JP2007076305A - 光走査装置及び画像形成装置、光走査補正方法、並びに画像形成方法 - Google Patents

光走査装置及び画像形成装置、光走査補正方法、並びに画像形成方法 Download PDF

Info

Publication number
JP2007076305A
JP2007076305A JP2005270093A JP2005270093A JP2007076305A JP 2007076305 A JP2007076305 A JP 2007076305A JP 2005270093 A JP2005270093 A JP 2005270093A JP 2005270093 A JP2005270093 A JP 2005270093A JP 2007076305 A JP2007076305 A JP 2007076305A
Authority
JP
Japan
Prior art keywords
light beam
light
scanning
optical
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005270093A
Other languages
English (en)
Other versions
JP4694926B2 (ja
Inventor
Iwao Matsumae
巌 松前
Yoshinobu Sakagami
嘉信 坂上
Kazunori Sakauchi
和典 坂内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005270093A priority Critical patent/JP4694926B2/ja
Priority to US11/521,560 priority patent/US7589756B2/en
Publication of JP2007076305A publication Critical patent/JP2007076305A/ja
Application granted granted Critical
Publication of JP4694926B2 publication Critical patent/JP4694926B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/01Apparatus for electrographic processes using a charge pattern for producing multicoloured copies
    • G03G15/0105Details of unit
    • G03G15/011Details of unit for exposing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/01Apparatus for electrophotographic processes for producing multicoloured copies
    • G03G2215/0103Plural electrographic recording members
    • G03G2215/0119Linear arrangement adjacent plural transfer points
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/01Apparatus for electrophotographic processes for producing multicoloured copies
    • G03G2215/0151Apparatus for electrophotographic processes for producing multicoloured copies characterised by the technical problem
    • G03G2215/0158Colour registration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Fax Reproducing Arrangements (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

【課題】高度な検知精度・補正精度を得ることができる光走査装置及び該光走査装置を用いた画像形成装置を提供し、また光走査方法及び画像形成方法を提供する。
【解決手段】複数の感光体上にそれぞれ形成された複数の単色画像を合成して単一のカラー画像として出力する画像形成装置に用いられ、複数の光源と、該光源からの光ビームを偏向させる偏向手段と、前記光ビームごとに設けられ偏向された光ビームを前記感光体まで導く複数の光学素子と、前記光ビームごとに設けられ副走査方向の前記光ビームの位置を検知するビーム検知手段と、前記光ビームごとに設けられ該ビーム検知手段の検知結果に基づいて感光体上の光ビーム照射位置を変位させる色ずれ補正手段とを備える光走査装置であって、前記ビーム検知手段300a,300bは、前記光学素子のうち最も感光体側のもの33と該感光体34との間に配置されることを特徴とする。
【選択図】図3

Description

本発明は、光源から出射された後に偏向器で反射された光ビームを感光体に照射して静電潜像の書込みを行う光走査装置及び該光走査装置を用いた画像形成装置、並びに光走査補正方法及び画像形成方法に関するものである。
一つのポリゴンモータで、各色の画像を同時に形成するタンデム方式の画像形成装置では、光書込みユニットである光走査装置内のポリゴンモータの発熱や、機内の環境変化により各光学素子間の位置及び角度等が微妙に変化することで、感光体への光ビームの走査位置が変化し、色間のレジスト、色間の走査線傾き、色間の走査線曲がりなどが生じ、合成されるカラー画像の色ずれとなっていた。また、この現象はとくに副走査方向の色ずれが問題となっていた。
このため、副走査方向の位置ずれ量を検知するパターン画像(レジストマーク画像)を感光体ドラムや転写媒体に設ける方法が広く行なわれている。これにより、例えば、転写媒体上に転写されたパターン画像からセンサにより位置ずれ量に基づいて、色ずれ量の低減が可能である。
ところが、この方法によると、感光体ドラムや転写媒体(中間転写ベルト)の近傍に位置ずれパターン画像を配置するために、塵埃等によってパターン画像が汚れてしまうという問題があった。また、感光体ドラムや転写ベルトにキズがついたり、異物が付着した場合、パターン画像が正しく書かれなくなる恐れが有り、その結果、検知ができなくなったり、検知できたとしても補正結果が適正なものでなくなることがあった。
そこでその問題を解消する手段として、各色の光ビームの走査位置を検知するセンサを設置して各ビーム相互の位置関係の変動を検出し、その結果を光ビームの変調タイミングの制御に反映させて色ずれを補正する技術が提案されている(例えば、特許文献1,2,3参照。)。
特許第3087748号公報 特開2000−235290号公報 特開2004−287380号公報
しかしながら、上記色ずれ補正の技術において、センサに至る光ビームが実際の画像を書き込む際に通過する光学素子を通っていないために、あるいは露光面に到達する光ビームが通過せぬ光学素子(光路を折り返すもの,または結像位置を変えるためのもの)を通っているために、センサの検知結果に基づいて適正に補正したつもりのレジストが実際の画像とリンクしない恐れがあった。
本発明は、以上の従来技術における問題に鑑みてなされたものであり、さらに高度な検知精度・補正精度を得ることができる光走査装置及び該光走査装置を用いた画像形成装置を提供することを目的とし、また光走査補正方法及び画像形成方法を提供することを目的とする。
本発明は、本発明者らの前記知見に基づくものであり、前記課題を解決するための手段としては、以下の通りである。即ち、
(1) 複数の感光体それぞれの上で光ビームを走査させて該感光体上にそれぞれ形成された複数の単色画像を合成して単一のカラー画像として出力する画像形成装置に用いられ、前記光ビームを射出する複数の光源と、該光源からの光ビームをそれぞれ偏向させる偏向手段と、前記光ビームごとに設けられ前記偏向手段と対応する感光体との間に順次配置されて該偏向手段で偏向された光ビームを前記感光体まで導く複数の光学素子と、前記光ビームごとに設けられ光ビーム走査方向に直交する方向(副走査方向)の前記光ビームの位置を検知するビーム検知手段と、前記光ビームごとに設けられ該ビーム検知手段の検知結果に基づいて感光体上の光ビーム照射位置を変位させる色ずれ補正手段とを備える光走査装置であって、前記ビーム検知手段は、前記光学素子のうち最も感光体側のものと該感光体との間に配置されることを特徴とする光走査装置。
(2) 前記ビーム検知手段は、光ビーム走査方向(主走査方向)の前記光ビームの位置も検知することを特徴とする前記(1)に記載の光走査装置。
(3) 前記ビーム検知手段は、光ビームの走査線上の少なくとも1ヶ所に設けられる受光素子と、該受光素子における副走査方向の光ビームの位置ずれ量を計測する計測手段とを有し、前記色ずれ補正手段は、前記計測手段により計測された位置ずれ量に基づいて、前記単色画像の副走査方向の相対ずれを補正することを特徴とする前記(1)に記載の光走査装置。
(4) 前記色ずれ補正手段は、前記偏向手段の1走査を単位として前記単色画像の副走査方向の相対ずれを補正することを特徴とする前記(3)に記載の光走査装置。
(5) 前記色ずれ補正手段は、前記偏向手段の1走査より細かい分解能を単位として前記単色画像の副走査方向の相対ずれを補正することを特徴とする前記(3)に記載の光走査装置。
(6) 前記ビーム検知手段は、光ビームの走査線上の上流側と下流側の2ヶ所に設けられる受光素子と、該受光素子それぞれにおける副走査方向の光ビームの位置ずれ量を計測する計測手段とを有することを特徴とする前記(1)に記載の光走査装置。
(7) 前記色ずれ補正手段は、前記計測手段により計測された2つの位置ずれ量の平均値から前記単色画像の副走査方向の相対ずれ補正量を求めることを特徴とする前記(6)に記載の光走査装置。
(8) 前記色ずれ補正手段は、前記計測手段により計測された2つの位置ずれ量に基づいて、前記単色画像の傾きを補正することを特徴とする前記(6)に記載の光走査装置。
(9) 複数の感光体それぞれの上で光ビームを走査させて該感光体上にそれぞれ形成された複数の単色画像を合成して単一のカラー画像として出力する画像形成装置に用いられ、前記光ビームを射出する複数の光源と、該光源からの光ビームをそれぞれ偏向させる偏向手段と、前記光ビームごとに設けられ前記偏向手段と対応する感光体との間に順次配置されて該偏向手段で偏向された光ビームを前記感光体まで導く複数の光学素子と、前記光ビームごとに設けられ光ビーム走査方向(主走査方向)の前記光ビームの位置を検知するビーム検知手段と、前記光ビームごとに設けられ該ビーム検知手段の検知結果に基づいて感光体上の光ビーム照射位置を変位させる色ずれ補正手段とを備える光走査装置であって、前記ビーム検知手段は、前記光学素子のうち最も感光体側のものと該感光体との間に配置されることを特徴とする光走査装置。
(10) 前記ビーム検知手段は、光ビームの走査線上の上流側と下流側の2ヶ所に設けられる受光素子と、該受光素子それぞれにおける主走査方向の光ビームの位置ずれ量を計測する計測手段とを有することを特徴とする前記(9)に記載の光走査装置。
(11) 前記色ずれ補正手段は、前記計測手段により計測された位置ずれ量に基づいて、前記単色画像の主走査方向の倍率ずれを補正することを特徴とする前記(10)に記載の光走査装置。
(12) 前記(1)〜(11)のいずれか一に記載の光走査装置と、該光走査装置により静電潜像の書き込みが行われる感光体と、該感光体の静電潜像をトナー画像として現像する現像手段と、該トナー画像を記録媒体に転写する転写手段と、記録媒体上のトナー画像を定着させる定着手段とを備えることを特徴とする画像形成装置。
(13) 複数の感光体それぞれの上で光ビームを走査させて該感光体上にそれぞれ形成された複数の単色画像を合成して単一のカラー画像として出力する画像形成装置に用いられ、前記光ビームを射出する複数の光源と、該光源からの光ビームをそれぞれ偏向させる偏向手段と、前記光ビームごとに設けられ前記偏向手段と対応する感光体との間に順次配置されて該偏向手段で偏向された光ビームを前記感光体まで導く複数の光学素子とを備える光走査装置における光走査補正方法であって、前記光ビームごとに設けられ光ビーム走査方向に直交する方向(副走査方向)の前記光ビームの位置を検知するビーム検知手段を、前記光学素子のうち最も感光体側のものと該感光体との間に備え、該ビーム検知手段の検知結果に基づいて対応する感光体上の光ビーム照射位置を変位させることを特徴とする光走査補正方法。
(14) 前記光ビーム照射位置の変位は、前記単色画像の副走査方向の相対ずれ及び/又は前記単色画像の傾きを補正するものであることを特徴とする前記(13)に記載の光走査補正方法。
(15) 複数の感光体それぞれの上で光ビームを走査させて該感光体上にそれぞれ形成された複数の単色画像を合成して単一のカラー画像として出力する画像形成装置に用いられ、前記光ビームを射出する複数の光源と、該光源からの光ビームをそれぞれ偏向させる偏向手段と、前記光ビームごとに設けられ前記偏向手段と対応する感光体との間に順次配置されて該偏向手段で偏向された光ビームを前記感光体まで導く複数の光学素子とを備える光走査装置における光走査補正方法であって、前記光ビームごとに設けられ光ビーム走査方向(主走査方向)の前記光ビームの位置を検知するビーム検知手段を、前記光学素子のうち最も感光体側のものと該感光体との間に備え、該ビーム検知手段の検知結果に基づいて対応する感光体上の光ビーム照射位置を変位させることを特徴とする光走査補正方法。
(16) 前記光ビーム照射位置の変位は、前記単色画像の主走査方向の倍率ずれを補正するものであることを特徴とする前記(15)に記載の光走査補正方法。
(17) 前記(13)〜(16)のいずれか一に記載の光走査補正方法により、複数の感光体のうち少なくとも1つの感光体上の光ビーム照射位置を変位させ、ついで該光ビームを走査させて前記感光体上にそれぞれ形成された複数の単色画像を合成して単一のカラー画像として出力することを特徴とする画像形成方法。
本発明の効果として、請求項1の発明によれば、実画像と同一の光学素子を通過した状態で光ビームの走査の同期検知することとなり、精度の高い副走査方向の同期合わせが可能となる。また、ビーム検知手段を光ビームの走査線上の有効走査領域外に配置することにより、常時光ビームの位置検知ができ好ましい。
また、請求項2の発明によれば、請求項1の効果に加えて、装置の小型化・簡素化・低コスト化が図ることができる。また、画像形成時の色ずれ補正を、主副走査方向ともに光走査装置で行なうことができるようになり、従来広く行なわれている中間転写ベルト等にトナーマークを形成する方式を取る必要が無くなり、ベルト(像担持体)の劣化等による検知精度低下を考慮する必要が無くなる。
また、請求項3の発明によれば、光ビームごと(色ごと)の単色画像の副走査方向の相対ずれ(基準色の単色画像に対する対象単色画像の位置ずれ)を補正することができる。
また、請求項4の発明によれば、偏向手段の1走査を単位とする補正をすることにより、狙いの単色画像の位置合わせができるようになる。
また、請求項5の発明によれば、偏向手段の1走査より細かい分解能を単位とする補正とすることにより、より高精度の単色画像の位置合わせができるようになる。
また、請求項6の発明によれば、光ビームの走査線上の主走査方向上流側、下流側それぞれの位置でビーム位置のずれが計測できることにより、単色画像の相対ずれだけではなく、走査線の傾きも検知することができる。
また、請求項7の発明によれば、単色画像の位置合わせができるようになる。
また、請求項8の発明によれば、ビーム検知手段の一方が光ビームの位置ずれを検出し、ついでもう一方のビーム検知手段が光ビームの位置ずれを検出することにより、両者の位置ずれの差から単色画像の傾きを検知することができ、より高精度な色ずれ補正ができるようになる。なお、色ずれ補正手段として、所定方向への応力が加わると変位する支持点を有する形態とした光学素子を用いることにより、容易に単色画像の傾き補正ができる。また、この所定方向への応力を付与する手段としてモータを利用すれば、該時間差に応じた回転角度分、通電することで補正量を得る構成とすることにより、随時自動的な傾き補正が可能となる。
また、請求項9の発明によれば、実画像と同一の光学素子を通過した状態で光ビームの同期検知することができ、精度の高い主走査方向の同期合わせが可能となる。
また、請求項10,11の発明によれば、光ビームの走査線上の主走査方向上流側、下流側それぞれの位置でビーム位置のずれが計測できることにより、両者各々の位置ずれから単色画像の倍率ずれを検知することができ、倍率合わせが可能となる。
また、請求項12の発明によれば、精度よく色ずれが補正されたカラー画像を出力する画像形成装置を提供することができる。
また、請求項13,14の発明によれば、カラー画像の形成の際に副走査方向の色ずれを精度よく補正することができる。
また、請求項15,16の発明によれば、カラー画像の形成の際に主走査方向の色ずれを精度よく補正することができる。
また、請求項17の発明によれば、カラー画像を精度よく補正して出力することができる。
以下に、本発明の一実施の形態における構成ついて説明する。
図1に、本発明を適用した、カラー画像を形成可能な画像形成装置の概略を示す。
画像形成装置1は、複写機であるが、ファクシミリ、プリンタ、複写機とプリンタとの複合機等、他の画像形成装置であっても良い。画像形成装置1が、プリンタ、ファクシミリ等として用いられる場合には、外部から受信した画像情報に対応する画像信号に基づき画像形成処理を行なう。
画像形成装置1は、一般にコピー等に用いられる普通紙の他、OHPシートや、カード、ハガキ等の厚紙や、封筒等の何れをもシート状の記録媒体Sとして画像形成を行なうことが可能である。
画像形成装置1は、イエロー、シアン、マゼンタ、ブラックの各色に色分解された色にそれぞれ対応する単色画像を形成可能な複数の像担持体としての感光体ドラム(単に「感光体」と記すこともある。)1A、2A、3A、4Aを並置したタンデム構造が用いられており、各感光体ドラム1A、2A、3A、4Aに形成された互いに異なる色の可視像が各感光体ドラム1A、2A、3A、4Aに対峙しながら移動可能な中間転写体たる転写ベルト5によって搬送される記録媒体である転写紙Sにそれぞれ重畳転写されるようになっている。
一つの感光体ドラム1A及びその周りに配設された構成を代表して画像形成処理に係る構成を説明する。なお、他の感光体ドラム2A〜4Aに関しても同様な構成であるので、便宜上、感光体ドラム1A及びその周りに配設した構成に付した符号に対応する符号を、感光体ドラム2A〜4A及びその周りに配設した対応する構成に付し、詳細な説明については適宜省略する。
感光体ドラム1Aの周囲には、矢印で示す回転方向に沿って画像形成処理を実行するためにコロトロンあるいはスコトロトン等の構成を用いた帯電装置1B、レーザ光源からのレーザ光を用いる光走査装置20、現像装置1Dおよびクリーニング装置1Eがそれぞれ配置されている。本発明を適用した光走査装置20については、図2以下の図において詳細を説明する。
現像装置1D〜4Dの配列は、図1において転写ベルト5の展張部における右側からイエロー、シアン、マゼンタおよびブラックのトナーを供給できる順序となっている。帯電装置1Bには、図1に示した例では、ローラを用いているが、帯電装置1Bは、ローラを用いた接触式に限らず、放電ワイヤを用いたコロナ放電式を用いることも可能である。
画像形成装置1では、帯電装置1B、光走査装置20、現像装置1Dおよびクリーニング装置1E等が配置されている画像形成部の上部に原稿読み取り部6が配置されており、原稿載置台6A上に載置された原稿を読み取り装置7によって読みとった画像情報を図示しない画像処理制御部に出力し、光走査装置20に対する書き込み情報が得られるようになっている。
読み取り装置7は、原稿載置台6A上に載置されている原稿を走査するための光源7Aおよび原稿からの反射光を色分解毎の色に対応して設けられているCCD7Bに結像させるための複数の反射鏡7Cと結像レンズ7Dとを備えており、色分解毎の光強度に応じた画像情報が各CCD7Bから画像処理制御部に出力される。
転写ベルト5は、複数のローラに掛け回されたポリエステルフィルムなどの誘電体で構成された厚さ100μmの部材であり、展張部分の一つが各感光体ドラム1A〜4Aに対峙し、各感光体ドラム1A〜4Aとの対峙位置内側には、転写装置8A、8B、8C、8Dが配置されている。転写ベルト5の厚さは、製造上±10μmの誤差が生じ、後述するように各色毎に形成されたトナー像が重ねあわされる際に位置ずれが生じることがあるが、これは主に、後述する色ずれ書き込み開始位置補正手段110による補正によって解消される。
転写ベルト5に対しては、レジストローラ9を介して給紙装置10の給紙カセット10A内から繰り出された記録媒体Sが給送され、記録媒体Sが転写ベルト5に対して転写装置8Aからのコロナ放電により静電吸着されて搬送される。転写装置8A〜8Dは、正極のコロナ放電を用いて感光体ドラム1A〜4Aに担持されている画像を記録媒体Sに向けて静電吸着させる特性とされている。
各感光体ドラム1A〜4Aからの画像転写が終了した記録媒体Sが移動する位置には記録媒体Sの分離装置11が、また、展張部分の今一つの部分にはベルトを挟んで対向する除電装置12が配置されている。なお、図1中、符号13は、転写ベルト5に残存しているトナーを除去するクリーニング装置を示している。
分離装置11は、記録媒体Sの上面から負極性のACコロナ放電を行うことにより記録媒体Sに蓄積している電荷を中和して静電的な吸着状態を解除することにより転写ベルト5の曲率を利用した分離を可能にすると共に分離の際の剥離放電によるトナーチリの発生を防止するようになっている。また、除電装置12は、転写ベルト5の表裏両面から転写装置8A〜8Dによる帯電特性と逆極性となる負極性のACコロナ放電を行うことにより転写ベルト5の蓄積電荷を中和して電気的初期化を行うようになっている。
各感光体ドラム1A〜4Aでは、帯電装置1B〜4Bによって感光体ドラム1A〜4Aの表面が一様帯電され、原稿読み取り部6における読み取り装置7によって読み取られた色分解色毎の画像情報に基づき書き込み装置1C〜4Cを用いて感光体ドラムに静電潜像が形成され、該静電潜像が現像装置1D〜4Dから供給される色分解色に対応する補色関係を有する色のトナーにより可視像処理されたうえで、転写ベルト5に担持されて搬送される記録媒体Sに対して転写装置8A〜8Dを介して静電転写される。
各感光体ドラム1A〜4Aに担持された色分解毎の画像(単色画像)が転写された記録媒体Sは、除電装置11により除電された上で転写ベルト5の曲率を利用して曲率分離された後に定着装置14に移動して未定着画像中のトナーが定着され、画像形成装置1本体外部の図示しない排紙トレイ上に排出される。
図2に示すように、光走査装置20はタンデム式の書込光学系である。
図2は光走査装置20の概略を示す図であり、走査レンズ方式を採用しているが、走査レンズ、走査ミラー方式のいずれにも対応可能である。また図2においては、図示の便宜上、2ステーションを示し、これに沿って以下説明するが、偏向手段としてのポリゴンミラー26、27を中心に左右対称に構成することで4ステーションとすることができ、これを画像形成装置1に用いている。画像形成装置1が本実施例のようにカラー画像を形成可能であるため、画像形成装置1がカラー画像を形成する場合には、光走査装置20はカラー画像を形成するために用いられるものである。
光走査装置20は、光源としての2個のLDユニット21、22を有している。光学走査装置20は、LDユニット21、22からそれぞれ出射されたレーザビームたるビームを、像担持体としての感光体ドラムたる感光体34、38のそれぞれに結像させるものであり、このための複数の光学素子からなる光学素子群51、52を、それぞれ、LDユニット21、22および感光体34、38に対応して有しており、これにより、光走査装置20は感光体34、38のそれぞれに対応して配設されている。なお感光体34、38はそれぞれ、上述した感光体ドラム1A〜4Aの何れかに対応するものである。
光学素子群51は、複数の光学素子、すなわちプリズム(後述の書き込み開始位置補正手段110)、折り返しミラー23、シリンダレンズ24、ポリゴンミラー26、第1の走査レンズ28、折り返しミラー31、32、第2の走査レンズ30、折り返しミラー33によって構成されている。光学素子群52は、複数の光学素子、すなわちプリズム(後述の書き込み開始位置補正手段111)、シリンダレンズ25、ポリゴンミラー27、第1の走査レンズ29、第2の走査レンズ35、折り返しミラー36、37によって構成されている。
また、光走査装置20は、光学素子群51を構成する上述した光学素子のうち、第2の走査レンズ30を保持する保持部材61と、光学素子群52を構成する上述した光学素子のうち、第2の走査レンズ35を保持する保持部材62とを有している。保持部材61及びこの保持部材61に保持された被保持光学素子たる光学素子としての第2の走査レンズ30と、保持部材62及びこの保持部材62に保持された被保持光学素子たる光学素子としての第2の走査レンズ35とは、ほぼ同じ構成である。
LDユニット21、22は、ほぼ鉛直方向をなすビームの副走査方向Bにおいて異なる高さに配設されており、上側のLDユニット21から出射されたビームは、書き込み開始位置補正手段110を通過してから、途中の折り返しミラー23で下側LDユニット22から出射されたビームと同一方向に曲げられ、下側のLDユニット22から出射されたビームは折り返しミラー23に入射する前に書き込み開始位置補正手段111を通過し、折り返しミラー23を透過する。その後、LDユニット21のビーム、LDユニット22からのビームはそれぞれシリンダレンズ24、25に入射し、所定距離離れた上下2段のポリゴンミラー26、27反射面近傍に線状に集光する。
なお、LDユニット21、22はそれぞれ、図示を省略するが、少なくとも半導体レーザとコリメートレンズとを有している。書き込み開始位置補正手段110、111はそれぞれ、光屈曲部材としての楔形状のプリズム(図示せず)を有しており、LDユニット21、22から出射されたビームは何れも、書き込み開始位置補正手段110、111を通過するとき、各プリズムを透過するようになっている。ポリゴンミラー26、27は、図示しないポリゴンモータに直結されていて回転駆動される。
ポリゴンミラー26、27で偏向されたビームはそれぞれ、一体型あるいは2段に重ねられた第1の走査レンズ28、29でビーム整形され、その後、第2の走査レンズ30、35でfθ特性と所定のビームスポット径にビーム整形されて感光体34、38の感光体面上を走査する。第1の走査レンズ28、29以降、2個の異なる感光体34、38にビームを導くため光路が異なる。
上側のビームすなわち第1の走査レンズ28を透過したビームは、折り返しミラー31によって90°上方向に向けられ、折り返しミラー32によって90°曲げられてから、長尺プラスチックレンズ上たる第2の走査レンズ30に入射し、折り返しミラー33によってB方向のうち鉛直下方向に曲げられて感光体34上をビームの走査方向である主走査方向Aに走査する。
下側のビームすなわち第1の走査レンズ29を透過したビームは、途中折り返しミラーに入射することなく、長尺プラスチックレンズ下たる第2の走査レンズ35に入射した後、2枚の折り返しミラー36、37によって光路を曲げられて、所定のドラム間ピッチの感光体38上をビームの主走査方向Aに走査する。図2において矢印Cは第2の走査レンズ30、35の光軸方向を示している。
ここで、ビームの位置を検知し位置ずれ検知手段としての機能を有するビーム検知手段であるビームスポット位置検知手段300a、300bが、光学素子群51のうち最も感光体側のものである折り返しミラー33と感光体34との間に配置されている。また、光学素子群52のうち最も感光体側のものである折り返しミラー37と感光体38との間にもビームスポット位置検知手段300a、300bが配置されている。
図3に、ビームスポット位置検知手段300a、300bの配置の詳細を示す。
ビームスポット位置検知手段300a、300bの配置は、感光体34(または38)に照射されるビーム位置との相関をとるため、レンズや反射ミラー等の光学素子をすべて共通に作用させて、ビーム位置を測定できる位置としている。すなわち、感光体34(または38)に照射されるビームの位置をビームスポット位置検知手段300a、300bで他の光学素子を経由させることなく直接検知することができるようになっている。
図3においては、ビームスポット位置検知手段300a、300bは、各色の光ビームに対応してそれぞれ光走査装置20のハウジングに一体的に取り付けられるものであり、保持部材である連結ブラケット20a,20bとビームが透過する防塵ガラス100とで挟まれて固定されている。また、折り返しミラー33または37からのビームは防塵ガラス100を透過するが、このビームのうち、有効画像領域のビームは感光体34または38に照射され、有効画像領域外のビームはビームスポット位置検知手段300a、300bに入射するように、ビームスポット位置検知手段300a、300bがビームの走査線上に配置されている。なお、防塵ガラス100によるビーム位置変動はほとんどないと見なせるので、ビームスポット位置検知手段300a、300bの配置を防塵ガラス100よりも手前(折り返しミラー33(または37)側)に配置してもよい。
また、ビームスポット位置検知手段300aは書き込み開始位置検知用であり、ビームスポット位置検知手段300bは書き込み終端位置検知用である。詳しくは、ビームスポット位置検知手段300aは主走査同期検知手段及び/又は副走査ビーム位置検知手段となり、ビームの主走査同期及び/又は副走査検出が行われる。また、ビームスポット位置検知手段300bにより光走査装置としての主走査倍率及び/又は走査線傾きを計測することができる。
なお、図2に図示されていない他の2つのステーションは、ビームの走査方向が相対的に逆になるので、ビームスポット位置検知手段300a,300bのビーム位置検知に関する書き込み開始、書き込み終端は逆になる。すなわち、4ステーションの内の2つは画像上の(進行方向を上にして)左から,残りは右から走査することになる。
ここで、複数枚の画像を連続プリント出力するなどの場合は、光走査装置20内部ではポリゴンミラー26、27駆動用のポリゴンモータや、LDユニット21、22からの発熱により、また光走査装置20外部では、定着装置14においてトナー定着時のヒーター熱などの影響により、画像形成装置1内部の温度は急激に変化する。この場合、感光体1A〜4A上のビームスポット位置も急激に変動し、1枚目、数枚目、数十枚目と次第に出力カラー画像の色合いが変化する。
そこで、ビームスポット位置検知手段300a、300bを位置ずれ検知手段(ビーム検知手段)として用い、後述する色ずれ補正手段による補正を行う。位置ずれ検知手段としてのビームスポット位置検知手段300a、300bは、非平行フォトダイオードセンサーからなる。ビームスポット位置検知手段300a、300bは、主走査方向の書き込み開始位置を決定する同期信号を検知する機能を兼ねている。
図4に示すように、フォトダイオードPD1、PD1’の受光面は走査ビームに直交し、フォトダイオードPD2、PD2’の受光面はフォトダイオードPD1、PD1’の受光面に対して傾いている。この傾き角をα1とする。また、上記ヒーター熱による温度変化前の走査ビームをL1、温度変化後の走査ビームをL2としたとき、副走査方向にΔZ(未知)ずれたとする。この場合、1対の非平行フォトダイオード間、すなわち非平行フォトダイオードPD1とPD2との間、或いは、非平行フォトダイオードPD1’とPD2’との間を走査ビームL1、L2が通過する時間T1、T2を計測し、T2−T1の時間差を求めることにより、副走査方向の走査位置すなわち書き込み開始位置をモニター、検知する。
副走査方向の相対的なドット位置ずれすなわち副走査方向補正量ΔZは、PD1とPD2との各受光面間のなす角度α1と、時間差T2−T1が既知であるので、計算により容易に求めることができる。この補正量を、書き込み開始位置補正手段110により補正する。したがって、複数枚の画像を連続プリント出力するなどの場合に、感光体1A〜4A上のビームスポット位置が温度変化などにより急激に変動する場合においても、画像データ書込み中においても感光体1A〜4A上のビームスポット位置を補正可能である。フォトダイオードPD1’とPD1との間を走査ビームが通過するに要する時間T0の変動を検知することにより、主走査方向の倍率変動をモニターすることも可能である。なお、図4においてはフォトダイオードを用いたビームスポット位置検知手段300a、300bを示したが、ビーム位置を検知できるものであればこれ以外の受光素子でもよく、例えばラインCCDを用いてもよい。
このように、各ビーム毎に2ヶ所の測定を行なうことで、倍率だけでなく、像担持体を基準としたときの主走査方向一端側の書込み位置を、各ビームとも(走査先端/後端に関わらず)ダイレクトに測れることになる。
以上のように、ビームスポット位置検知手段300a、300bで検知された結果をもとに、種々の色ずれ補正手段により単色画像について補正することが可能となる。その詳細を以下に説明する。
<副走査方向の単色画像の色ずれ(相対ずれ)補正方法>
一つのポリゴンモータで、各色の画像を同時に形成するタンデムの場合には、各色間の単色画像(レジスト)調整を書込みタイミングで行う場合は、ポリゴンミラー1面の走査時間間隔でしか調整できず、最大1ラインの色ずれが発生してしまう。また、光走査装置内のポリゴンモータの発熱により各光学素子間の位置及び角度等微妙に変化することで、感光体への副走査方向の走査位置が変化し色ずれが発生してしまう。このように、温度によって色間のレジストの変化(各色の単色画像の間における相対的なずれ(相対ずれ))は大きく変化し、画像の劣化を招いている。
色ずれ補正方法として、色ズレ検出用パターンを転写部材等に形成し、読取センサにてこのパターンを検出して、色ズレ量を測定し、画像書き込みタイミングを調整して色ズレを低減する装置が既に提案されている。すなわち、この補正方式は、カラー画像形成装置の機内温度の変化や当該装置に外力が加わることにより、各画像形成ユニット自身の位置や大きさ、更には画像形成ユニット内の部品の位置や大きさが微妙に変化することに起因するカラーレジずれを検出し、これを補正するものであるが、色ずれ量の算出量を確かなものにするため、複数のパターンを計測して平均を取るためある程度の時間を有することと、トナーを無駄に消費するため、プリント枚数ごとに実行することはできず、約200枚程度ごとに行っているのが現状である。この実行タイミングでは、上記のようにポリゴンモータの発熱により徐々に色間のレジストがずれて画像の劣化を発生してしまう。また、カラーレジストを測定した際にも、従来の1つのポリゴンモータを用いた書込みユニット場合は、レジストを1走査線単位でしか調整できず、2色間ならば1/2ライン、3色間以上ならば3/4ラインレジストがずれる場合がある。
そこで本発明では、前述の光走査装置から照射するビームについて副走査ビーム位置検出センサとしてビームスポット位置検知手段300a、300bをビーム出射位置に配置することで正確に検出し、ビームを副走査方向に各々変更する偏向素子を用い制御することで色間レジストの色ずれを経時的に補正することを行うものとする。
図5に、補正手順の例を示す。
先ず色ずれ検出パタ−ン動作開始時に、各ビームの主走査同期を検出した後(S14)、副走査方向のビーム位置をビームスポット位置検知手段300a、もしくはビームスポット位置検知手段300a,300bのセンサで測定する(S15)。測定回数は、ポリゴンミラー1回転内でミラーの面倒れが異なることより、正確には1面ごとに微小に変化し、センサの読取り誤差等によるばらつきがあるため、ポリゴンミラー面数(1回転)×n(整数倍)とすることで正確に平均位置を測定できる。
ついで、この測定した各色の副走査方向のビーム位置と色ずれパターンを読取り(S17)、基準色に対して各色ずれの補正値を算出する(S18)。詳しくは、基準色(例えば黒色)の単色画像におけるビーム位置及びその時間を基準とし、各色(基準色以外の色、ここではイエロー、シアン、マゼンタ)の書込みタイミング遅延時間と書込みユニットの副走査方向のビーム位置の設定値を算出しメモリに記憶する。この副走査ビーム位置設定値は、測定した副走査ビーム位置と色ずれ計算し1ライン以下の補正値を足した値とする。
その後、通常のプリント動作時は、図6に示すように光走査装置の副走査ビーム位置を測定し、前述のメモリに格納した副走査ビーム位置設定値と比較し、後述する色ずれ補正手段により副走査ビーム位置を設定値の位置に合うよう補正する。例えば、色ずれ補正手段が、ビーム偏向素子である場合には副走査ビーム位置を設定値の位置に合うように該偏向素子に電圧を供給する。この制御電圧Vrは、1枚のプリントでは一定の電圧に設定すればよく、次の頁の印刷前に同様に副走査方向のビーム位置を再計測して偏向素子の電圧を修正してプリント動作を行う。または、一連のプリントジョブでは、偏向素子の制御電圧Vrを一定値で制御しても良い。
なお、色ずれ補正手段により単色画像の副走査方向の相対ずれを補正するに際し、前記偏向手段の1走査を単位として当該補正を行ってもよいし、該偏向手段の1走査より細かい分解能を単位としても当該補正を行ってもよい。
また、単色画像の副走査方向の相対ずれ補正量を、前記ビームスポット位置検知手段300a、300bのいずれかで検知された結果をもとに算出してもよいが、ビームスポット位置検知手段300a、300bでそれぞれ検知された2つの位置ずれ量の平均値から算出してもよい。
図7〜図10に、色ずれ補正手段の構成例(1)を示す。
ここでは、液晶からなる液晶光学素子140と該液晶光学素子140に電圧を印加する制御回路141との組合せ(図7)を使用し、光ビームを射出する光源と偏向手段との間、または偏向手段と走査レンズとの間に液晶光学素子140を配置する。例えば、図8に示すように、光走査装置20内の構成物の一部(LDユニット22、コリメータレンズ24、ポリゴンミラー26、液晶光学素子140、制御回路141、走査レンズ28)の配置関係を示しており、液晶光学素子140はポリゴンミラー26と走査レンズ28との間に配置されている。ポリゴンミラー26により偏向走査される光ビームは液晶光学素子140により図中D方向(副走査方向)にビーム位置の補正が可能である。
液晶光学素子140の例としては、図9に示すように、電極を有する基板142,143及び液晶層145からなるものが挙げられる。これにより、制御回路141から電極に所定の電位差を印加することで、液晶層145にプリズム作用を生じさせ、入射するビームを所定位置に平行移動させることで、副走査方向にビーム位置を修正することができる。
また、液晶光学素子140のほかの例としては、図10に示すように、液晶層145と該液晶層145のビーム入射側に設けられる電極146,147からなるものが挙げられる。これにより、制御回路141から電極に所定の電位差を印加することで、凸レンズのレンズ作用を生じさせ、ビームを屈折させることで、副走査方向にビーム位置を修正することができる。
図11〜図14に、色ずれ補正手段の構成例(2)を示す。
これらは特開2004−4191号公報に開示されている色ずれ補正手段を利用するものである。すなわち、光ビームを透過し、主走査方向の軸と平行な軸で回転可能に設置された平行平板150を使用し、光ビームを射出する光源と偏向手段との間、または偏向手段と走査レンズとの間に平行平板150を配置する。回転により傾いた平行平板150に光ビームを入射させることにより、副走査方向のビーム位置の補正が可能である(図11)。
図12は平行平板を含む色ずれ補正手段の断面状態を示し、図13は該色ずれ補正手段の斜視を示した図である。
色ずれ補正手段は、偏芯カム151、ステッピングモータ等のアクチュエータ152、平行平板突き当て面153、板ばね154、回転軸159、平行平板150から構成されている。
平行平板150は、平行平板150の下側2ヶ所を受け部の突起に突き当たり、上側は偏芯カム151によって固定され、反対側から板ばね154によって加圧されている。偏芯カム151にはアクチュエータ152が取り付けられ、この回転駆動により偏芯カム151が回転し、平行平板150の上側の突き当て位置を動かすことにより、矢印の方向に平行平板150が回転する。このとき、回転中心は下側の突き当て面(2ヶ所)を通過する軸となる。なお、回転中心は光軸上になくてもよい。
図14は、偏芯カム軸にフィラーを設けたものである。この場合は、偏芯カム軸にフィラーを取り付け、そのフィラーを動かすことによって偏芯カム151を回転させ、平行平板150を回転させる。
これらのいずれの色ずれ補正手段によっても、傾いた平行平板150に入射した光ビームは、該入射光ビームと平行でかつ副走査方向にずれて出射され、その軸ずれ量は平行平板150の回転角に比例して増加する関係となる。
また、この平行平板150に代えて、図15に示すように、断面形状が台形であるプリズム160を配置し、該プリズム160を副走査方向(図中上下方向)の所定位置に平行移動させることにより副走査方向のビーム位置の補正を行ってもよい。なお、プリズム160周りのアクチュエータの構成は前記平行平板のアクチュエータを利用するものでよい。
図16〜図19に、色ずれ補正手段の構成例(3)を示す。
これらは特開2003−330243号公報に開示されている色ずれ補正手段を利用するものである。すなわち、図16に示すように、レーザ発光素子LDは、LDユニット(光学素子ユニット)21として、カップリング光学系であるコリメートレンズ21aとともに保持部材21bに保持されており、レーザ発光素子LDから出射された光ビームBは、コリメートレンズ21a及びポリゴンミラー26との間に配設されているアパーチャ21cとシリンダレンズ24を通して、ポリゴンミラー26に照射される。このLDユニット21は、ポリゴンミラー26及び感光体34に光ビームBを照射させる他の光学素子を保持して光学ユニットを構成する光学ハウジング(図示略)に対して、回転可能に取り付けられているとともに、LDユニット21の回転中心軸OSと光ビームBの光軸が、主に主走査方向に所定のずれを有する状態で取り付けられており、また、ポリゴンミラー26の偏向位置でLDユニット21の回転中心軸OSとビーム光軸を略一致させる構成となっている。
また、LDユニット21は、図17に示すように、その主走査方向側の一端部側にビーム位置調整モータ21eのリードスクリュウ21fが係合しており、ビーム位置調整モータ21eが回転すると、リードスクリュウ21fが回転して、LDユニット21が回転中心軸OSを中心として、図17に矢印で示すように回転する。
ついで、LDユニット21が回転中心軸OSを中心として回転すると、図18に示すように、レーザ発光素子LDとカップリング光学系を保持する保持部材21bからなるLDユニット21が副走査方向に変位して、レーザ照射位置が移動するようになる。
その結果、図19に示すように、レーザ発光素子LDから出射された光ビームBが、感光体34上では、回転中心を中心にして、副走査方向に移動して、ビーム照射位置が変位する。
このように、LDユニット21を回転中心軸OSを中心に回転させることで、繰り返し安定性を向上させることができ、色ずれを高精度に補正することが可能となる。
<傾き補正>
各色の単色画像における走査線傾きは、装置全体の設置状態や環境温度等により変動し副走査方向の色ずれとなってしまう。
従来の補正方法としては、前述の色ずれの検出パターンを中間転写ベルト上に複数列(最低2列)作成し、その位置に対応した複数の読取りフォトセンサにより各色間の傾きによる色ずれを測定し、ついで基準色に対しての傾き量を算出し、この量に基づいて色ずれ補正手段によりビームの傾きを補正していた。詳しくは、各々の色毎にこの傾き量を補正する量とし、この量に基づいて偏向素子への印加電圧を求めるが、この電圧波形は、図20のように一ライン走査中に変化する電圧であり、主走査の同期検知信号をトリガーにして偏向素子に繰返し供給することでビームの傾きを補正していた。
本発明では、前記読取フォトセンサに代えて、図2に示したビームスポット位置検知手段300a、300bを傾き検知手段として用い、この検知結果に基づいて色ずれ補正手段によりビームの傾きを補正する。すなわち、ビームスポット位置検知手段300a、300bそれぞれで検知された2つの位置ずれ量に基づいて、単色画像の傾きを求め、その傾き量に応じて補正する。
あるいは、前述のように、色ずれパターンを形成する前に、光走査装置からビームが出射する副走査方向のビーム位置をビームスポット位置検知手段300a及び300bを用い、走査先端と後端のビーム位置を測定し、上記の色ずれ検出パターンを読取りフォトセンサにより計測した傾き量を補正値として、走査先端及び後端の狙いのビーム位置を計算し、メモリに記憶し、通常のプリント動作において、この狙いのビーム位置になるように各偏向素子に図20の補正電圧を同期検知信号をトリガーにして印加してもよい。この方式とした場合には、連続印刷時の機内温度上昇や環境変動による傾き変動にも対応することができる。
図21〜図23に、走査線傾きを補正するための色ずれ補正手段の構成例(4)を示す。
これらは特開2004−287380号公報に開示されている色ずれ補正手段を利用するものである。ここでは、図21に示すように、光走査装置20に、第2の走査レンズ30を副走査方向Bに矯正してビームによる感光体34上における走査線の曲がりを補正する走査線曲がり補正手段71と、第2の走査レンズ30の全体を傾けてビームによる感光体34上における走査線の傾きを補正する色ずれ補正手段としての走査線傾き補正手段72とを有した構成を示している。
走査線曲がり補正手段71を構成する部材の一部と走査線傾き補正手段72を構成する部材の一部とは、保持部材61に一体的に設けられている。なお、走査線曲がり補正手段71と走査線傾き補正手段72とは第2の走査レンズ35に対しても同様に別個に配設されており、これらを構成する部材の一部は保持部材61に対すると同様に保持部材62に一体的に設けられている。
保持部材61は、第2の走査レンズ30を副走査方向Bから支持する、主走査方向Aに長い支持部材63と、支持部材63との間で第2の走査レンズ30を挟持する挟持部材64とを有している。支持部材63は、保持した第2の走査レンズ30に当接し保持部材61内における第2の走査レンズ30の位置基準を形成する基準面65を有している。
支持部材63と挟持部材64とは、何れも断面をコの字型に曲げて曲げ強度向上させた板金であり、その平面を第2の走査レンズ30に突き当てている。支持部材63において第2の走査レンズ30に突き当てた平面が基準面65をなしている。第2の走査レンズ30は、その一部が基準面に凸設されたピン82により挟持されること等により、基準面65上において支持部材63に固定されている。
支持部材63と挟持部材64との、第2の走査レンズ30の長手方向すなわち方向Aにおける両端部には、支持部材63と挟持部材64との間隔保持用の、第2の走査レンズ30の厚みとほぼ同じ高さを有する角柱66が配設されており、支持部材63と角柱66、及び挟持部材64と角柱66はそれぞれ、支持部材63と挟持部材64とで第2の走査レンズ30を挟持した状態で、ネジ67で締結されている。各角柱66は支持部材63と挟持部材64とともに保持部材61を構成している。なお、図21において、ネジ67は、挟持部材64と角柱66とを締結するもののみが図に表れている。
走査線曲がり補正手段71については、説明を省略する。
図21に示すように、走査線傾き補正手段72は、挟持部材64と一体的に設けられ保持部材61を傾けるように駆動するための、保持部材傾斜手段、駆動手段としてのアクチュエータであるステッピングモータ90と、走査線の傾きを検知する図示しない傾き検知手段と、傾き検知手段が検知した走査線の位置ずれ量に対応する傾きに応じてステッピングモータ90により保持手段61を傾け、これにより第2の走査レンズ30の全体を傾けて走査線の傾きを補正させるための図示しない制御手段としてのCPUとを有している。
図21または図22において、符号91は、光走査装置20の図示しないハウジングと一体化された、保持部材61を支持するための不動部材としての長尺レンズホルダを示している。なお、不動部材は光走査装置20のハウジング自体であっても良い。長尺レンズホルダ91は、A方向における第2の走査レンズ30の中心に対応して、C方向に延在するように配設されたV溝92を有している。
走査線傾き補正手段72は、V溝92に載置された、C方向に長い支点部材としてのコロ93を有している。保持部材61は、コロ93を介して、長尺レンズホルダ91により、走査線の傾きを補正可能な方向に変位可能、具体的には搖動可能に支持されている。よってコロ93と保持部材61との当接部は、保持部材61を傾ける際の支点47を形成している。支点47は、A方向における第2の走査レンズ30の中心位置にあり、第2の走査レンズ30の光軸付近に位置している。
長尺レンズホルダ91がコロ93のみを介して保持部材61を支持すると保持部材61が不安定となるため、走査線傾き補正手段72は、支持部材63と長尺レンズホルダ91とに一体的に構成された弾性部材としての板ばね94と、挟持部材64と長尺レンズホルダ91とに一体的に構成された弾性部材としての板ばね95とを有しており、保持部材61を、長尺レンズホルダ91に対して走査線の傾きを補正可能な方向に搖動可能に支持させるとともに、板ばね94、板ばね95の弾性力によりコロ93に押圧して長尺レンズホルダ91に対して安定させた状態で支持させている。
板ばね94はネジ96により支持部材63と長尺レンズホルダ91とに一体化され、板ばね95はネジ97により挟持部材64と長尺レンズホルダ91とに一体化されている。図21または図23に示すように、ステッピングモータ90は、ねじ98により挟持部材64に一体化されている。
図23に示すように、ステッピングモータ90はステッピングモータシャフト99を有している。長尺レンズホルダ91の上面には突起部43が凸設され、突起部43の内側によって形成される溝部44には、先端が球形状をなすとともに断面が小判型をなすナット45が嵌合している。ステッピングモータシャフト99には雄ねじが切られ、その先端部はナット45に噛合している。ナット45は溝部44に嵌合することで固定され、ステッピングモータシャフト99の回転時にも不動である。
CPUは、傾き検知手段としてのビームスポット位置検知手段300a、300bが検知した走査線の位置ずれ量に基づいてステッピングモータ90を駆動するステップ数を算出し、ステッピングモータ90を駆動するものである。テストパターンの形成は適時行なわれ、傾き検知手段の検知信号に基づくCPUによるフィードバック制御に供されるようになっている。
走査線傾き補正手段72は以上の構成であるから、CPUがビームスポット位置検知手段300a、300bによる検知結果(図4における副走査方向の相対的なドット位置ずれ、すなわち副走査方向補正量ΔZ)に基づきステッピングモータ90を駆動してステッピングモータシャフト99を回転させると、保持部材61は板ばね94、95の付勢力に抗して不動部材91に対して変位し、保持部材61は支点47を中心にしてγ回転することで傾く。CPUは検知手段による検知結果に基づきステッピングモータ90を駆動するフィードバック制御を行うため、走査線の位置ずれ、具体的に走査線の傾きは速やかに解消される。
なお、光走査装置20においては、Y(イエロー)、M(マゼンタ)、C(シアン)、K(黒)の4つの色の中の1つを基準とし、この基準色の走査位置に略一致するように、基準色以外の走査光学系による走査ビームの走査位置を補正すること、言い換えると、非基準色に対応するビームによる走査線を基準色に対応するビームによる走査線に一致させるとよい。相対的な走査線位置の補正を行なえば、色調の変化を十分に抑えた色再現性の高い画像を得ることができるためである。これにより、走査線曲がり補正手段71、走査線傾き補正手段72はY(イエロー)、M(マゼンタ)、C(シアン)、K(黒)の各走査ビームの中の3つの走査ビームを調整するように配設すれば十分であるので、それぞれの数が3つで済む。ここでは、基準色を黒色とするとよい。
図24に、走査線傾きを補正するための色ずれ補正手段の構成例(5)を示す。
ここでは、ポリゴンミラーで主走査された光ビームを感光体へ導く長尺の結像素子(ここでは折り返しミラー23,31,32,33のいずれか(あるいは36または37))の取付位置において、一端は固定端とし、一方を位置調整可能な部位としている。位置調整可能な部位は図24に示すように、位置固定されたモータ(ステッピングモータ)90aは軸にネジ部が設けられたモータ駆動軸であり、回転不可で内部にネジ部が設けられたアジャスタ45aは折り返しミラー33を支持している。モータ90aを駆動することにより、アジャスタ45aはモータ軸方向に移動し、折り返しミラー33の姿勢角が変化する機構である。このため、感光体上34にて光ビームの傾きを調整することが可能である。
以上、各色の単色画像の副走査方向の相対ずれ、あるいは傾きを補正する構成を示したが、上記ビーム検知手段(ビームスポット位置検知手段300a、300b)と色ずれ補正手段との構成において各色の単色画像の主走査方向の倍率ずれを補正するようにしてもよい。すなわち、ビームスポット位置検知手段300a、300bそれぞれで検知された2つの位置ずれ量に基づいて、単色画像の主走査方向の倍率ずれを求め、その倍率ずれ量に応じて補正することを行うものである。
つぎに、前記ビーム検知手段の光走査装置筐体への取り付けについて説明する。
ビーム検知手段(ビームスポット位置検知手段300a、300b)を取り付ける際には、そのビーム検知手段自体が位置変化しない、あるいは相対的に変化しないようにすることは非常に重要である。
図25にビーム検知手段(ビームスポット位置検知手段300a、300b)の取付例(1)を示す。各色に設けられた先端側のビームスポット位置検知手段300aと後端側のビームスポット位置検知手段300bについて、4つのビームスポット位置検知手段300aが一つの保持部材20a上におのおの位置決めして配置され、4つのビームスポット位置検知手段300bが一つの保持部材20b上におのおの位置決めして配置されている。
また、先端側保持部材20aと後端側保持部材20bには同じ材質(例えば鉄を含んだ金属)のものを用いると、線膨張係数αは同じとなり好ましい。さらに、線膨張係数αは小さいものがよい。
すなわち、基準色のビームスポット位置検知手段300aとある色のビームスポット位置検知手段300aとの距離をLa、基準色のビームスポット位置検知手段300bとある色のビームスポット位置検知手段300bとの距離をLb、同色のビームスポット位置検知手段300a,300b間の距離をsとすると、ビームスポット位置検知手段300b温度変化が生じてもビーム検知手段の傾き量y=(Lb−La)/sは、次式のようになる。
y' ={(Lb+Lb*α)−(La+La*α)}/s
=(Lb−La)/s+(Lb−La)*α/s
この式において、第2項はα<<1である上、初期的なLaとLbの距離の偏差を小さくすることで(例えば、正確な治具で光ビームの傾きを調整した後、検知手段を初期位置調整する)、ほぼ無視できる数値となる。よって、ビーム検知手段の位置変化が無視できることから、光ビームの傾きを精度よく測定することが可能となる。
図26に、ビーム検知手段(ビームスポット位置検知手段300a、300b)の取付例(2)を示す。各色に設けられた先端側のビームスポット位置検知手段300aと後端側のビームスポット位置検知手段300bについて、4つのビームスポット位置検知手段300a、4つのビームスポット位置検知手段300bすべてが一つの保持部材20c上におのおの位置決めして配置されている。本実施態様によってもビーム検知手段の位置変化が無視できることから、光ビームの傾きを精度よく測定することが可能となる。なお、保持部材20cは、光学素子を保持するハウジングの開口部を塞ぐカバーを兼ね、光ビーム用の開口部には透過ガラスを配置してもよい。
図27に、ビーム検知手段(ビームスポット位置検知手段300a、300b)の取付例(3)を示す。各色に設けられた先端側のビームスポット位置検知手段300aと後端側のビームスポット位置検知手段300bについて、4つのビームスポット位置検知手段300aが一つの保持部材20d上におのおの位置決めして配置され、4つのビームスポット位置検知手段300bが一つの保持部材20e上におのおの位置決めして配置されている。また保持部材20d,20eはそれぞれ折り曲げ部を有しており、保持部材20d,20eそれぞれの折り曲げ部により折り返しミラー33等を保持している。これにより、先端側と後端側のビーム検知手段の温度変化による傾き量の変化を低減すると同時に、折り返しミラー90の傾き変化を低減することができる。
本発明に係る画像形成装置の概略を示す側面図である。 本発明に係る光走査装置の構成を示す概略図である。 ビーム検知手段の配置状態を示す概略図である。 ビーム検知手段(ビームスポット位置検知手段)としての非平行フォトダイオードセンサによる検知原理を説明する概略図である。 各色単色画像の副走査方向の相対ずれ補正における色ずれ補正値算出までの手順を示す図である。 各色単色画像の副走査方向の相対ずれ補正におけるプリント動作開始以降の手順を示す図である。 液晶光学素子からなる色ずれ補正手段の基本構成を示す概略図である。 色ずれ補正手段を備えた光走査装置の要部の構成を示す概略図である。 液晶光学素子のプリズム作用の説明図である。 液晶光学素子のレンズ作用の説明図である。 色ずれ補正手段を構成する平行平板の概略図である。 平行平板からなる色ずれ補正手段の断面図である。 平行平板からなる色ずれ補正手段の斜視図である。 色ずれ補正手段を構成する平行平板の偏芯カム軸にフィラーを設けた状態を示す概略図である。 プリズムからなる色ずれ補正手段の基本構成を示す概略図である。 光走査装置におけるLDユニットとポリゴンミラーの拡大平面図である。 図16のLDユニットの正面図である。 LDユニットの回転による感光体上でのビームの変位の状態を示す概略図である。 図16のLDユニットの回転による感光体上でのビームの副走査方向の移動状態を示す概略図である。 単色画像の走査線傾きを補正する偏向素子への印加電圧パターンを示す図である。 光走査装置における色ずれ補正手段である走査線傾き補正手段を含む要部を示す斜視図である。 図21に示した要部の正断面図である。 図21に示した要部の側断面図である。 色ずれ補正手段である走査線傾き補正手段のその他の例を示す概略図である。 ビーム検知手段の取付例(1)を示す概略図である。 ビーム検知手段の取付例(2)を示す概略図である。 ビーム検知手段の取付例(3)を示す概略図である。
符号の説明
1 画像形成装置
1A〜4A 感光体
5 中間転写体
20 光走査装置
20a,20b,20c,20d,20e 保持部材
21、22 光源
21a コリメータレンズ
21b 保持部材
21c アパーチャ
21e ビーム位置調整モータ
21f リードスクリュー
23〜33、35〜37 光学素子
26、27 偏向手段
30、35 光学素子、被保持光学素子
34、38 感光体
45a アジャスタ
47 支点
51、52 光学素子群
61、62 保持部材
63 支持部材
64 挟持部材
65 基準面
71 走査線曲がり補正手段
72 走査線傾き補正手段
73 押圧部材
74 押し当て部材、テーパピン
81 押圧手段
83 ひけ部
90 保持部材傾斜手段である駆動手段
90a モータ
91 不動部材
93 支点部材
94、95 弾性部材である板ばね
100 防塵ガラス
113、118 弾性部材であるコイルばね
115 保持部材傾斜手段であるねじ
119、122 押圧手段に備えられたねじ
120、124 押圧手段
110 書き込み開始位置補正手段
140 液晶光学素子
141 制御回路
142,143 基板
145 液晶層
146,147 電極
150 平行平板
160 プリズム
300a、300b ビーム検知手段
LD レーザ発光素子

Claims (17)

  1. 複数の感光体それぞれの上で光ビームを走査させて該感光体上にそれぞれ形成された複数の単色画像を合成して単一のカラー画像として出力する画像形成装置に用いられ、前記光ビームを射出する複数の光源と、該光源からの光ビームをそれぞれ偏向させる偏向手段と、前記光ビームごとに設けられ前記偏向手段と対応する感光体との間に順次配置されて該偏向手段で偏向された光ビームを前記感光体まで導く複数の光学素子と、前記光ビームごとに設けられ光ビーム走査方向に直交する方向(副走査方向)の前記光ビームの位置を検知するビーム検知手段と、前記光ビームごとに設けられ該ビーム検知手段の検知結果に基づいて感光体上の光ビーム照射位置を変位させる色ずれ補正手段とを備える光走査装置であって、
    前記ビーム検知手段は、前記光学素子のうち最も感光体側のものと該感光体との間に配置されることを特徴とする光走査装置。
  2. 前記ビーム検知手段は、光ビーム走査方向(主走査方向)の前記光ビームの位置も検知することを特徴とする請求項1に記載の光走査装置。
  3. 前記ビーム検知手段は、光ビームの走査線上の少なくとも1ヶ所に設けられる受光素子と、該受光素子における副走査方向の光ビームの位置ずれ量を計測する計測手段とを有し、前記色ずれ補正手段は、前記計測手段により計測された位置ずれ量に基づいて、前記単色画像の副走査方向の相対ずれを補正することを特徴とする請求項1に記載の光走査装置。
  4. 前記色ずれ補正手段は、前記偏向手段の1走査を単位として前記単色画像の副走査方向の相対ずれを補正することを特徴とする請求項3に記載の光走査装置。
  5. 前記色ずれ補正手段は、前記偏向手段の1走査より細かい分解能を単位として前記単色画像の副走査方向の相対ずれを補正することを特徴とする請求項3に記載の光走査装置。
  6. 前記ビーム検知手段は、光ビームの走査線上の上流側と下流側の2ヶ所に設けられる受光素子と、該受光素子それぞれにおける副走査方向の光ビームの位置ずれ量を計測する計測手段とを有することを特徴とする請求項1に記載の光走査装置。
  7. 前記色ずれ補正手段は、前記計測手段により計測された2つの位置ずれ量の平均値から前記単色画像の副走査方向の相対ずれ補正量を求めることを特徴とする請求項6に記載の光走査装置。
  8. 前記色ずれ補正手段は、前記計測手段により計測された2つの位置ずれ量に基づいて、前記単色画像の傾きを補正することを特徴とする請求項6に記載の光走査装置。
  9. 複数の感光体それぞれの上で光ビームを走査させて該感光体上にそれぞれ形成された複数の単色画像を合成して単一のカラー画像として出力する画像形成装置に用いられ、前記光ビームを射出する複数の光源と、該光源からの光ビームをそれぞれ偏向させる偏向手段と、前記光ビームごとに設けられ前記偏向手段と対応する感光体との間に順次配置されて該偏向手段で偏向された光ビームを前記感光体まで導く複数の光学素子と、前記光ビームごとに設けられ光ビーム走査方向(主走査方向)の前記光ビームの位置を検知するビーム検知手段と、前記光ビームごとに設けられ該ビーム検知手段の検知結果に基づいて感光体上の光ビーム照射位置を変位させる色ずれ補正手段とを備える光走査装置であって、
    前記ビーム検知手段は、前記光学素子のうち最も感光体側のものと該感光体との間に配置されることを特徴とする光走査装置。
  10. 前記ビーム検知手段は、光ビームの走査線上の上流側と下流側の2ヶ所に設けられる受光素子と、該受光素子それぞれにおける主走査方向の光ビームの位置ずれ量を計測する計測手段とを有することを特徴とする請求項9に記載の光走査装置。
  11. 前記色ずれ補正手段は、前記計測手段により計測された位置ずれ量に基づいて、前記単色画像の主走査方向の倍率ずれを補正することを特徴とする請求項10に記載の光走査装置。
  12. 請求項1〜11のいずれか一に記載の光走査装置と、該光走査装置により静電潜像の書き込みが行われる感光体と、該感光体の静電潜像をトナー画像として現像する現像手段と、該トナー画像を記録媒体に転写する転写手段と、記録媒体上のトナー画像を定着させる定着手段とを備えることを特徴とする画像形成装置。
  13. 複数の感光体それぞれの上で光ビームを走査させて該感光体上にそれぞれ形成された複数の単色画像を合成して単一のカラー画像として出力する画像形成装置に用いられ、前記光ビームを射出する複数の光源と、該光源からの光ビームをそれぞれ偏向させる偏向手段と、前記光ビームごとに設けられ前記偏向手段と対応する感光体との間に順次配置されて該偏向手段で偏向された光ビームを前記感光体まで導く複数の光学素子とを備える光走査装置における光走査補正方法であって、
    前記光ビームごとに設けられ光ビーム走査方向に直交する方向(副走査方向)の前記光ビームの位置を検知するビーム検知手段を、前記光学素子のうち最も感光体側のものと該感光体との間に備え、
    該ビーム検知手段の検知結果に基づいて対応する感光体上の光ビーム照射位置を変位させることを特徴とする光走査補正方法。
  14. 前記光ビーム照射位置の変位は、前記単色画像の副走査方向の相対ずれ及び/又は前記単色画像の傾きを補正するものであることを特徴とする請求項13に記載の光走査補正方法。
  15. 複数の感光体それぞれの上で光ビームを走査させて該感光体上にそれぞれ形成された複数の単色画像を合成して単一のカラー画像として出力する画像形成装置に用いられ、前記光ビームを射出する複数の光源と、該光源からの光ビームをそれぞれ偏向させる偏向手段と、前記光ビームごとに設けられ前記偏向手段と対応する感光体との間に順次配置されて該偏向手段で偏向された光ビームを前記感光体まで導く複数の光学素子とを備える光走査装置における光走査補正方法であって、
    前記光ビームごとに設けられ光ビーム走査方向(主走査方向)の前記光ビームの位置を検知するビーム検知手段を、前記光学素子のうち最も感光体側のものと該感光体との間に備え、
    該ビーム検知手段の検知結果に基づいて対応する感光体上の光ビーム照射位置を変位させることを特徴とする光走査補正方法。
  16. 前記光ビーム照射位置の変位は、前記単色画像の主走査方向の倍率ずれを補正するものであることを特徴とする請求項15に記載の光走査補正方法。
  17. 請求項13〜16のいずれか一に記載の光走査補正方法により、複数の感光体のうち少なくとも1つの感光体上の光ビーム照射位置を変位させ、ついで該光ビームを走査させて前記感光体上にそれぞれ形成された複数の単色画像を合成して単一のカラー画像として出力することを特徴とする画像形成方法。
JP2005270093A 2005-09-16 2005-09-16 光走査装置及び画像形成装置 Expired - Fee Related JP4694926B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005270093A JP4694926B2 (ja) 2005-09-16 2005-09-16 光走査装置及び画像形成装置
US11/521,560 US7589756B2 (en) 2005-09-16 2006-09-15 Optical scanning device, image forming apparatus, optical scanning correcting method, and image forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005270093A JP4694926B2 (ja) 2005-09-16 2005-09-16 光走査装置及び画像形成装置

Publications (2)

Publication Number Publication Date
JP2007076305A true JP2007076305A (ja) 2007-03-29
JP4694926B2 JP4694926B2 (ja) 2011-06-08

Family

ID=37883639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005270093A Expired - Fee Related JP4694926B2 (ja) 2005-09-16 2005-09-16 光走査装置及び画像形成装置

Country Status (2)

Country Link
US (1) US7589756B2 (ja)
JP (1) JP4694926B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181481A (ja) * 2009-02-03 2010-08-19 Ricoh Co Ltd 光走査装置及びこれを使用する画像形成装置
JP2013083820A (ja) * 2011-10-11 2013-05-09 Ricoh Co Ltd アクチュエータ、光走査装置及び画像形成装置
JP7456796B2 (ja) 2020-02-25 2024-03-27 京セラ株式会社 基板及び走査装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7643046B2 (en) * 2005-12-21 2010-01-05 Ricoh Company, Ltd. Laser beam scanning device, image forming apparatus, and laser beam detecting method by the laser beam scanning device
JP4980678B2 (ja) * 2006-09-06 2012-07-18 株式会社リコー 光走査装置、光走査装置の製造方法及びカラー画像形成装置
JP2008224965A (ja) * 2007-03-12 2008-09-25 Ricoh Co Ltd 光走査装置、および画像形成装置
JP2009023102A (ja) * 2007-07-17 2009-02-05 Ricoh Co Ltd 光書込装置および画像形成装置
JP4918439B2 (ja) * 2007-09-04 2012-04-18 株式会社リコー 光書込装置及び画像形成装置
JP5033548B2 (ja) * 2007-09-10 2012-09-26 株式会社リコー 光書込装置及び画像形成装置
JP2009157014A (ja) * 2007-12-26 2009-07-16 Ricoh Co Ltd 光走査装置及び画像形成装置
JP5022945B2 (ja) 2008-02-29 2012-09-12 株式会社リコー 光書込装置及び画像形成装置
JP5288333B2 (ja) * 2008-08-06 2013-09-11 株式会社リコー 光走査装置及び画像形成装置
JP5790285B2 (ja) * 2011-08-11 2015-10-07 株式会社リコー 画像形成装置
JP5896215B2 (ja) 2012-01-24 2016-03-30 株式会社リコー 光走査装置及び画像形成装置
JP6489410B2 (ja) 2014-03-17 2019-03-27 株式会社リコー 光走査装置および画像形成装置
KR20200143151A (ko) * 2019-06-14 2020-12-23 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 빔의 위치 변화 감지를 이용한 화상 정렬

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10177144A (ja) * 1996-12-18 1998-06-30 Konica Corp 画像形成装置
JP2001162857A (ja) * 1999-12-13 2001-06-19 Canon Inc 画像形成装置
JP2002040341A (ja) * 2000-07-28 2002-02-06 Sharp Corp 光走査装置及び画像形成装置
JP2005221824A (ja) * 2004-02-06 2005-08-18 Ricoh Co Ltd 光走査装置および画像形成装置
JP2005234220A (ja) * 2004-02-19 2005-09-02 Ricoh Co Ltd 光走査装置、レーザービームの検出方法、画像形成装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2748971B2 (ja) 1986-09-08 1998-05-13 株式会社リコー カラー画像形成装置
JP2543508B2 (ja) 1986-09-09 1996-10-16 株式会社リコー カラ−画像形成装置
JPS63300259A (ja) 1987-05-30 1988-12-07 Canon Inc 画像形成装置
JP2740256B2 (ja) 1989-05-02 1998-04-15 株式会社リコー カラー画像形成装置
JP3087748B2 (ja) 1998-12-16 2000-09-11 富士ゼロックス株式会社 光学走査装置
JP2000235290A (ja) 1998-12-17 2000-08-29 Fuji Xerox Co Ltd 画像形成装置
JP2001117041A (ja) * 1999-10-19 2001-04-27 Ricoh Co Ltd 光走査装置及び画像形成装置
JP3906613B2 (ja) 1999-10-22 2007-04-18 富士ゼロックス株式会社 多色画像形成装置
JP2001253113A (ja) 2000-03-13 2001-09-18 Fuji Xerox Co Ltd カラー画像形成装置
JP2002096502A (ja) 2000-09-25 2002-04-02 Ricoh Co Ltd 画像形成装置
JP3804928B2 (ja) * 2001-03-09 2006-08-02 株式会社リコー 液体噴射記録装置
US6836633B2 (en) * 2001-04-27 2004-12-28 Ricoh Company, Ltd. Optical scanning device and image forming apparatus including the optical scanning device
JP4676662B2 (ja) * 2001-09-21 2011-04-27 株式会社リコー カラー画像形成装置
US7271824B2 (en) * 2001-09-28 2007-09-18 Ricoh Company, Ltd. Pixel clock generating apparatus, optical writing apparatus using a pixel clock, imaging apparatus, and method for generating pixel clocks
JP2003215482A (ja) 2002-01-21 2003-07-30 Ricoh Co Ltd 光走査装置及び画像形成装置並びに画像書き込み位置調整方法
US7034973B2 (en) * 2002-03-22 2006-04-25 Ricoh Company, Ltd. Scanning optical system, optical scanning device, and image forming apparatus
JP4139135B2 (ja) 2002-05-14 2008-08-27 株式会社リコー 画像形成装置
JP2004004191A (ja) 2002-05-30 2004-01-08 Ricoh Co Ltd 光走査装置
JP2004074643A (ja) * 2002-08-20 2004-03-11 Ricoh Co Ltd 色ずれ補正方法、光書き込み装置及び画像形成装置
JP3773884B2 (ja) * 2002-09-04 2006-05-10 株式会社リコー 画像形成装置
JP2004287380A (ja) 2003-01-30 2004-10-14 Ricoh Co Ltd 光走査装置、走査線補正方法、走査線補正制御方法、画像形成装置および画像形成方法
JP4549619B2 (ja) 2002-11-22 2010-09-22 シャープ株式会社 画像形成装置および色合わせ調整方法
JP2005148128A (ja) * 2003-11-11 2005-06-09 Ricoh Co Ltd 光書込装置及び画像形成装置
JP4480075B2 (ja) * 2004-09-16 2010-06-16 株式会社リコー 光書き込み装置及び画像形成装置
JP4630677B2 (ja) * 2005-01-25 2011-02-09 株式会社リコー 画像形成装置、プリンタ装置、ファクシミリ装置、及び、複写機。

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10177144A (ja) * 1996-12-18 1998-06-30 Konica Corp 画像形成装置
JP2001162857A (ja) * 1999-12-13 2001-06-19 Canon Inc 画像形成装置
JP2002040341A (ja) * 2000-07-28 2002-02-06 Sharp Corp 光走査装置及び画像形成装置
JP2005221824A (ja) * 2004-02-06 2005-08-18 Ricoh Co Ltd 光走査装置および画像形成装置
JP2005234220A (ja) * 2004-02-19 2005-09-02 Ricoh Co Ltd 光走査装置、レーザービームの検出方法、画像形成装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181481A (ja) * 2009-02-03 2010-08-19 Ricoh Co Ltd 光走査装置及びこれを使用する画像形成装置
JP2013083820A (ja) * 2011-10-11 2013-05-09 Ricoh Co Ltd アクチュエータ、光走査装置及び画像形成装置
JP7456796B2 (ja) 2020-02-25 2024-03-27 京セラ株式会社 基板及び走査装置

Also Published As

Publication number Publication date
US7589756B2 (en) 2009-09-15
US20070064087A1 (en) 2007-03-22
JP4694926B2 (ja) 2011-06-08

Similar Documents

Publication Publication Date Title
JP4694926B2 (ja) 光走査装置及び画像形成装置
US7697184B2 (en) Optical scanning device and image forming apparatus
JP5009573B2 (ja) 光走査装置および画像形成装置
US7505187B2 (en) Optical scanning unit and image forming apparatus
EP1424609A2 (en) Color shift correcting method, optical writing device and image forming apparatus
US20080225304A1 (en) Optical scanning unit and image forming apparatus using same
EP1724625B1 (en) Optical scanning unit and image forming apparatus
US7557973B2 (en) Optical scanning device and image forming apparatus provided with the same
JP2006017881A (ja) 光書込装置及び画像形成装置
JP2004333994A (ja) 光走査装置および画像形成装置
US20110050837A1 (en) Optical scanning device and image forming apparatus equipped with the same
JP2006337514A (ja) 光走査装置及び画像形成装置
JP4107578B2 (ja) 画像形成装置
JP4390200B2 (ja) 多色画像形成装置、多色画像形成装置に用いる光走査装置および多色画像形成装置の色ずれ補正方法
JP2007233048A (ja) 画像形成装置
JP2007133320A (ja) 光走査装置及び画像形成装置
JP4909603B2 (ja) 画像形成装置
JP2007114518A (ja) 光走査装置、画像形成装置及び副走査位置補正方法
JP5037062B2 (ja) 光走査装置及び光走査装置を備えた画像形成装置
JP2006337515A (ja) 光走査装置及び画像形成装置
JP2008070802A (ja) 画像形成装置
JP2004333803A (ja) 光走査装置および画像形成装置
JP4634831B2 (ja) 光走査装置・画像形成装置・走査線傾きの検出方法
JP4373800B2 (ja) 光走査装置、カラー画像形成装置及びレーザビームの検出方法
JP2005049468A (ja) 光走査装置および画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees