されない。
なお、トランジスタ751の半導体に酸化物半導体を用いた場合、極めてオフ電流の小さいトランジスタとすることができる。したがって、容量素子752に保持された電荷がリークしにくく、長期間に渡って液晶素子753に印加される電圧を維持することができる。そのため、動きの少ない動画や静止画の表示の際に、トランジスタ751をオフ状態とすることで、トランジスタ751の動作のための電力が不要となり、消費電力の小さい液晶表示装置とすることができる。また、容量素子752の占有面積を小さくできるため、開口率の高い液晶表示装置、または高精細化した液晶表示装置を提供することができる。
トランジスタ751および容量素子752上には、絶縁体721が配置される。ここで、絶縁体721は、トランジスタ751に達する開口部を有する。絶縁体721上には、導電体791が配置される。導電体791は、絶縁体721の開口部を介してトランジスタ751と電気的に接続する。
導電体791上には、配向膜として機能する絶縁体792が配置される。絶縁体792上には、液晶層793が配置される。液晶層793上には、配向膜として機能する絶縁体794が配置される。絶縁体794上には、スペーサ795が配置される。スペーサ795および絶縁体794上には、導電体796が配置される。導電体796上には、基板797が配置される。
上述した構造を有することで、占有面積の小さい容量素子を有する表示装置を提供することができる、または、表示品位の高い表示装置を提供することができる。または、高精細の表示装置を提供することができる。
例えば、本明細書等において、表示素子、表示素子を有する装置である表示装置、発光素子、および発光素子を有する装置である発光装置は、様々な形態を用いること、または様々な素子を有することができる。表示素子、表示装置、発光素子、又は発光装置は、例えば、EL素子(有機物及び無機物を含むEL素子、有機EL素子、無機EL素子)、LED(白色LED、赤色LED、緑色LED、青色LEDなど)、トランジスタ(電流に応じて発光するトランジスタ)、電子放出素子、液晶素子、電子インク、電気泳動素子、グレーティングライトバルブ(GLV)、プラズマディスプレイ(PDP)、MEMS(マイクロ・エレクトロ・メカニカル・システム)を用いた表示素子、デジタルマイクロミラーデバイス(DMD)、DMS(デジタル・マイクロ・シャッター)、IMOD(インターフェアレンス・モジュレーション)素子、シャッター方式のMEMS表示素子、光干渉方式のMEMS表示素子、エレクトロウェッティング素子、圧電セラミックディスプレイ、カーボンナノチューブを用いた表示素子などの少なくとも一つを有している。これらの他にも、電気的または磁気的作用により、コントラスト、輝度、反射率、透過率などが変化する表示媒体を有していても良い。
EL素子を用いた表示装置の一例としては、ELディスプレイなどがある。電子放出素子を用いた表示装置の一例としては、フィールドエミッションディスプレイ(FED)またはSED方式平面型ディスプレイ(SED:Surface−conduction Electron−emitter Display)などがある。液晶素子を用いた表示装置の一例としては、液晶ディスプレイ(透過型液晶ディスプレイ、半透過型液晶ディスプレイ、反射型液晶ディスプレイ、直視型液晶ディスプレイ、投射型液晶ディスプレイ)などがある。電子インクまたは電気泳動素子を用いた表示装置の一例としては、電子ペーパーなどがある。なお、半透過型液晶ディスプレイや反射型液晶ディスプレイを実現する場合には、画素電極の一部、または、全部が、反射電極としての機能を有するようにすればよい。例えば、画素電極の一部または全部が、アルミニウム、銀、などを有するようにすればよい。さらに、その場合、反射電極の下に、SRAMなどの記憶回路を設けることも可能である。これにより、さらに、消費電力を低減することができる。
なお、LEDを用いる場合、LEDの電極や窒化物半導体の下に、グラフェンやグラファイトを配置してもよい。グラフェンやグラファイトは、複数の層を重ねて、多層膜としてもよい。このように、グラフェンやグラファイトを設けることにより、その上に、窒化物半導体、例えば、結晶を有するn型GaN半導体などを容易に成膜することができる。さらに、その上に、結晶を有するp型GaN半導体などを設けて、LEDを構成することができる。なお、グラフェンやグラファイトと、結晶を有するn型GaN半導体との間に、AlN層を設けてもよい。なお、LEDが有するGaN半導体は、MOCVDで成膜してもよい。ただし、グラフェンを設けることにより、LEDが有するGaN半導体は、スパッタリング法で成膜することも可能である。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態11)
本実施の形態では、本発明の一態様の半導体装置を適用した表示モジュールについて、図51を用いて説明を行う。
<表示モジュール>
図51に示す表示モジュール6000は、上部カバー6001と下部カバー6002との間に、FPC6003に接続されたタッチパネル6004、FPC6005に接続された表示パネル6006、バックライトユニット6007、フレーム6009、プリント基板6010、バッテリー6011を有する。なお、バックライトユニット6007、バッテリー6011、タッチパネル6004などは、設けられない場合もある。
本発明の一態様の半導体装置は、例えば、表示パネル6006であったり、プリント基板に実装された集積回路に用いることができる。
上部カバー6001および下部カバー6002は、タッチパネル6004および表示パネル6006のサイズに合わせて、形状や寸法を適宜変更することができる。
タッチパネル6004は、抵抗膜方式または静電容量方式のタッチパネルを表示パネル6006に重畳して用いることができる。また、表示パネル6006の対向基板(封止基板)に、タッチパネル機能を持たせるようにすることも可能である。または、表示パネル6006の各画素内に光センサを設け、光学式のタッチパネル機能を付加することも可能である。または、表示パネル6006の各画素内にタッチセンサ用電極を設け、静電容量方式のタッチパネル機能を付加することも可能である。
バックライトユニット6007は、光源6008を有する。光源6008をバックライトユニット6007の端部に設け、光拡散板を用いる構成としてもよい。
フレーム6009は、表示パネル6006の保護機能の他、プリント基板6010から発生する電磁波を遮断するための電磁シールドとしての機能を有する。またフレーム6009は、放熱板としての機能を有していてもよい。
プリント基板6010は、電源回路、ビデオ信号およびクロック信号を出力するための信号処理回路を有する。電源回路に電力を供給する電源としては、外部の商用電源であっても良いし、別途設けたバッテリー6011であってもよい。なお、商用電源を用いる場合には、バッテリー6011を省略することができる。
また、表示モジュール6000には、偏光板、位相差板、プリズムシートなどの部材を追加して設けてもよい。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態12)
<リードフレーム型のインターポーザを用いたパッケージ>
図52(A)に、リードフレーム型のインターポーザを用いたパッケージの断面構造を表す斜視図を示す。図52(A)に示すパッケージは、本発明の一態様に係る半導体装置に相当するチップ551が、ワイヤボンディング法により、インターポーザ550上の端子552と接続されている。端子552は、インターポーザ550のチップ551がマウントされている面上に配置されている。そしてチップ551はモールド樹脂553によって封止されていてもよいが、各端子552の一部が露出した状態で封止されるようにする。
パッケージが回路基板に実装されている電子機器(携帯電話)のモジュールの構成を、図52(B)に示す。図52(B)に示す携帯電話のモジュールは、プリント配線基板601に、パッケージ602と、バッテリー604とが実装されている。また、表示素子が設けられたパネル600に、プリント配線基板601がFPC603によって実装されている。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
(実施の形態13)
本実施の形態では、本発明の一態様の電子機器及び照明装置について、図面を用いて説明する。
<電子機器>
本発明の一態様の半導体装置を用いて、電子機器や照明装置を作製できる。また、本発明の一態様の半導体装置を用いて、信頼性の高い電子機器や照明装置を作製できる。また本発明の一態様の半導体装置を用いて、タッチセンサの検出感度が向上した電子機器や照明装置を作製できる。
電子機器としては、例えば、テレビジョン装置(テレビ、又はテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。
また、本発明の一態様の電子機器又は照明装置は可撓性を有する場合、家屋やビルの内壁もしくは外壁、又は、自動車の内装もしくは外装の曲面に沿って組み込むことも可能である。
また、本発明の一態様の電子機器は、二次電池を有していてもよく、非接触電力伝送を用いて、二次電池を充電することができると好ましい。
二次電池としては、例えば、ゲル状電解質を用いるリチウムポリマー電池(リチウムイオンポリマー電池)等のリチウムイオン二次電池、リチウムイオン電池、ニッケル水素電池、ニカド電池、有機ラジカル電池、鉛蓄電池、空気二次電池、ニッケル亜鉛電池、銀亜鉛電池などが挙げられる。
本発明の一態様の電子機器は、アンテナを有していてもよい。アンテナで信号を受信することで、表示部で映像や情報等の表示を行うことができる。また、電子機器が二次電池を有する場合、アンテナを、非接触電力伝送に用いてもよい。
図53(A)は携帯型ゲーム機であり、筐体7101、筐体7102、表示部7103、表示部7104、マイク7105、スピーカー7106、操作キー7107、スタイラス7108等を有する。本発明の一態様に係る半導体装置は、筐体7101に内蔵されている集積回路、CPUなどに用いることができる。表示部7103または表示部7104に本発明の一態様に係る発光装置を用いることで、ユーザーの使用感に優れ、品質の低下が起こりにくい携帯型ゲーム機を提供することができる。なお、図53(A)に示した携帯型ゲーム機は、2つの表示部7103と表示部7104とを有しているが、携帯型ゲーム機が有する表示部の数は、これに限定されない。
図53(B)は、スマートウオッチであり、筐体7302、表示部7304、操作ボタン7311、7312、接続端子7313、バンド7321、留め金7322、等を有する。本発明の一態様に係る半導体装置は筐体7302に内蔵されているメモリ、CPUなどに用いることができる。
図53(C)は、携帯情報端末であり、筐体7501に組み込まれた表示部7502の他、操作ボタン7503、外部接続ポート7504、スピーカー7505、マイク7506などを備えている。本発明の一態様に係る半導体装置は、筐体7501に内蔵されているモバイル用メモリ、CPUなどに用いることができる。なお、表示部7502は、非常に高精細とすることができるため、中小型でありながらフルハイビジョン、4k、または8kなど、様々な表示を行うことができ、非常に鮮明な画像を得ることができる。
図53(D)はビデオカメラであり、第1筐体7701、第2筐体7702、表示部7703、操作キー7704、レンズ7705、接続部7706等を有する。操作キー7704およびレンズ7705は第1筐体7701に設けられており、表示部7703は第2筐体7702に設けられている。そして、第1筐体7701と第2筐体7702とは、接続部7706により接続されており、第1筐体7701と第2筐体7702の間の角度は、接続部7706により変更が可能である。表示部7703における映像を、接続部7706における第1筐体7701と第2筐体7702との間の角度にしたがって切り替える構成としても良い。レンズ7705の焦点となる位置には本発明の一態様の撮像装置を備えることができる。本発明の一態様に係る半導体装置は、第1筐体7701に内蔵されている集積回路、CPUなどに用いることができる。
図53(E)は、デジタルサイネージであり、電柱7921に設置された表示部7922を備えている。本発明の一態様に係る表示装置は、表示部7922の制御回路に用いることができる。
図54(A)はノート型パーソナルコンピュータであり、筐体8121、表示部8122、キーボード8123、ポインティングデバイス8124等を有する。本発明の一態様に係る半導体装置は、筐体8121内に内蔵されているCPUや、メモリに適用することができる。なお、表示部8122は、非常に高精細とすることができるため、中小型でありながら8kの表示を行うことができ、非常に鮮明な画像を得ることができる。
図54(B)に自動車9700の外観を示す。図54(C)に自動車9700の運転席を示す。自動車9700は、車体9701、車輪9702、ダッシュボード9703、ライト9704等を有する。本発明の一態様の半導体装置は、自動車9700の表示部、および制御用の集積回路に用いることができる。例えば、図54(C)に示す表示部9710乃至表示部9715に本発明の一態様の半導体装置を設けることができる。
表示部9710と表示部9711は、自動車のフロントガラスに設けられた表示装置、または入出力装置である。本発明の一態様の表示装置、または入出力装置は、表示装置、または入出力装置が有する電極を、透光性を有する導電性材料で作製することによって、反対側が透けて見える、いわゆるシースルー状態の表示装置、または入出力装置とすることができる。シースルー状態の表示装置、または入出力装置であれば、自動車9700の運転時にも視界の妨げになることがない。よって、本発明の一態様の表示装置、または入出力装置を自動車9700のフロントガラスに設置することができる。なお、表示装置、または入出力装置に、表示装置、または入出力装置を駆動するためのトランジスタなどを設ける場合には、有機半導体材料を用いた有機トランジスタや、酸化物半導体を用いたトランジスタなど、透光性を有するトランジスタを用いるとよい。
表示部9712はピラー部分に設けられた表示装置である。例えば、車体に設けられた撮像手段からの映像を表示部9712に映し出すことによって、ピラーで遮られた視界を補完することができる。表示部9713はダッシュボード部分に設けられた表示装置である。例えば、車体に設けられた撮像手段からの映像を表示部9713に映し出すことによって、ダッシュボードで遮られた視界を補完することができる。すなわち、自動車の外側に設けられた撮像手段からの映像を映し出すことによって、死角を補い、安全性を高めることができる。また、見えない部分を補完する映像を映すことによって、より自然に違和感なく安全確認を行うことができる。
また、図54(D)は、運転席と助手席にベンチシートを採用した自動車の室内を示している。表示部9721は、ドア部に設けられた表示装置、または入出力装置である。例えば、車体に設けられた撮像手段からの映像を表示部9721に映し出すことによって、ドアで遮られた視界を補完することができる。また、表示部9722は、ハンドルに設けられた表示装置である。表示部9723は、ベンチシートの座面の中央部に設けられた表示装置である。なお、表示装置を座面や背もたれ部分などに設置して、当該表示装置を、当該表示装置の発熱を熱源としたシートヒーターとして利用することもできる。
表示部9714、表示部9715、または表示部9722はナビゲーション情報、スピードメーターやタコメーター、走行距離、給油量、ギア状態、エアコンの設定など、その他様々な情報を提供することができる。また、表示部に表示される表示項目やレイアウトなどは、使用者の好みに合わせて適宜変更することができる。なお、上記情報は、表示部9710乃至表示部9713、表示部9721、表示部9723にも表示することができる。また、表示部9710乃至表示部9715、表示部9721乃至表示部9723は照明装置として用いることも可能である。また、表示部9710乃至表示部9715、表示部9721乃至表示部9723は加熱装置として用いることも可能である。
また、図55(A)に、カメラ8000の外観を示す。カメラ8000は、筐体8001、表示部8002、操作ボタン8003、シャッターボタン8004、結合部8005等を有する。またカメラ8000には、レンズ8006を取り付けることができる。
結合部8005は、電極を有し、後述するファインダー8100のほか、ストロボ装置等を接続することができる。
ここではカメラ8000として、レンズ8006を筐体8001から取り外して交換することが可能な構成としたが、レンズ8006と筐体が一体となっていてもよい。
シャッターボタン8004を押すことにより、撮像することができる。また、表示部8002はタッチパネルとしての機能を有し、表示部8002をタッチすることにより撮像することも可能である。
表示部8002に、本発明の一態様の表示装置、または入出力装置を適用することができる。
図55(B)には、カメラ8000にファインダー8100を取り付けた場合の例を示している。
ファインダー8100は、筐体8101、表示部8102、ボタン8103等を有する。
筐体8101には、カメラ8000の結合部8005と係合する結合部を有しており、ファインダー8100をカメラ8000に取り付けることができる。また当該結合部には電極を有し、当該電極を介してカメラ8000から受信した映像等を表示部8102に表示させることができる。
ボタン8103は、電源ボタンとしての機能を有する。ボタン8103により、表示部8102の表示のオン・オフを切り替えることができる。
筐体8101の中にある、集積回路、イメージセンサに本発明の一態様の半導体装置を適用することができる。
なお、図55(A)(B)では、カメラ8000とファインダー8100とを別の電子機器とし、これらを脱着可能な構成としたが、カメラ8000の筐体8001に、本発明の一態様の表示装置、または入出力装置を備えるファインダーが内蔵されていてもよい。
また、図55(C)には、ヘッドマウントディスプレイ8200の外観を示している。
ヘッドマウントディスプレイ8200は、装着部8201、レンズ8202、本体8203、表示部8204、ケーブル8205等を有している。また装着部8201には、バッテリー8206が内蔵されている。
ケーブル8205は、バッテリー8206から本体8203に電力を供給する。本体8203は無線受信機等を備え、受信した画像データ等の映像情報を表示部8204に表示させることができる。また、本体8203に設けられたカメラで使用者の眼球やまぶたの動きを捉え、その情報をもとに使用者の視点の座標を算出することにより、使用者の視点を入力手段として用いることができる。
また、装着部8201には、使用者に触れる位置に複数の電極が設けられていてもよい。本体8203は使用者の眼球の動きに伴って電極に流れる電流を検知することにより、使用者の視点を認識する機能を有していてもよい。また、当該電極に流れる電流を検知することにより、使用者の脈拍をモニタする機能を有していてもよい。また、装着部8201には、温度センサ、圧力センサ、加速度センサ等の各種センサを有していてもよく、使用者の生体情報を表示部8204に表示する機能を有していてもよい。また、使用者の頭部の動きなどを検出し、表示部8204に表示する映像をその動きに合わせて変化させてもよい。
本体8203の内部の集積回路に、本発明の一態様の半導体装置を適用することができる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態14)
本実施の形態では、本発明の一態様に係る半導体装置を用いたRFタグの使用例について図56を用いながら説明する。
<RFタグの使用例>
RFタグの用途は広範にわたるが、例えば、紙幣、硬貨、有価証券類、無記名債券類、証書類(運転免許証や住民票等、図56(A)参照)、乗り物類(自転車等、図56(B)参照)、包装用容器類(包装紙やボトル等、図56(C)参照)、記録媒体(DVDやビデオテープ等、図56(D)参照)、身の回り品(鞄や眼鏡等)、食品類、植物類、動物類、人体、衣類、生活用品類、薬品や薬剤を含む医療品、または電子機器(液晶表示装置、EL表示装置、テレビジョン装置、または携帯電話)等の物品、若しくは各物品に取り付ける荷札(図56(E)、図56(F)参照)等に設けて使用することができる。
本発明の一態様に係るRFタグ4000は、表面に貼る、または埋め込むことにより、物品に固定される。例えば、本であれば紙に埋め込み、有機樹脂からなるパッケージであれば当該有機樹脂の内部に埋め込み、各物品に固定される。本発明の一態様に係るRFタグ4000は、小型、薄型、軽量を実現するため、物品に固定した後もその物品自体のデザイン性を損なうことがない。また、紙幣、硬貨、有価証券類、無記名債券類、または証書類等に本発明の一態様に係るRFタグ4000を設けることにより、認証機能を設けることができ、この認証機能を活用すれば、偽造を防止することができる。また、包装用容器類、記録媒体、身の回り品、食品類、衣類、生活用品類、または電子機器等に本発明の一態様に係るRFタグを取り付けることにより、検品システム等のシステムの効率化を図ることができる。また、乗り物類であっても、本発明の一態様に係るRFタグを取り付けることにより、盗難などに対するセキュリティ性を高めることができる。
以上のように、本発明の一態様に係わる半導体装置を用いたRFタグを、本実施の形態に挙げた各用途に用いることにより、情報の書込みや読み出しを含む動作電力を低減できるため、最大通信距離を長くとることが可能となる。また、電力が遮断された状態であっても情報を極めて長い期間保持可能であるため、書き込みや読み出しの頻度が低い用途にも好適に用いることができる。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる。
200 撮像装置
201 スイッチ
202 スイッチ
203 スイッチ
210 画素部
211 画素
212 副画素
212B 副画素
212G 副画素
212R 副画素
220 光電変換素子
230 画素回路
231 配線
247 配線
248 配線
249 配線
250 配線
253 配線
254 フィルタ
254B フィルタ
254G フィルタ
254R フィルタ
255 レンズ
256 光
257 配線
260 周辺回路
270 周辺回路
280 周辺回路
290 周辺回路
291 光源
300 シリコン基板
301 絶縁体
303 絶縁体
305 層
310 導電体
320 層
330 トランジスタ
331 層
340 層
351 トランジスタ
352 トランジスタ
353 トランジスタ
354 トランジスタ
360 フォトダイオード
361 アノード
362 カソード
363 低抵抗領域
365 フォトダイオード
366 半導体層
367 半導体層
368 半導体層
370 プラグ
371 配線
372 配線
373 配線
374 配線
380 絶縁体
381 絶縁体
400 基板
401 絶縁体
402 絶縁体
404 導電体
404_1 導電体
404w ゲート線幅
406a 絶縁体
406b 半導体
406c 絶縁体
406c_1 絶縁体
407 領域
408 絶縁体
410 絶縁体
410_1 絶縁体
410a 絶縁体
411 レジストマスク
412 絶縁体
412_1 絶縁体
413 有機物
414 混合領域
415 導電体
416a1 導電体
416a2 導電体
416w1 開口部幅
416w2 開口部幅
428 絶縁体
429 導電体
430 導電体
431 導電体
432 導電体
437 導電体
438 導電体
440 導電体
442 導電体
444 導電体
446 テーパー角
447 テーパー角
450 半導体基板
454 導電体
460 領域
462 絶縁体
464 絶縁体
465 絶縁体
466 絶縁体
467 絶縁体
468 絶縁体
469 絶縁体
470 絶縁体
472 絶縁体
474a 領域
474b 領域
475 絶縁体
476a 導電体
476b 導電体
476c 導電体
477a 導電体
477b 導電体
477c 導電体
478a 導電体
478b 導電体
478c 導電体
479a 導電体
479b 導電体
479c 導電体
480a 導電体
480b 導電体
480c 導電体
483a 導電体
483b 導電体
483c 導電体
483d 導電体
483e 導電体
483f 導電体
484a 導電体
484b 導電体
484c 導電体
484d 導電体
485a 導電体
485b 導電体
485c 導電体
485d 導電体
487a 導電体
487b 導電体
487c 導電体
488a 導電体
488b 導電体
488c 導電体
489a 導電体
489b 導電体
490a 導電体
490b 導電体
491a 導電体
491b 導電体
491c 導電体
492a 導電体
492b 導電体
492c 導電体
494 導電体
496 導電体
498 絶縁体
550 インターポーザ
551 チップ
552 端子
553 モールド樹脂
600 パネル
601 プリント配線基板
602 パッケージ
603 FPC
604 バッテリー
700 基板
704a 導電体
704b 導電体
706a 絶縁体
706b 半導体
706c 絶縁体
706d 絶縁体
706e 半導体
706f 絶縁体
710 絶縁体
712a 絶縁体
714a 導電体
714b 導電体
716a1 導電体
716a2 導電体
716a3 導電体
716a4 導電体
718b 絶縁体
719 発光素子
720 絶縁体
721 絶縁体
728 絶縁体
731 端子
732 FPC
733a 配線
734 シール材
735 駆動回路
736 駆動回路
737 画素
741 トランジスタ
742 容量素子
743 スイッチ素子
744 信号線
750 基板
751 トランジスタ
752 容量素子
753 液晶素子
754 走査線
755 信号線
781 導電体
782 発光層
783 導電体
784 隔壁
791 導電体
792 絶縁体
793 液晶層
794 絶縁体
795 スペーサ
796 導電体
797 基板
800 RFタグ
801 通信器
802 アンテナ
803 無線信号
804 アンテナ
805 整流回路
806 定電圧回路
807 復調回路
808 変調回路
809 論理回路
810 記憶回路
811 ROM
1189 ROMインターフェース
1190 基板
1191 ALU
1192 ALUコントローラ
1193 インストラクションデコーダ
1194 インタラプトコントローラ
1195 タイミングコントローラ
1196 レジスタ
1197 レジスタコントローラ
1198 バスインターフェース
1199 ROM
1200 記憶素子
1201 回路
1202 回路
1203 スイッチ
1204 スイッチ
1206 論理素子
1207 容量素子
1208 容量素子
1209 トランジスタ
1210 トランジスタ
1213 トランジスタ
1214 トランジスタ
1220 回路
2100 トランジスタ
2200 トランジスタ
2201 絶縁体
2202 配線
2203 プラグ
2204 絶縁体
2205 配線
2207 絶縁体
2208 絶縁体
2211 半導体基板
2212 絶縁体
2213 ゲート電極
2214 ゲート絶縁体
2215 ソース領域およびドレイン領域
3001 配線
3002 配線
3003 配線
3004 配線
3005 配線
3200 トランジスタ
3300 トランジスタ
3400 容量素子
4000 RFタグ
5100 ペレット
5120 基板
5161 領域
6000 表示モジュール
6001 上部カバー
6002 下部カバー
6003 FPC
6004 タッチパネル
6005 FPC
6006 表示パネル
6007 バックライトユニット
6008 光源
6009 フレーム
6010 プリント基板
6011 バッテリー
7101 筐体
7102 筐体
7103 表示部
7104 表示部
7105 マイク
7106 スピーカー
7107 操作キー
7108 スタイラス
7302 筐体
7304 表示部
7311 操作ボタン
7312 操作ボタン
7313 接続端子
7321 バンド
7322 留め金
7501 筐体
7502 表示部
7503 操作ボタン
7504 外部接続ポート
7505 スピーカー
7506 マイク
7701 筐体
7702 筐体
7703 表示部
7704 操作キー
7705 レンズ
7706 接続部
7901 電柱
7902 表示部
8000 カメラ
8001 筐体
8002 表示部
8003 操作ボタン
8004 シャッターボタン
8005 結合部
8006 レンズ
8100 ファインダー
8101 筐体
8102 表示部
8103 ボタン
8121 筐体
8122 表示部
8123 キーボード
8124 ポインティングデバイス
8200 ヘッドマウントディスプレイ
8201 装着部
8202 レンズ
8203 本体
8204 表示部
8205 ケーブル
8206 バッテリー
9700 自動車
9701 車体
9702 車輪
9703 ダッシュボード
9704 ライト
9710 表示部
9711 表示部
9712 表示部
9713 表示部
9714 表示部
9715 表示部
9721 表示部
9722 表示部
9723 表示部

Claims (13)

  1. 酸化物半導体と、第1の導電体と、第2の導電体と、第3の導電体と、第1の絶縁体と、第2の絶縁体と、を有し、
    前記第1の導電体は、前記第1の絶縁体を介して、前記第1の導電体と前記酸化物半導体とが互いに重なる領域を有し、
    前記第2の絶縁体は、開口部を有し、前記開口部において前記第1の絶縁体を介して、前記第2の絶縁体の側面と前記第1の導電体の側面は互いに重なる領域を有し、
    前記第2の導電体の表面の一部および前記第3の導電体の表面の一部は、前記開口部で前記第1の絶縁体と接し、
    前記酸化物半導体は、前記酸化物半導体と前記第2の導電体と互いに重なる領域と、前記酸化物半導体と前記第3の導電体と互いに重なる領域と、を有することを特徴とする半導体装置。
  2. 前記第1の導電体は、酸素を透過しにくい導電体を含む多層膜であることを特徴とする請求項1に記載の半導体装置。
  3. 前記第2の導電体および前記第3の導電体は、酸素を透過しにくい導電体を含む多層膜であることを特徴とする請求項1または請求項2に記載の半導体装置。
  4. 第3の絶縁膜は、前記酸化物半導体と互いに重なる領域を有し、前記第3の絶縁体は、前記酸化物半導体の有する酸素以外の主成分元素の少なくとも一を有することを特徴とする請求項1乃至請求項3のいずれか一に記載の半導体装置。
  5. 前記第1の導電体は、トランジスタのゲート電極として機能する領域を有し、
    前記トランジスタは、ゲート線幅が、5nm以上60nm以下であることを特徴とする請求項1乃至請求項4のいずれか一に記載の半導体装置。
  6. 第1の絶縁体上に第2の絶縁体を成膜し、
    前記第2の絶縁体上に酸化物半導体を成膜し、
    前記酸化物半導体上に第1の導電体を成膜し、
    前記第1の導電体、前記酸化物半導体および前記第2の絶縁体の一部をエッチングすることで前記第1の導電体、前記酸化物半導体および前記第2の絶縁体を有する多層膜を形成し、
    前記第1の絶縁体上および前記多層膜上に第3の絶縁体を成膜し、
    前記第3の絶縁体および前記第1の導電体に、前記酸化物半導体を露出する開口部を形成することで前記第1の導電体を第1の導電体層と第2の導電体層と、に分離し、
    前記開口部を広げるように前記第3の絶縁体の一部をエッチングすることで、前記第1の導電体層の上面、および前記第2の導電体層の上面を露出させ、
    前記第3の絶縁体上、第1の導電体層上、第2の導電体層上および前記酸化物半導体上に第4の絶縁体を成膜し、
    前記第4の絶縁体上に第5の絶縁体を成膜し、
    前記第5の絶縁体上に第3の導電体を成膜し、
    前記第3の導電体、前記第5の絶縁体および前記第4の絶縁体を化学的機械研磨することで前記第3の絶縁体を露出し、
    前記第2絶縁体および第4の絶縁体は、前記酸化物半導体の有する酸素以外の主成分元素の少なくとも一を有することを特徴とする半導体装置の作製方法。
  7. 第1の絶縁体上に第2の絶縁体を成膜し、
    前記第2の絶縁体上に酸化物半導体を成膜し、
    前記酸化物半導体上に第1の導電体を成膜し、
    前記第1の導電体、前記酸化物半導体および前記第2の絶縁体の一部をエッチングすることで前記第1の導電体、前記酸化物半導体および前記第2の絶縁体を有する多層膜を形成し、
    前記第1の絶縁体上および前記多層膜上に第3の絶縁体を成膜し、
    前記第3の絶縁体および前記第1の導電体に、前記酸化物半導体を露出する開口部を形成することで前記第1の導電体を第1の導電体層と第2の導電体層と、に分離し、
    前記開口部を広げるように前記第3の絶縁体の一部をエッチングすることで、前記第1の導電体層の上面、および前記第2の導電体層の上面を露出させ、
    前記第3の絶縁体上、第1の導電体層上、第2の導電体層上および前記酸化物半導体上に第4の絶縁体を成膜し、
    前記第4の絶縁体上に第5の絶縁体を成膜し、
    前記第5の絶縁体上に第3の導電体を成膜し、
    前記第3の導電体、前記第5の絶縁体および前記第4の絶縁体を化学的機械研磨することで前記第3の絶縁体を露出し、
    前記第3の絶縁体上および前記第3の導電体上に、酸素を有するプラズマを用いて第6の絶縁体を成膜することで、前記プラズマ中の酸素を過剰酸素として前記第3の絶縁体中に添加し、
    熱処理を行うことで、前記過剰酸素を前記酸化物半導体に移動させ、
    前記第2絶縁体および第4の絶縁体は、前記酸化物半導体の有する酸素以外の主成分元素の少なくとも一を有することを特徴とする半導体装置の作製方法。
  8. 第1の絶縁体上に第2の絶縁体を成膜し、
    前記第2の絶縁体上に酸化物半導体を成膜し、
    前記酸化物半導体上に第1の導電体を成膜し、
    前記第1の導電体、前記酸化物半導体および前記第2の絶縁体の一部をエッチングすることで前記第1の導電体、前記酸化物半導体および前記第2の絶縁体を有する多層膜を形成し、
    前記第1の絶縁体上および前記多層膜上に第3の絶縁体を成膜し、
    前記第3の絶縁体に、前記多層膜を露出する開口部と、前記第1の絶縁体を露出する開口部と、を形成し、
    前記第1の絶縁体上、前記第3の絶縁体上、前記第3の絶縁体の側面、前記多層膜上および前記多層膜の側面に有機膜を成膜し、
    前記有機膜を前記第3の絶縁体の側面および前記多層膜の側面の有機膜を残してエッチングし、
    前記第1の導電体を少なくとも前記第3の絶縁体の側面に残った有機膜をマスクとしてエッチングすることで前記第1の導電体を第1の導電体層と第2の導電体層と、に分離し、
    前記第3の絶縁体の側面および前記多層膜の側面の有機膜を除去することで前記第1の導電体層の表面および前記第2の導電体層表面に達する開口部を形成し、
    前記第3の絶縁体上、第1の導電体層上、第2の導電体層上および前記酸化物半導体上に第4の絶縁体を成膜し、
    前記第4の絶縁体上に第5の絶縁体を成膜し、
    前記第5の絶縁体上に第3の導電体を成膜し、
    前記第3の導電体、前記第5の絶縁体および前記第4の絶縁体を化学的機械研磨することで前記第3の絶縁体を露出し、
    前記第3の絶縁体上および前記第3の導電体上に第6の絶縁体を成膜し、
    前記第2絶縁体および第4の絶縁体は、前記酸化物半導体の有する酸素以外の主成分元素の少なくとも一を有することを特徴とする半導体装置の作製方法。
  9. 第1の絶縁体上に第2の絶縁体を成膜し、
    前記第2の絶縁体上に酸化物半導体を成膜し、
    前記酸化物半導体上に第1の導電体を成膜し、
    前記第1の導電体、前記酸化物半導体および前記第2の絶縁体の一部をエッチングすることで前記第1の導電体、前記酸化物半導体および前記第2の絶縁体を有する多層膜を形成し、
    前記第1の絶縁体上および前記多層膜上に第3の絶縁体を成膜し、
    前記第3の絶縁体に、前記多層膜を露出する開口部と、前記第1の絶縁体を露出する開口部と、を形成し、
    前記第1の絶縁体上、前記第3の絶縁体上、前記第3の絶縁体の側面、前記多層膜上および前記多層膜の側面に有機膜を成膜し、
    前記有機膜を前記第3の絶縁体の側面および前記多層膜の側面の有機膜を残してエッチングし、
    前記第1の導電体を少なくとも前記第3の絶縁体の側面に残った有機膜をマスクとしてエッチングすることで前記第1の導電体を第1の導電体層と第2の導電体層と、に分離し、
    前記第3の絶縁体の側面および前記多層膜の側面の有機膜を除去することで前記第1の導電体層の表面および前記第2の導電体層表面に達する開口部を形成し、
    前記第3の絶縁体上、第1の導電体層上、第2の導電体層上および前記酸化物半導体上に第4の絶縁体を成膜し、
    前記第4の絶縁体上に第5の絶縁体を成膜し、
    前記第5の絶縁体上に第3の導電体を成膜し、
    前記第3の導電体、前記第5の絶縁体および前記第4の絶縁体を化学的機械研磨することで前記第3の絶縁体を露出し、
    前記第3の絶縁体上および前記第3の導電体上に、酸素を有するプラズマを用いて第6の絶縁体を成膜することで、前記プラズマ中の酸素を過剰酸素として前記第3の絶縁体中に添加し、
    熱処理を行うことで、前記過剰酸素を前記酸化物半導体に移動させ、
    前記第2絶縁体および第4の絶縁体は、前記酸化物半導体の有する酸素以外の主成分元素の少なくとも一を有することを特徴とする半導体装置の作製方法。
  10. 前記第1の導電体上に前記第1の導電体よりも酸素を透過しにくい第4の導電体を成膜することを特徴とする請求項6乃至請求項9のいずれか一に記載の半導体装置の作製方法。
  11. 前記第3の導電体下には、前記第3の導電体よりも酸素を透過しにくい第5の導電体を成膜することを特徴とする請求項6乃至請求項10のいずれか一に記載の半導体装置の作製方法。
  12. 前記有機膜は、炭素およびハロゲンを有するガスを含むガスによるプラズマによって、有機物を成膜することを特徴とする請求項8乃至請求項11のいずれか一に記載の半導体装置の作製方法。
  13. 前記第6の絶縁体は、前記第1の絶縁体、前記第3の絶縁体および前記第5の絶縁体よりも酸素を透過し難い絶縁体を成膜することを特徴とする請求項6乃至請求項12のいずれか一に記載の半導体装置の作製方法。
JP2016033757A 2015-03-03 2016-02-25 半導体装置およびその作製方法 Active JP6705660B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020085023A JP6919020B2 (ja) 2015-03-03 2020-05-14 半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015041204 2015-03-03
JP2015041204 2015-03-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020085023A Division JP6919020B2 (ja) 2015-03-03 2020-05-14 半導体装置

Publications (2)

Publication Number Publication Date
JP2016167584A true JP2016167584A (ja) 2016-09-15
JP6705660B2 JP6705660B2 (ja) 2020-06-03

Family

ID=56848415

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2016033757A Active JP6705660B2 (ja) 2015-03-03 2016-02-25 半導体装置およびその作製方法
JP2020085023A Active JP6919020B2 (ja) 2015-03-03 2020-05-14 半導体装置
JP2021120431A Active JP7181352B2 (ja) 2015-03-03 2021-07-21 トランジスタの作製方法
JP2022183806A Withdrawn JP2023018007A (ja) 2015-03-03 2022-11-17 半導体装置

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2020085023A Active JP6919020B2 (ja) 2015-03-03 2020-05-14 半導体装置
JP2021120431A Active JP7181352B2 (ja) 2015-03-03 2021-07-21 トランジスタの作製方法
JP2022183806A Withdrawn JP2023018007A (ja) 2015-03-03 2022-11-17 半導体装置

Country Status (4)

Country Link
US (5) US9865712B2 (ja)
JP (4) JP6705660B2 (ja)
TW (1) TWI718125B (ja)
WO (1) WO2016139548A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019025911A1 (ja) * 2017-08-04 2019-02-07 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
WO2019077438A1 (ja) * 2017-10-20 2019-04-25 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
WO2019102314A1 (ja) * 2017-11-24 2019-05-31 株式会社半導体エネルギー研究所 半導体材料、および半導体装置
WO2019111105A1 (ja) * 2017-12-06 2019-06-13 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
WO2019111106A1 (ja) * 2017-12-08 2019-06-13 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
WO2019130161A1 (ja) * 2017-12-27 2019-07-04 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
WO2019155329A1 (ja) * 2018-02-09 2019-08-15 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
WO2019155318A1 (ja) * 2018-02-08 2019-08-15 株式会社半導体エネルギー研究所 表示装置
WO2020109923A1 (ja) * 2018-11-30 2020-06-04 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
US11670705B2 (en) 2017-03-13 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8194451B2 (en) * 2007-11-29 2012-06-05 Zeno Semiconductor, Inc. Memory cells, memory cell arrays, methods of using and methods of making
US10403361B2 (en) 2007-11-29 2019-09-03 Zeno Semiconductor, Inc. Memory cells, memory cell arrays, methods of using and methods of making
US9513244B2 (en) 2011-04-14 2016-12-06 Regents Of The University Of Minnesota Ultra-compact, passive, varactor-based wireless sensor using quantum capacitance effect in graphene
TW201624708A (zh) * 2014-11-21 2016-07-01 半導體能源研究所股份有限公司 半導體裝置及記憶體裝置
US9882061B2 (en) * 2015-03-17 2018-01-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR102546189B1 (ko) 2015-04-13 2023-06-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US9917209B2 (en) 2015-07-03 2018-03-13 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device including step of forming trench over semiconductor
US10181531B2 (en) 2015-07-08 2019-01-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including transistor having low parasitic capacitance
US10985278B2 (en) 2015-07-21 2021-04-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US11189736B2 (en) * 2015-07-24 2021-11-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9825177B2 (en) 2015-07-30 2017-11-21 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of a semiconductor device using multiple etching mask
US9773919B2 (en) 2015-08-26 2017-09-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10714633B2 (en) 2015-12-15 2020-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
US9893060B2 (en) * 2015-12-17 2018-02-13 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing method thereof
US9954003B2 (en) * 2016-02-17 2018-04-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
WO2017153882A1 (en) 2016-03-11 2017-09-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and display device including the semiconductor device
KR102280754B1 (ko) * 2017-08-10 2021-07-21 엘에스엠트론 주식회사 내장형 안테나를 갖는 무선통신칩, 무선통신칩용 내장형 안테나, 및 내장형 안테나를 갖는 무선통신칩의 제조 방법
CN111095385B (zh) * 2017-09-21 2021-06-22 夏普株式会社 显示装置
TWI794340B (zh) * 2017-12-07 2023-03-01 日商半導體能源研究所股份有限公司 半導體裝置以及半導體裝置的製造方法
JP7474712B2 (ja) * 2019-01-29 2024-04-25 株式会社半導体エネルギー研究所 半導体装置
CN111508843B (zh) * 2019-01-31 2023-07-14 中芯国际集成电路制造(上海)有限公司 半导体器件及其形成方法
US11908901B1 (en) * 2019-03-14 2024-02-20 Regents Of The University Of Minnesota Graphene varactor including ferroelectric material
US11710760B2 (en) * 2019-06-21 2023-07-25 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, electronic device, and manufacturing method of display device
US11521997B2 (en) * 2020-04-16 2022-12-06 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-protrusion transfer gate structure
CN112750884B (zh) * 2020-12-30 2022-06-17 湖北长江新型显示产业创新中心有限公司 一种显示面板及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251534A (ja) * 2012-04-30 2013-12-12 Semiconductor Energy Lab Co Ltd 半導体装置
JP2014082389A (ja) * 2012-10-17 2014-05-08 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2014099602A (ja) * 2012-10-17 2014-05-29 Semiconductor Energy Lab Co Ltd 半導体装置
JP2015144251A (ja) * 2013-12-26 2015-08-06 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
JP2015195380A (ja) * 2014-03-28 2015-11-05 株式会社半導体エネルギー研究所 トランジスタおよび半導体装置
JP2016021559A (ja) * 2014-06-18 2016-02-04 株式会社半導体エネルギー研究所 トランジスタおよび半導体装置
JP2016066793A (ja) * 2014-09-19 2016-04-28 株式会社半導体エネルギー研究所 半導体装置の作製方法

Family Cites Families (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
JPH11505377A (ja) 1995-08-03 1999-05-18 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 半導体装置
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
US5801075A (en) * 1996-10-30 1998-09-01 Advanced Micro Devices, Inc. Method of forming trench transistor with metal spacers
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP2002198521A (ja) * 2000-12-25 2002-07-12 Nec Corp 半導体装置の製造方法
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP2002299610A (ja) * 2001-03-30 2002-10-11 Toshiba Corp 半導体装置およびその製造方法
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
US7061014B2 (en) 2001-11-05 2006-06-13 Japan Science And Technology Agency Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
CN1445821A (zh) 2002-03-15 2003-10-01 三洋电机株式会社 ZnO膜和ZnO半导体层的形成方法、半导体元件及其制造方法
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
CN102354658B (zh) 2004-03-12 2015-04-01 独立行政法人科学技术振兴机构 薄膜晶体管的制造方法
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
EP1812969B1 (en) 2004-11-10 2015-05-06 Canon Kabushiki Kaisha Field effect transistor comprising an amorphous oxide
RU2358355C2 (ru) 2004-11-10 2009-06-10 Кэнон Кабусики Кайся Полевой транзистор
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
EP1810335B1 (en) 2004-11-10 2020-05-27 Canon Kabushiki Kaisha Light-emitting device
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI569441B (zh) 2005-01-28 2017-02-01 半導體能源研究所股份有限公司 半導體裝置,電子裝置,和半導體裝置的製造方法
TWI505473B (zh) 2005-01-28 2015-10-21 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
US7544967B2 (en) 2005-03-28 2009-06-09 Massachusetts Institute Of Technology Low voltage flexible organic/transparent transistor for selective gas sensing, photodetecting and CMOS device applications
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
EP1998374A3 (en) 2005-09-29 2012-01-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method thereof
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
KR101117948B1 (ko) 2005-11-15 2012-02-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 디스플레이 장치 제조 방법
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
US8274078B2 (en) 2007-04-25 2012-09-25 Canon Kabushiki Kaisha Metal oxynitride semiconductor containing zinc
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
JP5067039B2 (ja) 2007-06-25 2012-11-07 パナソニック株式会社 半導体装置の製造方法
JP5215158B2 (ja) 2007-12-17 2013-06-19 富士フイルム株式会社 無機結晶性配向膜及びその製造方法、半導体デバイス
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
KR101772639B1 (ko) 2009-10-16 2017-08-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR101837102B1 (ko) 2009-10-30 2018-03-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
CN102834922B (zh) 2010-04-02 2016-04-13 株式会社半导体能源研究所 半导体装置
WO2012014786A1 (en) 2010-07-30 2012-02-02 Semiconductor Energy Laboratory Co., Ltd. Semicondcutor device and manufacturing method thereof
CN103069717B (zh) 2010-08-06 2018-01-30 株式会社半导体能源研究所 半导体集成电路
TWI539453B (zh) * 2010-09-14 2016-06-21 半導體能源研究所股份有限公司 記憶體裝置和半導體裝置
US9006024B2 (en) 2012-04-25 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP6186166B2 (ja) * 2012-05-02 2017-08-23 株式会社半導体エネルギー研究所 半導体装置
EP2851938A4 (en) * 2012-05-18 2016-02-17 Renesas Electronics Corp SEMICONDUCTOR COMPONENT AND MANUFACTURING METHOD THEREFOR
CN104380473B (zh) * 2012-05-31 2017-10-13 株式会社半导体能源研究所 半导体装置
US9059219B2 (en) * 2012-06-27 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
JP6355374B2 (ja) 2013-03-22 2018-07-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
US9368636B2 (en) * 2013-04-01 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device comprising a plurality of oxide semiconductor layers
US9893192B2 (en) 2013-04-24 2018-02-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102222344B1 (ko) 2013-05-02 2021-03-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US9704886B2 (en) 2013-05-16 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Signal processing device
US9209795B2 (en) 2013-05-17 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Signal processing device and measuring method
JP6246518B2 (ja) 2013-07-29 2017-12-13 株式会社半導体エネルギー研究所 トランジスタ
TWI672804B (zh) * 2014-05-23 2019-09-21 日商半導體能源研究所股份有限公司 半導體裝置的製造方法
TWI663726B (zh) * 2014-05-30 2019-06-21 Semiconductor Energy Laboratory Co., Ltd. 半導體裝置、模組及電子裝置
US9954112B2 (en) 2015-01-26 2018-04-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP6857447B2 (ja) * 2015-01-26 2021-04-14 株式会社半導体エネルギー研究所 半導体装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013251534A (ja) * 2012-04-30 2013-12-12 Semiconductor Energy Lab Co Ltd 半導体装置
JP2014082389A (ja) * 2012-10-17 2014-05-08 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2014099602A (ja) * 2012-10-17 2014-05-29 Semiconductor Energy Lab Co Ltd 半導体装置
JP2015144251A (ja) * 2013-12-26 2015-08-06 株式会社半導体エネルギー研究所 半導体装置およびその作製方法
JP2015195380A (ja) * 2014-03-28 2015-11-05 株式会社半導体エネルギー研究所 トランジスタおよび半導体装置
JP2016021559A (ja) * 2014-06-18 2016-02-04 株式会社半導体エネルギー研究所 トランジスタおよび半導体装置
JP2016066793A (ja) * 2014-09-19 2016-04-28 株式会社半導体エネルギー研究所 半導体装置の作製方法

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11955538B2 (en) 2017-03-13 2024-04-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US11670705B2 (en) 2017-03-13 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
JPWO2019025911A1 (ja) * 2017-08-04 2020-08-06 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
JP7232764B2 (ja) 2017-08-04 2023-03-03 株式会社半導体エネルギー研究所 半導体装置
WO2019025911A1 (ja) * 2017-08-04 2019-02-07 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
US11177176B2 (en) 2017-10-20 2021-11-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
KR102669811B1 (ko) 2017-10-20 2024-05-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 및 반도체 장치의 제작 방법
WO2019077438A1 (ja) * 2017-10-20 2019-04-25 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
KR20200069295A (ko) * 2017-10-20 2020-06-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 및 반도체 장치의 제작 방법
JPWO2019077438A1 (ja) * 2017-10-20 2020-11-05 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
JP7198214B2 (ja) 2017-10-20 2022-12-28 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
JP7190443B2 (ja) 2017-11-24 2022-12-15 株式会社半導体エネルギー研究所 半導体材料
WO2019102314A1 (ja) * 2017-11-24 2019-05-31 株式会社半導体エネルギー研究所 半導体材料、および半導体装置
US11610997B2 (en) 2017-11-24 2023-03-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor material and semiconductor device having a metal element and nitrogen
JPWO2019102314A1 (ja) * 2017-11-24 2020-11-26 株式会社半導体エネルギー研究所 半導体材料、および半導体装置
US11257959B2 (en) 2017-12-06 2022-02-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
JPWO2019111105A1 (ja) * 2017-12-06 2020-12-03 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
US11817507B2 (en) 2017-12-06 2023-11-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
WO2019111105A1 (ja) * 2017-12-06 2019-06-13 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
US11616149B2 (en) 2017-12-08 2023-03-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
WO2019111106A1 (ja) * 2017-12-08 2019-06-13 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
JP7221216B2 (ja) 2017-12-08 2023-02-13 株式会社半導体エネルギー研究所 半導体装置
JPWO2019111106A1 (ja) * 2017-12-08 2020-11-26 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
WO2019130161A1 (ja) * 2017-12-27 2019-07-04 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
US11133420B2 (en) 2017-12-27 2021-09-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
JPWO2019130161A1 (ja) * 2017-12-27 2020-12-10 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
JP7158414B2 (ja) 2017-12-27 2022-10-21 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
KR20230133949A (ko) * 2018-02-08 2023-09-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
JPWO2019155318A1 (ja) * 2018-02-08 2021-02-25 株式会社半導体エネルギー研究所 表示装置
KR102680921B1 (ko) 2018-02-08 2024-07-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
WO2019155318A1 (ja) * 2018-02-08 2019-08-15 株式会社半導体エネルギー研究所 表示装置
JP7186732B2 (ja) 2018-02-08 2022-12-09 株式会社半導体エネルギー研究所 表示装置
KR20200115539A (ko) * 2018-02-08 2020-10-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
US11417687B2 (en) 2018-02-08 2022-08-16 Semiconductor Energy Laboratory Co., Ltd. Display device
KR102579601B1 (ko) 2018-02-08 2023-09-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
JP7155172B2 (ja) 2018-02-09 2022-10-18 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
JPWO2019155329A1 (ja) * 2018-02-09 2021-03-04 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
US11296233B2 (en) 2018-02-09 2022-04-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and semiconductor device manufacturing method
WO2019155329A1 (ja) * 2018-02-09 2019-08-15 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
WO2020109923A1 (ja) * 2018-11-30 2020-06-04 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
JPWO2020109923A1 (ja) * 2018-11-30 2021-12-09 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法

Also Published As

Publication number Publication date
JP7181352B2 (ja) 2022-11-30
WO2016139548A1 (en) 2016-09-09
JP6705660B2 (ja) 2020-06-03
US20180108760A1 (en) 2018-04-19
US20160260822A1 (en) 2016-09-08
US20190378918A1 (en) 2019-12-12
JP6919020B2 (ja) 2021-08-11
US20210074834A1 (en) 2021-03-11
JP2020127052A (ja) 2020-08-20
TWI718125B (zh) 2021-02-11
JP2021185598A (ja) 2021-12-09
US11489065B2 (en) 2022-11-01
US10446671B2 (en) 2019-10-15
TW201707215A (zh) 2017-02-16
US9865712B2 (en) 2018-01-09
JP2023018007A (ja) 2023-02-07
US20230014711A1 (en) 2023-01-19
US10879381B2 (en) 2020-12-29

Similar Documents

Publication Publication Date Title
JP7181352B2 (ja) トランジスタの作製方法
JP6877606B2 (ja) 半導体装置の製造方法
JP6717815B2 (ja) 半導体装置の作製方法
JP6705663B2 (ja) 半導体装置およびその作製方法
JP2016154225A (ja) 半導体装置およびその作製方法
JP2017050530A (ja) 半導体装置およびその作製方法
JP2017045989A (ja) 半導体装置およびその作製方法
JP2016208024A (ja) 電極及び半導体装置の作製方法
JP2017028289A (ja) 半導体装置およびその作製方法
JP6708433B2 (ja) 半導体装置
JP6584196B2 (ja) 半導体装置
JP6562674B2 (ja) 半導体装置の作製方法
JP2016207759A (ja) 半導体装置およびその作製方法
WO2017046673A1 (ja) 電極および半導体装置の作製方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200514

R150 Certificate of patent or registration of utility model

Ref document number: 6705660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250