JP2006251513A - 光源装置、光走査装置および画像形成装置 - Google Patents
光源装置、光走査装置および画像形成装置 Download PDFInfo
- Publication number
- JP2006251513A JP2006251513A JP2005069539A JP2005069539A JP2006251513A JP 2006251513 A JP2006251513 A JP 2006251513A JP 2005069539 A JP2005069539 A JP 2005069539A JP 2005069539 A JP2005069539 A JP 2005069539A JP 2006251513 A JP2006251513 A JP 2006251513A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- scanning
- polygon mirror
- optical
- optical scanning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Laser Beam Printer (AREA)
- Mechanical Optical Scanning Systems (AREA)
- Facsimile Scanning Arrangements (AREA)
Abstract
【課題】光軸を副走査方向に可変可能なデバイスと、結像位置が可変可能なデバイスとを組み合わせ、これらを関連付けて動作させることで、色ずれや色変わりのない高品位な画像形成を行う。
【解決手段】半導体レーザアレイ301の各発光点からのビームは、液体マイクロレンズ302、カップリングレンズ303を通過した後、シリンダレンズ113に入射され、ポリゴンミラーの偏向面106で収束される。ポリゴンミラーで反射された各ビームはfθレンズ120に入射され、トロイダルレンズ122の近傍で再度交差して、感光体ドラム面で所定のピッチとなるよう結像される。液体マイクロレンズ302によって副走査位置を補正する。
【選択図】図6
【解決手段】半導体レーザアレイ301の各発光点からのビームは、液体マイクロレンズ302、カップリングレンズ303を通過した後、シリンダレンズ113に入射され、ポリゴンミラーの偏向面106で収束される。ポリゴンミラーで反射された各ビームはfθレンズ120に入射され、トロイダルレンズ122の近傍で再度交差して、感光体ドラム面で所定のピッチとなるよう結像される。液体マイクロレンズ302によって副走査位置を補正する。
【選択図】図6
Description
本発明は、デジタル複写機およびレーザプリンタ等の書込系に用いられる光走査装置に適用され、特に複数色のトナー像を重ね合わせてカラー画像を形成する多色画像形成装置に関する。
カールソンプロセスを用いた画像形成装置においては、感光体ドラムの回転に従って潜像形成、現像、転写が行われる。従って、複数の感光体ドラムを転写体の搬送方向に沿って配列し、各色の画像形成ステーションで形成したトナー像を重ねる多色画像形成装置においては、感光体ドラムの偏心や径のばらつきによる潜像形成から転写までの時間、各色の感光体ドラム間隔が異なり、転写体、例えば、転写ベルトや記録紙を搬送する搬送ベルトの速度変動や蛇行によって、各トナー像の副走査方向のレジストずれにより色ずれや色変わりとなって画像品質を劣化させる。
同様に、光走査装置においても、感光体ドラムに形成する静電潜像の書込み位置を正確に合わせなければ、レジストずれにより色ずれや色変わりの要因となる。
従来、このレジストずれは、光走査装置によるもの、光走査装置以外によるものの区分けなく、特許文献1、2に示されるように、転写体に記録されたレジストずれ検出パターンにより装置の立上げ時やジョブ間等で定期的に検出し、副走査方向についてはポリゴンミラー1面おきで書き出しのタイミングを合わせることにより先頭ラインの位置を、一方、主走査方向については走査開始端で発生される同期検知信号からのタイミングを調節することにより書出し位置を補正している。
さらには、副走査方向におけるレジストを制御する方法として、特許文献3のように可変屈折率プリズムを用いた例や特許文献4のようにガルバノミラーを用いた例、特許文献5のように液晶偏向素子を用いた例など、光軸の向きを副走査方向に可変可能なデバイスを用いた例が開示されている。
また、画像形成装置への応用例に関する記載はないが、結像位置が可変可能なデバイスとして、特許文献6に示すような可焦点レンズ、特許文献7に示すような液体マイクロレンズなどが開示されている。
一般に、光走査装置は、記録画像の画素データに基づいて所定の画素クロックで変調される半導体レーザを有する光源と、光源からの光ビームを放射状に偏向走査するポリゴンミラーと、走査された光ビームを感光体ドラム面上にスポット状に結像するとともに隣接する画素のスポット間隔が均等となるよう配列するfθ特性を有する走査光学系とからなる。
多色画像形成装置に対応した光走査装置の一例として、特許文献8に開示されるように、各色に対応する光源からの光ビームを単一のポリゴンミラーで一括して走査するようにし、各々対応する走査光学系や感光体ドラムに導くための複数の折返しミラーを共通のハウジングに一体的に支持した構成や各感光体ドラムに対応させて個別に光走査装置を配備した構成がある。
このように、感光体ドラムへと向かう光ビームは各々異なる経路を通るよう構成部品が配置されるため、初期的に上記したレジストずれが発生しないように、各ステーションにおける走査位置を合わせておく必要がある。さらに、複数の発光源からのビームを一括で走査するマルチビーム走査装置においては、ピッチのずれも色ずれや色変わりの要因となるため、走査位置と同様、合わせておく必要がある。
また、経時的には、ポリゴンミラーの温度上昇や装置内の熱対流によってハウジングに温度偏差が発生し、走査光学系を構成する各々の部品の姿勢や配置が変動して、せっかく初期的に設定した走査位置が変化してしまう。それと同時に、近年、走査レンズの樹脂化が進んでいることから、この温度上昇に伴って熱膨張による曲率半径の変化、屈折率の変化など結像位置、いわゆるフォーカス位置を変動させる要因にもなっている。
このような走査位置のずれは、上記した光軸を副走査方向に可変可能なデバイスによって補正可能であるが、走査光学系を構成する各々の部品においてビームの通過位置を補正するものではなく、トータルのずれとして感光体ドラム面上における走査位置を、光軸の向きを変えることで補正しているため、レンズの光軸から偏心した位置を通過したり、光路長が微妙に変化してしまい、温度上昇による変化とは別に結像位置を変動させてしまうといった副作用がある。
また、例えば、液晶偏向素子など屈折率の変化を利用して射出軸を傾ける方法においては、駆動電圧によって透過波面収差が発生する、つまり、偏向角によって射出ビームの収束力が変わってしまうといった不具合もある。
従って、ビームの結像位置が感光体ドラム面からずれ、ビームスポットの裾が広がって潜像のコントラストが低下し、トナーの散りが多くなり解像力の低下となって画像品質を劣化させてしまう。また、近年、高速化に伴って、一度に複数のラインを同時に走査するマルチビーム化が進んでいるが、上記結像位置の変動に伴って、全系の倍率も変化するので、マルチビーム走査装置においてはビーム間のピッチが変化してしまい、濃度むらとなって画像品質を劣化させてしまう。
本発明は上記した問題点に鑑みてなされたもので、
本発明の目的は、複数の画像形成ステーションによって形成された画像を重ね合わせるタンデム方式の多色画像形成装置において、光軸を副走査方向に可変可能なデバイスと、結像位置が可変可能なデバイスとを組み合わせ、これらを関連付けて動作させることで、上記した副作用の発生を抑え、色ずれや色変わりのない高品位な画像形成を行い、また、これらのデバイスを組み込むことで調整時間を短縮し、組立効率を向上させた画像形成装置を提供することにある。
本発明の目的は、複数の画像形成ステーションによって形成された画像を重ね合わせるタンデム方式の多色画像形成装置において、光軸を副走査方向に可変可能なデバイスと、結像位置が可変可能なデバイスとを組み合わせ、これらを関連付けて動作させることで、上記した副作用の発生を抑え、色ずれや色変わりのない高品位な画像形成を行い、また、これらのデバイスを組み込むことで調整時間を短縮し、組立効率を向上させた画像形成装置を提供することにある。
本発明は、複数の発光源と、各発光源からの光ビームを所定の収束状態となるよう配備するカップリングレンズとを有する光源装置において、上記光源装置から射出される光ビームの射出方向の可変と、収束状態の可変とを関連付けて行なう射出ビーム制御手段を備えることを最も主要な特徴とする。
また、光源装置から放射された複数のレーザビームをポリゴンミラーにより主走査方向に偏向走査し、走査結像手段により被走査面に向かって集光する光走査装置において、結像位置の変動を電圧を印加することによって焦点距離が変化する液体レンズにより補正することを最も主要な特徴とする。
本発明によれば、発光源と、発光源からの光ビームを所定の収束状態となるよう配備するカップリングレンズと、を有する光源装置において、上記光源装置から射出される光ビームの射出方向の可変と、収束状態の可変とを関連付けて行なう射出ビーム制御手段を備えることにより、発光源とカップリングレンズとの調整を高精度に行わなくても、光走査装置として組み上げた状態で最適となるように、射出ビームの射出方向や収束状態を再設定できるので、厄介な調整が不要となり組立効率が向上する。また、上記したデバイスにより、光ビームの射出方向の可変と、収束状態の可変とを個別に行うことは可能であるが、例えば、電位差によって液晶の配向を変える液晶偏向素子では、偏向角によって収束力が変化してしまい、レンズ部の周囲に沿って外力を付与し曲率半径を変える可焦点レンズでは、外力の不均一によって曲率中心が変化して射出方向が変わってしまうというように、思うような効果が得られない場合があるが、これらを関連付けて行うことにより解決され、確実な補正が可能となる。
本発明によれば、画像信号に基いて変調された複数の発光源を有する光源手段からの各光ビームを単一の偏向手段により偏向するとともに、結像光学系によりスポット状に結像して、被走査面を同時に走査するようにした光走査装置において、上記光源手段から射出される光ビームの射出方向の可変と、収束状態の可変とを関連付けて行なう射出ビーム制御手段を備え、上記被走査面における各ビームスポットの、少なくとも副走査方向の走査位置とビームピッチとを調整することにより、結像光学系を構成する走査レンズや折返しミラーなどの配置や姿勢が変動しても、被走査面において最適な状態に補正できるので、走査位置ずれによる色ずれやピッチずれによる濃度むらのない高品位な画像形成が行える。
本発明によれば、射出ビーム制御手段は、副走査方向における走査位置とビームピッチとの初期値を設定することにより、光走査装置として組み上げた状態で、光源ユニットからの射出ビームの射出方向や収束状態を再設定できるので、組立時やメンテナンス時には、部品の加工ばらつきや組立のばらつきがあっても、ステーション間の走査位置やビームピッチが確実に揃えられ、色ずれ補正時には、傾き調整やレジスト調整に伴って結像光学系を構成する走査レンズや折返しミラーなどの配置や姿勢が変わっても、これによる走査位置やビームピッチへの影響をキャンセルでき、高品位な画像形成が行える。
本発明によれば、走査された光ビームを検出するビーム検出手段を備え、該検出結果から、副走査方向における走査位置と光軸方向におけるビームピッチとの初期値からのずれを算出または予測して補正することにより、経時的な温度上昇によって結像光学系を構成する走査レンズや折返しミラーなどの配置や姿勢が変わっても、これによる走査位置および倍率の変化を確実にとらえ、フィードバック補正することで、高品位な画像形成が行える。
本発明によれば、射出ビーム制御手段は、副走査方向における走査位置の調整を行った後、光軸方向における結像位置のずれを補正することにより、走査位置の調整に伴って光源手段から射出される光ビームの射出方向が可変されても、これによる倍率のずれを合わせて補正するので、走査位置とビームピッチとが確実に合わせられ、高品位な画像形成が行える。
本発明によれば、画像記録中において走査位置やビームスポットの切り換わりがあると、画像途中で色味が変わり、かえって画像品質の劣化をもたらすが、上記射出ビーム制御手段は、上記発光源が変調されている間は、光ビームの射出方向と収束状態とを保持することにより、ジョブ間やページ間など画像記録中を避けて補正を行うことができ、高品位な画像形成が行える。
本発明によれば、射出ビーム制御手段は、液体マイクロレンズであることにより、単一のレンズに作用して、その位置と曲率半径を可変するので、偏向角、あるいは偏心によって透過波面収差を劣化させる因子が最小限ですみ光軸の向きを副走査方向に可変するデバイスと結像位置が可変するデバイスとの配置を合わせる手間も省けるので、組立性が向上し、高品位な画像形成が行える。
本発明によれば、液体マイクロレンズを発光源とカップリングレンズとの中間に配備することにより、発光源に近接して配備することでレンズの質量が最小限ですみ、高速動作が可能となるのでページ間などの短時間で補正が行えるようになり、プリント毎の画像品質が安定化できる。また、補正に要する時間が最小限ですむので、プリントの生産性も向上できる。
本発明によれば、請求項5乃至10のいずれか1項に記載の光走査装置と、該光走査装置によって像担持体面に形成された静電像をトナーで顕像化する現像装置と、顕像化された画像を出力紙に転写する転写装置と、を有する画像形成装置により、組立のばらつきや経時的な変動があっても、感光体ドラム面上の走査位置のずれを抑制し、ビームスポット径やビームピッチを安定的に保つことができるので、高品位な画像形成が行える。
本発明によれば、光走査装置の結像位置の変動を電圧を印加することによって焦点距離が変化する液体レンズにより補正することにより、ポリゴンミラーの変形や走査レンズのような光学素子の変形、配置位置ずれによるレーザビームのスポット径劣化を防止することが可能な光走査装置が提供できる。
本発明によれば、光源装置とポリゴンミラー間の光路中に配置したことにより液体レンズを大型化する必要が無く、小型化が可能な光走査装置が提供できる。
本発明によれば、光源装置から放射される発散レーザビームをカップリングする機能、及び/または副走査方向に集束する線像形成機能を有することにより、カップリングレンズと線像形成レンズを削除できるので、部品点数削減による部品固定精度のばらつきの影響軽減、低コスト化が可能な光走査装置が提供できる。
本発明によれば、ポリゴンミラーの内径を反射面の内接円径の50〜90%としたことにより、起動時間の短縮、封損低減による消費電力の低減が達成可能な光走査装置が提供できる。
本発明によれば、ポリゴンミラーの変形による結像位置の変化に応じて、液体レンズの焦点距離を適宜調整することにより、ポリゴンミラーの回転数や温度変化による反射面の変形に対応して補正できるので、書込密度の変化に伴うレーザビームのスポット径劣化を防止することが可能な光走査装置が提供できる。
以下、発明の実施の形態について図面により詳細に説明する。
実施例1:
図1は、4ステーションを走査する光走査装置の実施例を示す。図1は、2ステーションずつ2分し、単一のポリゴンミラーの対向する側からビームを入射して、相反する方向に偏向、走査する対向走査方式を示す。
図1は、4ステーションを走査する光走査装置の実施例を示す。図1は、2ステーションずつ2分し、単一のポリゴンミラーの対向する側からビームを入射して、相反する方向に偏向、走査する対向走査方式を示す。
4つの感光体ドラム101、102、103、104は転写体の移動方向105に沿って等間隔で配列され、順次異なる色のトナー像を転写し重ね合わせることでカラー画像を形成する。図示するように各感光体ドラムを走査する光走査装置は一体的に構成され、ポリゴンミラー106により光ビームを走査する。ポリゴンミラーの回転方向は同一であるので、走査方向は対向する側で相反する方向となり、一方の書出し位置ともう一方の書き終わり位置とが一致するように画像書き込んでいく。
また、実施例では、各感光体に対して4チャンネルの半導体レーザアレイを配備し、記録密度に応じた隣接ラインを走査するように副走査方向のビームピッチを設定することで、4ラインずつ同時に走査するようにしている。
各光源ユニット107、108、109、110は、主走査方向には、各光源ユニットからのビーム201と202、203と204とが各々ポリゴンミラー106の偏向点に向けて異なる入射角で入射するよう放射状に、また、副走査方向には、光源ユニット107と108、109と110との射出位置が所定高さ、実施例では6mmだけ異なるように配備される。
シリンダレンズ113、114、115、116は、一方を平面、もう一方を副走査方向に共通の曲率を有し、ポリゴンミラー106の偏向点までの光路長が等しくなるように配備してあり、各光ビームは偏向面で主走査方向に線状となるように収束され、後述するトロイダルレンズとの組み合わせで、偏向点と感光体面上とが副走査方向に共役関係とすることで面倒れ補正光学系をなす。
ポリゴンミラー106は6面ミラーで、実施例では2段に構成され、偏向に用いていない中間部をポリゴンミラーの内接円より若干小径となるように溝を設けて風損を低減した形状としている。尚、1層の厚さは約2mmであり、上下のポリゴンミラーの位相は同一である。
fθレンズ120、121も2層に一体成形、または接合によって一体化され、各々、主走査方向にはポリゴンミラーの回転に伴って感光体面上でビームが等速に移動するようにパワーを持たせた非円弧面形状となし、各ビーム毎に配備されるトロイダルレンズ122、123、124、125とにより各ビームを感光体面上にスポット状に結像し、潜像を記録する。
各色ステーションは、ポリゴンミラーから感光体面に至る各々の光路長が一致するように、また、等間隔で配列された各感光体ドラムに対する入射位置、入射角が等しくなるように複数枚、実施例では1ステーションあたり3枚ずつ、の折り返しミラーが配置される。
各色ステーション毎に光路を追って説明すると、光源ユニット107からのビーム201は、シリンダレンズ113を介し、ポリゴンミラー106の上段で偏向された後、fθレンズ120の上層を通過し、折り返しミラー126で反射されてトロイダルレンズ122を通過し、折り返しミラー127、128で反射されて感光体ドラム102に導かれ、第2のステーションとしてマゼンタ画像を形成する。
光源ユニット108からのビーム202は、シリンダレンズ114を介し、ポリゴンミラー106の下段で偏向された後、fθレンズ120の下層を通過し、折り返しミラー129で反射されてトロイダルレンズ123を通過し、折り返しミラー130、131で反射されて感光体ドラム101に導かれ、第1のステーションとしてイエロー画像を形成する。
ポリゴンミラーに対称に配備された対向するステーションについても同様で、光源ユニット109からのビーム203は、入射ミラー112を介してポリゴンミラー106の下段で偏向され、折り返しミラー132、133、134で反射されて感光体ドラム104に導かれ、第4のステーションとしてブラック画像を、また、光源ユニット110からのビーム204は、ポリゴンミラー106の上段で偏向され、折り返しミラー135、136、137で反射されて感光体ドラム103に導かれ、第3のステーションとしてシアン画像を形成する。
画像記録領域の走査開始側および走査終端側には、フォトセンサを実装した基板138、139および140、141が配備され、各ステーションにおいて走査されたビームを検出する。実施例では、基板138、140は同期検知センサとなし、この検出信号を基に各々書き込み開始のタイミングをはかるよう共用している。
一方、基板139、141は終端検知センサをなし、同期検知センサとの検出信号の時間差を計測することで走査速度の変化を検出し、検出された走査速度の変化に対して、各半導体レーザを変調する画素クロックの基準周波数を可変にすることで、各ステーションによって記録された画像の転写ベルト上での全幅倍率を安定的に保持することができる。
また、いずれかのセンサを図2に示すように主走査方向に垂直なフォトダイオード152と非平行なフォトダイオード153とで構成することにより、フォトダイオード152からフォトダイオード153に至る時間差Δtを計測することで、光ビームの副走査位置のずれΔyを検出できる。この検出を各ビームについて行えば、同様にマルチビーム間の副走査ピッチも検出できる。
副走査位置のずれΔyはフォトダイオード153の傾斜角γ、光ビームの走査速度Vを用いて
Δy=(V/tanγ)・(t−t0)
で表され、実施例では、検出時間tが基準値t0に等しくなるように、後述する液体マイクロレンズを用いて走査位置を補正している。
Δy=(V/tanγ)・(t−t0)
で表され、実施例では、検出時間tが基準値t0に等しくなるように、後述する液体マイクロレンズを用いて走査位置を補正している。
尚、実施例では、後述する転写ベルト上での検出パッチによる倍率やレジストずれの検出値を基準値(初期値)として、上記した走査ビームの検出によって、基準値からのずれを制御するようにし、検出パッチによる補正の合間、例えばジョブ中など、における変動を低減し、画像品質を安定化することを目的としている。
図3は、トロイダルレンズの支持筐体の構成を示す。図1に示す全てのトロイダルレンズは後述する支持板に装着した状態でハウジングに納められる。トロイダルレンズ305は、樹脂製でレンズ部を囲うようにリブ部306が形成され、中央部には位置決め用の突起307が形成されている。支持板301は板金でコの字状に形成され、トロイダルレンズ305の突起307を立曲げ部に形成した切欠311に係合し、また、リブの下面を立曲げ部310に突き当てて位置決めし、一対の板ばね303によりリブの上面より付勢して両端を保持する。板ばね303はトロイダルレンズ305を支持板301に重ね合わせた状態で外側よりはめ込み、一端を開口313から内側に出して開口314に挿入し固定する。
中央部には、ねじ穴312に調節ネジ308を螺合し、板ばね302を外側よりはめ込んで、曲げ部317、318を下側リブの内側に引っ掛けることで、調節ネジ308の先端にリブの下面が確実に当接するように付勢する。板ばねの穴319は調節ネジ308を貫通する穴である。
トロイダルレンズ305は長尺で、剛性が低いため、わずかな応力が加わるだけで変形(反り)を生じ易く、また、周囲温度の変化に伴って上下に温度分布があると熱膨張差によっても変形してしまうが、このように支持板に沿わせることで形状を安定的に保ち、後述する傾け調整の際に局部的に応力が加わってもトロイダルレンズを変形させることがない(母線の直線性を保持する)ようにしている。
トロイダルレンズを装着した支持板は、レンズ中央部に形成された突起307をハウジング側に設けられた凹部326にかん合して位置決めを行ない、図中上向きに付勢するよう両端のハウジング取付面との間に板ばね320、325を架橋して支持する。
ステッピングモータ315は、支持板301の一端に、シャフトに螺合された可動筒316の先端を突き当ててハウジング支持部との間に挟み込むように板ばね325によって保持される。シャフトの先端には送りねじが形成され、ステッピングモータ315の回転により可動筒316が副走査方向(トロイダルレンズの高さ方向)に変位可能としている。これにより、ステッピングモータ315の正逆回転に追従してトロイダルレンズ305は光軸と直交する面内で、支持板301のもう一端に突き当てられた突起328を支点として回動調節γでき、それに伴って副走査方向におけるトロイダルレンズの母線が傾いて、トロイダルレンズの結像位置としての走査ラインが傾けられ、ステーション間の走査ラインが平行となるように傾きが補正される。
実施例では、このステッピングモータを第1、第2、第3のステーションのトロイダルレンズに装着することで、ブラックに対する走査ラインの傾きを、後述する傾き検出結果に基いて各色毎に自動的に補正がなされる。
図4はトロイダルレンズの装着状態を光軸方向からみた図である。トロイダルレンズ305は両端を立曲げ部310の縁、中央を調節ネジ308の先端で支持され、調節ネジ308の突出し量が立曲げ部310に足りない場合には、トロイダルレンズの母線312が下側に凸となるよう反る。逆に突出し量が超えると上側に凸に反る。従って、これらの調節ねじを調整することによってトロイダルレンズの焦線が副走査方向に湾曲され、走査ラインの曲がりが補正できる。
一般に、走査ラインの曲がりは光学系を構成する光学素子の配置誤差や成形時の反り等に起因し、これをキャンセルする方向にトロイダルレンズ305を湾曲させることによって直線性を矯正する、あるいは、各走査ライン間の湾曲の方向と量を揃えることができる。
尚、上記した調節ねじは主走査方向に沿った複数箇所に配備してもよく、中央部と立曲げ部310との中間の計3箇所に配備することにより、M型やW型の曲がりについても補正が可能となる。実施例では、全てのトロイダルレンズに配備され、各ステーション毎に走査ラインが真直になるように、組立時に曲がりを補正している。
図5は、実施例におけるビームスポット位置ずれ制御を行うブロック図である。上記したように、各ステーションの走査ラインの傾き、曲がりは初期的には機械的な調整により揃えられる。
一方、副走査方向におけるレジストについては、まず、ポリゴンミラー1面おき、つまり同時に走査されるビーム数が4であるから、4ラインピッチ単位で最もレジストずれが小さくなる書出しタイミングを設定し、4つの発光点から先頭行を形成する発光点を選択することで、1ラインピッチ単位で先頭行の走査位置を合わせ、さらに、その余分、つまり、1ラインピッチ以下のずれ分については、後述する液体マイクロレンズのレンズ位置を可変することで、初期的に補正する。その後、液体マイクロレンズの曲率半径を可変することで、感光体ドラム面に結像位置が合うように補正する。
経時的には、転写ベルトに形成した検出パターンを読み取って位置ずれを検出し、まず、傾きについて、上記したようにステッピングモータを動作してトロイダルレンズを傾けることで補正する。次に、上記した方法によりレジストずれを調整し、1ラインピッチ以下のずれ分については、後述する液体マイクロレンズのレンズ位置を可変することで、同様に補正する。
一方、液体マイクロレンズの曲率半径については、走査レンズの姿勢や光路が落ちついた時点、つまり、トロイダルレンズの傾き調整やレジストずれの調整が終わった後に設定する。結像位置の補正量は、検出手段を配備してずれを検出して設定してもよいが、実施例では、トロイダルレンズの傾け量やレジストずれの調整量に対応させ、あらかじめ結像位置の変化を把握しておくことで、レンズ位置の可変量に応じて曲率半径の可変量を予測しており、結像位置の検出手段を用いずに補正を行っている。
図6は、副走査断面における光路を示す図である。半導体レーザアレイ301の各発光点からのビームは液体マイクロレンズ302、カップリングレンズ303を通過した後に一旦交差してシリンダレンズ113に入射され、ポリゴンミラーの偏向面106で収束される。
ポリゴンミラーで反射された各ビームはfθレンズ120に入射され、トロイダルレンズ122の近傍で再度交差して、感光体ドラム面で所定のピッチとなるよう結像される。従って、この感光体ドラム面でのピッチが記録密度に応じた走査ラインピッチと等しくなるよう全系の倍率βsが設定されている。実施例の場合、発光点d=16μm、感光体ドラム面での走査ラインピッチp=42.3μmなので、倍率βs=2.64となる。
しかしながら、上記したように各レンズの配置や光路長が変化すれば、それに伴って、走査ラインピッチpが変動してしまう。そこで、実施例では、後述する液体マイクロレンズを用いて各ビームの交差位置をずらすことにより走査ラインピッチが一定となるように補正している。
尚、温度変動に伴う各レンズの配置や曲率半径の変化は、熱膨張による物理特性として、走査ラインピッチの変動量はある程度予測することができ、この予測値を用いて補正を行ってもよい。また、実施例では、液体マイクロレンズ302を半導体レーザアレイ301からカップリングレンズ303に至る光路中に配置しているが、ポリゴンミラーの偏向面106に至る光路中であれば、補正効果は異なるが同様に補正が可能である。
トナー像の検出パターンの検出手段は、照明用のLED素子154と反射光を受光するフォトセンサ155、および一対の集光レンズ156とからなり、主走査ラインと約45°傾けたラインパターンを形成し、転写ベルトの移動に応じて検出時間差を読み取っていく。実施例では中央部と左右両端部との3ヶ所に配備することで、左右両端部の差により傾きを、中央から左右端部までの各倍率を検出することができる。
図7は、検出パターンの一例で、主走査方向に沿ったライン群と、それと45°傾けたライン群とからなる。紙面上下が転写ベルトの移動方向に相当し、各検出位置において、主走査方向に沿ったライン群の検出時間差Δty、Δtm、Δtcの差より各色の副走査方向における位置ずれを、t1、t2、t3の理論値t0との差より各色の主走査方向における位置ずれを求める。
図8は、光源ユニットの斜視図を示す。全ての光源ユニットは同一構成である。半導体レーザアレイ301は発光点ピッチが16μmで副走査方向に配列され、パッケージの外周をかん合してベース部材305に圧入され、カップリングレンズ303は、ホルダ部材307に形成した貫通穴の射出口308に外周をかん合して接合され、液体マイクロレンズ302は、半導体レーザアレイ301とカップリングレンズ303との中間に配置するようにホルダ部材307の内側に装着され保持される。
ベース部材305は、カップリングレンズ303の光軸に直行する面をすり合わせ面として、半導体レーザアレイの発光点列が光軸に対し対称となるように位置決めされ、ホルダ部材307の表側から貫通したねじを螺合して当接させて光源ユニット300として一体的に支持される。また、カップリングレンズ303は、射出ビームが概略平行光束となる位置に位置決めがなされている。
実施例では、半導体レーザアレイ301とカップリングレンズ303とはあらかじめ配置を合わせた状態で保持しておき、ハウジングに装着された際に、液体マイクロレンズ302を用いて最終的な射出方向と射出光束の収束度合いを設定するようにしている。
駆動回路が形成されたプリント基板312はホルダ部材に立設した台座にネジ固定により装着し、半導体レーザアレイのリード端子をスルーホールに挿入して回路接続され、液体マイクロレンズ302からの配線も同基板に集約される。
光源ユニットは、ハウジングの壁面に形成した係合穴にホルダ部材の円筒部313を挿入し、当接面314を突き当てて位置決めされ装着され、上記したように、ハウジングに装着された状態において各ステーション間の走査位置を正確に合わせるために、液体マイクロレンズ302により射出軸の方向をあらかじめ設定された状態からずらすよう調整するとともに、結像位置が感光体ドラム面に合うように射出ビームの収束度合いをあらかじめ設定された状態からずらすよう調整することになる。
図9を用いて液体マイクロレンズの構成および動作について説明する。ここで、液体マイクロレンズとは単一のレンズ部材(液滴)に作用して、その位置を光軸と直行する面内で可変する機能と、曲率半径を可変可能な機能を有するデバイスを示し、例えば、特開2003−50303号公報に開示されるものが使用できる。
まず、図9(a)よりその構成について説明する。液体マイクロレンズは,透明な絶縁層と、その表面上に配置された透明な流体からなる小滴と、小滴から絶縁層により絶縁された複数の電極と、さらには絶縁層と電極を支持する透明基板を有している。また、図9(b)は複数の電極の構成を示す上面図である。各電極(電圧V1〜V4)と、小滴に接続された小滴電極(電圧V0)は結合され、これらV0〜V5の電圧差によって液体マイクロレンズを動作させる。
次にその動作について説明する。小滴と絶縁層がなす接触角θ1は,小滴と絶縁層と空気との相互の界面張力から決定される。そして小滴と電極との間に電圧差が存在しない場合(V0=V1=V2=V3=V4)には,小滴は,小滴の体積(Vol)と接触角θ1により規定される形状(実線で示される)が維持され、小滴の曲率半径R1が定まる.また,小滴は電極に対し中心に存在する(図9(b)の実線の位置)。
次に、小滴に対して4つの電極に等しい電圧Vが加えられた(すなわちV0≠V1=V2=V3=V4)場合には、点線で示される接触角θ2で規定される形状に変化し,接触角はθ1からθ2に減少する。小滴の体積(Vol)は変化していないので、接触角θ2で規定される形状との関係から,小滴の曲率半径R2が定まる.このとき,電圧Vに対して接触角は可逆的に変化し,すなわち曲率半径も可逆的に決定できる.このとき、小滴は電極に対し中心に存在したままである(図9(b)の点線の位置)。
このように、液体マイクロレンズは小滴に対して電極に電圧Vをかけることによって、曲率半径R、すなわち焦点距離が調整可能である。
続いて、小滴の位置を移動させる動作について説明する。4つの電極に選択的に電圧をかけることにより、小滴の位置を変化させることができる。例えば、V1とV3をV0と等しくし、V2をV4より大きくすることにより、小滴はより高い電圧の方向に引かれて、図9(c)に示す矢印の方向に移動する。
このように、液体マイクロレンズは電極に選択的に電圧をかけることによって、レンズ位置、すなわち焦点位置が調整可能である。言うまでもないが、これは液体マイクロレンズの1つの構成例であって、これに限定されるものではなく、図10に示すように、液晶偏向素子と可焦点レンズとを重ね合わせて構成したものであってもよい。
液晶偏向素子は、液晶400をガラス基板401、402間に封入した構成であり、一方のガラス基板表面の上下に電極403、404が形成されている。この電極間に電位差を与えると電位の傾斜に応じて液晶400の配向が変化し、屈折率分布を発生させて射出軸の向きが変化する。液晶としては誘電異方性を有するネマティック液晶などが用いられる。可焦点レンズは、円形のダイヤフラムを形成したガラス基板405に珪酸ガラスからなる弾性膜406を接合し、シリコーンオイルなどの透明な動作流体407を封入したレンズ部と、リング状の弾性金属板408と薄膜状の圧電素子409を接合したアクチュエータ部からなり、圧電素子409に電圧を印可すると弾性膜の形状を変化させ曲率半径が変化する。
図11を用いて書込制御回路の動作について説明する。各色毎にラスター展開された画像データはフレームメモリ500に各々一時保存され、画像処理部501に順に読み出されて、前後の関係を参照しながら中間調に対応したマトリクスパターンに応じて各ラインの画素データが形成され、各発光点に対応したラインバッファ502に転送される。書込制御回路503は、半導体レーザアレイの各々の発光点に対し同数のラインバッファ502を備え、同期検知信号をトリガとして各々読み出されて各発光点を独立に変調する。
次に、各発光点を変調するクロックの生成部505について説明する。カウンタ507では、高周波クロック生成回路506で生成された高周波クロックVCLKをカウントし、比較回路508ではこのカウント値と、デューティ比に基いてあらかじめ設定される設定値L、および画素クロックの遷移タイミングとして外部から与えられ、位相シフト量を指示する位相データHとを比較し、カウント値が上記設定値Lと一致した際に画素クロックPCLKの立下りを指示する制御信号Lを、位相データHと一致した際に画素クロックPCLKの立上がりを指示する制御信号hを出力する。この際、カウンタ507は制御信号hと同時にリセットされ再び0からカウントを行なうことで、連続的なパルス列が形成できる。
こうして、1クロック毎に位相データHを与え、順次パルス周期が可変にされた画素クロックPCLKを生成する。実施例では、画素クロックPCLKは、高周波クロックVCLKの8分周とし、1/8クロックの分解能で位相が可変できるようにしている。
図12は、任意の画素の位相をシフトした説明で、1/8クロックだけ位相を遅らせた例である。デューティ50%とすると設定値L=3が与えられ、カウンタ507で4カウントされ画素クロックPCLKを立ち下げる。1/8クロック位相を遅らせるとすると位相データH=6が与えられ、7カウントで立上げる。同時にカウンタがリセットされるので、4カウントで再び立ち下げる。つまり、隣接するパルス周期が1/8クロック分縮められたことになる。
こうして生成された画素クロックPCLKは、光源駆動部504に与えられ、この画素クロックPCLKに対してラインバッファ502から読み出された画素データを重畳させた変調データにより、半導体レーザを駆動する。
このように位相をシフトする画素を所定間隔で配置することによって、各分割区間の境界で主走査レジストずれがゼロとなるように主走査方向に沿った画素間隔の疎密を調整し、部分的な倍率の偏差を補正することができる。つまり、全体の倍率は画素クロックPCLK自体のシフトによって均等に画素間隔を伸縮して補正し、部分的な倍率は所定の画素数おきに画素間隔を変化させることで補正する。
図13は、上記光走査装置を搭載した画像形成装置の例を示す。感光体ドラム601の周囲には感光体を高圧に帯電する帯電チャージャ602、光走査装置600により記録された静電潜像に帯電したトナーを付着して顕像化する現像ローラ603、現像ローラにトナーを補給するトナーカートリッジ604、ドラムに残ったトナーを掻き取り備蓄するクリーニングケース605が配置される。感光体ドラムへは上記したようにポリゴンミラー1面毎の走査により複数ライン、実施例では4ライン同時に画像記録が行われる。
上記した画像形成ステーションは転写ベルト606の移動方向に並列され、イエロー、マゼンタ、シアン、ブラックのトナー画像が転写ベルト上にタイミングを合わせて順次転写され、重ね合わされてカラー画像が形成される。各画像形成ステーションはトナー色が異なるだけで、基本的には同一構成である。
一方、記録紙は給紙トレイ607から給紙コロ608により供給され、レジストローラ対609により副走査方向の記録開始のタイミングに合わせて送りだされ、転写ベルトよりカラー画像が転写されて、定着ローラ610で定着して排紙ローラ612により排紙トレイ611に排出される。
実施例2:
レーザ光源からのレーザ光をポリゴンミラーで偏向走査し、走査レンズ系を介して被走査面上を走査する光走査光学装置において、前記走査レンズ系は、前記ポリゴンミラーの静止時に主走査方向の結像位置が前記被走査面よりも前記ポリゴンミラーに近い位置にあり、軸外の結像位置に対して軸上のピント位置が前記ポリゴンミラーに近付く方向にシフトしている像面湾曲を有することにより、ポリゴンミラーの回転時の変形を予め走査レンズで相殺し、ビーム径の劣化を防止できる。
レーザ光源からのレーザ光をポリゴンミラーで偏向走査し、走査レンズ系を介して被走査面上を走査する光走査光学装置において、前記走査レンズ系は、前記ポリゴンミラーの静止時に主走査方向の結像位置が前記被走査面よりも前記ポリゴンミラーに近い位置にあり、軸外の結像位置に対して軸上のピント位置が前記ポリゴンミラーに近付く方向にシフトしている像面湾曲を有することにより、ポリゴンミラーの回転時の変形を予め走査レンズで相殺し、ビーム径の劣化を防止できる。
しかしながら、ポリゴンミラーの変形は回転数の変化および温度変化により影響を受けるため、書込密度を変化させるようなポリゴンミラーの回転数を変化させたい場合には対応できない。また、ポリゴンミラーの高速回転による温度上昇(モータ発熱)によるポリゴンミラーの変形については経時的な変化であるため、前記同様対応できない。
従来、カラーレーザプリンタ等のカラー画像形成装置には、回転駆動される複数の感光体に対して独立して複数の走査結像光学系による書込手段により複数の異なった色の情報をそれぞれ走査されるレーザビームで書込み、静電潜像を形成し、これらの静電潜像を複数の顕像化手段により異なった色の顕像にそれぞれ顕像化して転写材上に重ね合わせてカラー画像を得るタンデム型の画像形成装置がある。上記書込手段の各々は、読み出される各色の画像情報信号に応じて駆動制御される光源(半導体レーザ)からレーザビームを出射する。レーザビームは、偏向走査手段であるポリゴンミラー、レンズ等の走査結像手段である光学部品を介して一様に帯電された感光体面に集光されるとともに主走査方向に走査される。そして回転する感光体面には、所定間隔からなる複数の走査ビームに対応した画像信号が書き込まれ、静電潜像が形成される。
一方、画像形成装置の高速プリント、画素の高密度化による高画質化の動向に対して、ポリゴンミラーは40000rpm以上の高速回転が要求されている。40000rpm以上の高速回転では遠心力や温度上昇(モータ発熱)によりポリゴンミラーの変形が大きくなり、鏡面加工された平面度が維持できなくなる。平面度の悪化により感光体における像面上の結像位置が変動し、レーザビームスポット径が所望の値を満足できず、画像が劣化するという問題があった。
この問題に対して、ポリゴンミラーの変形に伴う結像位置の変動を予め走査レンズの像面湾曲特性で相殺補正する方法が従来から考えられている。しかしながら、ポリゴンミラーの変形は回転数の変化および温度変化により変形量が異なるため、書込密度を変化させるようなポリゴンミラーの回転数を変化させたい場合には不具合がある。またポリゴンミラーの高速回転による温度上昇(モータ発熱)によるポリゴンミラーの変形については経時的な変化であるため、前記同様に不具合となり特有の課題であった。さらに、書込密度の高密度化に伴ってレーザビーム径の小径化が要求され、光学走査装置における走査結像光学系の焦点深度は減少する傾向にあり、ポリゴンミラーの変形によるレーザビーム径への影響は一層大きくなってきている。
本発明の実施例2では、ポリゴンミラーの回転数や温度上昇による結像位置の変動を液体レンズで適時補正することにより、レーザビーム径の劣化を防止することが可能な光走査装置及び画像形成装置を提供するものである。
図14は、本発明の実施例2の光走査装置を示す。カラー機用として4色分(イエロ、マゼンタ、シアン、ブラック)の走査結像光学系をもち、各色に相当するレーザビームが感光体に集光する図を示している。
図14において、10は、半導体レーザとカップリングレンズとシリンドリカルレンズとにより構成される光源装置を4組有している光源部である。各半導体レーザから放射される光束は、カップリングレンズにより以後の光学系に適合する光束形態(平行光束あるいは弱い発散性もしくは集束性の光束)に変換され、シリンドリカルレンズにより副走査方向に集束されて偏向走査手段であるポリゴンミラー8の偏向反射面近傍に主走査方向に長い線像として結像される。光源における4つの半導体レーザは、それぞれ、イエロー、マゼンタ、シアン、ブラックの各色成分画像を書込むための光束を放射する。30は電圧を印加することによって焦点距離を変化させることができる液体レンズが各色毎に相当する光源装置とポリゴンミラー8の光路間に4つ配置されている(30a、b、c、d)。
11はレーザ透過部材を示しており、光源装置10側からの各光束はレーザ透過部材11を介してポリゴンミラー8に入射する。ポリゴンミラー8の回転により同一方向に偏向された4色分の偏向光束は、走査結像光学系のfθレンズ群を構成する第一のレンズ14を透過する。ブラック成分画像を書込む光束(例えばレンズの上端の位置)はミラー16Kで反射され、fθレンズ群を構成する第二のレンズ17Kを透過し、ハーフミラー19Kを透過、反射して、一方の光束は被走査面の実態を成すドラム状の光導電性の感光体20K上に光スポットとして集光し、感光体20Kを矢印方向に光走査する。他方の光束はレーザビームを検知するレーザビーム検出器P1K(走査上流側)、P2K(走査下流側)へ結像され、レーザビーム検出器内の受光部を走査し、像面上と等価となるレーザビームスポット径(ピーク光量の1/e2)を検出している。
fθレンズ群の14、17Kの材質は非球面形状が容易かつ低コストなプラスチック材質からなり、具体的には低吸水性や高透過率、成形性に優れたポリカーボネートやポリカーボネートを主成分とする合成樹脂が好適である。
イエロー、マゼンタ、シアンの各色成分画像を書込む光束もそれぞれ上記と同様に、ミラーで反射され、レンズを透過し、ハーフミラーを透過、反射してドラム状の光導電性の感光体上に光スポットとして結像し、各色とも同一の矢印方向に走査される。この光走査により各感光体に対応する色成分画像の静電潜像が形成される(ブラック以外の各色に相当する光学素子等には番号は付記していないが、ブラックである「K」が番号後に付されている部品はイエロー、マゼンタ、シアンとも光学的な同位置に配置されている)。
以上説明したように、図14は、カラー画像を構成する2以上の色成分画像に対応する複数の光源装置から放射された各光束を、偏向走査手段のポリゴンミラー8により同一方向に偏向走査し、各偏向光束を走査結像光学系のうち第一のレンズ14を各色共通に透過するレンズ14と、各々の走査結像手段に設けられたレンズ17Kにより、各色成分画像に対応する被走査面20Kに向かって個別的に集光させて光走査を行い、各色成分に相当する4つの走査結像手段を有する光走査装置である。
図15は、実施例2のポリゴンスキャナを示す。ポリゴンスキャナ1の軸方向に離間したポリゴンミラー部を形成する多面体8a、8b、8c、8dには各々各色に対応した複数のレーザビーム(A、B,C、D)が軸方向に配置された各々4段の面に入射され、高速偏向走査される。
ポリゴンスキャナ1を詳述する。マルテンサイト系のステンレス鋼からなる軸受シャフト210の上部外周がポリゴンミラー部を形成する多面体8a、8b、8c、8dを有するアルミ純度99.9%以上のポリゴンミラー8の内径部8mに焼きばめ固定されている。マルテンサイト系ステンレス(例えばSUS420J2)は焼入れが可能で表面硬度を高くでき、軸受シャフトとしては耐磨耗性が良好で好適である。ポリゴンミラー8の下部にはロータ磁石211が固定されステータコア4a(巻線コイル4)とともにアウターロータ型のブラシレスモータを構成している。
ポリゴンミラー部を形成する多面体8a、8b、8c、8dの反射面は所定のレーザビームを偏向するのに十分な軸方向長さ(厚み)を有しており、具体的には1〜3mmに設定している。この範囲に設定している理由は1mm以下の場合、薄板となるため鏡面加工時の剛性が低くなるため平面度が悪化する。3mm以上では回転体としてイナーシャが大きく、起動時間が長くなる問題がある。
空間部8j(軸方向長さH11、H12、H13)は多面体8a、8b、8c、8dの外接円径よりも小径な形状とすることにより、風損の低減を図っている。空間部8jの風損は最大外周円径で決まり、外接円部の角部が大きく影響する。したがって、角部を丸めることが好適である。一方、内接円径よりも小径にすることにより、風損をより小さくすることも可能であるが、多面体部に挟まれているので、その低減効果は相対的に小さくなる。H11、H12、H13に対して、外接円径と空間部8jの最大外径との差は加工性を考慮し、5倍以下となるように設定されている(5倍以上の場合、掘り込み量が多くなるため加工バイトの寿命が短くなり、かつ加工時間が長くなる)。
一方、H13はバランス修正時に円周溝8kに接着剤を塗布する必要が有るため、作業性を考慮し1mmに設定している。1mm以下の場合、接着剤塗布機の先端と盛り上がった接着剤がポリゴンミラーに接触し、ミラー部が傷、汚損の問題が発生する。なお、円周溝8kを反対面(下方の8g側)に設けることも考えられるが、下方に開放した溝に接着剤を塗布する際には回転体2を軸受部材5から外して、回転体を上下倒立して設置固定した上で塗布する必要があり、複雑な工程を経る必要があるばかりか、軸受部材5と脱着工程が入るため、その都度油の飛散等が発生し、軸受の劣化を誘発するという問題がある。
回転体中央部の円周溝8iはバランス修正時に行う接着剤の塗布が可能な内壁面(内周面)と回転体2を軸受部材3に嵌合挿入時のハンドリング性向上のための外径部D1と軸受シャフト210とポリゴンミラー部材8の焼きばめ時の応力がミラー面(8a,8b)に伝達しないように応力遮断の機能を有している。さらに、起動時間を低減するためにポリゴンミラー部のイナーシャを小さくするために、内壁面の径PBは極力大きく(円周溝の径が大径化)することが好適である(PBの数値範囲については後述)。
円周溝の深さH5はミラー面8bの下端面H6と同等もしくはそれ以上とすることが好適である。ミラー面(8c、8d)については、応力遮断機能はモータ部(ロータ磁石211、コイル巻線4)を収納するための下部円周溝8pにより構成され、ミラー面8cの上端面よりも8pは上部に位置している。空間部8jを設けることにより、回転上昇とともに増大する風損を効果的に低減でき、消費電力および騒音の低減に寄与している。
一方、中心間隔H21、H22、H23が狭いほど回転体としての表面積が少なくなるのでより風損は小さくできる反面、3mm以下となると、ポリゴンミラー偏向後の各色に相当する感光体へ光路を分離する折り返しミラーのレイアウトが不可能となり、図14に示した構成が成立しなくなってしまう。なお、H21、H22、H23は同一である必要はなく、例えばレンズ14を同一レンズ2個使用した上下2層に分離してレイアウトする場合(部品の共通化や1個あたりのレンズ体積を減少させ成形時間の短縮効果)、固定時の接着層等の厚みを考慮しH22がH21、H23よりも広くしても良い。さらに、H11、H12、H13も同一である必要はない。
本実施例の構造は、従来のようにポリゴンミラーを板バネ等による軸方向からの固定部材を使用する必要が無いので、固定圧力によるポリゴンミラー反射面部への歪みがなくなるというメリットがある。
ポリゴンミラー8に設けられた円周溝8iや8kは回転体2(ポリゴンミラー8、軸受シャフト210、ロータ磁石211の組立体)の軽量化(イナーシャ低減、質量低減による軸受摩耗劣化の抑制や起動時間の短縮の効果がある)のほか、バランス修正用の接着剤塗布部に使用される。
上記構造においては、ポリゴンミラーの回転とともに図16に示すように反射面が主走査方向に変形する。反射面の変形は予めポリゴンミラーが静止時に設定されている結像位置(図14の光走査装置では感光体面上に設定)が変化し、ビームスポット径の劣化、画像の劣化を招く。
図16(a)は、図15のポリゴンミラー部を上視した図であり、各ポリゴンミラー反射面8a,b,c,dとも図16(b)のように概ね一定の曲率半径となる凸面状態に変形する。変形は主走査方向に反射面中心に対して対称形となる。変形量Dは内接円径PA及び内接円径PAとポリゴンミラー内径PB(ここでいう内径とはポリゴンミラーの反射面から中心に向かって初めの内壁となる部分の径とする)との比率及び回転数により変化する。変形を小さくするためには内接円径PAの小径化や回転数の低下およびPAとPBとの比(PB/PA)を50%未満とすることが従来から考えられるが、内接円径PAの小径化や回転数の低下は光走査装置、画像形成装置の基本仕様や性能に関わる項目であり採用できない。また(PB/PA)を50%未満とするにも、回転体の質量が大きくなり起動時間の長大化、風損の増大による消費電力の上昇を招き、特に40000rpm以上の高速回転が必要な光走査装置においては不具合となり実用上問題が多い。また、90%以上の場合、反射面との距離が短くなりすぎで薄肉化されるため切削加工時の材料剛性が著しく低くなり(切削加工時のバイトの中心軸に向かう圧力に対して、加工面が中心軸側に逃げてしまう)、鏡面加工の品質が確保できなくなる。
したがって、本発明では(PB/PA)を50〜90%の範囲となるように設定し、上記困難な問題をクリアしている。実施例では内接円径PA=40mm、ポリゴンミラー内径PB=24mm(8a,b部)、25mm(8c,d部)である。なお、(8c,d部)はモータ部を構成するロータ磁石211が嵌合する部分(8p)に相当する反射面部であり、ポリゴンミラーの回転に伴うモータ発熱の影響が重なり、8a,b部よりもさらに凸面に変形する。
上記実施例における変形量は図17に示す通り、回転数により変化する(概ね回転数の2乗に比例)。
さらに、反射面8c、8dの部分はポリゴンミラー材質とロータ磁石211材質との熱膨張率差により、熱応力が作用し反射面を変形させる。熱応力による変形方向は凹または凸面となる。ポリゴンミラー材質に対して、ロータ磁石材質の熱膨張が大きい場合は凸面となり、小さい場合は凹面となるような熱応力が発生するが、図17に示す回転数(遠心力)による変化量(変化方向)も合わせて、変形方向が決まることになるが、実施例においては、ポリゴンミラー材質(アルミ合金:熱膨張2.5×10−5[/℃])よりも、ロータ磁石211(樹脂をバインダーに使用したボンド磁石:熱膨張4.5×10−5[/℃])の方が大きいため凸面となる。ボンド磁石は安価で寸法精度が高く、初期アンバランスが小さくできるので、高速回転に適している。ただし、引張強度は金属よりも劣るため、ロータ磁石211の外径部には高速回転時の遠心力による破壊が発生しないように、ポリゴンミラー8部材の下部がロータ磁石211の外径を保持している構造としている。
ラジアル軸受は軸受シャフト210の外径と軸受ホルダ3内に圧入または接着固定された軸受部材5により動圧軸受を構成している(軸受部材5は銅系の含油燒結部材からなり、含油動圧軸受を構成:熱膨張率1.6×10−5/℃)。25,000rpmの高速回転でも燒結部材内に含油されている油の循環を効率良く行うために、図示しない動圧発生溝を設けている。動圧溝は軸受シャフト210の外周面または軸受部材5の内周面に設けるが、加工性の良好な燒結部材の内周に施すのが好適である。なお、動圧軸受隙間は直径で10μm以下に設定されている。ラジアル軸受を動圧軸受としたことにより、玉軸受で発生していた25000rpm以上における軸受騒音が無く、回転むらが非常に少なく回転精度が高いという効果がある。
軸受ホルダ3は、軸受部材5と同程度の熱膨張率を有する材質として、黄銅(熱膨張率1.8×10−5/℃)、アルミ合金(熱膨張率2.4×10−5/℃)が好適である。軸受ホルダ3は下部にハウジング214と焼きばめされる3d部と焼きばめ下部に向かって外径が太径となるようなテーパ形状としている。テーパ部にはモータコア4aがかしめ固定されている。
アキシャル方向の軸受は軸受シャフト210の下端面に形成された凸曲面10aと、その対向面にスラスト受部材7を接触させるピボット軸受である。スラスト受部材7はマルテンサイト系ステンレス鋼やセラミック、または金属部材表面にDLC(ダイヤモンドライクカーボン)処理等の硬化処理をしたものが磨耗粉を発生が極力抑えられるので、好適である。
一方、25,000rpm以上の高速回転では振動を小さくするために回転体2のバランスを高精度に修正かつ維持しなければならない。回転体2にはアンバランスの修正部があり、重心G(図15の×部)を挟んで上側はポリゴンミラー8の円周凹部8iに、下側は円周凹部8kに各々接着剤を塗布することによりバランス修正を行う。アンバランス量は10mg・mm以下が必要であり、例えば半径10mmの箇所で修正量は1mg以下に保たれている。なお、上記のような微少な修正を実行する際に接着剤等の付着物では管理がしにくい場合、また量が少ないため接着力が弱く40000rpm以上の高速回転時には剥離、飛散してしまう場合には、回転体の部品の一部を削除する方法(ドリルによる切削やレーザ加工)を実施することが好適である。
モータ方式は径方向に磁気ギャップをもちステータコア4の外径部にロータ磁石211がレイアウトされるアウターロータ型といわれる方式である。回転駆動はロータ磁石211の磁界により回路基板14に実装されているホール素子12から出力される信号を位置信号として参照し、駆動用IC(図示しない)により巻線コイル4aの励磁切り替えを行い回転する。ロータ磁石211は径方向に着磁されており、ステータコア4の外周とで回転トルクを発生し回転する。ロータ磁石211は内径以外の外径および高さ方向は磁路を開放しており、モータの励磁切り換えのためのホール素子12を開放磁路内に配置している。磁気開放している理由は磁性体(鉄板、ステンレス)を配置すると、ポリゴンミラー材質のアルミ合金と熱膨張差により、ポリゴンミラーの反射面が温度上昇により大きく変形するためである。
図9で説明したように、液体レンズは小滴に対して電極に電圧Vを印加することによって、曲率半径Rを調整することができる、すなわち焦点距離を調整することが可能となる。ポリゴンミラーの回転数が上昇するときには焦点距離が短くなるように変化させ、回転数が下降するときには焦点距離が長くなるように変化させると結像位置の変動を相殺補正することが可能となる(回転数が上昇すると凸面に変形するため、液体レンズのθ1>θ2となるように電圧を印加する。回転数が下降する場合は上記内容の逆)。
ポリゴンミラーの変形による結像位置の変化に応じて、液体レンズの焦点距離を適宜調整することにより、ポリゴンミラーの回転数や温度変化による反射面の変形に対応して補正できるので、画像の劣化がない。
液体レンズを光源装置とポリゴンミラー間の光路中に配置したことにより、液体レンズを大型化する必要が無く、レーザビームの光束が全て入射する5〜15mmという小型化が達成できる。また、光源装置から放射される発散レーザビームをカップリングする機能、及び/または副走査方向に集束する線像形成機能も併せて有することにより、カップリングレンズと線像形成レンズを削除できるので、部品点数削減による部品固定精度のばらつきの影響軽減、低コスト化のメリットがある。
また、図9で説明したように、液体レンズは電極に選択的に電圧を印加することによって、レンズ位置、すなわち副走査方向のビームスポット位置を調整することも可能である。
以上説明した構成により、書込密度が変化するような場合であっても、光走査装置内のレーザビーム検出器によりレーザビームの結像状態を検出し、その結果に応じて液体レンズの焦点距離を変化させ、結像性能を劣化させることがなくなる。
また、ポリゴンミラーの変形について説明したが、ポリゴンミラーの変形以外に樹脂製の光学素子として走査レンズを用いる場合には、光走査装置内の温度環境変化により走査レンズの形状や部品の取付位置が変化し、結像位置が変化する。このような場合も含めて、液体レンズで補正することが可能となる。
図18は、本発明の光走査装置を搭載した画像形成装置を示す。図14の光走査装置を単一の光学ハウジングを収納した光走査装置105がカラー画像形成装置内に配置されている。光走査装置1105は図18に示した画像形成装置内の4つの感光体1103Y、1103M、1103C、1103K(以下、符号に対する添字Y、M、C、Kを適宜付け、Y:イエロー、M:マゼンタ、C:シアン、K:ブラックの色に対応する部分として区別するものとする。)が並設された作像部の上方に配置されている。
図18は、複数の感光体1103Y、1103M、1103C、1103Kを並列に配置したタンデム型のカラー画像形成装置である。装置上部から順に光走査装置1105、現像装置1106、感光体1103、中間転写ベルト1102、定着装置1114、給紙カセット1111がレイアウトされている。中間転写ベルト1102には各色に対応した感光体1103Y、1103M、1103C、1103Kが並列順に等間隔で配設されている。感光体1103Y、1103M、1103C、1103Kは同一径に形成されたもので、その周囲には電子写真プロセスに従い部材が順に配設されている。感光体1103Yを例に説明すると、帯電チャージャ(図示しない)、光走査装置1105から出射された画像信号に基づくレーザビームL1、現像装置1106Y、転写チャージャ(図示しない)、クリーニング装置(図示しない)等が順に配設されている。他の感光体1103M、1103C、1103Kに対しても同様である。即ち、本実施の形態では、感光体1103Y、1103M、1103C、1103Kを各色毎に設定された被走査面とするものであり、各々に対して光走査装置1105からレーザビームL1、L2、L3、L4が各々に対応するように設けられている。
帯電チャージャにより一様に帯電された感光体1103Yは、矢印AA方向に回転することによってレーザビームL1を副走査し、感光体1103Y上に静電潜像が形成される。また、光走査装置1105によるレーザビームL1の照射位置よりも感光体の回転方向下流側には、感光体1103Yにトナーを供給する現像器1106Yが配設され、イエローのトナーが供給される。現像器1106Yから供給されたトナーは、静電潜像が形成された部分に付着し、トナー像が形成される。同様に感光体1103Y、1103M、1103C、1103Kには、それぞれM、Y、Kの単色トナー像が形成される。各感光体1103Yの現像器1106Yの配設位置よりもさらに回転方向下流側には、中間転写ベルト1102が配置されている。中間転写ベルト1102は、複数のローラ1102a、1102b、1102cに巻付けられ、図示しないモータの駆動により矢印BB方向に移動搬送されるようになっている。この搬送により、中間転写ベルト1102は順に感光体1103Y、1103M、1103C、1103Kに移動されるようになっている。中間転写ベルト1102は感光体1103Y、1103M、1103C、1103Kで現像された各々単色画像を順次重ねあわせて転写し、中間転写ベルト1102上にカラー画像を形成するようになっている。その後、給紙トレイ1111から転写紙が矢印CC方向に搬送されカラー画像が転写される。カラー画像が形成された転写紙は、定着器1114により定着処理後、フルカラー画像として排紙される。
101〜104 感光体ドラム
105 移動方向
106 ポリゴンミラー
107〜110 光源ユニット
113〜116 シリンダレンズ
120、121 fθレンズ
122〜125 トロイダルレンズ
126、129〜137 折り返しミラー
138〜141 基板
105 移動方向
106 ポリゴンミラー
107〜110 光源ユニット
113〜116 シリンダレンズ
120、121 fθレンズ
122〜125 トロイダルレンズ
126、129〜137 折り返しミラー
138〜141 基板
Claims (20)
- 発光源と、発光源からの光ビームを所定の収束状態となるよう配備するカップリングレンズとを有する光源装置において、前記発光源から射出される光ビームの射出方向の可変と、収束状態の可変とを関連付けて行なう射出ビーム制御手段を備えることを特徴とする光源装置。
- 前記射出ビーム制御手段は、前記発光源が変調されている間は、光ビームの射出方向と収束状態とを保持することを特徴とする請求項1記載の光源装置。
- 前記射出ビーム制御手段は、液体マイクロレンズであることを特徴とする請求項1または2記載の光源装置。
- 前記液体マイクロレンズを、発光源とカップリングレンズとの中間に配備することを特徴とする請求項3記載の光源装置。
- 画像信号に基いて変調された光源手段からの光ビームを偏向手段により偏向するとともに、結像光学系によりスポット状に結像して、被走査面を走査するようにした光走査装置において、前記光源手段から射出される光ビームの射出方向の可変と、収束状態の可変とを関連付けて行なう射出ビーム制御手段を備え、前記被走査面におけるビームスポットの少なくとも副走査方向の走査位置と、光軸方向における結像位置とを調整することを特徴とする光走査装置。
- 前記射出ビーム制御手段は、前記副走査方向における走査位置と光軸方向における結像位置との初期値を設定することを特徴とする請求項5記載の光走査装置。
- 前記走査された光ビームを検出するビーム検出手段を備え、前記検出結果から、前記副走査方向における走査位置と光軸方向における結像位置との初期値からのずれを算出または予測して補正することを特徴とする請求項5記載の光走査装置。
- 前記射出ビーム制御手段は、前記副走査方向における走査位置の調整を行った後、光軸方向における結像位置のずれを補正することを特徴とする請求項5記載の光走査装置。
- 前記射出ビーム制御手段は、前記発光源が変調されている間は、光ビームの射出方向と収束状態とを保持することを特徴とする請求項5、6または8記載の光走査装置。
- 前記射出ビーム制御手段は、液体マイクロレンズであることを特徴とする請求項5、6、8または9のいずれか1項に記載の光走査装置。
- 請求項5乃至10のいずれか1項に記載の光走査装置と、該光走査装置によって像担持体面に形成された静電像をトナーで顕像化する現像装置と、顕像化された画像を出力紙に転写する転写装置とを有することを特徴とする画像形成装置。
- 光源装置から放射された複数のレーザビームをポリゴンミラーにより主走査方向に偏向走査し、走査結像手段により被走査面に向かって集光する光走査装置において、結像位置の変動を、電圧を印加することによって焦点距離が変化する液体レンズにより補正することを特徴とする光走査装置。
- 前記結像位置の変動は、ポリゴンミラーの主走査方向の変形に伴う変動であることを特徴とする請求項12記載の光走査装置。
- 前記結像位置の変動は、光学素子の変形に伴う変動であることを特徴とする請求項12記載の光走査装置。
- 前記液体レンズを、光源装置とポリゴンミラー間の光路中に配置したことを特徴とする請求項12記載の光走査装置。
- 前記液体レンズは、光源装置から放射される発散レーザビームをカップリングする機能、及び/または副走査方向に集束する線像形成機能を有することを特徴とする請求項15記載の光走査装置。
- 前記ポリゴンミラーの内径は、反射面の内接円径の50〜90%であることを特徴とする請求項12記載の光走査装置。
- 前記ポリゴンミラーの回転数変化または温度変化に対応して、液体レンズの焦点距離を変化させることを特徴とする請求項12記載の光走査装置。
- 前記液体レンズは、ポリゴンミラーの回転数が上昇するときには焦点距離が短くなるように変化させ、回転数が下降するときには焦点距離が長くなるように変化させることを特徴とする請求項18記載の光走査装置。
- 潜像担持体に光走査により潜像を形成し、前記潜像を可視化して所望の記録画像を得る画像形成装置において、請求項12乃至〜19のいずれか1項に記載の光走査装置を用いることを特徴とする画像形成装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005069539A JP2006251513A (ja) | 2005-03-11 | 2005-03-11 | 光源装置、光走査装置および画像形成装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005069539A JP2006251513A (ja) | 2005-03-11 | 2005-03-11 | 光源装置、光走査装置および画像形成装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006251513A true JP2006251513A (ja) | 2006-09-21 |
Family
ID=37092059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005069539A Pending JP2006251513A (ja) | 2005-03-11 | 2005-03-11 | 光源装置、光走査装置および画像形成装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006251513A (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009137037A (ja) * | 2007-12-03 | 2009-06-25 | Canon Inc | 画像形成装置及びそのbd検出部、レーザ駆動部 |
JP2009238996A (ja) * | 2008-03-27 | 2009-10-15 | Panasonic Corp | ボンド磁石 |
US7940442B2 (en) | 2007-08-10 | 2011-05-10 | Sony Computer Entertainment Inc. | Optical scanning device and component thereof |
CN108427250A (zh) * | 2017-02-15 | 2018-08-21 | 佳能株式会社 | 光扫描设备和成像设备 |
JP2020064232A (ja) * | 2018-10-19 | 2020-04-23 | キヤノン株式会社 | 画像形成装置 |
JP2020064231A (ja) * | 2018-10-19 | 2020-04-23 | キヤノン株式会社 | 画像形成装置 |
US11820158B2 (en) | 2018-10-19 | 2023-11-21 | Canon Kabushiki Kaisha | Image forming apparatus |
-
2005
- 2005-03-11 JP JP2005069539A patent/JP2006251513A/ja active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7940442B2 (en) | 2007-08-10 | 2011-05-10 | Sony Computer Entertainment Inc. | Optical scanning device and component thereof |
JP2009137037A (ja) * | 2007-12-03 | 2009-06-25 | Canon Inc | 画像形成装置及びそのbd検出部、レーザ駆動部 |
US8264700B2 (en) | 2007-12-03 | 2012-09-11 | Canon Kabushiki Kaisha | Image forming apparatus |
JP2009238996A (ja) * | 2008-03-27 | 2009-10-15 | Panasonic Corp | ボンド磁石 |
US10389897B2 (en) | 2017-02-15 | 2019-08-20 | Canon Kabushiki Kaisha | Light scanning apparatus with overlapped holders for light sources, and image forming apparatus therewith |
EP3364231A1 (en) * | 2017-02-15 | 2018-08-22 | Canon Kabushiki Kaisha | Light scanning apparatus and image forming apparatus |
KR20180094496A (ko) * | 2017-02-15 | 2018-08-23 | 캐논 가부시끼가이샤 | 광 주사 장치 및 화상 형성 장치 |
JP2018132643A (ja) * | 2017-02-15 | 2018-08-23 | キヤノン株式会社 | 光走査装置及び画像形成装置 |
CN108427250A (zh) * | 2017-02-15 | 2018-08-21 | 佳能株式会社 | 光扫描设备和成像设备 |
CN108427250B (zh) * | 2017-02-15 | 2021-08-17 | 佳能株式会社 | 光扫描设备和成像设备 |
KR102292008B1 (ko) * | 2017-02-15 | 2021-08-23 | 캐논 가부시끼가이샤 | 광 주사 장치 및 화상 형성 장치 |
JP2020064232A (ja) * | 2018-10-19 | 2020-04-23 | キヤノン株式会社 | 画像形成装置 |
JP2020064231A (ja) * | 2018-10-19 | 2020-04-23 | キヤノン株式会社 | 画像形成装置 |
JP7175706B2 (ja) | 2018-10-19 | 2022-11-21 | キヤノン株式会社 | 画像形成装置 |
JP7175705B2 (ja) | 2018-10-19 | 2022-11-21 | キヤノン株式会社 | 画像形成装置 |
US11820158B2 (en) | 2018-10-19 | 2023-11-21 | Canon Kabushiki Kaisha | Image forming apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7411712B2 (en) | Optical scanner and image formation apparatus | |
US6906739B2 (en) | Optical scanner and imaging apparatus using the same | |
JP3375196B2 (ja) | 光走査装置およびこの光走査装置に適した画像形成装置 | |
US8908001B2 (en) | Optical scanning device and image forming apparatus | |
JP2005140922A (ja) | 光走査装置、画像形成装置及び位置ずれ補正方法 | |
JP2006251513A (ja) | 光源装置、光走査装置および画像形成装置 | |
JP2004333994A (ja) | 光走査装置および画像形成装置 | |
JP2007206653A (ja) | 光走査装置、及び画像形成装置 | |
JP4965142B2 (ja) | 光走査装置および画像形成装置 | |
JP2008122706A (ja) | 光走査装置および画像形成装置 | |
JP4322703B2 (ja) | 光走査装置、および多色画像形成装置 | |
JP4349483B2 (ja) | 光走査装置および画像形成装置 | |
JP4673056B2 (ja) | 光走査装置・画像形成装置・走査線変化補正方法 | |
US7031039B2 (en) | Optical scanning apparatus and image forming apparatus using the same | |
JP4523440B2 (ja) | 多色画像形成装置 | |
JP4027870B2 (ja) | 光走査装置および画像形成装置 | |
JP4903455B2 (ja) | 光走査装置および画像形成装置 | |
JP2007114518A (ja) | 光走査装置、画像形成装置及び副走査位置補正方法 | |
JP5879898B2 (ja) | アクチュエータ、光走査装置及び画像形成装置 | |
JP4340557B2 (ja) | 光走査装置および多色画像形成装置 | |
JP2006259445A (ja) | 光源装置、光走査装置および画像形成装置 | |
JP4494825B2 (ja) | 光走査装置及び画像形成装置 | |
JP2008076458A (ja) | 光走査装置と画像形成装置 | |
JP2004286848A (ja) | 光走査装置 | |
JP2005173354A (ja) | 光偏向器 |