JP2013530183A - マイクロチャネルリアクタを用いて気体状アルカンを液体炭化水素に変換するための過程 - Google Patents

マイクロチャネルリアクタを用いて気体状アルカンを液体炭化水素に変換するための過程 Download PDF

Info

Publication number
JP2013530183A
JP2013530183A JP2013515373A JP2013515373A JP2013530183A JP 2013530183 A JP2013530183 A JP 2013530183A JP 2013515373 A JP2013515373 A JP 2013515373A JP 2013515373 A JP2013515373 A JP 2013515373A JP 2013530183 A JP2013530183 A JP 2013530183A
Authority
JP
Japan
Prior art keywords
reactor
bromide
bromine
metal
bromination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2013515373A
Other languages
English (en)
Inventor
レイモンド ティー. ブリッキー,
グレッグ エー. リズウィスキー,
ジョン ジェイ. ウェイクリス,
スティーブン ディー. ヨーク,
Original Assignee
マラソン ジーティーエフ テクノロジー, リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マラソン ジーティーエフ テクノロジー, リミテッド filed Critical マラソン ジーティーエフ テクノロジー, リミテッド
Publication of JP2013530183A publication Critical patent/JP2013530183A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/26Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only halogen atoms as hetero-atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0457Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being placed in separate reactors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/09Bromine; Hydrogen bromide
    • C01B7/093Hydrogen bromide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/10Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/205Organic compounds not containing metal atoms by reaction with hydrocarbons added to the hydrocarbon oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00256Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles in a heat exchanger for the heat exchange medium separate from the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/024Particulate material
    • B01J2208/025Two or more types of catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00038Processes in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/0004Processes in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00801Means to assemble
    • B01J2219/0081Plurality of modules
    • B01J2219/00817Support structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00822Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00824Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00831Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00835Comprising catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00867Microreactors placed in series, on the same or on different supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00869Microreactors placed in parallel, on the same or on different supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00873Heat exchange
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1025Natural gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1081Alkanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/22Higher olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

ガス状アルカンを、オレフィン、高分子量炭化水素、またはそれらの混合物に変換するための過程であって、アルカンを含有するガス状供給は、臭化アルキルおよび臭化水素を形成するように、熱的または触媒的に乾燥臭素蒸気と反応させられてもよい。臭化アルキルに存在するポリ臭素化アルカンは、一臭素化種を形成するように、好適な触媒上でメタンとさらに反応させられてもよい。次いで、臭化アルキルおよび臭化水素の混合物は、オレフィン、高分子量炭化水素、またはそれらの混合物、および臭化水素を形成するのに十分な温度において好適な触媒以上で反応させられてもよい。種々の方法および反応が、高分子量炭化水素から臭化水素を除去するように、過程で使用するために臭化水素から臭素を生成するように、過程で使用するために臭素を貯蔵し、後に放出するように、および臭素化ステップで一臭素化アルカンを選択的に形成するように開示される。

Description

(関連出願の引用)
本出願は、2010年11月30日に出願され、「Processes for Converting Gaseous Alkanes to Liquid Hydrocarbons」と題された、米国特許出願第12/477,319号の一部継続出願であり、該米国特許出願は、2010年3月9日に特許査定され、「Processes for Converting Gaseous Alkanes to Liquid Hydrocarbons」と題された、米国特許第7,674,941号の一部継続出願であり、該米国特許は、2008年4月30日に出願され、「Process for Converting Gaseous Alkanes to Olefins and Liquid Hydrocarbons」と題された、米国特許出願第12/112,926号の一部継続出願であり、該米国出願特許は、現在は放棄された、2005年10月19日に出願され、「Process for Converting Gaseous Alkanes to Olefines and Liquid Hydrocarbons」と題された米国特許出願第11/254,438号の継続出願であり、該米国特許出願は、2008年3月25日に特許査定され、「Process for Converting Gaseous Alkanes to Liquid Hydrocarbons」と題された、米国特許第7,348,464号の一部継続出願であり、当該米国特許は、2007年7月17日に特許査定され、「Process for Converting Gaseous Alkanes to Liquid Hydrocarbons」と題された、米国特許第7,244,867号の一部継続出願である。また、本出願は、2010年6月14日に出願された、米国仮特許出願第61/354,546号に対する優先権を主張するものである。米国特許出願第12/477,319号および米国仮特許出願第61/354,546号のそれぞれは、参照により、本明細書中に援用される。
本出願は、以下の同時係属中の特許出願に関連している:2008年6月13日に出願され、「Hydrogeneration of Multi−Brominated Alkanes」と題された、米国特許出願第12/139、135号;2009年6月3日に出願され、「Bromine−Based Method and System for Converting Gaseous Alkanes to Liquid Hydrocarbons Using Electrolysis for Bromine Recovery」と題された、米国特許出願第12/477,307号;2009年7月13日に出願され、「Process for Converting Gaseous Alkanes to Liquid Hydrocarbons」と題された、米国特許出願第12/502,024号;2010年3月2日に出願され、「Processes and Systems for the Staged Synthesis of Alkyl Bromides」と題された、米国出願第12/715,526号;2010年6月2日に出願され、「Convertion of Hydrogen Bromide to Elemental Bromine」と題された、米国特許出願第12/792,335号;2010年11月30日に出願され、「Process for Converting Gaseous Alkanes to Liquid Hydrocarbons」と題された、米国特許出願第12/957,036号;2011年2月17日に出願され、「Process and Systems for the Staged Synthesis of Alkyl Bromides”と題された、米国特許出願第13/030,053号。
(発明の背景)
本発明は、潤滑剤および燃料添加剤等の燃料または化学物質の生産において、燃料またはモノマーおよび中間体として有用であり得る、オレフィン、高分子量炭化水素、または混合物に低分子量アルカンを変換するための過程に関し、より具体的には、1つ以上の実施形態において、1つ以上のマイクロチャネルリアクタを使用する過程に関し、低分子量アルカンを含むガスは、少なくとも臭化アルキルを形成するように臭素と反応させられ、臭化アルキルは、臭化水素、およびオレフィン、高分子量炭化水素、またはそれらの混合物を形成するように、触媒の存在下で反応させられ、臭化水素の少なくとも一部分は、過程で使用されてもよい臭素に変換される。
主にメタンおよび他の低級アルカンから成る天然ガスが、世界中で大量に発見されている。天然ガスが発見されている場所の多くは、天然ガスの重要なガスパイプラインインフラストラクチャまたは市場を有する、人口の多い領域から遠い。天然ガスの低い密度により、例えば、パイプラインによる、または容器の中の圧縮ガスとしてのガス状形態でのその輸送は高価である。したがって、天然ガスがそのガス状形態で輸送されて得る距離に、実用的および経済的限界が存在する。遠い距離にわたって天然ガスをより経済的に輸送するために、天然ガスの極低温液化(しばしば「LNG」と呼ばれる)がしばしば使用される。しかしながら、このLNG過程は高価であり、LNGを輸出する態勢が整っている数カ国にしか限定された再ガス化設備がない。
メタンの別の使用は、メタノールの生産のための過程への供給としてである。メタノールは、高温(例えば、約1000℃)での合成用ガス(COおよびH)(しばしば「合成ガス(syn-gas)」と呼ばれる)へのメタンの変換を介して、商業的に作製することができ、その後に高圧(約100気圧)での合成が続く。メタンからの合成用ガスの生産のためのいくつかの技術がある。これらの間には、水蒸気・メタン改質(SMR)、部分酸化(POX)、自己熱改質(ATR)、ガス加熱改質(GHR)、およびそれらの種々の組み合わせがある。それぞれと関連付けられる利点および不利点がある。例えば、SMRおよびGHRは、通常、概して、600℃を超えて、高い圧力および温度で動作し、吸熱反応であり、したがって、SMRでしばしば利用されるように、高価な改質触媒、および天然ガスの燃焼から等のリアクタの外部の熱源から供給される高温の熱で充填された、特殊な耐熱および耐食合金熱伝達管を含有する、高価な炉またはリアクタを必要とする。POXおよびATR過程は、通常、概して、1000℃を超えて、高い圧力およびさらに高い温度で動作し、炭化水素供給のかなりの割合がCO2に変換され、大量の高温廃熱を拒絶または回収しなければならず、したがって、合成用ガス流出物を急冷および冷却するための複雑かつ高価な耐火裏地付きリアクタおよび高圧廃熱ボイラが必要とされる、発熱反応を利用する。また、有意な資本費用および大量の電力が、これらの高圧過程に対する酸素または空気の圧縮のために必要とされる。したがって、関与する高い温度および圧力により、合成ガス技術は、概して、高価と見なされ、高費用のメタノール生成物をもたらす。この費用は、化学原料および溶剤のための等のメタノールの高付加価値利用を制限し得る。さらに、概して、合成ガスの生産は、過程の炭素変換効率を低下させる、大量の過剰な廃熱および不要な二酸化炭素を生産し得るという点で、熱力学的および化学的に非効率的となり得ると考えられている。合成用ガスを上級液体炭化水素に変換するために、フィッシャー・トロプシュガス・液体(GTL)技術も使用することができるが、この時点でのこの過程の投資費用は、他の種類の過程よりも高い。それぞれの場合において、合成用ガスの生産は、これらのメタン変換過程の資本費用の大きな割合を表し、これらの過程が達成できる最大炭素利用率を制限する。
メタノールまたは高分子量炭化水素へのルートとしての合成用ガスの従来の生産の多数の代替案が提案されてきた。しかしながら、現在まで、種々の理由により、これらの代替案のうちのいずれも商業的地位を達成していない。以前の代替的な従来技術の方法のうちのいくつかは、対応するアルカノールを形成するように酸化マグネシウムと反応させることができる、ハロゲン化アルキルおよびハロゲン化水素を形成するように、メタン等の低級アルカンを金属ハロゲン化物と反応させることを対象とする。ハロゲンとして塩素を使用するメタンのハロゲン化は、通常、ハロゲン化モノメチル(CHCl)に対する不良な選択性をもたらすが、むしろCHClおよびCHCl等の不要な副生成物を生産する。これらは、変換しにくい、または1回の通過につき変換の厳しい制限、したがって、非常に高いリサイクル率を必要とすると考えられる。
他の既存の過程は、合成用ガス(COおよびH)の生成の代替案として、メタンの触媒塩素化または臭素化を提案する。メタノールの生産のための全体的過程におけるメタンハロゲン化ステップの選択性を向上させるために、1つの過程は、臭化メチル等のモノハロゲン化中間体に対する向上した選択性をもたらす、過剰なアルカンの存在下でアルカンを臭素化するための金属臭化物の熱分解によって生成される臭素の使用を教示する。移動固体の流動床を利用することの欠点を回避するために、過程は、塩化金属水和物および金属臭化物の循環液体混合物を利用する。他の過程もまた、臭素化の使用によって、モノハロゲン化中間体に対するより高い選択性を達成することが可能である。臭化メチル等の結果として生じる臭化アルキル中間体は、移動固体の循環床の中での金属酸化物との反応によって、対応するアルコールおよびエーテルにさらに変換される。そのような過程の別の実施形態は、4つのステップで周期的に操作される金属臭化物/酸化物固体の固定床を含有する、ゾーン型リアクタ容器を利用することによって、移動床の欠点を回避する。ジメチルエーテル(DME)等のあるエーテルが、有望な潜在的ディーゼルエンジン燃料代用品であるが、まだ今のところ、現在はDMEの実質的な市場が存在せず、したがって、DMEを現在の市場向きの製品に変換するために、高価な付加的触媒過程変換ステップが必要とされる。超強酸触媒を使用した触媒凝縮を介して、メタンがガソリン範囲の炭化水素に触媒的に凝縮される、Olahへの特許文献1等の、合成用ガスの生産の必要性を回避する他の過程が提案されている。しかしながら、これらの以前の代替的アプローチのうちのいずれも、商業的過程をもたらしていない。
場合によっては、置換アルカン、特にメタノールを、ゼオライトとしても知られている結晶アルミノケイ酸塩の種々の形態上で、オレフィンおよびガソリン沸騰範囲の炭化水素に変換することができる。メタノール・ガソリン(MTG)過程では、形状選択的ゼオライト触媒ZSM-5が、メタノールをガソリンに変換するために使用される。したがって、従来の技術を使用して、石炭またはメタンガスをメタノールに変換し、後にガソリンに変換することができる。しかしながら、メタノール生産の高い費用により、およびガソリンの現在または予想価格において、MTG過程は、経済的に実行可能と見なされない。したがって、増大した価値を有し、より経済的に輸送され、それにより、遠隔天然ガス埋蔵量の開発を有意に補助する、オレフィン、高分子量炭化水素、またはそれらの混合物への種々のガス供給で見出される、メタンおよび他のアルカンの変換のための経済的な過程の必要性が存在する。
米国特許第4,467,130号明細書
(発明の概要)
先述および他の目的を達成するために、本明細書で具現化され、広く説明されるような本発明の目的によれば、本発明の1つの特性化は、臭化アルキルを含む臭素化生成物を形成するように、臭素を低分子量アルカンと反応させるステップと、オレフィン、高分子量炭化水素、またはそれらの混合物を含む、炭化水素生成物を形成するように、触媒を含有するマイクロチャネルリアクタの中で臭化アルキルを反応させるステップとを含む、過程である。
本発明の別の特性化は、臭化アルキルを含む臭素化生成物を形成するように、臭素を低分子量アルカンと反応させるための第1のリアクタと、オレフィン、高分子量炭化水素、またはそれらの混合物を含む、炭化水素生成物を形成するように、触媒の存在下で臭化アルキルを反応させるためのマイクロチャネルリアクタとを備える、システムである。
本発明のなおも別の特性化は、臭化アルキルを含む臭素化生成物を形成するように、マイクロチャネルリアクタの中で臭素を低分子量アルカンと反応させるステップと、オレフィン、高分子量炭化水素、またはそれらの混合物を含む、炭化水素生成物を形成するように、触媒の存在下で臭化アルキルを反応させるステップとを含む、過程である。
本発明のさらなる特性化は、臭化アルキルを含む臭素化生成物を形成するように、臭素を低分子量アルカンと反応させるためのマイクロチャネルリアクタと、オレフィン、高分子量炭化水素、またはそれらの混合物を含む、炭化水素生成物を形成するように、触媒の存在下で臭化アルキルを反応させるための第2のリアクタとを備える、システムである。
本発明のさらなる特性化は、オレフィン、高分子量炭化水素、またはそれらの混合物を含む、炭化水素生成物、および臭化水素を形成するように、触媒の存在下で臭化アルキルを反応させるステップと、少なくとも金属臭化物を形成するように、マイクロチャネルリアクタの中で臭化水素を金属酸化物と反応させることによって、炭化水素生成物から臭化水素を除去するステップとを含む、過程である。
本発明のさらなる特性化は、オレフィン、高分子量炭化水素、またはそれらの混合物を含む、炭化水素生成物、および臭化水素を形成するように、触媒の存在下で臭化アルキルを反応させるための第1のリアクタと、少なくとも金属臭化物を形成するように臭化水素を金属酸化物と反応させ、それにより、炭化水素生成物から臭化水素を除去するためのマイクロチャネルリアクタとを備える、システムである。
本発明のなおもさらなる特性化は、臭化アルキルを含む臭素化生成物を形成するように、少なくとも約2.5:1のメタン対臭素モル比で臭素をガス状アルカンと接触させるステップと、臭化アルキルに存在する二臭素化アルカンおよび三臭素化アルカンの少なくとも一部分を一臭素化アルカンに変換するように、マイクロチャネルリアクタの中で触媒の存在下にて臭化アルキルをC2+炭化水素と反応させるステップとを含む、過程である。
本発明のなおもさらなる特性化は、臭化アルキルを含む臭素化生成物を形成するように、少なくとも約2.5:1のメタン対臭素モル比で臭素をガス状アルカンと接触させるための第1のリアクタと、臭化アルキルに存在する二臭素化アルカンおよび三臭素化アルカンの少なくとも一部分を一臭素化アルカンに変換するように、マイクロチャネルリアクタの中で触媒の存在下にて臭化アルキルをC2+炭化水素と反応させるためのマイクロチャネルリアクタとを備える、システムである。
本発明のなおもさらなる特性化は、還元原子価状態で少なくとも臭素蒸気および金属臭化物を形成するように、マイクロチャネルリアクタの中で酸化原子価状態の金属臭化物の少なくとも一部分を加熱するステップと、酸化状態で金属臭化物を形成するように、第2のリアクタの中の還元原子価状態の金属臭化物の少なくとも一部分を臭素蒸気と接触させるステップとを含む。
本発明のなおもさらなる特性化は、酸化原子価状態の金属臭化物を含有する第1のマイクロチャネルリアクタと、還元原子価状態の金属臭化物を含有する第2のリアクタとを備える、システムである。
本明細書の一部に組み込まれ、かつそれを形成する、添付図面は、本発明の実施形態を図示し、説明とともに、本発明の原則を説明する働きをする。
図1は、本発明の過程の簡略化ブロックフロー図である。 図2は、本発明の過程の一実施形態の概略図である。 図3は、本発明の過程の別の実施形態の概略図である。 図4Aは、本発明の過程の別の実施形態の概略図である。 図4Bは、酸化段階で空気の代わりに酸素が使用される時に採用されてもよい、代替的な処理方式を描写する、図4Aで図示される本発明の過程の実施形態の概略図である。 図5Aは、金属酸化物床を通る流量が留保されている、図4Aで図示される本発明の過程の実施形態の概略図である。 図5Bは、酸化段階で空気の代わりに酸素が使用される時に採用されてもよい、代替的な処理方式を描写する、図5Aで図示される本発明の過程の実施形態の概略図である。 図6Aは、本発明の過程の別の実施形態の概略図である。 図6Bは、酸化段階で空気の代わりに酸素が使用される時に採用されてもよい、代替的な処理方式を描写する、図6Aで図示される本発明の過程の実施形態の概略図である。 図7は、本発明の過程の別の実施形態の概略図である。 図8は、金属酸化物床を通る流量が留保されている、図7で図示される本発明の過程の実施形態の概略図である。 図9は、本発明の過程の別の実施形態の概略図である。 図10は、本発明の一実施形態による、多重臭素化アルカンの形成を低減するように構成される本発明の過程の簡略化ブロックフロー図である。 図11は、本発明の別の実施形態による、多重臭素化アルカンの形成を低減するように構成される本発明の過程の簡略化ブロックフロー図である。 図12は、図7および8に図示され、直列構成でシフトリアクタを組み込むように、図10のブロックフロー図に従ってさらに構成される、本発明の過程の実施形態の概略図である。 図13は、図7および8に図示され、並列構成でシフトリアクタを組み込むように、図10のブロックフロー図に従ってさらに構成される、本発明の過程の実施形態の概略図である。 図14は、本発明の臭素化段階で使用される様々なメタン対臭素モル比についての一臭素化選択性のグラフである。 図15は、本発明の臭素化段階で採用される様々なメタン対臭素モル比についての一臭素化選択性対平均滞留時間のグラフである。 図16は、本発明の実施形態による、直列構成で触媒シフトリアクタを組み込んで多重臭素化アルカンの形成を低減するように構成される、本発明の過程の概略図である。 図17は、本発明の別の実施形態による、直列構成で触媒シフトリアクタを組み込んで多重臭素化アルカンの形成を低減するように構成される、本発明の過程の概略図である。 図18は、本発明のさらなる実施形態による、並列構成で触媒シフトリアクタを組み込んで多重臭素化アルカンの形成を低減するように構成される、本発明の過程の概略図である。 図19は、本発明のなおもさらなる実施形態による、並列構成で触媒シフトリアクタを組み込んで多重臭素化アルカンの形成を低減するように構成される、本発明の過程の概略図である。 図20は、本発明の過程の実施形態の臭素化段階における時間と対比した様々なメタンについての炭素利用率および一臭素化選択性のグラフである。 図21は、本発明の過程の実施形態の臭素化段階で使用される様々な温度についての炭素利用率および一臭素化選択性のグラフである。 図22は、本発明の過程およびシステムで使用するためのマイクロチャネルリアクタモジュールの斜視図である。 図22Aは、図22のマイクロチャネルリアクタモジュールの一部分の図である。 図23は、シェルとともに位置付けられた際のマイクロチャネルリアクタモジュールの部分的切断斜視図である。
(好適な実施形態の詳細な説明)
本明細書で使用されるような「高分子量炭化水素」という用語は、C鎖と、より長い炭化水素鎖とを含む、炭化水素を指す。いくつかの実施形態では、高分子量炭化水素は、生成物(例えば、LPG、自動車燃料等)として直接使用されてもよい。他の場合において、高分子量炭化水素の流れが、中間生成物として、またはさらなる処理のための原料として使用されてもよい。他の場合において、高分子量炭化水素は、例えば、ガソリン等級の燃料、ディーゼル等級の燃料、および燃料添加剤を生産するように、さらに処理されてもよい。いくつかの実施形態では、本発明の過程によって得られる高分子量炭化水素は、かなりの芳香族含有量を有する自動車ガソリン燃料として、燃料混合原料として、あるいはポリスチレンまたは関連ポリマー等の芳香族ポリマーを生産する過程への芳香族供給、およびポリオレフィンを生産するための過程へのオレフィン供給等のさらなる処理のための原料として、直接使用することができる。本明細書で使用されるような「オレフィン」という用語は、2個から6個の炭素原子、および少なくとも1つの炭素・炭素二重結合を含有する、炭化水素を指す。オレフィンは、所望であればさらに処理されてもよい。例えば、場合によっては、本発明の過程によって生産されるオレフィンは、プラスチックまたは合成潤滑剤等の多くの最終生成物で有用であってもよい、ポリ(オレフィン)を生産するように、重合反応(例えば、メタロセン触媒を使用した反応)でさらに反応させられてもよい。
高分子量炭化水素、オレフィン、またはそれらの混合物の最終用途は、以下で論議される方法のオリゴマー化部分で採用される特定の触媒、ならびに過程で採用される動作パラメータに依存してもよい。他の用途が、本開示の利益がある当業者に明白となるであろう。
いくつかの実施形態では、本発明は、臭化アルキルを生産するように、供給ガス流を好適な臭素源からの臭素と反応させるステップを含む。本明細書で使用されるように、「臭化アルキル」という用語は、一、二、および三臭素化アルカン、ならびにこれらの組み合わせを指す。ポリ臭素化アルカンは、二臭素化アルカン、三臭素化アルカン、およびそれらの混合物を含む。次いで、これらの臭化アルキルは、オレフィン、高分子量炭化水素、またはそれらの混合物を形成するよう、好適な触媒上で反応させられてもよい。
低分子量アルカンは、本明細書で説明される方法のための原料として使用されてもよい。好適な低分子量アルカン源は、天然ガスであってもよい。この説明の全体を通して利用されるように、「低分子量アルカン」という用語は、メタン、エタン、プロパン、ブタン、ペンタン、またはこれらの個々のアルカンのうちの2つ以上の混合物を指す。低分子量アルカンは、任意の好適な供給源、例えば、天然発生であろうと合成的に生産されようと、低分子量アルカンを提供する任意のガス源に由来してもよい。本発明の過程で使用するための低分子量アルカン源の実施例は、天然ガス、炭層メタン、再ガス化された液化天然ガス、ガス水和物および/またはクラスレートに由来するガス、有機物またはバイオマスの嫌気性分解に由来するガス、タールサンドの処理に由来するガス、および合成的に生産された天然ガスまたはアルカンを含むが、それらに限定されない。これらの組み合わせは、いくつかの実施形態でも好適であってもよい。いくつかの実施形態では、硫黄化合物および二酸化炭素等の望ましくない化合物を除去するように、供給ガスを扱うことが望ましくてもよい。いずれの場合でも、少量の二酸化炭素、例えば、約2mol%未満を、本発明の過程に対する供給ガスの中で許容できることに留意することが重要である。
本発明の種々の実施形態で使用されてもよい好適な臭素源は、元素臭素、臭素塩、水性臭化水素酸、金属臭化物塩、および同等物を含むが、それらに限定されない。組み合わせが好適であってもよいが、当業者によって認識されるように、複数の供給源の使用は、付加的な複雑状態を提示する場合がある。本発明の方法のある実施形態が以下で説明される。方法に関与する主な化学反応であると考えられるものの主要な側面が起こると考えられるため、それらが本明細書で論議されるが、副反応が起こってもよいことを理解されたい。本明細書の特定の副反応を論議できないことは、反応が起こらないことを意味すると仮定するべきではない。逆に、論議されるものは、包括的または制限的と見なされるべきではない。加えて、本発明の方法のある側面を概略的に示す図が提供されているが、これらの図は、本発明のいずれの特定の方法でも限定的と見なされるべきではない。
概して本発明の処理を描写するブロックフロー図が、図1に図示され、本発明の過程のある実施形態のいくつかの側面を描写する。図1に図示されるような本発明の過程の一般的描写によれば、再生ガス流を加えた供給ガスの混合物から成る低分子量アルカンを含有するガス流、および乾燥臭素蒸気が、臭化アルキルおよび臭化水素を生産するように、アルキル臭素化段階で反応させられる。結果として生じた臭化アルキルは、オレフィン、高分子量炭化水素、またはそれらの混合物を形成するように、臭化アルキル変換段階において、臭化水素の存在下にて好適な触媒上で反応させられる。生産される特定のオレフィンおよび高分子量炭化水素は、臭化アルキル変換段階で採用される触媒、この段階に導入された臭化アルキルの組成、およびこの段階で採用された正確な動作パラメータに依存する。臭化水素およびオレフィンの混合物、高分子量炭化水素、またはそれらの混合物は、オレフィンおよび高分子量炭化水素から臭化水素を除去するように、臭化水素(HBr)除去段階で水溶液と接触させられる。その中に溶解させられた臭化水素酸を有する、結果として生じた水溶液はまた、水溶液からあらゆる残留炭化水素を除去するように、このHBr除去段階で供給ガスと接触させられる。
供給ガス、残留炭化水素およびオレフィン、高分子量炭化水素、またはそれらの混合物は、水が残りの構成物質から除去される、脱水および生成物回収ユニットに運搬される。次いで、供給ガス、ならびに主にメタンおよびエタン炭化水素が、オレフィン、高分子量炭化水素、またはそれらの混合物から分離され、本発明のアルカン臭素化段階に運搬される。残りのオレフィン、高分子量炭化水素、またはそれらの混合物は、燃料、燃料混合物として使用するために、あるいはさらなる石油化学または燃料処理のために、脱水および生成物回収段階から除去される。
図1でさらに概して図示されるように、臭化水素酸を含有する水溶液は、臭化物酸化段階に運搬される。オレフィン、高分子量炭化水素、またはそれらの混合物に接触するために使用される水溶液は、水、溶解臭化水素を含有する水であってもよく、または部分的に酸化した金属臭化物塩を含有してもよい。溶解臭化水素を含有する水溶液の場合、この溶液は、蒸発させられ、次いで、過程の臭化物酸化段階で部分的に酸化した金属臭化物塩の層を通過させられてもよい。部分的に酸化した金属臭化物塩を含有する水溶液の場合、水溶液に溶解させられる臭化水素は、金属臭化物塩および水を生じるように、部分的に酸化した金属臭化物塩によって中和させられる。次いで、結果として生じた金属臭化物塩は、臭化水素を中和させ、過程によって生産されるオレフィン、高分子量炭化水素、またはそれらの混合物に接触するために使用される水溶液から臭化水素を除去するために使用されてもよい、乾燥臭素蒸気および部分的に酸化した金属臭化物塩として、アルカン臭素化段階へ再循環させられてもよい元素臭素を生じるように、本発明の臭化物酸化段階で酸素または空気と接触させられる。
図2を参照すると、約1バールから約75バールの範囲内の圧力で低分子量アルカンを含むガス流(いくつかの実施形態では、再生ガス流を加えた供給ガスの混合物を含んでもよい)が、ライン、パイプ、または導管62を介して輸送または運搬され、ライン25およびポンプ24を介して輸送された乾燥臭素液体と混合され、液体臭素が蒸発させられる熱交換器26へと渡されてもよい。次いで、低分子量アルカンおよび乾燥臭素蒸気の混合物を、リアクタ30に供給することができる。好ましくは、リアクタ30に導入される混合物中の乾燥臭素蒸気に対する低分子量アルカンのモル比は、約2.5:1を超え、より好ましくは約4:1を超え、最も好ましくは約7:1を超える。リアクタ30は、約250℃から約400℃の範囲内の反応開始温度まで混合物を加熱することができる、入口予熱器ゾーン28を有してもよい。
第1のリアクタ30の中では、低分子量アルカンが、ガス状臭化アルキルおよび臭化水素酸蒸気を生産するように、約250℃から約600℃の範囲内の温度で、および約1バールから約80バール、より好ましくは約1バールから30バールの範囲内の圧力で、乾燥臭素蒸気と発熱反応させられてもよい。本開示の利益がある当業者に明白となるように、第1のリアクタ30の中の臭素化反応は、発熱反応または触媒反応であってもよい。第1のリアクタ30で使用されてもよい、好適な触媒の非限定的実施例は、Olah, et al, J. Am. Chem. Soc. 1985, 107, 7097-7105で説明されるように、白金、パラジウム、あるいはFeOBrまたはFeOCl等の担持非定比金属酸素・ハロゲン化物、またはTaOF、NbOF、ZrOF、SbOF等の担持金属素・ハロゲン化物を含む。動作温度範囲の上限は、臭素化反応の発熱性質により供給混合物が加熱される、反応開始温度範囲の上限よりも大きくてもよいと考えられる。メタンの場合、臭化メチルの形成は、以下の一般的な全体反応に従って起こると考えられる。
CH(g)+Br(g)→CHBr(g)+HBr(g)
気相臭素化反応のフリーラジカル機構により、ジブロモメタンおよびいくらかのトリブロモタンならびに他の臭化アルキルも形成される。しかしながら、本発明の過程による、この反応はしばしば、第1のリアクタ30で採用されるアルカン対臭素比により、臭化メチルに対する比較的高い程度の選択性で起こる。例えば、メタンの臭素化の場合、約6:1のメタン対臭素比は、滞留時間、温度、および乱流混合等の反応条件に応じて、モノハロゲン化臭化メチルに対する選択性を平均約88%まで増加させると考えられる。これらの条件において、いくらかのジブロモメタン、および検出可能な限度に接近する極めて少量のみのトリブロモメタンもまた、臭素化反応で形成されてもよい。約2.6から1のより低いメタン対臭素比が利用される場合、モノハロゲン化臭化メチルに対する選択性は、他の反応条件に応じて、約65から75%の範囲に下がってもよい。約2.5から1よりも有意に小さいメタン対臭素比で、臭化メチルに対する容認不可能な低い選択性が発生し、また、望ましくないジブロモメタン、トリブロモメタン、および炭素煤の有意な形成が観察される。そのようなモノハロゲン化臭化メチルに対する選択性を達成するために必要な第1のリアクタ30の中の反応物の滞留時間は、比較的短く、断熱反応条件下で約1〜5秒ほども少なくてもよい。エタン、プロパン、およびブタン等の高級アルカンもまた、臭素化されてもよく、臭化エチル、臭化プロピル、および臭化ブチル等の一および多重臭素化種をもたらす。さらに、いくつかの実施形態では、第1のリアクタ30の中へ供給される乾燥臭素蒸気は、実質的に水を含まなくてもよい。出願者らは、少なくとも場合によっては、第1のリアクタ30の中の臭素化ステップからの実質的に全ての水蒸気の排除が、不要な二酸化炭素の形成を実質的に排除すると思われるため、これが好ましくてもよいことを発見した。これは、臭化アルキルに対するアルカン臭素化の選択性を増大させ、したがって、アルカンからの二酸化炭素の形成で生成された大量の廃熱をできる限り排除してもよい。
臭化アルキルおよび臭化水素を含む流出物が、ライン31を介して第1のリアクタから引き出されてもよい。この流出物は、第2のリアクタ34へと流れる前に熱交換器32の中で部分的に冷却されてもよい。流出物が熱交換器34の中で部分的に冷却される温度は、第2のリアクタ34の中で臭化アルキルを高分子量炭化水素に変換することが所望される時に約150℃から約390℃の範囲内であり、または第2のリアクタ34の中で臭化アルキルをオレフィンに変換することが所望される時に約150℃から約450℃の範囲である。第2のリアクタ34は、オレフィン、高分子量炭化水素、またはそれらの混合物を含む生成物を形成するよう、アルキル単位をオリゴマー化すると考えられる。第2のリアクタ34では、臭化アルキルは、所望の生成物(例えば、オレフィンおよび高分子量炭化水素)を生産するように、好適な触媒上で、約150℃から約450℃の温度範囲および約1〜80バールの範囲内の圧力において、発熱反応させられる。
リアクタ34で使用される触媒は、炭化水素を生産するように臭素化アルカンの変換を触媒するための種々の好適な材料のうちのいずれかであってもよい。ある実施形態では、第2のリアクタ34は、触媒の固定床33を備えてもよい。合成触媒の流動床もまた、ある状況で、特に、より大型の用途で使用されてもよく、コークスの一定の除去および生成物組成に対する定常選択性等のある利点を有してもよい。好適な触媒の実施例は、酸性イオン交換器であるという共通機能性を有し、また、合成結晶酸化アルミノケイ酸塩骨格を含有する、極めて広範囲の材料を含む。ある実施形態では、結晶酸化アルミノケイ酸塩骨格の中のアルミニウムの一部分は、マグネシウム、ホウ素、ガリウム、および/またはチタンと置換されてもよい。ある実施形態では、結晶酸化アルミノケイ酸塩骨格の中のケイ素の一部分は、随意で、リンと置換されてもよい。結晶アルミノケイ酸塩触媒は、概して、例えば、H、Li、Na、K、またはCsの群、あるいはMg、Ca、Sr、またはBaの群、あるいはLaまたはCeの群から選択される元素のカチオンによって平衡を保たれてもよい、結晶酸化アルミノケイ酸塩骨格構造内の有意なアニオン電荷を有してもよい。ゼオライト触媒が、一般的にナトリウム形態で得られてもよいが、(水酸化アンモニウムとのイオン交換、および後続の焼成を介した)プロトンまたは水素形態が好ましく、または混合プロトン/ナトリウム形態も使用されてもよい。ゼオライトは、Li、K、またはCs等の他のアルカリ金属カチオンと、Mg、Ca、Sr、またはBa等のアルカリ土類金属カチオンと、あるいはFe、Ni、Cu、Mn、V、W等の遷移金属カチオンと、あるいはLaまたはCe等の希土類金属とのイオン交換によって修飾されてもよい。そのような後続のイオン交換は、電荷平衡対イオンを差し替えてもよいが、さらにまた、酸化物骨格の中のイオンを部分的に差し替え、酸化物骨格の結晶構成および構造の修飾をもたらしてもよい。結晶アルミノケイ酸塩または置換結晶アルミノケイ酸塩は、微孔性またはメソ多孔性結晶アルミノケイ酸塩を含んでもよいが、ある実施形態では、合成微孔性結晶ゼオライトを含んでもよく、例えば、ZSM-5等のMFI構造である。また、結晶アルミノケイ酸塩または置換結晶アルミノケイ酸塩は、ある実施形態では、後に、Mg、Ca、Sr、Ba、La、またはCe塩の水溶液で含漬されてもよい。ある実施形態では、塩は、MgBr2、CeBr3、あるいは塩基結晶アルミノケイ酸塩または置換アルミノケイ酸塩触媒の失活速度を低減することが分かっている、ルイス酸性官能基を有する他の固体化合物等の、臭化物塩等のハロゲン化物塩であってもよい。随意で、結晶アルミノケイ酸塩または置換結晶アルミノケイ酸塩はまた、金属状態で、約0.1〜約1重量%のPt、約0.1〜5重量%のPd、または約0.1〜約5重量%のNiを含有してもよい。そのような材料は、主に最初に結晶性であるが、いくつかの結晶性触媒は、最初のイオン交換または含漬により、あるいは反応条件時または再生中の動作により、いくらかの結晶化度の損失を受ける場合があり、したがって、有意な非晶質特徴を含有してもよいが、依然として有意な活性、場合によっては向上した活性を保持してもよいことに留意されたい。
第2のリアクタ34で使用される特定の触媒は、例えば、所望される特定の生成物炭化水素に依存する。例えば、主にC3、C4、C5ガソリン範囲芳香族化合物を有する生成物炭化水素、および上級炭化水素分率が所望される時に、ZSM-5ゼオライト触媒が使用されてもよい。オレフィンおよびC5+生成物の混合物を含む、生成物炭化水素を生産することが所望される時に、X型またはY型ゼオライト触媒、あるいはSAPOゼオライト触媒が使用されてもよい。好適なゼオライトの実施例は、10-X等のX型、またはY型ゼオライトを含んでもよいが、異なる細孔サイズおよび酸性度を伴う他のゼオライトが、本発明の実施形態で使用されてもよい。
触媒に加えて、第2のリアクタ34が操作される温度は、所望される特定の生成物に対する反応の選択性および変換を判定する際に重要なパラメータである。例えば、X型またはY型ゼオライト触媒が使用され、オレフィンを生産することが所望される時に、約250℃から500℃の範囲内の温度で第2のリアクタ34を操作することが賢明であってもよい。代替として、約250℃から450℃のわずかにより低い温度の範囲内で動作する、ZSM-5ゼオライト触媒を伴う実施形態では、第2のリアクタの中での環化反応は、C7+分率が、主に置換された芳香族化合物と、また、主にC〜C5+範囲内の低級アルカンとを含有するように起こる。驚くべきことに、エタンまたはC,-Cオレフィン成分は、生成物の中でほとんど見出されない。
400℃に近づく上昇温度において、約100〜2000hr-1の範囲内のGHSVにおけるZSM-5触媒上で反応する臭化メチルを含有する、ガス混合物の実施例では、臭化メチル変換は、約90%〜98%以上の範囲に向かって増加するが、しかしながら、C5+炭化水素に向かった選択性が減少し、過程の低級生成物に向かった選択性が特に増加する。550℃を超える温度では、メタンおよび炭素質コークスへの臭化メチルの高変換が起こってもよいと考えられる。反応の副生成物としての約350℃から450℃の間の好ましい動作温度範囲では、より少量のコークスが、動作中に経時的に触媒上で蓄積してもよい。コークスの蓄積は、反応条件および供給ガスの組成に応じて、最大で数100時間までの時間の範囲にわたる触媒活性の低下につながり得るため、問題となる場合がある。メタンの形成と関連付けられる約400℃を上回るより高い反応温度は、臭化アルキルの熱分解および炭素またはコークスの形成、したがって、触媒の失活速度の増加に有利に働くと考えられる。
逆に、範囲の下端における温度、具体的には約350℃を下回る温度もまた、触媒からの上級生成物の低減した脱離速度による失活に貢献してもよい。したがって、約350℃から約450℃の範囲内であるが、好ましくは第2のリアクタ34の中で約375℃から約425℃の範囲内の動作温度は、所望のC5+炭化水素の増大した選択性と、必要とされる触媒の質、リサイクル率、および機器サイズを最小限化する、1回の通過あたりのより高い変換に対して、触媒上のより少ない炭素質コークス形成または上級生成物蓄積による、より遅い失活速度の平衡を保つ。
いくつかの実施形態では、触媒は、原位置で周期的に再生されてもよい。触媒を再生する1つの好適な方法は、通常過程流からリアクタ34を隔離し、約400℃から約650℃の範囲内の高温で約1〜約5バールの範囲内の圧力において、ライン70を介した不活性ガスでそれを浄化することである。これは、実用的である限り、触媒上で吸収された未反応臭化アルキルおよび上級炭化水素生成物を除去するべきである。随意で、次いで、触媒は、約400℃から約650℃の範囲内の高温で約1バールから約5バールの範囲内の圧力において、ライン70を介したリアクタ34への空気または不活性ガス希釈酸素の添加によって後に酸化されてもよい。二酸化炭素および残留空気または不活性ガスが、再生期間中にライン75を介してリアクタ34から放出されてもよい。大抵の場合、触媒上で吸収されたHBrまたは臭化アルキルの酸化に起因する微量の臭素が、回収され、過程内で再利用されてもよいように、リアクタ34からライン75を介して過程の酸化部分(図示せず)へ再生オフガスを送ることが好ましい。
臭化水素、およびオレフィン、高分子量炭化水素、またはそれらの混合物を含む、リアクタ34からの流出物は、ライン35を介して第2のリアクタ34から引き出されてもよい。それは、所望であれば(例えば、交換器36の中で)0℃から約100℃の範囲内の温度まで冷却することができる。それは、供給ガスと、炭化水素ストリッパ47の中での供給ガスとの接触によって揮散される残留炭化水素とを含有する、炭化水素ストリッパ47からのライン12の中の蒸気流出物と組み合わせられてもよい。次いで、複合蒸気混合物をスクラバ38に渡すことができ、それは、任意の好適な手段(ポンプ42等)によってライン41を介してスクラバ38に輸送されてもよい、金属水酸化物、金属酸化物、金属酸素・臭化物種、またはこれらの物質の混合物を含有する、濃縮された部分酸化金属臭化物塩の水溶液と接触させられてもよい。好ましい臭化物塩は、安価であり、約120℃から約180℃の範囲内のより低い温度で容易に酸化し、ガラス裏地またはフッ素重合体裏地付き機器の使用を有益に可能にするため、Fe(III)、Cu(II)、またはZn(II)塩、またはそれらの混合物である。しかしながら、当業者によって認識されるように、Co(II)、Ni(II)、Mn(II)、V(II)、Cr(II)、または易酸化性臭化物塩を形成することが可能である他の遷移金属もまた、本発明の過程で好適であってもよい。代替として、同様にCa(II)またはMg(II)等の易酸化性臭化物塩を形成する、アルカリ土類金属も好適であってもよい。随意で、スクラバ38の中で凝縮されたあらゆる液体炭化水素が、ライン37の中ですくい取られて引き出され、次いで、ライン54の中で生成物回収ユニット52から退出する液体炭化水素に添加されてもよい。臭化水素は、水溶液に溶解させられ、次いで、溶液および水中で金属臭化物塩を生じるように、金属水酸化物、金属酸化物、金属酸素・臭化物、またはこれらの種の混合物によって中和させられるべきである。これは、ライン44を介してスクラバ38から除去することができる。
天然ガスまたは精油所ガス流を処理して、オレフィンおよび高分子量炭化水素等の生成物を回収するために使用される、脱水および液体回収の任意の好適な方法、例えば、その後に冷蔵凝縮、極低温膨張、あるいは吸収油または他の溶剤の循環が続く、固体床乾燥剤吸収が、本発明の過程で採用されてもよい。いくつかの実施形態では、ライン53を介して蒸気流から実質的に全ての水を除去するように、スクラバ38から流出物として除去される、オレフィン、高分子量炭化水素、またはそれらの混合物を含む、残留蒸気流が、ライン39を介して脱水機50へ転送されてもよい。水は、ライン53を介して脱水機50から除去することができる。オレフィン、高分子量炭化水素、またはそれらの混合物を含む、乾燥蒸気流はさらに、ライン54の中で液体生成物としてオレフィン、C5+ガソリン範囲炭化水素分率、またはそれらの混合物を回収するように、(例えば、ライン51を介して)生成物回収ユニット52へ渡すことができる。生成物回収ユニット52からの残留蒸気流出物は、過程用の燃料として利用されてもよい浄化流57と、圧縮器58を介して圧縮することができる再生残留蒸気とに分けることができる。圧縮器58から放出される再生残留蒸気は、少なくとも2つの分率に分けることができる。所望であれば、第1の分率(供給ガスモル体積の少なくとも2.5倍に等しくてもよい)は、ポンプ24によって運搬される乾燥液体臭素と組み合わせられるようにライン62を介して輸送し、臭素を蒸発させるように交換器26の中で加熱し、第1のリアクタ30の中へ供給することができる。第2の分率は、リアクタ34への臭化アルキル濃度を希釈するのに十分な速度でライン63(制御弁60によって調節することができる)を介してライン62から引き出し、リアクタ34が、好ましくは約350℃から約450℃の範囲内の選択された動作温度で維持されるように、反応の熱を吸収することができる。ほとんどの場合において、この温度範囲は、選択性と対比して変換を最大限化するように、および炭素析出による触媒失活の速度を最小限化するように思われる。したがって、再生蒸気流出物によって提供される希釈は、第2のリアクタ34の中の温度を変調することに加えて、第1のリアクタ30の中の臭素化の選択性が制御されることを可能にする。
随意で、ライン44を介してスクラバ38から除去される、溶液中に金属臭化物塩を含有する水を、炭化水素ストリッパ47へ渡すことができ、例えば、ライン11を介して輸送される流入供給ガスとの接触によって、残留溶解炭化水素を水相から揮散することができる。揮散過程後に、揮散水溶液は、約0℃から約70℃の範囲内の温度まで冷却されるように、炭化水素ストリッパ47からライン65を介して熱交換器(例えば、熱交換器46)へ輸送することができる。揮散水溶液を冷却することは、水溶液の臭化水素蒸気圧を抑制し、酸化通気流67へのその損失を最小限化し、または実質的に排除してもよいため、望ましくてもよい。次いで、冷却した揮散水溶液は、残留臭素をライン67の中で通気流から回収することができる、吸収体48へ渡すことができる。この回収された臭素を再循環させ、過程で再び使用することができる。
スクラバ48からの水溶液流出物は、約100℃から約600℃の範囲内、最も好ましくは約120℃から約180℃の範囲内の温度まで蒸発および/または予熱されるように、ライン49を介して熱交換器40に輸送し、第3のリアクタ16へ渡すことができる。水から残留臭素を揮散するように、約雰囲気から約5バールの範囲内の圧力で、送風機または圧縮器13によって、酸素または空気を、ライン10を介して底部加熱臭素ストリッパ14へ送達することができる。水は、ライン64の中でストリッパ14から除去され、過程から除去されるライン56の中の水流出物流を形成するように、脱水機50からの水流53と組み合わせられる。臭素ストリッパ14から出て行く酸素または空気は、金属臭化物塩の水溶液を酸化させて、元素臭素、および金属水酸化物、金属酸化物、金属酸素・臭化物、またはこれらの種の混合物を生じるように、約雰囲気から約5バールの範囲内の圧力で、および約100℃から約600℃の範囲内であるが、最も好ましくは約120℃から約180℃の範囲内の温度で動作するリアクタ16へ、ライン15を介して供給される。上述のように、単独で、または他の臭化物塩と組み合わせて、任意の易酸化性臭化物塩が使用されてもよいが、臭化物塩の好ましい金属は、安価であり、約120℃から約180℃の範囲内のより低い温度で容易に酸化し、ガラス裏地またはフッ素重合体裏地付き機器の使用を可能にするため、Fe(III)、Cu(II)、またはZn(II)、またはそれらの混合物である。代替として、同様にCa(II)またはMg(II)等の易酸化性臭化物塩を形成する、アルカリ土類金属を使用することができる。
臭化水素は、もう一度金属臭化物塩および水を生じるように形成された、金属水酸化物、金属酸化物、金属酸素・臭化物、またはこれらの種の混合物と反応する。リアクタ16の中の熱交換器18は、始動中に溶液を予熱するように熱を供給し、反応の熱を補完して水を蒸発させ、リアクタ16から臭素を揮散するように、熱を供給してもよい。したがって、全体的反応は、触媒サイクルにおいて動作する、金属臭化物/金属酸化物または金属水酸化物によって触媒される液相での元素臭素および水への、第1のリアクタ30および第2のリアクタ34の中で生産された臭化水素の正味酸化をもたらす。Fe(III)Br3である金属臭化物の場合、反応は、以下であると考えられる。
1)Fe(+3a)+6Br(-a)+3H(+a)+3/2O2(g)=3Br2(g)+Fe(OH)3
2)3HBr(g)+HO=3H(+a)+3Br(-a)+H
3)3H(+a)+3Br(-a)+Fe(OH)3=Fe(+3a)+3Br(-a)+3H
ライン19を介して第3のリアクタ16の出口から蒸気として出て行く、元素臭素および水ならびに残留酸素または窒素(空気が酸化剤として利用される場合)は、臭素および水を凝縮するように、約0℃から約70℃の範囲内の温度および約雰囲気から5バールの範囲内の圧力において凝縮器20の中で冷却され、3相分離器22へ渡される。3相分離器22の中では、液体水が、約3重量%の臭素に対する限定された溶解度を有するため、凝縮される付加的な臭素は、別個のより密度が高い液体臭素相を形成する。しかしながら、液体臭素相は、約0.1%未満の水に対する顕著に低い溶解度を有する。したがって、液体臭素および水を凝縮し、単純な物理的分離によって水を静かに注ぎ、後に液体臭素を再蒸発させることによって、実質的に乾燥した臭素蒸気が容易に得られてもよい。
液体臭素は、蒸気流62と混合するのに十分な圧力まで、ポンプ24を介して3相分離器22からライン25の中で送出される。したがって、臭素が回収され、過程内で再循環させられる。残留酸素または窒素および凝縮されていない残留臭素蒸気は、3相分離器22から退出し、ライン23を介して臭素スクラバ48へ渡され、残留臭素は、金属臭化物水溶液流65の中の還元金属臭化物の中への溶解によって、およびそれとの反応によって回収される。水が、ライン27を介して分離器22から除去され、ストリッパ14に導入される。
本発明の別の実施形態では、図3を参照すると、約1バールから約30バールの範囲内の圧力で再生ガス流を加えた供給ガスの混合物から成る、低分子量アルカンを含有するガス流が、ライン、パイプ、または導管162を介して輸送または運搬され、ポンプ124を介して輸送された乾燥臭素液体と混合され、液体臭素が蒸発させられる熱交換器126へと渡されてもよい。低分子量アルカンおよび乾燥臭素蒸気の混合物は、リアクタ130に供給することができる。好ましくは、リアクタ130に導入される混合物中の乾燥臭素蒸気に対する低分子量アルカンのモル比は、約2.5:1を超え、より好ましくは約4:1を超え、最も好ましくは約7:1を超える。随意で、リアクタ130は、約250℃から約400℃の範囲内の反応開始温度まで混合物を加熱することができる、入口予熱器ゾーン128を有してもよい。
第1のリアクタ130の中では、低分子量アルカンが、ガス状臭化アルキルおよび臭化水素酸蒸気を生産するように、約250℃から約600℃の範囲内の比較的低い温度で、および約1バールから30バールの範囲内の圧力で、乾燥臭素蒸気と発熱反応させられる。本開示の利益がある当業者に明白となるように、第1のリアクタ30の中の臭素化反応は、均質気相反応または異質触媒反応であってもよい。第1のリアクタ30で使用されてもよい、好適な触媒の非限定的実施例は、Olah, et al, J. Am. Chem. Soc. 1985, 107, 7097-7105で説明されるように、白金、パラジウム、あるいはFeOBrまたはFeOCl等の担持非定比金属酸素・ハロゲン化物、またはTaOF、NbOF、ZrOF、SbOF等の担持金属素・ハロゲン化物を含む。動作温度範囲の上限は、臭素化反応の発熱性質により供給混合物が加熱される、反応開始温度範囲の上限よりも大きい。メタンの場合、臭化メチルの形成は、以下の一般的反応に従って起こると考えられる。
CH(g)+Br(g)→CHBr(g)+HBr(g)
気相臭素化反応のフリーラジカル機構により、ジブロモメタンおよびいくらかのトリブロモタンならびに他の臭化アルキルも形成される。しかしながら、本発明の過程による、この反応はしばしば、第1のリアクタ130で採用されるアルカン対臭素比により、臭化メチルに対する比較的高い程度の選択性で起こる。例えば、メタンの臭素化の場合、約6:1のメタン対臭素比は、滞留時間、温度、および乱流混合等の反応条件に応じて、モノハロゲン化臭化メチルに対する選択性を平均約88%まで増加させると考えられる。これらの条件において、いくらかのジブロモメタン、および検出可能な限度に接近する極めて少量のみのトリブロモメタンもまた、臭素化反応で形成されてもよい。約2.6から1のより低いメタン対臭素比が利用される場合、モノハロゲン化臭化メチルに対する選択性は、他の反応条件に応じて、約65から75%の範囲に下がってもよい。約2.5から1よりも有意に小さいメタン対臭素比で、臭化メチルに対する容認不可能な低い選択性が発生し、また、望ましくないジブロモメタン、トリブロモメタン、および炭素煤の有意な形成が観察されてもよい。そのようなモノハロゲン化臭化メチルに対する選択性を達成するために必要な第1のリアクタ130の中の反応物の滞留時間は、比較的短く、断熱反応条件下で約1〜5秒ほども少なくてもよい。エタン、プロパン、およびブタン等の高級アルカンもまた、臭素化されてもよく、臭化エチル、臭化プロピル、および臭化ブチル等の一および多重臭素化種をもたらす。さらに、いくつかの実施形態では、第1のリアクタ130の中へ供給される乾燥臭素蒸気は、実質的に水を含まなくてもよい。出願者らは、少なくとも場合によっては、第1のリアクタ130の中の臭素化ステップからの実質的に全ての水蒸気の排除が、不要な二酸化炭素の形成を実質的に排除すると思われるため、これが好ましくてもよいことを発見した。これは、臭化アルキルに対するアルカン臭素化の選択性を増大させ、したがって、アルカンからの二酸化炭素の形成で生成された大量の廃熱をできる限り排除してもよい。
臭化アルキルおよび臭化水素を含む流出物は、ライン131を介して第1のリアクタ130から引き出すことができる。いくつかの実施形態では、この流出物は、第2のリアクタ134へと流れる前に熱交換器132の中で約150℃から500℃の範囲内の温度まで部分的に冷却することができる。流出物が熱交換器132の中で部分的に冷却される温度は、第2のリアクタ134の中で臭化アルキルを高分子量炭化水素に変換することが所望される時に約150℃から約400℃の範囲内であり、または第2のリアクタ134の中で臭化アルキルをオレフィンに変換することが所望される時に約150℃から約450℃の範囲である。第2のリアクタ134は、オレフィン、高分子量炭化水素、またはそれらの混合物を含む生成物を形成するよう、残留アルキル部分を脱ハロゲン化水素化およびオリゴマー化すると考えられる。第2のリアクタ134で使用される触媒および第2のリアクタ134が操作される温度は、リアクタ34に関して上記で説明されるように、所望の炭化水素生成物を達成するように選択することができる。ある実施形態では、第2のリアクタ134は、触媒の固定床133を備えてもよい。合成触媒の流動床はまた、ある状況で、特に、より大型の用途で使用されてもよく、コークスの一定の除去および生成物組成に対する定常選択性等のある利点を有してもよい。
通常過程流からリアクタ134を隔離し、実用的である限り、触媒上で吸収された未反応材料を除去するように、約1〜約5バールの範囲内の圧力および約400℃から約650℃の範囲内の高温で、ライン170を介して不活性ガスで浄化し、次いで、約1バールから約5バールの範囲内の圧力および約400℃から約650℃の範囲内の高温で、ライン170を介したリアクタ134への空気または不活性ガス希釈酸素の添加によって、後に析出炭素をCOに酸化することによって、触媒は、原位置で周期的に再生されてもよい。二酸化炭素および残留空気または不活性ガスが、再生期間中にライン175を介してリアクタ134から放出されてもよい。大抵の場合、触媒上で吸収されたHBrまたは臭化アルキルの酸化に起因する微量の臭素が、過程内で回収および再利用されてもよいように、リアクタ134からライン175を介して過程の酸化部分(図示せず)へ再生オフガスを送ることが好ましい。
臭化水素、および高分子量炭化水素、オレフィン、またはそれらの混合物を含む、流出物は、ライン135を介して第2のリアクタ134から引き出され、交換器136の中で約0℃から約100℃の範囲内の温度まで冷却され、炭化水素ストリッパ147からのライン112の中の蒸気流出物と組み合わせられる。次いで、混合物は、スクラバ138へ渡され、ポンプ143等の任意の好適な手段によって、ライン164の中でスクラバ138に輸送される、揮散再循環水と接触させられ、熱交換器155の中で約0℃から約50℃の範囲内の温度まで冷却される。スクラバ38の中で凝縮されたあらゆる液体炭化水素生成物は、流れ137としてすくい取られて引き出され、液体炭化水素生成物154に添加されてもよい。臭化水素は、ライン144を介してスクラバ138から除去される水溶液にスクラバ138の中で溶解させられ、炭化水素ストリッパ147へ渡され、水溶液に溶解させられた残留炭化水素は、供給ガス111との接触によって揮散される。炭化水素ストリッパ147からの揮散水相流出物は、熱交換器146の中で約0℃から約50℃の範囲内の温度まで冷却され、次いで、ライン165を介して、残留臭素が通気流167から回収される吸収体148へ渡される。
オレフィン、高分子量炭化水素、またはそれらの混合物を含む、残留蒸気相は、スクラバ138から流出物として除去され、ガス流から実質的に全ての水を除去して、生成物回収ユニット152の中で液体水の形成、凍結、または水和物の形成を防止するように、ライン139を介して脱水機150へ転送される。水は、ライン153を介して脱水機150から除去されてもよい。オレフィン、高分子量炭化水素、またはそれらの混合物を含有する、乾燥ガス流はさらに、ライン154の中で液体生成物としてオレフィン、高分子量炭化水素分率、またはそれらの混合物を回収するように、ライン151を介して生成物回収ユニット152へ渡される。当業者に公知であるような、天然ガスまたは精油所ガス流を処理してオレフィン炭化水素を回収するために使用される、例えば、その後に冷蔵凝縮、極低温膨張、あるいは吸収油または他の溶剤の循環が続く、固体床乾燥剤吸収等の脱水および液体回収の任意の従来の方法が、本発明の実装で採用されてもよい。次いで、生成物回収ユニット152からの残留蒸気流出物は、過程用の燃料として利用されてもよい浄化流157と、圧縮器158を介して圧縮される再生残留蒸気とに分けられる。圧縮器158から放出される再生残留蒸気は、少なくとも2つの分率に分けられる。供給ガス体積の少なくとも2.5倍に等しい第1の分率は、ライン162を介して輸送され、ライン125の中で運搬された液体臭素と組み合わせられ、交換器126へ渡され、液体臭素は、蒸発させられ、第1のリアクタ130の中へ供給される。第2の分率は、ライン163を介してライン162から引き出され、リアクタ134への臭化アルキル濃度を希釈するのに十分な速度で制御弁160によって調節され、選択性と対比して変換を最大限化するため、および炭素析出による触媒失活の速度を最小限化するために、リアクタ134が、好ましくは約350℃から約450℃の範囲内の選択された動作温度で維持されるように、反応の熱を吸収する。したがって、再生蒸気流出物によって提供される希釈は、第2のリアクタ134の中の温度を変調することに加えて、第1のリアクタ130の中の臭素化の選択性が制御されることを可能にする。
酸素、酸素富化空気、または空気110は、約雰囲気から約5バールの範囲内の圧力で任意の好適なデバイスまたは方法によって(例えば、圧縮器113を介して)臭素ストリッパ114に添加されてもよい。これは、水から残留臭素を揮散することが有利である場合に望ましくてもよい。揮散水は、ライン164を介してストリッパ114から退出してもよく、少なくとも2つの部分に分けることができる。揮散水の第1の部分は、ライン164を介して再循環させ、熱交換器155の中で約20℃から約50℃の範囲内の温度まで冷却し、ポンプ143等の任意の好適な手段によってスクラバ138に進入するのに十分な圧力で維持することができる。再循環させられる水の部分は、ライン144を介してスクラバ138から除去される臭化水素酸溶液流出物が、約10重量%から約50重量%の範囲内であるが、好ましくは約30重量%から約48重量%の範囲内の臭化水素酸の濃度を有し、交換器141および予熱器119の中で蒸発させられなければならない水の量を最小限化するように、および結果として生じる酸と比べてHBrの蒸気圧を最小限化するように選択される。ストリッパ114からの水の第2の部分は、ライン164から、およびライン156を介して過程から除去される。
スクラバ148からの水溶液流出物に含有される溶解臭化水素は、ライン115の中で臭素ストリッパ114から出て行く酸素、酸素富化空気、または空気と混合することができる。この混合物は、例えば、熱交換器141および予熱器119によって、約120℃から約600℃の範囲内、最も好ましくは約150℃から約250℃の範囲内の温度まで蒸発および/または予熱することができる。いったん蒸発および予熱されると、混合物は、金属臭化物塩または金属酸化物を含有する第3のリアクタ117に添加されてもよい。任意の好適な臭化物塩または臭化物塩の組み合わせが使用されてもよい。臭化物塩または金属酸化物の好ましい金属は、Fe(III)、Cu(II)、またはZn(II)、あるいはそれらの混合物である。酸化リアクタ117の中の金属臭化物塩は、濃縮水溶液として利用されてもよく、または好ましくは、濃縮塩水溶液が、シリカゲル等の多孔性で低〜中表面積の耐酸性不活性担体の中へ吸収されてもよい。より好ましくは、10〜20重量%の範囲内の金属の酸化物形態が、5〜200m2/gの範囲内の比表面積を伴うアルミナ等の不活性支持材上に堆積させられる。酸化リアクタ117は、約雰囲気から約5バールの範囲内の圧力で、および約100℃から600℃の範囲内であるが、最も好ましくは約130℃から350℃の範囲内の温度で動作し、その中で、金属臭化物は、酸素によって酸化させられ、元素臭素、および金属水酸化物、金属酸化物、または金属酸素・臭化物種を生じ、あるいは、水が主に蒸気として退出してもよい、より高い温度およびより低い圧力で操作される、担持金属臭化物塩または金属酸化物の場合は金属酸化物を生じる。いずれの場合も、臭化水素は、金属水酸化物、金属酸素・臭化物、または金属酸化物種と反応し、中和させられ、金属臭化物塩を還元して水を生じる。したがって、全体的反応は、触媒サイクルにおいて動作する、金属臭化物/金属酸化物または金属水酸化物によって触媒される元素臭素および水蒸気への、第1のリアクタ130および第2のリアクタ134の中で生産された臭化水素の正味酸化をもたらす。水溶液中のFe(III)Brであり、水が液体として退出してもよい、圧力および温度範囲内で操作される、金属臭化物の場合、反応は、以下であると考えられる。
1)Fe(+3a)+6Br(-a)+3H(+a)+3/2O(g)=3Br(g)+Fe(OH)3
2)3HBr(g)+HO=3H(+a)+3Br(-a)+H
3)3H(+a)+3Br(-a)+Fe(OH)3=Fe(+3a)+3Br(-a)+3H
不活性担体上で担持され、水が主に蒸気として退出する、より高い温度およびより低い圧力で操作される、Cu(II)Br2である金属臭化物の場合、反応は、以下であると考えられる。
1)2Cu(II)Br2=2Cu(I)Br+Br2(g)
2)2Cu(I)Br+O(g)=Br2(g)+2Cu(II)O
3)2HBr(g)+Cu(II)O=Cu(II)Br+HO(g)
第3のリアクタ117の出口から蒸気として出て行く、元素臭素および水ならびに残留酸素または窒素(空気または酸素富化空気が酸化剤として利用される場合)は、ライン127を介して輸送され、交換器141および凝縮器120の第2の側で約0℃から約70℃の範囲内の温度まで冷却され、臭素および水が凝縮され、3相分離器122へ渡される。3相分離器122の中では、液体水が、約3重量%の臭素に対する限定された溶解度を有するため、凝縮される付加的な臭素は、別個のより密度が高い液体臭素相を形成する。しかしながら、液体臭素相は、約0.1%未満の水に対する顕著に低い溶解度を有する。したがって、液体臭素および水を凝縮し、単純な物理的分離によって水を静かに注ぎ、後に液体臭素を再蒸発させることによって、実質的に乾燥した臭素蒸気が容易に得られてもよい。HBrが水相における臭素の混和性を増大させるにつれて、凝縮液体臭素および水の中の有意な残留HBrを回避するよう、HBrのほぼ完全な反応をもたらし、十分高い濃度で、単一の三元液相をもたらす、条件で動作することが重要である。
随意で、液体臭素は、蒸気流162と混合するのに十分な圧力まで、ポンプ124を介して3相分離器122から送出することができる。したがって、これらの実施形態では、臭素は、回収し、過程内で再循環させることができ、それは有益となり得る。残留空気、酸素富化空気、または酸素、および凝縮されていない残留臭素蒸気は、臭素スクラバ148へと3相分離器122から退出してもよく、残留臭素は、ライン165を介してスクラバ148に運搬された臭化水素酸溶液の中への溶解によって回収することができる。水は、ライン129を介して3相分離器122から除去し、ストリッパ114へ渡すことができる。
したがって、本発明の過程のある実施形態では、金属臭化物/金属水酸化物、金属酸素・臭化物、または金属酸化物は、触媒サイクルで動作し、臭素が過程内で再利用するために再循環させられることを可能にする。金属臭化物は、元素臭素蒸気、および金属水酸化物、金属酸素・臭化物、または金属酸化物を生じるように、約100℃から約600℃の範囲内、最も好ましくは約120℃から約350℃の範囲内の温度で、水相または蒸気相のいずれか一方における酸素、酸素富化空気、または空気によって容易に酸化させられる。約180℃を下回る温度での動作が有利であり、それにより、低費用の耐食フッ素重合体裏地付き機器の使用を可能にする。臭化水素は、金属水酸化物または金属酸化物との反応によって中和させられ、水蒸気および金属臭化物を生じる。
元素臭素蒸気および水蒸気は、凝縮され、単純な物理的分離によって液相で容易に分離され、実質的に乾燥した臭素を生じる。有意な水の欠如は、COの生産と、かなりの分岐アルカン、置換芳香族化合物、またはそれらの混合物を含有する、主に高分子量の炭化水素への臭化アルキルの後続の効率的かつ選択的反応とを伴わずに、アルカンの選択的臭素化を可能にする。リアクタ134の中の臭素化反応および後続反応からの副生成物臭化水素蒸気は、水相の中へ容易に溶解させられ、金属臭化物の酸化に起因する金属水酸化物または金属酸化物種によって中和させられる。
図4Aに図示される本発明の過程の別の実施形態によれば、アルキル臭素化および臭化アルキル変換段階は、上記の図2および3に関して説明される、対応する段階と実質的に同様に操作される。より具体的には、約1バールから約30バールの範囲内の圧力で、供給ガスおよび再生ガス流の混合物から成る低分子量アルカンを含有する、ガス流が、それぞれ、ライン、パイプ、または導管262および211を介して輸送または運搬され、ライン225の中で乾燥臭素液体と混合される。結果として生じた混合物は、ポンプ224を介して輸送され、熱交換器226へ渡され、液体臭素は蒸発させられる。低分子量アルカンおよび乾燥臭素蒸気の混合物は、リアクタ230へ供給される。好ましくは、リアクタ230に導入される混合物中の乾燥臭素蒸気に対する低分子量アルカンのモル比は、約2.5:1を超え、より好ましくは約4:1を超え、最も好ましくは約7:1を超える。リアクタ230は、約250℃から約400℃の範囲内の反応開始温度まで混合物を加熱する、入口予熱器ゾーン238を有する。
第1のリアクタ230の中では、低分子量アルカンが、ガス状臭化アルキルおよび臭化水素酸蒸気を生産するように、約250℃から約600℃の範囲内の比較的低い温度で、および約1バールから30バールの範囲内の圧力で、乾燥臭素蒸気と発熱反応させられる。本開示の利益がある当業者に明白となるように、第1のリアクタ30の中の臭素化反応は、発熱反応または触媒反応であってもよい。第1のリアクタ30で使用されてもよい、好適な触媒の非限定的実施例は、Olah, et al, J. Am. Chem. Soc. 1985, 107, 7097-7105で説明されるように、白金、パラジウム、あるいはFeOBrまたはFeOCl等の担持非定比金属酸素・ハロゲン化物、またはTaOF、NbOF、ZrOF、SbOF等の担持金属素・ハロゲン化物を含む。動作温度範囲の上限は、臭素化反応の発熱性質により供給混合物が加熱される、反応開始温度範囲の上限よりも大きい。メタンの場合、臭化メチルの形成は、以下の一般的反応に従って起こる。
CH(g)+Br(g)→CHBr(g)+HBr(g)
気相臭素化反応のフリーラジカル機構により、ジブロモメタンおよびいくらかのトリブロメタンならびに他の臭化アルキルも形成される。しかしながら、本発明の過程による、この反応はしばしば、第1のリアクタ230で採用されるアルカン対臭素比により、臭化メチルに対する比較的高い程度の選択性で起こる。例えば、メタンの臭素化の場合、約6:1のメタン対臭素比は、滞留時間、温度、および乱流混合等の反応条件に応じて、モノハロゲン化臭化メチルに対する選択性を平均約80%まで増加させると考えられる。これらの条件において、いくらかのジブロモメタン、および検出可能な限度に接近する極めて少量のみのトリブロモメタンもまた、臭素化反応で形成されてもよい。約2.6から1のより低いメタン対臭素比が利用される場合、モノハロゲン化臭化メチルに対する選択性は、他の反応条件に応じて、約65から75%の範囲に下がってもよい。約2.5から1よりも有意に小さいメタン対臭素比で、臭化メチルに対する容認不可能な低い選択性が発生し、また、望ましくないジブロモメタン、トリブロモメタン、および炭素煤の有意な形成が観察されてもよい。そのようなモノハロゲン化臭化メチルに対する選択性を達成するために必要な第1のリアクタ230の中の反応物の滞留時間は、比較的短く、断熱反応条件下で約1〜5秒ほども少なくてもよい。エタン、プロパン、およびブタン等の高級アルカンもまた、臭素化されてもよく、臭化エチル、臭化プロピル、および臭化ブチル等の一および多重臭素化種をもたらす。さらに、いくつかの実施形態では、第1のリアクタ230の中へ供給される乾燥臭素蒸気は、実質的に水を含まなくてもよい。出願者らは、少なくとも場合によっては、第1のリアクタ230の中の臭素化ステップからの実質的に全ての水蒸気の排除が、不要な二酸化炭素の形成を実質的に排除すると思われるため、これが好ましくてもよいことを発見した。これは、臭化アルキルに対するアルカン臭素化の選択性を増大させ、したがって、アルカンからの二酸化炭素の形成で生成された大量の廃熱をできる限り排除してもよい。
臭化アルキルおよび臭化水素を含む流出物が、ライン231を介して第1のリアクタ230から引き出される。いくつかの実施形態では、この流出物は、第2のリアクタ234へと流れる前に熱交換器232の中で部分的に冷却されてもよい。流出物が熱交換器232の中で部分的に冷却される温度は、第2のリアクタ234の中で臭化アルキルを高分子量炭化水素に変換することが所望される時に約150℃から約390℃の範囲内であり、または第2のリアクタ234の中で臭化アルキルをオレフィンに変換することが所望される時に約150℃から約450℃の範囲である。第2のリアクタ234は、オレフィン、高分子量炭化水素、またはそれらの混合物を含む生成物を形成するよう、結果として生じたアルキル部分を脱ハロゲン化水素化およびオリゴマー化すると考えられる。第2のリアクタ234で使用される触媒および第2のリアクタ234が操作される温度は、リアクタ34に関して上記で説明されるように、所望の炭化水素生成物を達成するように選択することができる。ある実施形態では、第2のリアクタ234は、触媒の固定床233を備えてもよい。合成触媒の流動床はまた、ある状況で、特に、より大型の用途で使用されてもよく、コークスの一定の除去および生成物組成に対する定常選択性等のある利点を有してもよい。
通常過程流からリアクタ234を隔離し、実用的である限り、触媒上で吸収された未反応材料を除去するように、約1バールから約5バールの範囲内の圧力および約400℃から約650℃の範囲内の高温で、ライン270を介して不活性ガスで浄化し、次いで、約1バールから約5バールの範囲内の圧力および約400℃から約650℃の範囲内の高温で、ライン270を介したリアクタ234への空気または不活性ガス希釈酸素の添加によって、後に析出炭素をCOに酸化することによって、触媒は、原位置で周期的に再生されてもよい。二酸化炭素および残留空気または不活性ガスが、再生期間中にライン275を介してリアクタ234から放出されてもよい。大抵の場合、触媒上で吸収されたHBrまたは臭化アルキルの酸化に起因する微量の臭素が、回収され、過程内で再利用されてもよいように、リアクタ234からライン275を介して過程の酸化部分(図示せず)へ再生オフガスを送ることが好ましい。
臭化水素、および高分子量炭化水素、オレフィン、またはそれらの混合物を含む、流出物は、ライン235を介して第2のリアクタ234から引き出され、交換器236の中で約100℃から約600℃の範囲内の温度まで冷却される。図4Aに図示されるように、冷却した流出物は、開放位置の弁238および閉鎖位置の弁239および243を伴ってライン235および241を介して輸送され、固相金属酸化物の層298を含有する容器またはリアクタ240の中へ導入される。金属酸化物の金属は、マグネシウム(Mg)、カルシウム(Ca)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Sn)、またはスズ(Sn)から選択される。金属は、所望の動作温度に対する、その物理的および熱力学的特性の影響について、また、潜在的な環境および健康への影響および費用について選択される。好ましくは、マグネシウム、ニッケル、銅、鉄、またはそれらの混合物が、金属として採用され、マグネシウム、ニッケル、またはそれらの混合物が最も好ましい。これらの金属は、酸化物だけでなく臭化物塩も形成する特性を有し、反応は約500℃未満の温度範囲で可逆的である。固体金属酸化物は、好ましくは、好適な耐摩耗担体、例えば、Davison Catalysts(Columbia, Maryland)製のDavicat Grade 57等の合成非晶質シリカ上で不動化される。またはより好ましくは、約5〜400m/gの範囲内の比表面積を伴うシリカまたはアルミナ担体上である。リアクタ240の中で、臭化水素酸は、Mが金属を表す、以下の一般的反応に従って、約600℃を下回る、好ましくは約100℃から約550℃の間の温度で、金属酸化物と反応させられる。
2HBr+MO→MBr+H
この反応に起因する水蒸気は、開いた弁219を介して、ライン244、218、および216の中の高分子炭化水素とともに熱交換器220へ輸送され、混合物は、約0℃から約70℃の範囲内の温度まで冷却される。この冷却した混合物は、ガス流から実質的に全ての水を除去するように、脱水機250へ転送される。次いで、水は、ライン253を介して脱水機250から除去される。オレフィン、高分子量炭化水素、またはそれらの混合物を含有する、乾燥ガス流はさらに、ライン254の中で液体生成物としてオレフィン、C5+分率、またはそれらの混合物を回収するように、ライン251を介して生成物回収ユニット252へ渡される。当業者に公知であるような、天然ガスまたは精油所ガス流を処理してオレフィン炭化水素を回収するために使用される、例えば、その後に冷蔵凝縮、極低温膨張、あるいは吸収油または他の溶剤の循環が続く、固体床乾燥剤吸収等の脱水および液体回収の任意の従来の方法が、本発明の実装で採用されてもよい。次いで、生成物回収ユニット252からの残留蒸気流出物は、過程用の燃料として利用されてもよい浄化流257と、圧縮器258を介して圧縮される再生残留蒸気とに分けられる。圧縮器258から放出される再生残留蒸気は、少なくとも2つの分率に分けられる。供給ガス体積の少なくとも1.5倍に等しい第1の分率は、ライン262を介して輸送され、ライン225の中で運搬された液体臭素および供給ガスと組み合わせられ、交換器226へ渡され、液体臭素は、蒸発させられ、上記で説明される方式で第1のリアクタ230の中へ供給される。第2の分率は、ライン263を介してライン262から引き出され、リアクタ234への臭化アルキル濃度を希釈するのに十分な速度で制御弁260によって調節され、選択性と対比して変換を最大限化するため、および炭素析出による触媒失活の速度を最小限化するために、リアクタ234が、好ましくは約300℃から約450℃の範囲内の選択された動作温度で維持されるように、反応の熱を吸収する。したがって、再生蒸気流出物によって提供される希釈は、第2のリアクタ234の中の温度を変調することに加えて、第1のリアクタ230の中の臭素化の選択性が制御されることを可能にする。
酸素、酸素富化空気、または空気210は、送風機または圧縮器213を介して、約雰囲気から約10バールの範囲内の圧力で、熱交換器215を通したライン214、ライン215、および弁249を介して、臭素へ送達され、酸素、酸素富化空気、または空気は、固相金属臭化物の層299を含有する第2の容器またはリアクタ246へ、約30℃から約600℃、より好ましくは100℃から約500℃の範囲内の温度まで予熱される。酸素は、Mが金属を表す、以下の一般的反応に従って、金属臭化物と反応させられる。
MBr+1/2O→MO+Br
このようにして、乾燥した実質的にHBrを含まない臭素蒸気が生産され、それにより、液体臭素からの水または臭化水素の後続の分離の必要性を排除する。リアクタ246は、600℃を下回って、より好ましくは約300℃から約500℃の間で操作される。結果として生じた臭素蒸気は、リアクタ246から、ライン247、弁248、およびライン242を介して熱交換器または凝縮器221へ輸送され、臭素は、液体に凝縮される。液体臭素は、ライン242を介して分離器222へ輸送され、液体臭素は、ライン225を介して除去され、ポンプ224による等の任意の好適な手段によって、ライン225を介して熱交換器226および第1のリアクタ230へ輸送される。残留空気または未反応酸素は、分離器222から、ライン227を介して、当業者によって選択されるような好適な溶剤または好適な固体吸着媒体を含有する、ベンチュリ洗浄システム等の臭素洗浄ユニット223へ輸送され、残りの臭素は、捕捉される。捕捉された臭素は、加熱または他の好適な手段によって、洗浄溶剤または吸着剤から脱着され、したがって、回収された臭素は、ライン212を介してライン225へ輸送される。洗浄した空気または酸素は、ライン229を介して放出される。このようにして、窒素および任意の他の実質的に非反応性の成分が、本発明のシステムから除去され、それにより、過程の炭化水素含有部分に進入することを許可されず、また、周辺環境への臭素の損失も回避される。
単純な物理的溶解度によるよりもむしろ、この実施形態による化学反応によってHBrを除去することの1つの利点は、より高い過程温度での低レベルへのHBrの実質的に完全な掃気である。別の明確に異なる利点は、除去された臭素からの水の排除であり、それにより、臭素および水相の分離、ならびに水相からの残留臭素の揮散の必要性を排除する。
リアクタ240および246は、周期的に操作されてもよい。図4Aに図示されるように、弁238および219は、臭化水素酸が、第2のリアクタ240から引き出される流出物から除去されることを可能にするように、開放モードで操作される一方で、弁248および249は、空気、酸素富化空気、または酸素が、リアクタ246を通って流れ、その中に含有された固体金属臭化物を酸化させることを可能にするように、開放モードで操作される。いったんそれぞれリアクタ240および246の中の金属酸化物および金属臭化物の有意な変換が起こると、これらの弁が閉じられる。この時点で、リアクタ246の中の層299が、実質的に固体の金属酸化物の層である一方で、リアクタ240の中の層298は、実質的に固体の金属臭化物である。
当業者に明白となるように、リアクタ240および246の間で流動を循環させるステップの間で、最初に、リアクタ240の中に残存する残留炭化水素を浄化し、また、不活性ガス源とともにリアクタ246の中に残存する残留臭素を浄化して、サイクルにおける後続のステップへの炭化水素および臭素の損失を阻止することが好ましい。サイクルのステップの間に層を浄化することによって、高分子量生成物炭化水素の起こり得る損失および/または臭素化が阻止される。
図5Aに図示されるように、次いで、弁245および243は、酸素、酸素富化空気、または空気が、リアクタ240を通って流れ、その中に含有された固体金属臭化物を酸化させることを可能にするように、後に開かれる一方で、弁239および217は、第2のリアクタ234から引き出される、高分子量炭化水素および臭化水素を含む流出物が、ライン237を介してリアクタ246に導入されることを可能にするように開かれる。リアクタは、このようにして、それぞれリアクタ246および240の中の金属酸化物および金属臭化物の有意な変換が起こるまで操作され、次いで、リアクタは、以前に論議されるように弁を開閉することによって、図4Aに図示されるフロー概略図に戻って循環させられる。
また、当業者にさらに明白となるように、固体不活性担体(不活性固体担体上の原子金属としての金属の重量パーセント荷重として表されてもよい)上に堆積させられたMgO/MgBr2等の活性金属酸化物/金属臭化物の量は、固体床298および299の中で発生する固体不活性担体の熱容量に対する反応の熱の比により、リアクタ240および246にわたって発生する温度変化に影響を及ぼす。不活性担体の量に対して金属荷重を増加させることは、特定のHBr除去能力のために必要とされる容器のサイズを減少させるため望ましいが、発生する温度上昇もまた、不活性担体の熱容量に対する反応の熱の比較的大きい比により、大きくなる。結果として生じた温度上昇は、過剰であってもよく、高分子量炭化水素生成物の熱分解の酸化、または金属臭化物の揮発度をもたらし得る。したがって、容認可能な温度上昇は、代替として、サイクル時間を制限し、または固体床298および299の有用なHBr除去能力を効果的に制限してもよい。送風機または圧縮器(図示せず)を用いた、外部熱交換器を通した流出物ガスリサイクルの使用が、リアクタ240および246にわたる温度上昇を制限し、また、リアクタ240および246の循環の間に固体床298および299の冷却を達成する手段として、当業者によって考慮されてもよい。2つのリアクタ240および246が、本発明の概念を例証するように示されているが、ある実施形態では、連続過程動作を可能にし、また、HBr除去ステップからBr2生成ステップへのリアクタの切替の間に浄化および冷却を可能にする実用的な手段として、2つより多くのリアクタ、すなわち、3つ(以上)を本発明の実装で利用できることが、当業者に明白となるはずである。
酸素が、ライン210を介して、その中に含有された固体金属臭化物を酸化させるために使用されているリアクタへ輸送される、酸化ガスとして利用される時に、図4Aおよび5Aに図示される本発明の過程の実施形態は、リアクタ246(図4B)または240(図5B)のいずれか一方から生産される臭素蒸気が、ライン242および225を介して第1のリアクタ230へ直接輸送されるように修正されてもよい。酸素が反応性であり、流出物Br2蒸気中の酸素のかなりの存在を回避するように、酸素の制御された限定供給でリアクタ246および240を操作することができるため、臭素蒸気を液体に凝縮して、窒素等の未反応成分からそれを分離する必要性があらかじめ避けられる。商業用空気分離ユニット(ASU)等の実質的に全ての商業用酸素源が、必要圧力で酸素をライン210に提供するため、圧縮器213は、図4Bおよび5Bでは図示されていない。もしそうでなければ、当業者に明白となるように、そのような圧力を達成するために、圧縮器213を利用することができる。
図6Aに図示される本発明の実施形態では、それぞれ、リアクタ240および246に含有される固体金属酸化物粒子および固体金属臭化物粒子の層が、流動化され、各リアクタを往復する流動方向を変化させる弁等の機器を提供する必要なく、層の連続動作を提供するように、以下で説明される方式で接続される。この実施形態によれば、高分子量炭化水素および臭化水素酸を含む流出物が、ライン235を介して第2のリアクタ234から引き出され、交換器236の中で約100℃から約500℃の範囲内の温度まで冷却され、固体金属酸化物粒子の層298を含有するリアクタ240の底部に導入される。臭化水素が、図4Aに関して上記で説明されるような方式で金属酸化物と反応させられるにつれて、この導入された流体の流動は、層298の中の粒子をリアクタ240内で上向きに移動させる。層298の最上部で、またはその付近で、リアクタ240の中の固体金属酸化物との臭化水素の実質的に完全な反応により、耐摩耗担体上に実質的に固体の金属臭化物を含有する粒子が、堰またはサイクロンあるいは他の従来の固体/気体分離の手段を介して引き出され、重力によってライン259を下って流れ、リアクタ246の中の固体金属臭化物粒子の層299の底部で、またその付近で導入される。図6Aに図示される実施形態では、酸素、酸素富化空気、または空気210が、約雰囲気から約10バールの範囲内の圧力で送風機または圧縮器213を介して送達され、ライン214を介して熱交換器215を通して輸送され、酸素、酸素富化空気、または空気は、約30℃から約600℃、より好ましくは100℃から約500℃の範囲内の温度まで予熱され、固相金属臭化物の層299より下側で第2の容器またはリアクタ246へ導入される。酸素は、乾燥した実質的にHBrを含まない臭素蒸気を生産するように、図4Aに関して上記で説明される方式で金属臭化物と反応する。酸素が金属臭化物と反応させられるにつれて、この導入されたガスの流動は、層299の中の粒子をリアクタ246内で上向きに流れさせる。層298の最上部で、またはその付近で、リアクタ246の中の固体金属酸化物との酸素の実質的に完全な反応により、耐摩耗担体上に相当量の固体金属酸化物を含有する粒子が、堰またはサイクロンあるいは他の従来の固体/気体分離の手段を介して引き出され、重力によってライン264を下って流れ、リアクタ240の中の固体金属酸化物粒子の層298の底部で、またその付近で導入される。このようにして、リアクタ240および246は、動作のパラメータを変更することなく連続的に操作されてもよい。
当業者に公知であるように、選択される金属酸化物または金属臭化物に応じて、発熱反応の場合に熱を除去するため、または吸熱反応の場合に熱を印加するために、固体の移動床298および299内に位置付けられる熱交換器を利用することが有利であってもよい。好ましいMgO/MgBr2を使用する場合、両方の反応は発熱である。
図6Bに図示される実施形態では、酸素が、酸化ガスとして利用され、ライン210を介してリアクタ246へ輸送される。したがって、図6Aに図示される本発明の過程の実施形態は、リアクタ246から生産される臭素蒸気が、ライン242および225を介して第1のリアクタ230へ直接輸送されるように修正される。酸素が反応性であり、流出物臭素蒸気中のかなりの酸素の存在を回避するように、酸素の制御された限定供給でリアクタ246を操作することができるため、臭素蒸気を液体に凝縮して、窒素等の未反応成分からそれを分離する必要性があらかじめ避けられる。商業用空気分離器ユニット等の実質的に全ての商業用酸素源が、必要圧力で酸素をライン210に提供するため、圧縮器213は、図6Bでは図示されていない。もしそうでなければ、当業者に明白となるように、そのような圧力を達成するために、圧縮器213を利用することができる。
図7に図示される本発明の別の実施形態では、アルキル臭素化および臭化アルキル変換段階は、以下での論議を除いて、図4Aに関して詳細に説明される、対応する段階と実質的に同様に操作される。しかしながら、この実施形態では、リアクタ246からの流出物中のかなりの未反応酸素の存在を防止するよう、制御された限定量の酸化ガスを用いてリアクタ246を操作することが重要である。リアクタ246から発する残留窒素および臭素蒸気は、ライン247、弁248およびライン242、および弁300を介して、熱交換器または凝縮器221へ輸送され、臭素含有ガスは、約30℃から約300℃の範囲内の温度まで冷却される。次いで、臭素含有蒸気は、ライン242を介して、還元原子価状態で固相金属臭化物の層322を含有する容器またはリアクタ320へ輸送される。還元原子価状態での金属臭化物の金属は、銅(Cu)、鉄(Fe)、またはモリブデン(Mo)から選択される。金属は、所望の動作温度に対する、その物理的および熱力学的特性の影響について、また、潜在的な環境および健康への影響および費用について選択される。好ましくは、銅または鉄が、金属として採用され、鉄が最も好ましい。固体金属臭化物は、好ましくは、好適な耐摩耗担体、例えば、Davison Catalysts(Columbia, Maryland)製のDavicat Grade 57等の合成非晶質シリカ上で不動化される。より好ましくは、金属は、約5〜400m/gの範囲内の比表面積を伴うアルミナ担体上で、約10〜20wt%の範囲内の酸化物形態で堆積させられる。リアクタ320の中で、臭素蒸気は、Mが金属を表す、以下の一般的反応に従って、選択される金属臭化物に応じて、約300℃を下回る、好ましくは約30℃から約200℃の間の温度で、好ましくは好適な耐摩耗担体上で保持される、固相金属臭化物と反応させられる。
2MBr+Br→2MBrn+1
このようにして、臭素が、リアクタ320の中で、第2の金属臭化物、すなわち、2MBrn+1として貯蔵される一方で、残留空気または酸素を含有する、結果として生じた蒸気は、ライン324、弁326、およびライン318を介して、リアクタ320から放出される。
供給ガス(ライン211)および再生ガス流の混合物から成る、低分子量アルカンを含有するガス流が、ライン262、ガス流が約150℃から約600℃の範囲内の温度まで予熱される熱交換器352、弁304、およびライン302を介して、酸化原子価状態の固相金属臭化物の層312を含有する第2の容器またはリアクタ310へ輸送または運搬される。酸化原子価状態の金属臭化物の金属は、銅(Cu)、鉄(Fe)、またはモリブデン(Mo)から選択される。金属は、所望の動作温度に対する、その物理的および熱力学的特性の影響について、また、潜在的な環境および健康への影響および費用について選択される。好ましくは、銅または鉄が、金属として採用され、鉄が最も好ましい。酸化状態の固体金属臭化物は、好ましくは、好適な耐摩耗担体、例えば、Davison Catalysts(Columbia, Maryland)製のDavicat Grade 57等の合成非晶質シリカ上で不動化される。より好ましくは、金属は、約5〜200m/gの範囲内の比表面積を伴うアルミナ担体上で担持される、約10〜20wt%の範囲内の酸化物状態で堆積させられる。ガス流の温度は、約150℃から約600℃、好ましくは約150℃から約300℃である。第2のリアクタ310の中で、ガス流の温度は、酸化原子価状態の固相金属臭化物を熱分解して、Mが金属を表す、以下の一般的反応に従って、還元状態で元素臭素蒸気および固体金属臭化物を生じる。
2MBrn+1→2MBr+Br
加えて、約200℃以上の温度で、ガス流に含有される低分子量アルカンは、Mが金属を表す、以下の一般的反応に従って、還元状態でガス状臭化アルキル、臭化水素酸蒸気、および固体金属臭化物を生産するように、酸化状態の固体金属臭化物の加熱層上で反応してもよい。
CH(g)+2MBrn+1→CHBr(g)+HBr(g)+MBr
ガス流の温度、したがって、酸化原子価状態の固相金属臭化物の層312の温度を制御することによって、臭素が解放され、低分子量アルカンが第2の容器またはリアクタ310の中で臭素化される程度が、制御されてもよい。ガス状臭化アルキルを生成するように、酸化状態の固体金属臭化の加熱層上で低分子量アルカンが反応する、正確な機構は、完全には理解されていないが、臭素化は、金属臭化物のための担体の固体表面上で起こってもよく、それにより、より低い温度、例えば、約200℃から約300℃で反応が進むことを可能にし、それにより、フリーラジカル気相臭素化を阻止し、多重臭素化アルカンの生産を最小限化することが、出願者らの信念である。
結果として生じた臭素蒸気、臭化アルキル、および臭化水素酸は、アルキル臭素化リアクタ230に導入される前に、ライン314、315、弁317、ライン330、熱交換器226を介して、低分子量アルカンを含有するガス流とともに輸送される。有意量の低分子量ガス状アルカンが、第2の容器またはリアクタ310の中で臭素化される場合、熱交換器226および臭素化リアクタ230は、過程概略図から排除されてもよく、ガス流は、交換器232を介して第2のリアクタ234へ直接輸送されてもよい。これは、ガス流を加熱することなく、ガス流を熱交換器226およびリアクタ230に通過させることによって達成されてもよく、またはこれらの構成要素の両方は、当業者に明白となるように排除または迂回されてもよい。
リアクタ310および320は、周期的に操作されてもよい。図7に図示されるように、弁304は、低分子量アルカンを含有するガス流が、第2のリアクタ310へ輸送されることを可能にするように、開放モードで操作される一方で、有意量の低分子量ガス状アルカンが上述のような方式で第2のリアクタ310の中で臭素化される場合、弁317は、このガス流が、リアクタ310の中で生成される臭素蒸気、臭化アルキル、および臭化水素酸とともに、熱交換器232を介してアルキル臭素化リアクタ230またはリアクタ234へ輸送されることを可能にするように、開放モードで操作される。同様に、弁306は、リアクタ246からの臭素蒸気が、ライン307を介してリアクタ320へ輸送されることを可能にするように、開放モードで操作される一方で、弁326は、残留空気または酸素が、ライン307を介してリアクタ320から放出されることを可能にするように、開放モードで操作される。いったん対応する酸化および還元状態へのそれぞれリアクタ320および310の中の還元金属臭化物および酸化金属臭化物の有意な変換が起こると、図8に図示されるように、これらの弁が閉じられる。この時点で、リアクタ320の中の層322が、実質的に酸化状態の金属臭化物の層である一方で、リアクタ310の中の層312は、実質的に還元状態の金属臭化物である。図8に図示されるように、低分子量アルカンを含有するガス流が、ライン262、ガス流が約150℃から約600℃の範囲内、または好ましくは、好ましい臭化鉄あるいは臭化銅を使用する時に約150℃から約300℃の範囲内の温度まで加熱される熱交換器352を介して、弁308およびライン309を通して、リアクタ320へ輸送または運搬されることを可能にし、酸化原子価状態の固相金属臭化物を熱分解して、還元状態で元素臭素蒸気および固体金属臭化物を生じるように、弁308および332が開かれ、次いで、弁304、317、306、および326が閉じられる。約250℃を上回って操作された時に、結果として生じた臭素蒸気はまた、ガス状臭化アルキルおよび臭化水素を生産するように、酸化状態の固体金属臭化物の加熱層上で、ガス流に含有される低分子量アルカンと反応してもよい。結果として生じた臭素蒸気、ならびに低分子量アルカンとの反応によって生産される臭化アルキルおよび臭化水素は、アルキル臭素化リアクタ230に(または有意量の低分子量ガス状アルカンが、上述のような方式で第2のリアクタ310の中で臭素化される場合は、熱交換器232を介してリアクタ234へ)導入される前に、ライン324および330ならびに熱交換器226を介して、低分子量アルカンを含有するガス流とともに輸送される。当業者に明白となり得るように、リアクタの中に残存する、低分子量炭化水素、臭素、ならびに臭化アルキルおよび臭化水素は、好ましくは、層の循環前の炭化水素および臭素の損失を阻止するように、不活性ガスの流動(図示せず)とともに放出する。次に、リアクタ246から発する臭素蒸気が、ライン242を介して交換器221を通ってリアクタ310の中へ輸送されることを可能にするように、弁300が開かれ、還元原子価状態の固相金属臭化物は、臭素と反応して、臭素を金属臭化物として効果的に貯蔵する。加えて、弁316はまた、臭素が実質的に欠けている、結果として生じるガスが、ライン314および318を介して放出されることを可能にするように、開かれる。リアクタは、対応する酸化および還元状態へのそれぞれリアクタ310および320の中の還元金属臭化物および酸化金属臭化物の層の有意な変換が起こるまで、このように操作され、次いで、リアクタは、以前に論議されるように弁を開閉することによって、図7に図示されるフロー概略図に戻って循環させられる。
また、当業者に明白となるように、固体不活性担体(不活性固体担体上の原子金属としての金属の重量パーセント荷重として表されてもよい)上に堆積させられたFeBr2/FeBr3等の活性金属臭化物の量は、固体床312および322の中で発生する固体不活性担体の熱容量に対する反応の熱の比により、リアクタ312および320にわたって発生する温度変化に影響を及ぼす。不活性担体の量に対して金属荷重を増加させることは、特定の臭素貯蔵能力のために必要とされる容器のサイズを減少させるため望ましいが、発生する温度上昇もまた、不活性担体の熱容量に対する反応の熱の比較的大きい比により、大きくなる。結果として生じた温度上昇は、過剰であってもよく、平衡の温度依存性により、還元金属臭化物の平衡臭素貯蔵能力を制限することができる。したがって、容認可能な温度上昇は、代替として、サイクル時間を制限し、または固体床312および322の有用な臭素貯蔵能力を効果的に制限してもよい。送風機または圧縮器(図示せず)を用いた、外部熱交換器を通した流出物ガスリサイクルの使用が、臭素貯蔵ステップ中にリアクタ310および320にわたる温度上昇を制限し、また、リアクタ310および320の循環の間に固体床312および322の冷却および加熱を達成する手段として、当業者によって考慮されてもよい。2つのリアクタ310および320が、本発明の概念を例証するように示されているが、ある実施形態では、連続過程動作を可能にし、また、臭素貯蔵ステップと臭素生成ステップとの間で浄化、冷却、および加熱を可能にする実用的な手段として、2つより多くのリアクタ、すなわち、3つ(以上)を本発明の実装で利用できることが、当業者に明白となるはずである。
図9に図示される本発明の実施形態では、それぞれ、リアクタ310および320に含有される層312および322が、流動化され、各リアクタを往復する流動方向を変化させる弁等の機器を提供する必要なく、層の連続動作を提供するように、以下で説明される方式で接続される。この実施形態によれば、ライン242を介してリアクタ246から引き出される、臭素含有ガスが、交換器370および372の中で選択される金属臭化物に応じて、約30℃から約300℃の範囲内の温度まで冷却され、流動化状態の移動固体層322を含有するリアクタ320の底部に導入される。臭素蒸気が、図7に関して上記で説明されるような方式で、層322の底部に進入する還元金属臭化物と反応させられるにつれて、この導入された流体の流動は、層322の中の粒子をリアクタ320内で上向きに移動させる。層322の最上部で、またはその付近で、リアクタ320の中の還元金属臭化物との臭素蒸気の実質的に完全な反応により、耐摩耗担体上に相当量の酸化金属臭化物を含有する粒子が、堰、サイクロン、または従来の他の固体/気体分離の手段を介して引き出され、重力によってライン359を下って流れ、リアクタ310の中の層312の底部で、またその付近で導入される。
当業者に公知であるように、温度依存性平衡反応の程度を増大させ、それにより、所与の固体の質量流に対する臭素貯蔵能力を増大させるために、リアクタ320の中で発生する発熱反応によって生成される熱を除去するように、固体の移動層322内に位置付けられる熱交換器を利用することが有利であってもよい。
臭素が実質的に欠けている、結果として生じるガスは、ライン350を介して放出される。図9に図示される実施形態では、供給ガス(ライン211)および再生ガス流の混合物から成る、低分子量アルカンを含有するガス流が、ライン262および熱交換器352を介して、輸送または運搬され、ガス流は、約150℃から約600℃の範囲内、または好ましくは、好ましい臭化鉄あるいは臭化銅を使用する時に約150℃から約300℃の範囲内の温度まで加熱され、リアクタ310に導入される。加熱したガス流は、層312の底部で、またはその付近で進入する、酸化原子価状態で存在する固相金属臭化物を熱分解して、還元状態で元素臭素蒸気および固体金属臭化物を生じ、また、ガス状臭化アルキルおよび臭化水素を生産するように、酸化状態の固体金属臭化物の加熱層上で、ガス流に含有される低分子量アルカンと反応してもよい。酸化金属臭化物が熱的に分解されるにつれて、この導入されたガスの流動は、層312の中の粒子をリアクタ310内で上向きに流れさせる。層312の最上部で、またはその付近で、リアクタ310の中の熱的分解により、耐摩耗担体上に相当量の還元固体金属臭化物を含有する粒子が、堰またはサイクロンあるいは他の従来の固体/気体分離の手段を介して引き出され、重力によってライン364を下って流れ、リアクタ310の中の粒子の層322の底部で、またその付近で導入される。当業者に明白となるように、温度依存性平衡反応の程度を増大させ、それにより、所与の固体の質量流に対する臭素生成能力を増大させるために、リアクタ310の中で発生する吸熱反応に熱を供給するように、固体の移動層312内に位置付けられる熱交換器を利用することが有利であってもよい。
結果として生じる臭素蒸気、臭化アルキル、および臭化水素酸は、ライン354および熱交換器355を介して、低分子量アルカンを含有するガス流とともに輸送され、アルキル臭素化リアクタ230に、または有意量の低分子量ガス状アルカンが、上述のような方式で第2のリアクタ310の中で臭素化される場合は、熱交換器232を介してリアクタ234へ、導入される。このようにして、リアクタ310および320は、動作のパラメータを変更することなく連続的に操作されてもよい。
本発明の過程を概して描写するブロックフロー図が、図10に図示され、本発明の過程のある実施形態のいくつかの側面を描写する。図10に図示されるような本発明の過程の一般的描写によれば、低分子量アルカンを含有する供給ガス流は、臭素蒸気と組み合わせられ、臭素化リアクタに運搬される前に、C2+成分、特にC3+成分を除去するように前処理されてもよい。臭素化リアクタに導入される供給ガス流中のC成分の濃度は、約0.1mol%から約10.0mol%、より好ましくは約0.5mol%から約5.0mol%、最も好ましくは約1mol%から約5mol%であってもよい。いくらかのC3+炭化水素が臭素化リアクタの中で許容されてもよいが、そのより高い濃度は、臭素化リアクタならびに下流構成要素の中の汚染および詰まりを引き起こす、炭素含有コークス様固体の急速形成をもたらす場合がある。臭素化リアクタに導入される供給ガス流中のC3+成分の濃度は、約0.01〜0.2mol%であってもよく、好ましくは約0.01〜0.1mol%であってもよく、最も好ましくは約0.01〜0.05mol%であってもよい。図10に図示されるように、供給ガスは、合成リアクタからの流出物と組み合わせられ、供給ガスに含有される、また、過程の高分子量生成物から、C2+、特にC3+成分を選択的に除去するように前処理されてもよい。より具体的には、供給ガス、残留炭化水素、およびオレフィン、高分子量炭化水素、またはそれらの混合物が、脱水および生成物回収ユニットに運搬されてもよく、水は、残りの構成物質から除去される。次いで、オレフィン、高分子量炭化水素、またはそれらの混合物、ならびにC2+成分は、ガスから分離されてもよい。次いで、主に上述のようなC2+低分子アルカン成分の容認可能な濃度を伴うメタンである、生成物回収ユニットからの残留ガスは、臭素と組み合わせられ、本発明の過程のアルカン臭素化段階に運搬されてもよい。残りのC2+成分、およびオレフィン、高分子量炭化水素、またはそれらの混合物は、C2+成分が液体炭化水素生成物から除去される、生成物安定器カラムに運搬されてもよい。C2+成分が、以降で説明されるような方式で、シフトリアクタと併せて使用されてもよい一方で、液体炭化水素生成物は、使用あるいはさらなる石油化学または燃料処理のために、生成物安定器カラムから除去されてもよい。
前述のような本発明の過程によれば、主にメタンと、許容量のC2+低分子量アルカン成分とを含有する、供給ガスは、ガス状臭化アルキルおよび臭化水素を生産するように、約250℃から約600℃の範囲内の比較的低い温度で、約1バールから約30バールの範囲内の圧力で、乾燥臭素蒸気と臭素化リアクタの中で発熱反応させられてもよい。動作温度範囲の上限は、臭素化反応の発熱性質により供給混合物が加熱される、反応開始温度範囲の上限よりも大きくてもよいと考えられる。メタンの場合、臭化メチルの形成は、以下の一般的反応に従って起こると考えられる。
CH(g)+Br(g)→CHBr(g)+HBr(g)
気相臭素化反応のフリーラジカル機構により、ジブロモメタンおよびいくらかのトリブロモタンならびに他の臭化アルキルも形成される。臭素化はしばしば、採用されるアルカン対臭素比により、臭化メチルに対する比較的高い程度の選択性で起こる。例えば、メタンの臭素化の場合、約6:1のメタン対臭素比は、滞留時間、温度、および乱流混合等の反応条件に応じて、モノハロゲン化臭化メチルに対する選択性を平均約88%まで増加させると考えられる。これらの条件において、いくらかのジブロモメタン、および検出可能な限度に接近する極めて少量のみのトリブロモメタンもまた、臭素化反応で形成されてもよい。約2.6から1のより低いメタン対臭素比が利用される場合、モノハロゲン化臭化メチルに対する選択性は、他の反応条件に応じて、約65から75%の範囲に下がってもよい。約2.5から1よりも有意に小さいメタン対臭素比で、臭化メチルに対する容認不可能な低い選択性が発生し、また、望ましくないジブロモメタン、トリブロモメタン、および炭素煤の有意な形成が観察される。臭素化リアクタで採用される、比較的高いメタン対臭素比はまた、臭素が臭素化リアクタの中で実質的に消費され、それにより、元素臭素の存在による、本発明の過程の後続段階でのフリーラジカル臭素化の後続形成を効果的に阻止することを確実にする。そのようなモノハロゲン化臭化メチルに対する選択性を達成するために必要な臭素化リアクタの中の反応物の滞留時間は、比較的短く、断熱反応条件下で約1〜5秒ほども少なくてもよい。エタン、プロパン、およびブタン等の高級アルカンもまた、臭素化されてもよく、臭化エチル、臭化プロピル、および臭化ブチル等の一および多重臭素化種をもたらす。さらに、いくつかの実施形態では、臭素化リアクタの中へ供給される乾燥臭素蒸気は、実質的に水を含まなくてもよい。出願者らは、少なくとも場合によっては、臭素化ステップからの実質的に全ての水蒸気の排除が、不要な二酸化炭素の形成を実質的に排除すると思われるため、これが好ましくてもよいことを発見した。これは、臭化アルキルに対するアルカン臭素化の選択性を増大させ、したがって、アルカンからの二酸化炭素の形成で生成された大量の廃熱をできる限り排除してもよい。
生成物安定器カラムの中の液体炭化水素生成物から除去されるC2+低分子量アルカン成分は、臭化アルキルおよび臭化水素を含む、臭素化リアクタから引き出された流出物と組み合わせられ、シフトリアクタに導入されてもよい。(臭素化リアクタの中で反応させられておらず、臭素化リアクタからの流出物中に存在してもよい、少量の未反応臭素は、シフトリアクタの中への導入前または時に、C2+炭化水素との熱的臭素化反応によって容易に消費される。)シフトリアクタの中では、臭素化リアクタからの流出物に含有される臭化アルキル中に存在してもよい、二および三臭素化アルカンの大部分が、C2+成分との反応時に、一臭素化アルカンに選択的に変換されてもよい。Cおよびジブロモメタンが反応物である、実施例として、変換は、以下の一般的反応に従って起こると考えられる。
+CHBr→CHBr+CBr
この反応は、触媒なしで熱的に進行してもよいが、そのような熱反応は、シフトリアクタ内で容認不可能に長い滞留時間を必要とし、一臭素化アルカンへの満足できる変換速度を達成しないことが判定されている。したがって、シフトリアクタは、VIII族金属、VIB族金属、IB族金属、アルミニウム、亜鉛、バナジウム、マグネシウム、カルシウム、チタン、イットリウム、ランタン、またはセリウム、およびそれらの混合物から選択される、好適な触媒床を含有することが好ましい。VIII族金属は、鉄、コバルト、ニッケル、白金、パラジウム、ロジウム、ルテニウム、イリジウム、オスミウム、またはそれらのうちの2つ以上の混合物を含む。VIB族金属は、タングステン、モリブデン、またはクロムを含む。IB族金属は、銅または銀を含む。好ましくは、本発明のこの実施形態で使用されるVIII族金属は、白金、パラジウム、ロジウム、ルテニウム、イリジウム、オスミウム、またはそれらのうちの2つ以上の混合物から選択される貴金属であり、より好ましくは、VIII族金属は、白金である。最も好ましくは、VIII族金属は、金属臭化物、金属酸化物、または非定比金属酸素・臭化物として採用される鉄である。好ましくは、VIB族金属は、モリブデンまたはタングステンである。好ましくは、IB族金属は、金属臭化物、金属酸化物、または金属酸素・臭化物として採用される銅である。本発明の過程で使用されるような1つよりも多くの熱可逆的な臭化物塩を形成してもよい、上記で記載される好適な金属触媒の非限定的実施例は、鉄、モリブデン、タングステン、銅、バナジウム、クロム、またはそれらのうちの2つ以上の混合物である。本発明の過程で使用されるような単一臭化物塩を形成してもよい、上記で記載される好適な触媒の非限定的実施例は、コバルト、ニッケル、銀、亜鉛、マグネシウム、カルシウム、チタン、アルミニウム、ランタン、セリウム、またはそれらのうちの2つ以上の混合物である。1つよりも多くの熱可逆的な臭化物塩または単一臭化物塩を形成する、これらの金属は、シフトリアクタで採用される条件下で、臭化水素酸との反応を介した臭化物塩への変換により、シフトリアクタの中で臭化物として存在して機能するため、最初に、臭化物塩または酸化物として本発明の過程で採用されてもよい。好適な担体が、ポリ臭素化アルカンの熱分解および亀裂を阻止する比較的低い酸性度を有し、担体上へのポリ臭素化アルカンの吸収を阻止する比較的低い表面積を有するように選択される。シフトリアクタの中で触媒とともに使用するための好適な担体の非限定的な実施例は、好ましくは、約50m2/g未満の比表面積を有する、シリカ、チタニア、ジルコニア、または低表面積アルミナである。
触媒は、当業者に明白となるように、費用効率的に高い活性を生じるように、好適な担体上で装填および分散される。例えば、白金がシフトリアクタ床の中の触媒として採用される時に、約0.1wt%から約1wt%、より好ましくは約0.3wt%から約0.5wt%の装填を使用することが好ましい一方で、パラジウムが触媒として採用される時に、約1wt%から約10wt%、より好ましくは3wt%から約10wt%の装填が採用される。鉄、モリブデン、またはそれらの混合物等の好ましい貴金属の場合、(金属酸化物として)約10%から約20%以上の範囲内のより高い装填を伴うものが費用効果的である。シフトリアクタで触媒を使用する時に、約200℃から約500℃、より好ましくは約400℃から約500℃で、リアクタを操作することが好ましい。一臭素化アルカンに対する所望の選択性を達成するために必要なシフトリアクタの中の反応物の滞留時間は、比較的短く、2〜8秒ほども少なくてもよい。
ポリ臭素化アルカン、すなわち、二または三臭素化アルカンに対する一臭素化アルカンの有意に増加した比を含有する、シフトリアクタ410からの流出物は、合成リアクタへ輸送され、オレフィン、高分子量炭化水素、またはそれらの混合物を形成するように、臭化水素の存在下で(上記で説明されるようにリアクタ34と併せて)好適な触媒上で反応させられてもよい。生産される特定のオレフィン、高分子量炭化水素、またはそれらの混合物は、合成で採用される触媒、このリアクタに導入される臭化アルキルの組成、およびこのリアクタで採用される正確な動作パラメータに依存している。
臭化水素は、臭化水素(HBr)除去段階で、オレフィン、高分子量炭化水素、またはそれらの混合物から除去されてもよく、臭素回収段階へ運搬されてもよく、臭化水素は、金属臭化物塩を生じるように、部分的に酸化した金属臭化物塩によって中和させられてもよい。結果として生じた金属臭化物塩は、乾燥臭素蒸気としてアルカン臭素化段階へ再循環させられてもよい元素臭素と、過程によって生産されたオレフィンおよび高分子量炭化水素から除去される付加的な臭化水素を中和させ、除去するために使用されてもよい、部分的に酸化した金属臭化物塩とを生じるように、本発明の臭化物回収段階で、酸素または空気と接触させられてもよい。
本発明の過程を概して描写するブロックフロー図が、図11に図示され、本発明の過程のある実施形態のいくつかの側面を描写する。図11に図示されるような本発明の過程の一般的描写によれば、ポリ臭素化アルカンからの流出物が、周囲冷却によって、この流れから凝縮されてもよいことを除いて、図10と併せて説明される方式と同様に、シフトリアクタが採用され、過程が操作される。C2+低分子量炭化水素成分は、分離された多重臭素化アルカンと混合されてもよく、それは次いで、上記で説明されるような方式でポリ臭素化アルカンを変換するように、蒸発させられ、シフトリアクタへ輸送されてもよい。合成リアクタへ輸送されている流れの多重臭素化アルカン部分のみが、シフトリアクタの中で処理される必要があるため、図11の実施形態は、有利に、一臭素化アルカンへの多重臭素化アルカンの同じ変換を達成するために、より小さいシフトリアクタを必要とする。
上記で説明され、図10および11で概して図示される、本発明の過程の実施形態によれば、典型的には、低分子量アルカンの従来の臭素化の間に形成される、望ましくない多重臭素化アルカン、例えば、二および三臭素化アルカンは、非有害レベルまで効果的に削減されてもよい。臭素化リアクタへの供給ガス中のC2+低分子量炭化水素の濃度は、必要であれば、臭素化されている供給ガスの中で、メタンの比較的高い濃度、例えば、90mol%以上を提供するように、低減されてもよい。加えて、臭素化リアクタの中のメタン対臭素比は、選択的に単臭素化をさらに確保するよう、少なくとも約2.5:1となるように選択される。わずかな量の多重臭素化アルカンが、本発明の過程による臭素化後に形成されてもよく、シフトリアクタの中の好適な触媒上で一臭素化アルカンに容易に変換されてもよい。本発明の過程における臭素化およびシフトリアクタの両方の中の非常に短い滞留時間は、多重臭素化アルカンの有意な変換、例えば、約80%から約100%の変換、最も好ましくは約90%よりも多くの変換を得るように、縮小リアクタ容器サイズの使用を可能にする。さらに、出願者らは、(臭素化反応の結果として形成される)蒸気相における副生成物臭化水素の比較的高い濃度、すなわち、約30mol%よりも高い濃度が、ある合成触媒上の酸性部位上での臭化水素の平衡吸収によると考えられる、脱ハロゲン化水素化/オリゴマー化反応変換速度に有意な阻害作用を及ぼしてもよいことを発見した。臭化水素の非常に高い濃度、すなわち、約50mol%において、脱ハロゲン化水素化/オリゴマー化触媒の活性は、有意に阻害されると考えられ、低減した変換をもたらしてもよい。したがって、有害量の多重臭素化アルカンの形成を最小限化する目的で、約2.5を超えるアルカン対臭素モル比において臭素化反応を操作することに加えて、過剰なアルカンのより高いモル比および存在が、臭素化リアクタ流出物中の臭化水素濃度を約30mol%未満まで低減する。
図10で概して図示される、本発明の過程の具体的実施形態を図示するために、本発明の過程の実施形態が図12に図示され、上記の図7および8で説明される実施形態と動作が同様であるが、いくつかある付加的な機器の中で特に、シフトリアクタ410を含み、その動作および機能は以下で説明される。一般に、この実施形態は、第2のリアクタに導入される臭化アルキル中に存在する、多重臭素化アルカン、例えば、二および三臭素化アルカンの濃度を効果的に低減することに関する。
この実施形態によれば、低分子量アルカンを含有するガス流が、ライン、パイプ、または導管211へ輸送または運搬され、ライン216の中で水蒸気および高分子炭化水素と混合され、ガス流から実質的に全ての水を除去するように脱水機250へ運搬されてもよい。次いで、水が、ライン253を介して脱水機250から除去されてもよい。高分子量炭化水素を含有する乾燥ガス流が、ライン254の中で、所望であればCおよびCであるが、主にはC5+分率を回収するように、ライン251を介して生成物回収ユニット252へ輸送されてもよい。当業者に公知であるような、天然ガスまたは精油所ガス流を処理するために使用される、例えば、その後に冷蔵凝縮、極低温膨張、または吸収油の循環が続く、固体床乾燥剤吸収等の脱水および液体回収の任意の従来の方法が、本発明の実装で採用されてもよい。本発明のこの実施形態によれば、ライン254の中の水蒸気は、安定器カラムへ運搬されてもよく、それは、安定器450からライン452を介して、安定器カラム450の底部から出て行く高分子量炭化水素から残留C-C炭化水素を揮散するように蒸気を生産する、安定器再沸騰器456へ運搬される、残りの高分子量炭化水素から、ガス状相におけるC-C炭化水素の少なくとも一部分を除去するのに十分な条件で操作される。高分子量炭化水素は、燃料製品、混合物として、またはさらなる処理のために過程454から除去されてもよい。C-C炭化水素は、ライン460の中でガス状相において安定器カラム450から除去され、以降で説明されるような過程でさらに使用するために、圧縮器462の中で加圧されてもよい。C-C炭化水素は、安定器カラム450から除去され、シフトリアクタ410の中への供給とともに導入されてもよいが、安定器カラムは、この炭化水素流のC成分を最大限化する条件で操作されることが好ましい。さらに、過程でさらに使用するために再循環させるよりもむしろ、生成物としてCを回収することが好ましい。
低分子量アルカンを含有する生成物回収ユニット252からの蒸気流出物は、過程用の燃料として利用されてもよい浄化流257と、圧縮器258を介して圧縮される供給ガスとに分けられてもよい。圧縮器258から放出されるガスは、少なくとも2つの分率に分けられてもよい。第1の分率は、ライン262を介して熱交換器352へ輸送され、ガス流は、約150℃から約600℃の範囲内の温度まで予熱されてもよい。次いで、加熱したガス流は、弁304およびライン302を通して、酸化原子価状態の固相金属臭化物の層312を含有する、第2の容器またはリアクタ310へ渡されてもよく、ガス流の温度は、酸化原子価状態の固相金属臭化物を熱分解して、還元状態で元素臭素蒸気および固体金属臭化物を生じる。加えて、ガス流に含有される低分子量アルカンは、還元状態でガス状臭化アルキル、臭化水素、および固体金属臭化物を生産するように、酸化状態の固体金属臭化物の加熱層312上で反応してもよい。ガス流の温度、したがって、酸化原子価状態の固相金属臭化物の層312の温度を制御することによって、臭素が解放され、低分子量アルカンが第2の容器またはリアクタ310の中で臭素化される程度が、制御されてもよい。結果として生じた臭素蒸気、臭化アルキル、および臭化水素は、ガス流に含有される低分子量アルカンのさらなる臭素化のために、アルキル臭素化リアクタ230に導入される前に、ライン314、弁317、ライン330、熱交換器226、およびライン225を介して、低分子量アルカンを含有するガス流とともに輸送されてもよい。有意量の低分子量ガス状アルカンが第2の容器またはリアクタ310の中で臭素化される場合、熱交換器226および臭素化リアクタ230は、過程から排除されてもよい。いくらかのC、例えば、約0.1〜約10mol%が、臭素化反応で許容されてもよいが、少量のみのCが許容であり、例えば、リアクタ230の中の約0.2mol%を超える濃度は、リアクタ230、410、および234の中の汚染および詰まりを引き起こす、炭素含有コークス様固体の急速形成をもたらす。この悪条件は、C、特にC3+炭化水素の大部分が、第1のリアクタ230に最終的に供給される蒸気流出物から生成物回収ユニット252の中で除去されてもよいため、図10に図示される過程で実質的に阻害される。
臭化アルキルおよび臭化水素を含有する流出物は、ライン402を介して、第1のリアクタ230(またはその中で達成される臭素化の程度に応じて、第2の容器またはリアクタ310)から引き出されてもよい。生成物回収ユニット252からの第2の分率の蒸気流出物は、ライン263を介してライン262から引き出され、ライン402の中で第1のリアクタ230からの流出物に導入され、制御弁260によって調節されてもよい。第2の分率がライン402の中で第1のリアクタ流出物に導入されてもよい、速度は、リアクタ410およびリアクタ234が選択された動作温度を維持してもよいように、リアクタ410およびリアクタ234に供給される臭化アルキル濃度を希釈し、反応の熱を吸収するのに十分である。したがって、蒸気流出物の第2の分率によって提供される希釈は、シフトリアクタ410および第2のリアクタ234の中の温度を変調することに加えて、第1のリアクタ230の中の臭素化の選択性が制御されることを可能にする。図10に図示される実施形態によれば、ライン460の中のC-C炭化水素を含有するガスもまた、ライン402に含有される第1のリアクタ流出物および蒸気流出物の第2の分率の混合物に導入されてもよく、結果として生じた混合物は、熱交換器404へ渡され、混合物は、ライン406を介してシフトリアクタ410に導入される前に、約250℃から約450℃、より好ましくは約300℃から約400℃、最も好ましくは約350℃から約400℃の温度まで加熱される。
シフトリアクタ410の中では、第1のリアクタ230からの流出物に含有される臭化アルキル中に存在する、二および三臭素化アルカンの大部分が、C-C炭化水素との反応時に、一臭素化アルカンに選択的に変換されてもよい。Cおよびジブロモメタンが反応物である、実施例として、変換は、以下の一般的反応に従って起こると考えられる。
+CHBr→CHBr+CBr
この反応は、触媒なしで熱的に進行してもよいが、そのような熱反応は、シフトリアクタ410内で容認不可能に長い滞留時間を必要とし、満足できる変換を達成しないことが判定されおり、したがって、シフトリアクタ410は、図10に関して上記で説明されるように選択される好適な触媒床412を含有することが好ましい。シフトリアクタ410の中で触媒を使用する時に、約250℃から約570℃、より好ましくは約300℃から約400℃でリアクタを操作することが好ましい。熱交換器404は、この範囲内の所望の点までシフトリアクタ410への入力を加熱するように、それに応じて操作されてもよい。二または三臭素化アルカンに対する一臭素化アルカンの有意に増加した比を含有する、シフトリアクタ410からの流出物は、ライン231を介して引き出されてもよく、第2のリアクタ234へ流される前に、熱交換器232の中で約150℃から450℃の範囲内の温度まで部分的に冷却される。第2のリアクタ234では、臭化アルキルは、約250℃から約500℃の温度範囲、および約1バールから30バールの範囲内の圧力で、好適な触媒の固定床233、高分子量炭化水素および付加的な臭化水素の混合物上で、発熱反応させられてもよい。本発明のこの実施形態では、リアクタ240および246は、図4および5を参照して上記で論議されるように周期的に操作されてもよく、リアクタ310および320は、図7および8を参照して上記で論議されるように周期的に操作される。
二臭素化アルカンおよび三臭素化アルカンの存在が、第3のリアクタ234で使用される触媒の失活を有意に加速する、ナフタレン、他の多環芳香族、およびコークス等の上級炭化水素の望ましくない形成をもたらすため、図12の実施形態による、第2のリアクタ234に導入される流れの中の一臭素化アルカンに対する高い選択性が、極めて望ましい。第2のリアクタの中の増加した量の一臭素化アルカン、特に臭化プロピルもまた、イソオクタンを含む、C-C炭化水素の望ましい増加をリアクタ234の中で形成させる。
図12の実施形態は、シフトリアクタ410への供給を伴う導入前に、安定器カラム450の中で高分子量炭化水素から分離される、C-C流、好ましくはC豊富流を使用するものとして説明されているが、このC-C流、好ましくは、C豊富流は、任意の好適な供給源から、例えば、当業者に明白となるように、市販の天然ガスまたはプロパンから得られてもよい。
図13に図示される本発明の過程の別の実施形態は、臭化アルキルおよび臭化水素を含有する流出物が、第1のリアクタ230(またはその中で達成される臭素化の程度に応じて、第2の容器またはリアクタ310)から引き出され、ライン402に含有される、生成物回収ユニット252からの第2の分率の蒸気流出物が凝縮器480へ運搬されてもよく、二および三臭素化アルカンは、周囲冷却によって、この流れから凝縮され、ライン402を介して輸送されることを除いて、図12で図示され、上記で説明されるものと設計および動作が同様である。ライン460の中のC-C炭化水素は、ライン402の中で分離された二および三臭素化アルカンと混合され、上記で説明されるように二および三臭素化アルカンを変換するようにシフトリアクタ410に輸送されてもよい。シフトリアクタ410は、好ましくは、図10の実施形態に関して上記で説明されるように、触媒を含有する。シフトリアクタ410からの流出物は、図10に関して上記で説明されるようにリアクタ234に導入する前に、ライン420を介して引き出され、ライン482の中で残りの流れと組み合わせられてもよい。リアクタ234へ輸送されている流れの二および三臭素化アルカン部分のみが、シフトリアクタ410の中で前処理される必要があるため、図13の実施形態は、有利に、一臭素化アルカンへの二および三臭素化アルカンの同じ変換を達成するために、より小さいリアクタ410を必要とする。
シフトリアクタは、図7および8で図示される本発明の過程の実施形態に含まれるものとして、上記で説明され、図12および13で図示されているが、シフトリアクタはまた、本開示の当業者に明白となるように、本発明の過程のうちのいずれかで採用されてもよい。さらに、臭素化リアクタと併せたシフトリアクタの使用は、ポリ臭素化アルカンの存在による、後続使用および処理における悪影響を効果的に阻害するよう、アルカンが、化学過程における好適な中間体である一臭素化アルカンを形成するように臭素化される、過程への幅広い適用を有する。
図16で概して図示される本発明の過程の実施形態によれば、臭素液体は、メタン(CH)含有供給ガスと組み合わせられる。液体臭素は、最初に、ガス状供給と混合されてもよく、混合物は、臭素の蒸発を達成するように加熱されてもよく、またはガスは、最初に、過熱されてもよく、液体は、熱ガスに導入されてもよく、そこで蒸発させられる。臭素化されている主にメタンを含有する供給ガスの中で、メタンの比較的高い濃度、例えば、90mol%以上を提供するよう、低分子量アルカンを含有する供給ガスは、供給ガス中のC2+低分子量炭化水素の濃度を低減するように、必要であれば、冷蔵凝縮、極低温膨張、溶剤の循環、または天然ガス処理工場、石油精製所等で通常採用される他の分離手段によって処理されることが好ましい。例えば、約0.1mol%から約10mol%の範囲内の濃度で、いくらかのC炭化水素が臭素化リアクタの中で許容されてもよいが、約0.2%を超えるC3+炭化水素の濃度は、臭素化リアクタならびに下流構成要素の中の汚染および詰まりを引き起こす、炭素含有コークス様固体の急速形成をもたらす場合がある。いくつかの実施形態では、硫黄化合物および二酸化炭素等の望ましくない化合物を除去するように、供給ガスを処理することが望ましくてもよい。いずれにしても、少量の二酸化炭素、例えば、約2mol%未満を、本発明の過程への供給ガス中で許容できることに留意することが重要である。
熱的臭素化リアクタへの供給で利用されてもよい、臭素に対するメタンの比は、供給のC2+含有量および温度の関数である。供給中のより低いC2+含有量およびより低い温度での動作は、より低いメタン対臭素比での動作を可能にしてもよい。さらに、本発明の触媒シフトリアクタが熱的臭素化の下流で操作される時のように、熱的臭素化ステップで発生する全ての臭素の完全反応の制約が必要とされない場合、これは、より低い温度での動作、したがって、以前に論議された実施形態について記述された、2.5対1の実質的に最小を下回るメタン対臭素比での動作を促進してもよい。
したがって、触媒シフトリアクタを加えて、供給ガスのC2+含有量の適切な制御があると、熱的臭素化反応への供給中のメタン対臭素のモル比は、約7対1未満であるが、約1.25対1よりも大きく、好ましくは約4対1未満であるが、約1.5対1よりも大きく、好ましくは約3対1未満であるが、約1.67対1よりも大きい。供給ガスおよび液体臭素混合物は、熱交換器へ運搬されてもよく、混合物は、約300℃から約550℃の間であるが、好ましくは、約450℃から約500℃の範囲内の温度まで加熱され、液体臭素は、蒸発させられる。
さらに、いくつかの実施形態では、熱的臭素化リアクタの中へ供給される混合物中の乾燥臭素蒸気は、実質的に水を含まなくてもよい。出願者らは、少なくとも場合によっては、臭素化ステップからの実質的に全ての水蒸気の排除が、不要な二酸化炭素の形成を実質的に排除すると思われるため、これが好ましくてもよいことを発見した。これは、臭化アルキルに対するアルカン臭素化の選択性を増大させ、したがって、アルカンからの二酸化炭素の形成で生成された大量の廃熱をできる限り排除してもよい。
主にメタンと、許容量のC2+低分子量アルカン成分とを含有する、加熱した供給ガス、および臭素蒸気混合物は、最初に、C1+熱的臭素化リアクタへ輸送されてもよく、供給ガス中に存在する、低分子量アルカン、主にメタンおよび低分子量アルカンは、熱的に臭素化される。必要であれば、熱的臭素化リアクタは、混合物が約300℃から約500℃の範囲内の反応開始温度まで加熱されたままであることを確実にするように、入口予熱器ゾーン(上記で説明されるゾーン28、128、および228と同様である)を含有してもよい。メタンの場合、臭化メチルの形成は、以下の一般的反応に従って起こると考えられる。
CH(g)+Br(g)→CHBr(g)+HBr(g)
臭化アルキル、臭化水素、未反応臭素、および未反応アルカン、主にメタンを含有する供給ガスの結果として生じた混合物は、熱的臭素化リアクタから除去され、触媒シフトリアクタへ輸送されてもよい。触媒シフトリアクタへのこの供給の温度は、約350℃から約570℃、より好ましくは500℃から約570℃、最も好ましくは530℃から約570℃の範囲内であってもよい。熱的臭素化反応が発熱であるため、当業者に明白となるように、熱的臭素化リアクタのリアクタ動作条件を考慮すると、熱的臭素化リアクタからの流出物が、触媒シフトリアクタに導入するための所望の範囲内にあることを確実にするように、熱的臭素化リアクタに導入される供給ガスおよび臭素は、約300℃から約500℃範囲内の温度まで加熱されてもよい。代替として、熱的臭素化リアクタからの流出物混合物は、当業者に明白であるような任意の好適な手段によって触媒シフトリアクタで採用される、触媒と接触する前に、約350℃から約570℃の範囲内の温度まで加熱または冷却されてもよい。
図16で概して図示される本発明の過程の実施形態において触媒シフトリアクタで有用な触媒は、金属ハロゲン化物または金属酸素・ハロゲン化物の両方、あるいはそれらの混合物を形成することが可能である、金属元素であってもよく、Fe、Mo、La、Ce、W、Cr、Co、Ni、Cu、Ag、Zn、Mn、V、Nb、Ta、Ti、Y、Zr、Mg、およびCaを含む。触媒活性金属ハロゲン化物または金属酸素・ハロゲン化物の形成に有用であってもよい、ハロゲンは、Br、Cl、およびFであり、Brが好ましい。
触媒は、最初に、触媒担体上に分散された金属臭化物として調製されてもよいが、金属硝酸塩前駆体溶液を利用する初期湿潤技法によって、金属酸化物を分散させることが、概してより一般的であり、その後に、空気または他の酸化ガス混合物中で高温において乾燥および焼成が続く。さらに、多くの金属臭化物塩が吸湿性であるため、取扱、貯蔵、および輸送は、特殊な手段を必要としてもよい。したがって、シフトリアクタで使用される触媒は、最も実用的に、金属酸化物状態のみで市販されてもよい。そのような金属酸化物触媒は、臭化水素、臭化メチル、ジブロモメタン、または他の臭化アルキルとのその反応により、経時的に、金属臭化物または金属酸素・臭化物、あるいはそれらの混合物に変換されるため、最初に、図16の触媒シフトリアクタで採用されてもよい。しかしながら、触媒シフトリアクタの中の金属酸化物触媒の活性が、金属臭化物または金属酸素・臭化物の活性よりも目につくほど少なく、変換が完了するまで炭素損失またはコークス化が増加させられるため、臭化水素および同伴ガス、例えば、メタンまたは窒素との反応によって等、任意の好適な手段によって、触媒シフトリアクタに供給を導入する前に、原位置で最初の金属酸化物触媒を金属臭化物または金属酸素・臭化物、またはそれらの混合物に変換することが望ましくてもよい。
触媒シフトリアクタの中では、熱的臭素化リアクタからの流出物に含有される臭化アルキル中に存在してもよい、二および三臭素化アルカンの大部分が、供給中に存在する、未反応アルカン成分、主にメタンとの反応時に、一臭素化アルカンに選択的に変換されてもよい。Cおよびジブロモメタンが反応物である、実施例として、変換は、以下の一般的反応に従って起こると考えられる。
CH+CHBr→2CHBr
熱および触媒リアクタの両方の中の高温により、元素臭素は、本質的に完全に変換される可能性が高い。触媒シフトリアクタで使用される触媒は、メタンとの臭素(触媒表面上のジブロモメタンの解離吸着によって供給される)の選択的触媒反応を介して臭化メチルを生じるように、メタンとのジブロモメタンの選択的反応を推進すると考えられる。
二または三臭素化アルカンに対する一臭素化アルカンの有意に増加した比を含有する、触媒シフトリアクタからの流出物は、図1〜9に図示され、上記で詳細に説明される、本発明の過程の実施形態による合成リアクタ等に関して、さらなる処理のために輸送されてもよい。
過程によって生産され、または供給ガスに含有されるC2+成分は、C1+熱的臭素化への供給が許容量のC2+を含有するように、除去され、具体的には、C3+が、液体臭素供給のわずかを使用してC2+熱的臭素化リアクタの中で処理されてもよい。C2+熱的臭素化リアクタは、約4対1から約1.25対1の範囲内、好ましくは約2対1から約1.5対1の範囲内のアルカン対臭素比で、および約250℃から550℃の範囲内の温度で動作する。C2+熱的臭素化からの流出物は、種々の臭化アルキルを含有し、臭化水素は、例えば、触媒シフトリアクタからの流出物と混同され、混合物を触媒合成リアクタへ輸送することによって、さらに処理されてもよく、混合物中の種々の臭化アルキルは、高分子量炭化水素生成物および付加的な臭化水素を生産するように、脱ハロゲン化水素化/オリゴマー化を受ける。
液体臭素が蒸発させられる(代替として、ガスは、最初に過熱されてもよく、液体は、熱ガスに導入されてもよく、そこで蒸発させられる)熱交換器への輸送の前に、臭素液体が、メタン(CH4)含有供給ガスと組み合わせられる一方で、不活性充填材料の表面からの液体臭素の蒸発等の噴霧または任意の他の好適な手段によって、臭素液体の別個の流れもまた、臭素化リアクタに直接導入されることを除いて、図17に概して図示される、本発明の過程の実施形態は、図16に図示され、上記で説明されるものと同様である。熱的臭素化が発熱して進むため、臭素化反応の熱は、リアクタに直接注入される液体臭素を蒸発させるのに十分であり、それにより、熱負荷および熱交換機器、ならびにそれと関連付けられる費用を最小限化する。リアクタに直接注入される液体臭素の量は、選択されるメタン対臭素比、および熱的臭素化リアクタからの所望の流出物温度によって決定される。例えば、臭素化の最低開始温度が持続され、反応は急冷されない限り、全体的なメタン対臭素化比が高くなるほど、リアクタに直接注入されてもよい液体臭素の分率が大きくなる。逆に、特定の固定メタン対臭素比では、最低開始温度が持続される限り、リアクタに直接注入される液体臭素の分率が増加させられるにつれて、熱的臭素化リアクタにわたって発生する温度上昇が小さくなる。
供給ガスおよび臭素蒸気の加熱混合物が、図18に図示されるように、好適な触媒を含有するリアクタに直接輸送されてもよく、熱的および触媒臭素化が、実質的に順次に進行することが許可されることを除いて、図18に概して図示される本発明の過程の実施形態は、図16に図示され、上記で説明されるものと同様である。リアクタは、熱的臭素化ゾーンを画定するのに十分なヘッドスペースを触媒床より上側に有するようにサイズ決定されてもよく、主にメタンと、許容量のC2+低分子量アルカン成分とを含有する、供給ガス、および臭素蒸気の加熱混合物は、熱的に臭素化される。必要であれば、熱的臭素化ゾーンは、混合物が約300℃から約530℃の範囲内の反応開始温度まで加熱されたままであることを確実にするように、入口予熱器ゾーン(上記で説明されるゾーン28、128、および228と同様である)を含有してもよい。メタンの場合、臭化メチルの形成は、以下の一般的反応に従って起こると考えられる。
CH(g)+Br(g)→CHBr(g)+HBr(g)
臭化アルキル、臭化水素、未反応臭素、および未反応アルカン、主にメタンを含有する供給ガスの結果として生じた混合物は、触媒シフト反応ゾーンに流入する。
触媒シフト反応ゾーンへのこの供給の温度は、約350℃から約570℃、より好ましくは500℃から約570°C、最も好ましくは530℃から約570℃の範囲内であってもよい。熱的臭素化反応が発熱であるため、当業者に明白となるように、熱的臭素化ゾーンの中のリアクタ動作条件を考慮すると、熱的臭素化ゾーンからの流出物が、触媒シフト反応ゾーンに導入するための所望の範囲内にあることを確実にするように、熱的臭素化ゾーンに導入される供給ガスおよび臭素は、約300℃から約500℃の範囲内の温度まで加熱されなければならない。代替として、熱的臭素化ゾーンからの流出物混合物は、当業者に明確であるような任意の好適な手段によって、触媒シフト反応ゾーンで採用される触媒と接触する前に、加熱または冷却されてもよい。
図18で概して図示される本発明の過程の実施形態において触媒シフト反応ゾーンで有用な触媒は、金属ハロゲン化物または金属酸素・ハロゲン化物の両方、あるいはそれらの混合物を形成することが可能である、金属元素であってもよく、Fe、Mo、La、Ce、W、Cr、Co、Ni、Cu、Ag、Zn、Mn、V、Nb、Ta、Ti、Y、Zr、Mg、およびCaを含む。触媒活性金属ハロゲン化物または金属酸素・ハロゲン化物の形成に有用であってもよい、ハロゲンは、Br、Cl、およびFであり、Brが好ましい。触媒は、最初に、触媒担体上に分散された金属臭化物として調製されてもよいが、金属硝酸塩前駆体溶液を利用する初期湿潤技法によって、金属酸化物を分散させることが、概してより一般的であり、その後に、空気または他の酸化ガス混合物中で高温において乾燥および焼成が続く。さらに、多くの金属臭化物塩が吸湿性であるため、取扱、貯蔵、および輸送は、特殊な手段を必要としてもよい。したがって、シフトリアクタで使用される触媒は、最も実用的に、金属酸化物状態のみで市販されてもよい。そのような金属酸化物触媒は、臭素化反応流出物中に存在する、臭化水素、臭化メチルとのその反応により、経時的に、金属臭化物または金属酸素・臭化物、あるいはそれらの混合物に変換されるため、最初に、図18に図示されるリアクタの触媒シフト反応ゾーンで採用されてもよい。しかしながら、触媒シフト反応ゾーンの中の金属酸化物触媒の活性が、金属臭化物または金属酸素・臭化物の活性よりも目につくほど少なく、変換が完了するまで炭素損失またはコークス化が増加させられるため、臭化水素酸および同伴ガス、例えば、メタンまたは窒素との反応によって等、任意の好適な手段によって、触媒シフト反応ゾーンに供給を導入する前に、金属酸化物触媒を金属臭化物または金属酸素・臭化物、またはそれらの混合物に変換することが望ましくてもよい。
図18に図示されるリアクタの中の触媒シフト反応ゾーンでは、熱的臭素化ゾーンからの流出物に含有される臭化アルキル中に存在してもよい、ポリ臭素化アルカン、例えば、二および三臭素化アルカンの大部分が、このゾーンへの供給中に存在する、未反応アルカン成分、主にメタンとの反応時に、一臭素化アルカンに選択的に変換されてもよい。Cおよびジブロモメタンが反応物である、実施例として、変換は、以下の一般的反応に従って起こると考えられる。
CH+CHBr→2CHBr
熱的および触媒リアクタの両方の中の高温により、臭素は、本質的に完全に変換される。触媒シフトリアクタで使用される触媒は、メタンとの臭素(触媒表面上のジブロモメタンの解離吸着によって供給される)の選択的触媒反応を介して臭化メチルを生じるように、メタンとのジブロモメタンの選択的反応を推進すると考えられる。
フリーラジカル熱的臭素化反応は、熱的臭素化ゾーンの中で完全に遊離気相において起こってもよいが、フリーラジカル臭素化の少なくとも一部分は、触媒シフト反応ゾーンの出口においてモノブロモメタンに対する所望の選択性を依然として達成しながら、触媒シフト反応ゾーンの中の触媒リアクタ床の浅い領域に存在する空間内で起こり、実質的に完了してもよい。
二または三臭素化アルカンに対する一臭素化アルカンの有意に増加した比を含有する、触媒シフト反応ゾーンからの流出物は、図1〜9に図示され、上記で詳細に説明される、本発明の過程の実施形態による合成リアクタ等に関して、さらなる処理のために輸送されてもよい。図16および17の実施形態と同様に、過程によって生産され、または供給ガスに含有されるC2+成分は、C1+熱的臭素化への供給が許容量のC2+を含有するように、除去され、具体的には、C3+が、液体臭素供給のわずかを使用して、図16および17に図示されるようにC2+熱的臭素化リアクタの中で処理されてもよく、流出物が、さらに処理されてもよい。
図19で概して図示される本発明の過程の実施形態によれば、臭素液体は、メタン(CH)含有供給ガスと組み合わせられる。液体臭素は、最初に、ガス状供給と混合されてもよく、混合物は、臭素の蒸発を達成するように加熱されてもよく、またはガスは、最初に、過熱されてもよく、液体は、熱ガスに導入されてもよく、そこで蒸発させられる。臭素化されている主にメタンを含有する供給ガスの中で、メタンの比較的高い濃度、例えば、90mol%以上を提供するよう、低分子量アルカンを含有する供給ガスは、必要であれば、供給ガス中のC2+低分子量炭化水素の濃度を低減するように処理されることが好ましい。いくらかのC2+炭化水素が臭素化リアクタの中で許容されてもよいが、そのより高い濃度、特に、C3+炭化水素のより高い濃度は、臭素化リアクタならびに下流構成要素の中の汚染および詰まりを引き起こす、炭素含有コークス様固体の急速形成をもたらす場合がある。いくつかの実施形態では、硫黄化合物および二酸化炭素等の望ましくない化合物を除去するように、供給ガスを処理することが望ましくてもよい。いずれにしても、少量の二酸化炭素、例えば、約2mol%未満を、本発明の過程への供給ガス中で許容できることに留意することが重要である。
熱的臭素化リアクタへの供給で利用されてもよい、臭素に対するメタンの比は、供給のC2+含有量ならびに温度の関数である。供給中のより低いC2+含有量およびより低い温度での動作は、より低いメタン対臭素比での動作を可能にしてもよい。さらに、本発明の触媒シフトリアクタが熱的臭素化の下流で操作される時のように、熱的臭素化ステップで発生する全ての臭素の完全反応の制約が必要とされない場合、これは、より低い温度での動作、したがって、2.5対1の以前の好ましい最小を下回るメタン対臭素比での動作を促進してもよい。したがって、触媒シフトリアクタを加えて、供給ガスのC2+含有量の適切な制御があると、熱的臭素化リアクタへの供給中のメタン対臭素のモル比は、約7対1未満であるが、約1.25対1よりも大きく、好ましくは約4対1未満であるが、約1.5対1よりも大きく、好ましくは約3対1未満であるが、約1.67対1よりも大きい。供給ガスは、約300℃から約550℃の間であるが、好ましくは、約350℃から約500℃の範囲内で、熱交換器へ渡され、液体臭素は、蒸発させられる。
加熱された供給ガスが、リアクタに導入され、主にメタンを含み、許容可能量のC2+低分子量アルカン成分を含む供給ガス内に存在する低分子量アルカンの臭素化は、熱的に進行する。必要であれば、熱的臭素化リアクタは、混合物が約300℃から約550℃の範囲内の反応開始温度まで加熱されたままであることを確実にするように、入口予熱器ゾーン(上記で説明されるゾーン28、128、および228と同様である)を含有してもよい。メタンの場合、臭化メチルの形成は、以下の一般的反応に従って起こると考えられる。
CH(g)+Br(g)→CHBr(g)+HBr(g)
未反応臭素、臭化アルキル、臭化水素、および未反応アルカン、主にメタンを含有する供給ガスの結果として生じた混合物は、後に冷却され、分留カラムへ輸送されてもよく、ポリ臭素化アルカン、例えば、二および三臭素化アルカンは、この混合物から除去される。そのようなポリ臭素化アルカンを含有する、分留カラム底部液体は、液体のわずかを蒸発させ、液体中の上級ポリ臭素化アルカンから残留低級モノブロモメタンを揮散する、分留再蒸発器へ渡され、これらの蒸気は、分留器へ再循環させられる。次いで、ポリ臭素化アルカンは、主にメタンを含有する供給ガスと組み合わせられ、蒸発させられ、約450℃から約500℃の温度まで予熱され、触媒シフトリアクタに導入され、ポリ臭素化アルカンは、主に一臭素化アルカンおよび臭化水素をさらに形成するように、メタンと反応させられる。臭化アルキルおよび臭化水素は、図1〜9に図示され、上記で詳細に説明される、本発明の過程の実施形態による合成リアクタ等に関して、さらなる処理のために、触媒シフトリアクタから輸送されてもよい。分留カラムの中でポリ臭素化アルカンから分離されている分留器オーバーヘッドの蒸気中の成分は、凝縮器へ運搬されてもよく、残りのポリ臭素化アルカンは、凝縮され、分留カラムへ還流させられてもよい。主に臭化アルキルおよび臭化水素を含む、残りの流れもまた、図1〜9に図示され、上記で詳細に説明される、本発明の過程の実施形態による合成リアクタ等に関して、さらなる処理のために輸送されてもよい。
過程によって生産され、または供給ガスに含有されるC2+成分は、C1+熱的臭素化への供給が許容量のC2+を含有するように、除去され、具体的には、C3+が、液体臭素供給のわずかを使用してC2+熱的臭素化リアクタの中で処理されてもよい。C2+熱的臭素化リアクタは、約4対1から約1.25対1の範囲内、好ましくは約2対1から約1.5対1の範囲内のアルカン対臭素比で、および約250℃から550℃の範囲内の温度で動作する。C2+熱的臭素化からの流出物は、種々の臭化アルキルを含有し、臭化水素は、例えば、触媒シフトリアクタからの流出物と混同されることによって、さらに処理されてもよく、混合物は、触媒合成リアクタへ渡されてもよく、混合物中の種々の臭化アルキルは、高分子量炭化水素生成物および付加的な臭化水素を生産するように、脱ハロゲン化水素化/オリゴマー化を受ける。
図19で概して図示される本発明の過程の実施形態において触媒シフトリアクタで有用な触媒は、金属ハロゲン化物または金属酸素・ハロゲン化物の両方、あるいはそれらの混合物を形成することが可能である、金属元素であってもよく、Fe、Mo、La、Ce、W、Cr、Co、Ni、Cu、Ag、Zn、Mn、V、Nb、Ta、Ti、Y、Zr、Mg、およびCaを含む。触媒活性金属ハロゲン化物または金属酸素・ハロゲン化物の形成に有用であってもよい、ハロゲンは、Br、Cl、およびFであり、Brが好ましい。触媒は、最初に、触媒担体上に分散された金属臭化物として調製されてもよいが、金属硝酸塩前駆体溶液を利用する初期湿潤技法によって、金属酸化物を分散させることが、概してより一般的であり、その後に、空気または他の酸化ガス混合物中で高温において乾燥および焼成が続く。さらに、多くの金属臭化物塩が吸湿性であるため、取扱、貯蔵、および輸送は、特殊な手段を必要としてもよい。したがって、シフトリアクタで使用される触媒は、最も実用的に、金属酸化物状態のみで市販されてもよい。そのような金属酸化物触媒は、熱的臭素化反応からの流出物中に存在する、臭化水素、臭化メチル、ジブロモメタン、または他の臭化アルキルとのその反応により、経時的に、金属臭化物または金属酸素・臭化物、あるいはそれらの混合物に変換されるため、最初に、図16の触媒シフトリアクタで採用されてもよい。しかしながら、触媒シフトリアクタの中の金属酸化物触媒の活性が、金属臭化物または金属酸素・臭化物の活性よりも目につくほど少なく、変換が完了するまで炭素損失またはコークス化が増加させられるため、臭化水素酸および同伴ガス、例えば、メタンまたは窒素との反応によって等、任意の好適な手段によって、触媒シフトリアクタに供給を導入する前に、金属酸化物触媒を金属臭化物または金属酸素・臭化物、またはそれらの混合物に変換することが望ましくてもよい。
触媒シフトリアクタの中では、熱的臭素化リアクタからの流出物に含有される臭化アルキル中に存在してもよい、二および三臭素化アルカンの大部分が、供給中に存在する、未反応アルカン成分、主にメタンとの反応時に、一臭素化アルカンに選択的に変換されてもよい。Cおよびジブロモメタンが反応物である、実施例として、変換は、以下の一般的反応に従って起こると考えられる。
CH+CHBr→2CHBr
熱的および触媒リアクタの両方の中の高温により、臭素は、本質的に完全に変換される。触媒シフトリアクタで使用される触媒は、メタンとの臭素(触媒表面上のジブロモメタンの解離吸着によって供給される)の選択的触媒反応を介して臭化メチルを生じるように、メタンとのジブロモメタンの選択的反応を推進すると考えられる。
図2〜13に図示され、上記で説明される本発明の過程の実施形態のうちのいずれかでのリアクタ30、130、および230を含む、臭素化過程概略図の代わりに、図16〜19に図示され、上記で説明される臭素化リアクタを含む、触媒臭素化過程概略図を利用することができる。概して図16〜19に図示されるような、本発明の過程の触媒臭素化の実施形態のうちのいずれかによる、臭素化は、他の臭素化概略図によって達成されるものと比べて、はるかに低いメタン対臭素比における増大した炭素利用率をもたらすと考えられる。これは、より高い生成物収率、より長いサイクルの長さ、容器容量およびガスリサイクルの低減、生成物回収、および有用性要件をもたらし、それにより、過程の全体的経済性を劇的に向上させてもよい。
図16、17、および19に図示され、上記で説明される、本発明の過程の実施形態は、臭素化リアクタに導入するための臭素蒸気および適切な供給ガスの混合物を得るように、液体臭素を蒸発させる異なる方式を開示するが、単純に、臭素が商業的に、または蒸気形態で過程の流れとして利用可能である場合において、適切な供給ガスおよび臭素蒸気の混合物を供給することによって、これらの実施形態で説明される臭素化リアクタを操作できることが、当業者に明白となるであろう。さらに、図18に図示され、上記で説明される本発明の過程の実施形態は、臭素化リアクタに導入する前に適切な供給ガスおよび臭素蒸気の混合物を加熱することを開示するが、臭素が商業的に、または蒸気形態で過程の流れとして利用可能である、この実施形態で説明される臭素化リアクタへの導入前に、図16、17、または19の実施形態に従って臭素液体を蒸発できることが、当業者に明白となるであろう。
熱的臭素化を開始するのに十分な温度まで、供給ガス、臭素混合物を加熱するための手段が、単純な外部加熱された熱交換器として図16〜19に図示されているが、この混合物を加熱する他の方法が、当業者に明白となるであろう。例えば、熱的臭素化を開始するのに十分な温度まで供給ガスおよび臭素蒸気の混合物を加熱するために、他の高温の過程の流れとの相互交換、高温不活性材料の注入、電磁放射、電離放射線、放電、および口火による加熱を利用することができる。これらの方法は、熱的臭素化リアクタまたはゾーンの中へ、熱的臭素化リアクタまたはゾーンの中で、あるいは両方で混合物を導入する前に行われてもよい。
本発明のより良好な理解を促進するために、いくつかの実施形態のある側面の以下の実施例が挙げられる。以下の実施例は、本発明の範囲全体を制限または定義する方式で読まれる、または解釈されるべきではない。
(実施例1)
種々の混合物比におけるメタンおよび蒸発臭素の混合物は、電気発熱体を使用して3つのゾーンの中で外部から加熱される、中を空にした管状リアクタを通って垂直に上向きに流される。上部(出口)ゾーンは、約494℃の平均温度で維持され、中間ゾーンは、約450℃の平均温度で維持され、入口(予熱)ゾーンは、約150℃から約300℃の範囲にわたる種々の温度で操作される。反応滞留時間は、約2.0〜4.5秒に及んだ。図14で描写されるように、臭素化リアクタに導入されるメタン対臭素のモル比を2.5以上に増加させることは、約70%の一臭素化選択性の有意な増加をもたらす。約5のメタン対臭素のモル比では、一臭素化選択性が平均して約80%となる一方で、約10のメタン対臭素のモル比では、一臭素化選択性は80%を超える。図15でさらに描写されるように、2.5を上回るメタン対臭素比における、この増加した一臭素化選択性は、4.8の比については約3.25秒、約5.2の比については約2秒の短い滞留時間で達成される。約2.5の好ましい最小比を下回る、約2.1の低いメタン対臭素比で得られる、一式のデータ点例において、リアクタ流出物中のCH3Br濃度は平均して約16.8mol%となり、CH2Br2濃度は平均して約6.8mol%となり、HBr濃度は望ましくないほど高く、平均して約33.7mol%となる。約2.5の最小の好ましい比のすぐ上である、約2.6のメタン対臭素比では、リアクタ流出物中のCH3Br濃度は平均して約15.4mol%となり、CH2Br2濃度は平均して約5mol%となり、HBr濃度は平均して約26.4mol%となる。約4.8のより好ましいメタン対臭素比では、リアクタ流出物中のCH3Br濃度は平均して約10.7mol%となり、CH2Br2濃度は平均して約3.1mol%となり、HBr濃度は平均して約16.8mol%となる。
(実施例2)
外部加熱された開放管(公称3/8インチ直径)の実験室規模の熱的臭素化リアクタ(R-1a)が、本発明によれば、約490℃および約650°hr-1のGHSVで動作する公称1インチ直径の触媒シフトリアクタ(R-1b)とともに、直列に上流で操作される。メタン、臭素、および窒素の流量は、第1の開放管熱的臭素化リアクタへの3:1または2:1の標的供給CH:Br比まで制御される。2つの標的CH4:Br2供給比の混合物のそれぞれについて、第1の開放管熱的臭素化リアクタは、開放管熱リアクタの中で熱気相フリーラジカル臭素化反応を開始するように(425℃、450℃、および470℃での入口から上部出口までの3ゾーン温度プロファイルで)加熱される。触媒シフトリアクタへの入口および出口ガスのサンプルの組成が、2つの異なる標的メタン・臭素混合物について以下の表に示されている。熱的臭素化が触媒シフトリアクタの上流で開始される時に、触媒シフトリアクタへの供給は、モノブロモメタン(MeBrまたはCHBr)に対する比較的低い選択性およびジブロモメタン(DBMまたはCHBr)に対する比較的高い選択性を有し、それにもかかわらず、熱的臭素化反応で形成されるCHBrは、触媒シフトリアクタの中の触媒上で過剰な未反応アルカン(メタン)と反応してCHBrをCHBrに変換し、モノブロモメタンに対する高い最終出口選択性をもたらす(表1および2の結果を参照)。
Figure 2013530183
Figure 2013530183
(実施例3)
外部加熱された実験室規模の触媒シフトリアクタ(公称1インチ直径)が、本発明によれば、約490℃および約650hr-1のGHSVで操作される。メタン、臭素、および窒素の流量は、3:1の標的供給CH:Br比まで制御され、第1の開放管熱的臭素化リアクタ(R-1a)の中で約175℃まで予熱され、触媒シフトリアクタ(R-1b)へ供給される。
触媒は、最初に、湿潤前駆体含浸/後焼成方法を使用して調製された、シリカ担体上に分散された酸化鉄および酸化モリブデンの混合物から成った。各試験前に、触媒は、約490℃の温度で維持され、メタン・臭素反応物の導入前に、触媒が最初の酸化物形態であり、次いで、N2で浄化されたことを確実にするように、数時間にわたって酸素および窒素の混合物とともに焼成/再生される。図20に図示されるように、CHBr(MeBr)の量は、最初の約30時間にわたって時間とともに増加し、CHBr(DBM)の量は、約60時間にわたってより遅い速度で増加する。同様に、炭素利用率(反応させられるCH4の量に対して比較した、リアクタの中で観察される(CHBr+CHBr)の量の割合として定義される)は、最初の約40時間にわたって増加し、その後100時間でほぼ100%に維持される。これは、最初に酸化物状態である触媒が、あまり活性ではなく、CHBrおよびCHBrのうちのいくらかが、最初に、触媒上のコークスまたは炭素質堆積物の形成に失われることを示す。実行にわたって、触媒がより活性になり、コークス化の速度が下降することが分かり、触媒上に存在する金属酸化物の少なくとも一部分が、フリーラジカル臭素化反応の、また、おそらくは臭化アルキル(CHBrおよび/またはCHBr)のうちのいくらかからの臭化水素(HBr)副生成物との金属酸化物の反応によって、金属臭化物または酸素・臭化物に変換されると推測することができる。さらに、メタンおよび臭素反応物の導入前に、長期間にわたって触媒上でHBrおよびNの混合物を通過させることによって、最初に酸素・窒素混合物における焼成からの酸化物状態である触媒が、事前調整される、対照実験が実行された時に(図20に図示されていない)、ほぼ100%の最初の観察炭素利用率が観察され、高い利用率が試験実行の全体を通して維持される。
したがって、その最も活性で安定した状態での触媒の所望の機能は、金属臭化物および/または金属酸素・臭化物の存在を伴う。これは、不活性担体上の好適な金属臭化物の最初の堆積によって得ることができる。好ましくは、これらの安定した活性種は、最初に酸化物状態である好適な金属または金属の混合物を含有する触媒から始まる、反応条件下で原位置において得ることができるが、より好ましくは、臭化水素を使用した、金属臭化物または金属酸素・臭化物状態への初期金属酸化物の原位置での事前変換/事前活性化によって得ることができる。
(実施例4)
外部加熱された実験室規模の触媒シフトリアクタ(公称1インチ直径)が、本発明によれば、約650hr-1のGHSVで種々の温度において操作される。メタン、臭素、および窒素の流量は、3:1の標的供給CH:Br比まで制御され、第1の開放管熱的臭素化リアクタ(R-1a)の中で約175℃まで予熱され、最初に490℃で操作され、約125時間の期間にわたって安定化することが許可される、触媒シフトリアクタ(R-1b)へ供給される。図表から分かるように、炭素利用率は、ほぼ100%であり、490℃の初期動作温度でのCHBr(MeBr)選択性は、約80%である。約140時間で、触媒シフトリアクタ(R-1b)温度は、510℃まで上昇させられ、CHBr選択性を約85%まで増加させ、ほぼ100%の炭素利用率が維持される。約155時間で、触媒シフトリアクタ(R-1b)温度は、520℃まで上昇させられ、CHBr選択性を約88%まで増加させ、ほぼ100%の炭素利用率が維持される。約188時間で、触媒シフトリアクタ(R-1b)温度は、530℃まで上昇させられ、CH3Br選択性を約90%まで増加させ、ほぼ100%の炭素利用率が維持される。後に、約200時間後に、触媒シフトリアクタ(R-1b)温度は、約10℃増分で上昇させられ、約570℃でCH3Br選択性を最大約93%まで徐々に増加させ、ほぼ100%の炭素利用率が維持される。約220時間後に、触媒シフトリアクタ(R-1b)温度は、580℃まで上昇させられ、CHBr選択性のさらなる増加を引き起こさないが、炭素利用率の有意な降下が顕著であり、好ましい触媒上の効率的な反応のための最適温度が、約580℃未満であることを示す。
別の実施形態によれば、本発明の過程で使用される1つ以上のリアクタの代わりに、マイクロチャネルリアクタが採用されてもよい。図22および22Aに図示されるように、マイクロチャネルリアクタは、実質的に平行に積み重ねられ、例えば、当業者に明白となるように、隣接する板の間に密封および流路412、414を形成するように融着によって、縁において、または交互縁において結合されてもよい、多数の離間した板410から形成されてもよい。板の各スタックの1つ以上の側面は、マイクロチャネルリアクタモジュール400を形成するように、流体入力および出力のための適切なサイズのマニホールドを装着されてもよい。所与のモジュールが、隣接する板410の間に画定される何百または何千もの流路412、414を含有するよう構築されてもよいように、所与のマイクロチャネルリアクタモジュール内の隣接する板は、例えば、約0.5mmから約5.0mmの短い距離で離間されてもよい。板410は、任意の好適な材料、例えば、金属、セラミック、またはガラスで構築されてもよい。
本発明のこの実施形態によれば、少なくとも1つのマイクロチャネルリアクタモジュール400は、リアクタ33、133、233等の臭化アルキル変換リアクタまたは合成リアクタとして、16、117、240、および246等の金属酸化物/臭化物リアクタまたは酸化リアクタとして、または上記で説明されるような本発明の実施形態における合成リアクタおよび酸化リアクタの両方として採用されてもよい。図22Aに図示されるように、マイクロチャネルリアクタモジュール400は、好ましくは、金属で構築され、交互の過程流路414および共用流路412を有してもよい。モジュールは、好ましくは、モジュールの各端上の流路が共用サービス用であるように、1つ以上の共用流路412を伴って構成されてもよい。臭化アルキル反応および酸化反応の両方が発熱であるため、市販の熱伝達流体、過程流体、または水等の冷却媒体は、熱を除去するように、共用通路または流路を通して循環させられてもよい。市販の熱伝達流体、過程流体、または水等の加熱媒体もまた、所与のリアクタを予熱するように、過程始動中に共用通路または流路を通して循環させられてもよい。図22Aでさらに図示されるように、過程流路414を通る反応物流は、共用流路412を通る冷却または加熱媒体への横流であってもよい。
少なくとも1つのマイクロチャネルリアクタモジュール400はまた、上記で説明される本発明の実施形態におけるリアクタ33、133、233等の熱的または触媒臭素化リアクタとして、あるいは両方の種類のリアクタが上記で説明されるような本発明の過程で利用される、熱的および触媒臭素化リアクタの両方として、採用されてもよい。臭素化反応が発熱であるため、市販の熱伝達流体、過程流体、または水等の冷却媒体は、熱を除去するように、共用通路または流路を通して循環させられてもよい。市販の熱伝達流体、過程流体、または水等の加熱媒体もまた、臭素化リアクタを予熱するように、過程始動中に共用通路を通して循環させられてもよい。
少なくとも1つのマイクロチャネルリアクタモジュールはまた、熱的または触媒シフトリアクタ、例えば、上記で説明される本発明の実施形態におけるシフトリアクタ410として採用されてもよい。シフト反応が発熱であるため、市販の熱伝達流体、過程流体、または水等の冷却媒体は、熱を除去するように、共用通路または流路を通して循環させられてもよい。市販の熱伝達流体、過程流体、または水等の加熱媒体もまた、シフトリアクタを予熱するように、過程始動中に共用通路を通して循環させられてもよい。
少なくとも1つのマイクロチャネルリアクタモジュール400はまた、リアクタ310、リアクタ320等の金属臭化物を含有する臭素貯蔵リアクタ、あるいは上記で説明される本発明の過程の実施形態において臭素を貯蔵および放出するように、リアクタ310および320の両方として、採用されてもよい。臭素貯蔵ステップ中のリアクタ310および320にわたる温度上昇を制限するよう、市販の熱伝達流体、過程流体、または水等の冷却媒体は、熱を除去するように、マイクロチャネルリアクタモジュールの共用通路を通して循環させられてもよい。市販の熱伝達流体、過程流体、または水等の熱伝達媒体もまた、リアクタ310および320の循環ステップ間で固体床312および322の冷却および加熱を達成するように、マイクロチャネルリアクタモジュールの共用通路を通して循環させられてもよい。
1つ以上のマイクロチャネルリアクタモジュール400は、臭素化リアクタ、合成リアクタ、シフトリアクタ、酸化リアクタ、臭素貯蔵リアクタ、これらのリアクタのうちの2つ以上の組み合わせ、または本発明の過程におけるこれらのリアクタの全てとして採用されてもよい。
本発明の過程で臭素化リアクタ、合成リアクタ、シフトリアクタ、または酸化リアクタとして採用される、マイクロチャネルリアクタモジュールで使用される触媒のそれぞれは、当業者に明白となるように、任意の好適な形態となり、リアクタの過程流路に詰め込まれる。代替として、触媒は、過程流路内の所与のマイクロチャネルリアクタの板の一方または両方の面に結合され、あるいは過程流路内の板の一方または両方の面の上で合成されてもよい。過程通路が、大気圧以上で動作するように設計されてもよい一方で、共用通路は、過程および共用通路の間の圧力差による機械的損傷を阻止するよう、過程通路の圧力で、またはその付近で動作する。臭素貯蔵リアクタ310および320で使用される金属臭化物もまた、当業者に明白となるように、任意の好適な形態となりリアクタの過程流路に詰め込まれる。代替として、臭素貯蔵リアクタ310、320で使用される金属臭化物は、過程流路内の所与のマイクロチャネルリアクタの板の一方または両方の面に結合され、あるいは過程流路内の板の一方または両方の面の上で合成されてもよい。
図23に図示されるように、1つ以上のモジュールが、大気圧を上回る圧力において工場で使用するために、シェル420内に位置付けられ、それに固定されてもよい。商業規模のマイクロチャネルリアクタモジュールが比較的小さく、例えば、直径が約3〜約4フィートであるため、当業者に明白となるように、所与の過程スループットに必要とされる流量面積を提供するように、複数のリアクタモジュールが接続されてもよい。
マイクロチャネルリアクタが、過程流体の混合および触媒への暴露を向上させてもよいため、本発明の過程およびシステムでの1つ以上のマイクロチャネルリアクタの使用は、触媒が採用されるリアクタにおいて、選択性を増進し、反応速度を向上させ、または両方を行ってもよい。さらに、細い過程流路は、触媒床にわたって温度制御を有意に向上させる、熱および質量伝達を向上させてもよく、それにより、触媒活性および寿命を向上させる。より効率的な熱伝達は、不要な副反応を阻害し、本発明の過程でより活性な触媒を利用する能力を増大させてもよい。触媒は、比較的小さい粒径においてマイクロチャネルリアクタで採用されるため、触媒表面積が増大させられ、従来の触媒リアクタにおいて達成されるものと比べて、増大した触媒活性をもたらす。そのような触媒生産性の向上は、1つ以上のマイクロチャネルリアクタを採用する本発明の過程およびシステムの合計据え付け後費用を実質的に削減することに変換してもよい。マイクロチャネルリアクタは、商業用リアクタよりも有意に小さいため、マイクロチャネルリアクタの使用は、より小型の用途で有用であってもよい、より小さい接地面積および薄型をもたらしてもよい。これらの利点の多くは、同様に、臭素貯蔵リアクタ310および320の中で捕捉および貯蔵するために使用される、金属臭化物に該当する。
本発明の過程は、約1バールから約30バールの範囲内の低い圧力で、および気相については約20℃から約600℃、好ましくは液相については約20℃から約180℃の範囲内の比較的低い温度で動作するため、本発明の過程は、従来の過程よりも安価である。これらの動作条件は、容易に入手可能な金属合金から構築されている比較的単純な設計の安価な機器、高温気相リアクタ用のガラス裏地付き耐火/セラミック裏地付き機器、ならびに液相含有機器用の関連機器およびポリマー裏地付きまたはガラス裏地容器、配管、およびポンプの使用を可能にする。本発明の過程はまた、より少ないエネルギーが動作に必要とされ、不要な副生成物としての過剰な二酸化炭素の生産が最小限化されるため、より効率的である。本発明の過程で利用されるリアクタおよび過程機器は、当業者に明白となるように、任意の好適な設計であってもよい。
本発明の過程は、液化石油ガス(LPG)中の種々の分子量成分を含有する高分子量炭化水素、オレフィン、かなりの芳香族含有量を有する自動車用ガソリン燃料範囲を直接生産することが可能であり、それにより、ガソリン範囲燃料成分のオクタン値を有意に増加させる。これらの高分子量炭化水素は、過程で採用される特定の触媒および過程の動作パラメータに応じて、生成物として、中間生成物として、および/またはさらなる処理のための原料として、直接使用されてもよい。例えば、本発明の過程によって得られる高分子量炭化水素は、燃料調合剤として、またはさらなる処理のための原料として、かなりの芳香族含有量を有する、自動車用ガソリン燃料として直接使用されてもよい。
オレフィンが本発明の過程によって生産される場合、そのようなオレフィンは、ポリオレフィンを生産するための過程への供給として使用されてもよい。
本発明の先述の好ましい実施形態が説明され、示されているが、提案されるものおよびその他等の代替案および修正が、それらに行われ、本発明の範囲内に入ってもよいことが理解される。

Claims (20)

  1. 臭化水素と、オレフィン、高分子量炭化水素、またはそれらの混合物を含む、炭化水素生成物とを形成するように、触媒の存在下で臭化アルキルを反応させるステップと、
    少なくとも金属臭化物を形成するように前記臭化水素を金属酸化物と反応させ、それにより、前記炭化水素生成物から前記臭化水素の少なくとも一部分を除去するステップと
    を含む、過程。
  2. 反応させるステップのうちの少なくとも1つは、マイクロチャネルリアクタの中で実行される、請求項1に記載の過程。
  3. 前記臭化アルキルを含む臭素化生成物を形成するように、臭素を低分子量アルカンと反応させるステップをさらに含む、請求項2に記載の過程。
  4. 前記臭素は、前記臭素化生成物を形成するように、少なくとも約2.5:1のメタン対臭素モル比で前記低分子量アルカンと反応させられ、前記過程はさらに、
    前記臭化アルキルに存在する二臭素化アルカンおよび三臭素化アルカンの少なくとも一部分を一臭素化アルカンに変換するように、触媒の存在下で前記臭化アルキルをC2+炭化水素と反応させ、したがって、前記炭化水素生成物を形成するように、前記臭化アルキルを反応させるステップを含む、請求項3に記載の過程。
  5. 少なくとも前記金属酸化物および臭素を形成するように、前記金属臭化物を酸素と反応させるステップをさらに含む、請求項2に記載の過程。
  6. 金属臭化物を酸素と反応させる前記ステップで形成される臭素を、臭素化生成物が形成される前記ステップへ再循環させるステップをさらに含む、請求項5に記載の過程。
  7. 後に使用するための臭素を貯蔵するよう、還元原子価状態の金属臭化物を、酸化状態で金属臭化物を形成するように金属臭化物を酸素と反応させる前記ステップで形成される臭素と反応させるステップをさらに含む、請求項5に記載の過程。
  8. 少なくとも臭素および還元原子価状態の前記金属臭化物を形成するように、別のマイクロチャネルリアクタの中で、酸化原子価状態の前記金属臭化物の少なくとも一部分を加熱するステップをさらに含む、請求項7に記載の過程。
  9. 臭化水素と、オレフィン、高分子量炭化水素、またはそれらの混合物を含む、炭化水素生成物とを形成するように、触媒の存在下で臭化アルキルを反応させるための合成リアクタと、
    少なくとも金属臭化物を形成するように前記臭化水素を金属酸化物と反応させ、それにより、前記炭化水素生成物から前記臭化水素の少なくとも一部分を除去するための金属酸化物リアクタと
    を含む、システム。
  10. 前記合成リアクタおよび前記金属酸化物リアクタのうちの少なくとも1つは、マイクロチャネルリアクタである、請求項9に記載のシステム。
  11. 前記臭化アルキルを含む臭素化生成物を形成するように、臭素を低分子量アルカンと反応させるための臭素化リアクタをさらに含む、請求項9に記載のシステム。
  12. 前記臭素化リアクタ、前記合成リアクタ、および前記金属酸化物リアクタのうちの少なくとも1つは、マイクロチャネルリアクタである、請求項11に記載のシステム。
  13. 前記臭素化リアクタは、前記臭素化生成物を形成するように、少なくとも約2.5:1のメタン対臭素モル比で操作され、前記システムはさらに、
    前記臭化アルキルを前記合成リアクタに導入する前に、前記臭化アルキルに存在する二臭素化アルカンおよび三臭素化アルカンの少なくとも一部分を一臭素化アルカンに変換するように、触媒の存在下で前記臭化アルキルをC2+炭化水素と反応させるためのシフトリアクタを含む、請求項11に記載のシステム。
  14. 前記臭素化リアクタ、前記シフトリアクタ、前記合成リアクタ、および前記金属酸化物リアクタのうちの少なくとも1つは、マイクロチャネルリアクタである、請求項13に記載のシステム。
  15. 少なくとも前記金属酸化物および臭素を形成するように、前記金属臭化物を酸素と反応させるための酸化リアクタをさらに含む、請求項9に記載のシステム。
  16. 前記合成リアクタ、前記金属酸化物リアクタ、および前記酸化リアクタのうちの少なくとも1つは、マイクロチャネルリアクタである、請求項15に記載のシステム。
  17. 後に使用するための臭素を貯蔵するよう、還元原子価状態の金属臭化物を、酸化状態で金属臭化物を形成するように前記酸化リアクタの中で形成される臭素と反応させるための臭素貯蔵リアクタをさらに含む、請求項15に記載のシステム。
  18. 前記合成リアクタ、前記金属酸化物リアクタ、前記酸化リアクタ、および前記臭素貯蔵リアクタのうちの少なくとも1つは、マイクロチャネルリアクタである、請求項17に記載のシステム。
  19. 臭化水素、およびオレフィン、高分子量炭化水素、またはそれらの混合物を含む、炭化水素生成物を形成するように、マイクロチャネルリアクタの少なくとも1つの過程流路内に位置付けられる触媒の存在下で臭化アルキルを反応させるステップと、
    前記炭化水素生成物から前記臭化水素の一部分を除去するよう、前記臭化水素を金属酸化物と反応させるステップと
    を含む、過程。
  20. 前記触媒は、前記少なくとも1つの過程流路を画定する、前記マイクロチャネルリアクタ内の少なくとも2つの対向する板の少なくとも1つの面の上に位置付けられる、請求項19に記載の過程。
JP2013515373A 2010-06-14 2011-06-03 マイクロチャネルリアクタを用いて気体状アルカンを液体炭化水素に変換するための過程 Withdrawn JP2013530183A (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US35454610P 2010-06-14 2010-06-14
US61/354,546 2010-06-14
US13/117,785 US8642822B2 (en) 2004-04-16 2011-05-27 Processes for converting gaseous alkanes to liquid hydrocarbons using microchannel reactor
US13/117,785 2011-05-27
PCT/US2011/039016 WO2011159490A1 (en) 2010-06-14 2011-06-03 Processes for converting gaseous alkanes to liquid hydrocarbons using microchannel reactor

Publications (1)

Publication Number Publication Date
JP2013530183A true JP2013530183A (ja) 2013-07-25

Family

ID=45348503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013515373A Withdrawn JP2013530183A (ja) 2010-06-14 2011-06-03 マイクロチャネルリアクタを用いて気体状アルカンを液体炭化水素に変換するための過程

Country Status (7)

Country Link
US (1) US8642822B2 (ja)
EP (1) EP2580176A1 (ja)
JP (1) JP2013530183A (ja)
CN (1) CN102947249A (ja)
AU (1) AU2011265594A1 (ja)
EA (1) EA201291331A1 (ja)
WO (1) WO2011159490A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050171393A1 (en) * 2003-07-15 2005-08-04 Lorkovic Ivan M. Hydrocarbon synthesis
US20080275284A1 (en) 2004-04-16 2008-11-06 Marathon Oil Company Process for converting gaseous alkanes to liquid hydrocarbons
US8642822B2 (en) 2004-04-16 2014-02-04 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons using microchannel reactor
US8173851B2 (en) 2004-04-16 2012-05-08 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons
US8282810B2 (en) 2008-06-13 2012-10-09 Marathon Gtf Technology, Ltd. Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery
US8367884B2 (en) 2010-03-02 2013-02-05 Marathon Gtf Technology, Ltd. Processes and systems for the staged synthesis of alkyl bromides
US8815050B2 (en) 2011-03-22 2014-08-26 Marathon Gtf Technology, Ltd. Processes and systems for drying liquid bromine
US8436220B2 (en) 2011-06-10 2013-05-07 Marathon Gtf Technology, Ltd. Processes and systems for demethanization of brominated hydrocarbons
US8829256B2 (en) 2011-06-30 2014-09-09 Gtc Technology Us, Llc Processes and systems for fractionation of brominated hydrocarbons in the conversion of natural gas to liquid hydrocarbons
US8802908B2 (en) 2011-10-21 2014-08-12 Marathon Gtf Technology, Ltd. Processes and systems for separate, parallel methane and higher alkanes' bromination
US9193641B2 (en) * 2011-12-16 2015-11-24 Gtc Technology Us, Llc Processes and systems for conversion of alkyl bromides to higher molecular weight hydrocarbons in circulating catalyst reactor-regenerator systems
CN104926596B (zh) * 2015-05-15 2017-10-31 南京工业大学 一种微通道反应器连续制备溴甲烷的方法
CN104998587B (zh) * 2015-06-04 2017-08-04 南京工业大学 连续制备烯烃和芳烃的微通道反应装置
CN105152834B (zh) * 2015-06-04 2018-05-29 南京工业大学 微通道反应器中连续制备烯烃和芳烃的方法
CN113527034A (zh) * 2021-06-24 2021-10-22 武汉理工大学 一种连续流微通道反应器合成卤代烃的方法

Family Cites Families (772)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3172915A (en) 1965-03-09 Preparation of oxygenated methane derivatives
GB156122A (en) 1919-12-08 1922-03-30 Otto Traun S Forschungslaborat Process for the manufacture of diolefines and derivatives thereof
GB294100A (en) 1927-07-16 1929-06-27 Curt Epner Improvements in and relating to the production of liquid polymerisation products from gases containing hydrocarbons
GB363009A (en) 1930-09-19 1931-12-17 John Philip Baxter Production of acetylene and vinyl chloride from ethylene dichloride
FR745544A (ja) 1931-11-11 1933-05-12
DE698778C (de) 1934-11-11 1941-07-10 I G Farbenindustrie Akt Ges Verfahren zur Herstellung von organischen Monochlor- oder Monobromverbindungen
GB474922A (en) 1936-05-14 1937-11-15 Ig Farbenindustrie Ag Process for chlorinating and brominating hydrocarbons
US2320257A (en) 1939-03-03 1943-05-25 Solvay Process Co Process for drying nitrosyl chloride gas
US2246082A (en) 1939-08-22 1941-06-17 Shell Dev Preparation of alkyl halides
GB536491A (en) 1939-09-28 1941-05-16 Bataafsche Petroleum A process for the production of aromatic hydrocarbons from unsaturated hydrocarbons
GB553950A (en) 1941-09-09 1943-06-11 Du Pont Improvements in or relating to the manufacture of halogenated hydrocarbons
GB586483A (en) 1944-07-05 1947-03-20 Standard Oil Dev Co Process for the conversion of normally gaseous olefins to liquid hydrocarbons
US2536457A (en) 1944-08-29 1951-01-02 Distillers Co Yeast Ltd Recovery of bromine from hydrogen bromide
US2488083A (en) 1946-06-18 1949-11-15 Socony Vacuum Oil Co Inc Manufacture of liquid hydrocarbons
US2666024A (en) 1949-04-22 1954-01-12 Fmc Corp Oxidation and chlorine recovery process
US2677598A (en) 1953-01-19 1954-05-04 Dow Chemical Co Oxidation of ferrous halides to form ferric halides
GB775590A (en) 1953-11-27 1957-05-29 Standard Oil Co Improvements in or relating to production of ethyl toluenes
US2941014A (en) 1954-08-06 1960-06-14 Hoechst Ag Manufacture of alkyl chlorination products
GB793214A (en) 1955-02-18 1958-04-09 Bataafsche Petroleum Process for the conversion of hydrocarbons containing acyclic carbon atoms
GB796085A (en) 1955-12-22 1958-06-04 Bataafsche Petroleum Hydrocarbon conversion process
GB796048A (en) 1956-02-06 1958-06-04 Bataafsche Petroleum Conversion of hydrocarbons
DE1037137B (de) 1957-01-25 1958-08-21 Bayer Ag Verfahren zur Herstellung halogenhaltiger, aromatisch-aliphatischer Polyaether
GB883256A (en) 1958-05-02 1961-11-29 Columbia Southern Chem Corp Halogenation process
GB956244A (en) 1960-05-31 1964-04-22 American Cyanamid Co Triazinyl alkyl thiophosphate esters, method of preparation, and pesticidal compositions containing same
US3562321A (en) 1961-10-10 1971-02-09 Sun Oil Co Preparation of oxygenated hydrocarbons
GB950976A (en) 1961-10-13 1964-03-04 British Hydrocarbon Chem Ltd Improvements in and relating to the production of olefines
BE623466A (ja) 1961-10-13
GB991303A (en) 1962-07-26 1965-05-05 British Hydrocarbon Chem Ltd The production of olefines by the dehydrochlorination of alkyl chlorides
US3294846A (en) 1962-10-10 1966-12-27 Dow Chemical Co Process for preparing metaaryloxy phenols
US3246043A (en) 1962-12-12 1966-04-12 Universal Oil Prod Co Preparation of olefinic hydrocarbons
GB1015033A (en) 1963-01-31 1965-12-31 Shell Int Research Preparation of olefin oxides
NL125428C (ja) 1963-02-27
US4011278A (en) 1963-02-27 1977-03-08 Mobil Oil Corporation Conversion of polar compounds using a zsm-5 zeolite catalyst
US3273964A (en) 1963-02-28 1966-09-20 Universal Oil Prod Co Process for producing bromine from a mixture of hydrogen bromide and olefinic hydrocarbon
GB1104294A (en) 1963-12-10 1968-02-21 Ralph William King Production of lower alkanols and lower alkyl bromides
US3310380A (en) 1964-02-13 1967-03-21 Universal Oil Prod Co Bromine recovery
US3923913A (en) 1964-05-12 1975-12-02 Pechiney Saint Gobain Process for obtaining chlorinated derivatives of ethylene
US3254023A (en) 1964-06-08 1966-05-31 Socony Mobil Oil Co Inc Method of heat balancing in organic catalytic reactions
DE1245935B (de) 1964-07-06 1967-08-03 Kali Chemie Aktiengesellschaft Hannover Verfahren zur Ruckgewinnung von Brom aus dem bei der Umsetzung von Fluor- bzw Fluorchlorkohlewasserstoffen mit Brom entstandenen Bromwasserstoff
US3353919A (en) 1964-07-23 1967-11-21 Air Preheater Apparatus for the elimination of odors from noxious gases
US3314762A (en) 1964-08-03 1967-04-18 Michigan Chem Corp Bromine purification process
BE672377A (ja) 1964-11-24 1966-05-16
US3291708A (en) 1964-12-31 1966-12-13 Ionics Electrolytic process for producing a halogen from its respective acid and the apparatus therefor
US3353916A (en) 1966-04-25 1967-11-21 Universal Oil Prod Co Quantitative recovery of bromine by two stage catalytic oxidation of hydrogen bromide
DE1618686B1 (de) 1966-04-28 1971-08-26 Marathon Oil Co Tieftemperatur-Verfahren für die Chlorierung oder Bromierung von Kohlenwasserstoffen
US3346340A (en) 1966-08-11 1967-10-10 Universal Oil Prod Co Production of bromine by oxidation of hydrogen bromide
US3468968A (en) 1966-09-29 1969-09-23 Ethyl Corp Manufacture of halohydrocarbons
DE1807780B2 (de) 1968-11-08 1976-11-04 Henkel & Cie GmbH, 4000 Düsseldorf Verfahren zur herstellung von aether- und polyaetheralkoholen
DE1618254B1 (de) 1967-06-29 1971-07-08 Kalk Chemische Fabrik Gmbh Verfahren zur Herstellung von Bromverbindungen aus Alkoholen aus Brom
US3496242A (en) 1967-08-30 1970-02-17 Fmc Corp Oxychlorination of mixed hydrocarbons
US3598876A (en) 1967-11-13 1971-08-10 Universal Oil Prod Co Selective halogenation of hydrocarbons
US3879480A (en) 1967-12-07 1975-04-22 Lummus Co Vinyl chloride process
US3679758A (en) 1968-02-05 1972-07-25 Sun Oil Co Dihalogenation of branched alkanes
GB1253618A (en) 1968-03-28 1971-11-17 Perstorp Ab Process for the production of dry semi-formals
CA920775A (en) 1968-05-13 1973-02-13 Vadekar Mohan Oxidation of hydrogen chloride using molecular sieve catalysts
US3673264A (en) 1968-05-21 1972-06-27 Dow Chemical Co Method of preparing optically active propylene chlorohydrins and propylene oxides
US3920764A (en) 1968-10-23 1975-11-18 Lummus Co Dehydrogenation process
US3657367A (en) 1968-10-31 1972-04-18 Stauffer Chemical Co Oxychlorination of saturated and unsaturated hydrocarbons in the presence of a fluidized catalyst containing lanthanum and didymium
US3670037A (en) 1969-02-19 1972-06-13 Exxon Research Engineering Co Catalyst system
US3883651A (en) 1969-08-08 1975-05-13 Boehringer Sohn Ingelheim Pharmaceutical compositions containing a 2-(aminoalkylamino)-4-amino-thieno{8 3,2-d{9 pyrimidine and method of use
US3615265A (en) 1969-09-19 1971-10-26 Kali Veb K Process for drying bromine
US3702886A (en) 1969-10-10 1972-11-14 Mobil Oil Corp Crystalline zeolite zsm-5 and method of preparing the same
US3705196A (en) 1969-10-31 1972-12-05 Sun Oil Co Synthesis of aliphatic and alicyclic ethers
US3799997A (en) 1971-11-08 1974-03-26 Universal Oil Prod Co Preparation of alkenynes
US3816599A (en) 1971-11-16 1974-06-11 Lummus Co Hydrogen chloride recovery
US3968200A (en) 1972-03-27 1976-07-06 The Lummus Company Reactor effluent quench system
US4172099A (en) 1972-05-30 1979-10-23 Stauffer Chemical Company Process for chlorination of ethylene
GB1395926A (en) 1972-07-27 1975-05-29 Bp Chem Int Ltd Process for the production of isoprene by the chlorination/ dehydrochlorination of 2-methylbutene-2
JPS5231022B2 (ja) 1972-10-06 1977-08-12
US3876715A (en) 1972-12-01 1975-04-08 Gulf Research Development Co Process for preparing 2,3-dibromo-2-alkylalkanes
IT982662B (it) 1973-03-30 1974-10-21 Montedison Spa Procedimento di bromofluorurazio ne del metano
US4347391A (en) 1973-06-11 1982-08-31 Stauffer Chemical Company Process for preparing ethylene dichloride
US3865886A (en) 1973-06-20 1975-02-11 Lummus Co Production of allyl chloride
US3894103A (en) 1973-08-09 1975-07-08 Mobil Oil Corp Aromatization reactions
US3894105A (en) 1973-08-09 1975-07-08 Mobil Oil Corp Production of durene
US3894104A (en) 1973-08-09 1975-07-08 Mobil Oil Corp Aromatization of hetero-atom substituted hydrocarbons
US3894107A (en) 1973-08-09 1975-07-08 Mobil Oil Corp Conversion of alcohols, mercaptans, sulfides, halides and/or amines
US3879473A (en) 1973-08-14 1975-04-22 Phillips Petroleum Co Preparation of ethers from alcohols and olefins catalyzed by iodine
US3987119A (en) 1973-10-23 1976-10-19 Allied Chemical Corporation Production of vinyl chloride from ethane
US3919336A (en) 1973-10-23 1975-11-11 Allied Chem Method of preparing vinyl chloride from liquid ethylene dichloride
US4092368A (en) 1974-03-13 1978-05-30 General Electric Company Vapor phase transesterification
US4117251A (en) 1974-05-15 1978-09-26 Chemische Werke Huls Ag Method for preparing straight chain primary alcohols from 1-bromoalkanes
US4046825A (en) 1974-05-15 1977-09-06 Mobil Oil Corporation Conversion of oxygenated compounds to gasoline
US4035285A (en) 1974-05-28 1977-07-12 Mobil Oil Corporation Hydrocarbon conversion process
US3965205A (en) 1974-06-10 1976-06-22 Mobil Oil Corporation Conversion of low octane hydrocarbons to high octane gasoline
US4046819A (en) 1974-07-18 1977-09-06 Uop Inc. Alkylation of alkyl, cycloalkyl and aralkyl halides
US4169862A (en) 1974-07-22 1979-10-02 The B. F. Goodrich Company Low temperature catalytic combustion of chlorohydrocarbons
US4058576A (en) 1974-08-09 1977-11-15 Mobil Oil Corporation Conversion of methanol to gasoline components
US4138440A (en) 1974-08-14 1979-02-06 Mobil Oil Corporation Conversion of liquid alcohols and ethers with a fluid mass of ZSM-5 type catalyst
US3928483A (en) 1974-09-23 1975-12-23 Mobil Oil Corp Production of gasoline hydrocarbons
US4044061A (en) 1974-09-23 1977-08-23 Mobil Oil Corporation Preheating methanol effects steady state operation of conversion to gasoline
US3974062A (en) 1974-10-17 1976-08-10 Mobil Oil Corporation Conversion of full range crude oils with low molecular weight carbon-hydrogen fragment contributors over zeolite catalysts
US4071753A (en) 1975-03-31 1978-01-31 Gte Laboratories Incorporated Transducer for converting acoustic energy directly into optical energy
US4025575A (en) 1975-04-08 1977-05-24 Mobil Oil Corporation Process for manufacturing olefins
US4025576A (en) 1975-04-08 1977-05-24 Mobil Oil Corporation Process for manufacturing olefins
US4049734A (en) 1975-04-08 1977-09-20 Mobil Oil Corporation Conversion of coal to high octane gasoline
US4133838A (en) 1975-05-15 1979-01-09 Pearson Research Corp. Process for preparing hydrocarbons from methanol and phosphorus pentoxide
US4039600A (en) 1975-07-02 1977-08-02 Mobil Oil Corporation Conversion of synthesis gas to aromatic hydrocarbons
US4087475A (en) 1975-07-03 1978-05-02 Robert Kenneth Jordan Carbonyl fluorination process
US4052471A (en) 1975-08-06 1977-10-04 Pearsall Chemical Corporation Process for chlorinating C8 to C30 linear hydrocarbons
US3992466A (en) 1975-08-13 1976-11-16 Mobil Oil Corporation Hydrocarbon conversion
US4052472A (en) 1976-01-16 1977-10-04 Mobil Oil Corporation Mordenite conversion of alkanols to penta- and hexamethyl benzenes
US4049573A (en) 1976-02-05 1977-09-20 Mobil Oil Corporation Zeolite catalyst containing oxide of boron or magnesium
US4006169A (en) 1976-02-26 1977-02-01 Smithkline Corporation Epoxidation of α,β-ethylenic ketones
US4060568A (en) 1976-03-31 1977-11-29 Mobil Oil Corporation Silica-modified zeolite catalyst and conversion therewith
US4072733A (en) 1976-04-02 1978-02-07 Ethyl Corporation Conversion of methanol and dimethyl ether
US4110180A (en) 1976-04-28 1978-08-29 Diamond Shamrock Technologies S.A. Process for electrolysis of bromide containing electrolytes
US4025571A (en) 1976-05-12 1977-05-24 Mobil Oil Corporation Manufacture of hydrocarbons
US4025572A (en) 1976-05-12 1977-05-24 Mobil Oil Corporation Manufacture of hydrocarbons
GB1542112A (en) 1976-06-11 1979-03-14 Shell Int Research Process for the preparation of 2-phenylethanol or derivatives thereof
US4143084A (en) 1976-07-19 1979-03-06 Mobil Oil Corporation Di-alkylbenzene isomer mixtures
US4035430A (en) 1976-07-26 1977-07-12 Mobil Oil Corporation Conversion of methanol to gasoline product
CA1089632A (en) 1976-08-20 1980-11-18 Alfred J. Darnell Hydrogen production
US4194990A (en) 1977-02-11 1980-03-25 Allied Chemical Corporation Catalyst and process for the production of chlorofluorinated hydrocarbons
US4380682A (en) 1977-03-30 1983-04-19 Diamond Shamrock Corporation Balanced chlorination process
US4156698A (en) 1977-05-05 1979-05-29 Mobil Oil Corporation Conversion of alcohols or ethers using rare earth crystalline aluminosilicate in an alumina matrix
IT1077342B (it) 1977-07-18 1985-05-04 Snam Progetti Processo per la produzione di oligomeri da alfaolefine lineari,successiva idrogenazione degli stessi e prodotti saturi cosi' ottenuti
NL7710901A (nl) 1977-10-05 1979-04-09 Esmil B V Stationsstraat 48 Werkwijze voor het gelijktijdig verwerken van gebruikt metaal en/of metaalafval van gehaloge- neerde koolwaterstoffen.
US4300005A (en) 1977-12-02 1981-11-10 Monsanto Co. Preparation of vinyl chloride
JPS6049019B2 (ja) 1977-12-20 1985-10-30 富士写真フイルム株式会社 微小カプセルの製造方法
US4191618A (en) 1977-12-23 1980-03-04 General Electric Company Production of halogens in an electrolysis cell with catalytic electrodes bonded to an ion transporting membrane and an oxygen depolarized cathode
US4133966A (en) 1977-12-23 1979-01-09 Gulf Research & Development Company Selective formation of ethanol from methanol, hydrogen and carbon monoxide
GB1604081A (en) 1978-01-20 1981-12-02 Gallaher Ltd Production of catalysts from activated supports
SU694483A1 (ru) 1978-05-22 1979-10-30 Уфимский Нефтяной Институт Способ переработки побочных галоидуглеводородов производства хлористого аллила и металлилхлорида
US4282159A (en) 1978-06-19 1981-08-04 Wisconsin Alumni Research Foundation Preparation of alkylene oxides
DE2832532A1 (de) 1978-07-25 1980-02-07 Hoechst Ag Verfahren zur gewinnung von reinen 2-(perfluoralkyl)-aethanolen aus ihren gemischen mit 2-(perfluoralkyl)-aethylenen und gegebenenfalls 2-(perfluoralkyl)- aethylestern
US4187255A (en) 1978-08-21 1980-02-05 Conoco, Inc. Process for methylating naphthalene
FR2434861A1 (fr) 1978-08-31 1980-03-28 Inst Francais Du Petrole Procede de production d'essence a haut indice d'octane et en particulier d'essence utilisable sans plomb
US4849573A (en) 1978-09-05 1989-07-18 Mobil Oil Corporation Process for manufacturing light olefins
US4300009A (en) 1978-12-28 1981-11-10 Mobil Oil Corporation Conversion of biological material to liquid fuels
US4311865A (en) 1979-04-04 1982-01-19 Mobil Oil Corporation Manufacture of hydrocarbons from oxygenates
NL7902886A (nl) 1979-04-12 1980-10-14 Shell Int Research Werkwijze voor de bereiding van een koolwaterstof- mengsel.
US4496752A (en) 1979-05-03 1985-01-29 The Lummus Company Production of epoxy compounds from olefinic compounds
US4443620A (en) 1979-05-03 1984-04-17 The Lummus Company Production of epoxy compounds from olefinic compounds
US4410714A (en) 1979-05-03 1983-10-18 The Lummus Company Production of epoxy compounds from olefinic compounds
US4272338A (en) 1979-06-06 1981-06-09 Olin Corporation Process for the treatment of anolyte brine
US4371716A (en) 1979-09-04 1983-02-01 Shell Oil Company β-(Sec-alkoxy) ethanol process
US4462814A (en) 1979-11-14 1984-07-31 Koch Process Systems, Inc. Distillative separations of gas mixtures containing methane, carbon dioxide and other components
EP0031200B1 (en) 1979-12-13 1984-08-29 Imperial Chemical Industries Plc Method of recovering bromine from methyl bromide
US4412086A (en) 1980-02-19 1983-10-25 Vulcan Materials Company Process for separating ferric iron from chlorinated hydrocarbons
US4307261A (en) 1980-02-19 1981-12-22 Vulcan Materials Company Process for separating ferric iron from chlorinated hydrocarbons
US4350511A (en) 1980-03-18 1982-09-21 Koch Process Systems, Inc. Distillative separation of carbon dioxide from light hydrocarbons
EP0039547B1 (en) 1980-05-01 1984-07-18 Imperial Chemical Industries Plc Halogenation process using a halide carrier and process for regeneration of the halide carrier
US4302619A (en) 1980-06-04 1981-11-24 Mobil Oil Corporation Control of CO emissions in a process for producing gasoline from methanol
US4317934A (en) 1980-08-15 1982-03-02 Ethyl Corporation Preparation of carbonyl compounds
US4320241A (en) 1980-08-28 1982-03-16 Occidental Research Corporation Process for converting oxygenated hydrocarbons into hydrocarbons
US4317943A (en) 1980-09-12 1982-03-02 Texaco Inc. Process for preparing glycol ethers
US4308403A (en) 1980-09-12 1981-12-29 Texaco Inc. Process for preparing glycol ethers
US4301253A (en) 1980-09-25 1981-11-17 Union Carbide Corporation Process for the selective production of ethanol and methanol directly from synthesis gas
US4333852A (en) 1980-09-25 1982-06-08 Union Carbide Corporation Catalyst for the selective production of ethanol and methanol directly from synthesis gas
US4431856A (en) 1980-09-29 1984-02-14 Mobil Oil Corporation Fluid zeolite catalyst conversion of alcohols and oxygenated derivatives to hydrocarbons
DE3037093C1 (de) 1980-10-01 1981-11-12 Chemische Werke Hüls AG, 4370 Marl Verfahren zur Herstellung von Cycloocten-4-ol-1 aus Cyclooctadien-1,5
US4543434A (en) 1981-01-28 1985-09-24 Mobil Oil Corporation Process for producing liquid hydrocarbon fuels
US4690903A (en) 1981-02-02 1987-09-01 Mobil Oil Corporation Process for preparing organic fuels and chemicals from biomass
GB2095245A (en) 1981-03-19 1982-09-29 Ici Plc Chlorination of alkanes
GB2095243A (en) 1981-03-19 1982-09-29 Ici Plc Production of methylene chloride
IN157669B (ja) 1981-03-23 1986-05-17 Pfizer
DE3117135A1 (de) 1981-04-30 1982-11-18 Bayer Ag, 5090 Leverkusen Kristallines alumosilicat, verfahren zu dessen herstellung sowie dessen verwendung zur katalytischen umwandlung von methanol und/oder dimethylether in kohlenwasserstoffe
US4389391A (en) 1981-06-28 1983-06-21 Dunn Jr Wendell E Process for beneficiating titaniferous ores
US4373109A (en) 1981-08-05 1983-02-08 Olah George A Bifunctional acid-base catalyzed conversion of hetero-substituted methanes into olefins
DE3132692A1 (de) 1981-08-19 1983-03-17 Bayer Ag, 5090 Leverkusen Verfahren zur halogenierung von organischen verbindungen
US4433192A (en) 1981-09-01 1984-02-21 Olah George A Condensation of natural gas or methane into gasoline range hydrocarbons
US4465893A (en) 1982-08-25 1984-08-14 Olah George A Oxidative condensation of natural gas or methane into gasoline range hydrocarbons
US4523040A (en) 1981-09-01 1985-06-11 Olah George A Methyl halides and methyl alcohol from methane
US4467130A (en) 1981-09-01 1984-08-21 Olah George A Condensation of natural gas or methane into gasoline-range hydrocarbons
EP0086822B1 (en) 1981-09-01 1987-03-04 George Andrew Olah Process for the production of methyl halides and methyl alcohol from methane
US4513164A (en) 1981-09-01 1985-04-23 Olah George A Condensation of natural gas or methane into gasoline range hydrocarbons
DE3137751A1 (de) 1981-09-23 1983-03-31 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zum erzeugen von benzinkohlenwasserstoffen aus methanol
US4605803A (en) 1981-11-21 1986-08-12 Mobil Oil Corporation Acid-catalyzed organic compound conversion
CA1186345A (en) 1981-12-14 1985-04-30 Martin M.Y. Chang Hydrocarbon production
US4568660A (en) 1982-01-25 1986-02-04 Hercules Incorporated Cycloolefin polymerization catalyst composition
US4489211A (en) 1982-02-04 1984-12-18 Onoda Cement Co., Ltd. Process for producing 2,2,2-trifluoroethanol
US4538014A (en) 1982-03-08 1985-08-27 Mobil Oil Corporation Catalysis over activated zeolites
US4538015A (en) 1982-03-08 1985-08-27 Mobil Oil Corporation Catalysis over activated zeolites
IT1150678B (it) 1982-03-12 1986-12-17 Anic Spa Procedimento per la produzione di eteri alchil terbutilici in presenza di butadiene
US4384159A (en) 1982-03-12 1983-05-17 The Dow Chemical Company Catalytic dehydrohalogenation process
US4433189A (en) 1982-03-18 1984-02-21 Mobil Oil Corporation Catalytic conversion of methanol to light olefins
US4588835A (en) 1982-03-29 1986-05-13 Otsuka Kagaku Yakuhin Kabushiki Kaisha Process for preparing alkoxyphenols
US4499314A (en) 1982-03-31 1985-02-12 Imperial Chemical Industries Plc Methanol conversion to hydrocarbons with zeolites and cocatalysts
DE3216722A1 (de) 1982-05-05 1983-11-10 Hoechst Ag, 6230 Frankfurt 4-halomethylbenzoesaeure-alkylester-imine und verfahren zu deren herstellung
GB2120249B (en) 1982-05-15 1985-11-27 British Petroleum Co Plc Process for the production of methyl or ethyl mono-halide
US4467133A (en) 1982-06-21 1984-08-21 Mobil Oil Corporation Conversion of alcohols and ethers to distillate range hydrocarbons
FR2529883A1 (fr) 1982-07-06 1984-01-13 Ugine Kuhlmann Procede de fabrication de chlorure de vinyle
US4440871A (en) 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
US4509955A (en) 1982-08-09 1985-04-09 The Lubrizol Corporation Combinations of carboxylic acylating agents substituted with olefin polymers of high and low molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same
US4465884A (en) 1982-08-17 1984-08-14 Mobil Oil Corporation Olefin processing
US4814527A (en) 1982-10-18 1989-03-21 The Dow Chemical Company Catalytic process for ethylene dichloride
US4654449A (en) 1982-12-09 1987-03-31 Mobil Oil Corporation Formation of halogenated hydrocarbons from hydrocarbons
US4655893A (en) 1983-02-07 1987-04-07 Battelle Development Corporation Cubic boron nitride preparation utilizing a boron and nitrogen bearing gas
US4788377A (en) 1983-04-22 1988-11-29 Mobil Oil Corporation Process for manufacturing olefins
US4720600A (en) 1983-06-29 1988-01-19 Mobil Oil Corporation Production of middle distillate range hydrocarbons by light olefin upgrading
US4547612A (en) 1984-09-25 1985-10-15 Mobil Oil Corporation Production of lubricant and/or heavy distillate range hydrocarbons by light olefin upgrading
US4675410A (en) 1983-07-11 1987-06-23 Nepera Inc. Process for the production of pyridine or alkyl substituted pyridines
US4540826A (en) 1983-08-12 1985-09-10 Phillips Petroleum Company Process for preparing olefinic aldehydes
EP0134464B1 (de) 1983-08-25 1988-04-20 Hüls Aktiengesellschaft Verfahren zur Herstellung von 3,3- bzw. 2,3-Dimethylbuten und 2,3-Dimethylbutadien bzw. zur gleichzeitigen Herstellung dieser Olefine und Glykol- bzw. Polyglykol-n-alkyl-3,3- bzw. -2,3-dimethylbutylether aus Mono- und Dichlor-dimethylbutan
US5175382A (en) 1983-09-22 1992-12-29 Werner Hebgen Preparation of 1,2-Dichloroethane
US4524231A (en) 1983-09-29 1985-06-18 Mobil Oil Corporation Production of durene from alcohols and ethers
US4524228A (en) 1983-09-29 1985-06-18 Mobil Oil Corporation Production of durene and gasoline from synthesis gas
US4524227A (en) 1983-09-29 1985-06-18 Mobil Oil Corporation Coproduction of durene and gasoline from synthesis gas and alcohols and separation of durene-gasoline mixtures
US4709108A (en) 1983-10-31 1987-11-24 Chevron Research Company Conversions of low molecular weight hydrocarbons to higher molecular weight hydrocarbons using a metal compound-containing catalyst
US4704488A (en) 1983-10-31 1987-11-03 Chevron Research Company Conversions of low molecular weight hydrocarbons to higher molecular weight hydrocarbons using a metal compound-containing catalyst (111-A)
US4599474A (en) 1983-10-31 1986-07-08 Chevron Research Company Conversions of low molecular weight hydrocarbons to higher molecular weight hydrocarbons using a metal-containing catalyst
US4704493A (en) 1983-10-31 1987-11-03 Chevron Corporation Conversions of low molecular weight hydrocarbons to higher molecular weight hydrocarbons using a metal compound-containing catalyst (II-A)
GB8331982D0 (en) 1983-11-30 1984-01-04 British Petroleum Co Plc Hydrocarbons from c1 to c4 alkyl monohalides
WO1985002608A1 (en) 1983-12-16 1985-06-20 The British Petroleum Company P.L.C. Process for the production of hydrocarbons from hetero-substituted alkanes
JPS60136525A (ja) 1983-12-26 1985-07-20 Agency Of Ind Science & Technol エタノ−ルの製造法
US4513092A (en) 1984-01-04 1985-04-23 Mobil Oil Corporation Composite catalyst for halogenation and condensation of alkanes
US4642404A (en) 1984-01-23 1987-02-10 Mobil Oil Corporation Conversion of olefins and paraffins to higher hydrocarbons
US4621161A (en) 1984-01-23 1986-11-04 Mobil Oil Corporation Oxygenate conversion over activated zeolite catalyst
US4550218A (en) 1984-03-05 1985-10-29 Mobil Oil Corporation Hydrocarbon synthesis with zeolite catalyst of improved hydrothermal stability
LU85285A1 (fr) 1984-04-03 1985-11-27 Labofina Sa Procede d'isomerisation d'olefines
US4634800A (en) 1984-04-16 1987-01-06 Atlantic Richfield Company Methane conversion process
GB8410479D0 (en) 1984-04-24 1984-05-31 British Petroleum Co Plc Conversion process
US4497967A (en) 1984-06-15 1985-02-05 The Halcon Sd Group, Inc. Process for the preparation of ethanol from methanol, carbon monoxide _and hydrogen
US4590310A (en) 1984-08-02 1986-05-20 The Boc Group, Inc. Process for the preparation of 2,2,2-trifluoroethanol
US4550217A (en) 1984-08-29 1985-10-29 Mobil Oil Corporation Conversion of methanol to olefins using large size catalyst particles
GB8429007D0 (en) 1984-11-16 1984-12-27 British Petroleum Co Plc Aromatics from ethane/ethylene
US4696985A (en) 1984-11-16 1987-09-29 Hercules Incorporated Catalyst composition for polymerization of cycloolefins
US4579977A (en) 1984-12-20 1986-04-01 Phillips Petroleum Company Process for the oxidation of organic halides to organic aldehydes
US4764356A (en) 1984-12-21 1988-08-16 Exxon Research & Engineering Co. Process for synthesizing a zeolite catalyst on a pH controlled basis to improve catalyst life
US4544781A (en) 1985-01-09 1985-10-01 Mobil Oil Corporation Control of temperature exotherms in the conversion of methanol to gasoline hydrocarbons
EP0194931B1 (fr) 1985-03-14 1989-11-15 Societe Nationale Elf Aquitaine (Production) Procédé et appareil pour la sulfochloration photochimique d'alcanes gazeux
US4658077A (en) 1985-06-07 1987-04-14 Phillips Petroleum Company Composition of matter and method of oxidative conversion of organic compounds therewith
US5210357A (en) 1985-06-07 1993-05-11 Phillips Petroleum Company Composition of matter and method of oxidative conversion of organic compounds therewith
JPS61242901A (ja) 1985-04-17 1986-10-29 Toyo Soda Mfg Co Ltd 臭素回収用吸着剤及び臭素回収方法
US5959170A (en) 1985-05-24 1999-09-28 Atlantic Richfield Company Methane conversion process
US5146027A (en) 1985-05-24 1992-09-08 Atlantic Richfield Co. Methane conversion process
US5093542A (en) 1985-05-24 1992-03-03 Atlantic Richfield Company Methane conversion process
US4774216A (en) 1985-06-07 1988-09-27 Phillips Petroleum Company Composition of matter for oxidative conversion of organic compounds
US5105045A (en) 1985-06-07 1992-04-14 Phillips Petroleum Company Method of oxidative conversion
US4724275A (en) 1985-07-01 1988-02-09 National Distillers And Chemical Corporation Crystalline aluminosilicates and their use in the conversion of methanol to low molecular weight hydrocarbons
GB8518820D0 (en) 1985-07-25 1985-08-29 British Petroleum Co Plc Chemical process
GB8520977D0 (en) 1985-08-21 1985-09-25 British Petroleum Co Plc Production of aromatics
US4795843A (en) 1985-08-26 1989-01-03 Uop Inc. Conversion of methane into larger organic hydrocarbons
US4665259A (en) 1985-08-28 1987-05-12 The Standard Oil Company Methane conversion process using phosphate-containing catalysts
US4658073A (en) 1985-09-23 1987-04-14 Mobil Oil Corporation Control system for multistage chemical upgrading
US4633027A (en) 1985-09-23 1986-12-30 Mobil Oil Corporation Process for converting olefins to gasoline, distillate and alkylate liquid hydrocarbons
CA1322768C (en) 1988-12-29 1993-10-05 John E. Stauffer Process for the chlorination of ethane
US4788369A (en) 1985-12-31 1988-11-29 Mobil Oil Corporation Conversion of methanol to gasoline
LU86280A1 (fr) 1986-01-29 1987-09-03 Labofina Sa Procede de production d'essence
GB8613673D0 (en) 1986-06-05 1986-07-09 Bp Benzin Und Petroleum Ag Chemical process
ZA874948B (en) 1986-07-07 1989-02-22 Mobil Oil Corp Aromatisation of aliphatics over gallium-containing zeolites
US4781733A (en) 1986-07-23 1988-11-01 Bend Research, Inc. Semipermeable thin-film membranes comprising siloxane, alkoxysilyl and aryloxysilyl oligomers and copolymers
US4814532A (en) 1986-08-04 1989-03-21 Chemical Company, Ltd. Asahi Process for producing alkylcyclopentadiene derivatives
US4795848A (en) 1986-08-28 1989-01-03 The Standard Oil Company Method for upgrading a low molecular weight alkane with a lead-zirconate catalyst
US5082816A (en) 1986-08-28 1992-01-21 The Standard Oil Company Lead-zirconate catalysts
US4720602A (en) 1986-09-08 1988-01-19 Mobil Oil Corporation Process for converting C2 to C12 aliphatics to aromatics over a zinc-activated zeolite
US5120332A (en) 1986-11-06 1992-06-09 The Haser Company Limited Gas resonance device
US5160502A (en) 1986-12-22 1992-11-03 Phillips Petroleum Company Composition of matter and method of oxidative conversion of organic compounds therewith
US5118899A (en) 1986-12-22 1992-06-02 Phillips Petroleum Company Composition of matter and method of oxidative conversion of organic compounds therewith
US5087787A (en) 1986-12-29 1992-02-11 Phillips Petroleum Company Method of oxidative conversion
DE3700132A1 (de) 1987-01-03 1988-07-14 Dow Chemical Gmbh Verfahren zum herstellen von ethylendichlorid
US4769504A (en) 1987-03-04 1988-09-06 The United States Of America As Represented By The United States Department Of Energy Process for converting light alkanes to higher hydrocarbons
US4792642A (en) 1987-03-25 1988-12-20 Eastman Kodak Company Process for preparing iodinated aromatic compounds
US4795737A (en) 1987-03-25 1989-01-03 Eastman Kodak Company Process for the iodination of aromatic compounds over solid catalysts
US4886932A (en) 1987-03-30 1989-12-12 Atlantic Richfield Company Thin bed cofeed reaction system for methane conversion
CA1322769C (en) 1988-12-30 1993-10-05 John E. Stauffer Process for the chlorination of ethane
US4777321A (en) 1987-04-29 1988-10-11 Mobil Oil Corporation Feedstock preparation and conversion of oxygenates to olefins
US4775462A (en) 1987-06-22 1988-10-04 Uop Inc. Non-oxidative method of sweetening a sour hydrocarbon fraction
US4808763A (en) 1987-08-05 1989-02-28 Amoco Corporation Process for upgrading light paraffins
US4762596A (en) 1987-08-21 1988-08-09 The United States Of America As Represented By The United States Department Of Energy Process for removal of hydrogen halides or halogens from incinerator gas
US4804797A (en) 1987-08-24 1989-02-14 Gas Research Institute Production of commodity chemicals from natural gas by methane chlorination
US4783566A (en) 1987-08-28 1988-11-08 Uop Inc. Hydrocarbon conversion process
GB8724373D0 (en) 1987-10-17 1987-11-18 British Petroleum Co Plc Chemical process
US4973786A (en) 1987-10-19 1990-11-27 Karra Sankaram B Process for the pyrolytic oxidation of methane to higher molecular weight hydrocarbons and synthesis gas
US5157189A (en) 1987-10-19 1992-10-20 Karra Sankaram B Conversion of light hydrocarbons to higher hydrocarbons
US4814536A (en) 1987-12-15 1989-03-21 Mobil Oil Corporation Conversion of oxygenates to gasoline at variable space velocity
US4814535A (en) 1987-12-15 1989-03-21 Mobil Oil Corporation Conversion of oxygenates to gasoline at variable inlet temperature
GB8802731D0 (en) 1988-02-06 1988-03-09 British Petroleum Co Plc Chemical process
US5059744A (en) 1988-03-03 1991-10-22 Mobil Oil Corporation Reactor and recovery system for upgrading lower olefins
GB8806675D0 (en) 1988-03-21 1988-04-20 Shell Int Research Process for preparing liquid hydrocarbons
US4851602A (en) 1988-04-11 1989-07-25 Mobil Oil Corporation Alkanes and alkenes conversion to high octane gasoline
US4851606A (en) 1988-04-25 1989-07-25 Mobil Oil Corporation Control of waste water chemical oxygen demand in an oxygenate to hydrocarbon conversion process
US4886925A (en) 1988-05-02 1989-12-12 Mobil Oil Corp Olefins interconversion and etherification process
JPH07106998B2 (ja) 1988-05-17 1995-11-15 ダイキン工業株式会社 1,1,1−トリフルオロ−2,2−ジクロロエタンの製造方法
US5013793A (en) 1990-07-26 1991-05-07 Exxon Chemical Patents Inc. Dynamically cured thermoplastic olefin polymers and process for producing the same
US4990711A (en) 1988-06-23 1991-02-05 Mobil Oil Corporation Synthetic polyolefin lubricant blends having high viscosity indices
US4950822A (en) 1988-06-27 1990-08-21 Ethyl Corporation Olefin oligomer synlube process
US4899002A (en) 1988-07-25 1990-02-06 Mobil Oil Corp. Integrated staged conversion of methanol to gasoline and distillate
FR2635101B1 (fr) 1988-08-05 1990-09-28 Rhone Poulenc Chimie Procede de preparation du trifluoroethanol par hydrolyse, en phase gazeuse, du chlorotrifluoroethane
US4939311A (en) 1988-08-17 1990-07-03 Amoco Corporation Catalysts for the oxidative conversion of methane to higher hydrocarbons
US5055633A (en) 1988-10-06 1991-10-08 Uop Adsorption and isomerization of normal and mono-methyl paraffins
US4956521A (en) 1988-10-06 1990-09-11 Uop Adsorption and isomerization of normal and mono-methyl paraffins
US5055634A (en) 1988-10-06 1991-10-08 Uop Adsorption and isomerization of normal and mono-methyl paraffins
US5215648A (en) 1988-10-20 1993-06-01 Chevron Research And Technology Company Hydrocarbon conversion processes using SSZ-31
US4899001A (en) 1988-11-21 1990-02-06 Uop Process for the simultaneous hydroconversion of a first feedstock comprising unsaturated, halogenated organic compounds and a second feedstock comprising saturated, halogenated organic compounds
US5194244A (en) 1988-11-23 1993-03-16 Shell Oil Company Basic alkali metal-zeolite compositions
US4929781A (en) 1988-11-30 1990-05-29 Uop Process for the simultaneous hydroconversion of a first feedstock comprising unsaturated, halogenated organic compounds and a second feedstock comprising saturated, halogenated organic compounds
US4895995A (en) 1988-12-02 1990-01-23 Uop Process for the simultaneous hydroconversion of a first feedstock comprising unsaturated, halogenated organic compounds and a second feedstock comprising saturated, halogenated organic compounds
US5034566A (en) 1988-12-07 1991-07-23 Sumitomo Chemical Company, Limited Process for the production of 2,3-dimethylbutenes
US4939314A (en) 1988-12-19 1990-07-03 Mobil Oil Corporation Method for on-stream low-pressure regeneration of an oligomerization catalyst from a fluid-bed reactor operating at high pressure with hydrocarbons in a non-liquid phase
US5178748A (en) 1988-12-22 1993-01-12 Imperial Chemical Industries Catalytic reactions using zeolites
GB8829923D0 (en) 1988-12-22 1989-02-15 Ici Plc Zeolites
CA1304419C (en) 1988-12-22 1992-06-30 Raj N. Pandey Conversion of methane to gasoline-range hydrocarbons via isobutene
US4990696A (en) 1988-12-29 1991-02-05 Stauffer John E Methyl alcohol process
US4899000A (en) 1989-01-27 1990-02-06 Stauffer John E Production of allyl chloride
US5436378A (en) 1989-02-16 1995-07-25 Atochem Drying of hydrocarbon/hydrochloric acid/water admixtures
US5107051A (en) 1989-03-14 1992-04-21 Exxon Chemical Patents Inc. Halogen resistant hydrotreating process and catalyst
US4945175A (en) 1989-05-26 1990-07-31 Uop Dehydrocyclodimerization process start-up procedure
US5202511A (en) 1989-08-16 1993-04-13 The Dow Chemical Company Catalyst diluent for oxychlorination process
US5071815A (en) 1989-09-01 1991-12-10 British Columbia Research Corporation Method for producing catalysts
CN1050866A (zh) 1989-09-19 1991-04-24 联合碳化化学品及塑料有限公司 用于氧化偶合的含银催化剂
US5073657A (en) 1989-09-19 1991-12-17 Union Carbide Chemicals And Plastics Company Inc. Vapor phase modifiers for oxidative coupling
AU6259890A (en) 1989-09-19 1991-03-28 Union Carbide Chemicals And Plastics Company Inc. Low temperature catalysts for oxidative coupling processes
US5073656A (en) 1989-09-19 1991-12-17 Union Carbide Chemicals And Plastics Company, Inc. High ethylene to ethane processes for oxidative coupling
DE3933656A1 (de) 1989-10-09 1991-04-11 Basf Ag Verdunstungsarme polyesterharze
US5093533A (en) 1989-12-08 1992-03-03 Interstate Chemical, Inc. Blended gasolines and process for making same
US5208402A (en) 1989-12-08 1993-05-04 Interstate Chemical, Inc. Liquid fuels for internal combustion engines and process and apparatus for making same
US5026944A (en) 1989-12-20 1991-06-25 Energy Mines And Resources Canada Synthesis of isobutene from methane and acetylene
US4982024A (en) 1989-12-26 1991-01-01 Ethyl Corporation Process for the selective dehydrohalogenation of an admixture of alkylhalides
US5004847A (en) 1989-12-27 1991-04-02 Ethyl Corporation Recovery of hexabromocyclododecane particles
US5026937A (en) 1989-12-29 1991-06-25 Uop Aromatization of methane using zeolite incorporated in a phosphorus-containing alumina
US4982041A (en) 1990-01-10 1991-01-01 Union Carbide Chemicals And Plastics Company Inc. Double perovskite catalysts for oxidative coupling
US5055625A (en) 1990-02-06 1991-10-08 Fred Neidiffer Gasoline additive composition and method for using same
US5026934A (en) 1990-02-12 1991-06-25 Lyondell Petrochemical Company Method for converting light hydrocarbons to olefins, gasoline and methanol
US5043502A (en) 1990-03-16 1991-08-27 Uop Production of xylenes from light aliphatic hydrocarbons via dehydrocyclodimerization and methylation
US5228888A (en) 1990-03-23 1993-07-20 The Boc Group, Inc. Economical air separator
US5107061A (en) 1990-04-06 1992-04-21 Exxon Chemical Patents Inc. Removal of organochlorides from hydrocarbon feed streams
US5001293A (en) 1990-04-25 1991-03-19 Amoco Corporation Halocarbon conversion
US5087786A (en) 1990-04-25 1992-02-11 Amoco Corporation Halogen-assisted conversion of lower alkanes
US5087779A (en) 1990-04-25 1992-02-11 Amoco Corporation Hydrocarbon halogenation
US5019652A (en) 1990-04-30 1991-05-28 The United States As Represented By The United States Department Of Energy Catalysts and method
US5139991A (en) 1990-04-30 1992-08-18 The United States Of American As Represented By The United States Department Of Energy Oxyhydrochlorination catalyst
US5068478A (en) 1990-05-25 1991-11-26 Energia Andina, Ltd. Producing alkenes and alkynes from alkanes and alkenes
GB9013859D0 (en) 1990-06-21 1990-08-15 Ici Plc Zeolites
GB9013916D0 (en) 1990-06-22 1990-08-15 Ici Plc Zeolites
US4988660A (en) 1990-06-25 1991-01-29 Union Carbide Chemicals And Plastics Company Inc. Double perovskite catalysts for oxidative coupling
US5096469A (en) 1990-07-23 1992-03-17 Keefer Bowie Adsorptive gas separator with inertial energy exchange
US5082473A (en) 1990-07-23 1992-01-21 Keefer Bowie Extraction and concentration of a gas component
US5401890A (en) 1990-07-30 1995-03-28 Albemarle Corporation Process and apparatus for heat treating halogenated compounds
US5013424A (en) 1990-07-30 1991-05-07 Uop Process for the simultaneous hydrogenation of a first feedstock comprising hydrocarbonaceous compounds and having a non-distillable component and a second feedstock comprising halogenated organic compounds
US5138112A (en) 1990-08-31 1992-08-11 Uop Process for converting a C2 -C6 aliphatic hydrocarbon to high octane transportable fuel
DE4029875A1 (de) 1990-09-21 1992-03-26 Hoechst Ag Verfahren zur inhibierung und zerstoerung von peroxiden in dialkylethern
JP2970683B2 (ja) 1990-10-12 1999-11-02 日石三菱株式会社 水素化脱アルキル触媒を用いた水素化脱アルキル法
US5085674A (en) 1990-10-25 1992-02-04 Union Carbide Industrial Gases Technology Corporation Duplex adsorption process
US5071449A (en) 1990-11-19 1991-12-10 Air Products And Chemicals, Inc. Gas separation by rapid pressure swing adsorption
US5107032A (en) 1990-11-20 1992-04-21 Noramco, Inc. Process for the preparation of o-phthalaldehydes
BR9107183A (pt) 1990-12-06 1993-11-16 Occidental Chem Co Processo para a preparacao de etileno ou uma mistura de etileno e cloreto de vinila para reacao de etano e cloro
US5105046A (en) 1990-12-12 1992-04-14 Amoco Corporation Oxidative conversion of lower alkanes to higher hydrocarbons via fluorine-containing materials
US5223471A (en) 1990-12-12 1993-06-29 Amoco Corporation Fluorine-containing materials
US5055235A (en) 1990-12-12 1991-10-08 Ethyl Corporation Bromination process
US5233113A (en) 1991-02-15 1993-08-03 Catalytica, Inc. Process for converting lower alkanes to esters
US5306855A (en) 1991-02-15 1994-04-26 Catalytica, Inc. Catalytic process for converting lower alkanes to esters, alcohols, and to hydrocarbons
GB9105167D0 (en) 1991-03-12 1991-04-24 Ici Plc Chemical process
US5188725A (en) 1991-03-15 1993-02-23 Mobil Oil Corporation Fluidized catalyst process for production and etherification of olefins
US5237115A (en) 1991-03-15 1993-08-17 Phillips Petroleum Company Integrated olefin processing
FR2674769B1 (fr) 1991-04-04 1994-04-29 Inst Francais Du Petrole Catalyseur du type galloaluminosilicate contenant du gallium, un metal noble de la famille du platine et au moins un metal additionnel, et son utilisation en aromatisation des hydrocarbures.
LU87923A1 (de) 1991-04-24 1992-11-16 Euratom Verfahren zum entfernen von schwefelwasserstoff und/oder schwefelkohlenstoff aus abgasen
EP0510238A1 (en) 1991-04-26 1992-10-28 NOVAMONT S.p.A. Process for producing lower poliols and mixtures thereof
US5288677A (en) 1991-06-28 1994-02-22 Exxon Chemical Patents Inc. Immobilized Lewis acid catalysts
GB9116172D0 (en) 1991-07-26 1991-09-11 Thames Water Utilities A method of and apparatus for treating a fluid
US5399258A (en) 1991-08-15 1995-03-21 Mobil Oil Corporation Hydrocarbon upgrading process
MY108348A (en) 1991-08-16 1996-09-30 Exxon Chemical Patents Inc Ester free ethers.
US5264635A (en) 1991-10-03 1993-11-23 Mobil Oil Corporation Selective cracking and etherification of olefins
US5245109A (en) 1991-10-11 1993-09-14 Amoco Corporation Hydrocarbon conversion
US5276240A (en) 1991-10-18 1994-01-04 Board Of Regents, The University Of Texas System Catalytic hydrodehalogenation of polyhalogenated hydrocarbons
JP3120292B2 (ja) 1991-10-18 2000-12-25 イハラケミカル工業株式会社 脂肪族カルボン酸ハロメチルエステル類の製造法
US5385650A (en) 1991-11-12 1995-01-31 Great Lakes Chemical Corporation Recovery of bromine and preparation of hypobromous acid from bromide solution
US5268518A (en) 1991-11-15 1993-12-07 The Dow Chemical Company Reactor feed pipe design
US5191142A (en) 1991-12-23 1993-03-02 Amoco Corporation Process for converting methanol to olefins or gasoline
AU3610793A (en) 1992-02-04 1993-09-01 Catalytica, Inc. Cebr3 catalyst and process for producing bromine
US6169218B1 (en) 1992-02-10 2001-01-02 Catalytic Distillation Technologies Selective hydrogenation of highly unsaturated compounds in hydrocarbon streams
CA2088939A1 (en) 1992-03-10 1993-09-11 Istvan T. Horvath Low temperature conversion of alkanes
US5354916A (en) 1992-03-10 1994-10-11 Exxon Research And Engineering Company Low temperature conversion of alkanes
US5202506A (en) 1992-04-02 1993-04-13 E. I. Du Pont De Nemours And Company Oxidative drown process for 2-perfluoroalkylethyl alcohols
US5185479A (en) 1992-04-21 1993-02-09 Stauffer John E Process for methyl alcohol
CA2097090A1 (en) 1992-06-02 1993-12-03 Quang N. Le Process for the production of tertiary alkyl ether rich fcc gasoline
US5395981A (en) 1992-06-22 1995-03-07 Uop Hydrocarbon conversion by catalytic distillation
US5254790A (en) 1992-07-01 1993-10-19 Phillips Petroleum Company Integrated process for producing motor fuels
GB9214851D0 (en) 1992-07-13 1992-08-26 Europ Economic Community Communities desulphurisation of waste gases
US5284990A (en) 1992-07-16 1994-02-08 Stratco, Inc. Method for converting a hydrogen fluoride alkylation unit to a sulfuric acid alkylation unit
US5276242A (en) 1992-08-26 1994-01-04 Phillips Petroleum Company Alkylation process
US5243114A (en) 1992-09-08 1993-09-07 Mobil Oil Corporation Oligomerization of alpha-olefins over layered silicate compositions containing pillars of silica and group VIB metal oxide
US5453557A (en) 1992-10-01 1995-09-26 The Dow Chemical Company Processes for converting chlorinated byproducts and waste products to useful materials
IT1255710B (it) 1992-10-01 1995-11-10 Snam Progetti Procedimento integrato per produrre olefine da miscele gassose contenenti metano
US5430214A (en) 1992-10-01 1995-07-04 The Dow Chemical Company Hydrodehalogenation process and catalyst for use therein
US5276226A (en) 1992-10-05 1994-01-04 Exxon Research & Engineering Company Low temperature halogenation of alkanes
US5300126A (en) 1992-10-19 1994-04-05 Mobil Oil Corporation Process for improving olefin etherification catalyst life
US5243098A (en) 1992-11-04 1993-09-07 Energia Andina Ltd. Conversion of methane to methanol
US5744669A (en) 1992-11-25 1998-04-28 Uop Process for the conversion of a halogenated organic stream containing trace quantities of organic nitrates
US5817904A (en) 1992-12-11 1998-10-06 Repsol Petroleo S.A. Method for the conversion of methane into longer chain hydrocarbons
TW291486B (ja) 1992-12-17 1996-11-21 Exxon Chemical Patents Inc
US5470377A (en) 1993-03-08 1995-11-28 Whitlock; David R. Separation of solutes in gaseous solvents
US5354931A (en) 1993-03-10 1994-10-11 Uop Process for hydrotreating an organic feedstock containing oxygen compounds and a halogen component
US5994604A (en) 1993-03-17 1999-11-30 Lockheed Martin Idaho Technologies Company Method and apparatus for low temperature destruction of halogenated hydrocarbons
GB9407257D0 (en) 1993-04-22 1994-06-08 Ici Plc Vaporisation of liquids
US5382743A (en) 1993-04-26 1995-01-17 Mobil Oil Corporation Skeletal isomerization of n-pentenes using ZSM-35 in the presence of hydrogen
US5465699A (en) 1993-06-01 1995-11-14 Volkswagen Ag Intake pipe arrangement for an internal combustion engine having individual arc-shaped cylinder intake pipes
US5382704A (en) 1993-06-30 1995-01-17 E. I. Du Pont De Nemours And Company Fluorinated methyl ethers
US5382744A (en) 1993-07-12 1995-01-17 Phillips Petroleum Company Control of synthetic isopentane production during alkylation of amylenes
US5510525A (en) 1993-07-22 1996-04-23 Gas Research Institute Direct catalytic oxidative carbonylation of lower alkanes to acids
IT1265051B1 (it) 1993-08-06 1996-10-28 Eniricerche Spa Processo per l'alchilazione di idrocarburi alifatici con olefine
US5500297A (en) 1993-08-09 1996-03-19 The Trustees Of Princeton University Electron acceptor compositions technical field
US5695890A (en) 1993-08-09 1997-12-09 The Trustees Of Princeton University Heterolamellar photoelectrochemical films and devices
US5906892A (en) 1993-08-09 1999-05-25 The Trustees Of Princeton University Electron acceptor compositions on polymer templates
US5430210A (en) 1993-08-27 1995-07-04 Mobil Oil Corporation Selective hydrogen combustion processes
GB9318507D0 (en) 1993-09-07 1993-10-20 Evc Tech Ag Vinyl chloride production process
GB9318505D0 (en) 1993-09-07 1993-10-20 Evc Tech Ag By-product recycling in oxychlorination process
US5411641A (en) 1993-11-22 1995-05-02 E. I. Du Pont De Nemours And Company Electrochemical conversion of anhydrous hydrogen halide to halogen gas using a cation-transporting membrane
US5371313A (en) 1993-11-24 1994-12-06 Polysar Rubber Corporation Purification of hydrocarbon streams
US5600045A (en) 1993-12-02 1997-02-04 The Dow Chemical Company Process for conversion of crude hydrocarbon mixtures
US5414173A (en) 1993-12-22 1995-05-09 The Dow Chemical Company Process of preparing cyclopentadiene and substituted derivatives thereof
GB9400569D0 (en) 1994-01-13 1994-03-09 Rhone Poulenc Chemicals Process for the production of substituted aromatic hydrocarbons from corresponding anilines by dediazoniation
AU1699495A (en) 1994-02-18 1995-09-04 Chevron U.S.A. Inc. Zeolite ssz-42
US5565092A (en) 1994-03-16 1996-10-15 Exxon Chemical Patents Inc. Halogen resistant hydrogenation process and catalyst
US5780703A (en) 1994-05-02 1998-07-14 Mobil Oil Corporation Process for producing low aromatic diesel fuel with high cetane index
US5565616A (en) 1994-05-09 1996-10-15 Board Of Regents, The University Of Texas System Controlled hydrothermal processing
US5444168A (en) 1994-05-16 1995-08-22 Mobil Oil Corporation Process for the production of symmetrical ethers from secondary alcohols
US5401894A (en) 1994-06-07 1995-03-28 Uop Process for the treatment of halogenated organic feedstocks
US5591421A (en) 1994-07-11 1997-01-07 Chevron U.S.A. Inc. Zeolite SSZ-41
US5523503A (en) 1994-07-13 1996-06-04 Uop Cocurrent simulated moving bed hydrocarbon alkylation process
GB9414972D0 (en) 1994-07-26 1994-09-14 Bnfl Fluorchem Ltd Halogenation reactions
US5661097A (en) 1994-08-12 1997-08-26 The Dow Chemical Company Supported olefin polymerization catalyst
EP0704424B1 (en) 1994-09-28 1998-12-30 Showa Denko Kabushiki Kaisha 3-Alkoxypropionic ester derivative, olefin polymerization catalyst, and process for preparation of polyolefin
JPH10506910A (ja) 1994-10-05 1998-07-07 グレート・レークス・ケミカル・コーポレーション 連続的臭素化法およびその生成物
US6117371A (en) 1994-10-05 2000-09-12 Great Lakes Chemical Corporation Continuous bromination process and products thereof
GB2294262B (en) 1994-10-20 1998-07-08 Evc Tech Ag Single stage fixed bed oxychlorination of ethylene
CA2203115C (en) 1994-10-20 2006-09-19 Pierluigi Fatutto Single stage fixed bed oxychlorination of ethylene
US5489727A (en) 1994-10-28 1996-02-06 Phillips Petroleum Company Isopentane disproportionation
US5693191A (en) 1994-11-23 1997-12-02 The Dow Chemical Company Process for recovery of anhydrous hydrogen chloride from mixtures with non-condensable gases
ES2131347T3 (es) 1994-11-24 1999-07-16 Solvay Procedimiento de conversion de un alcano clorado en un alqueno menos clorado.
US5486627A (en) 1994-12-02 1996-01-23 The Dow Chemical Company Method for producing epoxides
US5639930A (en) 1995-01-04 1997-06-17 Penick; Joe E. Process of producing alkylates
DK171707B1 (da) 1995-02-03 1997-04-01 Topsoe Haldor As Fremgangsmåde til fremstilling af dimetylæter i brændstofkvalitet
US5905169A (en) 1995-03-20 1999-05-18 E. I. Du Pont De Nemours And Company Process for producing polyfluoroacyl compositions
US5600043A (en) 1995-03-27 1997-02-04 The Geon Company Oxychlorination process
CA2218683C (en) 1995-04-21 2001-04-17 The Procter & Gamble Company Shampoos with insoluble silicone conditioning agent and cationic polymer
FR2734172B1 (fr) 1995-05-19 1997-06-20 Air Liquide Dispositif et procede de separation de gaz par adsorption
DE19520612A1 (de) 1995-06-06 1996-12-12 Bayer Ag Verfahren zur Herstellung von Benzylalkohol
US5847224A (en) 1995-06-23 1998-12-08 Global Octanes Corporation Method for improving the color of MTBE, ETBE and TAME
FR2736911A1 (fr) 1995-07-20 1997-01-24 Inst Francais Du Petrole Catalyseur liquide d'alkylation aliphatique
US5977402A (en) 1995-07-20 1999-11-02 Sumitomo Chemical Company, Limited Processes for preparing 4-tert.-butylcyclohexanol and 4-tert.-butylcyclohexyl acetate
US5675052A (en) 1995-09-15 1997-10-07 The Boc Group, Inc. Hydrocarbon alkylation process
US5705712A (en) 1995-10-05 1998-01-06 Uop Integrated process for producing diisopropyl ether, an isopropyl tertiary alkyl ether and isopropyl alcohol
US5705729A (en) 1995-11-22 1998-01-06 Mobil Oil Corporation Isoparaffin-olefin alkylation process
FR2743079B1 (fr) 1995-12-27 1998-02-06 Inst Francais Du Petrole Procede et dispositif d'hydrogenation selective par distillation catalytique comportant une zone reactionnelle a co-courant ascendant liquide-gaz
DE19548876A1 (de) 1995-12-27 1997-07-03 Bayer Ag Verfahren zur kontinuierlichen Herstellung von Benzylalkohol
FR2743510B1 (fr) 1996-01-11 1998-04-03 Total Raffinage Distribution Nouveau catalyseur d'alkylation, son procede de preparation et son utilisation dans des procedes d'alkylation
US6090312A (en) 1996-01-31 2000-07-18 Ziaka; Zoe D. Reactor-membrane permeator process for hydrocarbon reforming and water gas-shift reactions
US6096933A (en) 1996-02-01 2000-08-01 Phillips Petroleum Company Hydrocarbon hydrogenation and catalyst therefor
AU692723B2 (en) 1996-02-01 1998-06-11 Phillips Petroleum Company Catalyst composition and process for selecting hydrogenation of diolefins
DE19603901A1 (de) 1996-02-03 1997-08-07 Krupp Uhde Gmbh Verfahren zur Gewinnung von Reinaromaten aus Reformatbenzin und Vorrichtung zur Durchführung des Verfahrens
SE517561C2 (sv) 1996-03-04 2002-06-18 Aga Ab Förfarande och anordning för framställning av en gas genom separation från en gasblandning
US5663474A (en) 1996-03-07 1997-09-02 Alliedsignal Inc. Alkylation process using hydrogen fluoride-containing alkylation catalysts
US5684213A (en) 1996-03-25 1997-11-04 Chemical Research & Licensing Company Method for the preparation of dialkyl ethers
US5675046A (en) 1996-04-10 1997-10-07 Showa Denko K.K. Process for producing perfluorocarbon
US5898086A (en) 1996-04-19 1999-04-27 Henkel Corporation Process for making alkyl ether glycerols
US6191324B1 (en) 1996-04-24 2001-02-20 Union Carbide Chemicals & Plastics Technology Corporation Processes for producing unsaturated alcohols
USRE38493E1 (en) 1996-04-24 2004-04-13 Questair Technologies Inc. Flow regulated pressure swing adsorption system
WO1997045386A1 (en) 1996-05-29 1997-12-04 Exxon Chemical Patents Inc. Process for producing aromatic compounds from aliphatic hydrocarbons
US6103215A (en) 1996-06-07 2000-08-15 Chevron U.S.A. Inc. Zeolite Me-UTD-1
US5720858A (en) 1996-07-17 1998-02-24 The United States Of America As Represented By The United States Department Of Energy Method for the photocatalytic conversion of methane
US5708246A (en) 1996-08-28 1998-01-13 Battelle Memorial Institute Method of photocatalytic conversion of C-H organics
HU220573B1 (hu) 1996-11-18 2002-03-28 AGRO-CHEMIE Növényvédőszer Gyártó, Értékesítő és Forgalmazó Kft. Eljárás benzil-éterek előállítására
ES2172035T3 (es) 1996-11-27 2002-09-16 Akzo Nobel Nv Procedimiento para alquilar compuestos organicos susceptibles de alquilacion.
US5895831A (en) 1996-12-04 1999-04-20 Uop Llc Solid catalyst alkylation process
US6669846B2 (en) 1996-12-17 2003-12-30 Global Biosciences, Inc. Wastewater treatment with alkanes
US7182871B2 (en) 1996-12-17 2007-02-27 Global Biosciences, Inc. Wastewater treatment with alkanes
US5952538A (en) 1996-12-31 1999-09-14 Exxon Chemical Patents Inc. Use of short contact time in oxygenate conversion
WO1998040333A1 (de) 1997-03-07 1998-09-17 Basf Aktiengesellschaft Verbessertes verfahren zur herstellung von cyclopropylacetylen
US6093306A (en) 1997-04-07 2000-07-25 Solar Reactor Technologies Inc. Comprehensive system for utility load leveling, hydrogen production, stack gas cleanup, greenhouse gas abatement, and methanol synthesis
US5782936A (en) 1997-04-23 1998-07-21 Suburban Propane, L.P. Additive compositions for LPG fuel
SG74047A1 (en) 1997-04-30 2000-07-18 Mitsubishi Chem Corp Process for producing alkylene glycol
US6018088A (en) 1997-05-07 2000-01-25 Olah; George A. Superacid catalyzed formylation-rearrangement of saturated hydrocarbons
DE19721301C1 (de) 1997-05-21 1998-10-01 Basf Ag Verfahren zur Hydrolyse von Alkylmonohalogeniden
US6056804A (en) 1997-06-30 2000-05-02 Questor Industries Inc. High frequency rotary pressure swing adsorption apparatus
AU8395898A (en) 1997-07-11 1999-02-08 University Of Southern California Charge generators in heterolamellar multilayer thin films
US5856584A (en) 1997-08-06 1999-01-05 The Nutrasweet Company Preparation of 3,3-dimethylbutyraldehyde by oxidation of 3, 3-dimethylbutanol
US5928488A (en) 1997-08-26 1999-07-27 David S. Newman Electrolytic sodium sulfate salt splitter comprising a polymeric ion conductor
DK128697A (da) 1997-11-12 1999-05-13 Niels J Bjerrum Katalyseproces
DE19755636A1 (de) 1997-12-15 1999-06-17 Bayer Ag Verfahren zur elektrochemischen Aufarbeitung von HCl-Gas zu hochreinem Chlor
FR2773496B1 (fr) 1998-01-14 2000-03-03 Inst Francais Du Petrole Procede de separation par decantation dans plusieurs zones distinctes
US5882614A (en) 1998-01-23 1999-03-16 Exxon Research And Engineering Company Very low sulfur gas feeds for sulfur sensitive syngas and hydrocarbon synthesis processes
US5968236A (en) 1998-02-20 1999-10-19 Bassine; Stuart Valve free oxygen concentrator
US6187983B1 (en) 1998-04-29 2001-02-13 Exxon Chemical Patents Inc Converting oxygenates to olefins in the presence of electromagnetic energy
US5998679A (en) 1998-05-20 1999-12-07 Jlm Technology, Ltd. Methods for converting lower alkanes and alkanes to alcohols and diols
US5983476A (en) 1998-06-09 1999-11-16 Uop Llc Conversion of an HF alkylation unit
US6096932A (en) 1999-07-27 2000-08-01 E. I. Du Pont De Nemours And Company Fluorocarbon manufacturing process
EP0976705A1 (en) 1998-07-30 2000-02-02 Ube Industries, Ltd. Method of producing a phenolalkylether compound
FR2782280B1 (fr) 1998-08-12 2000-09-22 Inst Francais Du Petrole Catalyseurs supportes utilisables dans des reactions de transformation de composes organiques
US6087294A (en) 1998-08-12 2000-07-11 Kansas State University Research Foundation Dispersion and stabilization of reactive atoms on the surface of metal oxides
US6921597B2 (en) 1998-09-14 2005-07-26 Questair Technologies Inc. Electrical current generation system
US6903171B2 (en) 1998-10-05 2005-06-07 Promerus, Llc Polymerized cycloolefins using transition metal catalyst and end products thereof
CN1249105C (zh) 1998-10-05 2006-04-05 普罗米鲁斯有限责任公司 环烯烃聚合催化剂及聚合方法
EP1121337B1 (en) 1998-10-12 2003-04-09 Great Lakes (Uk) Limited Preparation of cyclopropylethyne and intermediates for preparation of cyclopropylethyne
US6127588A (en) 1998-10-21 2000-10-03 Phillips Petroleum Company Hydrocarbon hydrogenation catalyst and process
US6002059A (en) 1998-10-28 1999-12-14 Mobil Oil Corporation Process for upgrading natural gas
DE69908886T2 (de) 1998-11-02 2003-12-04 Inst Francais Du Petrole Verfahren zur Herstellung eines Zeoliths des EUO-Typs mittels Vorläufern des Strukturbildners und dessen Verwendung als Isomerisierungskatalysator von Aromaten mit acht Kohlenstoffatomen
DK0999182T3 (da) 1998-11-02 2003-07-14 Inst Francais Du Petrole Fremgangsmåde til fremstilling af en zeolit af strukturtypen EUO ved hjælp af kim af zeolitiske materialer og anvendelse heraf som katalysator til isomerisering af aromatiske forbindelser med otte carbonatomer
US6130260A (en) 1998-11-25 2000-10-10 The Texas A&M University Systems Method for converting natural gas to liquid hydrocarbons
US6936565B2 (en) 1999-01-12 2005-08-30 Hyperion Catalysis International, Inc. Modified carbide and oxycarbide containing catalysts and methods of making and using thereof
US6239057B1 (en) 1999-01-15 2001-05-29 Uop Llc Catalyst for the conversion of low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons, process for preparing the catalyst and process using the catalyst
US6114593A (en) 1999-01-27 2000-09-05 Phillips Petroleum Company Method for reducing organic fluoride levels in hydrocarbons
EP1153005A1 (en) 1999-02-22 2001-11-14 Symyx Technologies Compositions comprising nickel and their use as catalyst in oxidative dehydrogenation of alkanes
US6143939A (en) 1999-02-26 2000-11-07 The United States Of America As Represented By The United States Department Of Energy Method of dehalogenation using diamonds
US7825199B1 (en) 1999-03-23 2010-11-02 Carnegie Mellon University Catalytic processes for the controlled polymerization of free radically (co)polymerizable monomers and functional polymeric systems prepared thereby
US6248218B1 (en) 1999-03-25 2001-06-19 Clovis A. Linkous Closed cycle photocatalytic process for decomposition of hydrogen sulfide to its constituent elements
US7220391B1 (en) 1999-03-25 2007-05-22 University Of Central Florida Research Foundation, Inc. UV photochemical option for closed cycle decomposition of hydrogen sulfide
US7273957B2 (en) 1999-05-04 2007-09-25 Catalytic Distillation Technologies Process for the production of gasoline stocks
US6545192B2 (en) 1999-05-11 2003-04-08 Shell Oil Company Process for separating olefins from saturated hydrocarbons
FR2793706B1 (fr) 1999-05-18 2001-08-03 Total Raffinage Distribution Support catalytique a base d'oxyde d'un metal du groupe ivb de la classification periodique des elements, sa preparation et ses utilisations
US6444223B1 (en) 1999-05-28 2002-09-03 Alkermes Controlled Therapeutics, Inc. Method of producing submicron particles of a labile agent and use thereof
US6727400B2 (en) 1999-06-08 2004-04-27 Triosyn Holdings, Inc. Deactivation of toxic chemical agents
AU5381200A (en) 1999-06-09 2001-01-02 Questair Technologies, Inc. Rotary pressure swing adsorption apparatus
US6248931B1 (en) 1999-06-30 2001-06-19 Uop Llc Membrane process for the recovery of halides from hydrocarbon-containing streams
US6309453B1 (en) 1999-09-20 2001-10-30 Xerox Corporation Colorless compounds, solid inks, and printing methods
FR2798922B1 (fr) 1999-09-29 2001-12-14 Inst Francais Du Petrole Procede de preparation d'une zeolithe de type structural mtt utilisant des germes de materiaux zeolithiques
FR2798923B1 (fr) 1999-09-29 2001-12-14 Inst Francais Du Petrole Procede de preparation d'une zeolithe de type structural mtt utilisant des precurseurs specifiques du structurant
US20020102672A1 (en) 1999-10-04 2002-08-01 Joseph Mizrahi Process for producing a purified lactic acid solution
DE19949211A1 (de) 1999-10-13 2001-05-31 Veba Oel Ag Verfahren zur Herstellung von n-Alkanen aus Mineralölfraktionen und Katalysator zur Durchführung des Verfahrens
US6372949B1 (en) 1999-10-15 2002-04-16 Mobil Oil Corporation Single stage process for converting oxygenates to gasoline and distillate in the presence of undimensional ten member ring zeolite
US6380328B1 (en) 1999-12-10 2002-04-30 Univation Technologies, Llc Catalyst systems and their use in a polymerization process
US6265505B1 (en) 1999-11-18 2001-07-24 Univation Technologies, Llc Catalyst system and its use in a polymerization process
US6518474B1 (en) 1999-10-29 2003-02-11 Huntsman International Llc Process for producing isobutylene from tertiary butyl alcohol
US6680415B1 (en) 1999-11-22 2004-01-20 Dow Global Technologies Inc. Oxyhalogenation process using catalyst having porous rare earth halide support
US6933417B1 (en) 1999-11-22 2005-08-23 Dow Global Technologies Inc. Process for vinyl chloride manufacture from ethane and ethylene with partial CHl recovery from reactor effluent
US6909024B1 (en) 1999-11-22 2005-06-21 The Dow Chemical Company Process for the conversion of ethylene to vinyl chloride and novel catalyst compositions useful for such process
WO2001038273A1 (en) 1999-11-22 2001-05-31 The Dow Chemical Company A process for the conversion of ethylene to vinyl chloride, and novel catalyst compositions useful for such process
US6797845B1 (en) 1999-11-22 2004-09-28 Dow Global Technologies Inc. Process for vinyl chloride manufacture from ethane and ethylene with immediate HCl recovery from reactor effluent
US6514319B2 (en) 1999-12-09 2003-02-04 Questair Technologies Inc. Life support oxygen concentrator
US6956140B2 (en) 1999-12-14 2005-10-18 Halocarbon Products Corporation Hydrothermal hydrolysis of halogenated compounds
DE60002286T2 (de) 1999-12-14 2004-02-19 Daicel Chemical Industries, Ltd., Sakai Verfahren zur Herstellung von Ketonen, Alkoholen und Hydroperoxiden
US6376731B1 (en) 2000-01-14 2002-04-23 Arco Chemical Technology, L.P. Selective olefin oligomerization
ES2334490T3 (es) 2000-02-02 2010-03-11 Daikin Industries, Ltd. Proceso para producir un hidrocarburo fluorado.
IT1317757B1 (it) 2000-02-03 2003-07-15 Enitecnologie Spa Metodo per la preparazione di idrocarburi idrogenati.
FR2805255B1 (fr) 2000-02-21 2002-04-12 Inst Francais Du Petrole Zeolithe mtt comprenant des cristaux et des agregats de cristaux de granulometries specifiques et son utilisation comme catalyseur d'isomerisation des paraffines lineaires
US6566572B2 (en) 2000-03-06 2003-05-20 Wako Pure Chemical Industries, Ltd. Process for producing 9,10-diphenylanthracene
US6475463B1 (en) 2000-03-07 2002-11-05 Chevron U.S.A. Inc. Zeolite SSZ-55
US6710213B2 (en) 2000-03-31 2004-03-23 Showa Denko K.K. Production process and use for propargyl alcohol and its intermediate
US6395945B1 (en) 2000-03-31 2002-05-28 Phillips Petroleum Company Integrated hydroisomerization alkylation process
CA2306311C (en) 2000-04-20 2007-04-10 Quest Air Gases Inc. Absorbent laminate structures
FR2808533B1 (fr) 2000-05-02 2002-08-16 Inst Francais Du Petrole Huile synthetique a haut indice de viscosite et faible point d'ecoulement
US6472345B2 (en) 2000-05-03 2002-10-29 Solvias Ag Catalytic halogenation of activated methylene and methine compounds
JP5089003B2 (ja) 2000-05-31 2012-12-05 シェブロン ユー.エス.エー. インコーポレイテッド ゼオライトssz−53
AU2001266868A1 (en) 2000-06-30 2002-01-14 Chevron U.S.A. Inc. Synthesis of high quality normal alpha olefins
FR2812301B1 (fr) 2000-07-26 2003-04-04 Inst Francais Du Petrole Procede flexible de production de bases huiles et de distillats moyens a partir de charge contenant des heteroatomes
IT1318682B1 (it) 2000-08-11 2003-08-27 Enichem Spa Procedimento integrato per la preparazione di ossidi olefinici.
IT1318680B1 (it) 2000-08-11 2003-08-27 Enichem Spa Processo per la produzione in continuo di ossidi olefinici.
US6495484B1 (en) 2000-08-28 2002-12-17 Univation Technologies, Llc Catalyst system and its use in a polymerization process
JP2004508343A (ja) 2000-09-07 2004-03-18 ウイスコンシン アラムニ リサーチ ファンデーション 17f標識フルオロアルカンの合成
FR2813809B1 (fr) 2000-09-11 2003-07-25 Air Liquide Colonne a garnissage d'echange de chaleur et/ou de matiere
US6518476B1 (en) 2000-09-18 2003-02-11 Union Carbide Chemicals & Plastics Technology Corporation Methods for manufacturing olefins from lower alkans by oxidative dehydrogenation
ZA200108461B (en) 2000-10-27 2002-06-06 Celanese Chem Europe Gmbh Process of telomerizing conjugated dienes.
US6552241B1 (en) 2000-10-31 2003-04-22 Conocophillips Company Alkylation process
PL355422A1 (en) 2000-11-29 2004-04-19 Vinnolit Technologie Gmbh & Co.Kg Method for producing 1,2-dichloroethane
WO2002045821A2 (en) 2000-12-08 2002-06-13 Questair Technologies Inc. Methods and apparatuses for gas separation by pressure swing adsorption with partial gas product feed to fuel cell power source
CA2329475A1 (en) 2000-12-11 2002-06-11 Andrea Gibbs Fast cycle psa with adsorbents sensitive to atmospheric humidity
FR2818284B1 (fr) 2000-12-15 2006-08-04 Inst Francais Du Petrole Procede flexible ameliore de production de bases huiles et distillats moyens avec une conversion-hydroisomerisation suivie d'un deparaffinage catalytique
US6511526B2 (en) 2001-01-12 2003-01-28 Vbox, Incorporated Pressure swing adsorption gas separation method and apparatus
US6538162B2 (en) 2001-01-30 2003-03-25 Exxonmobil Chemical Patents Inc. Method for converting alkanes to oxygenates
US6509485B2 (en) 2001-02-22 2003-01-21 Sri International Preparation of epoxides from alkanes using lanthanide-promoted silver catalysts
AU2002233670A1 (en) 2001-02-23 2002-09-04 Showa Denko K.K. Process for producing perfluorocarbons and use thereof
US20030196680A1 (en) 2002-04-19 2003-10-23 Dielectric Systems, Inc Process modules for transport polymerization of low epsilon thin films
US7230150B2 (en) 2001-04-18 2007-06-12 Grt, Inc. Zone reactor
US6472572B1 (en) 2001-06-20 2002-10-29 Grt, Inc. Integrated process for synthesizing alcohols and ethers from alkanes
US6525230B2 (en) 2001-04-18 2003-02-25 Grt, Inc. Zone reactor
US7019182B2 (en) 2001-04-18 2006-03-28 Grt, Inc. Method of hydrocarbon preservation and environmental protection
US6452058B1 (en) 2001-05-21 2002-09-17 Dow Global Technologies Inc. Oxidative halogenation of C1 hydrocarbons to halogenated C1 hydrocarbons and integrated processes related thereto
WO2002094749A1 (en) 2001-05-23 2002-11-28 Dow Global Technologies Inc. Production of vinyl halide from single carbon feedstocks
BR0210049A (pt) 2001-05-23 2004-08-17 Dow Global Technologies Inc Processo de halogenação oxidativa e deshidrogenação opcional de hidrocarbonetos c3+
DK1527035T3 (da) 2001-06-08 2015-06-08 Albemarle Netherlands Bv Kontinuerlig fremgangsmåde til alkyleringen af carbonhydrider
US7001872B2 (en) 2001-06-11 2006-02-21 Halliburton Energy Services, Inc. Subterranean formation treating fluid and methods of fracturing subterranean formations
US6486368B1 (en) 2001-06-20 2002-11-26 Grt, Inc. Integrated process for synthesizing alcohols, ethers, and olefins from alkanes
US20030078456A1 (en) 2001-06-20 2003-04-24 Aysen Yilmaz Integrated process for synthesizing alcohols, ethers, aldehydes, and olefins from alkanes
US7161050B2 (en) 2001-06-20 2007-01-09 Grt, Inc. Method and apparatus for synthesizing olefins, alcohols, ethers, and aldehydes
US6465699B1 (en) 2001-06-20 2002-10-15 Gri, Inc. Integrated process for synthesizing alcohols, ethers, and olefins from alkanes
US20050192468A1 (en) 2001-06-20 2005-09-01 Sherman Jeffrey H. Hydrocarbon conversion process improvements
US20030069452A1 (en) 2001-06-20 2003-04-10 Sherman Jeffrey H. Method and apparatus for synthesizing from alcohols and ethers from alkanes, alkenes, and aromatics
US6518471B1 (en) 2001-06-25 2003-02-11 Exxonmobil Chemical Patents Inc. Selective production of meta-diisopropylbenzene
US6440894B1 (en) 2001-06-25 2002-08-27 Exxonmobil Chemical Patents, Inc. Methods of removing halogen from non-zeolitic molecular sieve catalysts
DE02744727T1 (de) 2001-06-28 2005-02-10 Honeywell International Inc. Verfahren zur herstellung eines fluorierungskatalysators
US20030065239A1 (en) 2001-06-29 2003-04-03 Peter Zhu Non-hazardous basic neutralization of aldehydes
US6646102B2 (en) 2001-07-05 2003-11-11 Dow Global Technologies Inc. Process for manufacturing an alpha-dihydroxy derivative and epoxy resins prepared therefrom
US6867302B2 (en) 2001-07-13 2005-03-15 Board Of Trustees Of Michigan State University Process for the catalytic synthesis of biaryls and polymers from aryl compounds
US6540905B1 (en) 2001-07-13 2003-04-01 Chevron U.S.A. Inc. Hydrocarbon conversion using zeolite SSZ-58
US6547958B1 (en) 2001-07-13 2003-04-15 Chevron U.S.A. Inc. Hydrocarbon conversion using zeolite SSZ-59
US6616830B2 (en) 2001-07-13 2003-09-09 Chevron U.S.A. Inc. Hydrocarbon conversion using zeolite SSZ-57
US7094936B1 (en) 2001-07-20 2006-08-22 Great Lakes Chemical Corporation Process for preparing halogenated alkanes
FR2828193B1 (fr) 2001-08-03 2004-04-02 Atofina Nouveau procede de preparation du 1,1,1,-trifluoro-2,2-dichloroethane
EP1414777A1 (en) 2001-08-03 2004-05-06 Eastman Chemical Company Vapor phase carbonylation process using iridium-gold co-catalysts
US6858770B2 (en) 2001-08-21 2005-02-22 Catalytic Distillation Technologies Paraffin alkylation
US6797851B2 (en) 2001-08-30 2004-09-28 Exxonmobil Chemical Patents Inc. Two catalyst process for making olefin
US6632971B2 (en) 2001-08-30 2003-10-14 Exxonmobil Chemical Patents Inc. Process for converting natural gas to higher value products using a methanol refinery remote from the natural gas source
US6552238B1 (en) 2001-08-31 2003-04-22 Vulcan Chemicals Separation of heavy ends from streams of halogenated alkanes
WO2003022827A1 (en) 2001-09-11 2003-03-20 Grt, Inc. Process for synthesizing olefin oxides
EP1426351B1 (en) 2001-09-14 2013-06-19 Tosoh F-Tech, Inc. Process for preparation of 2,2,2-trifluoroethanol
JP4014856B2 (ja) 2001-11-14 2007-11-28 株式会社トクヤマ ジハロゲン化アダマンタンの製造方法
EP1448788A4 (en) 2001-11-19 2006-03-29 Merck & Co Inc SYNTHESIS PROCESS FOR (R) -1- (3,5-BIS (TRIFLUOROMETHYL) -PHENYL) ETHAN-1-OL AND ITS ESTER WITH DYNAMIC-KINETIC RESOLUTION
ZA200209011B (en) 2001-11-20 2003-05-26 Rohm & Haas Electroactive catalysis.
DE10159615A1 (de) 2001-12-05 2003-06-12 Basf Ag Verfahren zur Herstellung von 1,2-Dichlorethan
US7199255B2 (en) 2001-12-18 2007-04-03 Univation Technologies, Llc Imino-amide catalysts for olefin polymerization
AU2002357355A1 (en) 2001-12-18 2003-06-30 Metabolix, Inc. Methods of making intermediates from polyhydroxyalkanoates
RU2004125653A (ru) 2002-01-24 2006-01-20 Джи Ар Ти, ИНК. (US) Интегрированный способ синтеза спиртов, простых эфиров и олефинов из алканов
EP1465835B1 (en) 2002-01-25 2008-12-31 Council of Scientific and Industrial Research Preparation of non-hazardous brominating reagents
US7091270B2 (en) 2002-01-31 2006-08-15 Bromine Compounds Ltd. Pentabromobenzyl alkyl ethers and their use as fire retardants
WO2003078366A1 (en) 2002-03-13 2003-09-25 University Of Florida Process for trifluoromethylation of sulfates
EP1483035B1 (en) 2002-03-14 2011-09-14 QuestAir Technologies Inc. Gas separation by combined pressure swing and displacement purge
US20040152929A1 (en) 2002-05-08 2004-08-05 Clarke William D Process for vinyl chloride manufacture from ethane and ethylene with air feed and alternative hcl processing methods
NZ536672A (en) 2002-05-10 2007-01-26 Wisconsin Alumni Res Found Low-temperature hydrocarbon production from oxygenated hydrocarbons
US6545191B1 (en) 2002-06-13 2003-04-08 John E. Stauffer Process for preparing ethanol
EP1386664B1 (en) 2002-07-31 2016-05-11 Ineos Technologies (Vinyls) Limited A hollow parallelepiped pellet suitable as carrier of catalysts for selective exothermic reactions
KR100986958B1 (ko) 2002-07-31 2010-10-11 다이소 가부시키가이샤 광학활성 할로게노히드록시프로필 화합물 및 글리시딜화합물의 제조법
US7238846B2 (en) 2002-08-14 2007-07-03 Exxonmobil Chemical Patents Inc. Conversion process
US6831032B2 (en) 2002-08-19 2004-12-14 Novolen Technology Holdings C.V. Ziegler-Natta catalyst and methods of making and using same
EP1539347B1 (en) 2002-08-22 2012-06-27 E.I. Du Pont De Nemours And Company Cobalt substituted chromium oxide compositions, their preparation and their use as catalysts and catalyst precursors
US6953870B2 (en) 2002-08-26 2005-10-11 Tsoung Y Yan Self-propelled liquid fuel
US6753390B2 (en) 2002-09-04 2004-06-22 Univation Technologies, Llc Gas phase polymerization process
DE10242223A1 (de) 2002-09-12 2004-03-25 Clariant Gmbh Verfahren zur Hydrodechlorierung von kernchlorierten ortho-Xylolen
US6740146B2 (en) 2002-09-12 2004-05-25 Edward L. Simonds Oxygen concentrator
FR2845077A1 (fr) 2002-09-26 2004-04-02 Atofina Procede d'abaissement de la teneur en matieres organiques et produits azotes contenus dans des effluents bromures
KR100531128B1 (ko) 2002-09-26 2005-11-28 한국화학연구원 분리막 반응기를 이용한 디메틸에테르의 제조방법
US6852896B2 (en) 2002-10-11 2005-02-08 John E. Stauffer Concerted process for the production of an alkenyl substituted aromatic compound
US6869903B2 (en) 2002-11-07 2005-03-22 Univation Technologies, Llc Synthesis of polymerization catalyst components
CN1203032C (zh) 2002-11-12 2005-05-25 石油大学(北京) 以复合离子液体为催化剂制备烷基化油剂的方法
US7060865B2 (en) 2002-11-12 2006-06-13 Exxonmobil Chemical Patents Inc. Recovery of C4 olefins from a product stream comprising C4 olefins, dimethyl ether and C5+ hydrocarbons
US7199083B2 (en) 2002-12-06 2007-04-03 Self Generating Foam Incoporated Self-generating foamed drilling fluids
DE10257499A1 (de) 2002-12-10 2004-07-01 Oxeno Olefinchemie Gmbh Verfahren zur Herstellung von 1-Olefinen durch katalytische Spaltung von 1-Alkoxyalkanen
WO2004058828A1 (en) 2002-12-20 2004-07-15 Exxonmobil Chemical Patents Inc. Polymerization processes
JP4426533B2 (ja) 2002-12-20 2010-03-03 エクソンモービル・ケミカル・パテンツ・インク 重合プロセス
EP1440939A1 (en) 2003-01-07 2004-07-28 Humboldt-Universität zu Berlin Method for the preparation of amorphous metal fluorides
DE10303304A1 (de) 2003-01-28 2004-07-29 Ruhrgas Ag Verfahren zum Herstellen nichtaromatischer Kohlenwassersstoffe
US7265193B2 (en) 2003-01-31 2007-09-04 Exxonmobil Chemical Patents Inc. Polymerization process
US20040158108A1 (en) 2003-02-06 2004-08-12 Snoble Karel A.J. Purification of alcohol
KR100501922B1 (ko) 2003-02-19 2005-07-18 에스케이 주식회사 메탄올로부터 디메틸에테르의 제조방법
US6875339B2 (en) 2003-03-07 2005-04-05 Conocophillips Company Octane improvement of a hydrocarbon stream
US7091391B2 (en) 2003-03-19 2006-08-15 Stauffer John E Methane to olefins
FR2852866B1 (fr) 2003-03-25 2006-07-14 Bp Lavera Snc Compose metallique fixe sur un support, procede de preparation et utilisation du compose dans des reactions de metathese d'hydrocarbure
US7011811B2 (en) 2003-03-26 2006-03-14 Chevron U.S.A. Inc. Molecular sieve SSZ-65 composition of matter and synthesis thereof
US20040187684A1 (en) 2003-03-26 2004-09-30 Saleh Elomari Using molecular sieve SSZ-65 for reduction of oxides of nitrogen in a gas stream
US20040188324A1 (en) 2003-03-26 2004-09-30 Saleh Elomari Hydrocarbon conversion using molecular sieve SSZ-65
US7083714B2 (en) 2003-03-26 2006-08-01 Chevron U.S.A. Inc. Hydrocarbon conversion using molecular sieve SSZ-65
US7301060B2 (en) 2003-03-28 2007-11-27 Ab-Cwt, Llc Process for conversion of organic, waste, or low-value materials into useful products
US6811679B2 (en) 2003-03-28 2004-11-02 Council Of Scientific & Industrial Research Process for electrochemical oxidation of bromide to bromine
US20040220433A1 (en) 2003-03-28 2004-11-04 Evert Van Der Heide Process for the preparation of propylene glycol
JP4111035B2 (ja) 2003-03-31 2008-07-02 日本ゼオン株式会社 重合トナーの製造方法
US6822123B2 (en) 2003-04-02 2004-11-23 John E. Stauffer Formaldehyde process
CN100400495C (zh) 2003-04-09 2008-07-09 国际壳牌研究有限公司 链烷二醇的制备方法
US7057081B2 (en) 2003-05-09 2006-06-06 Conocophillips Company Method for treating alkanes
US6953868B2 (en) 2003-06-05 2005-10-11 Dow Global Technologies Inc. Oxyfunctionalization of polyolefins
OA13183A (en) 2003-06-21 2006-12-13 Alan K Richards Anhydrous processing of methane into methane-sulfonic acid, methanol, and other compounds.
US7193093B2 (en) 2003-06-30 2007-03-20 Shell Oil Company Process for producing alkylene oxide
AU2004268935B2 (en) 2003-07-15 2010-12-02 Grt, Inc. Hydrocarbon synthesis
US20050171393A1 (en) 2003-07-15 2005-08-04 Lorkovic Ivan M. Hydrocarbon synthesis
UA84436C2 (ru) 2003-08-08 2008-10-27 Солвей (Сосьетэ Аноним) Способ регенерации катализатора гидрирования и способ получения мономера винилхлорида
DE10338581A1 (de) 2003-08-22 2005-03-17 Oxeno Olefinchemie Gmbh Verfahren zur Erzeugung von tert.-Butanol
US6958306B2 (en) 2003-08-28 2005-10-25 Univation Technologies, Llc Activated catalyst systems from substituted dialuminoxane complexes
US7045670B2 (en) 2003-09-03 2006-05-16 Synfuels International, Inc. Process for liquid phase hydrogenation
GB0320684D0 (en) 2003-09-03 2003-10-01 Bp Chem Int Ltd Process
US6825383B1 (en) 2003-09-22 2004-11-30 Council Of Scientific And Industrial Research Catalytic process for regiospecific chlorination of alkanes, alkenes and arenes
US7105710B2 (en) 2003-09-26 2006-09-12 Shell Oil Company Process of preparing an alkylene glycol
PT1675813E (pt) 2003-10-13 2008-01-10 Serono Lab Método de preparação de para-fenil-alcinil-benzaldeídos
US7335802B2 (en) 2003-10-15 2008-02-26 Shell Oil Company Methods of preparing branched aliphatic alcohols
WO2005035121A2 (en) 2003-10-16 2005-04-21 Universiteit Gent Schiff base metal complexes for use as catalysts in organic synthesis
US6838576B1 (en) 2003-10-23 2005-01-04 3M Innovative Properties Company Process for preparing functional group-containing olefinic compounds
US7196239B2 (en) 2003-11-19 2007-03-27 Exxonmobil Chemical Patents Inc. Methanol and ethanol production for an oxygenate to olefin reaction system
RU2006122944A (ru) 2003-11-28 2008-01-10 Фирмениш Са (Ch) Мускусная ароматическая композиция
WO2005054120A2 (en) 2003-12-05 2005-06-16 Idaho Research Foundation, Inc. Polymer-supported metal nanoparticles and method for their manufacture and use
US7244795B2 (en) 2003-12-08 2007-07-17 Univation Technologies, Llc Polymerization process using metallocene catalyst systems
WO2005056525A2 (en) 2003-12-09 2005-06-23 Bio-Technical Resources Deacetylation of n-acetylglucosamine
CN1894183B (zh) 2003-12-18 2010-09-08 埃克森美孚化学专利公司 氢化或相关方面的改进
US7064238B2 (en) 2004-01-02 2006-06-20 Marathon Oil Company Conversion of alkanes to oxygenates
FR2865731B1 (fr) 2004-01-30 2007-09-07 Solvay Procede de fabrication d'un hydrofluoroalcane
FR2866023B1 (fr) 2004-02-05 2007-10-12 Rhodia Chimie Sa Procede de preparation d'un compose fluoaromatique a partir d'un compose aminoaromatique
EP1723093A4 (en) 2004-03-12 2008-03-12 Univ Utah CYCLONE REACTOR AND ASSOCIATED PROCEDURES
WO2005095310A2 (en) 2004-03-23 2005-10-13 Shell Internationale Research Maatschappij B.V. The utilization of zirconium and zirconium based alloys for the containment of halogen containing environments used in the production of olefins, alcohols, ethers, ethoxylates glycols, and olefin oxides from alkanes
JP4452130B2 (ja) 2004-04-05 2010-04-21 東洋エンジニアリング株式会社 液化天然ガスからの炭化水素分離方法および分離装置
BRPI0509808B1 (pt) 2004-04-16 2015-04-07 Marathon Gtf Technology Ltd Processo para converter alcanos gasosos em hidrocarbonetos líquidos
US8173851B2 (en) 2004-04-16 2012-05-08 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons
US7244867B2 (en) 2004-04-16 2007-07-17 Marathon Oil Company Process for converting gaseous alkanes to liquid hydrocarbons
US8642822B2 (en) 2004-04-16 2014-02-04 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons using microchannel reactor
US20080275284A1 (en) 2004-04-16 2008-11-06 Marathon Oil Company Process for converting gaseous alkanes to liquid hydrocarbons
US7674941B2 (en) 2004-04-16 2010-03-09 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons
US20060100469A1 (en) 2004-04-16 2006-05-11 Waycuilis John J Process for converting gaseous alkanes to olefins and liquid hydrocarbons
JP5027655B2 (ja) 2004-04-20 2012-09-19 ユーオーピー エルエルシー 結晶性アルミノシリケートゼオライト質組成物:uzm−15
US7091387B2 (en) 2004-04-21 2006-08-15 Shell Oil Company Process to convert alkanes into primary alcohols
US7462752B2 (en) 2004-04-21 2008-12-09 Shell Oil Company Process to convert linear alkanes into alpha olefins
DE602004028766D1 (de) 2004-04-23 2010-09-30 Uop Llc Siliciumreiche zeolithe uzm-5hs
WO2005110953A1 (en) 2004-04-30 2005-11-24 Shell Internationale Research Maatschappij B.V. Derivatives of alcohols and olefins
US7435760B2 (en) 2004-05-14 2008-10-14 Battelle Memorial Institute Method of generating hydrocarbon reagents from diesel, natural gas and other logistical fuels
US7304198B2 (en) 2004-05-14 2007-12-04 Battelle Memorial Institute Staged alkylation in microchannels
JP2008503602A (ja) 2004-06-16 2008-02-07 ダウ グローバル テクノロジーズ インコーポレイティド チーグラー・ナッタ研究のための装置および方法
EP1760057A4 (en) 2004-06-23 2008-05-21 Tokuyama Corp METHOD FOR PRODUCING POLYHALOGENATED DIAMANTAN AND DERIVATIVES THEREOF
DE102004030943B4 (de) 2004-06-26 2013-10-02 Evonik Oxeno Gmbh Verfahren zur Herstellung von tert.-Butanol aus Isobuten-haltigen Kohlenwasserstoffgemischen
KR101225402B1 (ko) 2004-07-21 2013-01-23 다우 글로벌 테크놀로지스 엘엘씨 다중히드록시화-지방족 탄화수소 또는 그의 에스테르의클로로히드린으로의 전환
US7429683B2 (en) 2004-07-27 2008-09-30 Eastman Kodak Company Process of maing naphthacene from propargyl alcohol
US7671248B2 (en) 2004-08-13 2010-03-02 Exxonmobil Chemical Patents Inc. Process for producing sec-butyl benzene
US7371916B1 (en) 2004-09-16 2008-05-13 Uop Llc Conversion of an alcoholic oxygenate to propylene using moving bed technology and an etherification step
US7271303B1 (en) 2004-09-22 2007-09-18 Uop Llc Multi-zone process for the production of diesel and aromatic compounds
CA2582295A1 (en) 2004-09-30 2006-04-13 Chevron U.S.A. Inc. Molecular sieve ssz-65
WO2006040863A1 (ja) 2004-10-15 2006-04-20 Toagosei Co., Ltd. 金属酸化物触媒の製造方法
GB0423586D0 (en) 2004-10-22 2004-11-24 United States Borax Inc Selective oxidation of organic compounds
US9150494B2 (en) 2004-11-12 2015-10-06 Velocys, Inc. Process using microchannel technology for conducting alkylation or acylation reaction
TWI332418B (en) 2004-11-18 2010-11-01 Rohm & Haas Hybrid catalyst systems and hybrid process for converting alkanes to alkenes and to their corresponding oxygenated products
WO2006067155A2 (en) 2004-12-21 2006-06-29 Albemarle Netherlands Bv Attrition-resisitant catalyst, a process for its preparation and its use
EP1843839A2 (en) 2004-12-22 2007-10-17 E.I. Dupont De Nemours And Company Copolymers of perfluoro (alkyl venyl ether) for photochemical reactor, process for increasing fluorine content and production of olefinic compound by photochlorination
CN102764519B (zh) 2004-12-22 2016-01-06 肯特有限公司 使用纤维膜反应器以在两种不可混溶的反应组分之间进行分离和反应
US7537685B2 (en) 2004-12-23 2009-05-26 Chevron U.S.A. Inc. Hydrocarbon conversion using molecular sieve SSZ-71
EP1831265B1 (en) 2004-12-23 2011-03-16 Solvay SA Process for the manufacture of 1,2-dichloroethane
KR20070094932A (ko) 2004-12-23 2007-09-27 솔베이(소시에떼아노님) 1,2-디클로로에탄의 제조를 위한 공정
US7550073B2 (en) 2004-12-23 2009-06-23 Chevron U.S.A., Inc. Hydrocarbon conversion using molecular sieve SSZ-70
EP1843975B1 (en) 2004-12-23 2014-06-11 Chevron U.S.A. Inc. Molecular sieve ssz-70 composition of matter and synthesis thereof
EP1831137A1 (en) 2004-12-23 2007-09-12 Solvay S.A. Process for the manufacture of 1,2-dichloroethane
BRPI0518551A2 (pt) 2004-12-23 2008-11-25 Solvay processos para a fabricaÇço de 1, 2 - dicloroetano, de cloreto de vinila, e de cloreto de polivinila, e, uso de uma soluÇço alcalina
US7253328B2 (en) 2005-01-24 2007-08-07 John Stauffer Method for producing vinyl chloride monomer
US20090270655A1 (en) 2005-03-28 2009-10-29 Howard Lam-Ho Fong Conversion of Alkylhalides Into Alcohol Alkoxylates
WO2006104909A2 (en) 2005-03-28 2006-10-05 Shell Internationale Research Maatschappij B.V. Catalytic distillation process for primary haloalkanes
US20060229475A1 (en) 2005-04-11 2006-10-12 Weiss Michael J Synthesis of hydroxylated hydrocarbons
US20060229228A1 (en) 2005-04-11 2006-10-12 Zachary John Anthony Komon Method of making alkoxylates
EP1869720A4 (en) 2005-04-15 2011-09-21 Du Pont SUBSTITUTED ARYL-ETHYLENE AROMATIC COMPOUNDS AND USE AS ORGANIC SEMICONDUCTORS
ITMI20050723A1 (it) 2005-04-21 2006-10-22 Consiglio Nazionale Ricerche Metodo di produzione del biodiesel
CA2606680A1 (en) 2005-05-04 2006-11-09 Dow Global Technologies Inc. Oxidative halogenation of c1 hydrocarbons to halogenated c1 hydrocarbons
MY158842A (en) 2005-05-20 2016-11-15 Solvay (Société Anonyme) Continuous process for preparing chlorhydrins
WO2007017900A2 (en) 2005-05-26 2007-02-15 Sisir Kumar Mandal Preparation of para dichlorobenzene from benzene or mono chlorobenzene
US20060270863A1 (en) 2005-05-27 2006-11-30 Amyris Biotechnologies Conversion of amorpha-4,11-diene to artemisinin and artemisinin precursors
CA2510093C (en) 2005-06-16 2009-09-29 Apotex Pharmachem Inc. Novel process for the preparation of.alpha.-chlorovinyl, .alpha.,.alpha.-dichloro, and acetylenes from ketones
US7442354B2 (en) 2005-06-23 2008-10-28 Chevron U.S.A. Inc. Treatment of engine exhaust using molecular sieve SSZ-56
US7226569B2 (en) 2005-06-23 2007-06-05 Chevron U.S.A. Inc. Reduction of oxides of nitrogen in a gas stream using molecular sieve SSZ-56
WO2007001934A2 (en) 2005-06-23 2007-01-04 Chevron U.S.A. Inc. Molecular sieve ssz-56 composition of matter and synthesis thereof
CN101242887B (zh) 2005-06-23 2011-12-14 切夫里昂美国公司 分子筛ssz-56组合物及其合成
US7390395B2 (en) 2005-06-23 2008-06-24 Saleh Elomari Hydrocarbon conversion using molecular sieve SSZ-56
US7084308B1 (en) 2005-07-29 2006-08-01 Stauffer John E Manufacture of formaldehyde from methyl bromide
US8957259B2 (en) 2005-09-30 2015-02-17 Battelle Memorial Institute Dimethyl ether production from methanol and/or syngas
WO2007044139A1 (en) 2005-10-07 2007-04-19 Badger Licensing Llc Bisphenol-a plant yield enhancement
US7683230B2 (en) 2005-10-27 2010-03-23 Stauffer John E Methyl bromide to olefins
AU2006306159A1 (en) 2005-10-28 2007-05-03 Shell Internationale Research Maatschappij B.V. Internal olefins process
US7888520B2 (en) 2005-12-21 2011-02-15 University Of Saskatchewan Process for the preparation of biodiesel
US20070213545A1 (en) 2005-12-22 2007-09-13 Bolk Jeroen W Method Of Installing An Epoxidation Catalyst In A Reactor, A Method Of Preparing An Epoxidation Catalyst, An Epoxidation Catalyst, A Process For The Preparation Of An Olefin Oxide Or A Chemical Derivable From An Olefin Oxide, And A Reactor Suitable For Such A Process
US20070197801A1 (en) 2005-12-22 2007-08-23 Bolk Jeroen W Method of installing an epoxidation catalyst in a reactor, a method of preparing an epoxidation catalyst, an epoxidation catalyst, a process for the preparation of an olefin oxide or a chemical derivable from an olefin oxide, and a reactor suitables for such a process
US7510697B2 (en) 2005-12-28 2009-03-31 Chevron U.S.A. Inc. Molecular sieve SSZ-74 composition of matter and synthesis thereof
US7432402B2 (en) 2005-12-28 2008-10-07 Chevron U.S.A. Partial oxidation using molecular sieve SSZ-74
US20070149778A1 (en) 2005-12-28 2007-06-28 Chevron U.S.A. Inc. Beckmann rearrangement using molecular sieve ssz-74
US7422732B2 (en) 2005-12-28 2008-09-09 Chevron U.S.A. Inc Synthesis of amines using molecular sieve SSZ-74
US7357904B2 (en) 2005-12-28 2008-04-15 Chevron Corporation Reduction of oxides of nitrogen in a gas stream using molecular sieve SSZ-74
WO2007079038A2 (en) 2005-12-28 2007-07-12 Chevron U.S.A Inc. Molecular sieve ssz-74 composition of matter and synthesis thereof
US7762059B2 (en) 2005-12-28 2010-07-27 Chevron U.S.A. Inc. Treatment of engine exhaust using molecular sieve SSZ-74
US20080115666A1 (en) 2005-12-28 2008-05-22 Chevron U.S.A. Inc. Gas separation using molecular sieve ssz-74
US7473807B2 (en) 2005-12-28 2009-01-06 Chevron Usa, Inc. Acylation using molecular sieve SSZ-74
MY153001A (en) 2006-02-03 2014-12-31 Grt Inc Continuous process for converting natural gas to liquid hydrocarbons
GB0602424D0 (en) 2006-02-07 2006-03-22 Sinclair Pharmaceuticals Ltd Compounds
US20090163749A1 (en) 2006-03-20 2009-06-25 Microvast Technologies, Ltd. Conversion of methane into c3˜c13 hydrocarbons
EP1837320A1 (en) 2006-03-23 2007-09-26 ETH Zürich Production of saturated C2 to C5 hydrocarbons
CN102836675B (zh) 2006-03-23 2016-06-15 万罗赛斯公司 一种装置
JP2007269708A (ja) 2006-03-31 2007-10-18 Sumitomo Chemical Co Ltd 第3級オレフィンおよび脂肪族アルコールの製造方法
US20070238905A1 (en) 2006-04-05 2007-10-11 Victor Manuel Arredondo Processes for converting glycerol to glycerol ethers
BRPI0601460B1 (pt) 2006-04-26 2015-11-10 Petroleo Brasileiro Sa processo para hidroconversão de mistura de óleos orgânicos de diferentes origens
WO2007130054A1 (en) 2006-05-08 2007-11-15 Exxonmobil Chemical Patents Inc. Improved catalyst composition
WO2007130055A1 (en) 2006-05-08 2007-11-15 Exxonmobil Chemical Patents Inc. Organic compound conversion process
US7268263B1 (en) 2006-05-18 2007-09-11 Uop Llc Integrated process for aromatics production
US7304193B1 (en) 2006-05-18 2007-12-04 Uop Llc Integrated process for aromatics production
US20100197950A1 (en) 2006-06-08 2010-08-05 Kaare Gyberg Rasmussen Process for preparing phenoxy acetic acid derivatives
CA2653928C (en) 2006-06-08 2014-09-09 Chevron U.S.A. Inc. Molecular sieve ssz-75 composition of matter and synthesis thereof
WO2007142745A1 (en) 2006-06-09 2007-12-13 Exxonmobil Chemical Patents Inc. Intergrown molecular sieve, its synthesis and its use in the conversion of oxygenates to olefins
US7713510B2 (en) 2006-08-25 2010-05-11 Albemarle Corporation Processes for oxidation of bromides to produce bromine and catalysts useful therein
US20100087308A1 (en) 2006-09-21 2010-04-08 Albemarte Corporation Methods for conversion of methane to useful hydrocarbons, catalysts for use therein, and regeneration of the catalysts
BRPI0717816A2 (pt) 2006-09-21 2013-11-12 Albemarle Corp Métodos para conversão de metano em hidrocarbonetos úteis e catalisadores para emprego nesses métodos
US7365102B1 (en) 2007-02-26 2008-04-29 Delphi Technologies, Inc. Process for pre-reforming hydrocarbon fuels
EP2125676A1 (en) 2007-02-28 2009-12-02 Albemarle Corporation Processes for producing higher hydrocarbons from methane and bromine
MX2009012353A (es) 2007-05-14 2010-02-17 Grt Inc Proceso para convertir materiales de partida de hidrocarburos con recuperacion electrolitica de halogeno.
WO2008157047A1 (en) 2007-06-14 2008-12-24 Albemarle Corporation Processes for producing hydrogen from hydrocarbon feed sources
WO2008157045A1 (en) 2007-06-14 2008-12-24 Albemarle Corporation Processes for producing higher hydrocarbons from hydrocarbon feed sources
WO2008157044A1 (en) 2007-06-14 2008-12-24 Albemarle Corporation Processes for producing higher hydrocarbons from methane
WO2008157046A1 (en) 2007-06-14 2008-12-24 Albemarle Corporation Processes for producing higher hydrocarbons from methane
WO2008157043A1 (en) 2007-06-14 2008-12-24 Albemarle Corporation Processes for producing higher hydrocarbons from methane
US8282810B2 (en) 2008-06-13 2012-10-09 Marathon Gtf Technology, Ltd. Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery
US20090312586A1 (en) 2008-06-13 2009-12-17 Marathon Gtf Technology, Ltd. Hydrogenation of multi-brominated alkanes
CA2730934C (en) 2008-07-18 2017-07-04 Grt, Inc. Continuous process for converting natural gas to liquid hydrocarbons
EP2399886A1 (en) 2008-07-18 2011-12-28 GRT, Inc. Continuous process for converting natural gas to liquid hydrocarbons
CN102177112A (zh) 2008-10-07 2011-09-07 国际壳牌研究有限公司 同时生产芳烃及乙烯和丙烯的整合方法
WO2010107696A1 (en) 2009-03-16 2010-09-23 Shell Oil Company An integrated process to coproduce aromatic hydrocarbons and ethylene and propylene
US20110015458A1 (en) 2009-07-15 2011-01-20 Marathon Gtf Technology, Ltd. Conversion of hydrogen bromide to elemental bromine
US8367884B2 (en) 2010-03-02 2013-02-05 Marathon Gtf Technology, Ltd. Processes and systems for the staged synthesis of alkyl bromides
US8198495B2 (en) 2010-03-02 2012-06-12 Marathon Gtf Technology, Ltd. Processes and systems for the staged synthesis of alkyl bromides

Also Published As

Publication number Publication date
EA201291331A1 (ru) 2013-07-30
WO2011159490A1 (en) 2011-12-22
CN102947249A (zh) 2013-02-27
EP2580176A1 (en) 2013-04-17
US20120141356A1 (en) 2012-06-07
AU2011265594A1 (en) 2013-01-24
US8642822B2 (en) 2014-02-04

Similar Documents

Publication Publication Date Title
US8173851B2 (en) Processes for converting gaseous alkanes to liquid hydrocarbons
JP2013530183A (ja) マイクロチャネルリアクタを用いて気体状アルカンを液体炭化水素に変換するための過程
US8008535B2 (en) Process for converting gaseous alkanes to olefins and liquid hydrocarbons
US8232441B2 (en) Process for converting gaseous alkanes to liquid hydrocarbons
US7674941B2 (en) Processes for converting gaseous alkanes to liquid hydrocarbons
US9206093B2 (en) Process for converting gaseous alkanes to liquid hydrocarbons
KR101170773B1 (ko) 기체상 알칸을 액상 탄화수소로 전환시키는 방법

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805