WO2014123170A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2014123170A1
WO2014123170A1 PCT/JP2014/052710 JP2014052710W WO2014123170A1 WO 2014123170 A1 WO2014123170 A1 WO 2014123170A1 JP 2014052710 W JP2014052710 W JP 2014052710W WO 2014123170 A1 WO2014123170 A1 WO 2014123170A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
diffusion layer
word line
semiconductor device
active region
Prior art date
Application number
PCT/JP2014/052710
Other languages
English (en)
French (fr)
Inventor
一宏 瀬川
Original Assignee
ピーエスフォー ルクスコ エスエイアールエル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ピーエスフォー ルクスコ エスエイアールエル filed Critical ピーエスフォー ルクスコ エスエイアールエル
Priority to US14/766,708 priority Critical patent/US20150371946A1/en
Publication of WO2014123170A1 publication Critical patent/WO2014123170A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5222Capacitive arrangements or effects of, or between wiring layers
    • H01L23/5225Shielding layers formed together with wiring layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • H10B12/0335Making a connection between the transistor and the capacitor, e.g. plug
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor
    • H10B12/053Making the transistor the transistor being at least partially in a trench in the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/315DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor with the capacitor higher than a bit line
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/482Bit lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/485Bit line contacts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/48Data lines or contacts therefor
    • H10B12/488Word lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76883Post-treatment or after-treatment of the conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof.
  • Patent Document 1 is a method of dividing and miniaturizing a conductive material previously formed in a large contact hole, and has a large processing margin. is there.
  • FIG. 18 is a diagram showing a structure of a semiconductor device 500 according to Patent Document 1.
  • a semiconductor device 500 according to this conventional example is a DRAM
  • FIG. 18A is a plan view
  • FIG. 18B is a cross-sectional view along Y1-Y1 ′ of FIG. 18A
  • FIG. 18C is FIG. X1-X1 ′ cross-sectional view of FIG. 18A
  • FIG. 18D shows the X2-X2 ′ cross-sectional view of FIG.
  • FIGS. X (a) to X (d) may be collectively referred to as FIG.
  • the semiconductor device 500 constitutes a DRAM memory cell.
  • a plurality of element isolation regions 2 extending continuously in the X ′ direction and active regions 1 ⁇ / b> A extending continuously in the X ′ direction are alternately arranged at equal intervals and at equal pitches in the Y direction.
  • the element isolation region 2 is composed of an element isolation insulating film embedded in the trench.
  • a word line 10b, a third embedded word line (hereinafter, third word line) 10d, and a fourth embedded word line (hereinafter, fourth word line) 10e are arranged.
  • a first embedded dummy word line (hereinafter referred to as a first dummy word line) 10c is arranged so as to be sandwiched between the second word line 10b and the third word line 10d.
  • the first dummy word line 10c isolates the cell transistors Tr2-Tr3 adjacent to each other in the extending direction of each active region 1A by keeping the parasitic transistor DTr1 in an off state, and a plurality of continuous band-like active regions 1A are provided. It has a function of dividing into independent active regions. Specifically, the active region 1A located on the left side of the first dummy word line 10c is divided into a first active region 1Aa ′, and the active region 1A located on the right side is divided into a second active region 1Ab ′.
  • the first active region 1Aa ′ includes a second capacitor contact region 27b disposed adjacent to the left side of the first dummy word line 10c, and a second word line 10b disposed adjacent to the second capacitor contact region 27b.
  • First bit line contact region 17c disposed adjacent to second word line 10b, first word line 10a disposed adjacent to first bit line contact region 17c, and adjacent to first word line 10a
  • the first capacitor contact region 27a is arranged.
  • the first capacitor contact region 27a, the first word line 10a, and the first bit line contact region 17c constitute a first cell transistor Tr1, and the first bit line contact region 17c, the second word line 10b,
  • a second cell transistor Tr2 is configured by the second capacitor contact region 27b.
  • the second active region 1Ab ′ includes a third capacitor contact region 27c disposed adjacent to the right side of the first dummy word line 10c, and a third word line 10d disposed adjacent to the third capacitor contact region 27c.
  • the second bit line contact region 17b disposed adjacent to the third word line 10d, the fourth word line 10e disposed adjacent to the second bit line contact region 17b, and adjacent to the fourth word line 10e And a fourth capacitor contact region (not shown).
  • Third capacitor contact region 27c, third word line 10d, and second bit line contact region 17b form third cell transistor Tr3, second bit line contact region 17b, fourth word line 10e,
  • a fourth cell transistor Tr4 (not shown) is constituted by a fourth capacitor contact region (not shown).
  • the memory cell of the conventional example is configured by arranging a plurality of configurations of the first active region 1Aa and the second active region 1Ab in the X direction via the first dummy word line 10c.
  • the semiconductor substrate 1 is provided with a trench for a word line that also serves as a gate electrode of a transistor.
  • a third word line 10d and a fourth word line 10e are provided at the bottom of each groove.
  • the word line passing through the first active region 1Aa ′ is defined as the first word line 10a, the second word line 10b, the word line passing through the second active region 1Ab ′ as the third word line 10d, and the fourth word line.
  • each active region has two word lines, and a dummy word line is disposed between the active regions.
  • a cap insulating film 11 is provided so as to cover each word line and bury each groove.
  • the semiconductor pillar located on the left side of the first word line 10a becomes the first capacitor contact region 27a, and the impurity diffusion layer 26a serving as one of the source / drain is provided on the upper surface thereof.
  • the semiconductor pillar located between the first word line 10a and the second word line 10b becomes the third BL contact region 17c, and an impurity diffusion layer 12c serving as the other one of the source / drain is provided on the upper surface thereof.
  • the semiconductor pillar located on the right side of the second word line 10b becomes the second capacitor contact region 27b, and an impurity diffusion layer 26b serving as one of the source / drain is provided on the upper surface thereof. Further, the semiconductor pillar located on the left side of the third word line 10d becomes the third capacitor contact region 27c, and an impurity diffusion layer 26c serving as one of the source / drain is provided on the upper surface thereof.
  • the semiconductor pillar located on the right side of the third word line 10d becomes the second BL contact region 17b, and an impurity diffusion layer 12b which is the other one of the source / drain is provided on the upper surface thereof.
  • the second bit line (BL) 16b connected to the second impurity diffusion layer 17b in the second BL contact region 12b has a third impurity in the third BL contact region 12c.
  • a third bit line (BL) 16c connected to the diffusion layer 17c is provided.
  • Each bit line is provided with a polysilicon layer 13 including a bit contact plug connected to the impurity diffusion layer, a bit metal layer 14 formed thereon, and a cover insulating film 15 on the upper surface thereof.
  • a liner insulating film 19 is provided on the entire surface so as to cover the side wall 18 and the bit line on the side wall of each bit line.
  • a buried insulating film 20 is provided to bury a recessed space formed between adjacent BLs.
  • a capacitive contact 25 is provided through the buried insulating film 20 and the liner film 19.
  • first, second, and third capacitor contact plugs 25a, 25b, and 25c are connected to the first, second, and third capacitor contact regions 27a, 27b, and 27c, respectively.
  • an isolation insulating film 30 'for isolating the second and third capacitor contact plugs 25b and 25c is provided on the cap insulating film 11 on the dummy word line 10c.
  • the second capacitor contact plug 25b in the first element isolation region 1Aa ′ and the third capacitor contact plug 25c in the second element isolation region 1Ab ′ separated by the dummy word line 10c are divided into one large contact plug 25.
  • the formed twin plug has an isolation insulating film 30 ′ on its dividing surface.
  • Contact pads 33 are connected to the upper portions of the first, second, and third capacitor contact plugs 25a, 25b, and 25c, respectively.
  • a stopper film 34 is provided so as to cover the capacitor contact pad 33.
  • a lower electrode 35 is provided on the capacitor contact pad 33.
  • a capacitor insulating film 36 that continuously covers the inner wall and outer wall surface of the lower electrode 35 and an upper electrode 37 are provided on the capacitor insulating film 36 to constitute a capacitor.
  • the element isolation between the first active region 1Aa 'and the second active region 1Ab' is performed by a field shield using the first dummy word line 10c. Therefore, there is room for further improvement, for example, the pitch becomes narrower as further miniaturization progresses, element isolation cannot be performed sufficiently, and interference disturbance failure between adjacent cells increases.
  • a plurality of element isolation regions extending in a first direction on the semiconductor substrate; and an active region sandwiched between the element isolation regions and extending in the first direction;
  • a plurality of grooves extending in a second direction intersecting the first direction and arranged at predetermined intervals;
  • a buried word line pair buried in two grooves adjacent to each other with one groove interposed therebetween,
  • a bit line extending in a third direction different from the first and second directions and connected to an active region between the buried word line pair;
  • a semiconductor comprising a diffusion layer isolation insulating film embedded in the trench between the pair of buried word lines and isolating the contact on both sides of the trench and the diffusion layer of the active region to which the contact is connected
  • the active region is formed on the semiconductor substrate at a predetermined interval, and the active region is formed between a first portion sandwiched between the two word line trenches, a first portion sandwiched between the word line trench and the diffusion layer isolation trench.
  • Dividing into two parts Burying a first conductive material in the plurality of trenches via a gate insulating film, Etching back the first conductive material to a position lower than the surface of the semiconductor substrate to form a dummy word line between a pair of word lines and the pair of word lines; Forming an insulating film filling the groove on the word line and the dummy word line; Forming a bit line on the insulating film connected to the first portion and extending in a third direction different from the first and second directions and having an upper insulating film; A mask pattern extending in the second direction is formed on the pair of word lines, the active regions of the second portion on both sides of the dummy word line are exposed, and between the bit lines and the mask patterns Opening a contact hole defined by Burying the second conductive material to a position below the upper portion of the mask pattern by filling the contact hole; Forming a side wall on the side wall of the mask pattern and exposing the upper surface of the second conductive material on the dummy word line; Etching
  • element isolation by a conventional dummy word line is separated by an insulating film having an equal width integral with an isolation insulating film that separates twin plugs, so that the word line pitch can be reduced.
  • Sufficient element isolation is possible, and an increase in interference disturbance failure between adjacent cells can be suppressed.
  • FIG. 1A is a schematic plan view of a semiconductor device 100 according to an embodiment of the present invention.
  • FIG. 1B is a sectional view taken along the line Y1-Y1 'of FIG.
  • FIG. 1C is a cross-sectional view taken along the line X1-X1 ′ of FIG.
  • FIGS. 3A and 3B are diagrams illustrating a manufacturing process of the semiconductor device 100 shown in FIG. 1, FIG. 3A is a schematic plan view, and FIG. 3B is a cross-sectional view along Y1-Y1 ′ of FIG. 3C is a cross-sectional view taken along the line X1-X1 ′ of FIG. 3A, and FIG. 3D is a cross-sectional view taken along the line X2-X2 ′ of FIG. 4A and 4B are diagrams illustrating a manufacturing process of the semiconductor device 100 shown in FIG. 1, in which FIG. 4A is a schematic plan view, and FIG.
  • FIG. 4B is a cross-sectional view along Y1-Y1 ′ of FIG. 4C is a cross-sectional view taken along the line X1-X1 'of FIG. 4A
  • FIG. 4D is a cross-sectional view taken along the line X2-X2' of FIG. 4A
  • 5A and 5B are diagrams illustrating a manufacturing process of the semiconductor device 100 shown in FIG. 1, FIG. 5A is a schematic plan view, and FIG. 5B is a cross-sectional view along Y1-Y1 ′ of FIG. 5C is a cross-sectional view taken along the line X1-X1 ′ of FIG. 5A, and FIG.
  • FIGS. 6A and 6B are diagrams illustrating a manufacturing process of the semiconductor device 100 illustrated in FIG. 1, in which FIG. 6A is a schematic plan view, and FIG. 6B is a cross-sectional view along Y1-Y1 ′ in FIG. 6C is a cross-sectional view taken along the line X1-X1 ′ of FIG. 6A, and FIG. 6D is a cross-sectional view taken along the line X2-X2 ′ of FIG. 7A and 7B are diagrams illustrating a manufacturing process of the semiconductor device 100 illustrated in FIG. 1, in which FIG. 7A is a schematic plan view and FIG.
  • FIGS. 8A and 8B are diagrams illustrating a manufacturing process of the semiconductor device 100 shown in FIG. 1, FIG. 8A is a schematic plan view, and FIG. 8B is a cross-sectional view along Y1-Y1 ′ of FIG. 8C is a cross-sectional view taken along the line X1-X1 ′ of FIG. 8A, and FIG.
  • FIG. 8D is a cross-sectional view taken along the line X2-X2 ′ of FIG. 9A and 9B are diagrams illustrating a manufacturing process of the semiconductor device 100 illustrated in FIG. 1, in which FIG. 9A is a schematic plan view, and FIG. 9B is a cross-sectional view along Y1-Y1 ′ in FIG. 9C is a cross-sectional view taken along the line X1-X1 'of FIG. 9A, and FIG. 9D is a cross-sectional view taken along the line X2-X2' of FIG. 9A.
  • 10A and 10B are diagrams illustrating a manufacturing process of the semiconductor device 100 shown in FIG. 1, in which FIG. 10A is a schematic plan view, and FIG.
  • FIG. 10B is a cross-sectional view along Y1-Y1 ′ in FIG.
  • FIG. 10C is a cross-sectional view taken along the line X1-X1 ′ of FIG. 10A
  • FIG. 10D is a cross-sectional view taken along the line X2-X2 ′ of FIG. 11A and 11B are diagrams illustrating a manufacturing process of the semiconductor device 100 illustrated in FIG. 1, in which FIG. 11A is a schematic plan view, and FIG. 11B is a cross-sectional view along Y1-Y1 ′ in FIG.
  • FIG. 11C is a cross-sectional view taken along the line X1-X1 ′ of FIG. 11A, and FIG.
  • FIGS. 12A and 12B are diagrams illustrating a manufacturing process of the semiconductor device 100 illustrated in FIG. 1, in which FIG. 12A is a schematic plan view, and FIG. 12B is a cross-sectional view along Y1-Y1 ′ in FIG. 12C is a cross-sectional view taken along the line X1-X1 ′ of FIG. 12A, and FIG. 12D is a cross-sectional view taken along the line X2-X2 ′ of FIG.
  • FIGS. 13A and 13B are diagrams illustrating a manufacturing process of the semiconductor device 100 illustrated in FIG. 1, in which FIG. 13A is a schematic plan view, and FIG.
  • FIG. 14A is a schematic plan view
  • FIG. 14B is a sectional view taken along the line Y1-Y1 'of FIG. 14C is a cross-sectional view taken along the line X1-X1 ′ of FIG. 14A
  • FIG. 14A is a schematic plan view
  • FIG. 14B is a sectional view taken along the line Y1-Y1 'of FIG. 14C is a cross-sectional view taken along the line X1-X1 ′ of FIG. 14A
  • FIG. 14A is a schematic plan view
  • FIG. 14A is a schematic plan view
  • FIGS. 15A and 15B are diagrams illustrating a manufacturing process of the semiconductor device 100 illustrated in FIG. 1, in which FIG. 15A is a schematic plan view and FIG. 15B is a cross-sectional view along Y1-Y1 ′ in FIG.
  • FIG. 15C is a cross-sectional view taken along the line X1-X1 ′ of FIG. 15A
  • FIG. 15D is a cross-sectional view taken along the line X2-X2 ′ of FIG.
  • FIGS. 16A and 16B are diagrams illustrating a manufacturing process of the semiconductor device 100 shown in FIG. 1, FIG. 16A is a schematic plan view, and FIG.
  • FIGS. 17A and 17B are diagrams illustrating a manufacturing process of a semiconductor device 200 according to another embodiment of the present invention, FIG. 17A is a schematic plan view, and FIG. 17B is Y1-Y1 ′ in FIG. It is sectional drawing.
  • FIG. 17C is a cross-sectional view taken along the line X1-X1 ′ of FIG. 17A, and FIG.
  • FIG. 17D is a cross-sectional view taken along the line X2-X2 ′ of FIG. 18A is a schematic plan view of a conventional semiconductor device 500
  • FIG. 18B is a cross-sectional view taken along the line Y1-Y1 'of FIG. 18A
  • 18C and 18D are a cross-sectional view taken along the line X1-X1 'and a cross-sectional view taken along the line X2-X2' of FIG. 18A, respectively.
  • the semiconductor device 100 according to the present embodiment is a DRAM
  • FIG. 1A is a schematic plan view
  • FIG. 1B is a cross-sectional view along Y1-Y1 ′ of FIG. 1A
  • FIG. 1A is a cross-sectional view taken along the line X1-X1 ′
  • FIG. 1D is a cross-sectional view taken along the line X2-X2 ′ of FIG. 2 to 16 are sectional views of a series of manufacturing steps of the semiconductor device 100 according to this embodiment.
  • Each of the partial views is (a) a schematic plan view and (b) is a schematic view of (a).
  • FIG. 7C is a sectional view taken along the line Y1-Y1 ′
  • FIG. 8C is a sectional view taken along the line X1-X1 ′ in FIG.
  • the semiconductor device 100 constitutes a DRAM memory cell.
  • an element isolation region 2 that extends continuously in the X ′ direction (first direction) and an active region 1A that also extends continuously in the X ′ direction are formed in the Y direction (second Are arranged at equal intervals and at equal pitches alternately.
  • the element isolation region 2 is composed of an element isolation insulating film embedded in the trench.
  • a first embedded word line (hereinafter referred to as a first word line) 10a and a second embedded word line (hereinafter referred to as a second line) extending continuously in the Y direction across the plurality of element isolation regions 2 and the plurality of active regions 1A.
  • a word line 10b, a third embedded word line (hereinafter, third word line) 10d, and a fourth embedded word line (hereinafter, fourth word line) 10e are arranged.
  • a diffusion layer separation groove 29 formed simultaneously with the formation of the word line groove is arranged so as to be sandwiched between the second word line 10b and the third word line 10d.
  • a diffusion layer isolation insulating film 30 such as a silicon nitride film is embedded in the diffusion layer isolation groove 29, and has a function of dividing the continuous band-shaped active region 1A into a plurality of independent active regions.
  • the active region 1A located on the left side of the diffusion layer isolation trench 29 is the first active region 1Aa, and the active region 1A located on the right side is the second active region 1Ab.
  • First to fourth bit lines (BL) 16a to 16d are provided extending in the X direction (third direction).
  • the first active region 1Aa includes a second capacitor contact region 27b disposed adjacent to the left side of the diffusion layer isolation trench 29, a second word line 10b disposed adjacent to the second capacitor contact region 27b, The contact region 17c (third BL contact region) with the third BL 16c disposed adjacent to the second word line 10b, the first word line 10a disposed adjacent to the third BL contact region 17c, and the first word line 10a And a first capacitor contact region 27a disposed adjacent to the first capacitor contact region 27a.
  • the first capacitor contact region 27a, the first word line 10a, and the third BL contact region 17c constitute a first cell transistor Tr1, and the third BL contact region 17c, the second word line 10b, and the second capacitor contact region. 27b constitutes the second cell transistor Tr2.
  • the second active region 1Ab includes a third capacitor contact region 27c disposed adjacent to the right side of the diffusion layer isolation trench 29, a third word line 10d disposed adjacent to the third capacitor contact region 27c, The contact region 17b (second BL contact region) with the second BL 16b disposed adjacent to the third word line 10d, the fourth word line 10e disposed adjacent to the second BL contact region 17b, and the fourth word line 10e And a fourth capacitor contact region (not shown) disposed adjacent to the first capacitor contact region.
  • the third capacitor contact region 27c, the third word line 10d, and the second BL contact region 17b constitute a third cell transistor Tr3, the second BL contact region 17b, the fourth word line 10e, and a first not shown.
  • a fourth cell transistor Tr4 is configured by the four-capacity contact region.
  • the memory cell according to the present embodiment is configured by arranging a plurality of configurations of the first active region 1Aa and the second active region 1Ab in the X direction (third direction) via the diffusion layer isolation trench 29. is there.
  • a second word line 10b, a third word line 10d, and a fourth word line 10e are provided at the bottom of each trench.
  • a cap insulating film 11 is provided so as to cover each word line and bury each groove.
  • the semiconductor pillar located on the left side of the first word line 10a becomes the first capacitor contact region 27a, and the impurity diffusion layer 26a serving as one of the source / drain is provided on the upper surface thereof.
  • the semiconductor pillar located between the first word line 10a and the second word line 10b becomes the third BL contact region 17c, and an impurity diffusion layer 12c serving as the other one of the source / drain is provided on the upper surface thereof.
  • the semiconductor pillar located on the right side of the second word line 10b becomes the second capacitor contact region 27b, and an impurity diffusion layer 26b serving as one of the source / drain is provided on the upper surface thereof.
  • the semiconductor pillar located on the left side of the third word line 10d becomes the third capacitor contact region 27c, and an impurity diffusion layer 26c serving as one of the source / drain is provided on the upper surface thereof.
  • the semiconductor pillar located to the right of the third word line 10d becomes the second BL contact region 17b, and an impurity diffusion layer 12b serving as the other one of the source / drain is provided on the upper surface thereof.
  • the impurity diffusion layer 26a, the gate insulating film 6, the first word line 10a, and the impurity diffusion layer 12c constitute a first transistor Tr1.
  • the impurity diffusion layer 12c, the gate insulating film 6, the second word line 10b, and the impurity diffusion layer 26b constitute the second transistor Tr2.
  • a cap insulating film 11 is provided so as to cover the upper surfaces of the word lines 10a and 10b.
  • a third BL 16c connected to the impurity diffusion layer 12c in the third BL contact region 17c is provided.
  • the impurity diffusion layer 26c, the gate insulating film 6, the third word line 10d, and the impurity diffusion layer 12b constitute a third transistor Tr3.
  • the impurity diffusion layer 12b, the gate insulating film 6, the fourth word line 10e, and an impurity diffusion layer (not shown) constitute a fourth transistor Tr4.
  • a cap insulating film 11 is provided so as to cover the upper surfaces of the word lines 10d and 10e.
  • the second BL 16b connected to the impurity diffusion layer 12b in the second BL contact region 17b is provided.
  • Each bit line is provided with a polysilicon layer 13 including a bit contact plug connected to the impurity diffusion layer, a bit metal layer 14 formed thereon, and a cover insulating film 15 on the upper surface thereof.
  • a liner insulating film 19 is provided on the entire surface so as to cover the side wall 18 and the bit line on the side wall of each bit line.
  • a buried insulating film 20 is provided to bury a recessed space formed between adjacent BLs.
  • a capacitive contact 25 is provided through the buried insulating film 20 and the liner film 19.
  • first, second, and third capacitor contact plugs 25a, 25b, and 25c are connected to the first, second, and third capacitor contact regions 27a, 27b, and 27c, respectively.
  • Capacitor contact pads 33 are connected to the upper portions of the first, second, and third capacitor contact plugs 25a, 25b, and 25c, respectively.
  • a stopper film 34 is provided so as to cover the capacitor contact pad 33.
  • a lower electrode 35 is provided on the capacitor contact pad 33.
  • a capacitor insulating film 36 continuously covering the outer wall surface from the inner wall of the lower electrode 35 and an upper electrode 37 on the capacitor insulating film 36 constitute a capacitor.
  • the upper electrode 37 can be formed by laminating a plurality of films.
  • the element isolation between the first active region 1Aa and the second active region 1Ab is not performed by the field shield by the dummy word line as in the prior art, but the diffusion buried in the diffusion layer isolation trench 29
  • the structure is performed by the layer isolation insulating film 30.
  • the diffusion layer isolation insulating film 30 is different from the conventional isolation insulating film 30 ′ for isolating the capacitor contact in that the diffusion layer isolation trench 29 is buried.
  • an active region 1 ⁇ / b> A that is surrounded by the element isolation region 2 and made of the semiconductor substrate 1 is formed.
  • the element isolation region 2 shows a laminated structure of the liner nitride film 2a and the silicon oxide film 2b, but is not limited to this.
  • a pad oxide film 3 made of a silicon oxide film is formed on the entire surface of the semiconductor substrate 1, and an N well region and a P well region (not shown) are formed through the pad oxide film 3 by a known method.
  • a silicon oxide film or the like is deposited on the semiconductor substrate 1 and extends in the Y direction with a resist (not shown) to form a plurality of grooves 5 at regular intervals.
  • the hard mask 4 is patterned.
  • the semiconductor substrate 1 is etched by dry etching to form the grooves 5.
  • Two adjacent pairs of grooves (5a and 5b or 5d and 5e) among the grooves 5 are word line grooves as in the prior art, and the grooves 5c between the two pairs of grooves (between 5b and 5d) are conventional.
  • the groove 5c is used as the diffusion layer separation groove 29 in a later step.
  • the saddle fin 1B is formed by etching the silicon oxide film in the element isolation region 2 deeper than the silicon of the semiconductor substrate 1, as shown in FIG.
  • the saddle fin 1B is not essential, and the groove depths in the active region 1A and the element isolation region 2 may be substantially equal.
  • the active region 1A is divided into a first portion sandwiched between the pair of grooves 5a and 5b (or 5d and 5e) and a second portion sandwiched between the pair of grooves 5a or 5b and the groove 5c.
  • the first portion is a region to which a bit line is connected
  • the second portion is a region to which a capacitor contact plug is connected.
  • a gate insulating film 6 is formed on the active region 1A of the semiconductor substrate 1 by using a thermal oxidation and nitridation process or the like.
  • the liner nitride film in the element isolation region 2 is also partially oxidized by thermal oxidation, and the silicon oxide film is converted into a silicon oxynitride film by a subsequent nitriding process.
  • the gate insulating film 6 is also continuously formed on the insulating film in the element isolation region 2 and the hard mask 4.
  • a barrier film 7 such as titanium nitride, a metal film 8 such as tungsten, and the like are deposited by, for example, a CVD method and etched back, so that the grooves 5a, 5b, 5d, and 5e are formed.
  • Word lines 10a, 10b, 10d, and 10e are formed.
  • the dummy word line 10c is similarly formed in the groove 5c.
  • a liner film is formed by a CVD method, for example, with a silicon nitride film (not shown) so as to cover the remaining metal film 8 and the inner walls of the grooves 5a to 5e.
  • a silicon oxide film is deposited on the liner film.
  • CMP is performed to flatten the surface until the liner film is exposed.
  • the exposed liner film is removed, and the hard mask 4 and the silicon oxide film are etched back to a predetermined height.
  • a buried word line buried with the cap insulating film 11 is formed.
  • the cap insulating film 11 may be formed so as to cover the hard mask 4 when the remaining hard mask 4 is thin, and between the bit line formed in a later step and the diffusion layer connecting the capacitor contact plug. Ensure sufficient distance.
  • bit contact region As shown in FIG. 6, a part of the hard mask 4 is removed by using a photolithography technique and a dry etching technique, and each bit line contact region, the third BL contact region 17c and the second BL contact in FIG. 7B.
  • a bit contact connected to the upper surface of region 17b is formed.
  • the bit contact is formed as a line-shaped opening pattern extending in the same direction as the word line 10 (Y direction).
  • the surface of the semiconductor substrate 1 At the intersection of the bit contact pattern and the active region, the surface of the semiconductor substrate 1 (first portion) is exposed.
  • an N-type impurity such as arsenic
  • the formed N-type impurity diffusion layer 12 functions as a source / drain region of the transistor. Thereafter, a laminated film such as a polysilicon film 13, a tungsten film 14, and a silicon nitride film 15 is formed by, for example, a CVD method. Then, the bit line 16 is formed by patterning into a line shape extending in a direction (X direction) intersecting the word line 10 by using a photolithography technique and a dry etching technique. The polysilicon film 13 under the bit line and the N-type impurity diffusion layer 12 are connected at the silicon surface portion exposed in the bit contact. In the part shown in FIG. 6C, the second BL 16b and the N-type impurity diffusion layer 12b are connected, and the third BL 16c and the N-type impurity diffusion layer 12c are connected.
  • etching is performed to remove a portion of the hard mask 4, pad oxide film 3, and cap insulating film 11 of silicon oxide film. Etching back is performed so that the surface of the cap insulating film 11 is approximately as high as the silicon surface of the semiconductor substrate 1.
  • a liner film 19 covering the upper surface is formed of a silicon nitride film or the like using, for example, a CVD method.
  • an annealing process is performed in a high-temperature water vapor (H 2 O) atmosphere to modify the film into a solid film.
  • a silicon oxide film formed by, for example, a CVD method is formed as the cap silicon oxide film 21 to cover the surface of the SOD film 20.
  • a mask polysilicon film 22 is formed on the cap silicon oxide film 21.
  • a capacitor contact hole 23 is formed by using a photolithography technique and a dry etching technique. Specifically, patterning is performed in a line shape using a lithography technique, and the cap silicon oxide film 21 and the mask polysilicon film 22 are used as a capacitive contact hard mask.
  • the capacitor contact hard mask extends in the same direction (Y direction) as the dummy word line 10c, and is formed as a line-shaped opening pattern that opens on the dummy word line 10c.
  • the capacitor contact hole 23 is formed through the SOD film 20 and the liner film 19.
  • the semiconductor substrate 1 (second portion) is exposed at a portion where the capacitor contact hole 23 and the active region 1A intersect.
  • a silicon nitride film is formed using, for example, a CVD method and etched back to form nitride film sidewalls 24.
  • N-type impurity phosphorus or the like
  • the polysilicon is etched back, and the polysilicon plug 25 is formed leaving the polysilicon to a height at which the inside of the capacitor contact hole 23 is not completely filled.
  • the mask polysilicon film 22 is also removed.
  • N-type impurity diffusion layers 26a, 26b, and 26c are formed in the vicinity of the surfaces of the capacitor contact regions 27a, 27b, and 27c by the N-type impurities doped in the polysilicon plug 25.
  • the formed N-type impurity diffusion layers 26a, 26b, and 26c function as source / drain regions of the transistor.
  • a silicon nitride film 28 is formed so as to cover the remaining polysilicon plug 25 in the capacitor contact hole.
  • the silicon nitride film 28 is etched back to form nitride film side walls 28S.
  • the polysilicon plug 25 is dry etched using the nitride film side wall 28S as a mask.
  • the second capacitor contact plug 25b connected to the second capacitor contact region 27b and the third capacitor contact plug 25c connected to the third capacitor contact region 27c can be separated in the X direction.
  • each polysilicon plug 25 is connected in the Y direction on the bit line 16 under the nitride film side wall 28S.
  • the cap insulating film 11 of the dummy word line 10c is exposed between the second capacitor contact plug 25b and the third capacitor contact plug 25c.
  • the steps up to the step of FIG. 11 are the same as the steps of manufacturing the conventional semiconductor device 500 shown in FIG.
  • the cap insulating film 11 above the dummy word line 10c is etched and removed by using a dry etching method. At this time, a part of the gate insulating film 6 may be removed at the same time.
  • 12C and 12D show a state in which a part of the gate insulating film 6 is removed at the same time.
  • the barrier film 7 and the metal film 8 inside the dummy word line 10c are removed by immersion in an etching solution containing hydrogen peroxide, chelating agent, alkali hydroxide, and iodine compound. Since it is immersed and removed in the etching solution, the barrier film 7 and the metal film 8 inside the dummy word line 10c below the bit line 16 can also be removed as shown in FIG. Further, since this etching solution does not etch polysilicon, the polysilicon plug 25 is not etched. Further, the gate insulating film 6 is removed by immersion in a hydrofluoric acid solution.
  • the silicon oxide film 2b in the element isolation region 2 below the bit line 16 is also removed, as shown in FIG.
  • the groove (5c) in which the dummy word line 10c is located becomes the diffusion layer separation groove 29 where the semiconductor substrate 1 is exposed.
  • the width of the diffusion layer isolation trench 29 in the element isolation region 2 is wider than that in the active region.
  • the removal of the gate insulating film 6 and the silicon oxide film 2b in the element isolation region 2 is not essential and may be left as it is. In that case, the width of the diffusion layer isolation trench 29 in the element isolation region 2 is the same as the width in the active region.
  • a diffusion layer isolation trench 29 is filled with a silicon nitride film or the like, and a diffusion layer isolation insulating film 30 is formed so as to cover the sidewall silicon nitride film 28S and the polysilicon plugs 25a, 25b, 25c. To do.
  • the silicon oxide film 2b as the element isolation insulating film is divided by the diffusion layer isolation insulating film 30 as the silicon nitride film in the element isolation region 2.
  • the diffusion layer isolation insulating film 30 and the sidewall silicon nitride film 28S are polished by CMP and planarized until the upper surface of the cap insulating film 15 on the bit line 16 is exposed.
  • the polysilicon plug 25 is separated in the Y direction by the bit line 16. Thereafter, the polysilicon plug 25 is etched back, and the capacitor contact plugs 25a, 25b and 25c are completed with the polysilicon left in the lower portion of the capacitor contact hole 23.
  • a wiring material layer such as a barrier film 31 made of titanium nitride or the like, a metal film 32 made of tungsten or the like using a CVD method in a portion where the capacitive contact plug 25 is not embedded in the capacitive contact hole. Embed.
  • the capacitor contact pad 33 is formed by using a photolithography technique and a dry etching technique. A contact resistance with the capacitor contact pad 33 may be reduced by forming a silicide film such as cobalt silicide on the upper surface of the capacitor contact plug 25.
  • a stopper film 34 is formed using a silicon nitride film so as to cover the capacitor contact pad 33.
  • a lower electrode 35 of the capacitor element is formed on the capacitor contact pad 33 with titanium nitride or the like.
  • the upper electrode 37 of the capacitor element is formed of titanium nitride or the like.
  • the wiring formation process is repeated to form a multilayer wiring, and the semiconductor device 100 is formed.
  • the element isolation between the first active region 1Aa and the second active region 1Ab is not performed by the field shield by the dummy word line 10c as in the prior art, but the diffusion layer isolation trench.
  • the structure is performed by a diffusion layer isolation insulating film 30 embedded in 29. Therefore, even if the miniaturization advances and the pitch becomes narrow, sufficient element isolation can be performed, and the problem of increasing PCBH defects hardly occurs and the yield can be improved.
  • the contact plugs formed in one contact hole 23, that is, the two capacitor contact plugs (25b and 25c in the figure) facing each other in the X direction via the diffusion layer isolation insulating film 30 are the capacitor contact hard
  • Embodiment 2 17A and 17B show the process of manufacturing the semiconductor device 200 according to the preferred embodiment of the present invention, in which FIG. 17A is a schematic plan view, FIG. 17B is a sectional view taken along the line Y1-Y1 ′ in FIG. ) Is a cross-sectional view taken along line X1-X1 ′ in FIG.
  • the semiconductor substrate 1 is provided with word lines 10a, 10b, 10d, and 10e that also serve as gate electrodes of transistors.
  • a diffusion layer isolation groove 29 ′ is also provided, which is at least the same as the element isolation region 2 extending in the X ′ direction as compared with the groove 29 (broken line portion) of the first embodiment.
  • the structure has been dug down to a deeper position. Specifically, a depth T1 is dug deeper than the bottom of the groove 29 of the first embodiment of the first embodiment.
  • a diffusion layer isolation insulating film 30 such as a silicon nitride film is embedded in the trench 29 '.
  • the etching depth T1 of the diffusion layer separation groove 29 ′ is preferably in the range of 100 nm to 160 nm.
  • a state is shown in which a part of the semiconductor substrate 1 in contact with the element isolation region 2 is higher than the bottom of the diffusion layer isolation groove 29 ′ and remains at the position of the bottom of the diffusion layer isolation groove 29.
  • Intensified etching may be performed so that the bottom in the element isolation region and the bottom in the active region are substantially continuous.
  • the subsequent steps are the same as those in FIGS. 14 to 16 of the first embodiment.
  • a diffusion layer separation groove 29 ′ that is dug down to a position deeper than that of the embodiment example 1 is formed. For this reason, even if the miniaturization is further advanced than in the first embodiment and the pitch is narrowed, sufficient element isolation can be performed, and the problem of increasing PCBH defects hardly occurs and the yield can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

 ワード線10bと10dの間でビット線16に囲まれたコンタクトホール内に第2の導電材料を埋め込み、第2の方向で分離するツインプラグ形成工程において、従来のダミーワード線に埋め込まれていた導電材料を除去して拡散層分離用溝29を形成し、拡散層分離絶縁膜30を埋め込んで拡散層を分離すると共に、コンタクトプラグ25bと25cとを分離する。

Description

半導体装置及びその製造方法
 本発明は、半導体装置及びその製造方法に関する。
 半導体装置の微細化に伴い、微細なコンタクトプラグの形成方法が検討されている。このような中で、特許文献1に記載の方法は、予め、大きなコンタクトホールに形成した導電材料を分割して微細化する方法であり、加工マージンに大きな余裕があるため、極めて有効な方法である。
 図18は、特許文献1による半導体装置500の構造を示す図である。本従来例による半導体装置500はDRAMであり、図18(a)は平面図、図18(b)は図18(a)のY1-Y1’断面図、図18(c)は図18(a)のX1-X1’断面図、図18(d)は図18(a)のX2-X2’断面図を示している。なお、本明細書では、図X(a)~図X(d)をまとめて図Xと呼ぶことがある。
 最初に、図18を参照して、本従来例の半導体装置500について説明する。
 半導体装置500はDRAMのメモリセルを構成するものである。半導体基板1上において、X’方向に連続して延在する素子分離領域2と、同じくX’方向に連続して延在する活性領域1AとがY方向に交互に等間隔、等ピッチで複数配置されている。素子分離領域2は溝に埋設した素子分離絶縁膜で構成されている。複数の素子分離領域2および複数の活性領域1Aに跨って、Y方向に連続して延在する第1埋め込みワード線(以下、第1ワード線)10a、第2埋め込みワード線(以下、第2ワード線)10b、第3埋め込みワード線(以下、第3ワード線)10d、および第4埋め込みワード線(以下、第4ワード線)10eが配置されている。また、第2ワード線10bおよび第3ワード線10dに挟まれるように第1埋め込みダミーワード線(以下、第1ダミーワード線)10cが配置されている。第1ダミーワード線10cは各々の活性領域1Aの延在方向に隣接するセルトランジスタTr2-Tr3間を、寄生トランジスタDTr1をオフ状態に保つことにより素子分離し、連続する帯状の活性領域1Aを複数の独立した活性領域に分割する機能を有するものである。具体的には、第1ダミーワード線10cの左側に位置する活性領域1Aは第1活性領域1Aa’となり、右側に位置する活性領域1Aは第2活性領域1Ab’となり分割されている。
 第1活性領域1Aa’は、第1ダミーワード線10cの左側に隣接して配置される第2容量コンタクト領域27bと、第2容量コンタクト領域27bに隣接して配置される第2ワード線10bと、第2ワード線10bに隣接して配置される第1ビット線コンタクト領域17cと、第1ビット線コンタクト領域17cに隣接して配置される第1ワード線10aと、第1ワード線10aに隣接して配置される第1容量コンタクト領域27aとを含んで構成されている。第1容量コンタクト領域27aと、第1ワード線10aと、第1ビット線コンタクト領域17cと、で第1セルトランジスタTr1が構成され、第1ビット線コンタクト領域17cと、第2ワード線10bと、第2容量コンタクト領域27bと、で第2セルトランジスタTr2が構成されている。
 第2活性領域1Ab’は、第1ダミーワード線10cの右側に隣接して配置される第3容量コンタクト領域27cと、第3容量コンタクト領域27cに隣接して配置される第3ワード線10dと、第3ワード線10dに隣接して配置される第2ビット線コンタクト領域17bと、第2ビット線コンタクト領域17bに隣接して配置される第4ワード線10eと、第4ワード線10eに隣接して配置される第4容量コンタクト領域(図示せず)とを含んで構成されている。第3容量コンタクト領域27cと、第3ワード線10dと、第2ビット線コンタクト領域17bと、で第3セルトランジスタTr3が構成され、第2ビット線コンタクト領域17bと、第4ワード線10eと、図示していない第4容量コンタクト領域と、で図示していない第4セルトランジスタTr4が構成されている。
 本従来例のメモリセルは、上記第1活性領域1Aaおよび第2活性領域1Abの構成が第1ダミーワード線10cを介してX方向に複数配置されて構成されるものである。
 半導体基板1に、トランジスタのゲート電極を兼ねるワード線用の溝が設けられている。各々のワード線用の溝の内面を覆うゲート絶縁膜6を介してバリア膜7及びタングステンなどの金属膜8で構成される第1ワード線10a、第2ワード線10b、ダミーワード線10c、第3ワード線10d及び第4ワード線10eが各々の溝の底部に設けられている。ここでは、便宜的に第1活性領域1Aa’を通過するワード線を第1ワード線10a、第2ワード線10b、第2活性領域1Ab’を通過するワード線を第3ワード線10d及び第4ワード線10eと称しているが、各々の活性領域毎に2本のワード線を有し、活性領域間にダミーワード線が配置される。各々のワード線を覆い、且つ、各々の溝を埋設してキャップ絶縁膜11が設けられている。第1ワード線10aの左側に位置する半導体ピラーは第1容量コンタクト領域27aとなり、その上面にはソース/ドレインの一方となる不純物拡散層26aが設けられている。第1ワード線10aと第2ワード線10bの間に位置する半導体ピラーは第3BLコンタクト領域17cとなり、その上面にはソース/ドレインの他の一方となる不純物拡散層12cが設けられている。また、第2ワード線10bの右側に位置する半導体ピラーは第2容量コンタクト領域27bとなり、その上面にはソース/ドレインの一方となる不純物拡散層26bが設けられている。さらに、第3ワード線10dの左側に位置する半導体ピラーは第3容量コンタクト領域27cとなり、その上面にはソース/ドレインの一方となる不純物拡散層26cが設けられている。そして、第3ワード線10dの右側に位置する半導体ピラーは第2BLコンタクト領域17bとなり、その上面にはソース/ドレインの他の一方となる不純物拡散層12bが設けられている。
 各々のワード線上面を覆うキャップ絶縁膜11上には、第2BLコンタクト領域12bにおいて第2不純物拡散層17bに接続される第2ビット線(BL)16bが、第3BLコンタクト領域12cにおいて第3不純物拡散層17cに接続される第3ビット線(BL)16cが設けられる。各ビット線は、不純物拡散層に接続されるビットコンタクトプラグを含むポリシリコン層13とその上に形成されたビットメタル層14と更にその上面にカバー絶縁膜15が設けられている。各ビット線の側壁にサイドウォール18と、ビット線を覆うように、全面にライナー絶縁膜19が設けられる。ライナー絶縁膜19上には、隣接するBL間に形成されている凹部空間を埋設する埋設絶縁膜20が設けられている。埋設絶縁膜20、ライナー膜19を貫通して、容量コンタクト25が設けられている。この容量コンタクト25は、第1、第2、および第3容量コンタクト領域27a、27b、27cに各々第1、第2、および第3容量コンタクトプラグ25a、25b、25cが接続している。ダミーワード線10c上のキャップ絶縁膜11上には第2、および第3容量コンタクトプラグ25b、25cを分離している分離絶縁膜30’を有する。ダミーワード線10cで素子分離される第1素子分離領域1Aa’の第2容量コンタクトプラグ25bと第2素子分離領域1Ab’の第3容量コンタクトプラグ25cは、一つの大きなコンタクトプラグ25を分割して形成したツインプラグであり、その分割面に分離絶縁膜30’を有する。第1、第2、および第3容量コンタクトプラグ25a、25b、25cの上部に各々コンタクトパッド33が接続している。容量コンタクトパッド33を覆うように、ストッパー膜34が設けられる。容量コンタクトパッド33上には下部電極35が設けられる。下部電極35の内壁及び外壁表面を連続して覆う容量絶縁膜36および容量絶縁膜36上に上部電極37が設けられてキャパシタを構成している。
特開2011-243960号公報
 上記、従来技術では、第1活性領域1Aa’と第2活性領域1Ab’の素子分離を、第1ダミーワード線10cによるフィールドシールドによって行う構造になっている。そのため、さらに微細化が進むとピッチが狭くなり、十分に素子分離ができず、隣接セル間の干渉ディスターブ不良が増加するなど、さらに改善の余地がある。
 本発明では、第1ダミーワード線10cを絶縁層に置換することで、PCBH不良が増加することを抑制する。
 すなわち、本発明の一実施形態によれば、
 半導体基板上の、第1の方向に延在する複数の素子分離領域と
 前記素子分離領域に挟まれ、前記第1の方向に延在する活性領域と、
 前記第1の方向と交差する第2の方向に延在して所定の間隔で配置された複数の溝と、
 前記溝のうち、それぞれ1本の溝を間に介して隣接する2つの溝内に埋め込まれた埋め込みワード線対と、
 前記第1及び第2の方向と異なる第3の方向に延在し、前記埋め込みワード線対間の活性領域に接続されるビット線と、
 前記ビット線の接続される活性領域に対して前記埋め込みワード線対のそれぞれを介して対向する活性領域に接続されるコンタクトと、
 前記埋め込みワード線対の間の前記溝内に埋め込まれ、かつ該溝の両側の前記コンタクト及び前記コンタクトの接続される前記活性領域の拡散層を絶縁分離する拡散層分離絶縁膜と
を備えた半導体装置、が提供される。
 又、本発明の別の実施形態によれば、
 半導体基板上に、第1の方向に延在する複数の素子分離領域を形成し、前記素子分離領域間に前記第1の方向に延在する活性領域を規定する工程、
 前記第1の方向と交差する第2の方向に延在する隣接する2本一対のワード線溝と、前記一対のワード線溝間に拡散層分離溝とを、前記素子分離領域よりも浅い複数の溝として所定間隔を空けて前記半導体基板上に形成し、前記活性領域を前記2本のワード線溝に挟まれた第1部分と前記ワード線溝と拡散層分離溝とに挟まれた第2部分に分割する工程、
 前記複数の溝内にゲート絶縁膜を介して第1の導電材料を埋設する工程、
 前記第1の導電材料を前記半導体基板表面よりも低い位置までエッチバックし、2本一対のワード線と前記一対のワード線間にダミーワード線を形成する工程、
 前記ワード線及びダミーワード線上の前記溝を埋め込む絶縁膜を形成する工程、
 前記絶縁膜上に、前記第1部分に接続され、前記第1及び第2の方向と異なる第3の方向に延在し、上部絶縁膜を有するビット線を形成する工程、
 前記2本一対のワード線上で前記第2の方向に延在するマスクパターンを形成し、前記ダミーワード線の両側の前記第2部分の活性領域を露出し、前記ビット線間と前記マスクパターン間で規定されるコンタクトホールを開口する工程、
 前記コンタクトホールを埋めて前記マスクパターンの上部より低い位置まで第2の導電材料を埋設する工程、
 前記マスクパターンの側壁にサイドウォールを形成し、前記ダミーワード線上の前記第2の導電材料上面を露出する開口する工程、
 前記サイドウォールをマスクに前記第2の導電材料をエッチングして前記ダミーワード線上部の埋め込んでいた絶縁膜を露出する工程、
 前記絶縁膜をドライエッチングにて除去し、更に露出した前記第1の導電材料をウェットエッチングで除去して拡散層分離溝を形成する工程、
 前記拡散層分離溝を埋めて全面に拡散層分離絶縁膜を形成する工程、
 前記拡散層分離絶縁膜、前記マスクパターン及び前記第2の導電材料を前記ビット線の上部絶縁膜高さまでエッチバックし、前記コンタクトホール内に前記拡散層分離絶縁膜で2分された前記第2の導電材料からなるコンタクトプラグを形成する工程
とを有する半導体装置の製造方法、が提供される。
 本発明の一実施形態によれば、従来のダミーワード線による素子分離を、ツインプラグを分離する分離絶縁膜と一体の等幅の絶縁膜により分離することにより、ワード線ピッチが狭くなっても十分な素子分離が可能となり、隣接セル間の干渉ディスターブ不良の増加を抑制することができる。
図1(a)は、本発明の一実施形態例になる半導体装置100の模式的平面図である。 図1(b)は、図1(a)のY1-Y1’断面図である。 図1(c)は、図1(a)のX1-X1’断面図である。 図1(d)は、図1(a)のX2-X2’断面図である。 図1に示す半導体装置100の製造工程を説明する図であり、図2(a)は模式的平面図、図2(b)は図2(a)のY1-Y1’断面図である。 図2(c)は図2(a)のX1-X1’断面図、図2(d)は図2(a)のX2-X2’断面図である。 図1に示す半導体装置100の製造工程を説明する図であり、図3(a)は模式的平面図、図3(b)は図3(a)のY1-Y1’断面図である。 図3(c)は図3(a)のX1-X1’断面図、図3(d)は図3(a)のX2-X2’断面図である。 図1に示す半導体装置100の製造工程を説明する図であり、図4(a)は模式的平面図、図4(b)は図4(a)のY1-Y1’断面図である。 図4(c)は図4(a)のX1-X1’断面図、図4(d)は図4(a)のX2-X2’断面図である。 図1に示す半導体装置100の製造工程を説明する図であり、図5(a)は模式的平面図、図5(b)は図5(a)のY1-Y1’断面図である。 図5(c)は図5(a)のX1-X1’断面図、図5(d)は図5(a)のX2-X2’断面図である。 図1に示す半導体装置100の製造工程を説明する図であり、図6(a)は模式的平面図、図6(b)は図6(a)のY1-Y1’断面図である。 図6(c)は図6(a)のX1-X1’断面図、図6(d)は図6(a)のX2-X2’断面図である。 図1に示す半導体装置100の製造工程を説明する図であり、図7(a)は模式的平面図、図7(b)は図7(a)のY1-Y1’断面図である。 図7(c)は図7(a)のX1-X1’断面図、図7(d)は図7(a)のX2-X2’断面図である。 図1に示す半導体装置100の製造工程を説明する図であり、図8(a)は模式的平面図、図8(b)は図2(a)のY1-Y1’断面図である。 図8(c)は図8(a)のX1-X1’断面図、図8(d)は図8(a)のX2-X2’断面図である。 図1に示す半導体装置100の製造工程を説明する図であり、図9(a)は模式的平面図、図9(b)は図9(a)のY1-Y1’断面図である。 図9(c)は図9(a)のX1-X1’断面図、図9(d)は図9(a)のX2-X2’断面図である。 図1に示す半導体装置100の製造工程を説明する図であり、図10(a)は模式的平面図、図10(b)は図10(a)のY1-Y1’断面図である。 図10(c)は図10(a)のX1-X1’断面図、図10(d)は図10(a)のX2-X2’断面図である。 図1に示す半導体装置100の製造工程を説明する図であり、図11(a)は模式的平面図、図11(b)は図11(a)のY1-Y1’断面図である。 図11(c)は図11(a)のX1-X1’断面図、図11(d)は図11(a)のX2-X2’断面図である。 図1に示す半導体装置100の製造工程を説明する図であり、図12(a)は模式的平面図、図12(b)は図12(a)のY1-Y1’断面図である。 図12(c)は図12(a)のX1-X1’断面図、図12(d)は図12(a)のX2-X2’断面図である。 図1に示す半導体装置100の製造工程を説明する図であり、図13(a)は模式的平面図、図13(b)は図13(a)のY1-Y1’断面図である。 図13(c)は図13(a)のX1-X1’断面図、図13(d)は図13(a)のX2-X2’断面図である。 図1に示す半導体装置100の製造工程を説明する図であり、図14(a)は模式的平面図、図14(b)は図14(a)のY1-Y1’断面図である。 図14(c)は図14(a)のX1-X1’断面図、図14(d)は図14(a)のX2-X2’断面図である。 図1に示す半導体装置100の製造工程を説明する図であり、図15(a)は模式的平面図、図15(b)は図15(a)のY1-Y1’断面図である。 図15(c)は図15(a)のX1-X1’断面図、図15(d)は図15(a)のX2-X2’断面図である。 図1に示す半導体装置100の製造工程を説明する図であり、図16(a)は模式的平面図、図16(b)は図16(a)のY1-Y1’断面図である。 図16(c)は図16(a)のX1-X1’断面図、図16(d)は図16(a)のX2-X2’断面図である。 本発明の別の実施形態例に係る半導体装置200の製造工程を説明する図であり、図17(a)は模式的平面図、図17(b)は図17(a)のY1-Y1’断面図である。 図17(c)は図17(a)のX1-X1’断面図、図17(d)は図17(a)のX2-X2’断面図である。 図18(a)は従来例になる半導体装置500の模式的平面図、図18(b)は図18(a)のY1-Y1’断面図である。 図18(c)、図18(d)は、それぞれ図18(a)のX1-X1’断面図、X2-X2’断面図である。
 以下、図面を参照して、本発明の好ましい実施形態例について説明するが、本発明はこれらの実施形態例のみに限定されるものでは無く、当業者が必要に応じて本発明の範囲内で適宜変更可能な構成を含む。
 (実施形態例1)
 本実施形態例による半導体装置100はDRAMであり、図1(a)は模式的平面図、図1(b)は図1(a)のY1-Y1’断面図、図1(c)は図1(a)のX1-X1’断面図、図1(d)は図1(a)のX2-X2’断面図を示す。図2~図16は本実施形態例に係る半導体装置100の一連の製造工程断面図を示しており、各分図はそれぞれ、(a)は模式的平面図、(b)は(a)のY1-Y1’断面図、(c)は(a)のX1-X1’断面図、(d)は(a)のX2-X2’断面図である。
 最初に、図1を参照して、本実施形態例の半導体装置100について説明する。
 半導体装置100はDRAMのメモリセルを構成するものである。半導体基板1上において、X’方向(第1の方向)に連続して延在する素子分離領域2と、同じくX’方向に連続して延在する活性領域1AとがY方向(第2の方向)に交互に等間隔、等ピッチで複数配置されている。素子分離領域2は溝に埋設した素子分離絶縁膜で構成されている。複数の素子分離領域2および複数の活性領域1Aに跨って、Y方向に連続して延在する第1埋め込みワード線(以下、第1ワード線)10a、第2埋め込みワード線(以下、第2ワード線)10b、第3埋め込みワード線(以下、第3ワード線)10d、および第4埋め込みワード線(以下、第4ワード線)10eが配置されている。また、第2ワード線10bおよび第3ワード線10dに挟まれるようにワード線溝形成時に同時に形成された拡散層分離溝29が配置されている。拡散層分離溝29には窒化シリコン膜等の拡散層分離絶縁膜30が埋め込まれ、連続する帯状の活性領域1Aを複数の独立した活性領域に分割する機能を有するものである。具体的には、拡散層分離溝29の左側に位置する活性領域1Aは第1活性領域1Aaとなり、右側に位置する活性領域1Aは第2活性領域1Abとなっている。X方向(第3の方向)に延在して、第1~第4ビット線(BL)16a~16dが設けられている。
 第1活性領域1Aaは、拡散層分離溝29の左側に隣接して配置される第2容量コンタクト領域27bと、第2容量コンタクト領域27bに隣接して配置される第2ワード線10bと、第2ワード線10bに隣接して配置される第3BL16cとのコンタクト領域17c(第3BLコンタクト領域)と、第3BLコンタクト領域17cに隣接して配置される第1ワード線10aと、第1ワード線10aに隣接して配置される第1容量コンタクト領域27aとを含んで構成されている。第1容量コンタクト領域27aと、第1ワード線10aと、第3BLコンタクト領域17cとで第1セルトランジスタTr1が構成され、第3BLコンタクト領域17cと、第2ワード線10bと、第2容量コンタクト領域27bとで第2セルトランジスタTr2が構成されている。
 第2活性領域1Abは、拡散層分離溝29の右側に隣接して配置される第3容量コンタクト領域27cと、第3容量コンタクト領域27cに隣接して配置される第3ワード線10dと、第3ワード線10dに隣接して配置される第2BL16bとのコンタクト領域17b(第2BLコンタクト領域)と、第2BLコンタクト領域17bに隣接して配置される第4ワード線10eと、第4ワード線10eに隣接して配置される第4容量コンタクト領域(図示せず)とを含んで構成されている。第3容量コンタクト領域27cと、第3ワード線10dと、第2BLコンタクト領域17bとで第3セルトランジスタTr3が構成され、第2BLコンタクト領域17bと、第4ワード線10eと、図示していない第4容量コンタクト領域とで第4セルトランジスタTr4が構成されている。
 本実施形態例のメモリセルは、上記第1活性領域1Aaおよび第2活性領域1Abの構成が拡散層分離溝29を介してX方向(第3の方向)に複数配置されて構成されるものである。
 半導体基板1に設けられた、トランジスタのゲート電極を兼ねるワード線用の溝の内面を覆うゲート絶縁膜6を介して、バリア膜7、タングステン等のメタル膜8とを含む第1ワード線10a、第2ワード線10b、第3ワード線10d及び第4ワード線10eが各々の溝の底部に設けられている。各々のワード線を覆い、且つ、各々の溝を埋設してキャップ絶縁膜11が設けられている。第1ワード線10aの左側に位置する半導体ピラーは第1容量コンタクト領域27aとなり、その上面にはソース/ドレインの一方となる不純物拡散層26aが設けられている。第1ワード線10aと第2ワード線10bの間に位置する半導体ピラーは第3BLコンタクト領域17cとなり、その上面にはソース/ドレインの他の一方となる不純物拡散層12cが設けられている。また、第2ワード線10bの右側に位置する半導体ピラーは第2容量コンタクト領域27bとなり、その上面にはソース/ドレインの一方となる不純物拡散層26bが設けられている。さらに、第3ワード線10dの左側に位置する半導体ピラーは第3容量コンタクト領域27cとなり、その上面にはソース/ドレインの一方となる不純物拡散層26cが設けられている。そして、第3ワード線10dの右に位置する半導体ピラーは第2BLコンタクト領域17bとなり、その上面にはソース/ドレインの他の一方となる不純物拡散層12bが設けられている。
 第1活性領域1Aaでは、不純物拡散層26aとゲート絶縁膜6と第1ワード線10aと不純物拡散層12cとで第1のトランジスタTr1が構成される。また、不純物拡散層12cとゲート絶縁膜6と第2ワード線10bと不純物拡散層26bとで第2のトランジスタTr2が構成されている。ワード線10a及び10b上面を覆うように、キャップ絶縁膜11が設けられている。キャップ絶縁膜11上には、第3BLコンタクト領域17cにおいて不純物拡散層12cに接続される第3BL16cが設けられる。第2活性領域1Abでは、不純物拡散層26cとゲート絶縁膜6と第3ワード線10dと不純物拡散層12bとで第3のトランジスタTr3が構成される。また、不純物拡散層12bとゲート絶縁膜6と第4ワード線10eと不図示の不純物拡散層とで第4のトランジスタTr4が構成されている。ワード線10d及び10e上面を覆うように、キャップ絶縁膜11が設けられている。キャップ絶縁膜11上には、第2BLコンタクト領域17bにおいて不純物拡散層12bに接続される第2BL16bが設けられる。
 各ビット線は、不純物拡散層に接続されるビットコンタクトプラグを含むポリシリコン層13とその上に形成されたビットメタル層14と更にその上面にカバー絶縁膜15が設けられている。各ビット線の側壁にサイドウォール18と、ビット線を覆うように、全面にライナー絶縁膜19が設けられる。ライナー絶縁膜19上には、隣接するBL間に形成されている凹部空間を埋設する埋設絶縁膜20が設けられている。埋設絶縁膜20、ライナー膜19を貫通して、容量コンタクト25が設けられている。この容量コンタクト25は、第1、第2、および第3容量コンタクト領域27a、27b、27cに各々第1、第2、および第3容量コンタクトプラグ25a、25b、25cが接続している。第1、第2、および第3容量コンタクトプラグ25a、25b、25cの上部に各々容量コンタクトパッド33が接続している。容量コンタクトパッド33を覆うように、ストッパー膜34が設けられる。容量コンタクトパッド33上には下部電極35が設けられる。下部電極35の内壁から外壁表面を連続して覆う容量絶縁膜36および容量絶縁膜36上に上部電極37が設けられてキャパシタを構成している。上部電極37は複数の膜の積層とすることができ、容量絶縁膜36上にコンフォーマルに形成される窒化チタン等の第1の上部電極と、空隙を埋めるドープトポリシリコンなどの充填層(第2の上部電極)、さらには上層配線との接続部となるタングステンなどの金属からなるプレート電極(第3の上部電極)などを含んでいても良い。
 上記半導体装置100では、第1活性領域1Aaと第2活性領域1Abの素子分離を、従来技術のように、ダミーワード線によるフィールドシールドによって行うのではなく、拡散層分離溝29に埋設された拡散層分離絶縁膜30によって行う構造になっている。拡散層分離絶縁膜30は、従来例の容量コンタクトを分離する分離絶縁膜30’に対して、拡散層分離溝29までを埋め込んで形成されている点で異なる。このように、絶縁膜で活性領域を分離しているため、微細化が進み、ピッチが狭くなっても、十分な素子分離を行うことができ、PCBH不良が増加する問題が発生しづらく、歩留まりを向上させることができる。
 以下、図2~図16を用いて、図1に示した半導体装置100の製造方法について説明する。
 まず、図2に示すように、半導体基板1の上に、周知のSTI法により、第1の方向(X’方向)に延在する酸化シリコン膜を含む絶縁膜で埋設された素子分離領域2を形成する。これにより、素子分離領域2で囲まれ、半導体基板1からなる活性領域1Aが形成される。なお、ここでは素子分離領域2は、ライナー窒化膜2aと酸化シリコン膜2bの積層構造を示しているがこれに限定されるものでは無い。
 次に、半導体基板1上全面に酸化シリコン膜からなるパッド酸化膜3を形成し、このパッド酸化膜3を通して、図示しないNウェル領域およびPウェル領域を公知の方法で形成する。
 次に、図3に示すように、半導体基板1上に酸化シリコン膜等を堆積し、レジスト(図示せず)にてY方向に延在し、一定の間隔で複数の溝5を形成するためのハードマスク4をパターニングする。
 そして、半導体基板1をドライエッチングによってエッチングし、溝5を形成する。溝5のうち隣接する2本一対の溝(5aと5b又は5dと5e)は、従来と同様にワード線用溝であり、二対の溝間(5bと5dの間)の溝5cは従来のダミーワード線用溝に相当するが、本発明では後工程で溝5cを拡散層分離溝29とする。このとき、素子分離領域2の酸化シリコン膜を半導体基板1のシリコンよりも深くエッチングすることで、図3(b)に示すように、サドルフィン1Bを形成している。サドルフィン1Bとすることは必須ではなく、活性領域1Aと素子分離領域2における溝深さをほぼ同等にしてもよい。これにより、活性領域1Aは、一対の溝5aと5b(又は5dと5e)に挟まれた第1部分と、一対の溝5a又は5bと溝5cに挟まれた第2部分に分けられる。第1部分はビット線が接続される領域となり、第2部分は容量コンタクトプラグが接続される領域となる。
 その後、半導体基板1の活性領域1A上に熱酸化および窒化プロセス等を用いてゲート絶縁膜6を形成する。熱酸化により素子分離領域2のライナー窒化膜も一部酸化され、続く窒化プロセスにより酸化シリコン膜が酸窒化シリコン膜に変換される。これによりゲート絶縁膜6は素子分離領域2の絶縁膜、ハードマスク4上にも連続して形成される。
 さらに、図4に示すように、窒化チタン等のバリア膜7、タングステン等のメタル膜8等を、たとえばCVD法にて堆積させ、エッチバックすることにより、溝5a、5b、5d、5e内にワード線10a、10b、10d、10eを形成する。この時、溝5c内にも同様にダミーワード線10cが形成される。
 次に、図5に示すように、残存したメタル膜8上および溝5a~5eの内壁を覆うように、図示はしていないが窒化シリコン膜等でライナー膜をたとえばCVD法にて形成する。ライナー膜上に酸化シリコン膜を堆積する。その後、CMPを行って、ライナー膜が露出するまで表面を平坦化する。さらに、露出するライナー膜を除去し、ハードマスク4及び酸化シリコン膜を所定の高さまでエッチバックする。これにより、キャップ絶縁膜11で埋め込まれた埋込ワード線が形成される。キャップ絶縁膜11は、残存するハードマスク4が薄い場合には、ハードマスク4を覆うように形成してもよく、後工程で形成するビット線と容量コンタクトプラグを接続する拡散層との間に十分な距離を確保する。
 次に、図6に示すように、フォトリソグラフィ技術およびドライエッチング技術を用いて、ハードマスク4の一部を除去し、各ビット線コンタクト領域、図7Bでは第3BLコンタクト領域17c、および第2BLコンタクト領域17bの上面に接続するビットコンタクトを形成する。ビットコンタクトは、ワード線10と同じ方向(Y方向)に延在するライン状の開口パターンとして形成される。ビットコンタクトのパターンと活性領域の交差した部分では、半導体基板1表面(第1部分)が露出する。ビットコンタクトを形成した後に、N型不純物(ヒ素等)をイオン注入し、シリコン表面近傍にN型不純物拡散層12を形成する。形成したN型不純物拡散層12は、トランジスタのソース・ドレイン領域として機能する。その後、ポリシリコン膜13、タングステン膜14、窒化シリコン膜15等の積層膜をたとえばCVD法にて形成する。そして、フォトリソグラフィ技術およびドライエッチング技術を用いてワード線10と交差する方向(X方向)に延在するライン形状にパターニングし、ビット線16を形成する。ビットコンタクト内で露出しているシリコン表面部分で、ビット線下層のポリシリコン膜13とN型不純物拡散層12とが接続する。図6(c)に示す部分では、第2BL16bとN型不純物拡散層12bが接続され、第3BL16cとN型不純物拡散層12cが接続される。
 次に、図7に示すように、各ビット線16の側面を覆う窒化シリコン膜18を形成した後に、エッチングによって酸化シリコン膜のハードマスク4、パッド酸化膜3およびキャップ絶縁膜11の一部を除去し、キャップ絶縁膜11の表面が、半導体基板1のシリコン表面と概略同程度の高さになるようエッチバックする。その上面を覆うライナー膜19を窒化シリコン膜等でたとえばCVD法を用いて形成する。
 ビット線間のスペース部を充填するように、塗布膜であるSOD膜20を堆積した後に、高温の水蒸気(HO)雰囲気中でアニール処理を行い、固体の膜に改質する。ライナー膜19の上面が露出するまでCMPを行って平坦化した後に、キャップ酸化シリコン膜21として、たとえばCVD法で形成した酸化シリコン膜を形成し、SOD膜20の表面を覆う。さらに、キャップ酸化シリコン膜21の上にマスクポリシリコン膜22を形成する。
 次に、図8に示すように、フォトリソグラフィ技術およびドライエッチング技術を用いて、容量コンタクトホール23を形成する。具体的にはリソグラフィ技術を用いてライン状にパターニングし、キャップ酸化シリコン膜21、マスクポリシリコン膜22を容量コンタクトハードマスクにする。容量コンタクトハードマスクは、ダミーワード線10cと同じ方向(Y方向)に延在し、ダミーワード線10c上を開口するライン状の開口パターンとして形成される。
 ドライエッチング技術を用いて、SOD膜20、ライナー膜19を貫通して容量コンタクトホール23を形成する。容量コンタクトホール23と活性領域1Aの交差している部分で、半導体基板1(第2部分)が露出する。次に、窒化シリコン膜をたとえばCVD法を用いて形成し、エッチバックし、窒化膜サイドウォール24を形成する。
 次に、図9に示すように、容量コンタクトホール23の内部に、N型不純物(リン等)をドーピングしたポリシリコンをたとえばCVD法を用いて埋め込む。続いて、ポリシリコンをエッチバックし、容量コンタクトホール23内部が完全に埋まらない高さまでポリシリコンを残しポリシリコンプラグ25を形成する。このとき、マスクポリシリコン膜22も除去される。ポリシリコンプラグ25にドーピングされたN型不純物によって、容量コンタクト領域27a、27b、27c表面近傍にN型不純物拡散層26a、26b、26cが形成される。形成されたN型不純物拡散層26a、26b、26cは、トランジスタのソース・ドレイン領域として機能する。
 次に、図10に示すように、容量コンタクトホール内の残ったポリシリコンプラグ25を覆うように窒化シリコン膜28を形成する。
 次に、図11に示すように、窒化シリコン膜28をエッチバックし、窒化膜サイドウォール28Sを形成する。そして、この窒化膜サイドウォール28Sをマスクにポリシリコンプラグ25をドライエッチングする。これで、第2容量コンタクト領域27bに接続された第2容量コンタクトプラグ25bと第3容量コンタクト領域27cに接続された第3容量コンタクトプラグ25cとをX方向に分離ができる。なお、この状態では、各ポリシリコンプラグ25は、窒化膜サイドウォール28S下ではビット線16上でY方向に繋がっている。第2容量コンタクトプラグ25bと第3容量コンタクトプラグ25cの間にはダミーワード線10cのキャップ絶縁膜11が露出する。図11の工程までは、図18に示す従来例の半導体装置500の製造工程と同じである。
 ここで、本実施形態例では、図12に示すように、ダミーワード線10c上部のキャップ絶縁膜11を、ドライエッチング法を用いてエッチングし、除去する。このとき、同時にゲート絶縁膜6の一部も除去されてもよい。図12(c)、(d)ではゲート絶縁膜6の一部が同時に除去された状態を示している。
 次に、図13に示すように、ダミーワード線10c内部のバリア膜7、メタル膜8を過酸化水素水、キレート剤、水酸化アルカリ、ヨウ素化合物を含んだエッチング溶液に浸漬して除去する。エッチング溶液に浸漬して除去するため、図13(b)に示すように、ビット線16下方のダミーワード線10c内部のバリア膜7、メタル膜8も除去することができる。また、このエッチング溶液はポリシリコンをエッチングしないため、ポリシリコンプラグ25はエッチングされない。さらにゲート絶縁膜6をフッ酸溶液に浸漬して除去する。フッ酸溶液に浸漬して除去するため、図13(b)に示すように、ビット線16下方の素子分離領域2の酸化シリコン膜2bも除去される。こうすることでダミーワード線10cがあった溝(5c)は半導体基板1が露出する拡散層分離溝29となる。このとき、素子分離領域2における拡散層分離溝29の幅は活性領域における幅よりも広くなる。なお、ゲート絶縁膜6及び素子分離領域2の酸化シリコン膜2bの除去は必須ではなく、そのまま残していてもよい。その場合は、素子分離領域2における拡散層分離溝29の幅は活性領域における幅と同じとなる。
 次に、図14に示すように、窒化シリコン膜等で拡散層分離溝29を埋め込み、サイドウォール窒化シリコン膜28S、ポリシリコンプラグ25a、25b、25cを覆うように拡散層分離絶縁膜30を形成する。拡散層分離溝29を窒化シリコン膜で埋め込むことで、素子分離領域2では素子分離絶縁膜である酸化シリコン膜2bが窒化シリコン膜である拡散層分離絶縁膜30で分断される。
 次に、図15に示すように、拡散層分離絶縁膜30、サイドウォール窒化シリコン膜28SをCMPで研磨し、ビット線16上のキャップ絶縁膜15の上面が露出するまで平坦化する。これによりポリシリコンプラグ25はビット線16によりY方向に分離される。その後、ポリシリコンプラグ25をエッチバックし、容量コンタクトホール23内の下部に残したポリシリコンで容量コンタクトプラグ25a、25b、25cを完成させる。
 次に、図16に示すように、容量コンタクトホール内の容量コンタクトプラグ25が埋め込まれていない部分にCVD法を用いて窒化チタン等のバリア膜31、タングステン等のメタル膜32等の配線材料層を埋め込む。続いて、フォトリソグラフィ技術およびドライエッチング技術を用いて、容量コンタクトパッド33を形成する。容量コンタクトプラグ25の上面にコバルトシリサイド等のシリサイド膜を形成して、容量コンタクトパッド33との接触抵抗を低減させてもよい。
 その後、図1に示すように、容量コンタクトパッド33上を覆うように、窒化シリコン膜を用いてストッパー膜34を形成する。容量コンタクトパッド33上に窒化チタン等でキャパシタ素子の下部電極35を形成する。そして、下部電極35の表面を覆うように容量絶縁膜36を形成した後に、窒化チタン等でキャパシタ素子の上部電極37を形成する。その後、図示していないが配線形成工程を繰り返すことで多層配線を形成し、半導体装置100を形成する。
 上記半導体装置の製造方法の実施例では、第1活性領域1Aaと第2活性領域1Abの素子分離を、従来技術のように、ダミーワード線10cによるフィールドシールドによって行うのではなく、拡散層分離溝29に埋設された拡散層分離絶縁膜30によって行う構造になっている。そのため、微細化が進み、ピッチが狭くなっても、十分な素子分離を行うことができ、PCBH不良が増加する問題が発生しづらく、歩留まりを向上させることができる。
 なお、本実施形態例において、ポリシリコンプラグ25のエッチバック(図15)やその後のコンタクトパッド33の形成は必須ではない。本発明では、一つのコンタクトホール23内に形成されたコンタクトプラグ、すなわち、拡散層分離絶縁膜30を介してX方向に対峙する2つの容量コンタクトプラグ(図では25bと25c)は、容量コンタクトハードマスクの傾斜面を利用して、上面の中心間距離が下面の中心間距離よりも広く形成できるため、容量コンタクトプラグ上にキャパシタの下部電極を形成しても、キャパシタ間の間隔を十分に確保することができる。
 実施形態例2
 図17は、本発明の好ましい実施形態による半導体装置200の製造工程の途中を示すもので、(a)は模式的平面図、(b)は(a)のY1-Y1’断面図、(c)は(a)のX1-X1’断面図、(d)は(a)のX2-X2’断面図である。
 図17を参照すると、半導体基板1に、トランジスタのゲート電極を兼ねるワード線10a、10b、10d、10eが設けられている。この時、同時に拡散層分離用の溝29’も設けられており、実施形態例1の溝29(破線部)と比較して、少なくともX’方向に延在する素子分離領域2と同じか、それよりも深い位置まで掘り下げた構造になっている。具体的には実施形態例1の実施形態例1の溝29底部より深さT1ほど深く掘り込んでいる。拡散層分離用の溝29’の彫り込み深さT1は100nm~160nmの範囲が望ましく、本実施形態例ではT1=150nmとした。溝29’の内部は窒化シリコン膜等の拡散層分離絶縁膜30が埋設されている。
 具体的には、実施形態例1の図13工程まで実施した後、半導体基板1が露出した拡散層分離溝29をドライエッチング法を用いて、深さT1=150nmほど、半導体基板1をエッチングする。拡散層分離溝29’のエッチング深さT1は100nm~160nmの範囲が望ましい。ここでは、素子分離領域2と接する半導体基板1の一部が拡散層分離溝29’の底部より高く、拡散層分離溝29の底部の位置で残る状態を示しているが、等方性をやや強めたエッチングを行って素子分離領域における底部と活性領域における底部とがほぼ連続するようにしてもよい。
 以降の工程は、実施形態例1の図14~図16と同様である。
 本実施形態例の半導体装置200では、実施形態例1よりも深い位置まで掘り下げた拡散層分離溝29’を形成している。そのため、実施形態例1よりさらに微細化が進み、ピッチが狭くなっても、十分な素子分離を行うことができ、PCBH不良が増加する問題が発生しづらく、歩留まりを向上させることができる。
1.半導体基板
 1A.活性領域
  1Aa.第1活性領域
  1Ab.第2活性領域
 1B.サドルフィン
2.素子分離領域
 2a.ライナー窒化膜
 2b.酸化シリコン膜
3.バッド酸化膜
4.ハードマスク
5.ワード線用の溝
6.ゲート絶縁膜
7.バリア膜
8.メタル膜
10a,10b,10d,10d.ワード線
10c.ダミーワード線
11.キャップ絶縁膜
12.N型不純物拡散層
13.ポリシリコン膜
14.タングステン膜
15.窒化シリコン膜
16.ビット線
17.ビット線コンタクト領域
18.窒化シリコン膜
19.ライナー膜
20.SOD膜
21.キャップ酸化シリコン膜
22.マスクポリシリコン膜
23.容量コンタクトホール
24.窒化膜サイドウォール
25.ポリシリコンプラグ
26a~26c.N型不純物拡散層
27a~27c.容量コンタクト領域
28.窒化シリコン膜
29.拡散層分離溝
30.拡散層分離絶縁膜
31.バリア膜
32.メタル膜
33.容量コンタクトパッド
34.ストッパー膜
35.下部電極
36.容量絶縁膜
37.上部電極
100,200.半導体装置

Claims (19)

  1.  半導体基板上の、第1の方向に延在する複数の素子分離領域と
     前記素子分離領域に挟まれ、前記第1の方向に延在する活性領域と、
     前記第1の方向と交差する第2の方向に延在して所定の間隔で配置された複数の溝と、
     前記溝のうち、それぞれ1本の溝を間に介して隣接する2つの溝内に埋め込まれた埋め込みワード線対と、
     前記第1及び第2の方向と異なる第3の方向に延在し、前記埋め込みワード線対間の活性領域に接続されるビット線と、
     前記ビット線の接続される活性領域に対して前記埋め込みワード線対のそれぞれを介して対向する活性領域に接続されるコンタクトと、
     前記埋め込みワード線対の間の前記溝内に埋め込まれ、かつ該溝の両側の前記コンタクト及び前記コンタクトの接続される前記活性領域の拡散層を絶縁分離する拡散層分離絶縁膜と
    を備えた半導体装置。
  2.  前記溝は、前記素子分離領域における深さが前記活性領域における深さよりも深いことを特徴とする請求項1に記載の半導体装置。
  3.  少なくとも前記活性領域において、前記拡散層分離絶縁膜が埋め込まれる溝の深さが、前記埋め込みワード線が埋め込まれる溝よりも100nm~160nmの範囲で深いことを特徴とする請求項1に記載の半導体装置。
  4.  前記拡散層分離絶縁膜が埋め込まれる溝の前記活性領域における深さが、前記拡散層分離絶縁膜が埋め込まれる溝の前記素子分離領域における深さと略同等である請求項3に記載の半導体装置。
  5.  前記拡散層分離絶縁膜が埋め込まれる溝は、前記活性領域よりも前記素子分離領域においてその幅が広いことを特徴とする請求項1乃至4のいずれか1項に記載の半導体装置。
  6.  前記素子分離領域は酸化シリコン膜を含み、前記拡散層分離絶縁膜が埋め込まれる溝において、前記酸化シリコン膜が前記拡散層分離絶縁膜で分断されていることを特徴とする請求項1乃至5のいずれか1項に記載の半導体装置。
  7.  前記拡散層分離絶縁膜が窒化シリコン膜を含むことを特徴とする請求項6に記載の半導体装置。
  8.  前記拡散層分離絶縁膜を介して前記第3の方向に対峙する2つの前記コンタクトは、上面の中心間距離が下面の中心間距離よりも広いことを特徴とする請求項1乃至7のいずれか1項に記載の半導体装置。
  9.  前記コンタクト上面に容量コンタクトパッドを有し、更に前記容量コンタクトパッドに接続される下部電極と、前記下部電極と容量絶縁膜を介して対向する上部電極とを備えたキャパシタを有する請求項8に記載の半導体装置。
  10.  半導体基板上に、第1の方向に延在する複数の素子分離領域を形成し、前記素子分離領域間に前記第1の方向に延在する活性領域を規定する工程、
     前記第1の方向と交差する第2の方向に延在する隣接する2本一対のワード線溝と、前記一対のワード線溝間に拡散層分離溝とを、前記素子分離領域よりも浅い複数の溝として所定間隔を空けて前記半導体基板上に形成し、前記活性領域を前記2本のワード線溝に挟まれた第1部分と前記ワード線溝と拡散層分離溝とに挟まれた第2部分に分割する工程、
     前記複数の溝内にゲート絶縁膜を介して第1の導電材料を埋設する工程、
     前記第1の導電材料を前記半導体基板表面よりも低い位置までエッチバックし、2本一対のワード線と前記一対のワード線間にダミーワード線を形成する工程、
     前記ワード線及びダミーワード線上の前記溝を埋め込む絶縁膜を形成する工程、
     前記絶縁膜上に、前記第1部分に接続され、前記第1及び第2の方向と異なる第3の方向に延在し、上部絶縁膜を有するビット線を形成する工程、
     前記2本一対のワード線上で前記第2の方向に延在するマスクパターンを形成し、前記ダミーワード線の両側の前記第2部分の活性領域を露出し、前記ビット線間と前記マスクパターン間で規定されるコンタクトホールを開口する工程、
     前記コンタクトホールを埋めて前記マスクパターンの上部より低い位置まで第2の導電材料を埋設する工程、
     前記マスクパターンの側壁にサイドウォールを形成し、前記ダミーワード線上の前記第2の導電材料上面を露出する開口する工程、
     前記サイドウォールをマスクに前記第2の導電材料をエッチングして前記ダミーワード線上部の埋め込んでいた絶縁膜を露出する工程、
     前記絶縁膜をドライエッチングにて除去し、更に露出した前記第1の導電材料をウェットエッチングで除去して拡散層分離溝を形成する工程、
     前記拡散層分離溝を埋めて全面に拡散層分離絶縁膜を形成する工程、
      前記拡散層分離絶縁膜を前記マスクパターン及び前記第2の導電材料を露出するようにエッチバックした後、前記第2の導電材料を前記ビット線の上部絶縁膜高さ以下までエッチバックし、前記コンタクトホール内に前記拡散層分離絶縁膜で絶縁分離された前記第2の導電材料からなるコンタクトプラグを形成する工程
    とを有する半導体装置の製造方法。
  11.  前記拡散層分離溝は、前記ダミーゲート溝底の前記素子分離領域の絶縁膜の一部を除去して形成される請求項10に記載の半導体装置の製造方法。
  12.  前記拡散層分離溝は、前記ダミーゲート溝の底部の半導体基板を更にエッチングして形成される請求項10又は11に記載の半導体装置の製造方法。
  13.   前記拡散層分離溝は、前記ワード線溝よりも100nm~160nmの範囲で深くなるようにエッチングされる請求項12に記載の半導体装置の製造方法。
  14.  前記拡散層分離絶縁膜が窒化シリコン膜を含むことを特徴とする請求項10乃至13のいずれか1項に記載の半導体装置の製造方法。
  15.  前記マスクパターンは、前記コンタクトホールが前記第3の方向で底部から上部に広がる傾斜形状に形成される請求項10乃至14のいずれか1項に記載の半導体装置の製造方法。
  16.  前記第3の方向は、前記第2の方向と直交する方向である請求項10乃至15のいずれか1項に記載の半導体装置の製造方法。
  17.  前記コンタクトプラグを形成する工程において、前記拡散層分離絶縁膜、前記マスクパターン及び前記第2の導電材料を前記ビット線の上部絶縁膜高さまでエッチバックする請求項10乃至16のいずれか1項に記載の半導体装置の製造方法。
  18.  前記拡散層分離絶縁膜で分離されたコンタクトプラグ上面を更にエッチバックして前記ビット線上の絶縁膜及び前記マスクパターン上面より低くする工程と、
     全面に第3の導電材料を成膜し、該第3の導電材料を前記ビット線上で第2の方向に分割し、前記マスクパターン上又は前記拡散層分離絶縁膜上に一部延在するコンタクトパッドを形成する工程とを更に有する請求項17に記載の半導体装置の製造方法。
  19.  前記コンタクトパッドに接続される下部電極と、前記下部電極に対して容量絶縁膜を介して対向する上部電極とを備えるキャパシタを形成する工程を更に有する請求項18に記載の半導体装置の製造方法。
PCT/JP2014/052710 2013-02-08 2014-02-06 半導体装置及びその製造方法 WO2014123170A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/766,708 US20150371946A1 (en) 2013-02-08 2014-02-06 Semiconductor device and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-023193 2013-02-08
JP2013023193 2013-02-08

Publications (1)

Publication Number Publication Date
WO2014123170A1 true WO2014123170A1 (ja) 2014-08-14

Family

ID=51299762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052710 WO2014123170A1 (ja) 2013-02-08 2014-02-06 半導体装置及びその製造方法

Country Status (3)

Country Link
US (1) US20150371946A1 (ja)
TW (1) TW201448177A (ja)
WO (1) WO2014123170A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108933135A (zh) * 2017-05-25 2018-12-04 三星电子株式会社 包括扩大的接触孔的半导体器件及其形成方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10388564B2 (en) * 2016-01-12 2019-08-20 Micron Technology, Inc. Method for fabricating a memory device having two contacts
TWI649838B (zh) * 2018-04-10 2019-02-01 華邦電子股份有限公司 半導體裝置及其製造方法
JP2020013889A (ja) * 2018-07-18 2020-01-23 キオクシア株式会社 半導体記憶装置
TWI702599B (zh) * 2019-07-12 2020-08-21 華邦電子股份有限公司 動態隨機存取記憶體及其製造方法
CN112310078B (zh) * 2019-07-31 2023-08-04 华邦电子股份有限公司 动态随机存取存储器及其制造方法
EP4207287A4 (en) * 2020-10-15 2024-06-19 Changxin Memory Technologies, Inc. SEMICONDUCTOR DEVICE, SEMICONDUCTOR STRUCTURE AND ASSOCIATED FORMATION METHOD

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008263201A (ja) * 2007-04-13 2008-10-30 Qimonda Ag メモリセルアレイを備えた集積回路および集積回路の形成方法
JP2012175111A (ja) * 2011-02-22 2012-09-10 Sk Hynix Inc 半導体素子及びその形成方法
JP2012234964A (ja) * 2011-04-28 2012-11-29 Elpida Memory Inc 半導体装置及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129771A (ja) * 2009-12-18 2011-06-30 Elpida Memory Inc 半導体装置及びその製造方法
JP2011159739A (ja) * 2010-01-29 2011-08-18 Elpida Memory Inc 半導体装置および半導体装置の製造方法
KR101598834B1 (ko) * 2010-02-17 2016-03-02 삼성전자주식회사 콘택 플러그를 구비한 반도체 소자 및 그 제조 방법
JP2012174866A (ja) * 2011-02-21 2012-09-10 Elpida Memory Inc 半導体装置およびその製造方法
KR101215952B1 (ko) * 2011-06-22 2012-12-27 에스케이하이닉스 주식회사 반도체 장치 및 그 제조 방법
US9401363B2 (en) * 2011-08-23 2016-07-26 Micron Technology, Inc. Vertical transistor devices, memory arrays, and methods of forming vertical transistor devices
JP2013058676A (ja) * 2011-09-09 2013-03-28 Elpida Memory Inc 半導体装置及びその製造方法、並びにデータ処理システム
KR101847628B1 (ko) * 2011-09-28 2018-05-25 삼성전자주식회사 금속함유 도전 라인을 포함하는 반도체 소자 및 그 제조 방법
KR101883656B1 (ko) * 2012-03-30 2018-07-31 삼성전자주식회사 활성영역과의 접촉면적이 확대된 콘택을 포함하는 반도체 소자 및 그 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008263201A (ja) * 2007-04-13 2008-10-30 Qimonda Ag メモリセルアレイを備えた集積回路および集積回路の形成方法
JP2012175111A (ja) * 2011-02-22 2012-09-10 Sk Hynix Inc 半導体素子及びその形成方法
JP2012234964A (ja) * 2011-04-28 2012-11-29 Elpida Memory Inc 半導体装置及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108933135A (zh) * 2017-05-25 2018-12-04 三星电子株式会社 包括扩大的接触孔的半导体器件及其形成方法
CN108933135B (zh) * 2017-05-25 2023-06-30 三星电子株式会社 包括扩大的接触孔的半导体器件及其形成方法

Also Published As

Publication number Publication date
US20150371946A1 (en) 2015-12-24
TW201448177A (zh) 2014-12-16

Similar Documents

Publication Publication Date Title
US8022457B2 (en) Semiconductor memory device having vertical channel transistor and method for fabricating the same
JP5731858B2 (ja) 半導体装置及び半導体装置の製造方法
JP5693809B2 (ja) 半導体装置及びその製造方法
KR102476141B1 (ko) 스페이서를 포함하는 반도체 소자 및 그 제조 방법
WO2014123170A1 (ja) 半導体装置及びその製造方法
JP2009158591A (ja) 半導体装置およびその製造方法
JP2011018825A (ja) 半導体装置及びその製造方法
US20150371895A1 (en) Method for manufacturing smeiconductor device
WO2014185360A1 (ja) 半導体装置の製造方法
JP2011142256A (ja) 半導体装置及びその製造方法
JP2010016168A (ja) 半導体装置およびその製造方法
JP2013254815A (ja) 半導体装置およびその製造方法
JP2011159739A (ja) 半導体装置および半導体装置の製造方法
US8999827B2 (en) Semiconductor device manufacturing method
JP2009182114A (ja) 半導体装置およびその製造方法
JP2010272679A (ja) 半導体装置及びその製造方法
JP2012253122A (ja) 半導体装置の製造方法、並びにデータ処理システム
JP2016009801A (ja) 半導体装置の製造方法
JP2010165742A (ja) 半導体装置および半導体装置の製造方法
JP2008171872A (ja) 半導体装置及びその製造方法
JP2013201414A (ja) 半導体装置及びその製造方法
WO2014069213A1 (ja) 半導体装置およびその製造方法
WO2014092003A2 (ja) 半導体装置およびその製造方法
JP2014216409A (ja) 半導体装置の製造方法
WO2014123176A1 (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14748614

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14766708

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14748614

Country of ref document: EP

Kind code of ref document: A1