WO2006040863A1 - 金属酸化物触媒の製造方法 - Google Patents

金属酸化物触媒の製造方法 Download PDF

Info

Publication number
WO2006040863A1
WO2006040863A1 PCT/JP2005/012896 JP2005012896W WO2006040863A1 WO 2006040863 A1 WO2006040863 A1 WO 2006040863A1 JP 2005012896 W JP2005012896 W JP 2005012896W WO 2006040863 A1 WO2006040863 A1 WO 2006040863A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
metal oxide
catalyst
compound
propane
Prior art date
Application number
PCT/JP2005/012896
Other languages
English (en)
French (fr)
Inventor
Xinlin Tu
Naomasa Furuta
Yuuichi Sumida
Original Assignee
Toagosei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co., Ltd. filed Critical Toagosei Co., Ltd.
Priority to DE602005019081T priority Critical patent/DE602005019081D1/de
Priority to US11/665,153 priority patent/US7645897B2/en
Priority to JP2006540831A priority patent/JP4539655B2/ja
Priority to AT05765799T priority patent/ATE455595T1/de
Priority to EP05765799A priority patent/EP1808227B1/en
Publication of WO2006040863A1 publication Critical patent/WO2006040863A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/24Preparation of carboxylic acid nitriles by ammoxidation of hydrocarbons or substituted hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0576Tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • B01J31/0274Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0209Impregnation involving a reaction between the support and a fluid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/215Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of saturated hydrocarbyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing a metal oxide catalyst used in the production of acrylic acid by vapor phase catalytic oxidation of propane or propylene and the production of acrylonitrile by ammoxidation of propane.
  • acrylic acid is produced by a two-stage oxidation reaction in which propylene and oxygen are brought into contact with each other in the presence of a catalyst to produce acrolein, and then the obtained acrolein is brought into contact with oxygen.
  • a method for producing acrylic acid in one step using propane as a starting material has been studied, and many proposals have been made regarding the catalyst used at that time.
  • Typical examples include metal oxide catalysts such as [Mo, Te, V, Nb] (Patent Document 1) and [Mo, Sb, V, Nb] (Patent Documents 2 and 3).
  • Patent Document 4 a niobium compound is mixed with a reaction aqueous solution obtained by reacting a molybdenum compound, a vanadium compound and an antimony compound in an aqueous medium at 70 ° C. or higher, and then the resulting mixture is mixed.
  • a method for producing a catalyst which is evaporated to dryness and calcined at high temperature is disclosed.
  • Patent Document 5 discloses [Mo, Te, V] -based catalysts or [Mo, Sb, V] -based catalysts as W, Mo, Cr, Zr, Ti, Nb, Ta, V, B, Bi.
  • the catalyst is further impregnated by impregnating it with a solution containing one or more elements selected from the group consisting of Te, Pd, Co, Ni, Fe, P, Si, rare earths, anolelic metals and alkaline earths.
  • a catalyst reforming method of supporting a metal of this kind has been disclosed, and its catalytic performance in the propane ammoxidation reaction of the reformed catalyst has been evaluated.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-010801 (Claims)
  • Patent Document 2 JP-A-9 312063 (Claims)
  • Patent Document 3 Japanese Patent Application Laid-Open No. 10-036311 (Claims)
  • Patent Document 4 Japanese Patent Laid-Open No. 10-137585 (Claims)
  • Patent Document 5 JP-A-10-28862 (Claims)
  • the present invention is a method for producing a metal oxide catalyst having the following composition formula, which is a method for producing a metal oxide catalyst comprising the following steps (1) and (2).
  • Composition formula MoViAjBkCxOy (Wherein A is Te or Sb, B is at least one element selected from the group force consisting of Nb, Ta and Ti, and C is S or Ge.
  • Step (1) A step of obtaining a metal oxide by drying an aqueous liquid containing Mo, V, metal A and metal B, and firing the obtained solid at a high temperature.
  • Step (2) In a substantially water-free atmosphere, a compound containing the metal element C is attached to the metal oxide obtained in the step (1), and the surface of the metal oxide is oxidized with the metal C.
  • a compound containing the metal element C is attached to the metal oxide obtained in the step (1), and the surface of the metal oxide is oxidized with the metal C.
  • the present invention is a method for producing acrylic acid or acrylonitrile, characterized in that propylene or propylene is oxidized or ammoxidized by a gas phase catalytic reaction in the presence of the metal oxide catalyst obtained by the above production method.
  • a metal oxide catalyst capable of producing acrylic acid in high yield from propane or propylene can be easily obtained. Furthermore, the metal oxide catalyst has excellent performance that does not impair the selectivity of acrylic acid production even under low water vapor reaction conditions with low wastewater treatment and purification costs. Such a catalyst with a high selectivity is particularly advantageous when a so-called recycling process is adopted by separating and recovering the bread bread material.
  • acrylic acid can be produced from propylene in one step.
  • the present metal oxide catalyst can also be used for ammoxidation of propane.
  • the aqueous liquid containing Mo, V, metal A, and metal B used in step (1) of the present invention is preferably an aqueous liquid obtained by the following method.
  • an aqueous liquid containing Mo, V, and metal A is produced by the following method, and the prepared Mo, V, metal A, and metal B are added by adding a metal B compound to the obtained aqueous liquid. It is an aqueous liquid containing.
  • aqueous liquid containing Mo, V and metal A In a specific example, a Mo compound, a V compound and a metal A compound, which will be described later, are mixed in an aqueous medium, and the resulting mixture is heated with stirring.
  • the preferred temperature of the mixed solution by heating is 40 ° C or higher, more preferably 40 to: 100 ° C.
  • the heating time is preferably:! To 10 hours, more preferably 2 to 5 hours.
  • the metal A is Te or Sb as described above, and examples of the Te compound include metal tellurium, tellurium dioxide, orthotelluric acid, metatelluric acid and ammonium tellurate.
  • the metal tellurium is preferably finely pulverized in advance or fine particles of 5.0 / im or less obtained by reducing ternole dioxide and telluric acid in an aqueous medium with a reducing agent.
  • Sb compound metal antimony and antimony trioxide are preferable.
  • Examples of the Mo compound include ammonium molybdate, molybdenum oxide, and molybdic acid. Among these compounds, ammonium molybdate is preferable because it is water-soluble. As the V compound, ammonium metavanadate, vanadium pentoxide and the like are preferable.
  • the amount of addition of the Mo compound, metal A compound and V compound is such that the atomic ratio (i and j) of V and metal A to Mo is 0 ⁇ 01-1.5, respectively, and the atomic ratio of metal A to V (j / i) is an amount such that 0.3 to 1.0. If the mixing ratio of Mo, V, and metal A is out of the above range, the desired metal oxide catalyst having high catalytic performance cannot be obtained.
  • metal B is at least one element selected from the group consisting of Nb, Ta and Ti forces
  • Mo An aqueous liquid containing V, metal A and metal B is obtained.
  • ammonia water it is more preferable to add ammonia water from the viewpoint of the performance of the resulting metal oxide catalyst.
  • the liquid temperature There are no particular restrictions on the liquid temperature when adding ammonia water and metal B compound.
  • Examples of the metal B compound include oxides, nitrates, carboxylates, oxalates, and oxalates.
  • the insoluble metal B compound may be used after being dispersed in water. In this case, it can be dissolved in water by using oxalic acid or the like in combination.
  • the addition amount of the metal B compound is the atomic ratio of the metal in the obtained metal oxide catalyst. 001-3. The amount to be 0. In the same catalyst, if the ratio of metal B when Mo is 1 is less than 0.001, the resulting catalyst is likely to deteriorate. On the other hand, if it exceeds 3.0, the activity of the resulting catalyst is lowered and the conversion rate of propane is poor.
  • the amount of ammonia water added is such that the molar ratio of ammonia to metal B is 0.4 or more, preferably 0.8 to 3.0. If the molar ratio of ammonia to metal B is less than 0.4, no effect can be obtained. On the other hand, the use of more than 3.0 does not increase the effect, but the cost of waste gas treatment is high.
  • nitric acid or ammonium nitrate it is preferable to further add nitric acid or ammonium nitrate to a fine precipitate dispersion obtained by adding aqueous ammonia and metal B compound.
  • the amount of nitric acid or ammonium nitrate added is preferably such that the nitrate ion molar ratio to metal B is 2.0 to 6.0, more preferably 2.2 to 4.0. . If the amount of nitrate ion added is outside the above range, the effect of adding light is small.
  • aqueous liquid (usually in the form of a slurry) is heated to evaporate water and dry.
  • the dried product obtained is calcined in the presence of oxygen at a temperature of 250 to 380 ° C., preferably 280 to 360 ° C., for 0.5 to 10 hours, preferably:! To 3 hours.
  • the solid obtained by the above baking is in the absence of oxygen at a temperature of 480 to 640 ° C, preferably 5 to 70 to 620 ° C, 0.:! To Tera ⁇ preferably ⁇ or 0.2 to 53. To do. The operation of step (1) is completed by vigorous firing.
  • a compound (hereinafter referred to as a metal) containing a metal element C (S or Ge) in a water-free atmosphere in a metal oxide obtained in the above step (1) (hereinafter sometimes referred to as a catalyst precursor).
  • a specific adhesion method a method of vaporizing a metal C compound and bringing the vapor into contact with the metal oxide, or an organic solvent after immersing the metal oxide in an anhydrous organic solvent solution in which the metal C compound is dissolved is used. There is a method of transpiration.
  • the shape of the catalyst precursor used for adhesion of the metal C compound particles having a particle size of about 0.1 mm to several mm are preferable.
  • the catalyst precursor having such a particle size may be one obtained by sieving from the metal oxide powder obtained in the step (1), or may be one having a uniform particle size after the metal oxide powder is supported on a carrier.
  • Metal C compounds include gold in the form of chlorides, organometallic compounds or alkoxides. Forces that can be used by the genus C compound Alkoxides are preferred from the viewpoint of ease of handling. Specifically, tetrasalt silicate, tetramethoxysilane, tetraethoxysilane, trimethoxysilane, triethoxysilane, trimethylsilane, triethylsilane, hexamethyldisilane, hexamethyldisilazane, hexamethylsiloxane And tetraethoxygermanium. More preferred are tetraethoxysilane, triethoxysilane, triethinoresyllan and tetraethoxygermanium.
  • any conventionally known method can be adopted as long as it is a method that enables strong adhesion in an atmosphere without water.
  • a simple method that can be used there is a method using a gas cleaning bottle (with a filter) used to remove dust in the gas by passing the gas through a liquid in a cylindrical container. That is, by putting a liquid metal C compound in a cylindrical gas cleaning bottle and passing a dehydrated inert gas such as dry nitrogen gas (hereinafter sometimes referred to as carrier gas) through it, the vapor pressure component is obtained.
  • carrier gas dry nitrogen gas
  • the vapor pressure of the metal C compound depends on the temperature and pressure of the atmosphere.
  • boiling point of the metal C compound In order to increase the vapor pressure, it is convenient to increase the temperature of the metal C compound contained in the cylindrical container. When selecting the temperature to be applied, the boiling point of the metal C compound should be consulted. Examples of boiling points of metal C compounds include tetramethoxysilane 121.8 ° C, tetraethoxysilane 166.8 ° C, triethoxysilane 133.5 ° C, triethylsilane 107 ° C, tetraethoxygermanium 253 ° C, and tetrachloride. Cage 57. 6 ° C etc.
  • the carrier gas flow rate affects the amount of metal C compound adhering to the catalyst precursor as well as the temperature of the metal C compound.
  • the carrier gas flow rate is suitably 1,800-5, OOOhr- 1 as the space velocity.
  • the amount of metal C in the metal oxide catalyst defined by the above composition formula That is, 0.002 to 0.1 mole of metal C can be deposited per mole of Mo.
  • the adsorption of the metal C compound to the catalyst precursor particles is preferably performed in a container that is shut off from the atmosphere, and is preferably performed by fixed bed adsorption or fluidized bed adsorption.
  • the temperature of the catalyst precursor particles at the time of adsorbing the metal C compound is preferably room temperature to 350 ° C, more preferably 50 to 300 ° C.
  • a cylindrical container is filled with catalyst precursor particles, the container is also heated by an external force, and a carrier gas containing a vapor of a metal C compound is vented to the container.
  • the metal C oxide can be formed on the precursor surface.
  • the same method can be applied by impregnating a catalyst precursor with a solution containing a metal C compound, thereby attaching the metal C compound to the catalyst precursor, and then converting the deposited metal C compound into an oxide.
  • a metal oxide catalyst having performance can be produced.
  • the temperature of dehydration is 50 to 300 ° C, preferably 70 to 250 ° C.
  • the dehydration temperature is 50 ° C or less, the surface property of the catalyst precursor changes when the dehydration effect is 300 ° C or more, and the chemical reaction for supporting the metal C compound becomes difficult.
  • the organic solvent to be used is not particularly limited, but hydrocarbons, specifically, toluene and hexane can be preferably used.
  • the water content in the organic solvent is preferably 0.005% by mass or less, more preferably 0.002% by mass or less. When the amount of water in the organic solvent exceeds 0.005% by mass, it is preferable to apply a dehydration method by a known method, preferably a molecular sieve drying method.
  • the amount of the organic solvent used for the impregnation is 0.5 to 100 times, preferably:! To 20 times by volume with respect to the catalyst. If the amount of organic solvent used is less than 0.5 times, the effect of modification is poor because the compound of metal C does not spread uniformly throughout the catalyst. On the other hand, when the amount of the organic solvent exceeds 100 times that of the catalyst, the cost of the solvent increases while the effect does not increase.
  • the concentration of the metal C compound contained in the organic solvent is 0.5 to 300 x mol / ml, preferably 5 to 150 ⁇ m. It is in the range of mol / ml.
  • the concentration of the metal C compound contained in the organic solvent is 0.5 z mol / ml or less, it is difficult to carry metal C and the loading effect is small. On the other hand, if it is 300 ⁇ mol / ml or more, the loading becomes uneven and the original modification effect is not exhibited.
  • the organic solvent is evaporated from the catalyst precursor taken out from the solution.
  • the organic solvent may be directly evaporated, the catalyst precursor may be previously washed with the dehydrated organic solvent to remove the remaining unreacted C compound raw material, and then the organic solvent may be evaporated. preferable. This method can further enhance the effect of the modification.
  • a known method for removing the organic solvent after washing a known method such as distillation, centrifugation or filtration can be employed. Thereafter, by heating the catalyst precursor to 50 to 300 ° C., the metal C compound adhering to the catalyst precursor can be converted into a metal oxide and fixed on the precursor surface.
  • the content of each metal component in the metal oxide catalyst of the present invention obtained by fixing the metal C oxide can be measured by fluorescent X-ray analysis.
  • the metal oxide catalyst is preferably used as it is. If it is further pulverized, catalyst performance may be reduced.
  • the metal oxide catalyst can be used without a carrier, but can also be used by being supported on a known carrier such as silica, alumina, silica alumina, and silicon carbide having an appropriate particle size. There is no particular limitation on the loading amount, and a conventionally known loading amount can be preferably used.
  • Acrylic acid is produced by introducing propane and molecular oxygen (hereinafter referred to as oxygen gas), which are acrylic acid production raw materials, into a reactor filled with the metal oxide catalyst and maintained at a high temperature.
  • oxygen gas propane and molecular oxygen
  • Propane and oxygen gas are introduced separately into the reactor. Alternatively, both may be mixed in the reactor, or may be introduced into the reactor in a state where both are mixed in advance.
  • nitrogen, steam, or carbon dioxide as a diluent gas.
  • the use ratio of air to propane is preferably 30 times or less in volume ratio, more preferably 0.2 to 20 times.
  • the ratio of steam to propan is preferably in the range of 0.8-8. If the ratio of steam to propane is less than 0.8, a sequential combustion reaction occurs, the selectivity of acrylic acid is low, and if the magnification exceeds 8, the cost of the rectification process and wastewater treatment process is increased. It is not economically advantageous.
  • the reaction temperature is in the range of 300 to 460 ° C, preferably in the range of 350 to 420 ° C.
  • As the space velocity of the source gas 1000 to 8000 hr- 1 force S is appropriate. If the space velocity is less than 1000h r- 1, the lower the space time yield of acrylic acid as the target compound, if more than 8000Hr- 1 is reaction rate decreases.
  • Reactor outlet force Unreacted propane contained in the exhausted reaction gas and propylene as an intermediate product can be used as fuel S as it is, separated from other components in the reaction gas and reacted It can be returned to the container and reused.
  • a known pressure swing adsorption method (PSA method) or an organic solvent adsorption method can be used as a method for separating unreacted propane gas from other products and inert gas.
  • PSA method pressure swing adsorption method
  • organic solvent adsorption method can be used as a known pressure swing adsorption method
  • the metal oxide catalyst produced according to the present invention can be applied to propylene oxidation and propane ammoxidation, and acrylic acid or acrylonitrile can be synthesized in high yield.
  • the conditions for propylene oxidation or propane ammoxidation are substantially the same as those for propane gas phase catalytic oxidation.
  • Propylene conversion (%) loo X (supplied propylene—unreacted propylene) z supplied propylene
  • Acrylic acid selectivity (%) 100 X Acrylic acid produced / (Supplyed propylene / unreacted propylene)
  • Acrolein selectivity (%) 100 X produced acrolein / (supplied propylene / unreacted propylene)
  • Acrylic acid yield (%) propane conversion X acrylic acid selectivity / 100
  • a 500 ml glass flask was charged with 2.66 g of ammonium metavanadate, 15.45 g of ammonium molybdate, and 50 ml of distilled water, and dissolved while stirring at a temperature around 80 ° C. After dissolution is complete, metal tellurium particles obtained by reducing ternole dioxide with hydrazine to a solution that is no longer heated (rods with an average major axis of 0.3 xm and an average minor axis of 0.1 / im) 1. 46g 30 ml of an aqueous dispersion containing was added, and 1.0 g of 30% aqueous ammonia was added dropwise. The reaction solution reached 50 ° C after several minutes with stirring.
  • the obtained dried product was calcined at 320 ° C for 1.5 hours in an air atmosphere.
  • the solid particles thus obtained were fired at 590 ° C. for 1.5 hours in a stainless fired tube to obtain a metal oxide.
  • a sieve having a particle size of 0.5 to 1 mm was selected by sieving and used in the subsequent experiments.
  • Og is filled on a metal network of a quartz tube, and dry nitrogen gas is supplied at a flow rate of 0.2 L / min for about 30 minutes at 200 ° C. Maintained. After that, connect the nitrogen gas line to a gas washing bottle containing tetraethoxysilane maintained at 50 ° C, and adjust the nitrogen flow rate to 0.5 L / min for 5 minutes to vaporize tetraethoxysilane.
  • a metal oxide catalyst was obtained by contacting with the metal oxide particles maintained at 200 ° C.
  • Example 1 Except for bringing the four metal oxides produced as catalyst precursors in Example 1 into contact with the vapor of triethoxysilane, the same operation as in Example 1 was performed, and the metal composition was Mo / Mo.
  • a metal oxide catalyst of V / Te / Nb / Si 1.0 / 0. 28/0. 14/0. 16/0.
  • Table 1 shows the results of performing the attalinoleic acid synthesis reaction by oxidation of propane using the metal oxide catalysts obtained in Examples 2 to 4 above.
  • Example 1 Four kinds of metal oxide particles produced as a catalyst precursor in Example 1 1.02 g of nitrogen The medium was dehydrated by heating at 220 ° C for 30 minutes, and the following operations were performed without bow exposure to the atmosphere. In a nitrogen atmosphere, the metal oxide was returned to room temperature in 7.5 ml of n-hexane solution with a tetraethoxysilane concentration of 12 z mol / ml (use n-hexane dehydrated with molecular sieve 4A). After adding the product particles and stirring well, the hexane was evaporated by heating at 80 ° C for 30 minutes or more under a nitrogen stream.
  • the obtained metal oxide catalyst was used for the propane oxidation reaction in the same manner as in the above Example.
  • the metal oxide catalyst is heated to 370 ° C. in a packed tower before using the propane oxidation reaction, so that the silicon atoms derived from tetraethoxysilane deposited by the above operation are converted into oxides.
  • Example 1 Four metal oxide particles produced as a catalyst precursor in Example 1 1.0 g were dehydrated by heating at 90 ° C for 30 minutes in nitrogen, and the following operation was performed without subsequent exposure to the atmosphere. went.
  • the metal oxide catalyst is heated to 370 ° C. in the packed tower before using the propane oxidation reaction, so that the silicon atoms derived from the tetraethoxysilane deposited by the above operation are converted into oxides.
  • Example 1 Using the four metal oxides produced as catalyst precursors in Example 1 as catalysts, the same acrylic acid synthesis reaction by propane oxidation as in the above Examples was performed. The results are shown in Table 1.
  • silica sol manufactured by Nissan Chemical Co., Ltd. (trade name Snowtex 30, aqueous dispersion of fine silica, Si ⁇ concentration is 30 wt%) was weighed 0.094 g, and distilled water 5. Og was added, Dissolve
  • Example 4 Using the four metal oxides produced as catalyst precursors in Example 1 as catalysts, the same acrylic acid synthesis reaction by propylene oxidation as in Example 7 was performed. At a reaction temperature of 340 ° C, a propylene conversion rate of 98.1%, an acrylic acid selectivity of 73.4%, and a 3.4% acrolein selectivity were obtained.
  • P propane.
  • AA acrylic acid.
  • M is S i or G e.
  • acrylic acid can be produced in high yield and yield using propane and air or propylene and air as raw materials, and high using propane and ammonia as raw materials.
  • Acrylonitrile can be produced in a yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

【課題】 プロパンまたはプロピレンの空気酸化によるアクリル酸の製造反応に使用される高性能な触媒の製造方法の提供。 【解決手段】 つぎの組成式を有する金属酸化物触媒の製造方法であって、下記工程(1)および(2)からなる金属酸化物触媒の製造方法。   組成式 MoViAjBkCxOy  (式中、AはTeまたはSbであり、Bは、Nb、TaおよびTiからなる群から選ばれる少なくとも1種の元素であり、またCはSiまたはGeである。) 工程(1);Mo、V、金属Aおよび金属Bを含む水性液を乾固し、得られた固形分を高温で焼成することにより金属酸化物を得る工程。 工程(2);実質的に水の不存在の雰囲気で、金属元素Cを含む化合物を前記工程(1)で得られた金属酸化物に付着させ、該金属酸化物の表面に金属Cの酸化物を形成する工程。                                                                                 

Description

明 細 書
金属酸化物触媒の製造方法
技術分野
[0001] 本発明は、プロパンまたはプロピレンの気相接触酸化によるアクリル酸の製造およ びプロパンのアンモ酸化によるアクリロニトリルの製造に使用される金属酸化物触媒 の製造方法に関するものである。
背景技術
[0002] 通常アクリル酸は、触媒の存在下にプロピレンと酸素とを接触反応させてァクロレイ ンを製造し、次いで得られたァクロレインを酸素と接触反応させる二段酸化反応によ り製造されている。し力 ながら、近年では、プロパンを出発原料として一段階でァク リル酸を製造する方法が検討されており、その際に使用される触媒に関する提案が 多数なされている。その代表例としては、〔Mo、 Te、 V、 Nb〕系(特許文献 1)および〔 Mo、 Sb、 V、 Nb〕系(特許文献 2、 3)等の金属酸化物触媒がある。
[0003] さらに最近、上記の金属酸化物触媒の性能を改良した触媒の製法に関しても、幾 つか特許出願されている。例えば、特許文献 4においては、 70°C以上の水性媒体中 でモリブデン化合物、バナジウム化合物およびアンチモンィ匕合物を反応させて得ら れる反応水溶液に、ニオブ化合物を混合した後、得られる混合物を蒸発乾固し、高 温で焼成する触媒の製造方法が開示されている。
[0004] また特許文献 5には、〔Mo、 Te、 V]系触媒または〔Mo、 Sb、 V]系触媒を、 W、 Mo 、 Cr、 Zr、 Ti、 Nb、 Ta、 V、 B、 Bi、 Te、 Pd、 Co、 Ni、 Fe、 P、 Si、希土類、ァノレカリ金 属およびアルカリ土類からなる群より選ばれる一つ以上の元素を含む溶液に含浸さ せることにより、前記触媒にさらに他の金属を担持させるという触媒の改質方法が開 示されており、改質された触媒のプロパンのアンモ酸化反応における触媒性能が評 価されている。
[0005] 特許文献 1 :特開平 7— 010801号公報(特許請求の範囲)
特許文献 2:特開平 9 312063号公報 (特許請求の範囲)
特許文献 3 :特開平 10— 036311号公報(特許請求の範囲) 特許文献 4:特開平 10— 137585号公報 (特許請求の範囲)
特許文献 5 :特開平 10— 28862号公報 (特許請求の範囲)
発明の開示
発明が解決しょうとする課題
[0006] 従来の触媒では、プロパンの一段酸化反応において高いアクリル酸の選択率を得 るために、反応ガス中のプロパンに対する水蒸気の割合を高くすることが必要で、具 体的にはプロパン 1モル当たり水蒸気 8. 0モル以上という割合が用いられていた。し 力 ながら、このように水蒸気の使用割合が高い条件を採用すると、後続の精留工程 や廃水処理工程に多額の費用がかかり、全体としてアクリル酸の製造コストが高くな るという問題がある。
一方、プロピレンからアクリル酸を製造する工業的なプロセスは既に確立されたが、 既存のプロセスは、プロピレンからァクロレインへの第一段反応とァクロレインからァク リル酸への第二段反応という二段階のプロセスであり、プロセスとしては煩雑で改善 の余地がある。
本発明においては、プロパン 1モル当たり水蒸気を 3. 3モル程度とする反応条件で も、高い収率でアクリル酸を製造できる触媒の製造方法を提供することを課題とした。 また、プロピレンから一段でアクリル酸を製造できる触媒の製造方法を提供すること を課題とした。
課題を解決するための手段
[0007] 本発明者らは、上記課題解決のために鋭意検討した結果、〔Mo、 Te、 V]系複合 金属酸化物または〔Mo、 Sb、 V〕系系複合金属酸化物にさらに他の特定の金属化合 物を水の不存在下に付着させて得られる複合金属酸化物によれば、プロパンに対す る水蒸気の割合が比較的低い反応条件においても高収率でアクリル酸を製造できる こと、およびプロピレンを原料にして一段でアクリル酸を製造できること、を見出し本発 明を完成するに至った。
[0008] すなわち、本発明は、つぎの組成式を有する金属酸化物触媒の製造方法であって 、下記工程(1)および(2)からなる金属酸化物触媒の製造方法である。
組成式 MoViAjBkCxOy (式中、 Aは Te又は Sbであり、 Bは Nb、 Taおよび Tiからなる群力も選ばれる少なくと も 1種の元素であり、また Cは Sほたは Geである。 iおよび jは、各々 0. 01〜: 1. 5で、 力つ j/i=0. 3〜: 1. 0であり、 kfま 0. 001〜3. 0であり、 χίま 0. 002〜0. 1であり、ま た yは他の元素の酸化状態によって決定される数である。 )
工程(1); Mo、 V、金属 Aおよび金属 Bを含む水性液を乾固し、得られた固形分を高 温で焼成することにより金属酸化物を得る工程。
工程 (2);実質的に水の不存在の雰囲気で、金属元素 Cを含む化合物を前記工程( 1)で得られた金属酸化物に付着させ、該金属酸化物の表面に金属 Cの酸化物を形 成する工程。
さらに本発明は、上記の製法によって得られる金属酸化物触媒の存在下に、プロ パンまたはプロピレンを気相接触反応により酸化またはアンモ酸化することを特徴と するアクリル酸またはアクリロニトリルの製造方法である。
発明の効果
[0009] 本発明の製造方法によれば、プロパンまたはプロピレンからアクリル酸を高収率で 製造することができる金属酸化物触媒が容易に得られる。さらに、該金属酸化物触媒 は、廃水処理や精製コストの少ない低水蒸気の反応条件でも、アクリル酸生成の選 択率を損なわなレ、とレ、う優れた性能を有する。このような選択率の高レ、触媒は特にプ 口パン原料を分離回収して、いわゆるリサイクルプロセスを採用する場合は特に有利 である。
また、本発明の製造方法によれば、プロピレンから一段でアクリル酸を製造すること が可能である。
さらに、本金属酸化物触媒は、プロパンのアンモ酸化にも使用できる。
発明を実施するための最良の形態
[0010] 本発明の工程(1)で用いる Mo、 V、金属 Aおよび金属 Bを含む水性液としては、以 下の方法によって得られる水性液が好ましい。
すなわち、まず Mo、 Vおよび金属 Aを含む水性液を以下の方法によって製造し、 得られた水性液に金属 B化合物を添加することにより、調製された Mo、 V、金属 Aお よび金属 Bを含む水性液である。 Mo、 Vおよび金属 Aを含む水性液の製造に際して は、具体例を後記する Mo化合物、 Vィ匕合物および金属 Aィ匕合物を水性媒体中で混 合し、得られる混合液を撹拌下に加熱する。加熱による前記混合液の好ましい温度 は 40°C以上であり、さらに好ましくは 40〜: 100°Cである。加熱時間としては、:!〜 10 時間が好ましぐさらに好ましくは 2〜5時間である。金属 Aは、前記のとおり Te又は S bであり、 Te化合物としては、金属テルル、二酸化テルル、オルトテルル酸、メタテル ル酸およびテルル酸アンモニゥム等が挙げられる。金属テルルは、予め湿式粉砕し たものまたは二酸化テルノレおよびテルル酸を水性媒体中で還元剤によって還元され て得られる 5. 0 /i m以下の微粒子のものが好ましい。また Sbィ匕合物としては、金属ァ ンチモン、三酸化アンチモンが好ましい。
[0011] Moィ匕合物としては、モリブデン酸アンモニゥム、酸化モリブデンまたはモリブデン酸 等が挙げられる。これら化合物の中でも水溶性である点でモリブデン酸アンモニゥム が好ましい。 Vィ匕合物としては、メタバナジン酸アンモン二ゥム、五酸化バナジウム等 が好ましい。
Mo化合物、金属 A化合物および V化合物の添カ卩量は、 Moに対する Vおよび金属 Aの原子比(iおよび j)がそれぞれ 0· 01-1. 5であり、且つ Vに対する金属 Aの原子 比 (j/i)が 0. 3〜: 1. 0となる量である。 Mo、 V、金属 Aの配合割合が上記範囲を外 れると、 目的とする高い触媒性能を有する金属酸化物触媒は得られない。
[0012] 上記の操作によって得られる反応液に、金属 B化合物(金属 Bは、 Nb、 Taおよび Ti 力もなる群から選ばれる少なくとも 1種の元素である。)を添カ卩することにより、 Mo、 V 、金属 Aおよび金属 Bを含む水性液が得られる。金属 B化合物の添加の際に、アンモ 二ァ水を添加することが、得られる金属酸化物触媒の性能の点でさらに好ましい。 アンモニア水および金属 B化合物を添加する際の液温に関しては特に制限がなぐ 通常室温でよい。アンモニア水および金属 B化合物を添加することにより反応液中に 微細な沈澱が形成される。
[0013] 金属 B化合物としては、酸化物、硝酸塩、カルボン酸塩、ォキソ酸塩、蓚酸塩等が ある。不溶性の金属 B化合物は水に分散させて使用しても良いが、この場合蓚酸等 を併用することにより水に溶解させることができる。 金属 B化合物の添加量としては、 得られる金属酸化物触媒中における金属の原子比で、 Moを 1としたとき、金属 Bが 0 . 001-3. 0となる量である。同触媒において、 Moを 1としたときの金属 Bの割合が 0 . 001未満であると、得られる触媒の劣化が起こり易レ、。一方、 3. 0を越えると得られ る触媒の活性が低くなり、プロパンの転換率が劣る。
アンモニア水の添加量は、金属 Bに対してアンモニアがモル比で 0. 4以上、好まし くは 0. 8〜3. 0となる量である。アンモニアが金属 Bに対するモル比で 0. 4未満であ ると効果が得られず、一方 3. 0を越えて使用しても効果の増加はなぐ廃ガスの処理 にコストがかかる。
[0014] アンモニア水および金属 B化合物を添加して得られる微細な沈澱の分散液に、さら に硝酸または硝酸アンモニゥムを添加することが好ましレ、。硝酸または硝酸アンモニ ゥムの添加量は、硝酸イオンが金属 Bに対するモル比で 2. 0〜6. 0となる量が好まし ぐさらに好ましくは、 2. 2〜4. 0となる量である。硝酸イオンの添加量が前記した範 囲の外であると添カ卩効果が少なレ、。
[0015] 得られる水性液(通常スラリー状である)を加熱して水分を蒸発させて乾固させる。
得られた乾固物を酸素の存在下で温度 250〜380°C好ましくは 280〜360°Cで、 0. 5〜: 10時間好ましくは:!〜 3時間焼成する。
上記の焼成により得られる固体を酸素の不在下で、温度 480〜640°C好ましくは 5 70〜620°Cで、 0.:!〜 寺 ΓΒ好ましく ίま 0. 2-1. 53寺 Γ 焼成する。力力る焼成により 工程(1)の操作は終わる。
[0016] 上記した工程(1)で得られる金属酸化物(以下触媒前駆体ということがある)に、水 不在の雰囲気で金属元素 C (Sほたは Geである)を含む化合物(以下金属 C化合物 という)を付着させる。具体的な付着方法としては、金属 C化合物を気化させてその蒸 気と前記金属酸化物を接触させる方法、または金属 C化合物を溶解した無水の有機 溶剤溶液に金属酸化物を浸した後に有機溶剤を蒸散させる方法等がある。かかる金 属 C化合物の付着に用いられる触媒前駆体の形状としては、粒径 0. 1mm〜数 mm程 度の粒子が好ましい。かかる粒度の触媒前駆体は、工程(1)で得られる金属酸化物 粉末から篩い分けたものでも良いし、該金属酸化物粉末を担体に担持させた後粒度 を揃えたものでもよレ、。
[0017] 金属 C化合物としては、塩化物、有機金属化合物またはアルコキシド等の形態の金 属 C化合物が使用できる力 取り扱いやすさの点で好ましくはアルコキシドである。具 体的には、四塩ィ匕ケィ素、テトラメトキシシラン、テトラエトキシシラン、トリメトキシシラン 、トリエトキシシラン、トリメチルシラン、トリェチルシラン、へキサメチルジシラン、へキ サメチルジシラザン、へキサメチルシロキサンおよびテトラエトキシゲルマニウムなどが 挙げられる。さらに好ましくは、テトラエトキシシラン、トリエトキシシラン、トリエチノレシラ ンおよびテトラエトキシゲルマニウムである。
[0018] 金属 C化合物の蒸気を触媒前駆体粒子に付着させる方法は、水の不存在の雰囲 気において力かる付着ができる方法であれば、従来公知の方法がすべて採用できる 実験室的に使用できる簡便な方法としては、円筒の容器に入れた液中にガスを通 すことによりガス中の粉塵等を除去するために用いられるガス洗浄びん (フィルター付 き)を用いる方法がある。すなわち、円筒型のガス洗浄びんに液体の金属 C化合物を 入れておき、その中に乾燥窒素ガス等の脱水不活性ガス(以下キヤリヤーガスというこ とがある)を通過させることにより、蒸気圧分の金属 C化合物の蒸気を含む脱水不活 性ガス気流を作り、それを前記触媒前駆体粒子と接触させるという方法である。
[0019] 上記の方法において金属 C化合物の蒸気圧は、雰囲気の温度、圧力に依存する。
該蒸気圧を上げるためには、円筒容器に入れた金属 C化合物の温度を上げるのが 簡便である。力かる温度を選択するに当っては、金属 C化合物の沸点を参考にすると よい。金属 C化合物の沸点の例としては、テトラメトキシシラン 121. 8°C、テトラエトキ シシラン 166. 8°C、トリエトキシシラン 133. 5°C、トリェチルシラン 107°C、テトラエトキ シゲルマニウム 253°Cおよび四塩化ケィ素 57. 6°C等が挙げられる。
キヤリヤーガス流速は、前記金属 C化合物の温度とともに、金属 C化合物の触媒前 駆体への付着量に影響する。キヤリヤーガス流速は、空間速度で 1, 800-5, OOOh r—1が適当である。キヤリヤーガス流速と金属 C化合物の蒸気圧を適宜組合わせること により、金属 Cィ匕合物の蒸気濃度力 1〜: 10, OOOppmさらに好ましくは:!〜 1 , 000 ppmの混合気体を形成させることが好ましレ、。
金属 C化合物を上記の濃度で含むキヤリヤーガスと、触媒前駆体とを適当時間接 触させることにより、前記組成式で定められる金属酸化物触媒における金属 Cの量、 すなわち Moの 1モル当たり金属 Cを 0. 002〜0. 1モル付着させることができる。
[0020] 触媒前駆体粒子への金属 C化合物の吸着は、大気と遮断された容器内で行われ、 固定層吸着または流動層吸着によって行うことが好ましい。さらに、金属 C化合物吸 着時の触媒前駆体粒子の温度は、室温〜 350°Cが好ましぐさらに好ましくは 50〜3 00°Cである。この温度に維持された触媒前駆体に金属 C化合物の蒸気が接触すると 、前駆体表面に吸着された金属 C化合物が速やかに金属酸化物へと転換し、確実に 前駆体表面に固定される。
固定層吸着を採用する場合には、例えば円筒型の容器に触媒前駆体粒子を充填 し、この容器を外力も加熱しておき、それに金属 C化合物の蒸気を含んだキヤリヤー ガスを通気することにより、前駆体表面に金属 Cの酸化物を形成させることができる。
[0021] 金属 C化合物を含む溶液に触媒前駆体を含浸させることにより、金属 C化合物を触 媒前駆体に付着させたのち付着した金属 C化合物を酸化物に転換させるという方法 によっても、同様な性能を有する金属酸化物触媒を製造することができる。
触媒前駆体を含浸させる際に用いる触媒前駆体は一旦外気に晒される場合、触媒 前駆体が外気中の水分を吸収するため、含浸処理の前に脱水処理を行う必要が好 ましい。脱水の温度は 50〜300°C、好ましくは 70〜250°Cである。脱水温度が 50°C 以下であると、脱水効果がなぐ 300°C以上となると、触媒前駆体の表面性質が変化 し、金属 C化合物を担持させるための化学反応がし難くなる。
使用する有機溶剤に特に限定はないが、炭化水素類、具体的にはトルエン、へキ サンが好ましく使用できる。有機溶剤中の水分含有量は、 0. 005質量%以下が好ま しぐさらに好ましくは 0. 002質量%以下である。有機溶剤中の水分量が 0. 005質 量%を越える場合には、公知の方法による脱水方法好ましくはモレキューラシーブ乾 燥法を適用することが好ましい。
含浸を行う際に使用する有機溶媒量は触媒に対して体積比で 0. 5〜: 100倍、好ま しくは:!〜 20倍である。使用する有機溶媒量が 0. 5倍未満であると、金属 Cの化合物 は触媒全体に均一に行き渡れないため、修飾の効果が乏しい。一方、有機溶媒量が 触媒に対して 100倍を超えると、効果が増えない割に溶媒のコストが高くなる。有機 溶媒に含む金属 C化合物の濃度は、 0. 5〜300 x mol/ml、好ましくは、 5〜: 150 μ mol/mlの範囲である。有機溶媒に含む金属 C化合物の濃度は 0. 5 z mol/ml以下 であると、金属 Cの担持がし難く担持効果が少なレ、。一方、 300 μ mol/ml以上であ ると、担持が不均一になり、本来の修飾効果が発揮されない。
金属 C化合物を含む溶液に含浸させた後、該溶液から取り出された触媒前駆体か ら有機溶剤を蒸散させる。直接に有機溶媒を蒸散させてもよいが、予め触媒前駆体 を前記の脱水された有機溶媒を用いて洗浄し、残存の未反応の C化合物原料を除 去した後に有機溶媒を蒸散させることが好ましい。この方法によって修飾の効果をさ らに高めることができる。
洗浄後の有機溶媒を除去する方法は、蒸留、遠心分離やろ過など公知の方法が 採用できる。その後、触媒前駆体を 50〜300°Cに加熱することにより、触媒前駆体に 付着した金属 C化合物を金属酸化物に転換させ、前駆体表面に固定することができ る。金属 Cの酸化物を固着させて得られる本発明の金属酸化物触媒における各金属 成分の含有量は螢光 X線分析により測定することができる。
[0022] 触媒前駆体に金属 C化合物を付着させることによる選択性改善の機構は定かでは ないが、金属 C化合物の配位子と触媒前駆体の表面の官能基との化学反応によって 、副反応に関与するサイトが塞がれ、副反応を抑制できたためと推定される。なお、 水の存在下で、金属 C化合物を付着させると、金属 C化合物が加水分解し、副反応 に関与するサイトのみならず有効な活性サイトにも付着するため、活性が著しく低下 するものと推測される。
金属酸化物触媒は得られた粒子のままで使用することが好ましい。それをさらに粉 砕したりすると、触媒性能が低下することがある。また、金属酸化物触媒は無担体の 状態でも使用できるが、適当な粒度を有するシリカ、アルミナ、シリカアルミナ、シリコ ンカーバイド等の公知の担体に担持させて使用することもできる。担持量は特に制限 が無ぐ従来公知の担持量が好ましく採用できる。
[0023] 上記方法により製造した金属酸化物触媒を用いるプロパンの気相接触酸化反応に っレ、て説明する。アクリル酸製造原料のプロパンおよび分子状酸素(以下酸素ガスと いう)を、上記金属酸化物触媒が充填され高温に維持された反応器に導入すること により、アクリル酸が製造される。プロパンおよび酸素ガスは、別々に反応器に導入さ れ、反応器内で両者が混合されてもよぐまた予め両者が混合された状態で反応器 に導入されてもよい。反応制御のために、希釈ガスとして、窒素、スチームまたは炭 酸ガス等を併用することが好ましレ、。
[0024] 原料として、プロパンおよび空気を使用する場合、空気のプロパンに対する使用割 合は、容積比率で 30倍以下が好まし 0. 2〜20倍がより好ましい。スチームのプロ パンに対する割合は 0. 8〜8の範囲が好ましレ、。スチームのプロパンに対する割合 は 0. 8未満の場合、逐次的な燃焼反応が起こり、アクリル酸の選択率が低ぐまた、 倍率が 8を超える場合、精留工程や廃水処理工程のコストがかかり、経済的に有利 でない。反応温度は 300〜460°Cの範囲で、好ましくは 350〜420°Cの範囲である。 原料ガスの空間速度としては、 1000〜8000hr— 1力 S適当である。空間速度が 1000h r—1未満の場合は、 目的化合物であるアクリル酸の空時収率が低くなり、 8000hr— 1を 超える場合は反応率が低下する。
[0025] 反応器出口力 排出される反応ガス中に含まれる未反応のプロパンや、中間生成 物のプロピレンはそのまま燃料とすることもできる力 S、反応ガス中の他の成分と分離し て反応器へ返送して再利用することもできる。未反応のプロパンガスと、その他の生 成物およびイナートガスとの分離方法は例えば、公知の圧力スイング吸着法(PSA 法)や有機溶媒吸着法などが使用できる。また、本発明により製造する金属酸化物触 媒はプロピレンの酸化、プロパンのアンモ酸化にも適用でき、高収率でアクリル酸ま たは、アクリロニトリルを合成することができる。プロピレンの酸化、またはプロパンのァ ンモ酸化条件は、略上記プロパンの気相接触酸化条件に準じる。
[0026] 以下、実施例および比較例を挙げて、本発明をさらに具体的に説明する。各例で 得られた金属酸化物触媒については、以下の方法で触媒性能を評価した。 平均粒 径 0. 5〜: Immの触媒 1. 0g (0. 8〜: 1. Oml)を 10mm φの石英製の反応管に充填し た。反応管における反応温度 (触媒層中心部に固定される熱電対によって測定され る温度)を 370°Cに設定し、それにプロパン 7. 6容積%、酸素ガス 14. 2容積%、窒 素ガス 53. 5容積%および水蒸気 24. 7容積%の混合ガスを 2200/hr— 1の空間速 度で供給することにより、アクリル酸を製造した。
[0027] 反応生成物の組成分析を行い、これに基づき下式に示すプロパン転化率およびァ クリル酸選択率を算出した (レ、ずれもモル基準)。
プロパン転化率(Q/o) = 100 X (供給プロパン—未反応プロパン) /供給プロパン アクリル酸選択率(%) = 100 X生成アクリル酸/ (供給プロパン一未反応プロパン) アクリル酸収率(%) =プロパン転化率 Xアクリル酸選択率 Z loo
プロピレン酸化の場合は下記の通りである。
プロピレン転化率(%) = loo X (供給プロピレン—未反応プロピレン) z供給プロピ レン
アクリル酸選択率(%) = 100 X生成アクリル酸/ (供給プロピレン一未反応プロピレ ン)
ァクロレイン選択率(%) = 100 X生成ァクロレイン/ (供給プロピレン一未反応プロ ピレン)
アクリル酸収率(%) =プロパン転化率 Xアクリル酸選択率/ 100
〇実施例 1
500mlのガラス製フラスコにメタバナジン酸アンモニゥム 2· 66g、モリブデン酸アン モニゥム 15. 45gおよび蒸留水 50mlを力 0え、 80°C付近の温度の下で、攪拌しなが ら溶解させた。溶解が終了後、加熱を停止した溶液に、二酸化テルノレをヒドラジンで 還元して得た金属テルル粒子(平均長径が 0. 3 x mで平均短径が 0. 1 /i mの棒状 物) 1. 46gの入った水性分散液 30mlを加え、さらに、 30%のアンモニア水 1. 0gを 滴下した。反応液は、攪拌下に数分間経つと 50°Cになった。
上記反応液に、蓚酸 5. 89gおよびニオブ酸 2. 32gを 160mlの蒸留水に溶解して 得た水溶液をカ卩えた。得られた混合液を 5分間攪拌した後、さらに硝酸アンモニゥム 4. 0gを混合した。その後、 120°Cの乾燥機で蒸発乾固させた。
得られた乾固物を空気雰囲気で 320°Cで 1. 5時間焼成した。これにより得られた固 体粒子をステンレス焼成管中で 590°Cで 1. 5時間焼成することにより金属酸化物を 得た。さらに篩いで粒径 0. 5〜lmmのものを選別し、以後の実験においてはそれを 使用した。なお、該金属酸化物(以下 4種金属酸化物という)の原子比は、蛍光 X線 組成分析によれば、 Mo/VZTeZNb = 1. 0/0. 28/0. 14/0. 16 (モル比) であった。 [0029] 上記操作によって得られた 4種金属酸化物 1. Ogを石英管の金属網の上に充填し 、乾燥窒素ガスを流量 0. 2 L/minで流しながら、約 30分間 200°Cに維持した。その 後、窒素ガスラインを 50°Cに保持されるテトラエトキシシランを入れたガス洗浄瓶に接 続し、窒素流量を 0. 5L/minに調節した状態で、 5分間テトラエトキシシランの蒸気 を 200°Cに維持された前記金属酸化物粒子と接触させることにより、金属酸化物触 媒を得た。
該金属酸化物触媒の組成は、 Mo/V/Te/Nb/Si= 1. 0/0. 28/0. 14/0 . 16/0. Oi l (モル比)であった。この触媒を用いたプロパンの酸化反応におけるァ クリル酸の収率などは表 1に記載のとおりである。
〇実施例 2
[0030] 実施例 1において触媒前駆体として製造された 4種金属酸化物に、トリエトキシシラ ンの蒸気を接触させること以外は、すべて実施例 1と同様な操作を行い、金属組成が Mo/V/Te/Nb/Si= 1. 0/0. 28/0. 14/0. 16/0. 012 (モノレ it)の金属 酸化物触媒を得た。
〇実施例 3
[0031] 実施例 1において触媒前駆体として製造された 4種金属酸化物に、トリェチルシラ ンの蒸気を接触させること以外は、すべて実施例 1と同様な操作を行い、金属組成が Mo/V/Te/Nb/Si= 1. 0/0. 28/0. 14/0. 16/0. 033 (モノレ];匕)の金属 酸化物触媒を得た。
〇実施例 4
[0032] 実施例 1において触媒前駆体として製造された 4種金属酸化物に、テトラエトキシゲ ルマニウムの蒸気を接触させること以外は、すべて実施例 1と同様な操作を行レ、、金 属糸且成力 Mo/V/Te/Nb/Ge = l . 0/0. 28/0. 14/0. 16/0. 007 (モノレ 比)の金属酸化物触媒を得た。
上記実施例 2〜4で得た金属酸化物触媒を用いて、プロパンの酸化によるアタリノレ 酸合成反応を行った結果は、それぞれ表 1に記載のとおりである。
〇実施例 5
[0033] 実施例 1において触媒前駆体として製造された 4種金属酸化物粒子 1. 02gを窒素 中 220°Cで 30分間加熱することにより脱水し、弓 Iき続き大気にさらすことなく以下の 操作を行った。窒素雰囲気下、テトラエトキシシランの濃度が 12 z mol/mlの n -へキ サン溶液 7. 5ml (n-へキサンはモレキュラーシーブ 4Aにより脱水したものを使用)に 、室温に戻した前記金属酸化物粒子を加えて十分撹拌したのち、窒素流通下 80°C で 30分以上加熱してへキサンを蒸発させた。
得られた金属酸化物触媒を前記実施例と同様にプロパンの酸化反応に使用した。 該金属酸化物触媒は、プロパン酸化反応の使用前に充填塔内で 370°Cに加熱され ることにより、前記操作により付着したテトラエトキシシランに由来のケィ素原子が酸化 物に転換する。この状態での金属酸化物触媒の組成は、 Mo/V/Te/Nb/Si = 1. 0/0. 28/0. 14/0. 16/0. 016 (モノレ比)であった。
〇実施例 6
[0034] 実施例 1において触媒前駆体として製造された 4種金属酸化物粒子 1. 02gを窒素 中 90°Cで 30分間加熱することにより脱水し、引き続き大気にさらすことなく以下の操 作を行った。
窒素雰囲気下、テトラエトキシシランの濃度が 100 /i mol/mlのトルエン溶液 4. 5 ml (トルエンはモレキュラーシーブ 4Aにより脱水したものを使用)に、室温に戻した前 記金属酸化物粒子を加えて十分撹拌したのち、 90°Cで 1時間加熱した。この際、溶 媒を還流させた。加熱終了後、室温まで放冷し、大気中で濾過を行い、溶媒 10mlを 用い、数回に分けて洗浄した。得られた金属酸化物触媒を前記実施例 1と同様にプ 口パンの酸化反応に使用した。
該金属酸化物触媒はプロパン酸化反応の使用前に充填塔内で 370°Cに加熱され ることにより、前記操作により付着したテトラエトキシシランに由来のケィ素原子が酸化 物に転換する。この状態での金属酸化物触媒の組成は、 Mo/V/Te/Nb/Si = 1. 0/0. 28/0. 14/0. 16/0. 014 (モノレ比)であった。
〇実施例 7
[0035] 実施例 6と同じ触媒を用い、反応評価を行う際にプロパンの変わりに同じ流量のプ ロピレンを反応器に流通させ、酸化反応を行った。 340°Cにおいて反応評価の結果 、 98. 4%のプロピレンの転ィ匕率、 84. 7%のアタリノレ酸の選択率、と 1. 1%ァクロレ イン選択率が得られた。
〇比較例 1
[0036] 実施例 1において触媒前駆体として製造された 4種金属酸化物を触媒として、前記 実施例と同様なプロパンの酸化によるアクリル酸合成反応を行った。結果は表 1に記 載のとおりである。
〇比較例 2
[0037] 反応温度を 360°Cにする以外、すべて比較例 1と同様な操作を行った。
〇比較例 3
[0038] 反応温度を 350°Cにする以外、すべて比較例 1と同様な操作を行った。比較例 2お よび比較例 3の触媒を使用したプロパンの酸化反応の結果によれば、反応温度の調 節のみでは、該酸化反応における生成物の選択性の改善に効力が低いことが分か る。
〇比較例 4
[0039] ビーカーに日産化学 (株)製シリカゾル (商品名スノーテックス 30、微粉シリカの水 性分散液、 Si〇濃度が 30wt%) 0.094gを秤量し、蒸留水 5. Ogをカ卩え、溶解させる
。この溶液に実施例 1において触媒前駆体として製造された 4種金属酸化物の粉末 2 . 5gをカ卩え、均一に混ぜた後、 120°Cで 2時間乾燥させた。得られた金属酸化物触 媒における金属の組成は、 Mo/VZTeZNb/Si= l. 0/0. 28/0. 14/0. 16 /0. 053 (モル比)であった。
得られた触媒を使用して、前記各例と同様なプロパンの酸化によるアクリル酸合成 反応を行った。
〇比較例 5
[0040] 実施例 1において触媒前駆体として製造された 4種金属酸化物を触媒として、前記 実施例 7と同様なプロピレンの酸化によるアクリル酸合成反応を行った。 340°Cの反 応温度において、 98. 1%のプロピレン転化率、 73. 4%のアクリル酸の選択率と、 3 . 4%ァクロレイン選択率が得られた。
[0041] [表 1] 反応成績
蒸着用の C化合物 担持成分のモル比 (M/Mo) P転化率% AA選択率% 収率% 実施例 1 テトラエトキシシラン Si/Mo=0.011/1.0 60.3 75.4 45.4 実施例 2 トリェ卜キシシラン Si/Mo=0.012/1.0 53.5 80.8 43.2 実施例 3 トリェチルシラン Si/Mo=0.033/1.0 59.2 73.8 43J 実施例 4 テトラエトキシゲルマニウム Ge/Mo二 0.045ハ .0 57.8 74.6 43.1 実施例 5 テトラエトキシシラン Si/Mo=0.016/1.0 60.8 74.4 45.2 実施例 6 テトラエトキシシラン Si/Mo=0.014/1.0 56.4 81.2 45.8
—— 反応成績
含浸液用の C化合物 担持成分のモル比 (M/Mo) P転化率% AA選択率% AA収率% 比較例 1 なし 61.0 70.1 42.7 比較例 2 なし 54.3 71.2 35.8 比較例 3 なし 49.1 67.0 32.9 比較例 4 シリカゾル(スノーテックス 30) Si/Mo=0.053/1.0 59.0 69.6 41.1
Pはプロパンを表す。 AAはアクリル酸を表す。 Mは S iまたは G eである。
産業上の利用可能性
本発明により得られる金属酸化物触媒によれば、プロパンと空気、またプロピレンと 空気を原料にして高レ、収率でアクリル酸を製造することができ、またプロパンとアンモ ニァを原料にして高い収率でアクリロニトリルを製造することができる。

Claims

請求の範囲
[1] つぎの組成式を有する金属酸化物触媒の製造方法であって、下記工程(1)および
(2)からなる金属酸化物触媒の製造方法。
組成式 MoViAjBkCxOy
(式中、 Aは Teまたは Sbであり、 Bは、 Nb、 Taおよび Tiからなる群力ら選ばれる少な くとも 1種の元素であり、また Cは Siまたは Geである。 iおよび jは、各々 0. 01〜: 1. 5で 、力つ j/i=0. 3〜: 1. 0であり、 kiま 0. 001〜3. 0であり、 χίま 0. 002〜0. 1であり、 また yは他の元素の酸化状態によって決定される数である。 )
工程(1); Mo、 V、金属 Aおよび金属 Bを含む水性液を乾固し、得られた固形分を 高温で焼成することにより金属酸化物を得る工程。
工程(2);実質的に水の不存在の雰囲気で、金属元素 Cを含む化合物を前記工程 (1)で得られた金属酸化物に付着させ、該金属酸化物の表面に金属 Cの酸化物を 形成する工程。
[2] 前記工程(2)におレ、て、金属元素 Cを含む化合物を加熱して得られるそれらの蒸 気を前記工程(1)で得られた金属酸化物に付着させ、該金属酸化物の表面に金属 Cの酸化物を形成することを特徴とする請求項 1記載の金属酸化物触媒の製造方法
[3] 請求項 1乃至 2の何れかに記載の方法で製造された金属酸化物触媒の存在下に、 プロパンまたはプロピレンを気相接触反応により酸化することを特徴とするアクリル酸 の製造方法。
[4] 請求項 1乃至 2の何れかに記載の方法で製造された金属酸化物触媒の存在下に、 プロパンをアンモ酸化することを特徴とするアクリロニトリルの製造方法。
PCT/JP2005/012896 2004-10-15 2005-07-13 金属酸化物触媒の製造方法 WO2006040863A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE602005019081T DE602005019081D1 (de) 2004-10-15 2005-07-13 Verfahren zur herstellung eines metalloxidkatalysators
US11/665,153 US7645897B2 (en) 2004-10-15 2005-07-13 Process for producing metal oxide catalyst
JP2006540831A JP4539655B2 (ja) 2004-10-15 2005-07-13 金属酸化物触媒の製造方法
AT05765799T ATE455595T1 (de) 2004-10-15 2005-07-13 Verfahren zur herstellung eines metalloxidkatalysators
EP05765799A EP1808227B1 (en) 2004-10-15 2005-07-13 Process for producing metal oxide catalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-301355 2004-10-15
JP2004301355 2004-10-15
JP2005116545 2005-04-14
JP2005-116545 2005-04-14

Publications (1)

Publication Number Publication Date
WO2006040863A1 true WO2006040863A1 (ja) 2006-04-20

Family

ID=36148165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012896 WO2006040863A1 (ja) 2004-10-15 2005-07-13 金属酸化物触媒の製造方法

Country Status (6)

Country Link
US (1) US7645897B2 (ja)
EP (1) EP1808227B1 (ja)
JP (1) JP4539655B2 (ja)
AT (1) ATE455595T1 (ja)
DE (1) DE602005019081D1 (ja)
WO (1) WO2006040863A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008528461A (ja) * 2005-01-21 2008-07-31 アルケマ フランス プロパンのプロピレンへの部分的酸化を含むアクリル酸の製造方法
US8623781B2 (en) 2011-06-28 2014-01-07 King Fahd University of Pretroleum and Minerals Oxidative dehydrogenation of propane
JP2016515938A (ja) * 2013-04-08 2016-06-02 サウディ ベーシック インダストリーズ コーポレイション カルボン酸基を含む生成物にプロピレンを転化するための触媒
WO2018003289A1 (ja) * 2016-06-30 2018-01-04 東亞合成株式会社 アクリル酸の製造方法
CN110975876A (zh) * 2019-12-31 2020-04-10 山东华安新材料有限公司 一种活性炭负载铬基催化剂及其制备方法和用途
CN113070079A (zh) * 2021-04-13 2021-07-06 宁波昊祥新材料科技有限公司 Mo-V-Te-Sb-Nb-O催化剂的制备方法及系统

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7838708B2 (en) 2001-06-20 2010-11-23 Grt, Inc. Hydrocarbon conversion process improvements
US20050171393A1 (en) 2003-07-15 2005-08-04 Lorkovic Ivan M. Hydrocarbon synthesis
RU2366642C2 (ru) 2003-07-15 2009-09-10 Джи Ар Ти, Инк. Синтез углеводородов
US8642822B2 (en) 2004-04-16 2014-02-04 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons using microchannel reactor
US20060100469A1 (en) 2004-04-16 2006-05-11 Waycuilis John J Process for converting gaseous alkanes to olefins and liquid hydrocarbons
US20080275284A1 (en) 2004-04-16 2008-11-06 Marathon Oil Company Process for converting gaseous alkanes to liquid hydrocarbons
US8173851B2 (en) 2004-04-16 2012-05-08 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons
US7674941B2 (en) 2004-04-16 2010-03-09 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons
US7244867B2 (en) 2004-04-16 2007-07-17 Marathon Oil Company Process for converting gaseous alkanes to liquid hydrocarbons
EA013629B1 (ru) 2006-02-03 2010-06-30 ДжиАрТи, ИНК. Способ отделения легких газов от галогенов
AP2012006510A0 (en) 2006-02-03 2012-10-31 Grt Inc Continuous process for converting natural gas to liquid hydrocarbons
WO2008148113A1 (en) 2007-05-24 2008-12-04 Grt, Inc. Zone reactor incorporating reversible hydrogen halide capture and release
US8282810B2 (en) 2008-06-13 2012-10-09 Marathon Gtf Technology, Ltd. Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery
CA2730934C (en) 2008-07-18 2017-07-04 Grt, Inc. Continuous process for converting natural gas to liquid hydrocarbons
WO2010087262A1 (ja) * 2009-01-30 2010-08-05 旭化成ケミカルズ株式会社 シリカ担持触媒の製造方法、及び不飽和カルボン酸又は不飽和ニトリルの製造方法
US8367884B2 (en) 2010-03-02 2013-02-05 Marathon Gtf Technology, Ltd. Processes and systems for the staged synthesis of alkyl bromides
US8198495B2 (en) 2010-03-02 2012-06-12 Marathon Gtf Technology, Ltd. Processes and systems for the staged synthesis of alkyl bromides
US8815050B2 (en) 2011-03-22 2014-08-26 Marathon Gtf Technology, Ltd. Processes and systems for drying liquid bromine
US8436220B2 (en) 2011-06-10 2013-05-07 Marathon Gtf Technology, Ltd. Processes and systems for demethanization of brominated hydrocarbons
US8829256B2 (en) 2011-06-30 2014-09-09 Gtc Technology Us, Llc Processes and systems for fractionation of brominated hydrocarbons in the conversion of natural gas to liquid hydrocarbons
US8802908B2 (en) 2011-10-21 2014-08-12 Marathon Gtf Technology, Ltd. Processes and systems for separate, parallel methane and higher alkanes' bromination
US9193641B2 (en) 2011-12-16 2015-11-24 Gtc Technology Us, Llc Processes and systems for conversion of alkyl bromides to higher molecular weight hydrocarbons in circulating catalyst reactor-regenerator systems
WO2014072887A2 (en) * 2012-11-09 2014-05-15 Basf Se Process for producing a carbon-supported nickel-cobalt-oxide catalyst and its use in rechargeable electrochemical metal-oxygen cells
CN103073415B (zh) * 2013-01-29 2015-12-23 沈阳化工大学 一种丙烯一步氧化制备丙烯酸的工艺方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219362A (ja) * 2001-01-24 2002-08-06 Asahi Kasei Corp 低比重シリカ担持触媒
JP2004025178A (ja) * 2002-06-25 2004-01-29 Rohm & Haas Co Pvd担持混合金属酸化物触媒

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3237314B2 (ja) 1993-06-24 2001-12-10 三菱化学株式会社 α,β−不飽和カルボン酸の製造方法
TW325461B (en) 1995-09-11 1998-01-21 Air Prod & Chem Ammoxidation of alkanes and alkenes
JP3769866B2 (ja) 1996-04-18 2006-04-26 三菱化学株式会社 気相接触酸化用触媒の製造方法
JP4081824B2 (ja) 1996-05-24 2008-04-30 東亞合成株式会社 アクリル酸の製造方法
JPH1036311A (ja) 1996-07-25 1998-02-10 Mitsubishi Chem Corp α,β−不飽和カルボン酸の製造方法
FR2754817B1 (fr) * 1996-10-21 2000-03-17 Toagosei Co Ltd Procede de production d'acide acrylique a partir de propane et d'oxygene gazeux
JP3750234B2 (ja) 1996-11-08 2006-03-01 東亞合成株式会社 アクリル酸製造用触媒の製造方法
JP4530595B2 (ja) * 2000-12-13 2010-08-25 旭化成ケミカルズ株式会社 酸化またはアンモ酸化用酸化物触媒
EP1266688A3 (en) * 2001-06-14 2003-07-09 Rohm And Haas Company Mixed metal oxide catalyst doped by vapor depositing a metal and mixed metal oxide catalyst prepared by depositing a plurality of films of different elements using physical vapor deposition
JP2005538172A (ja) 2002-09-10 2005-12-15 アルケマ プロパンからアクリル酸の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219362A (ja) * 2001-01-24 2002-08-06 Asahi Kasei Corp 低比重シリカ担持触媒
JP2004025178A (ja) * 2002-06-25 2004-01-29 Rohm & Haas Co Pvd担持混合金属酸化物触媒

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008528461A (ja) * 2005-01-21 2008-07-31 アルケマ フランス プロパンのプロピレンへの部分的酸化を含むアクリル酸の製造方法
US8623781B2 (en) 2011-06-28 2014-01-07 King Fahd University of Pretroleum and Minerals Oxidative dehydrogenation of propane
JP2016515938A (ja) * 2013-04-08 2016-06-02 サウディ ベーシック インダストリーズ コーポレイション カルボン酸基を含む生成物にプロピレンを転化するための触媒
WO2018003289A1 (ja) * 2016-06-30 2018-01-04 東亞合成株式会社 アクリル酸の製造方法
CN110975876A (zh) * 2019-12-31 2020-04-10 山东华安新材料有限公司 一种活性炭负载铬基催化剂及其制备方法和用途
CN113070079A (zh) * 2021-04-13 2021-07-06 宁波昊祥新材料科技有限公司 Mo-V-Te-Sb-Nb-O催化剂的制备方法及系统
CN113070079B (zh) * 2021-04-13 2022-01-11 宁波昊祥新材料科技有限公司 Mo-V-Te-Sb-Nb-O催化剂的制备方法及系统

Also Published As

Publication number Publication date
US7645897B2 (en) 2010-01-12
US20090030224A1 (en) 2009-01-29
JP4539655B2 (ja) 2010-09-08
EP1808227A1 (en) 2007-07-18
ATE455595T1 (de) 2010-02-15
EP1808227B1 (en) 2010-01-20
JPWO2006040863A1 (ja) 2008-05-15
DE602005019081D1 (de) 2010-03-11
EP1808227A4 (en) 2008-12-31

Similar Documents

Publication Publication Date Title
JP4539655B2 (ja) 金属酸化物触媒の製造方法
JP6306559B2 (ja) 効率の高いアンモ酸化方法及び混合金属酸化物触媒
JP3826161B2 (ja) バナジウム含有触媒およびその製造方法、並びに、その使用方法
RU2560878C2 (ru) Способ получения усовершенствованных катализаторов аммоксидирования на основе смешанных оксидов металлов
EP1871522B8 (en) Process for preparing improved catalysts for selective oxidation of propane into acrylic acid
RU2600977C2 (ru) Износостойкие катализаторы аммоксидирования на основе смешанных оксидов металлов
RU2561084C2 (ru) Усовершенствованные катализаторы аммоксидирования на основе смешанных оксидов металлов
US6610629B2 (en) Process for producing an oxide catalyst for oxidation or ammoxidation
RU2476265C2 (ru) Смешанные металлооксидные катализаторы и способ каталитической конверсии низших алифатических углеводородов
US8420566B2 (en) High efficiency ammoxidation process and mixed metal oxide catalysts
RU2692253C2 (ru) Улучшенные смешанные металлоксидные катализаторы аммоксидирования
JP2015536821A (ja) 混合金属酸化物アンモ酸化触媒用の焼成前添加物
JPH08141401A (ja) ニトリル製造用触媒
JP4081824B2 (ja) アクリル酸の製造方法
CN100484626C (zh) 生产金属氧化物催化剂的方法
EP1593663A1 (en) Process for the preparation of acrolein and/or acrylic acid
KR19980070558A (ko) SnO2·xH2O 를 이용한 촉매 기재 바나듐 안티모네이트의제조법
JP2004534650A (ja) 特にアクリル酸、アクリロニトリルおよびこれらの誘導体の入手法におけるアルカンおよび/またはアルケンの選択的酸化とアンモ酸化用触媒
US20090198081A1 (en) Process for the ammoxidation of propane and isobutane
JP4352537B2 (ja) アクリロニトリル及び/又はアクリル酸の製造方法
JP2001276618A (ja) 酸化またはアンモ酸化用触媒
WO2004050236A1 (en) Method for enhancing the productivity of vanadium antimony oxide catalysts
WO2018003289A1 (ja) アクリル酸の製造方法
JPH11309374A (ja) モリブデン含有酸化物触媒の製法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006540831

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005765799

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11665153

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580035250.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005765799

Country of ref document: EP