JP2015118944A - 多孔質電極基材、その製造方法、前駆体シート、膜−電極接合体及び固体高分子型燃料電池 - Google Patents
多孔質電極基材、その製造方法、前駆体シート、膜−電極接合体及び固体高分子型燃料電池 Download PDFInfo
- Publication number
- JP2015118944A JP2015118944A JP2015018392A JP2015018392A JP2015118944A JP 2015118944 A JP2015118944 A JP 2015118944A JP 2015018392 A JP2015018392 A JP 2015018392A JP 2015018392 A JP2015018392 A JP 2015018392A JP 2015118944 A JP2015118944 A JP 2015118944A
- Authority
- JP
- Japan
- Prior art keywords
- sheet
- porous electrode
- fiber
- resin
- electrode substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
- C04B35/83—Carbon fibres in a carbon matrix
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8878—Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
- H01M4/8882—Heat treatment, e.g. drying, baking
- H01M4/8885—Sintering or firing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/0022—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H13/00—Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
- D21H13/36—Inorganic fibres or flakes
- D21H13/46—Non-siliceous fibres, e.g. from metal oxides
- D21H13/50—Carbon fibres
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/46—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H19/00—Coated paper; Coating material
- D21H19/10—Coatings without pigments
- D21H19/14—Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
- D21H19/24—Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H25/00—After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
- D21H25/04—Physical treatment, e.g. heating, irradiating
- D21H25/06—Physical treatment, e.g. heating, irradiating of impregnated or coated paper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
- H01M4/8652—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8803—Supports for the deposition of the catalytic active composition
- H01M4/8807—Gas diffusion layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8875—Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/96—Carbon-based electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0234—Carbonaceous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00853—Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/48—Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5216—Inorganic
- C04B2235/524—Non-oxidic, e.g. borides, carbides, silicides or nitrides
- C04B2235/5248—Carbon, e.g. graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/526—Fibers characterised by the length of the fibers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5264—Fibers characterised by the diameter of the fibers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
- Paper (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
[1]炭素短繊維(A)が分散したシート状物を製造する工程。
[2]該シート状物に、水溶性フェノール樹脂および水分散性フェノール樹脂のうちの一方または両方を添加して、前駆体シートを製造する工程。
[3]該前駆体シートを1000℃以上の温度で炭素化処理する工程。
本発明の製造方法は、以下の[1]〜[3]の工程を含む。
[1]炭素短繊維(A)が分散したシート状物を製造する工程(シート状物製造工程[1])。
[2]前記シート状物に、水溶性フェノール樹脂および水分散性フェノール樹脂のうちの一方または両方を添加して、前駆体シートを製造する工程(樹脂添加工程[2])。
[3]前記前駆体シートを1000℃以上の温度で炭素化処理する工程(炭素化処理工程[3])。
さらに、本発明の製造方法が、上記工程[4]を有する場合、前記工程[1]と前記工程[4]の間、および、前記工程[4]と前記工程[2]の間、のうちの一方または両方に、シート状物を乾燥処理する工程[7]を含むことができる。なお、このシート状物とは、工程[7]が工程[1]と工程[4]との間に行われる場合は、少なくとも炭素短繊維(A)が分散した(後述の前駆体繊維(b)が分散していても良い)シート状物を指し、工程[7]が工程[4]と工程[2]との間に行われる場合は、交絡処理されたシート状物を指す。
シート状物を製造するにあたっては、液体の媒体中に、炭素短繊維(A)を分散させて抄造する湿式法、空気中に、炭素短繊維(A)を分散させて降り積もらせる乾式法などの抄紙方法を適用できる。シート強度や繊維分散の均一性の観点から、好ましくは湿式法である。
水分散性フェノール樹脂および水溶性フェノール樹脂のうちの一方または両方をシート状物に添加して前駆体シートを製造する方法としては、シート状物にこれらのフェノール樹脂を付与することができる方法であれば特に限定されない。以降、水分散性フェノール樹脂および水溶性フェノール樹脂のうちの一方または両方の樹脂を、フェノール樹脂(c)または樹脂(c)と称することがある。
前駆体シートを炭素化処理する方法としては、室温からの連続昇温により炭素化するような方法であればよく、1000℃以上の温度で行う。なお、十分な導電性付与の観点から、炭素化処理は、不活性雰囲気下にて1000℃以上2400℃以下の温度範囲で行うことが好ましい。なお、炭素化処理工程を行う前に、不活性雰囲気下にて300℃以上1000℃未満の温度範囲で前炭素化処理を行っても良い。前炭素化処理を行うことで炭素化初期段階において発生する分解ガスを容易に出し切ることができ、炭素化炉内壁への分解物の付着や堆積を容易に抑制することができるため好ましい。
シート状物を交絡処理することで、炭素短繊維(A)が3次元に交絡した交絡構造を有するシート(交絡構造シート)を形成することができる。シート状物製造工程[1]において、炭素繊維(A)と共に、前駆体繊維(b)を分散させた場合は、シート状物を交絡処理することで、炭素短繊維(A)と前駆体繊維(b)とが3次元に交絡した交絡構造を有するシート(交絡構造シート)を形成することができる。
多孔質電極基材の厚みむらを低減させ、さらに、交絡処理によりシート表面に毛羽立った状態となった繊維の、シート表面近傍における毛羽立ちを抑制し、燃料電池として組み込んだ際の短絡電流やガスリークを抑制するという観点から、前駆体シートを100℃以上250℃以下の温度で加熱加圧することが好ましい。
本発明の製造方法は、工程[2]と工程[5]との間に、前駆体シートを乾燥処理する工程[6]をさらに含むことができる。これにより、工程[5]で分散媒や未反応モノマーを除去するためのエネルギーを容易に低減することができ好ましい。
本発明の製造方法は、工程[1]と工程[2]との間に、シート状物を乾燥処理する工程[7]を含むことができる。また、本発明の製造方法が工程[4]を有する場合は、工程[1]と工程[4]との間、および、工程[4]と工程[2]との間、のうちの一方または両方に、シート状物を乾燥処理する工程[7]をさらに含むことができる。工程[4]と工程[2]との間に乾燥処理工程[7]を行う場合は、乾燥処理は、交絡処理したシート状物(交絡構造シート)に対して行われる。なお、本発明におけるシート状物は、前駆体シートを含まない。
これらの乾燥処理工程[7]はいずれも、乾燥処理に供するシート状物から分散媒を除去する観点から、20〜200℃でこのシート状物を乾燥処理することが好ましい。乾燥処理の時間は、例えば1分間〜24時間とすることができる。
また、工程[4]と工程[2]の間に、乾燥処理工程[7]を行う場合は、例えば、高温雰囲気炉や遠赤外線加熱炉による熱処理や、熱板や熱ロールなどによる直接加熱処理などが適用できる。交絡処理したシートを構成する繊維の、加熱源への付着を抑制できる点で、工程[4]と工程[2]の間に乾燥処理工程[7]を行う場合は、高温雰囲気炉や遠赤外線加熱炉による乾燥処理が好ましい。
連続的に製造されたシート状物を乾燥処理する場合は、製造コストの観点から、シート状物の全長にわたって連続で乾燥処理を行うことが好ましい。これにより、工程[1]及び工程[4]の後に、シート状物に対する乾燥処理工程[7]を連続して行うことができる。
多孔質電極基材を構成する1つの繊維である炭素短繊維(A)は、シート状物、前駆体シート、ならびに多孔質電極基材中で厚み方向に交絡されることができる。炭素短繊維(A)としては、例えば、ポリアクリロニトリル系炭素繊維(以下「PAN系炭素繊維」と称する)、ピッチ系炭素繊維、レーヨン系炭素繊維等の炭素繊維を適当な長さに切断したものが挙げられる。多孔質電極基材の機械的強度の観点から、PAN系炭素繊維が好ましい。
上述したように、本発明では、前駆体繊維(b)として、炭素繊維前駆体短繊維(b1)およびフィブリル状繊維(b2)のうちの一方、または両方を用いる。
炭素繊維前駆体短繊維(b1)は、長繊維状の炭素繊維前駆体繊維を適当な長さにカットしたものであることができる。また、この長繊維状の炭素繊維前駆体繊維は、後述するポリマー(例えば、アクリル系ポリマー)から構成されることができる。
フィブリル状繊維(b2)は、炭素短繊維(A)と一緒に分散し、炭素短繊維(A)の再集束を防止すると共に、シート状物を自立シートたらしめる役割を果たすことができる。また、使用する樹脂(例えば、フェノール樹脂(c))によっては、樹脂の硬化に縮合水を生成するものもあるが、フィブリル状繊維には、その水を吸収、排出する役割も期待できる。そのため、水との親和性にも優れているものが好ましい。具体的なフィブリル状繊維(b2)としては、例えば、フィブリル化されたポリエチレン繊維、アクリル繊維、アラミド繊維などの合成パルプが挙げられる。フィブリル状繊維(b2)は、炭素化処理後に残炭があるもの(炭素として残るもの)であっても良いし、炭素化処理後に残炭がないもの(炭素として残らないもの)であっても良い。
繊維(b2−1)を構成するポリマーは、炭素化後に、炭素短繊維(A)と共に多孔質電極基材の構造を成立させる観点から、炭素化処理する工程における残存質量が20質量%以上であることが好ましい。このようなポリマーとしては、例えばアクリル系ポリマー、セルロース系ポリマー、フェノール系ポリマーを挙げることができる。
繊維(b2−2)は、長繊維状の易割繊性海島複合繊維を適当な長さにカットしたものを、リファイナーやパルパーなどによって叩解しフィブリル化したものであることができる。易割繊性海島複合繊維は、叩解によってフィブリル化する。長繊維状の易割繊性海島複合繊維は、共通の溶剤に溶解し、かつ非相溶性である2種類以上の異種ポリマーを用いて製造することができる。その際、炭素化後に、炭素短繊維(A)と共に多孔質電極基材の構造を成立させる観点から、少なくとも1種類のポリマーは、炭素化処理する工程における残存質量が20質量%以上であることが好ましい。
上述したように、本発明では、フェノール樹脂(c)として、水溶性フェノール樹脂および水分散性フェノール樹脂のうちの一方または両方を用いる。
本発明で使用する水分散性フェノール樹脂は、例えば特開2004−307815号公報、特開2006−56960号公報等に示されるレゾール型フェノール樹脂乳濁液、あるいは水系ディスパージョンとも呼ばれる公知の水分散性フェノール樹脂を使うことができる。具体的には、DIC(株)製の商品名:フェノライトTD−4304、PE−602や、住友ベークライト(株)製の商品名:スミライトレジンPR−14170、PR−55464、PR−50607Bや、昭和電工(株)製の商品名:ショウノールBRE−174等である。水分散性フェノール樹脂は、メタノールやメチルエチルケトンを溶媒とする一般的なフェノール樹脂と同様に、炭素化した段階で炭素短繊維(A)を結着しやすく、かつ導電性物質として残存しやすい。
本発明で使用する水溶性フェノール樹脂は、例えば特開2009−84382号公報等に示される水溶性が良好なレゾール型フェノール樹脂のような、公知の水溶性フェノール樹脂を使うことができる。具体的には、群栄化学(株)製の商品名:レヂトップPL−5634や、住友ベークライト(株)製の商品名:スミライトレジンPR−50781、PR−9800D、PR−55386や、昭和電工(株)製の商品名:ショウノールBRL−1583、BRL−120Z等である。水溶性フェノール樹脂は、メタノールやメチルエチルケトンを溶媒とする一般的なフェノール樹脂と同様に、炭素化した段階で炭素短繊維(A)を結着しやすく、かつ導電性物質として残存しやすい。
前述の製造方法により、以下の(i)〜(x)に列挙した多孔質電極基材を製造することができる。これらの多孔質電極基材は、シート強度が大きく、十分なガス透過度及び導電性を有し、低い製造コストにて製造することができる。
本発明において、多孔質電極基材の嵩密度は、多孔質電極基材の目付と、詳細については後述する多孔質電極基材の初期厚みとから、以下のように算出できる。
嵩密度(g/cm3)=目付(g/m2)/初期厚み(μm)
嵩密度が0.20g/cm3以上であれば、取扱いが容易で貫通方向抵抗の低い多孔質電極基材とすることができ、0.45g/cm3以下であれば、十分なガス透過度を有する多孔質電極基材とすることができる。また、機械的強度およびクッション性の観点から嵩密度は0.25g/cm3以上、0.45g/cm3以下であることがより好ましい。
本発明の製造方法において、交絡処理工程[4]を経て、樹脂添加工程[2]を行い、シート状物にフェノール樹脂(c)を添加することにより、3MPaの圧力印加時の厚みが初期厚みの30%〜70%、好ましくは45%〜70%である多孔質電極基材を製造することができる。3MPaの圧力印加時の厚みが初期厚みの30%〜70%であることにより、燃料電池セルを組む際に他部材の厚み精度を吸収し、膜−電極接合体(MEA:Membrane Electrode Assembly)との接触が非常に良好となる。
本発明の製造方法において、交絡処理工程[4]を経て、樹脂添加工程[2]を行い、シート状物にフェノール樹脂(c)を添加することにより、上記3MPaの圧力印加後に、0.05MPaまで除圧した際の厚み(圧力試験後の厚み)が、上記初期厚みの60%〜98%、好ましくは70%〜95%である多孔質電極基材を製造することができる。3MPaの圧力印加時の厚みが初期厚みの30%〜70%であり、かつ、圧力試験後の厚みが初期厚みの60%〜98%であれば、多孔性電極基材の厚み方向に優れたクッション性を有することができる。優れたクッション性を有することにより、燃料電池セルを組む際に他部材の厚み精度を吸収したり、発電量による電解質膜の膨潤及び収縮を吸収したりすることが容易にできる。これにより、セルを組んだ際にMEAに片当たりすることをより確実に防ぐことができ、電解質膜の膨潤及び収縮が繰り返されることにより次第にMEAとの接触性が低下して発電性能が低下することをより確実に防ぐことができる。
本発明において、炭素短繊維(A)が3次元交絡構造を形成しているか否かは、シート状の測定対象物(多孔質電極基材)の断面観察を行い、断面における炭素短繊維(A)とシート面との角度を測定することにより判定できる。なお、断面観察を行う断面は、シート状の測定対象物のシート面に対して垂直方向の断面である。
前述の製造方法により、焼成(炭素化処理)して多孔質電極基材を製造する前の段階で、前駆体シートを製造することができる。この前駆体シートは、多孔質電極基材の前駆体となる。本発明においては、ポリビニルアルコール(PVA)等のバインダーを使用しない、もしくは、従来と比較してバインダーの使用量を低減することができるため、前駆体シート中のバインダーに由来するナトリウムの含有量を低減することができる。具体的には、ナトリウム含有量が好ましくは150mg/m2以下、より好ましくは100mg/m2以下、更に好ましくは50mg/m2以下である前駆体シートを製造することができる。上述したように、前駆体シートに含有されるナトリウムは、炭素化工程[3]で加熱によりシート外に放出され、炉を傷める原因となるので、ナトリウム含有量が少ないことが前駆体シートとしては好ましい。具体的には、炭素短繊維(A)とフェノール樹脂とを含み、ナトリウム含有量が150mg/m2以下である多孔質電極基材用の前駆体シートが好ましい。前駆体シートにおいて、ナトリウムはナトリウム化合物(例えば、硫酸ナトリウム、亜硫酸ナトリウム、亜硫酸水素ナトリウム、チオ硫酸ナトリウム、酸化ナトリウム、過酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、硫化ナトリウム、ケイ酸ナトリウム、リン酸ナトリウム、シアン化ナトリウム、シアン酸ナトリウム、ハロゲン化ナトリウム等)として含有されることができる。
上記フェノール樹脂としては、例えば、上述した水溶性フェノール樹脂、及び水分散性フェノール樹脂、即ちフェノール樹脂(c)を挙げることができる。また、この前駆体シートは、上述したシート状物と同様に、前駆体繊維(b)及びバインダー等を含むことができる。
本発明の多孔質電極基材は、固体高分子型燃料電池の膜−電極接合体に好適に用いることができる。また本発明の多孔質電極基材を用いた膜−電極接合体は、固体高分子型燃料電池に好適に用いることができる。
JIS規格P−8117に準拠した方法によって求められる。ガーレーデンソメーターを使用して試験片(多孔質電極基材)を直径3mmの孔を有するセルに挟み、孔から1.29kPaの圧力で200mLの空気を流し、その空気が透過するのにかかった時間を測定し、以下の式より算出した。
ガス透過度(mL/hr/cm2/Pa)=気体透過量(mL)/透過時間(hr)/透過孔面積(cm2)/透過圧(Pa)。
多孔質電極基材の厚さ方向の電気抵抗(貫通方向抵抗)は、金メッキした銅板に多孔質電極基材を挟み、銅板の上下から0.6MPaで加圧し、10mA/cm2の電流密度で電流を流したときの抵抗値を測定し、次式より求めた。
貫通方向抵抗(mΩ・cm2)=測定抵抗値(mΩ)×試料面積(cm2)。
多孔質電極基材の曲げこわさは、JIS規格P−8125に準拠した方法によって求められる。テーバー式ステフネステスターを使用して、幅38mm、長さ70mmの試験片(多孔質電極基材)の一端を固定した片持ち梁を、一定速度で7.5°曲げ、50mmの荷重長になるのに要する曲げモーメントを測定した。試験片の長さ方向を、交絡接合構造シート(工程[3]より得られる多孔質電極基材)の長手方向と平行になるようにした場合をMD、前記シートの幅方向(短手方向)に平行となるようにした場合をTDとして、それぞれ評価した。
多孔質電極基材のうねりは、平板上に縦250mm横250mmの多孔質電極基材を静置した際の、多孔質電極基材の高さの最大値と最小値の差より算出した。
多孔質電極基材の嵩密度は、多孔質電極基材の目付と、後述する多孔質電極基材の初期厚みから、以下のように算出した。
嵩密度(g/cm3)=目付(g/m2)/初期厚み(μm)。
多孔質電極基材の初期厚みは、マイクロオートグラフ小形試験片圧縮試験装置((株)島津製作所製、商品名:MST−I)を使用して、以下のように測定した。あらかじめ平行度を調整した直径50mmの上圧盤(固定式)と、直径50mmの下圧盤(球座式)の間に何も挟まず、ストローク速度0.4mm/minにて負荷ロッドを下降させた。3MPaの圧力が印加されたら、直ちに負荷ロッドのストロークを停止し、3点の圧盤間変位計の値をすべてゼロに設定した。次いで、上圧盤と下圧盤の間に、直径25mmの試験片(多孔質電極基材)を置き、ストローク速度0.4mm/minにて負荷ロッドを下降させた。試験片に0.05MPaの圧力が印加されたら、直ちに負荷ロッドのストロークを停止し、30秒後の圧盤間変位計の値を3点で読み取り、その平均値を初期厚みとした。
前駆体シート中のナトリウム含有量は、高周波誘導結合プラズマ発光分析法により測定されるナトリウム濃度と、前駆体シートの目付から、以下の式によって算出した。
前駆体シート中のナトリウム含有量(mg/m2)=前駆体シートの目付(mg/m2)×ナトリウム濃度(ppm)
高周波誘導結合(ICP)プラズマ発光分析法とは、高周波で誘起されたアルゴンガスの高温プラズマ炎の中に試料溶液を導入し、蒸発、原子化、励起の後、発光するスペクトルの波長により元素を同定し、その強度で濃度を定量する装置である。アルゴンICPの励起温度は6000〜8000Kと高温であり、同一条件で多くの元素が効率よく励起するため、主成分元素、副成分元素、微量成分元素まで多元素同時分析が可能である。さらに不活性ガス(アルゴン)を用いるため、酸化物や窒化物が生成し難く、化学干渉、イオン化干渉の影響をあまり受けずに分析が可能であるという特徴も有する。また安定性に優れ、分析精度が高い等の点で、蛍光X線分析法や原子吸光法など他手法よりも好ましい。
炭素短繊維(A)として、平均繊維径が7μm、平均繊維長が3mmのPAN系炭素繊維を用意した。また、炭素繊維前駆体短繊維(b1)として、平均繊維径が4μm、平均繊維長が3mmのアクリル短繊維(三菱レイヨン(株)製、商品名:D122)を用意した。また、フィブリル状繊維(b2)として、繊維状の幹より直径が3μm以下のフィブリルが多数分岐した、噴射凝固によって作製したポリアクリロニトリル系パルプ(b2−1)を用意した。シート状物の製造および交絡処理による3次元交絡構造シートの製造は、以下のような湿式連続抄紙法と、連続加圧水流噴射処理による交絡処理法により行った。
(1)炭素短繊維(A)の離解
平均繊維径が7μm、平均繊維長が3mmのPAN系炭素繊維を、繊維濃度が1%(10g/L)になるように水中へ分散して、ディスクリファイナー(熊谷理機製)を通して離解処理し、離解スラリー繊維(SA)とした。
炭素繊維前駆体短繊維(b1)として、平均繊維径が4μm、平均繊維長が3mmのアクリル短繊維(三菱レイヨン(株)製、商品名:D122)、を、繊維濃度が1%(10g/L)になるように水中へ分散し、離解スラリー繊維(Sb1)とした。
フィブリル状繊維(b2)として、繊維状の幹より直径が3μm以下のフィブリルが多数分岐した、噴射凝固によって作製したポリアクリロニトリル系パルプを、繊維濃度が1%(10g/L)になるように水中へ分散し、離解スラリー繊維(Sb2)とした。
炭素短繊維(A)と炭素繊維前駆体短繊維(b1)とフィブリル状繊維(b2)とが、質量比40:40:20となるように、かつスラリー中の繊維(以下、フロックと略す)の濃度が1.7g/Lとなるように、離解スラリー繊維(SA)、離解スラリー繊維(Sb1)、離解スラリー繊維(Sb2)および希釈水を計量し、スラリー供給タンクに投入した。さらに、ポリアクリルアマイドを添加して粘度22センチポイズの抄紙用スラリーを調製した。
ネット駆動部および幅60cm×長さ585cmのプラスチックネット製平織メッシュをベルト状につなぎあわせて連続的に回転させるネットよりなるシート状物搬送装置、スラリー供給部幅が48cm、供給スラリー量が30L/minである抄紙用スラリー供給装置、ネット下部に配置した減圧脱水装置、と下記に示す加圧水流噴射処理装置からなる。ウォータージェットノズルとしては、表1のごとく2種類のノズルを3本用いた。
試験機のネット上に上記抄紙用スラリーを定量ポンプによりネット上に供給した。抄紙用スラリーは均一な流れに整流するためのフローボックスを通して所定サイズに拡幅して供給した。その後静置、自然脱水する部分を通過して、減圧脱水装置により完全脱水し、目標目付40g/m2の湿紙ウエッブをネット上に積載した(工程[1]及び工程[7])。この処理が完了すると同時に、試験機後方のウォータージェットノズルより、加圧水流噴射圧力を1MPa(ノズル1)、圧力1MPa(ノズル2)、圧力1MPa(ノズル3)の順で通過させて交絡処理を加えた(工程[4])。
次に、水溶性フェノール樹脂水溶液としてレゾール型フェノール樹脂水溶液(群栄化学(株)製、商品名:PL−5634)を用意し、樹脂固形分が5質量%となるように純水で希釈し、樹脂添加液を作製した。この樹脂添加液を前記3次元交絡構造シートに含浸させ(工程[2])、常温で一晩放置してシート中の水を十分に乾燥させ(工程[6])、樹脂の不揮発分を52質量%付着させた前駆体シートを得た。
前記前駆体シートの両面を、シリコーン系離型剤をコートした紙で挟んだ後、バッチプレス装置にて180℃、1分間の予備加熱後、6MPaで3分間加熱加圧することにより(工程[5])、表面が平滑化された中間基材を得た。
前記中間基材を、不活性ガス(窒素)雰囲気中、2000℃で炭素化して(工程[3])、炭素短繊維(A)が繊維状の樹脂炭化物(炭素繊維(B))と不定形な樹脂炭化物(C)とで結着された多孔質炭素電極基材を得た。得られた多孔質炭素電極基材の走査型電子顕微鏡による表面観察写真を図1に示す。得られた多孔質電極基材は、熱処理時における面内の収縮がなく、シートのうねりや反りも2mm未満と小さく、ガス透過度、厚みおよび貫通方向抵抗は、それぞれ良好であった。図1に示すように、3次元構造体中に分散された炭素短繊維(A)同士が、繊維状の樹脂炭化物(炭素繊維(B))と、不定形な樹脂炭化物(C)とによって接合されていることが確認できた。この多孔質電極基材に面圧3MPaの圧縮荷重を印加しても、シート形態を保つことができた。多孔質電極基材の組成および評価結果を表2に示した。
以下の点以外は、実施例1と同様にして多孔質電極基材を得た。
・シート状物の作製に用いる炭素短繊維(A)と炭素繊維前駆体短繊維(b1)とフィブリル状繊維(b2)との配合比(質量比)を50:30:20にした点。
・交絡処理の際の加圧水流噴射圧力を1MPa(ノズル1)、圧力2MPa(ノズル2)、圧力1MPa(ノズル3)にした点。
・樹脂添加液中の樹脂の固形分濃度を15質量%として、この樹脂添加液を3次元交絡構造シートに含浸させた後、80℃でシート中の水を十分に乾燥させた点。
・加熱加圧の際の予熱時間を30秒、圧力を4.5MPa、時間を30秒とした点。
以下の点以外は、実施例2と同様にして多孔質電極基材を得た。
・シート状物の作製に用いるフィブリル状繊維(b2)として、叩解によってフィブリル化するアクリル系ポリマーとジアセテート(酢酸セルロース)とからなる易割繊性アクリル系海島複合短繊維(三菱レイヨン(株)製、商品名:ボンネルM.V.P.−C651、平均繊維長:3mm)を叩解処理したもの(繊維(b2−2))を用いた点。
・樹脂添加液に用いる水溶性フェノール樹脂水溶液として、レゾール型フェノール樹脂水溶液(住友ベークライト(株)製、商品名:PR−50781)を使用し、樹脂添加液中の樹脂の固形分濃度が10質量%となるように純水で希釈した点。
・加熱加圧の際の温度を150℃、予熱時間を0秒、圧力を3MPa、時間を3分とした点。
以下の点以外は、実施例2と同様にして多孔質電極基材を得た。
・シート状物の作製に用いる炭素短繊維(A)と炭素繊維前駆体短繊維(b1)とフィブリル状繊維(b2)との質量比を、70:10:20にし、かつ目標目付を45g/m2とした点。
・樹脂添加液中の樹脂の固形分濃度を10質量%にした点。
・加熱加圧の際の予熱時間を0秒、圧力を6MPa、時間を1分とした点。
以下の点以外は、実施例4と同様にして多孔質電極基材を得た。
・樹脂添加液に用いる水溶性フェノール樹脂水溶液として、レゾール型フェノール樹脂水溶液(住友ベークライト(株)製、商品名:PR−50781)を使用し、樹脂添加液中の樹脂固形分濃度が5質量%となるように純水で希釈した点。
・加熱加圧の際の温度を150℃、予熱時間を1分、圧力を4.5MPa、時間を30秒とした点。
以下の点以外は、実施例2と同様にして多孔質電極基材を得た。
・シート状物の作製に用いる炭素短繊維(A)と炭素繊維前駆体短繊維(b1)とフィブリル状繊維(b2)との質量比を80:10:10とし、かつ目標目付55g/m2とした点。
・加熱加圧の際の温度を150℃、予熱時間を1分、圧力を3MPa、時間を1分とした点。
以下の点以外は、実施例6と同様にして多孔質電極基材を得た。
・樹脂添加液に用いる水溶性フェノール樹脂水溶液として、レゾール型フェノール樹脂水溶液(住友ベークライト(株)製、商品名:PR−50781)を使用し、樹脂添加液中の固形分濃度が10質量%となるように純水で希釈した点。
・加熱加圧の際の温度を120℃、予熱時間を30秒、圧力を6MPa、時間を30秒とした点。
3次元交絡構造シートに水溶性フェノール樹脂を含浸させず(樹脂添加工程[2]を行わず)、この3次元交絡構造シートに対して加熱加圧工程[5]を行い、加熱加圧の際の温度を180℃、圧力を6MPaとしたこと以外は、実施例3と同様にして多孔質電極基材を得た。得られた多孔質電極基材は脆く、曲げこわさを測定することができなかった。この多孔質電極基材に面圧3MPaの圧縮荷重を印加すると、シート形態を保つことができなかった。多孔質電極基材の組成および評価結果を表2に示した。
レゾール型フェノール樹脂水溶液(群栄化学(株)製、商品名:PL−5634)に変えて、水分散性フェノール樹脂であるレゾール型フェノール樹脂の水分散液(DIC(株)製、商品名:TD−4304)を用いた以外は実施例1と同様にして、炭素短繊維(A)が繊維状の樹脂炭化物(炭素繊維(B))と不定形な樹脂炭化物(C)とで結着された多孔質電極基材を作製した。得られた多孔質炭素電極基材の走査型電子顕微鏡による表面観察写真を図2に示す。
以下の点以外は、実施例8と同様にして多孔質電極基材を得た。
・炭素短繊維(A)と炭素繊維前駆体短繊維(b1)とフィブリル状繊維(b2)との質量比を50:30:20にした点。
・交絡処理の際の加圧水流噴射圧力を1MPa(ノズル1)、圧力2MPa(ノズル2)、圧力1MPa(ノズル3)にした点。
・樹脂添加液に用いる樹脂として水分散性フェノール樹脂であるレゾール型フェノール樹脂の水分散液(DIC(株)製、商品名:PE−602)を使用し、3次元交絡構造シートに、この樹脂を含浸後、送風乾燥機を用いて80℃でシート中の水を十分に乾燥させた点。
・加熱加圧の際の温度を120℃、時間を1分とした点。
以下の点以外は、実施例9と同様にして多孔質電極基材を得た。
・炭素短繊維(A)と炭素繊維前駆体短繊維(b1)とフィブリル状繊維(b2)との質量比を70:10:20にし、かつ目標目付を45g/m2にした点。
・樹脂添加液中の樹脂の固形分濃度を15質量%にした点。
・加熱加圧の際の予熱時間を30秒、圧力を3MPa、時間を3分とした点。
以下の点以外は、実施例9と同様にして多孔質電極基材を得た。
・炭素短繊維(A)と炭素繊維前駆体短繊維(b1)とフィブリル状繊維(b2)との質量比を80:10:10にし、かつ目標目付を55g/m2にした点。
・加熱加圧の際の温度を180℃、予熱時間を0秒、圧力を4.5MPa、時間を3分とした点。
以下の点以外は、実施例9と同様にして多孔質電極基材を得た。
・フィブリル状繊維(b2)として、叩解によってフィブリル化するアクリル系ポリマーとジアセテート(酢酸セルロース)とからなる易割繊性アクリル系海島複合短繊維(三菱レイヨン(株)製、商品名:ボンネルM.V.P.−C651、平均繊維長:3mm)を叩解処理したもの(繊維(b2−2))を用いた点。
・樹脂添加液に用いる樹脂水分散液としてレゾール型フェノール樹脂の水分散液(住友ベークライト(株)製、商品名:PR−14170)を使用し、樹脂添加液中の樹脂の固形分濃度を7.5質量%にした点。
・3次元交絡構造シートに樹脂を含浸させた後、90℃でシート中の水を十分に乾燥させた点。
・加熱加圧の際の温度を180℃、予熱時間を0秒、時間を30秒とした点。
炭素短繊維(A)と炭素繊維前駆体短繊維(b1)とフィブリル状繊維(b2)との質量比を60:20:20にし、かつ目標目付65g/m2にして、さらに、樹脂添加液中の樹脂の固形分濃度を5質量%としたこと以外は、実施例12と同様にして前駆体シートを得た。
3次元交絡構造シートの目標目付を55g/m2にして、さらに、樹脂添加液に用いる樹脂水分散液としてレゾール型フェノール樹脂の水分散液(住友ベークライト(株)製、商品名:PR−55464)を使用したこと以外は、実施例13と同様にして多孔質電極基材を得た。得られた多孔質電極基材は、熱処理時における面内の収縮がなく、シートのうねりや反りも2mm未満と小さく、ガス透過度、厚みおよび貫通方向抵抗は、それぞれ良好であった。この多孔質電極基材に面圧3MPaの圧縮荷重を印加しても、シート形態を保つことができた。多孔質電極基材の組成および評価結果を表2に示した。
(4)抄紙用スラリーの調製、(5)シート状物の製造および加圧水流噴射による3次元交絡処理、(6)樹脂添加および乾燥処理、および(7)加熱加圧を以下の通り行った以外は実施例1と同様にして、炭素短繊維(A)が繊維状の樹脂炭化物(炭素繊維(B))と不定形な樹脂炭化物(C)とで結着された多孔質炭素電極基材を得た。
炭素短繊維(A)と炭素繊維前駆体短繊維(b1)とフィブリル状繊維(b2)とが、質量比50:30:20となるように、かつスラリー中の繊維(フロック)の濃度が1.4g/Lとなるように、離解スラリー繊維(SA)、離解スラリー繊維(Sb1)、離解スラリー繊維(Sb2)および希釈水を計量し、スラリー供給タンクに投入した。さらに、ポリアクリルアマイドを添加して粘度22mPa・s(センチポイズ)の抄紙用スラリーを調製した。
試験機のネット上に上記抄紙用スラリーを定量ポンプによりネット上に供給した。抄紙用スラリーは均一な流れに整流するためのフローボックスを通して所定サイズに拡幅して供給した。その後静置、自然脱水する部分を通過して、減圧脱水装置により完全脱水し、目標目付40g/m2の湿紙ウエッブをネット上に積載した(工程[1]及び工程[7])。この処理が完了すると同時に、試験機後方のウォータージェットノズルより、加圧水流噴射圧力を1MPa(ノズル1)、圧力2MPa(ノズル2)、圧力1MPa(ノズル3)の順で通過させて交絡処理を加えることにより(工程[4])、水分を含んだ交絡構造シートを得た。この水分を含んだ交絡構造シートを乾燥した後の目付は42g/m2であり、乾燥後のシートを100質量部とすると494質量部の水分を含んでいた。このシート中での炭素繊維前駆体短繊維(b1)およびフィブリル状繊維(b2)の分散状態は良好であった。
水分散性フェノール樹脂であるレゾール型フェノール樹脂の水分散液(住友ベークライト(株)製、商品名:PR−55464)を用意し、樹脂固形分が10質量%となるように純水で希釈し、樹脂添加液を調製した。この樹脂添加液を、二重管スプレー方式バルブ(エース技研(株)製、商品名:BP−107DN−SP)を用いて、送液圧0.2MPa、エア圧0.2MPaの圧送方式により、前記水分を含んだ交絡構造シートに噴霧した(工程[2])。次いで、ニップロールを通した後、100℃の熱風乾燥炉で水分を十分に乾燥させ(工程[6])、樹脂の不揮発分を36g/m2付着させた前駆体シートを得た。
前記前駆体シートの両面を、シリコーン系離型剤をコートした紙で挟んだ後、バッチプレス装置にて150℃、予備加熱なし、3MPaで1分間加熱加圧することにより(工程[5])、表面が平滑化された加熱加圧シートを得た。
以下の点以外は、実施例15と同様にして水分を含んだ3次元交絡構造シートを作製した。
・フィブリル状繊維(b2)として、叩解によってフィブリル化するアクリル系ポリマーとジアセテート(酢酸セルロース)とからなる易割繊性アクリル系海島複合短繊維(三菱レイヨン(株)製、商品名:ボンネルM.V.P.−C651、平均繊維長:3mm)を叩解処理したもの(繊維(b2−2))を用いた点。
なお、叩解処理は、前記易割繊性アクリル系海島複合短繊維を、繊維濃度が0.2%(2g/L)になるように水中へ分散して、ディスクリファイナー(熊谷理機製)を通すことによって、濾水度350〜400mL程度の繊維(b2−2)が得られるようにした。
・抄紙用スラリーを調製する際に、炭素短繊維(A)と炭素繊維前駆体短繊維(b1)とフィブリル状維(b2)との質量比を60:20:20となるようにした点。
・樹脂添加液に用いる樹脂水分散液としてレゾール型フェノール樹脂の水分散液(住友ベークライト(株)製、商品名:PR−14170)を使用した点。
・樹脂添加方法として、渦流式微粒化ノズル((株)アトマックス製、商品名:AM45)を用いて、エア圧0.2MPaの液剤吸上げ方式により、水分を含んだ交絡構造シートに樹脂を噴霧する方法を用いた点。
・加熱加圧の際の温度を180℃、圧力を4.5MPaとした点。
抄紙用スラリーを調製する際に、炭素短繊維(A)と、炭素繊維前駆体短繊維(b1)と、フィブリル状繊維(b2)とが、質量比80:10:10となるようにした以外は、実施例15と同様にして水分を含んだ3次元交絡構造シートを作製した。
・樹脂添加液に用いる樹脂水分散液の代わりに、水溶性フェノール樹脂であるレゾール型フェノール樹脂の水溶液(住友ベークライト(株)製、商品名:PR−50781)を使用した点。
・樹脂添加方法として、二重管スプレー方式バルブ(エース技研(株)製、商品名:BP−107DN−SP)を用いて、送液圧0.2MPa、エア圧0MPaの点滴方式により、水分を含んだ3次元交絡構造シートに樹脂を滴下する方法を用いた点。
・樹脂を添加した後の水分を含んだ交絡構造シートをニップロールに通した後、水分を乾燥しなかった(工程[6]を行わなかった)点。
・加熱加圧の際の温度を200℃、圧力を6MPaとした点。
実施例15と同様にして水分を含んだ3次元交絡構造シートを得た。次いで、以下の点以外は実施例15と同様にして、得られた交絡構造シートから多孔質電極基材を作製した。
・樹脂添加液に用いる樹脂水分散液としてレゾール型フェノール樹脂の水分散液(住友ベークライト(株)製、商品名:PR−14170)を使用し、樹脂添加液中の樹脂固形分濃度を15質量%にした点。
・樹脂添加方法として、二重管スプレー方式バルブ(エース技研(株)製、商品名:BP−107DN−SP)を用いて、送液圧0.2MPa、エア圧0MPaの点滴方式により、水分を含んだ3次元交絡構造シートに樹脂を滴下する方法を用いた点。
・樹脂を添加した後の水分を含んだ交絡構造シートをニップロールに通した後、水分を乾燥しなかった点。
・加熱加圧の際の温度を180℃、圧力を6MPaとした点。
実施例16と同様にして水分を含んだ3次元交絡構造シートを得た。次いで、以下の点以外は実施例15と同様にして、得られた交絡構造シートから多孔質電極基材を作製した。
・樹脂添加液に用いる樹脂水分散液の代わりに、レゾール型フェノール樹脂の水溶液(住友ベークライト(株)製、商品名:PR−50781)を使用し、樹脂添加液中の樹脂固形分濃度を15質量%にした点。
・前駆体シートの加熱加圧の温度を200℃とした点。
実施例17と同様にして水分を含んだ3次元交絡構造シートを得た。次に、以下の点以外は実施例15と同様にして、得られた交絡構造シートから多孔質電極基材を作製した。
・樹脂添加液中の樹脂固形分濃度を15質量%にした点。
・樹脂添加方法として、渦流式微粒化ノズル((株)アトマックス製、商品名:AM45)を用いて、エア圧0.2MPaの液剤吸上げ方式により、水分を含んだ3次元交絡構造シートに樹脂を噴霧する方法を用いた点。
・樹脂を添加した後の水分を含んだ交絡構造シートをニップロールに通した後、水分を乾燥しなかった点。
・加熱加圧の際の圧力を4.5MPaとした点。
実施例15と同様にして水分を含んだ3次元交絡構造シートを得た。次いで、以下の点以外は実施例15と同様にして、得られた交絡構造シートから多孔質電極基材を作製した。
・この水分を含んだ3次元交絡構造シートをピンテンター試験機(辻井染色機製、商品名:PT−2A−400)により150℃×3分で乾燥させることで、乾燥した交絡構造シートを得た(交絡処理工程[4]と樹脂添加工程[2]との間に乾燥処理工程[7]を含む)点。
・樹脂添加液に用いる樹脂水分散液の代わりに、レゾール型フェノール樹脂の水溶液(住友ベークライト(株)製、商品名:PR−50781)を使用した点。
・樹脂添加方法として、二重管スプレー方式バルブ(エース技研(株)製、商品名:BP−107DN−SP)を用いて、送液圧0.2MPa、エア圧0MPaの点滴方式により、乾燥させた3次元交絡構造シートに樹脂を滴下する方法を用いた点。
・前駆体シートの加熱加圧の圧力を4.5MPaとした点。
実施例16と同様にして水分を含んだ3次元交絡構造シートを得た。次いで、以下の点以外は実施例15と同様にして、得られた交絡構造シートから多孔質電極基材を作製した。
・この水分を含んだ3次元交絡構造シートをピンテンター試験機(辻井染色機製、商品名:PT−2A−400)により150℃×3分で乾燥させることで、乾燥した3次元交絡構造シートを得た点。
・前駆体シートの加熱加圧の温度を180℃、圧力を6MPaとした点。
実施例17と同様にして水分を含んだ3次元交絡構造シートを得た。次いで、以下の点以外は実施例15と同様にして、得られた交絡構造シートから多孔質電極基材を作製した。
・この水分を含んだ3次元交絡構造シートをピンテンター試験機(辻井染色機製、商品名:PT−2A−400)により150℃×3分で乾燥させることで、乾燥した3次元交絡構造シートを得た点。
・樹脂添加液に用いる樹脂水分散液として、レゾール型フェノール樹脂の水分散液(住友ベークライト(株)製、商品名:PR−14170)を使用した点。
・樹脂添加方法として、渦流式微粒化ノズル((株)アトマックス製、商品名:AM45)を用いて、エア圧0.2MPaの液剤吸上げ方式により、乾燥した3次元交絡構造シートに樹脂を噴霧する方法を用いた点。
・樹脂を添加した後の3次元交絡構造シートをニップロールに通した後、水分を乾燥しなかった点。
・加熱加圧処理の際の温度を200℃とした点。
(1)膜−電極接合体(MEA)の製造
実施例6で得られた多孔質電極基材2組を、カソード用およびアノード用の多孔質電極基材として用意した。また、パーフルオロスルホン酸系の高分子電解質膜(膜厚:30μm)の両面に触媒担持カーボン(触媒:Pt、触媒担持量:50質量%)からなる触媒層(触媒層面積:25cm2、Pt付着量:0.3mg/cm2)を形成した積層体を容易した。この積層体を、カソード用およびアノード用の多孔質電極基材で挟持し、これらを接合して、MEAを得た。
得られたMEAを、蛇腹状のガス流路を有する2枚のカーボンセパレーターによって挟み、固体高分子型燃料電池(単セル)を形成した。この単セルの電流密度−電圧特性を測定することによって、燃料電池特性評価を行った。燃料ガスとしては水素ガスを用い、酸化ガスとしては空気を用いた。単セルの温度を80℃、燃料ガス利用率を60%、酸化ガス利用率を40%とした。また、燃料ガスと酸化ガスへの加湿は80℃のバブラーにそれぞれ燃料ガスと酸化ガスを通すことによって行った。その結果、電流密度が0.8A/cm2のときの燃料電池セルのセル電圧が0.600V、セルの内部抵抗が4.8mΩであり、良好な特性を示した。
実施例14で得られた多孔質電極基材を用いた以外は実施例24と同様にして膜−電極接合体(MEA)を作製し、MEAの燃料電池特性評価を行った。その結果、電流密度が0.8A/cm2のときの燃料電池セルのセル電圧が0.612V、セルの内部抵抗が4.5mΩであり、良好な特性を示した。
実施例18で得られた多孔質電極基材を用いた以外は実施例24と同様にして膜−電極接合体(MEA)を作製し、MEAの燃料電池特性評価を行った。その結果、電流密度が0.8A/cm2のときの燃料電池セルのセル電圧が0.627V、セルの内部抵抗が3.3mΩであり、良好な特性を示した。
以下の点以外は、実施例23と同様にして多孔質電極基材を得た。
・炭素繊維前駆体短繊維(b1)を使用せず、フィブリル状繊維(b2)として、繊維状の幹より直径が3μm以下のフィブリルが多数分岐した、噴射凝固によって作製したポリアクリロニトリル系パルプ(b2−1)を使用し、この炭素短繊維(A)とフィブリル状繊維(b2−1)とが、質量比80:20となるようにした点。
・抄紙用スラリーから、減圧脱水装置を用いて完全脱水されたシート状物を作製し(工程[1]及び工程[7])、このシート状物に対して、交絡処理を行わずに、そのまま樹脂添加工程[2]を行った点。
・樹脂添加液に用いる樹脂水分散液として、レゾール型フェノール樹脂の水分散液(住友ベークライト(株)製、商品名:PR−55464)を使用し、樹脂添加液中の樹脂固形分濃度を15質量%にした点。
・樹脂添加方法として、二重管スプレー方式バルブ(エース技研(株)製、商品名:BP−107DN−SP)を用いて、送液圧0.2MPa、エア圧0MPaの点滴方式により、前記完全脱水されたシート状物に樹脂を滴下する方法を用いた点。
・送風乾燥機を用いて80℃で、樹脂を添加したシート状物(前駆体シート)中の水を十分に乾燥させた点。
・加熱加圧の際の温度を180℃、時間を3分とした点。
以下の点以外は、実施例27と同様にして多孔質電極基材を得た。
・上記完全脱水されたシート状物に対して、実施例23に示すように交絡処理を行い、その際の加圧水流噴射圧力を2MPa(ノズル1)、圧力2MPa(ノズル2)、圧力2MPa(ノズル3)にした点。
・樹脂添加方法として、渦流式微粒化ノズル((株)アトマックス製、商品名:AM45)を用いて、エア圧0.2MPaの液剤吸上げ方式により、3次元交絡構造シートに樹脂を噴霧する方法を用いた点。
(実施例29)
以下の点以外は、実施例8と同様にして多孔質電極基材を得た。
・シート状物の交絡処理を行わず、減圧脱水装置により完全脱水したシート状物に対して、樹脂添加工程[2]を行った点。
・樹脂添加液に用いる樹脂水分散液として、レゾール型フェノール樹脂の水分散液(住友ベークライト(株)製、商品名:PR−55464)を使用し、樹脂添加液中の樹脂固形分濃度を15質量%にした点。
・樹脂添加方法として、二重管スプレー方式バルブ(エース技研(株)製、商品名:BP−107DN−SP)を用いて、送液圧0.2MPa、エア圧0MPaの点滴方式により、完全脱水したシート状物に樹脂を滴下する方法を用いた点。
B :炭素繊維(B)
C :樹脂炭化物(C)
1 :シート面と平行な線
Claims (1)
- 炭素短繊維(A)と、フェノール樹脂とを含む多孔質電極基材用の前駆体シートであって、ナトリウムの含有量が150mg/m2以下である前駆体シート。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015018392A JP6008000B2 (ja) | 2011-01-27 | 2015-02-02 | 前駆体シート |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011015639 | 2011-01-27 | ||
JP2011015638 | 2011-01-27 | ||
JP2011015638 | 2011-01-27 | ||
JP2011015639 | 2011-01-27 | ||
JP2011066344 | 2011-03-24 | ||
JP2011066344 | 2011-03-24 | ||
JP2015018392A JP6008000B2 (ja) | 2011-01-27 | 2015-02-02 | 前駆体シート |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013218365A Division JP5751309B2 (ja) | 2011-01-27 | 2013-10-21 | 多孔質電極基材、膜−電極接合体及び固体高分子型燃料電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015118944A true JP2015118944A (ja) | 2015-06-25 |
JP6008000B2 JP6008000B2 (ja) | 2016-10-19 |
Family
ID=46580764
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012504215A Expired - Fee Related JP5458168B2 (ja) | 2011-01-27 | 2012-01-20 | 多孔質電極基材の製造方法 |
JP2013218365A Active JP5751309B2 (ja) | 2011-01-27 | 2013-10-21 | 多孔質電極基材、膜−電極接合体及び固体高分子型燃料電池 |
JP2015018392A Active JP6008000B2 (ja) | 2011-01-27 | 2015-02-02 | 前駆体シート |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012504215A Expired - Fee Related JP5458168B2 (ja) | 2011-01-27 | 2012-01-20 | 多孔質電極基材の製造方法 |
JP2013218365A Active JP5751309B2 (ja) | 2011-01-27 | 2013-10-21 | 多孔質電極基材、膜−電極接合体及び固体高分子型燃料電池 |
Country Status (8)
Country | Link |
---|---|
US (2) | US9705137B2 (ja) |
EP (1) | EP2669977A4 (ja) |
JP (3) | JP5458168B2 (ja) |
KR (1) | KR101571227B1 (ja) |
CN (1) | CN103329323B (ja) |
CA (1) | CA2825663C (ja) |
TW (1) | TWI513087B (ja) |
WO (1) | WO2012102195A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020066191A1 (ja) | 2018-09-28 | 2020-04-02 | 東レ株式会社 | ガス拡散層、膜電極接合体および燃料電池 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103181011B (zh) | 2010-11-01 | 2015-09-30 | 三菱丽阳株式会社 | 多孔电极基材及其制法、多孔电极基材前体片、膜-电极接合体、以及固体高分子型燃料电池 |
CN103329323B (zh) | 2011-01-27 | 2018-04-27 | 三菱化学株式会社 | 多孔电极基材、其制造方法、前体片材、膜-电极接合体及固体高分子型燃料电池 |
WO2013147174A1 (ja) * | 2012-03-30 | 2013-10-03 | 三菱レイヨン株式会社 | 多孔質電極基材、その製造方法及び前駆体シート |
JP6578738B2 (ja) * | 2014-05-23 | 2019-09-25 | 東レ株式会社 | 炭素繊維不織布、固体高分子形燃料電池用ガス拡散電極および固体高分子形燃料電池 |
US9551092B2 (en) * | 2014-07-29 | 2017-01-24 | American Felt & Filter Company | Multi-fiber carding apparatus and method |
JP6477401B2 (ja) * | 2014-11-04 | 2019-03-06 | 三菱ケミカル株式会社 | 多孔質電極基材およびそれを用いた膜−電極接合体並びにそれを用いた固体高分子型燃料電池 |
CN107004865B (zh) * | 2014-11-04 | 2020-03-06 | 三菱化学株式会社 | 多孔电极基材和使用其的膜-电极接合体及使用该膜-电极接合体的固体高分子型燃料电池 |
KR102564231B1 (ko) * | 2015-03-25 | 2023-08-08 | 도레이 카부시키가이샤 | 다공질 탄소 전극 기재, 그의 제조 방법, 가스 확산층 및 연료 전지용 막-전극 접합체 |
CN107408707A (zh) * | 2015-04-02 | 2017-11-28 | 三菱化学株式会社 | 多孔电极基材及其制造方法 |
KR101755920B1 (ko) * | 2015-12-08 | 2017-07-07 | 현대자동차주식회사 | 연료전지용 기체확산층과, 이를 제조하기 위한 장치 및 방법 |
JP6743805B2 (ja) | 2015-12-11 | 2020-08-19 | 東レ株式会社 | 炭素シート、ガス拡散電極基材、および燃料電池 |
KR102234017B1 (ko) * | 2016-12-29 | 2021-03-29 | 코오롱인더스트리 주식회사 | 펴짐성이 우수한 롤 타입 가스확산층의 제조방법 |
CN109305815A (zh) * | 2018-12-12 | 2019-02-05 | 雅安远创陶瓷有限责任公司 | 一种高强度多孔陶瓷及其制备工艺 |
CN110174704B (zh) * | 2019-06-24 | 2023-06-16 | 青岛科技大学 | 一种基于triz理念的海洋电场传感器 |
JP7372060B2 (ja) * | 2019-06-28 | 2023-10-31 | 旭化成株式会社 | 炭素フォーム |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0524818A (ja) * | 1991-07-18 | 1993-02-02 | Sumitomo Metal Ind Ltd | 半導体治具用炭化珪素粉末の製造方法 |
WO2001022509A1 (fr) * | 1999-09-22 | 2001-03-29 | Toray Industries, Inc. | Feuille conductrice poreuse et procede de fabrication |
JP2002266217A (ja) * | 2001-03-08 | 2002-09-18 | Mitsubishi Rayon Co Ltd | 炭素繊維不織布およびその製造方法 |
JP2004288489A (ja) * | 2003-03-24 | 2004-10-14 | Toray Ind Inc | 多孔質炭素電極基材およびその製造方法 |
JP2004311431A (ja) * | 2003-03-27 | 2004-11-04 | Toray Ind Inc | 多孔質炭素板およびその製造方法 |
WO2011004853A1 (ja) * | 2009-07-08 | 2011-01-13 | 三菱レイヨン株式会社 | 多孔質電極基材及びその製造方法 |
Family Cites Families (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6059660B2 (ja) | 1980-12-09 | 1985-12-26 | 富士通株式会社 | 磁気ディスク記憶装置 |
JPS6059660A (ja) * | 1983-09-12 | 1985-04-06 | Hitachi Ltd | 燃料電池用多孔質電極板の製造方法 |
JPS60122711A (ja) | 1983-12-08 | 1985-07-01 | Oji Paper Co Ltd | 多孔質炭素板の製造方法 |
JPS62154470A (ja) * | 1985-12-25 | 1987-07-09 | Tokai Carbon Co Ltd | 燃料電池用炭素質部材の製造方法 |
EP0328135A3 (en) * | 1988-02-12 | 1990-07-25 | International Fuel Cells Corporation | Corrosion resistant fuel cell substrates |
US4985316A (en) | 1988-02-12 | 1991-01-15 | International Fuel Cells Corporation | Corrosion resistant fuel cell substrates |
US5026402A (en) | 1989-11-03 | 1991-06-25 | International Fuel Cells Corporation | Method of making a final cell electrode assembly substrate |
JPH1143890A (ja) * | 1996-12-26 | 1999-02-16 | Mitsubishi Paper Mills Ltd | 不織布、電池用セパレータおよび電池 |
US6713034B2 (en) | 2000-01-27 | 2004-03-30 | Mitsubishi Rayon Co., Ltd. | Porous carbon electrode material, method for manufacturing the same, and carbon fiber paper |
JP2001240477A (ja) * | 2000-02-28 | 2001-09-04 | Mitsubishi Rayon Co Ltd | 炭素質多孔質体とその製造方法 |
DE60131408T2 (de) | 2000-07-14 | 2008-09-18 | Mitsubishi Rayon Co., Ltd. | Verfahren zur herstellung einer kohlenstoffartigen folie |
CA2641992C (en) | 2000-11-24 | 2010-04-13 | Toho Tenax Co., Ltd. | Carbon fiber sheet and process for production thereof |
JP4329296B2 (ja) | 2001-02-28 | 2009-09-09 | 三菱化学株式会社 | 導電性炭素質繊維シート及び固体高分子型燃料電池 |
WO2003087470A1 (fr) * | 2002-04-17 | 2003-10-23 | Mitsubishi Rayon Co., Ltd. | Papier en fibre de carbone et substrat d'electrode en fibre de carbone poreux, destine aux piles |
JP2003151568A (ja) | 2001-11-09 | 2003-05-23 | Mitsubishi Rayon Co Ltd | 固体高分子型燃料電池用の電極基材とその製造方法 |
JP2003213563A (ja) | 2002-01-21 | 2003-07-30 | Toho Tenax Co Ltd | 親水性炭素繊維シート状物、炭素繊維電極材料およびその製造方法 |
JP2003286085A (ja) * | 2002-03-27 | 2003-10-07 | Toray Ind Inc | 多孔質炭素板およびその製造方法 |
US7144476B2 (en) * | 2002-04-12 | 2006-12-05 | Sgl Carbon Ag | Carbon fiber electrode substrate for electrochemical cells |
JP4282964B2 (ja) * | 2002-09-10 | 2009-06-24 | 三菱化学株式会社 | 炭素質繊維織布 |
JP2004134108A (ja) | 2002-10-08 | 2004-04-30 | Mitsubishi Rayon Co Ltd | 多孔質炭素電極基材前駆体シート状物の製造方法 |
JP4850257B2 (ja) | 2002-10-08 | 2012-01-11 | 三菱化学エンジニアリング株式会社 | 加圧水蒸気噴出ノズルを用いた不織布の製造装置 |
JP2004307815A (ja) | 2003-03-24 | 2004-11-04 | Sumitomo Bakelite Co Ltd | 抄紙用レゾール型フェノール樹脂乳濁液及びその製造方法 |
JP2004296176A (ja) | 2003-03-26 | 2004-10-21 | Toray Ind Inc | 固体高分子型燃料電池 |
JP4389535B2 (ja) | 2003-09-26 | 2009-12-24 | 東レ株式会社 | 多孔質炭素基材ならびに該基材を用いてなるガス拡散体、膜−電極接合体および燃料電池 |
JP4338491B2 (ja) | 2003-10-08 | 2009-10-07 | パナソニック株式会社 | 高分子電解質型燃料電池用ガス拡散層の製造方法 |
JP2005240224A (ja) | 2004-02-26 | 2005-09-08 | Toho Tenax Co Ltd | 高密度耐炎繊維不織布及び炭素繊維不織布、並びにそれらの製造方法 |
JP4765350B2 (ja) * | 2004-03-16 | 2011-09-07 | 東レ株式会社 | 合成紙およびその製造方法 |
JP2005281871A (ja) | 2004-03-26 | 2005-10-13 | Toho Tenax Co Ltd | 炭素繊維織物及びその製造方法 |
JP2005317240A (ja) | 2004-04-27 | 2005-11-10 | Toray Ind Inc | 炭素繊維不織布、ガス拡散体、膜−電極接合体および燃料電池 |
GB0413324D0 (en) | 2004-06-15 | 2004-07-21 | Johnson Matthey Plc | Gas diffusion substrate |
CN100527496C (zh) * | 2004-06-21 | 2009-08-12 | 三菱丽阳株式会社 | 多孔质电极基材及其制造方法 |
WO2005124907A1 (ja) * | 2004-06-21 | 2005-12-29 | Mitsubishi Rayon Co., Ltd. | 多孔質電極基材およびその製造方法 |
JP2006040886A (ja) * | 2004-06-21 | 2006-02-09 | Mitsubishi Rayon Co Ltd | 多孔質電極基材およびその製造方法 |
JP2006056960A (ja) | 2004-08-19 | 2006-03-02 | Sumitomo Bakelite Co Ltd | レゾール型フェノール樹脂乳濁液及びその製造方法 |
JP2006089331A (ja) * | 2004-09-24 | 2006-04-06 | Toray Ind Inc | 炭素繊維基材の製造方法 |
EP1939156B1 (en) * | 2005-09-29 | 2012-08-15 | Toray Industries, Inc. | Porous carbon sheet and process for production thereof |
JP4906307B2 (ja) * | 2005-10-21 | 2012-03-28 | アイシン化工株式会社 | 燃料電池電極用ガス拡散層の製造方法 |
JP2007173009A (ja) * | 2005-12-21 | 2007-07-05 | Nissan Motor Co Ltd | 膜電極接合体の製造方法 |
TWI296449B (en) * | 2006-01-04 | 2008-05-01 | Univ Feng Chia | Porous carbon electrode substrates and methods for preparing the same |
JP4914089B2 (ja) | 2006-03-16 | 2012-04-11 | 株式会社アトマックス | 液体送給菅嵌入型渦流式微粒化ノズル |
US8343452B2 (en) | 2006-03-20 | 2013-01-01 | GM Global Technology Operations LLC | Acrylic fiber bonded carbon fiber paper as gas diffusion media for fuel cell |
JP2009084382A (ja) | 2007-09-28 | 2009-04-23 | Sumitomo Bakelite Co Ltd | レゾール型フェノール樹脂の製造方法 |
JP5416990B2 (ja) | 2008-03-05 | 2014-02-12 | 三菱レイヨン株式会社 | 多孔質炭素電極基材、並びにそれを用いた膜−電極接合体及び固体高分子型燃料電池 |
JP2009283259A (ja) * | 2008-05-21 | 2009-12-03 | Mitsubishi Rayon Co Ltd | 多孔質炭素電極基材 |
EP2395585A4 (en) * | 2009-02-04 | 2012-09-26 | Mitsubishi Rayon Co | POROUS ELECTRODE SUBSTRATE, METHOD FOR MANUFACTURING SAME, MEMBRANE-ELECTRODE ASSEMBLY, AND SOLID POLYMER TYPE FUEL CELL |
JP5484777B2 (ja) | 2009-04-24 | 2014-05-07 | 三菱レイヨン株式会社 | 多孔質電極基材およびその製造方法 |
JP5561171B2 (ja) * | 2009-11-24 | 2014-07-30 | 三菱レイヨン株式会社 | 多孔質電極基材、その製法、前駆体シート、膜−電極接合体、および固体高分子型燃料電池 |
JP2011151009A (ja) * | 2009-12-22 | 2011-08-04 | Mitsubishi Rayon Co Ltd | 多孔質電極基材の製造方法 |
JP2011258395A (ja) | 2010-06-09 | 2011-12-22 | Toyota Motor Corp | 燃料電池に用いられるガス拡散層の製造方法、および、製造装置 |
CN103329323B (zh) | 2011-01-27 | 2018-04-27 | 三菱化学株式会社 | 多孔电极基材、其制造方法、前体片材、膜-电极接合体及固体高分子型燃料电池 |
CN103338716B (zh) | 2011-01-28 | 2017-04-19 | 新特斯有限责任公司 | 用于远侧目标确定的对齐装置 |
-
2012
- 2012-01-20 CN CN201280006456.8A patent/CN103329323B/zh active Active
- 2012-01-20 US US13/982,061 patent/US9705137B2/en not_active Expired - Fee Related
- 2012-01-20 EP EP12739680.2A patent/EP2669977A4/en not_active Withdrawn
- 2012-01-20 TW TW101102527A patent/TWI513087B/zh active
- 2012-01-20 KR KR1020137018908A patent/KR101571227B1/ko active IP Right Grant
- 2012-01-20 CA CA2825663A patent/CA2825663C/en active Active
- 2012-01-20 JP JP2012504215A patent/JP5458168B2/ja not_active Expired - Fee Related
- 2012-01-20 WO PCT/JP2012/051177 patent/WO2012102195A1/ja active Application Filing
-
2013
- 2013-10-21 JP JP2013218365A patent/JP5751309B2/ja active Active
-
2015
- 2015-02-02 JP JP2015018392A patent/JP6008000B2/ja active Active
-
2016
- 2016-03-22 US US15/077,613 patent/US9825304B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0524818A (ja) * | 1991-07-18 | 1993-02-02 | Sumitomo Metal Ind Ltd | 半導体治具用炭化珪素粉末の製造方法 |
WO2001022509A1 (fr) * | 1999-09-22 | 2001-03-29 | Toray Industries, Inc. | Feuille conductrice poreuse et procede de fabrication |
JP2002266217A (ja) * | 2001-03-08 | 2002-09-18 | Mitsubishi Rayon Co Ltd | 炭素繊維不織布およびその製造方法 |
JP2004288489A (ja) * | 2003-03-24 | 2004-10-14 | Toray Ind Inc | 多孔質炭素電極基材およびその製造方法 |
JP2004311431A (ja) * | 2003-03-27 | 2004-11-04 | Toray Ind Inc | 多孔質炭素板およびその製造方法 |
WO2011004853A1 (ja) * | 2009-07-08 | 2011-01-13 | 三菱レイヨン株式会社 | 多孔質電極基材及びその製造方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020066191A1 (ja) | 2018-09-28 | 2020-04-02 | 東レ株式会社 | ガス拡散層、膜電極接合体および燃料電池 |
KR20210062020A (ko) | 2018-09-28 | 2021-05-28 | 도레이 카부시키가이샤 | 가스 확산층, 막 전극 접합체 및 연료 전지 |
US11749810B2 (en) | 2018-09-28 | 2023-09-05 | Toray Industries, Inc. | Gas diffusion layer, membrane electrode assembly, and fuel cell |
Also Published As
Publication number | Publication date |
---|---|
JP5458168B2 (ja) | 2014-04-02 |
JPWO2012102195A1 (ja) | 2014-06-30 |
KR101571227B1 (ko) | 2015-11-23 |
US9705137B2 (en) | 2017-07-11 |
US20160204443A1 (en) | 2016-07-14 |
US9825304B2 (en) | 2017-11-21 |
EP2669977A4 (en) | 2016-06-22 |
EP2669977A1 (en) | 2013-12-04 |
CN103329323B (zh) | 2018-04-27 |
TW201244236A (en) | 2012-11-01 |
CA2825663C (en) | 2023-03-21 |
JP2014029873A (ja) | 2014-02-13 |
CA2825663A1 (en) | 2012-08-02 |
TWI513087B (zh) | 2015-12-11 |
JP5751309B2 (ja) | 2015-07-22 |
WO2012102195A1 (ja) | 2012-08-02 |
JP6008000B2 (ja) | 2016-10-19 |
KR20130108647A (ko) | 2013-10-04 |
CN103329323A (zh) | 2013-09-25 |
US20130323620A1 (en) | 2013-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6008000B2 (ja) | 前駆体シート | |
JP6086096B2 (ja) | 多孔質電極基材 | |
WO2011065327A1 (ja) | 多孔質電極基材、その製法、前駆体シート、膜-電極接合体、および固体高分子型燃料電池 | |
JP5356540B2 (ja) | 多孔質電極基材、その製造方法、多孔質電極基材前駆体シート、膜−電極接合体、および固体高分子型燃料電池 | |
JP6288263B2 (ja) | 多孔質電極基材、膜−電極接合体及び固体高分子型燃料電池 | |
JP5394469B2 (ja) | 多孔質電極基材の製造方法及び多孔質電極基材 | |
JP2018055969A (ja) | 多孔質電極基材およびその製造方法 | |
JP2013206704A (ja) | 多孔質電極基材、その製造方法、膜−電極接合体、および固体高分子型燃料電池 | |
JP2013251070A (ja) | 多孔質電極基材、その製造方法 | |
JP5501332B2 (ja) | 多孔質電極基材前駆体シート、その製造方法、多孔質電極基材、膜−電極接合体、および固体高分子型燃料電池 | |
JP2013119690A (ja) | 多孔質電極基材前駆体シートの製造方法、多孔質電極基材の製造方法、多孔質電極基材、膜−電極接合体、および固体高分子型燃料電池 | |
JP2016012474A (ja) | 多孔質電極基材の製造方法 | |
JP6115756B2 (ja) | 多孔質電極基材前駆体シート、その製造方法、多孔質電極基材、膜−電極接合体、および固体高分子型燃料電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151021 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151027 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151225 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160412 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160707 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20160715 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160816 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160829 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6008000 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R157 | Certificate of patent or utility model (correction) |
Free format text: JAPANESE INTERMEDIATE CODE: R157 |
|
R157 | Certificate of patent or utility model (correction) |
Free format text: JAPANESE INTERMEDIATE CODE: R157 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |