JP2004333994A - 光走査装置および画像形成装置 - Google Patents

光走査装置および画像形成装置 Download PDF

Info

Publication number
JP2004333994A
JP2004333994A JP2003131526A JP2003131526A JP2004333994A JP 2004333994 A JP2004333994 A JP 2004333994A JP 2003131526 A JP2003131526 A JP 2003131526A JP 2003131526 A JP2003131526 A JP 2003131526A JP 2004333994 A JP2004333994 A JP 2004333994A
Authority
JP
Japan
Prior art keywords
scanning
image
lens
image forming
scanning lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003131526A
Other languages
English (en)
Inventor
Toshihiro Nakajima
智弘 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003131526A priority Critical patent/JP2004333994A/ja
Publication of JP2004333994A publication Critical patent/JP2004333994A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Facsimile Scanning Arrangements (AREA)
  • Fax Reproducing Arrangements (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Heads (AREA)

Abstract

【課題】レジストずれを精度よく補正し、経時的な環境変化に対しても補正された状態を安定的に維持し、色ずれや色変わりのない高品位なカラー画像を記録することができる光走査装置および画像形成装置を得る。
【解決手段】光源手段201〜204、251〜254と、光源手段からの光ビームを偏向し主走査を行う偏向手段213と、走査された光ビームを像担持体101〜104に結像する結像手段を有する光走査装置。結像手段を構成する走査レンズ218を光軸に直交する面内で回転させる走査レンズ回転手段と、走査レンズへの光ビームの入射位置を変更するビーム入射位置可変手段とを備える。ビーム入射位置可変手段は、光源手段から偏向手段に至る光ビームの光軸を副走査方向に傾ける光軸可変手段からなり、光ビームの光軸を傾けて走査レンズ218への光ビームの入射位置を補正する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、デジタル複写機、あるいはレーザプリンタ等の書き込み系に用いられる光走査装置に関するものであり、また、特に複数色のトナー像を重ね合わせてカラー画像を形成する多色画像形成装置として好適な画像形成装置に関するものである。
【0002】
【従来の技術】
カールソン・プロセスを用いた画像形成装置においては、感光体ドラムの回転に従って潜像形成、現像、転写が行われ、転写体に画像が形成される。従って、複数の感光体ドラムを転写体の搬送方向に沿って配列し、各色の画像形成ステーションで形成したトナー像を重ねる多色画像形成装置においては、感光体ドラムの偏心や径のばらつきによる潜像形成から転写までの時間、各色の画像に対応する感光体ドラム相互間隔の異なり、転写体、例えば、転写ベルトや記録紙を搬送する搬送ベルトの速度変動や蛇行などによって、各トナー像のレジストずれが生じ、これが色ずれや色変わりとなって画像品質を劣化させる。
また、感光体ドラムに潜像を形成する光走査装置においても、感光体ドラム上の潜像形成位置を正確に合わせなければ色ずれや色変わりの要因となる。
【0003】
従来、このレジストずれは、光走査装置によるものと、光走査装置以外によるものの区分けはなく、転写体に記録されたレジストずれ検出パターンによりジョブ間等で定期的に副走査位置を検出し、書き出しのタイミングを合わせることにより補正するもの(例えば、特許文献1、特許文献2参照)、主走査方向の一端を支点にして折り返しミラーを傾ける例(例えば、特許文献3参照)、結像光学系を光軸に平行な軸の周りに回転させることによりスキュー(傾き)を補正するもの(例えば、特許文献4参照)が知られている。
【0004】
また、走査レンズ毎の加工誤差や配置精度によって発生する走査ラインの曲がりについては、副走査方向にパワーを有する走査レンズを主走査に沿って矯正する例(例えば、特許文献5参照)、光ビームに対して走査レンズの光軸をずらす例(例えば、特許文献6参照)もある。さらに、走査面に直交する面内で走査レンズを傾ける例(例えば、特許文献7参照)もある。この例は、主に初期調整(製造時)に補正を行うものである。
一方で、このような補正によることなく、経時的なずれを低減できる方法として、結像手段を各色ビームに共通とし、かつ副走査方向に収束力を持たない走査レンズと、各色ビーム個別の走査レンズとで構成する例が知られている(例えば、特許文献8、特許文献9参照)。
【0005】
【特許文献1】
特公平7−19084号公報
【特許文献2】
特公平7−19085号公報
【特許文献3】
特許第3049606号公報
【特許文献4】
特開平11−153765号公報
【特許文献5】
特開2002−148551号公報
【特許文献6】
特開平11−64758号公報
【特許文献7】
特開昭64−52116号公報
【特許文献8】
特開平2−250020号公報、
【特許文献9】
特開平7−43627号公報
【0006】
このように、各色の画像信号に対応する光ビームを同一方向に走査することで、走査レンズ毎の加工誤差や温度不均一に伴う屈折率変動等の影響を軽減することができ、レジストずれを低減できる効果がある。
【0007】
【発明が解決しようとする課題】
上記のように、複数の画像形成ステーションを転写体の搬送方向に沿って配列し、各ステーションで形成される色ごとの画像を重ねる多色画像形成装置においては、各ステーションで形成された潜像同士の転写位置におけるレジスト位置を確実に合わせないと、色ずれや色変わりの要因となる。
【0008】
しかしながら、従来の光走査装置においては、走査ラインの傾きを、折り返しミラーを走査平面に平行な面内で回転させることにより補正していたため、副走査方向のレジストずれは補正できるが、主走査方向の両端において、偏向手段であるポリゴンミラーの偏向点から上記折り返しミラーを介して感光体ドラム上の結像点に至る距離が異なり、一方側、例えば光路長が長い側では画像が主走査方向に間延びし、もう一方側で縮むという部分的な倍率誤差を生じ、色ずれや色変わりを完全に補正できないという問題がある。
【0009】
さらに、近年、走査レンズの非球面化、コストダウン化の要請に伴い、走査レンズが樹脂により成形されることが多い。そのため、たとえジョブ間でレジストずれの要因となる各ステーション間の走査位置のずれ調整を実施したとしても、1ジョブ内における印字枚数が増えると装置内の温度上昇に伴って樹脂製走査レンズが長手方向に反り、走査ラインの曲がりが生じて、次の補正までの期間中での変動は避けられない。当然、1ジョブ内においても、途中で印字を中断し補正をかけることは可能であるが、レジストずれを検出するには検出パターンを転写体に記録する必要があるため、検出パターンを記録し、それを検出するまでの間、装置は記録ないしは画像形成不可の状態となり、印字待ち時間が長くなって作業の能率を阻害する結果となる。そのうえ、補正回数が多くなると無駄なトナーの消費量が増えることから、補正を頻繁に行うことは避けたい。
【0010】
なお、特開2002−311368号公報では、上記折り返しミラーによる方式において倍率誤差を補正する方法が提案されているが、調整が複数箇所に及ぶため経時的な変動にまで対処できない。また、前記特許文献4で提案されているような走査レンズを回転する方式によれば、上記した光路長差は生じないようにすることができるが、回転中心と光軸中心とを合わせておかないとビーム入射位置が偏心してしまうことから、特に長尺な走査レンズにおいては回転機構が複雑となるうえ、上記温度変化に伴う変動は同様に発生する。
【0011】
本発明はこのような従来技術の問題点に鑑みてなされたもので、第1の目的は、レジストずれを精度よく補正するとともに、経時的な環境変化に対しても補正された状態を安定的に維持し、色ずれや色変わりのない高品位なカラー画像を記録することができる光走査装置および画像形成装置を提供することにある。
本発明の第2の目的は、簡単な調整で確実に走査ラインの傾きを補正することができ、補正による副作用が生じないようにすることにある。
本発明の第3の目的は、走査レンズの形状を安定的に保ち、初期調整時のレジスト精度を、温度変動等があっても維持できるようにすることにある。
本発明の第4の目的は、タンデム方式に対応した光走査装置において、複数のステーション間で記録した画像のレジストを簡単な調整で確実に合わせられるようにすることにある。
本発明の第5の目的は、タンデム方式の画像形成装置において、経時的に環境条件の変動があっても、安定した色重ね精度を得ることにある。
【0012】
【発明の実施の形態】
以下、図面を参照しながら、本発明にかかる光走査装置および画像形成装置の実施形態について説明する。
図1は4ステーション分を一方向に走査する光走査装置および画像形成装置の実施形態を示す。図2はその正面断面図である。また、図3は、上記装置の光源近傍を拡大して光源側から見た図である。図1ないし図3において、像担持体としての4つの感光体ドラム101、102、103、104が平行にかつ転写ベルト105の移動方向に沿って配列されている。各感光体ドラムには、光走査装置によって個別の光ビームが走査され、各光ビームは赤、緑、青、黒に対応した画像信号で変調されていることによって、各感光体ドラムにはそれぞれの色に対応した静電潜像が形成されるように構成されている。これらの静電潜像は、対応する色と補色関係にある色のトナーで現像され、各感光体ドラムのトナー像を順次転写ベルト105に転写することで、転写ベルト105にカラー画像が形成される。このカラー像は、図示されない転写紙に転写され、定着されることによってカラーのハードコピーが得られるようになっている。
【0013】
上記のように構成された画像形成装置において、各光走査装置は図示されないハウジングで一体的に構成され、偏向手段をなす単一のポリゴンミラー213の同一反射面で全ての光ビームが走査される。また、図示の実施形態では、各感光体ドラム101、102、103、104に対して光源手段としての半導体レーザを2個一対として配備し、2ラインずつ同時に走査するようにしている。記録密度に応じて副走査方向に1ラインピッチ分ずらして走査することができるようになっている。上記2個一対の半導体レーザの配置は次のとおりである。半導体レーザ201と251、202と252、203と253、204と254がそれぞれ対をなしていて、光源ユニット毎に射出位置が副走査方向に異なっている。図示の実施形態では、半導体レーザ201と251の射出位置が最も高く、ハウジング底面から離れた位置となっている。続いて半導体レーザ202と252、203と253、204と254の順に出射位置が低くなり、ハウジング底面に近づいている。また、主走査方向には射出方向がポリゴンミラー213の偏向点に向かって放射状となるように配置され、発光点からポリゴンミラー213の偏向点に至る光路長は各々同一となるよう設定されている。
【0014】
各半導体レーザから射出された光ビームはそれぞれカップリングレンズ205と255、206と256、207と257、208と258によって、平行光束に変換される。カップリングレンズ205と255を透過した光ビームの進路には一つのシリンダレンズ209が配置され、同様に、カップリングレンズ206と256にはシリンダレンズ210が、カップリングレンズ207と257にはシリンダレンズ211が、カップリングレンズ208と258にはシリンダレンズ212が対応して配置されている。シリンダレンズ209、20、211、212は、一方を平面、もう一方を副走査方向に共通の曲率を有し、ポリゴンミラー213の偏向点までの光路長が等しくなるように配備されている。これらのシリンダレンズにより、各光ビームはポリゴンミラー213の偏向反射面にて副走査方向に線状となるように収束され、偏向点と各感光体ドラム面とが副走査方向に共役となるようにして、後述するトロイダルレンズとの組み合わせで面倒れ補正光学系を構成している。
【0015】
カップリングレンズ205、255とシリンダレンズ209の間には非平行平板261が、カップリングレンズ206、256とシリンダレンズ210の間には非平行平板262が、カップリングレンズ207、257とシリンダレンズ211の間には非平行平板263が配置されている。非平行平板261、262、263は、いずれか一面を主または副走査方向にわずかに傾けたガラス基板であり、基準色を除くステーション、図示の実施形態では、半導体レーザ204,254を有するステーション以外の、半導体レーザからの光ビームの通路に配備されている。後述するように、上記各非平行平板の姿勢を微調整することにより、各被走査面における光ビームの副走査方向の位置を微調整し、副走査方向における各色のレジストずれを補正するように構成されている。
【0016】
シリンダレンズ210,211,212の後方にはビーム合流手段としての反射ミラー215、216、217が配置されている。これらの反射ミラーによる反射角は、これらの反射ミラーによる折り返し位置a、b、cがポリゴンミラー213の偏向点oから近いほど鋭角となるように配置されるとともに、反射ミラー217,216,215の順にポリゴンミラー213から遠ざけることで、各ミラーの折り返し点から各光源手段の発光点に至る距離を異ならしめ、各光源ユニットのフランジ部やプリント基板が前後に重なり合うことで、省スペースで配置できるようレイアウトされている。なお、半導体レーザ201、251からの光ビームは反射ミラーを介することなく直接ポリゴンミラー213へと向かうようにしているが、他の光ビームと同様に、反射ミラーを配備して折り返すように構成してもよい。
【0017】
上記各反射ミラーの反射面は階段状に高さが異なり、半導体レーザ201、251からのビームは各反射ミラー215の上方を通ってポリゴンミラー213へと向かい、半導体レーザ202、252からの光ビームは反射ミラー215で折り返され上記半導体レーザ201、221からの光路に主走査方向を近接させ、反射ミラー216の上方を通ってポリゴンミラー213へと向かうように構成されている。また、半導体レーザ203、253からの光ビームは反射ミラー216で折り返され、他の光ビームと主走査方向を近接させ、反射ミラー217の上方を通ってポリゴンミラー213へと向かうようになっている。このように、ポリゴンミラー213から遠い側より順次各ビームの主走査方向を合わせポリゴンミラー213に入射される。
【0018】
各光ビームはそれぞれ副走査方向に平行となるように均等間隔で、図示の実施形態ではL=5mmで各半導体レーザより射出され、ポリゴンミラー213の偏向反射面でもこの間隔Lを保って偏向反射面に対し垂直に入射されるように構成されている。従って、半導体レーザ、カップリングレンズを保持する光源手段は物理的に上下すなわち副走査方向に重ねるのは難しく、主走査方向にずらして配置されている。ポリゴンミラー213は厚肉に形成され、実施形態では、6面ミラーとし、偏向に用いないビーム間の部分に各偏向反射面の内接円より若干小径となるように溝を設けて風損をより低減した形状とし、1層分の偏向反射面の厚さは約2mmとしている。
【0019】
ポリゴンミラー213によって偏向走査された光ビームの進路上には、走査された光ビームを像担持体としての前記感光体ドラム表面に結像させる結像手段の一部を構成するfθレンズ218が配置されている。fθレンズ218は各ビームに共通で、ポリゴンミラー213と同様に厚肉に形成され、副走査方向には収束力を持たない。主走査方向にはポリゴンミラー213の回転に伴って各感光体ドラム面上でビームが等速に移動するようにパワーを持たせた非円弧面形状となっていて、ビーム毎に配備されている。fθレンズ218を透過した対をなす各光ビームの進路上には、fθレンズ218とともにポリゴンミラー213の面倒れ補正機能を有するトロイダルレンズ219、220、221、222が配置されている。fθレンズ218とトロイダルレンズ219、220、221、222とにより各光ビームを感光体ドラム面上にスポット状に結像させ、各感光体ドラムに4つの潜像を同時に記録する光走査装置をそれぞれ構成している。
【0020】
各光走査装置では、ポリゴンミラー213から感光体ドラム面に至る各光路長が一致するように、また、等間隔で配列された各感光体ドラムに対する入射位置、入射角が等しくなるように、複数枚の折り返しミラーが配置されている。各光走査装置毎に光路を説明すると、半導体レーザ201、251からのビームは、ポリゴンミラー213の最上層の偏向反射面で偏向され、fθレンズ218を通過した後、折り返しミラー223で反射され、トロイダルレンズ219を介して感光体ドラム101に導かれ、第1の光走査装置としてイエロー画像を形成する。
【0021】
半導体レーザ202、252からの光ビームは、ポリゴンミラー213の2段目の偏向反射面で偏向され、fθレンズ218を通過した後、折り返しミラー224で反射され、トロイダルレンズ220を介して、折り返しミラー227により感光体ドラム102に導かれ、第2の光走査手段としてマゼンタ画像を形成する。
半導体レーザ203、253からの光ビームは、ポリゴンミラー213の3段目の偏向反射面で偏向され、fθレンズ218を通過した後、折り返しミラー225で反射され、トロイダルレンズ221を介して、折り返しミラー228により感光体ドラム103に導かれ、第3の光走査手段としてシアン画像を形成する。
半導体レーザ204、254からの光ビームは、ポリゴンミラー213の最下層の偏向反射面で偏向され、fθレンズ218を通過した後、折り返しミラー226で反射され、トロイダルレンズ222を介して、折り返しミラー229により感光体ドラム104に導かれ、第4の光走査手段としてブラック画像を形成する。
【0022】
折り返しミラー223、224、225、226はビーム分岐手段を構成し、ビームの進行方向に沿って、まず、前記ビーム合流手段により最後に合流した半導体レーザ204、254からのビームを折り返しミラー226で分岐し、次に半導体レーザ203、253からのビームを折り返しミラー225で分岐し、さらに、半導体レーザ202、252からのビームを折り返しミラー224で分岐し、半導体レーザ201、251からのビームを折り返しミラー223で分岐する、というように副走査方向の配列順に対応して順次分岐していく。また、折り返しミラー226で分岐された光ビームは折り返しミラー229で反射されて感光体ドラム104に導かれ、折り返しミラー225で分岐された光ビームは折り返しミラー228で反射されて感光体ドラム103に導かれ、折り返しミラー224で分岐された光ビームは折り返しミラー227で反射されて感光体ドラム102に導かれるように構成されている。折り返しミラー223で反射された光ビームはそのまま感光体ドラム101に導かれるようになっている。
【0023】
図示の実施形態では、折り返しミラー223、224、225、226での反射角をそれぞれβ4、β3、β2、β1、折り返しミラー227、228、229での反射角をそれぞれφ3、φ2、φ1とすると、
β1<β2<β3<β4
ここで、β4−β1<90°
とし、ハウジング底面に近いビームから順に折り返すことで、光路をポリゴンモータ106の下側まで回り込ませ、ハウジング105全体の小型化を可能にしている。また、各感光体ドラムへのビーム入射角度は同一としており、次の関係が成り立っている。
π−β4=φ1−β1=φ2−β2=φ3−β3
【0024】
上記のように、4つの光走査手段は単一のハウジングに収納される。図示したポリゴンモータ106は、動圧空気軸受方式であり、ハウジング110に固定されるベース部107に立設されかつ外周にへリングボーン溝が形成された固定軸108に、ポリゴンミラー213の中心部をくり抜いて円筒スリーブ109を装着した回転体が挿入されてなる。回転体下部には環状のマグネット111が配備され、円周方向に対向させて磁気コイル112が配置されている。マグネット111と磁気コイル112はポリゴンモータの一部をなしていて、このポリゴンモータによってポリゴンミラー213が回転駆動される。
なお、fθレンズ218、トロイダルレンズ219、220、221、222は、接着、あるいは板バネで押圧するなどの固定手段によってハウジング110の所定位置に固定されている。
【0025】
感光体ドラム101を走査する第1の光走査手段には、画像記録領域の走査開始側においてビームを防塵ガラス234の一部で折り返し、この折り返された光ビームを受光する同期検知センサ230が配備されている。この同期検知センサ230による検知信号をもとに、各光走査手段において主走査方向の書き込み開始のタイミングをはかる。
【0026】
また、前記転写ベルト105は、駆動ローラと従動ローラからなる3本のローラにより保持されて回転駆動され、各感光体ドラムから順次トナー像が転写されるようになっている。この転写の際に、副走査方向の書き出しタイミングによりレジスト位置が合わされて各トナー像が重ね合わされる。各色画像のレジスト位置は定期的に調整がなされ、転写ベルト105上に形成されたトナー像のレジスト位置を読み取る検出器がベルト両端部に配備されている。検出器は、照明用のLED素子231と転写ベルト105からの反射光を受光するフォトセンサ232、および一対の集光レンズ233とからなる。この検出器は、基準色(例えばブラック)および、他の色(シアン、マゼンタ、イエロー)のトナー像を並列して形成した検出パターンを読み取る。図示の実施形態では、転写ベルト105に主走査方向から45°傾けた検出パターンが形成され、この検出パターンを上記検出器で読み取り、その検出タイミングから副走査方向の基準色に対するレジストずれを算出し、この結果をもとに各光走査手段において、ポリゴンミラー1面おき、つまり1走査ラインピッチPを単位として副走査方向における書き出しタイミングを合わせるようになっている。
【0027】
図2において、符号235、236、237はそれぞれ防塵ガラスを示しており、これらの防塵ガラスはハウジング下側を覆うカバーに装着されている。
【0028】
図4は、本発明の光走査装置および画像形成装置に用いる光源ユニットの例を示す。図1ないし図3に示す光走査装置および画像形成装置の実施形態では4つの光源ユニットが用いられていたが、全ての光源ユニットは同一構成である。図4において、光源である半導体レーザ271、272およびカップリングレンズ273、274は、各色に対応する走査手段毎に、光ビームの射出軸に対して主走査方向に対称に配備されている。半導体レーザ271,272はそのパッケージの外周がそれぞれ支持部材275に支持部材275の背面側から嵌合されかつ圧入されている。カップリングレンズ273、274は、支持部材275の前面側に半円状の一対の溝を背合わせにして形成した突起276の上記半円状溝に、射出ビームが平行光束となるように光軸方向の位置を合わせて接着により固定されている。上記突起の溝を形成する面と各カップリングレンズ外周面との隙間には、例えば紫外線(UV)硬化型接着剤が充填されて各カップリングレンズが固定されている。各半導体レーザ271,272の光軸は、双方の光軸の中心である射出軸cに対して互いに交差する方向となるよう傾けられている。図示の実施形態ではこの交差位置がポリゴンミラーの偏向反射面の近傍となるように、支持部材275の、半導体レーザ271,272の受け面とカップリングレンズ273、274の接着面の傾斜を設定している。
【0029】
駆動回路が形成されたプリント基板279は支持部材275に立設された円柱台座280にネジ止めにより装着され、各半導体レーザ271,272のリード端子はプリント基板279に形成されたスルーホールに挿入され、プリント基板279の回路パターンにハンダ付けされることで、光源ユニット270が一体的に構成されている。支持部材275の前面側には、円筒部278が突出して支持部材275と一体に形成されていて、この円筒部278の前面に上記突起276が一体に形成されている。
【0030】
上記のように構成された光源ユニットは、前述のように4つ用いられ、各光源ユニットは、ハウジングの壁面に順次高さを異ならしめて形成された係合孔に、各支持部材275の円筒部278が挿入され、支持部材275の前面である当接面277がハウジングの壁面に突き当てられてネジ止めされる。この際、円筒部278を基準としてあるいはガイドとして傾け量γを調整することで、副走査方向のビームスポット間隔を調整し、記録密度に応じた走査ラインピッチPに合わせることができる。したがって、傾け量γの調整手段は、走査レンズへの光ビームの入射位置を変更するビーム入射位置可変手段を構成している。なお、この実施形態では各光源ユニットで半導体レーザを複数用いているが、単数であってもよく、また、複数の発光源を1チップにモノリシックに形成した半導体レーザアレイとしてもよい。
【0031】
第1の光走査手段には、画像記録領域の走査開始側と同時に走査終端側にも終端検知センサ115が配備され、同期検知センサ113との検出信号の時間差を計測することで、画像幅(全幅倍率)の変化を検出するようになっている。各半導体レーザを変調する画周波数を検出された画像幅の変化に対して反比例倍することで画像幅を一定に保つことができる。
【0032】
また、各センサを、図8に示すように主走査方向に垂直なフォトダイオード401と非平行なフォトダイオード402とで構成することにより、光ビームがフォトダイオード401のエッジを通過した際に、同期検知信号または終端検知信号を発生し、フォトダイオード401からフォトダイオード402に至る時間差Δtを計測して、光ビームの副走査位置のずれΔyを検出することができる。Δyはフォトダイオード352の傾斜角γ、光ビームの走査速度Vを用いて、
Δy=(V/tanγ)・Δt
で表され、Δtが一定であれば副走査位置ずれが生じていないことになる。このような副走査位置ずれは、後述する光軸偏向手段によって補正が可能であり、前述のように転写ベルト上に形成した検出パターンによる副走査レジスト検出の代わりに用いることができる。
【0033】
また、上記のような副走査位置ずれ検出と、転写ベルトでの検出による副走査レジスト検出と併用してもよく、転写ベルトでの検出を、頻度を低くして長期レンジで行い、その合間に短期レンジで上記の副走査位置ずれを検出し、これをフィードバックして補正を行うことで、装置の印字待ち時間を短縮できる。なお、実施例では、各光走査手段での走査位置ずれが一様であるため、第1の光走査手段のみに走査位置ずれ検出手段を配備しているが、各センサを全ての光走査手段に同様に配備してもよい。
【0034】
図5は、感光体ドラムにおける書き込み位置と転写位置との関係を示す。符号Oは感光体ドラムの回転中心を示す。書き込み位置と転写位置とは上記回転中心Oに対してαの開き角度に設定されるため、一定の角速度で回転すれば、書き込み位置と転写位置まで回転するのに要する時間tsは一定である。各色の副走査レジストは前述のとおり検出パターンにより検出される。それぞれ、定期的にポリゴンミラーの1面おきに、1走査ラインピッチPを単位として書き込み開始タイミングが調節され、副走査方向レジストが合わせられるので、ドラム径Dを用い、
D・α/2=N・P+ΔP
ここで、Nは自然数
で表される。ΔPは同期検知タイミングの位相差により生じる書き込み開始タイミングのずれを示す。また、各色感光体ドラムのうち基準色感光体ドラムからの転写位置間隔Bを用い、
B=M・P+ΔP
ここで、Mは自然数
で表される。つまり、Dやα、Bが各々異なっていても速度変動がなく、書き込み位置が変動しない限りは、各々の書き込み開始タイミングのずれΔPだけが、残ることになる。このΔPは最大で1ピッチの1/2、 ΔP≦P/2 であり、実施例では、定期的な転写ベルト上での検出パターンによる副走査レジスト検出に基づいて、この分を光軸変更手段により副走査方向に光軸を微動させ、ΔPが0になるように補正すればよい。
【0035】
図6は、光軸可変手段である非平行平板の支持部とその調整機構の例を示す。非平行平板301は、円筒状のホルダ部材302中央に形成された枠内に固定されている。V字状の軸受部303が形成された支持部材304の上記軸受部303にホルダ部材302の外周が載せられ、一端が支持部材304の上端にネジで固定された板ばね305の先端部によりホルダ部材302が上記軸受部303に押圧され、ホルダ部材302の中心を光源ユニットの射出軸に合わせて支持されている。ホルダ部材302は上記V字状の軸受部303をガイドとして上記射出軸の周りに非平行平板301とともに回転させることができ、この回転によってビームの射出軸をわずかに傾けることができる。
【0036】
ホルダ部材302の一端にはレバー部306が形成されている。このレバー部306にはアクチュエータ部材307の上端が対向している。アクチュエータ部材307には、ステッピングモータ309の軸先端に形成された送りネジが螺合されている。ステッピングモータ309は支持部材304の側面に固定された支持板に固定されている。この支持板と上記レバー部306との間には引っ張りスプリング308が掛けられ、このスプリング308の弾力によってホルダ部材302が回転付勢され、この付勢力によって上記アクチュエータ部材307にレバー部306が突き当てられている。ステッピングモータ309が回転駆動されると、アクチュエータ部材307が上下動し、その上下動に伴って非平行平板301とともにホルダ部材302が回転することができるようになっている。
【0037】
いま、非平行平板301の回転角をγ、非平行平板301の頂角をε、カップリングレンズの焦点距離をfc、光学系全系の副走査倍率をζとすると、感光体面での副走査位置変化Δyは、
Δy=ζ・fc・(n−1)ε・sinγ
nは非平行平板の屈折率
で与えられ、微小回転角の範囲では副走査位置が回転角にほぼ比例して変化する。実施例では、非平行平板301の頂角εは、約2°に設定している。
なお、図6では非平行平板を符号301で示しているが、この非平行平板301は図1、図3に示す非平行平板261、262、263に相当する。これらの非平行平板261、262、263が、光軸に直交しかつ主走査平面に平行な軸を中心として回転することにより、光源手段から変更手段に至る光ビームの光軸を副走査方向に傾ける光軸可変手段を構成している。そしてこの光軸可変手段は、走査レンズへの光ビームの入射位置を変更するビーム入射位置可変手段となっている。
【0038】
なお、実施例では上記したように転写ベルトが速度変動なく移動することを想定しているが、一般的には1回転に1周期程度の緩やかな変動がある。これにより、図7に示すように、最大変動量σ0の副走査位置ずれが各色画像の転写位置で位相をずらして周期的に変化する。速度変動は、主に転写ベルトの厚さむらや癖により駆動ローラ位置での周速が変化することが要因とされ、あらかじめベルト端に基準マークをつけておき、これを検出することで補正が可能である。
【0039】
いま、基準マークから位相がtdだけずれた位置に振幅の節があるとし、各色において書込みから転写までの時間tmが一定であるとすると、基準色に対する各色の転写タイミングのずれt0、基準マーク検出から基準色の書き込みを開始するまでの時間t’を用いて、書き込み開始から任意の時間tでの基準色との副走査位置ずれは、
Figure 2004333994
Tは転写ベルト1回転の時間
で表され、これと逆位相となるように、前記非平行平板を一定角度の範囲で周期的に振幅回転させることで、転写時のベルト周速の変化をキャンセルした位置に転写させることができ、このような経時的に変化するずれに対しても対処できる。
【0040】
次に、走査ラインの傾き、および曲がりを補正する機構について説明する。図9はその実施例で、光学ハウジング底面400へのトロイダルレンズ401の支持部を示す。図9中、符号440、441は前記第1の反射ミラーを示している。これらの第1の反射ミラー440、441はハウジング底面400に形成した傾斜面442、443により両端が支えられ、板ばね444,445により付勢されて傾斜面442、443に押し付けられて支持されている。反射ミラー440はブラック画像(1番下に)、反射ミラー441はシアン画像(下から2番目)に対応するビームを各々トロイダルレンズへと反射するようになっている。
【0041】
ここでは、代表してシアン画像を記録するステーション(下から2番目)について説明する。各トロイダルレンズ401は板金を「コ」の字状に曲げた筐体420に収容され、各感光体ドラムに対向して、光学ハウジング底面に光軸方向、副走査方向を揃えて配置される。トロイダルレンズ401は樹脂製で剛性が低く、また、長尺であるため、わずかな応力が加わるだけで変形すなわち反りが生じ易く、周囲温度の変化に伴って温度分布があると熱膨張差により変形してしまう。しかし、上記のような筐体420に樹脂製トロイダルレンズを収容することで、形状を安定的に保って保持することができ、トロイダルレンズの傾き調整の際に局部的に応力が加わっても、トロイダルレンズを変形させることはない。したがって、上記筐体420は樹脂製トロイダルレンズの反り矯正手段を構成している。
【0042】
図9(b)に示すように、トロイダルレンズ401は、筐体420の開放側から挿入され、レンズ部403を囲うように形成されたリブ402の中央部に設けられた突起405が筐体420に形成された切欠421(図9(a)参照)に係合して主走査方向すなわちレンズ401の長手方向が規制されている。レンズ401の長手方向両端に突出させて設けられたフランジ部404が筐体420の両端より差し込まれる支持ブロック423に形成された凹部424に嵌め込まれてレンズ401の光軸方向と副走査方向(短手方向)を規制して保持している。支持ブロック423の側面には板ばね432がネジ止めされ、板ばね432は上記フランジ部404を後側から凹部424に押し付けることで、トロイダルレンズ401は中央の係合部を支点として長手方向に自由に膨張できるように保持されている。このように構成されることにより、トロイダルレンズ401と筐体420の熱膨張係数が異なっていても、温度変化によってトロイダルレンズ401の変形が生じることはない。
【0043】
また、図9(a)の左下に示されているように、筐体420の上壁面の中間部に形成されたタップ穴447には調節ネジ424が螺合され、筐体420の弾性力によりトロイダルレンズ401のリブ402の上面に調節ネジ424の先端が所定の押圧力をもって突き当てられている。筐体420の奥側(図9(a)において左下側)の面にはビームが通過するスリット状の開口426が設けられ、支持ブロック423は上記開口426の面と下壁面との内側の角に突き当てられて、筐体420の下壁面の貫通孔448を介してネジ425により固定されている。
【0044】
筐体420の長手方向の一端には円弧状の曲げ部446を介して光学ハウジングに固定するための平板部427が形成されている。もう一端には光学ハウジングに固定されるステッピングモータ411の軸先端に装着された送りネジ413が螺合された平板部428が形成されている。トロイダルレンズ401の光軸方向と主走査方向は、筐体420の貫通孔429、430にハウジング底面から突出した突起405、406を挿入することによって位置決めされている。トロイダルレンズ401の副走査方向は、平板部427をハウジング基準面408にネジ431により固定することで基準部位を位置決めされ、同部位を支点としてもう一端の部位が可変できる構成となっている。ステッピングモータ411はハウジング底面の裏に貫通孔409を通して送りネジ413がついた回転軸を突出させて支持されている。従って、ステッピングモータ411を正逆に回転駆動することで、トロイダルレンズ401が光軸に直交する面内で回転角度を調節することができる。この回転角度をγとする。トロイダルレンズ401の上記回転に伴って、図10(b)(c)に示すように副走査方向の焦線が平板部427を回転支点として傾く。したがって、主走査平面に対してトロイダルレンズ401の母線が傾いて配備されることになり、トロイダルレンズ401による結像位置での走査ラインが傾けられる。前述のように、筐体420は走査レンズの一部をなす樹脂製トロイダルレンズの反り矯正手段を構成しており、また、筐体420は上記のように光軸に直交する面内で回転角度を調節することができるように構成されて、走査レンズ回転手段を構成している。
【0045】
一般に、光学系を構成する光学素子の配置誤差等に起因する走査ラインの傾きの他にも、感光体ドラムの配置誤差や転写ベルトの蛇行などによっても画像が副走査方向に傾く。これらを含めてスキューと称されている。このスキューをキャンセルする方向にトロイダルレンズ401を傾けることによってスキューを総合的に改善することができる。実施例では、ブラックを除く他の色の画像に対応するトロイダルレンズに回転支点端の方向を揃えて配備され、光走査装置および画像形成装置を出荷した後にも、各色の走査ラインを基準となるブラックの走査ラインと平行になるように合わせられる。また、上に述べた調節ネジ424の突出量を伸縮することによって、図10(a)に示すようにトロイダルレンズ401の焦線を副走査方向に湾曲させ、走査ラインを一様に反らすことができるようになっている。したがって、前記筐体420は、走査レンズの一部を構成するトロイダルレンズの回転手段、反り矯正手段とともに、走査レンズ湾曲可変手段を有していることになる。
【0046】
一般に、走査ラインの曲がりは光学系を構成する光学素子の配置誤差や、光学素子成形時の変形等に起因するが、これをキャンセルする方向にトロイダルレンズ401を湾曲させることによって、直線性を改善することができ、あるいは、各走査ライン間の湾曲の方向と量を揃えることができる。実施例では、ブラックを含めた全ての色の画像形成に対応するトロイダルレンズに配備され、製造時に、各色の走査ラインを基準となるブラックの走査ラインに曲がりの方向と量が揃うように合わせ、この状態を保ったまま、上に述べた傾き調整が可能な構成としている。
【0047】
なお、実施例では、製造工程を簡素化するため、調節ネジ424を1点としているが、長手方向の複数箇所に設けてもよく、こうすることにより直線性を改善することができる。しかしながら、上に述べたように走査ラインの傾きは一端を支点として回転されるため、トロイダルレンズ401の光軸中心は図10(b)に示すように可変量の約1/2だけシフトしてしまい、ビーム入射位置が偏心する。この偏心量を図10(b)ではδであらわしている。この偏心は微小であれば問題ないが、許容限界(実施例では約0.5mmとしている)を超えると感光体ドラム上のビームスポットが歪んで不均一となり、画像濃度むらの要因となってしまう。
【0048】
この偏心が生じないように、回転の支点位置を、例えばトロイダルレンズの長手方向中央に設ける構成が考えられる。しかし、トロイダルレンズを設置するための付勢手段は端部に設けざるを得ず、上記支点位置と付勢手段との距離が離れてしまうため、梃子の原理により上記付勢力によるトルクが増大し、逆にトロイダルレンズが変形し易くなるという問題があり、好ましくない。そこで、実施例では、この傾き調整を行った際に、この傾き調整と併せて上記した非平行平板により上記偏心量に応じた分だけ光軸方向を可変する調整を同時に行うことで、概略光軸中心にビームが入射するように補正している。なお、傾き調整量と光軸の可変量とは、支点から可変部までの距離と支点からレンズ中心までの距離との略比例関係で容易に算出されるが、そうでない場合にも、あらかじめ相関関係を把握しておくことによって、同様に補正が可能である。また、この補正によって感光体ドラム上での走査位置がずれるが、このずれは上記した書き出しのタイミング補正によって修正できる。上記構成により、走査ラインの傾きおよび曲がりを合わせることで、各ステーションで記録した画像のレジストずれを低減でき、色ずれのない高品位なカラー画像を形成することができる。
【0049】
実施例では、転写ベルト上に形成されたトナー像から得られる、転写ベルト両端でのレジスト位置検出信号により、以下の順で補正がなされる。
1.ステッピングモータ411を駆動し、走査ラインが平行となるよう傾きを合わせる。
2.ステッピングモータ309を駆動し、傾き調整量に応じて光軸を粗調整する。
3.書き込み制御部において書き込み開始タイミングを調節し、1ラインピッチ単位までレジストを合わせる。
4.ステッピングモータ309を駆動し、1ラインピッチ以下のずれを微調整する。
【0050】
図12は走査ラインの傾きを調整するための別の実施例を示す。この実施例において、トロイダルレンズ401の保持方法、曲がりを補正する機構については、上記実施例と同一である。図12において、上記実施例と異なり、筐体420の長手方向の両端に、ステッピングモータ411、412の軸の先端に装着された送りネジ413、414が螺合される平板部427、428が形成されている。各ステッピングモータ411、412は相互に連携を取りながら、走査ラインの傾け量の1/2に相当する分ずつ相反する方向に駆動され、トロイダルレンズ401を光軸に直交する面内で回動調節する。この回転調節量をγとする。この回転調節を行うことは、次の1.2.に相当する。
1.ステッピングモータ411(または412)を駆動し、走査ラインが平行となるように傾きを合わせる。
2.ステッピングモータ411および411を同時に駆動し、傾き調整量に応じて光軸をシフトする。
トロイダルレンズ401を、光軸中心の副走査位置を保ったまま傾くようにすることで、前述の非平行平板の姿勢を変えながら調製する場合と同様に、光軸に対するビーム入射位置の偏心を補正することができる。なお、各ステッピングモータから光軸中心までの距離が異なる場合には、距離の比に相当する移動量にそれぞれ設定すればよい。
【0051】
図11はこれまで説明してきた光走査装置を搭載した画像形成装置の例を示す。この画像形成装置は、赤、緑、青、黒の4つの色に対応した画像信号によって光ビームを走査する4つの光走査装置と、子の光走査装置によってそれぞれの色の画像信号に対応した画像を形成する像担持体としての4つの感光体ドラムを有している。各感光体ドラムの回りには、カールソン・プロセスと称される電子写真プロセスを実行するための所定のユニットが配置されている。これら感光体ドラムとその周囲の各ユニットによって4つの画像形成ステーションが構成されている。各の画像形成ステーション構成は同じであるから、図11において左端の画像形成ステーションの構成について説明する。
【0052】
図11において、感光体ドラム901の周囲には感光体901を高圧にかつ一様に帯電する帯電チャージャ902、光走査装置900により感光体ドラム901の表面に記録された静電潜像に帯電したトナーを付着して顕像化する現像ローラ903、現像ローラ903にトナーを補給するトナーカートリッジ904、感光体ドラム901に残ったトナーを掻き取り備蓄するクリーニングケース905が配置されている。帯電チャージャ902によって均一に帯電された感光体ドラム901の表面には、前述のように構成された光走査装置900により、ポリゴンミラーの偏向反射面1面毎に光ビームが走査されることにより、画像が静電潜像として記録される。図11に示す実施例では、4つの感光体ドラムに同時に画像が記録される。感光体ドラム901の静電潜像は、現像ローラ903から所定の色のトナーが供給されることにより顕像化される。他の感光体ドラムも同様に静電潜像が形成され、それぞれの像に対応する色のトナーで顕像化される。
【0053】
上記した4つの画像形成ステーションは転写ベルト906の移動方向に並列に配置され、イエロー、マゼンタ、シアン、ブラックのトナー画像が転写ベルト906上にタイミングを合わせて順次転写され、かつ各トナー画像が重ね合わされてカラー画像が形成される。各画像形成ステーションはトナー色が異なるだけで、基本的には同一構成である。
【0054】
一方、給紙トレイ907から給紙コロ908により記録紙が1枚ずつ引き出され、レジストローラ対909により記録紙が副走査方向の記録開始のタイミングに合わせて送り出されるように構成されている。送り出された記録紙は転写ベルト906の移動に合わせて搬送されるとともに転写ベルト906に転写されていたカラー画像に接触し、上記のようにして転写ベルト906に転写されていたカラー画像が記録紙に転写されるように構成されている。記録紙はさらに搬送されて定着ローラ910で定着され、排紙ローラ912により排紙トレイ911に排出されるようになっている。
【0055】
【発明の効果】
請求項1記載の発明は、光源手段と、光源手段からの光ビームを偏向し主走査を行う偏向手段と、走査された光ビームを像担持体に結像する結像手段とを有する光走査装置において、上記結像手段を構成する少なくとも副走査方向に収束力を有する走査レンズを光軸と直交する面内で回転させる走査レンズ回転手段と、上記走査レンズへの光ビームの入射位置を変更するビーム入射位置可変手段とを備えている。このような構成にすることにより、複雑な調整機構によることなく、部分的な倍率誤差やビームスポット径の不均一といった副作用のない、簡単な調整で確実に走査ラインの傾きを補正することができ、画像形成装置に適用することによって高品位な画像を形成することができる。
【0056】
請求項2記載の発明は、ビーム入射位置可変手段が、光源手段から偏向手段に至る光ビームの光軸を副走査方向に傾ける光軸可変手段からなり、走査レンズへの光ビームの入射位置を、光ビームの光軸を傾けて補正するようにした。このような構成にすることにより、走査レンズの回転支点がいかなる場合においても、光ビームの入射位置を確実かつ走査レンズの回転とは独立して可変できるので、調整が単純化され自動補正にも対処でき、経時的な変動に対しても補償することができる。
【0057】
請求項3記載の発明は、ビーム入射位置可変手段が、走査レンズを副走査方向にシフトする走査レンズ移動手段からなり、走査レンズへの光ビームの入射位置を、走査レンズをシフトして補正するようにした。このような構成にすることにより、走査レンズの光軸に直交した面内での姿勢を、簡単、かつ自在に可変できるので、自動補正にも対処でき、経時的な変動に対しても補償することができる。
【0058】
請求項4記載の発明は、ビーム入射位置可変手段が、上記走査レンズ回転手段での回動量よりあらかじめ定められた関係式によって算出された補正値に基づいて、上記走査レンズの回動に伴う光ビームの偏心を補正するようにした。このような構成にすることにより、走査レンズの回転量、言いかえれば、傾き補正量がわかれば一義的に偏心量を推定することができるので、自動補正にも容易に対処でき、経時的な変動に対しても補償することができる。
【0059】
請求項5記載の発明は、走査レンズ回転手段が、走査レンズの副走査方向における母線の反りを矯正する反り矯正手段を備え、上記反り矯正手段に走査レンズを保持した状態で回転自在としたことを特徴とする。このような構成にすることにより、走査レンズに余計なストレスを与えることなく、周囲温度が変わっても常に走査レンズをその形状を維持した状態で保持することができるので、走査ラインの直線性を保ったまま傾きを補正することができ、高品位な画像を形成することができる。
【0060】
請求項6記載の発明は、走査レンズの反り矯正手段に、走査レンズの母線の反りを可変する走査レンズ湾曲手段を備え、像担持体上における走査ラインの湾曲量を可変としたことを特徴とする。このような構成にすることにより、走査レンズを所望の湾曲量に合わせた状態で保持することができるので、複数のステーション間で走査レンズの湾曲の方向と量を揃えることができ、各走査レンズの湾曲の偏差を低減することができ、高品位な画像を形成することができる。
【0061】
請求項7記載の発明は、走査レンズが、反り矯正手段と主走査方向における中央部で係合され、両端に向かって膨張自在に保持されていることを特徴とする。これにより、走査レンズとして比較的熱膨張係数の高い樹脂レンズを用いても、中央部を合わせた状態で膨張による延びを各像高側に均等(対称)に逃がすことができ、変形を生じないので、結像性能の劣化を防ぎ、高品位な画像を形成することができる。
【0062】
請求項8記載の発明は、複数の光源手段と、光源手段からの各光ビームを偏向し主走査を行う偏向手段と、走査された各光ビームをそれぞれに対応した像担持体に結像する複数の結像手段とを有する光走査装置において、複数の像担持体のうち、基準画像を形成する1つを除く他の像担持体に結像する結像手段のそれぞれについて上記結像手段を構成する少なくとも副走査方向に収束力を有する走査レンズを光軸と直交する面内で回転させる走査レンズ回転手段と、走査レンズへの光ビームの入射位置を変更するビーム入射位置可変手段とを備え、各像担持体上における走査ラインが平行に配列されるように補正することを特徴とする。かかる構成とすることにより、各ステーションでの書き出しのタイミングを合わせるだけで、各記録画像のレジストを合わせることができ、高品位な画像を形成することができる。
【0063】
請求項9記載の発明は、各走査レンズ回転手段が、主走査方向における同一端を支点として回動するように構成されていることを特徴とする。かかる構成にすることにより、各ステーション間の固定端側におけるレジストを保ったまま傾きを補正することができ、調整時間が短縮され、自動補正にも容易に対処でき、経時的な変動に対しても補償することができる。
【0064】
請求項10記載の発明は、複数の光源手段と、光源手段からの各光ビームを偏向し主走査を行う偏向手段と、走査された各光ビームをそれぞれに対応した像担持体に結像する複数の結像手段と、各像担持体上に形成した潜像を各色トナーで顕像化する現像手段と、各像担持体に形成されているトナー画像を順次転写して重ね合わせる転写体とを有する画像形成装置において、複数の像担持体のうち基準画像を形成する1つを除く他の像担持体に結像する結像手段のそれぞれについて上記結像手段を構成する少なくとも副走査方向に収束力を有する走査レンズを光軸と直交する面内で回転させる走査レンズ回転手段と、走査レンズへの光ビームの入射位置を変更するビーム入射位置可変手段とを備え、上記転写体上における各トナー画像間のスキューを補正するように構成したことを特徴とする。かかる構成としたことにより、記録された画像が書き込み系以外の要因により傾いても総合的に補正することができ、画像品質に直結して確実にフィードバックできるので、色ずれや色変わりのない高品位なカラー画像を得ることができる。
【0065】
請求項11記載の発明は、転写体に転写された各トナー画像間の傾きを検出するスキュー検出手段を備え、このスキュー検出手段における検出結果に基づいて各トナー画像間のスキューを基準画像と比較して補正するように構成した。かかる構成としたことにより、定期的に画像品質を検出してフィードバックすることで、画像形成装置の置かれている環境の変化や、経時的に生ずる機械的な劣化等にも対処でき、色ずれや色変わりのない高品位なカラー画像を得ることができる。
【図面の簡単な説明】
【図1】本発明にかかる光走査装置の実施形態をハウンジングおよびケースを省略して示す斜視図である。
【図2】上記実施形態の一部断面正面図である。
【図3】上記実施形態の光源部から走査レンズに至る部分を示す斜視図である。
【図4】本発明に用いることができる光源手段の構成例を示す分解斜視図である。
【図5】感光体ドラムにおける書き込み位置と転写位置との関係を模式的に示す正面図である。
【図6】本発明に用いることができる光軸変更手段である非平行平板の支持部とその調整機構の例を示すもので、(a)は分解斜視図、(b)は組み立て状態を示す斜視図である。
【図7】タンデム型画像形成装置における転写ベルトの速度変動の例と各色に対応した画像書き込みのタイミングを示すタイミングチャートである。
【図8】光ビームの副走査位置ずれ検出手段の例を示す正面図である。
【図9】本発明に用いることができる走査ラインの傾きおよび曲がり補正機構の例を示すもので、(a)は全体の分解斜視図、(b)はトロイダルレンズとその保持部の横断面図、(c)は補正機構部分の側面図である。
【図10】トロイダルレンズの母線が傾いて配備されることになりトロイダルレンズによる結像位置での走査ラインが傾けられる様子を示す斜視図である。
【図11】本発明にかかる画像形成装置の実施形態を示す正面図である。
【図12】本発明に用いることができる走査ラインの傾きおよび曲がり補正機構の別の例を示す分解斜視図である。
【符号の説明】
101 像担持体
102 像担持体
103 像担持体
104 像担持体
201 光源手段としての半導体レーザ
202 光源手段としての半導体レーザ
203 光源手段としての半導体レーザ
204 光源手段としての半導体レーザ
213 偏向手段
218 走査レンズを構成するfθレンズ
251 光源手段としての半導体レーザ
252 光源手段としての半導体レーザ
253 光源手段としての半導体レーザ
254 光源手段としての半導体レーザ

Claims (11)

  1. 光源手段と、光源手段からの光ビームを偏向し主走査を行う偏向手段と、走査された光ビームを像担持体に結像する結像手段とを有する光走査装置において、
    上記結像手段を構成する少なくとも副走査方向に収束力を有する走査レンズを光軸に直交する面内で回転させる走査レンズ回転手段と、
    上記走査レンズへの光ビームの入射位置を変更するビーム入射位置可変手段とを備えていることを特徴とする光走査装置。
  2. 上記ビーム入射位置可変手段は、上記光源手段から偏向手段に至る光ビームの光軸を副走査方向に傾ける光軸可変手段からなり、上記光ビームの光軸を傾けて上記走査レンズへの光ビームの入射位置を補正することを特徴とする請求項1記載の光走査装置。
  3. 上記ビーム入射位置可変手段は、上記走査レンズを副走査方向にシフトする走査レンズ移動手段からなり、上記走査レンズをシフトして上記走査レンズへの光ビームの入射位置を補正することを特徴とする請求項1記載の光走査装置。
  4. 上記ビーム入射位置可変手段は、上記走査レンズ回転手段での回転量よりあらかじめ定められた関係式によって算出された補正値に基づいて、上記走査レンズの回転に伴う光ビームの偏心を補正することを特徴とする請求項1記載の光走査装置。
  5. 上記走査レンズ回転手段は、上記走査レンズの副走査方向における母線の反りを矯正する反り矯正手段を備え、上記反り矯正手段に走査レンズを保持した状態で回転可能となっていることを特徴とする請求項1記載の光走査装置。
  6. 上記反り矯正手段は、上記走査レンズの母線の反りを可変することにより上記像担持体上における走査ラインの湾曲量を可変する走査レンズ湾曲可変手段を備えていることを特徴とする請求項5記載の光走査装置。
  7. 上記走査レンズは、主走査方向における中央部で上記反り矯正手段と係合され、両端側に膨張自在に保持されていることを特徴とする請求項5記載の光走査装置。
  8. 複数の光源手段と、光源手段からの各光ビームを偏向し主走査を行う偏向手段と、走査された各光ビームをそれぞれに対応した像担持体に結像する複数の結像手段とを有する光走査装置において、
    上記複数の像担持体のうち、1つを除く他の像担持体に結像する結像手段のそれぞれについて上記結像手段を構成する少なくとも副走査方向に収束力を有する走査レンズを光軸と直交する面内で回転させる走査レンズ回転手段と、
    上記走査レンズへの光ビームの入射位置を変更するビーム入射位置可変手段とを備え、
    上記各像担持体上において走査ラインが平行に配列されるように補正することを特徴とする光走査装置。
  9. 上記各走査レンズ回転手段は、主走査方向における同一端を支点として回転するように構成されていることを特徴とする請求項8記載の光走査装置。
  10. 複数の光源手段と、光源手段からの各光ビームを偏向し主走査を行う偏向手段と、走査された各光ビームをそれぞれに対応した像担持体に結像する複数の結像手段と、各像担持体上に形成された潜像を各色トナーで顕像化する現像手段と、顕像化されたトナー画像を順次転写して重ね合わせる転写体とを有する画像形成装置において、
    上記複数の像担持体のうち、1つを除く他の像担持体に結像する結像手段のそれぞれについて上記結像手段を構成する少なくとも副走査方向に収束力を有する走査レンズを光軸と直交する面内で回転させる走査レンズ回転手段と、
    上記走査レンズへの光ビームの入射位置を変更するビーム入射位置可変手段とを備え、
    上記転写体上における各トナー画像間のスキューを補正することを特徴とする画像形成装置。
  11. 上記転写体に転写された各トナー画像間の傾きを検出するスキュー検出手段を備え、このスキュー検出手段における検出結果に基づいて各トナー画像間のスキューを補正することを特徴とする請求項10記載の画像形成装置。
JP2003131526A 2003-05-09 2003-05-09 光走査装置および画像形成装置 Pending JP2004333994A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003131526A JP2004333994A (ja) 2003-05-09 2003-05-09 光走査装置および画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003131526A JP2004333994A (ja) 2003-05-09 2003-05-09 光走査装置および画像形成装置

Publications (1)

Publication Number Publication Date
JP2004333994A true JP2004333994A (ja) 2004-11-25

Family

ID=33506667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003131526A Pending JP2004333994A (ja) 2003-05-09 2003-05-09 光走査装置および画像形成装置

Country Status (1)

Country Link
JP (1) JP2004333994A (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007072274A (ja) * 2005-09-08 2007-03-22 Sharp Corp 光走査装置及び画像形成装置
JP2007114522A (ja) * 2005-10-20 2007-05-10 Konica Minolta Business Technologies Inc タンデム型対応走査光学装置
JP2008139345A (ja) * 2006-11-29 2008-06-19 Konica Minolta Business Technologies Inc 光走査光学装置
JP2008139340A (ja) * 2006-11-29 2008-06-19 Konica Minolta Business Technologies Inc 光走査光学装置
JP2008139339A (ja) * 2006-11-29 2008-06-19 Konica Minolta Business Technologies Inc 光走査光学装置
JP2008139347A (ja) * 2006-11-29 2008-06-19 Konica Minolta Business Technologies Inc 光走査光学装置
JP2008139342A (ja) * 2006-11-29 2008-06-19 Konica Minolta Business Technologies Inc 光走査光学装置
JP2009098332A (ja) * 2007-10-16 2009-05-07 Canon Inc 光走査装置及びそれを用いた画像形成装置
JP2010085963A (ja) * 2008-09-05 2010-04-15 Ricoh Co Ltd 光走査装置及び画像形成装置
US7937983B2 (en) 2007-05-01 2011-05-10 Ricoh Company, Ltd. Curved surface forming apparatus, optical scanning apparatus, and image forming apparatus
US8031220B2 (en) * 2007-12-04 2011-10-04 Canon Kabushiki Kaisha Image forming apparatus
JP2011197134A (ja) * 2010-03-17 2011-10-06 Ricoh Co Ltd 画像形成装置
JP2012027439A (ja) * 2010-06-25 2012-02-09 Ricoh Co Ltd 光走査装置及び画像形成装置
JP2012230396A (ja) * 2012-06-21 2012-11-22 Canon Inc 光走査装置及びそれを用いた画像形成装置
JP2012237772A (ja) * 2011-05-09 2012-12-06 Canon Inc 光走査装置および画像形成装置
CN106998402A (zh) * 2016-01-26 2017-08-01 株式会社东芝 图像形成装置

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007072274A (ja) * 2005-09-08 2007-03-22 Sharp Corp 光走査装置及び画像形成装置
JP2007114522A (ja) * 2005-10-20 2007-05-10 Konica Minolta Business Technologies Inc タンデム型対応走査光学装置
JP4665708B2 (ja) * 2005-10-20 2011-04-06 コニカミノルタビジネステクノロジーズ株式会社 タンデム型対応走査光学装置
JP2008139345A (ja) * 2006-11-29 2008-06-19 Konica Minolta Business Technologies Inc 光走査光学装置
JP2008139340A (ja) * 2006-11-29 2008-06-19 Konica Minolta Business Technologies Inc 光走査光学装置
JP2008139339A (ja) * 2006-11-29 2008-06-19 Konica Minolta Business Technologies Inc 光走査光学装置
JP2008139347A (ja) * 2006-11-29 2008-06-19 Konica Minolta Business Technologies Inc 光走査光学装置
JP2008139342A (ja) * 2006-11-29 2008-06-19 Konica Minolta Business Technologies Inc 光走査光学装置
US7937983B2 (en) 2007-05-01 2011-05-10 Ricoh Company, Ltd. Curved surface forming apparatus, optical scanning apparatus, and image forming apparatus
JP2009098332A (ja) * 2007-10-16 2009-05-07 Canon Inc 光走査装置及びそれを用いた画像形成装置
US8031220B2 (en) * 2007-12-04 2011-10-04 Canon Kabushiki Kaisha Image forming apparatus
JP2010085963A (ja) * 2008-09-05 2010-04-15 Ricoh Co Ltd 光走査装置及び画像形成装置
JP2011197134A (ja) * 2010-03-17 2011-10-06 Ricoh Co Ltd 画像形成装置
JP2012027439A (ja) * 2010-06-25 2012-02-09 Ricoh Co Ltd 光走査装置及び画像形成装置
US8848013B2 (en) 2010-06-25 2014-09-30 Ricoh Company, Limited Optical scanning device and image forming apparatus including a plurality of scanned members
JP2012237772A (ja) * 2011-05-09 2012-12-06 Canon Inc 光走査装置および画像形成装置
JP2012230396A (ja) * 2012-06-21 2012-11-22 Canon Inc 光走査装置及びそれを用いた画像形成装置
CN106998402A (zh) * 2016-01-26 2017-08-01 株式会社东芝 图像形成装置
CN106998402B (zh) * 2016-01-26 2019-11-05 株式会社东芝 图像形成装置

Similar Documents

Publication Publication Date Title
US6906739B2 (en) Optical scanner and imaging apparatus using the same
JP5050262B2 (ja) 画像形成装置
JP2004333994A (ja) 光走査装置および画像形成装置
EP1724625B1 (en) Optical scanning unit and image forming apparatus
JP4965142B2 (ja) 光走査装置および画像形成装置
JP4322703B2 (ja) 光走査装置、および多色画像形成装置
JP2008122706A (ja) 光走査装置および画像形成装置
JP2006251513A (ja) 光源装置、光走査装置および画像形成装置
JP4349483B2 (ja) 光走査装置および画像形成装置
JP2004287380A (ja) 光走査装置、走査線補正方法、走査線補正制御方法、画像形成装置および画像形成方法
JP4027870B2 (ja) 光走査装置および画像形成装置
JP2007133320A (ja) 光走査装置及び画像形成装置
JP2004191847A (ja) 光走査装置及び画像形成装置
JP4523440B2 (ja) 多色画像形成装置
JP4500385B2 (ja) 光走査装置及びカラー記録装置
JP4903455B2 (ja) 光走査装置および画像形成装置
JP4440700B2 (ja) 光走査方法・光走査装置および画像形成方法および画像形成装置
JP5879898B2 (ja) アクチュエータ、光走査装置及び画像形成装置
JP4596942B2 (ja) 光走査装置および画像形成装置
JP4340557B2 (ja) 光走査装置および多色画像形成装置
JP2008076458A (ja) 光走査装置と画像形成装置
JP5659659B2 (ja) 光走査装置及び画像形成装置
JP2006259445A (ja) 光源装置、光走査装置および画像形成装置
JP2008191582A (ja) 多色画像形成装置
JP2004286848A (ja) 光走査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317