JP2009182114A - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP2009182114A
JP2009182114A JP2008019162A JP2008019162A JP2009182114A JP 2009182114 A JP2009182114 A JP 2009182114A JP 2008019162 A JP2008019162 A JP 2008019162A JP 2008019162 A JP2008019162 A JP 2008019162A JP 2009182114 A JP2009182114 A JP 2009182114A
Authority
JP
Japan
Prior art keywords
trench
film
substrate
element isolation
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008019162A
Other languages
English (en)
Inventor
Hiroyuki Uchiyama
博之 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Memory Japan Ltd
Original Assignee
Elpida Memory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elpida Memory Inc filed Critical Elpida Memory Inc
Priority to JP2008019162A priority Critical patent/JP2009182114A/ja
Priority to US12/361,117 priority patent/US8013373B2/en
Publication of JP2009182114A publication Critical patent/JP2009182114A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor
    • H10B12/053Making the transistor the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/488Word lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • H10B12/0335Making a connection between the transistor and the capacitor, e.g. plug
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/315DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor with the capacitor higher than a bit line
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/485Bit line contacts

Abstract

【課題】微細化を進める際に製造容易な構造を提供する。
【解決手段】基板の平面方向において連続して配置されるMOSトランジスタを有する半導体装置において、ゲート電極および該ゲート電極間を接続する配線部(矢印13で図示する箇所)が、拡散層14が形成される基板10の表面より下層に埋め込まれている。基板10の表面には、ソース・ドレイン領域として機能する拡散層14どうしを分離するSTI構造の第一の素子分離領域12が形成されている。そして該第一の素子分離領域12が存在する層より下の層に、隣接するMOSトランジスタのチャネル領域どうしを分離するSTI構造の第二の素子分離領域11が形成されている。
【選択図】図2

Description

本発明は、半導体基板上にMOSトランジスタを形成して所望のデバイスを形成する半導体装置の製造方法およびその構造に関する。
現在、半導体基板上にMOSトランジスタを形成して所望のデバイスを形成する場合に、微細化に関して以下の(1)〜(3)のような課題および要求があった。
(1)高性能のMOSトランジスタを形成する場合には、ソース・ドレイン領域をLDD(Lightly Doped Drain)構造とするためや、後の製造工程において、ゲート電極に対してセルフアラインでコンタクトプラグを形成するために、ゲート電極の側面部に設けられたサイドウォール絶縁膜と、ゲート電極の上面を保護するためのキャップ絶縁膜とが必要であった。このため、ゲート電極を形成する際の半導体基板表面からゲート電極上面までの総合膜厚は、ゲート電極の導体部分のみの膜厚の2倍以上となっていた。
このような構成では、微細化の進展に伴って、ゲート電極自体の幅や隣接するゲート電極との間隔が小さくなるに従い、膜厚の大きなゲート電極の加工に起因した加工上の課題が発生している。具体的には、ゲート電極のエッチング時における形状の悪化、セルフアラインコンタクトの開口部形成の際のエッチング余裕度の減少、層間絶縁膜のゲート電極間スペース部分への埋め込み時におけるボイド(空洞)の発生等であり、これらが、より一層の微細化を進める際の阻害要因となっていた。
(2)一方、MOSトランジスタの微細化に伴い、短チャンネル効果の抑制を目的とした、トレンチゲート型のトランジスタが知られている(特許文献1参照)。このMOSトランジスタの製造方法においては、半導体基板上に素子分離領域を形成後に、半導体基板(例えばSi基板)のエッチングを行って、ゲート電極用のトレンチを形成していた。このため、上記(1)の課題に対しては効果がある。しかし、上記トレンチは素子分離領域には形成されないため、ゲート電極が素子分離領域を横切る場合には、素子分離領域上においてゲート電極の導通を確保するための導体膜の形成が別途必要であった。別途形成する導体膜が、トレンチ部分に充填されたゲート電極の上面に接触することで、ゲート電極パターンが形成される。このため、素子分離領域の内外の境界部分において、別途設ける導体膜のエッチングに際して導電体の残りが発生しやすく、電気的なショートが懸念されるという課題があった。従って、微細化に際してトレンチゲート型のトランジスタを用いる際には、より製造方法の容易な手法が求められていた。
(3)MOSトランジスタを形成する活性領域には、チャネル領域と、ソース・ドレイン領域として機能する拡散層領域とを同一パターンにて形成するのが一般的であった。このため、例えばDRAMのメモリセルのような場合には、活性領域として、縦横比の大きな矩形パターンを複数配置する必要があった。パターン形成時のリソグラフィ工程の特性上、活性領域の角隅の部分は丸まりを持つため、コンタクトプラグとの接触面積の減少や、コンタクトプラグ形成時のアライメントずれに対する余裕が十分に確保できないという課題があった。これは、より一層の微細化を進める際の阻害要因となっていた。
また、上記の(2)に関連した先行技術として、例えば特許文献2が挙げられる。特許文献2では、不純物拡散層と接触するポリシリコン層を形成した後に、素子分離領域を形成し、さらに層間絶縁膜まで形成してからトレンチ型のゲート電極を形成している。しかしながら、この方法では上記(2)の課題に対しては効果があるものの、上記(1)(3)の課題を解決することができない。
特開2007-123551号公報 特開2006-261625号公報
本発明の目的は、上記(1)(2)(3)の課題を解決することができる半導体装置およびその製造方法を提供することにある。
本発明は、基板の平面方向において連続して配置されるMOSトランジスタを有する半導体装置およびその製造方法に係るものである。上記課題を解決できる、本発明の一態様による半導体装置は、ゲート電極および該ゲート電極間を接続する配線部が、拡散層が形成される基板表面より下の層に埋め込まれていることを特徴とする。
また本発明の他の態様は、前記基板表面に、隣接するMOSトランジスタの、ソース・ドレイン領域として機能する拡散層どうしを分離する第一の素子分離領域を形成し、該第一の素子分離領域が存在する層より下の層に、隣接するMOSトランジスタのチャネル領域どうしを分離する第二の素子分離領域を形成することを特徴とする。
本発明によれば、MOSトランジスタを有する半導体装置において、背景技術の欄にて述べた(1)(2)(3)の課題を解決することができる。
以下、本発明の実施の形態について図面を参照して説明する。
[第一の実施例]
本発明を適用してDRAMのメモリセルを形成した場合の例について説明する。
本実施例によるDRAMメモリセルの平面図を図1に示す。本実施例のDRAMメモリセルは、オープンビット線方式を採用しており、使用するプロセスの最小加工寸法Fに対して、6F2のサイズのメモリセル面積を有する。
本実施例のDRAMメモリセルは、活性領域パターンが、第一の方向に延在する第一のアクティブフィールドパターン(Si表面をそのまま残すパターン)1とそれに垂直な第二の方向に延在する第二のアクティブフィールドパターン2との2種類の線状パターンの重ね合せで構成されている。そして、アクティブフィールドパターン1および2の交点をソース・ドレイン領域として用い、前記第二の方向に存在する前記交点間にトレンチ形のゲート電極を配置することによって、複数のMOSトランジスタを二次元配置してなるDRAMメモリセルを構成している。
そこで、アクティブフィールドパターン1間のスペース部にはワード線3が構成されている。ワード線3はMOSトランジスタのゲート電極と該ゲート電極間を接続する配線部とで一直線に構成される。また本実施例では、ワード線3はアクティブフィールドパターン1間のスペース部3本について2本ずつの割合で配置されている。これらのワード線3は、トレンチ形成パターンのみで構成されている。すなわち本発明の場合、トレンチゲート型MOSトランジスタを形成するために先行技術では必要であった、素子分離領域上での導通を確保するための導体膜別形成は必要ない。
さらに、アクティブフィールドパターン1および2の交点にはソース・ドレイン領域として機能する拡散層が形成され、その拡散層上には、電荷を蓄積する蓄積電極に接続するためのコンタクトパターン4、あるいはビット線に接続するためのコンタクトパターン5が配置される。
コンタクトパターン5に接続されるビット線6は、コンタクトパターン4を避けるように折れ曲がった形状で配置されている。
コンタクトパターン4上には、蓄積電極を含むキャパシタを形成するためのキャパシタパターン7が配置される。
なお、図示しないが、必要に応じてイオン注入領域を規定するパターン、キャパシタの対向プレート電極を形成するパターン、上層の金属配線と配線間を接続するスルーホールパターンなどが配置されてDRAMのメモリセルアレイが構成される。
図2は、アクティブフィールドパターン1,2によりSi基板10の表面を加工した状態を鳥瞰的に示した模式図である。残存するSi基板表面は、MOSトランジスタの拡散層14の領域のみとなる。ワード線3が延在する位置と方向は、矢印13で示される。ワード線3は、平面視正方形のパターンからなる拡散層14の側面に挟まれた領域ではトレンチゲート型MOSトランジスタのゲート電極となり、それ以外では、図示されていないが、1本のSiトレンチ内におけるゲート電極間を接続する配線部となる。ワード線3が存在しないSiトレンチは、隣接する拡散層14間を電気的に分離する素子分離領域12となる。また、アクティブフィールドパターン1,2のスペース部の交点は、2回のSiエッチが施されるため、ワード線3が形成されるトレンチよりもさらに深いトレンチとなっており、隣接するMOSトランジスタのチャネル領域どうしを分離する下層の素子分離領域11となる。
図1の平面図で説明すると、第一のアクティブフィールドパターン1の延在方向(図面上下方向)に配列された隣接するMOSトランジスタでは、ソース・ドレイン領域(拡散層14)が素子分離領域12で分離され、ソース・ドレイン領域間のゲート電極の下のチャネル領域は、素子分離領域12よりも下の層の素子分離領域11で分離されている。また、第二のアクティブフィールドパターン2の延在方向(図面左右方向)に配列された隣接するMOSトランジスタは、ワード線3が存在しない素子分離領域12で分離されている。
さらに具体的に、図3に図1のA-A'断面、図4に図1のC-C'断面、図5に図1のB-B'断面、図6に図1のD-D'断面を示す。これらの図を参照すると、Si基板10の表面を含む層には、ワード線3を構成するゲート電極20が形成されるトレンチと、隣接するMOSトランジスタの、ソース・ドレイン領域として機能する拡散層14どうしを分離するためのSTI(Shallow Trench Isolation)構造を有する素子分離領域12とが存在する。さらに、ゲート電極20よりも下部の層に、隣接するMOSトランジスタのチャネル領域どうしを分離するSTI構造を有する素子分離領域11が存在する。つまり、素子分離構造が、隣接するMOSトランジスタの拡散層どうしを分離する層と、隣接するMOSトランジスタのチャネル領域どうしを分離する層との2層構造となっている。
ゲート電極20は素子分離領域12のSTI構造と同様のSiトレンチパターンに埋め込まれており、Si基板10の表面よりも上側に突出する量は必要最小限となる。また、拡散層14の形成マージンが許せば、ゲート電極20が形成されるトレンチを掘り下げてゲート電極20をSi基板表面よりも完全埋め込む形にすることも可能である。拡散層14上のコンタクトプラグ21と、蓄積電極接続用コンタクトプラグ22とがSi基板10の表面に垂直な方向に直列接続され、蓄積電極を含むキャパシタ(キャパシタパターン7)と電気的な情報の送受信が行われる。また、キャパシタが接続される拡散層14以外の、ゲート電極20間に位置する拡散層14には、コンタクトプラグ21および23によってビット線6が接続される。この拡散層接続用コンタクトプラグ21より上層の構造は、従来公知のDRAMとほぼ同様である。ビット線6とキャパシタ(キャパシタパターン7)の上下関係、あるいはキャパシタパターン7の構造は、図示した構造に限定されるものではなく、従来公知のDRAMで考えられているようなCUB(Capacitor Under Bit line)構造、CROWNキャパシタ構造等でもよい。
「製法の説明」
次に、本発明の製法を図7〜21に示す主要工程の断面構造図を用いて説明する。図7〜21の各図中の(A),(B),(C),(D)は、図1におけるA-A'、B-B'、C-C'、D-D'それぞれの断面に対応している。
図7に示すように、Si基板10の表面に酸化シリコン膜(SiO2)30とチッ化シリコン膜(Si3N4)31とフォトレジスト膜50aをこの順番に積層した後、フォトレジスト膜50aをリソグラフィ技術により第一のアクティブフィールドパターン1上のみに残す。そして、酸化シリコン膜30とチッ化シリコン膜31の積層膜と共にSi基板10をエッチングして、複数の平行な第一のSiトレンチ12aを形成する。このSiトレンチ12aは、拡散層間の素子分離部とMOSトランジスタのチャネル部となるため、その深さは、素子分離特性確保と必要チャネル長から決まり、例えば200nmと設定される。第一のSiトレンチ12aを形成した後にはフォトレジスト膜50aは除去される。
次にフォトレジスト膜50bを堆積させた後、図8に示すようにフォトレジスト膜50bをリソグラフィ技術によりアクティブフィールドパターン2上のみに残す。そして、チッ化シリコン膜31と酸化シリコン膜30の積層膜と共にSi基板10をエッチングして、複数の平行な第二のSiトレンチを形成する。
この第二のSiトレンチに関しては、部分的に深さの異なるトレンチがSi基板10の表面に形成される。つまり、第一のSiトレンチ12aが形成されていなかった部位には、主に拡散層間の素子分離部となるSiトレンチ12bが形成され、第一のSiトレンチ12aが形成されていた部位には、更なるエッチングによって、深いトレンチ11aが形成される。Siトレンチ12bの深さは、素子分離特性確保の目的から第一のSiトレンチ12aと同じ、あるいは深く設定される。本実施例では、同じ深さ200nmとしている。
さらに図9に示すように、フォトレジスト膜50bを除去した後、Siトレンチ12a,12b,11aの内壁を形成するSi表面を、希フッ酸等の薬液で洗浄し、さらに熱酸化法により酸化する。これにより形成された酸化シリコン膜32の膜厚は、応力緩和や界面の不良防止の観点から例えば8nmに設定される。
図10に示すように、Siトレンチ12a,12b,11aの内側を含む基板上側面にチッ化シリコン膜33を、例えばCVD法により形成する。チッ化シリコン膜33の膜厚は、Si界面の再酸化防止や不純物の拡散防止の観点から例えば10nmに設定される。
次に図11に示すように、形成されたSiトレンチ12a,12b,11a(図10参照)を埋め込むように酸化シリコン膜34(絶縁膜)を、例えばHDP−CVD(高密度プラズマCVD)法により成膜する。この酸化シリコン膜34の厚さは、Siトレンチ12a,12b,11aを埋め込むためにトレンチ幅の1.0から2.0倍程度に設定される。
その後図12に示すように、例えばCMP(Chemical Mechanical Polishing)法にて酸化シリコン膜34を研磨し、チッ化シリコン膜31を露出させる。
そして、露出されたチッ化シリコン膜31を、例えば熱燐酸を用いたウェットエッチングにより、図13のように除去する。
次に酸化シリコン膜30および34の上部表面をフッ酸系のウェットエッチングにより除去した後、露出されたSi表面に図14に示すように、熱酸化法により酸化シリコン膜35を形成する。さらにフォトレジスト膜50cを塗布した後、リソグラフィ技術により、MOSトランジスタのゲート電極20(図3参照)を埋め込むトレンチ部のみ開口し、ウェットエッチングあるいはドライエッチングを用いて、開口したトレンチ内のみ酸化シリコン膜34とチッ化シリコン膜33および酸化シリコン膜32を除去する。
次に図15に示すように、フォトレジスト膜50cを除去した後、露出しているSi表面を洗浄し、例えば熱酸化法で、該Si表面にゲート酸化シリコン膜36を形成する。
図16に示すように、リンまたはボロン等の不純物が導入されたポリSi膜37、およびタングステン(W)膜38を、開口されたトレンチを埋め込むように成膜する。この場合、ポリSi膜37とタングステン膜38の界面での反応防止や抵抗低減のために、この間にチッ化タングステン(WN)膜やタングステンシリサイド(WSi)膜を挟んでも良い。
その後、例えばCMP法により、Si基板10の表面より上のタングステン膜38とポリSi膜37を研磨により除去して、図17に示すようにトレンチ内のみに導体膜のタングステン膜38およびポリSi膜37を残す。このことより、ワード線を構成するゲート電極20が形成される。
さらに図18に示すように例えばCVD法で層間絶縁膜(酸化膜)40を成膜し、図19に示すようにリソグラフィ技術と異方性のドライエッチング技術を用いて層間絶縁膜40にコンタクトパターン4を開口する。
そして、コンタクトプラグ21(図3参照)とゲート電極20との絶縁を確実に図るために、CVD法による成膜とドライエッチング技術によるエッチバックとを行うことにより、図20に示すように層間絶縁膜40の側壁にチッ化シリコン膜のサイドウォール50を形成する。
さらに、CVD法による、不純物が導入されたポリSi膜の成膜と、ドライエッチング技術によるエッチバックとを行うことにより、図21に示すように、コンタクトパターン4のホール内に、拡散層14と層間絶縁膜40上層の素子とを接続するためのコンタクトプラグ21を形成する。
なお、図示しないが、MOSトランジスタを形成するために必要な不純物の導入や熱処理は適宜行われることはいうまでもない。形成するMOSトランジスタはNチャンネル(Nch)型、Pチャンネル(Pch)型のどちらにも適用可能である。
また、上記工程の後は図示しないが、従来のDRAMと同様に、蓄積電極との接続のためのコンタクトプラグ22、蓄積電極を含むキャパシタ(キャパシタパターン7)、ビット線6との接続のためのコンタクトプラグ23、およびビット線6等が形成され、DRAMのメモリセルが完成する(図3〜6参照)。さらに、このようなメモリセル上層に配線層を形成してDRAMが完成する。
「他の実施例」
次に、本発明の他の実施例による製法を、図22〜36に示す主要工程の断面構造図を用いて説明する。図22〜36の各図中の(A),(B),(C),(D)は、図1におけるA-A'、B-B'、C-C'、D-D'それぞれの断面に対応している。
他の製法としては、まず、図22に示すようにSi基板10の表面に酸化シリコン膜(SiO2)30とチッ化シリコン膜31とフォトレジスト膜50aをこの順番に積層した後、フォトレジスト膜50aをリソグラフィ技術により第一のアクティブフィールドパターン1上のみに残す。そして、酸化シリコン膜30とチッ化シリコン膜31の積層膜と共にSi基板10をエッチングして、複数の平行な第一のSiトレンチ12aを形成する。このSiトレンチ12aは、拡散層間の素子分離部とMOSトランジスタのチャネル部となるため、その深さは、素子分離特性確保と必要チャネル長から決まり、例えば200nmと設定される。第一のSiトレンチ12aを形成した後にはフォトレジスト膜50aは除去される。
次にフォトレジスト膜50bを堆積させた後、図23に示すようにフォトレジスト膜50bをリソグラフィ技術によりアクティブフィールドパターン2上のみに残す。さらに、チッ化シリコン膜31と酸化シリコン膜30の積層膜と共にSi基板10をエッチングして、複数の平行な第二のSiトレンチを形成する。
この第二のSiトレンチに関しては、部分的に深さの異なるトレンチがSi基板10の表面に形成される。つまり、第一のSiトレンチ12aが形成されていなかった部位には、主に拡散層間の素子分離部となるSiトレンチ12bが形成され、第一のSiトレンチ12aが形成されていた部位には、更なるエッチングによって、深いトレンチ11aが形成される。Siトレンチ12bの深さは、素子分離特性確保の目的から第一のSiトレンチ12aと同じ、あるいは深く設定される。本実施例では、同じ深さ200nmとしている。
さらに図24に示すように、フォトレジスト膜50bを除去した後、Siトレンチ12a,12b,11aの内壁を形成するSi表面を、希フッ酸等の薬液で洗浄し、さらに熱酸化法により酸化する。これにより形成された酸化シリコン膜32の膜厚は、応力緩和や界面の不良防止の観点から例えば8nmに設定される。次に、Siトレンチ12a,12b,11aの内側を含む基板上側面にチッ化シリコン膜33を、例えばCVD法により形成する。チッ化シリコン膜33の膜厚は、Si界面の再酸化防止や不純物の拡散防止の観点から例えば10nmに設定される。
次に図25に示すように、形成されたSiトレンチ12a,12b,11a(図24参照)を埋め込むように酸化シリコン膜34(絶縁膜)を、例えばHDP−CVD法により成膜する。この酸化シリコン膜34の厚さは、Siトレンチ12a,12b,11aを埋め込むためにトレンチ幅の1.0から2.0倍程度に設定される。
その後図26に示すように、例えばCMP法にて酸化シリコン膜34を研磨し、チッ化シリコン膜31を露出させる。
本実施例においては、CMP後に残留しているチッ化シリコン膜31をそのまま残した状態で、図27に示すように、フォトレジスト膜50cを塗布した。その後、リソグラフィ技術により、MOSトランジスタのゲート電極20(図27では不図示)を埋め込むトレンチ部のみ開口し、ウェットエッチングあるいはドライエッチングを用いて、開口したトレンチ内のみ酸化シリコン膜34とチッ化シリコン膜33および酸化シリコン膜32を除去する。
そして図28に示すように、フォトレジスト膜50cを除去した後、露出しているSi表面を洗浄し、例えば熱酸化法で、該Si表面にゲート酸化シリコン膜36を形成する。
次に図29に示すように、ポリSi膜37およびタングステン膜38を、開口されたトレンチを埋め込むように成膜する。この場合、ポリSi膜37とタングステン膜38の界面での反応防止や抵抗低減のために、この間にチッ化タングステン膜やタングステンシリサイド膜を挟んでも良い。
さらに図30に示すように、例えばCMP法あるいはエッチバック法により、Si基板10の表面より上のタングステン膜38とポリSi膜37を除去して、トレンチ内のみに導体膜のタングステン膜38およびポリSi膜37を残す。このことより、ワード線を構成するためのゲート電極20が形成される。なお、ゲート電極20の上面の位置は、チッ化シリコン膜31の上面位置よりも低くなるように、ドライエッチング等の条件を調整して行う。
そして図31に示すように、例えばCVD法で層間絶縁膜40を成膜し、図32に示すように、例えばCMP法にて層間絶縁膜40を研磨してチッ化シリコン膜31を露出させる。
次に図33に示すように、露出されたチッ化シリコン膜31を、例えば熱燐酸を用いたウェットエッチングにより除去する。
その後、図34に示すように、例えばCVD法によりチッ化シリコン膜41を、層間絶縁膜40により凹状に形成されている段部を完全には埋め込まない程度の膜厚で成膜する。
次にフォトレジスト膜50dを堆積させた後、図35に示すようにフォトレジスト膜50dにリソグラフィ技術により、コンタクトプラグ21(図36参照)を形成するためのホールを開口する。そして、異方性ドライエッチング技術により該ホール内の側壁以外のチッ化シリコン膜41と酸化シリコン膜30をエッチングする。これにより、該ホール内にてSi基板10の表面が露出する。また隣接するゲート電極上部との間は酸化シリコン膜30およびチッ化シリコン膜41により確実に絶縁される。
次にCVD法によるポリSi膜の成膜と、ドライエッチング技術によるエッチバックとを行うことにより、図36に示すように、コンタクトパターン4のホール内に、拡散層14と上層側の素子とを接続するためのコンタクトプラグ21を形成する。
なお、図示しないが、MOSトランジスタを形成するために必要な不純物の導入や熱処理は適宜行われることはいうまでもない。また、上記工程の後は図示しないが、従来のDRAMと同様に、蓄積電極との接続のためのコンタクトプラグ22、蓄積電極を含むキャパシタ(キャパシタパターン7)、ビット線6との接続のためのコンタクトプラグ23、およびビット線6等が形成され、DRAMのメモリセルが完成する。さらに、このようなメモリセル上層に配線層を形成してDRAMが完成する。
上述した各実施例のように本発明では、ゲート電極20および該ゲート電極間を接続する配線部がSi基板10の表面より下の層、あるいは、拡散層14上のコンタクトプラグ21よりも下の層に埋め込まれている。この構成により、ゲート電極の基板表面からの高さが抑制されると共に、ゲート電極上面に従来必要であったキャップ絶縁膜が不要となる。また、隣接するゲート電極上への層間絶縁膜の埋め込みも問題とならなくなる。さらに、拡散層上のコンタクトプラグを形成するためのコンタクトホールの加工性が良くなり、コンタクトプラグとゲート電極との絶縁マージンの確保が容易になる。
また本発明では、Si基板の表面に、ソース・ドレイン領域として機能する拡散層どうしを分離する第一のトレンチ(素子分離領域12)を形成し、この第一のトレンチの存在する層より下の層に、隣接するMOSトランジスタのチャネル領域どうしを分離する第二のトレンチ(素子分離領域11)を形成した。この構成により、ゲート電極とともに該ゲート電極間を接続する配線部分も前記第一のトレンチ内に形成できるため、ゲート電極をSi基板内に完全に埋め込むことが可能である。したがって、先行技術においてはゲート電極用のトレンチの上部に別途必要であったゲート電極接続用の導電膜の形成が不要となり、素子分離部でのショート不良の発生がない。
また本発明では、拡散層間の分離領域とチャネル部間の分離領域を2層構造で実現するために、まず基板表面をエッチングして複数の平行な第一のトレンチパターンを形成し、さらに、該第一のトレンチパターンが形成された基板表面を再びエッチングして該第一のトレンチパターンと垂直な、複数の平行な第二のトレンチパターンを形成する。このとき、第一および第二のトレンチパターンを直線形状に形成するため、基板表面に残ったパターンは、平面視正方形の拡散層パターンのみとなり、当該パターンの角隅の丸まりも抑えられる。よって、コンタクトプラグとの接触面積や、コンタクトプラグ形成時のアライメントずれの余裕を十分に確保できる。
以上説明した各実施例において、使用する材料や膜厚等は、本発明の趣旨を逸脱しない範囲で変更可能である。
また、本発明は、比較的微細なピッチで連続して複数のMOSトランジスタが二次元に配置している半導体装置に適用可能である。したがって、DRAMのメモリセル以外にも、半導体基板上にトレンチゲート型のMOSトランジスタを複数配置する半導体デバイスにおいて、適用可能である。
また、メモリセル部のみに本発明を適用し、それ以外の部分には従来公知のプレーナ型のMOSトランジスタとすることも可能である。
本発明の一実施例のDRAMメモリセルのレイアウトを示す平面図である。 本発明の一実施例によるSi基板の上面加工状態を鳥瞰的に示した模式図である。 図1のA−A’断面におけるメモリセル構造例を示した断面図である。 図1のB−B’断面におけるメモリセル構造例を示した断面図である。 図1のC−C’断面におけるメモリセル構造例を示した断面図である。 図1のD−D’断面におけるメモリセル構造例を示した断面図である。 図3〜6に示されるメモリセルを製造するときの第一トレンチ加工後のメモリセル構造を示す断面図である。 図3〜6に示されるメモリセルを製造するときの第二トレンチ加工後の構造を示す断面図である。 図3〜6に示されるメモリセルを製造するときのトレンチ内酸化後の構造を示す断面図である。 図3〜6に示されるメモリセルを製造するときの、トレンチ内へのチッ化シリコン膜形成後の構造を示す断面図である。 図3〜6に示されるメモリセルを製造するときの、トレンチ内への酸化シリコン膜埋め込み後の構造を示す断面図である。 図3〜6に示されるメモリセルを製造するときの、トレンチより上の層の平坦化後の構造を示す断面図である。 図3〜6に示されるメモリセルを製造するときの、拡散層上のチッ化シリコン膜除去後の構造を示す断面図である。 図3〜6に示されるメモリセルを製造するときの、ワード線用トレンチ形成後の構造を示す断面図である。 図3〜6に示されるメモリセルを製造するときの、ゲート酸化シリコン膜形成後の構造を示す断面図である。 図3〜6に示されるメモリセルを製造するときの、ワード線用導体膜成膜後の構造を示す断面図である。 図3〜6に示されるメモリセルを製造するときの、ワード線形成後の構造を示す断面図である。 図3〜6に示されるメモリセルを製造するときの、ワード線上の層間絶縁膜成膜後の構造を示す断面図である。 図3〜6に示されるメモリセルを製造するときの、拡散層上のコンタクトプラグ用ホール形成後の構造を示す断面図である。 図3〜6に示されるメモリセルを製造するときの、コンタクトプラグ形成用ホール内へのサイドウォール形成後の構造を示す断面図である。 図3〜6に示されるメモリセルを製造するときの、コンタクトプラグ形成後の構造を示す断面図である。 本発明の他の実施例によるDRAMメモリセルを製造するときの第一トレンチ加工後の構造を示す断面図である。 本発明の他の実施例によるDRAMメモリセルを製造するときの第二トレンチ加工後の構造を示す断面図である。 本発明の他の実施例によるDRAMメモリセルを製造するときの、トレンチ内へのチッ化シリコン膜形成後の構造を示す断面図である。 本発明の他の実施例によるDRAMメモリセルを製造するときの、トレンチ内への酸化シリコン膜埋め込み後の構造を示す断面図である。 本発明の他の実施例によるDRAMメモリセルを製造するときの、トレンチより上の層の平坦化後の構造を示す断面図である。 本発明の他の実施例によるDRAMメモリセルを製造するときの、ワード線用トレンチ形成後の構造を示す断面図である。 本発明の他の実施例によるDRAMメモリセルを製造するときの、ゲート酸化シリコン膜形成後の構造を示す断面図である。 本発明の他の実施例によるDRAMメモリセルを製造するときの、ワード線用導体膜成膜後の構造を示す断面図である。 本発明の他の実施例によるDRAMメモリセルを製造するときのワード線形成後の構造を示す断面図である。 本発明の他の実施例によるDRAMメモリセルを製造するときの、ワード線上の層間絶縁膜成膜後の構造を示す断面図である。 本発明の他の実施例によるDRAMメモリセルを製造するときの、ワード線より上の層の平坦化後の構造を示す断面図である。 本発明の他の実施例によるDRAMメモリセルを製造するときの、拡散層上のチッ化シリコン膜除去後の構造を示す断面図である。 本発明の他の実施例によるDRAMメモリセルを製造するときのチッ化シリコン膜成膜後の構造を示す断面図である。 本発明の他の実施例によるDRAMメモリセルを製造するときの、コンタクトプラグ用ホール形成後の構造を示す断面図である。 本発明の他の実施例によるDRAMメモリセルを製造するときのコンタクトプラグ形成後の構造を示す断面図である。
符号の説明
1 第一のアクティブフィールドパターン
2 第二のアクティブフィールドパターン
3 ワード線用トレンチ形成パターン
4 キャパシタ接続用コンタクトパターン
5 ビット線接続用コンタクトパターン
6 ビット線
7 キャパシタパターン
10 P型Si基板
11 チャネル分離用STIを有する素子分離領域
11a チャネル分離用Siトレンチ
12 拡散層およびワード線分離用のSTIを有する素子分離領域
12a 拡散層およびワード線分離用の第一のSiトレンチ
12b 拡散層およびワード線分離用の第二のSiトレンチ
13 ワード線形成位置および延在方向
14 N型拡散層
20 ワード線を構成するゲート電極
21 拡散層上のコンタクトプラグ
22 蓄積電極接続用コンタクトプラグ
23 ビット線接続用コンタクトプラグ
30 酸化シリコン膜
31 アクティブパターン形成用チッ化シリコン膜
32 トレンチ内の酸化シリコン膜
33 トレンチ内のチッ化シリコン膜
34 STI埋め込み用酸化シリコン膜
35 拡散層形成用酸化シリコン膜
36 ゲート酸化シリコン膜
37 ゲート電極用ポリシリコン膜
38 ゲート電極用タングステン膜
40 ゲート電極上の層間絶縁膜
41 拡散層上のコンタクトホールの内壁のチッ化シリコン膜
50a 第一のアクティブフィールドパターンを形成するフォトレジスト膜
50b 第二のアクティブフィールドパターンを形成するフォトレジスト膜
50c ワード線用トレンチパターンを形成するフォトレジスト膜
50d 拡散層上にコンタクトパターンを形成するフォトレジスト膜

Claims (7)

  1. 基板の平面方向において連続して配置されるMOSトランジスタを有する半導体装置において、
    ゲート電極および該ゲート電極間を接続する配線部が、拡散層が形成される基板表面よりも下の層に埋め込まれていることを特徴とする半導体装置。
  2. 前記基板表面に、隣接するMOSトランジスタの、ソース・ドレイン領域として機能する拡散層どうしを分離する第一の素子分離領域を有し、該第一の素子分離領域が存在する層より下の層に、隣接するMOSトランジスタのチャネル領域どうしを分離する第二の素子分離領域を有することを特徴とする請求項1に記載の半導体装置。
  3. 前記基板表面に複数のMOSトランジスタを配置してなるメモリセルに用いられる請求項1または2に記載の半導体装置。
  4. 基板の平面方向において連続して配置されるMOSトランジスタを有する半導体装置の製造方法であって、
    基板表面に、隣接するMOSトランジスタの、ソース・ドレイン領域として機能する拡散層どうしを分離する第一の素子分離領域を形成し、該第一の素子分離領域が存在する層より下の層に、隣接するMOSトランジスタのチャネル領域どうしを分離する第二の素子分離領域を形成する、半導体装置の製造方法。
  5. 前記第一及び第二の素子分離領域を形成するために、まず前記基板表面をエッチングして複数の平行な第一のトレンチパターンを形成し、さらに、該第一のトレンチパターンが形成された基板表面をエッチングして該第一のトレンチパターンと垂直に、複数の平行な第二のトレンチパターンを形成する、請求項4に記載の半導体装置の製造方法。
  6. 前記第一及び第二のトレンチパターンを直線形状に形成する、請求項5に記載の半導体装置の製造方法。
  7. 任意の前記トレンチパターンのトレンチ内に、ゲート電極および該ゲート電極間を接続する配線を埋め込む、請求項5に記載の半導体装置の製造方法。
JP2008019162A 2008-01-30 2008-01-30 半導体装置およびその製造方法 Pending JP2009182114A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008019162A JP2009182114A (ja) 2008-01-30 2008-01-30 半導体装置およびその製造方法
US12/361,117 US8013373B2 (en) 2008-01-30 2009-01-28 Semiconductor device having MOS-transistor formed on semiconductor substrate and method for manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008019162A JP2009182114A (ja) 2008-01-30 2008-01-30 半導体装置およびその製造方法

Publications (1)

Publication Number Publication Date
JP2009182114A true JP2009182114A (ja) 2009-08-13

Family

ID=40938161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008019162A Pending JP2009182114A (ja) 2008-01-30 2008-01-30 半導体装置およびその製造方法

Country Status (2)

Country Link
US (1) US8013373B2 (ja)
JP (1) JP2009182114A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129352A1 (ja) * 2013-02-25 2014-08-28 ピーエスフォー ルクスコ エスエイアールエル 半導体装置の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007103862A (ja) * 2005-10-07 2007-04-19 Renesas Technology Corp 半導体装置およびその製造方法
JP2010219326A (ja) * 2009-03-17 2010-09-30 Elpida Memory Inc 半導体記憶装置及びその製造方法
KR101974350B1 (ko) * 2012-10-26 2019-05-02 삼성전자주식회사 활성 영역을 한정하는 라인 형 트렌치들을 갖는 반도체 소자 및 그 형성 방법
KR102399465B1 (ko) * 2015-10-23 2022-05-18 삼성전자주식회사 로직 반도체 소자
US11158718B2 (en) * 2019-04-15 2021-10-26 Micron Technology, Inc. Assemblies which include wordlines having a first metal-containing material at least partially surrounding a second metal-containing material and having different crystallinity than the second metal-containing material
US11877434B2 (en) * 2020-07-09 2024-01-16 Micron Technology, Inc. Microelectronic devices having features with a fin portion of different sidewall slope than a lower portion, and related methods and electronic systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297297A (ja) * 1994-04-22 1995-11-10 Nec Corp 半導体記憶装置およびその製造方法
JPH08125144A (ja) * 1994-10-21 1996-05-17 Nec Corp 半導体記憶装置及びその製造方法
JP2006261625A (ja) * 2005-03-18 2006-09-28 Hynix Semiconductor Inc 半導体素子の製造方法
JP2007123551A (ja) * 2005-10-28 2007-05-17 Elpida Memory Inc 半導体装置の製造方法

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054453A (ja) * 1983-09-05 1985-03-28 Oki Electric Ind Co Ltd 半導体集積回路装置の製造方法
JPS60136378A (ja) * 1983-12-26 1985-07-19 Hitachi Ltd 半導体装置およびその製造方法
JP3322936B2 (ja) * 1992-03-19 2002-09-09 株式会社東芝 半導体記憶装置
JP3241106B2 (ja) * 1992-07-17 2001-12-25 株式会社東芝 ダイナミック型半導体記憶装置及びその製造方法
JP3311070B2 (ja) * 1993-03-15 2002-08-05 株式会社東芝 半導体装置
JP3666893B2 (ja) * 1993-11-19 2005-06-29 株式会社日立製作所 半導体メモリ装置
JPH07254651A (ja) * 1994-03-16 1995-10-03 Toshiba Corp 半導体集積回路装置
KR0147630B1 (ko) * 1995-04-21 1998-11-02 김광호 반도체 장치의 소자분리방법
US5777370A (en) * 1996-06-12 1998-07-07 Advanced Micro Devices, Inc. Trench isolation of field effect transistors
DE19640235C2 (de) * 1996-09-30 2001-10-25 Infineon Technologies Ag Halbleiter-Festwertspeicher mit in Grabenseitenwänden vertikal verlaufenden Transistoren und Verfahren zu seiner Herstellung
TW344137B (en) * 1996-12-09 1998-11-01 United Microelectronics Corp Multi-stage read-only memory structure and process for producing the same
US5889302A (en) * 1997-04-21 1999-03-30 Advanced Micro Devices, Inc. Multilayer floating gate field effect transistor structure for use in integrated circuit devices
KR100278654B1 (ko) * 1998-03-12 2001-02-01 윤종용 디램소자의셀커패시터형성방법
JP2000183313A (ja) * 1998-12-21 2000-06-30 Hitachi Ltd 半導体集積回路装置およびその製造方法
US6291298B1 (en) * 1999-05-25 2001-09-18 Advanced Analogic Technologies, Inc. Process of manufacturing Trench gate semiconductor device having gate oxide layer with multiple thicknesses
US6282115B1 (en) * 1999-12-22 2001-08-28 International Business Machines Corporation Multi-level DRAM trench store utilizing two capacitors and two plates
JP4834897B2 (ja) * 2000-05-02 2011-12-14 ソニー株式会社 不揮発性半導体記憶装置およびその動作方法
JP4236848B2 (ja) * 2001-03-28 2009-03-11 セイコーインスツル株式会社 半導体集積回路装置の製造方法
US6759282B2 (en) * 2001-06-12 2004-07-06 International Business Machines Corporation Method and structure for buried circuits and devices
JP4390412B2 (ja) * 2001-10-11 2009-12-24 Necエレクトロニクス株式会社 半導体装置及びその製造方法
KR100502410B1 (ko) * 2002-07-08 2005-07-19 삼성전자주식회사 디램 셀들
US8629019B2 (en) * 2002-09-24 2014-01-14 Vishay-Siliconix Method of forming self aligned contacts for a power MOSFET
KR100463203B1 (ko) * 2002-12-10 2004-12-23 삼성전자주식회사 활성 영역을 구비하는 반도체 소자
DE10362018B4 (de) * 2003-02-14 2007-03-08 Infineon Technologies Ag Anordnung und Verfahren zur Herstellung von vertikalen Transistorzellen und transistorgesteuerten Speicherzellen
US6861701B2 (en) * 2003-03-05 2005-03-01 Advanced Analogic Technologies, Inc. Trench power MOSFET with planarized gate bus
KR100553683B1 (ko) * 2003-05-02 2006-02-24 삼성전자주식회사 반도체 소자 및 그 제조 방법
US7247905B2 (en) * 2004-03-30 2007-07-24 International Business Machines Corporation Offset vertical device
JP2006303009A (ja) * 2005-04-18 2006-11-02 Toshiba Corp 半導体装置およびその製造方法
JP4591827B2 (ja) * 2005-05-24 2010-12-01 エルピーダメモリ株式会社 リセスチャネル構造を有するセルトランジスタを含む半導体装置およびその製造方法
US7399671B2 (en) * 2005-09-01 2008-07-15 Micron Technology, Inc. Disposable pillars for contact formation
JP2007103862A (ja) * 2005-10-07 2007-04-19 Renesas Technology Corp 半導体装置およびその製造方法
JP2008004738A (ja) * 2006-06-22 2008-01-10 Elpida Memory Inc 半導体装置及びその製造方法
US7436030B2 (en) * 2006-08-10 2008-10-14 International Business Machines Corporation Strained MOSFETs on separated silicon layers
KR100827656B1 (ko) * 2006-08-11 2008-05-07 삼성전자주식회사 리세스 채널 구조 및 핀 구조를 갖는 트랜지스터, 이를채택하는 반도체소자 및 그 제조방법
US20080061340A1 (en) * 2006-09-07 2008-03-13 Qimonda Ag Memory cell array and method of forming the memory cell array
KR100843714B1 (ko) * 2007-04-12 2008-07-04 삼성전자주식회사 콘택 구조체 형성 방법 및 이를 이용한 반도체소자의제조방법
US7948021B2 (en) * 2007-04-27 2011-05-24 Kabushiki Kaisha Toshiba Semiconductor memory device and method of fabricating the same
US20090179262A1 (en) * 2008-01-16 2009-07-16 Qimonda Ag Floating Body Memory Cell with a Non-Overlapping Gate Electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297297A (ja) * 1994-04-22 1995-11-10 Nec Corp 半導体記憶装置およびその製造方法
JPH08125144A (ja) * 1994-10-21 1996-05-17 Nec Corp 半導体記憶装置及びその製造方法
JP2006261625A (ja) * 2005-03-18 2006-09-28 Hynix Semiconductor Inc 半導体素子の製造方法
JP2007123551A (ja) * 2005-10-28 2007-05-17 Elpida Memory Inc 半導体装置の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129352A1 (ja) * 2013-02-25 2014-08-28 ピーエスフォー ルクスコ エスエイアールエル 半導体装置の製造方法

Also Published As

Publication number Publication date
US20090200593A1 (en) 2009-08-13
US8013373B2 (en) 2011-09-06

Similar Documents

Publication Publication Date Title
US7858490B2 (en) Semiconductor device having dual-STI and manufacturing method thereof
US7675110B2 (en) Semiconductor device and method of manufacturing the same
JP5731858B2 (ja) 半導体装置及び半導体装置の製造方法
JP5717943B2 (ja) 半導体装置およびその製造方法
JP3953981B2 (ja) 集積回路の製造方法
JP2011129566A (ja) 半導体装置の製造方法
JP2012134395A (ja) 半導体装置および半導体装置の製造方法
JPWO2006046442A1 (ja) 半導体装置及びその製造方法
JP2006303009A (ja) 半導体装置およびその製造方法
US8928073B2 (en) Semiconductor devices including guard ring structures
JP2014222699A (ja) 半導体装置の製造方法
JP2009182114A (ja) 半導体装置およびその製造方法
KR100924007B1 (ko) 반도체 소자의 수직 채널 트랜지스터 형성 방법
WO2014123170A1 (ja) 半導体装置及びその製造方法
JP2012028805A (ja) 半導体装置の製造方法
JP2011129762A (ja) 半導体装置及び半導体装置の製造方法
US20120286357A1 (en) Sense-amp transistor of semiconductor device and method for manufacturing the same
JP2010272679A (ja) 半導体装置及びその製造方法
JP2000208729A5 (ja)
KR101753234B1 (ko) 반도체 장치의 비트라인 및 그의 제조 방법
JP2011243690A (ja) 半導体装置の製造方法
JP2009123882A (ja) 半導体装置およびその製造方法
KR100791343B1 (ko) 반도체 소자 및 그 제조 방법
WO2014123176A1 (ja) 半導体装置及びその製造方法
JP2005175348A (ja) 半導体記憶装置及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101015

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140407

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140410

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140909