JP2006191053A - 半導体メモリ装置の製造方法 - Google Patents

半導体メモリ装置の製造方法 Download PDF

Info

Publication number
JP2006191053A
JP2006191053A JP2005373851A JP2005373851A JP2006191053A JP 2006191053 A JP2006191053 A JP 2006191053A JP 2005373851 A JP2005373851 A JP 2005373851A JP 2005373851 A JP2005373851 A JP 2005373851A JP 2006191053 A JP2006191053 A JP 2006191053A
Authority
JP
Japan
Prior art keywords
storage node
insulating film
node contact
etching
interlayer insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005373851A
Other languages
English (en)
Inventor
Ki-Won Nam
基 元 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Hynix Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hynix Semiconductor Inc filed Critical Hynix Semiconductor Inc
Publication of JP2006191053A publication Critical patent/JP2006191053A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • H01L28/90Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions
    • H01L28/91Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions made by depositing layers, e.g. by depositing alternating conductive and insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/7687Thin films associated with contacts of capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • H10B12/0335Making a connection between the transistor and the capacitor, e.g. plug
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics

Abstract

【課題】エッチング停止絶縁膜のエッチング時に生じるキャパシタの漏れ電流ソースの発生を防止できる半導体メモリ装置の製造方法を提供すること。
【解決手段】半導体基板(31)上に層間絶縁膜(32)を形成するステップと、コンタクトホール(33)の側壁にストレージノードコンタクトスペーサ(34)を形成するステップと、コンタクトホール(33)の内部にストレージノードコンタクトプラグ(35)を形成するステップと、層間絶縁膜(32)をリセスするステップと、全面にエッチング停止絶縁膜(36)及びストレージノード用絶縁膜(37)を積層するステップと、絶縁膜(37)及びエッチング停止絶縁膜(36)をドライエッチングし、コンタクトプラグ(35)及びコンタクトスペーサ(34)を開放させる開放部(38)を形成するステップと、下部電極(40)、誘電膜(41)及び上部電極(42)を形成するステップとを含む。
【選択図】図2E

Description

本発明は、半導体の製造技術に関し、特に、半導体メモリ装置の製造方法に関する。
半導体メモリ装置の最小線幅が減少し、集積度が増大してキャパシタが形成される面積も次第に狭くなりつつある。このように、キャパシタが形成される面積が狭くなっても、セル内のキャパシタは、セル当り最小限要求される高いキャパシタンスを確保しなければならない。このように、狭い面積上に高いキャパシタンスを有するキャパシタを形成するために、シリコン酸化膜(ε=3.8)、窒化膜(ε=7)に代わって、Ta、AlまたはHfOのような高い誘電率を有する物質を誘電体膜として用いる方法、下部電極の面積を効果的に増大させるために、下部電極をシリンダ型、コンケーブ(concave)型などに立体化するか、または下部電極の表面にMPS(Meta stable-Poly Silicon)を成長させ、下部電極の有効表面的を1.7〜2倍程度増加させる方法、下部電極と上部電極とを全て金属で形成する方法(Metal Insulator Metal;MIM)などが提案された。
現在、128M以上の集積度を有するDRAMおいて、通常のMIMコンケーブTiNの下部電極を有するキャパシタを備えた半導体メモリ装置の製造方法は、以下の通りである。
図1A及び図1Bは、従来の技術に係る半導体メモリ装置の製造方法の工程を簡略に示す断面図である。
図1Aに示しているように、半導体基板11の上に層間絶縁膜12を形成した後、層間絶縁膜12をエッチングして半導体基板11の表面を開放させるストレージノードコンタクトホールを形成する。
次いで、ストレージノードコンタクトホールの側壁に接するストレージノードコンタクトスペーサ13を形成した後、ストレージノードコンタクトスペーサ13が形成されたストレージノードコンタクトホールの内部に、ストレージノードコンタクトプラグ14を埋め込む。ここで、ストレージノードコンタクトスペーサ13は、シリコン窒化膜として形成し、ストレージノードコンタクトプラグ14は、ポリシリコンで形成する。
次いで、ストレージノードコンタクトプラグ14を含む層間絶縁膜12上に、エッチング停止絶縁膜15を形成した後、エッチング停止絶縁膜15上にストレージノード用の絶縁膜16を形成する。ここで、エッチング停止絶縁膜15は、シリコン窒化膜として形成し、ストレージノード用の絶縁膜16は、シリコン酸化膜系酸化膜として形成する。
次いで、ストレージノード用の絶縁膜16とエッチング停止絶縁膜15とを順にドライエッチングし、ストレージノードコンタクトプラグ14の上を開放させる開放部17を形成する。
次に、図1Bに示しているように、TiN下部電極を形成するにあたり、TiN下部電極を形成するためには、バリアメタル(Barrier metal)形成が必須であるが、このため、開放部17を含む全面にPVDまたはCVD法によってチタニウム(Ti)を蒸着した後、アニール(Anneal)によってバリアメタルであるTiSi18を形成し、未反応のチタニウムをウェットエッチングによって除去する。
上述のように、バリアメタルであるTiSi18を形成することによって、ストレージノードコンタクトプラグ14と、後続の工程で形成されるTiN下部電極とが接触する面の抵抗を低くする。
バリアメタルであるTiSi18を形成した後、開放部17を含む全面にTiNを蒸着し、ストレージノード用の絶縁膜16上のTiNを選択的に除去し、開放部17内部でストレージノードコンタクトプラグ14と接続されるTiN下部電極19を形成する。
次いで、TiN下部電極19上に、誘電膜20とTiN上部電極21とを順次形成してキャパシタを完成する。
しかし、従来の技術は開放部17形成時、シリコン窒化膜として形成されたエッチング停止絶縁膜15をエッチングする過程において、ストレージノードコンタクトプラグ14とTiN下部電極19との間のオーバレイによって、エッチング停止絶縁膜15と同様にシリコン窒化膜として形成されたストレージノードコンタクトスペーサ13がオーバエッチング(Over etch)されるストレージノードコンタクトスペーサアタックが発生する。このようなストレージノードコンタクトスペーサアタックによって、ストレージノードコンタクトプラグ14の周辺では、ストレージノードコンタクトスペーサ13がさらに狭い空間を有して過度にエッチングされ、1000Å〜1500Å程度の隙間(Crevasse)22が発生する。
上述の隙間22が生成された状態で、ステップカバレッジ(Step coverage)が50%程度であるTiNの蒸着及びエッチングによってTiN下部電極19が形成され、誘電膜20及びTiN上部電極21が形成されるが、TiN上部電極21を形成するためにTiNを蒸着する時に空間23が残ったり、または非常に狭くてTiN上部電極21がスムーズに形成されず、誘電膜20とTiN上部電極21とに尖部24が発生したりする。
また、TiN上部電極21を形成するためにTiNを蒸着する時に空間が塞がるか、または非常に狭くてTiN上部電極21がスムーズに形成されずキャパシタの構造的な欠陥を形成し、これがキャパシタの漏れ電流ソース(Leakage current source)として機能することによって、キャパシタ漏れ電流の特性が劣化するという問題がある。
そこで、本発明は、上記した従来技術の問題点を解決するためになされたものであって、その目的は、エッチング停止絶縁膜をエッチングする過程のストレージノードコンタクトスペーサアタックによる隙間の発生を防止し、キャパシタの漏れ電流のソースを除去できる半導体メモリ装置の製造方法を提供することにある。
上記目的を達成するために、本発明の第1の半導体メモリ装置の製造方法は、半導体基板上に、ストレージノードコンタクトホールを有する層間絶縁膜を形成するステップと、前記ストレージノードコンタクトホールの側壁に、ストレージノードコンタクトスペーサを形成するステップと、前記ストレージノードコンタクトホールの内部に、前記ストレージノードコンタクトスペーサによって取り囲まれるストレージノードコンタクトプラグを形成するステップと、前記ストレージノードコンタクトスペーサのトップ領域が露出するように前記層間絶縁膜の表面を一定の深さにリセスするステップと、前記リセスされた層間絶縁膜を含む全面にエッチング停止絶縁膜及びストレージノード用の絶縁膜を積層するステップと、前記ストレージノード用の絶縁膜及びエッチング停止絶縁膜を順次ドライエッチングし、少なくとも前記ストレージノードコンタクトプラグ及びストレージノードコンタクトスペーサを開放させる開放部を形成するステップと、前記開放部の内部に下部電極を形成するステップと、前記下部電極上に誘電膜及び上部電極を順に形成するステップとを含むことを特徴としている。前記層間絶縁膜を酸化膜で形成し、前記層間絶縁膜を一定の深さにリセスするステップは、前記ストレージノードコンタクトプラグ及びストレージノードコンタクトスペーサをエッチングせず、前記層間絶縁膜だけを選択的にエッチングするドライエッチングまたはウェットエッチングによって行うステップであることができる。
また、本発明の第2の半導体メモリ装置の製造方法は、半導体基板上にストレージノードコンタクトホールを有する酸化膜系の層間絶縁膜を形成するステップと、前記ストレージノードコンタクトホールの側壁に窒化膜系ストレージノードコンタクトスペーサを形成するステップと、前記ストレージノードコンタクトホールの内部に前記ストレージノードコンタクトスペーサによって取り囲まれるポリシリコン系ストレージノードコンタクトプラグを形成するステップと、前記ストレージノードコンタクトスペーサのトップ領域が露出するように前記層間絶縁膜の表面を一定の深さにリセスするステップと、前記リセスされた層間絶縁膜を含む全面に、窒化膜系エッチング停止絶縁膜及び酸化膜系ストレージノード用の絶縁膜を積層するステップと、前記ストレージノード用の絶縁膜及びエッチング停止絶縁膜を順次ドライエッチングし、少なくとも前記ストレージノードコンタクトプラグ及びストレージノードコンタクトスペーサを開放させる開放部を形成するステップと、前記開放部の内部に下部電極を形成するステップと、前記下部電極上に誘電膜及び上部電極を順に形成するステップとを含むことを特徴としている。前記層間絶縁膜を一定の深さにリセスするステップは、前記ストレージノードコンタクトプラグ及びストレージノードコンタクトスペーサをエッチングせず、前記層間絶縁膜だけを選択的にエッチングするドライエッチングまたはウェットエッチングによって行うステップであることができる。また、前記層間絶縁膜のエッチング速度が、前記ストレージノードコンタクトプラグ及び前記ストレージノードコンタクトスペーサのエッチング速度よりも、2倍〜4倍程度速い速度に維持されるように、前記ドライエッチングをフッ素系ガスを用いて行うことができる。また、前記ウェットエッチングを、フッ酸溶液またはBOE溶液を用いて行うことができる。
本発明によれば、層間絶縁膜をリセスすることと、ストレージノードコンタクトスペーサアタックの脆弱領域で窒化膜を厚く形成することとによって、エッチング停止絶縁膜のエッチング中に発生するストレージノードコンタクトプラグ周辺のストレージノードコンタクトスペーサアタックによる損傷を最小化させることによって、漏れ電流ソースの発生を防止して、キャパシタの収率を向上させることができる効果が得られる。
このように、漏れ電流ソースを除去するによって、パターンの微細化、即ち微細なデザインルールを実現し、工程マージンを極大化させることができる効果が得られる。
以下、本発明のもっとも好ましい実施の形態を添付する図面を参照して説明する。
図2A〜図2Eは、本発明の実施の形態に係る半導体メモリ装置の製造方法の工程を示す断面図である。
図2Aに示しているように、半導体基板31上に層間絶縁膜32を形成する。この時、図示していないが、層間絶縁膜32を形成する前には周知のように、トランジスタ及びビットラインなどの様々な素子が形成され、これによって、層間絶縁膜32は多層構造の層間絶縁膜でもあり得る。
次いで、層間絶縁膜32上に感光膜を用いたコンタクトマスク(図示せず)を形成した後、コンタクトマスクをエッチングバリアとして層間絶縁膜32をエッチングし、半導体基板31の表面を開放させるストレージノードコンタクトホール33を形成する。この時、半導体基板31の、ストレージノードコンタクトホール33が形成される部分はソース/ドレイン接合でもあり得る。
次いで、ストレージノードコンタクトホール33の側壁に接するストレージノードコンタクトスペーサ34を形成する。この時、ストレージノードコンタクトスペーサ34は、ストレージノードコンタクトホール33を含む全面にシリコン窒化膜(Si)を蒸着によって形成した後、半導体基板31の表面が露出するようにエッチバックして、ストレージノードコンタクトホール33の側壁(side wall)を覆う形状に形成する。
次いで、ストレージノードコンタクトスペーサ34が形成されたストレージノードコンタクトホール33内部を埋め込んで、ストレージノードコンタクトプラグ35を形成する。
この時、ストレージノードコンタクトプラグ35は、ストレージノードコンタクトスペーサ34が形成されたストレージノードコンタクトホール33を満たすまで全面にポリシリコン膜を蒸着によって形成した後、TCMP(Touch Chemical Mechanical Polishing)処理によってポリシリコン膜を一部研磨し、続いて全面ドライエッチングを行って形成する。
次に、図2Bに示しているように、ストレージノードコンタクトプラグ35及びストレージノードコンタクトスペーサ34の周辺の層間絶縁膜32を、表面から一定の深さDまで除去する(以下「リセスする」と記し、この処理をリセス処理と記す)。
このリセス処理では、ストレージノードコンタクトプラグ35及びストレージノードコンタクトスペーサ34に比べて、層間絶縁膜32を速くエッチングできるドライエッチング法またはウェットエッチング法を用いる。
まず、層間絶縁膜32をリセスするためのドライエッチング法は、RFプラズマチャンバを用いて行い、エッチング速度を調整するためのフッ素系(Fluorine base)ガスをベースに行う。すなわち、フッ素系ガスを用いて層間絶縁膜32をドライエッチングすると、層間絶縁膜32として用いられた酸化膜のエッチング速度を、ストレージノードコンタクトプラグ35として用いられたポリシリコン膜及びストレージノードコンタクトスペーサ34として用いられた窒化膜ののエッチング速度よりも、2倍〜4倍以上速い状態に維持し、層間絶縁膜32だけを選択的にリセスすることができる。好ましくは、フッ素系ガスはCまたはCFを用いる。
そして、層間絶縁膜32をリセスする異なる方法として、ウェットエッチング法では、フッ酸溶液(HF)またはBOE溶液を用いて行うが、フッ酸溶液(HF)またはBOE溶液は、ポリシリコン膜に比べて酸化膜を速くエッチングすることが周知である。したがって、フッ酸溶液またはBOE溶液を用いて層間絶縁膜32をリセスする時、ポリシリコン膜として形成したストレージノードコンタクトプラグ35と、窒化膜そして形成したストレージノードコンタクトスペーサ34とはエッチングされず、層間絶縁膜32だけが選択的にウェットエッチングされてリセスされる。
上述のように、ドライエッチング法またはウェットエッチング法を用いて、層間絶縁膜32をリセスする時、リセスされる深さDは、500Å〜1000Åである。
上述のように層間絶縁膜32をリセスした結果を説明すると、ストレージノードコンタクトスペーサ34のトップ(上端)領域とリセスされた層間絶縁膜32の表面との間に、リセスされた深さD程程の段差が発生し、層間絶縁膜32の上部表面がストレージノードコンタクトスペーサ34に比べて低い位置に位置するため、リセスされた層間絶縁膜32に隣接するストレージノードコンタクトスペーサ34のトップ領域の角が露出する。
次に、図2Cに示しているように、リセスされた層間絶縁膜32を含む全面にエッチング停止絶縁膜36を形成する。この時、エッチング停止絶縁膜36は、シリコン窒化膜(Si)として形成され、ストレージノードコンタクトスペーサ34の上部付近ではスロープ形状を有し、ストレージノードコンタクトスペーサ34の真上からリセスされた層間絶縁膜32の方向に行く程厚さが薄くなる。
上述のように、エッチング停止絶縁膜36を形成した結果を詳細に説明すると、エッチング停止絶縁膜36の下の構造物(以下、下部構造物と記す)が、平坦な構造を有さずリセス処理によって高さが互いに異なる構造を有するため、エッチング停止絶縁膜36として形成されたシリコン窒化膜の厚さが下部構造物毎に互いに異なる。
以下、シリコン窒化膜の下部構造物による厚さの差を説明するために、リセスされた層間絶縁膜32上でのシリコン窒化膜の厚さをW1とし、ストレージノードコンタクトプラグ35上でのシリコン窒化膜の厚さをW2とし、ストレージノードコンタクトスペーサ34のトップ領域でのシリコン窒化膜の厚さ(リセスされた層間絶縁膜32の表面からストレージノードコンタクトスペーサ34の上に形成されたエッチング停止絶縁膜(シリコン窒化膜)の表面までのの距離)をW3とする。
シリコン窒化膜の厚さへの下部構造物の影響によって、W1、W2は同じであり、W3はW1、W2よりも大きい。このように、W3がより大きい理由は、層間絶縁膜32のリセスによってストレージノードコンタクトスペーサ34のトップ領域が露出したためであり、露出したストレージノードコンタクトスペーサ34のトップ領域の厚さ程度シリコン窒化膜の厚さが増大したのである。
上述のように、後続のエッチング停止絶縁膜36をドライエッチングする時にストレージノードコンタクトスペーサアタックに対して最も脆弱な領域であるストレージノードコンタクトスペーサ34のトップ領域で、シリコン窒化膜(エッチング停止絶縁膜36)の厚さを最も厚く形成することによって、後続のドライエッチング時に、エッチング量を最小化させることができる。
次に、図2Dに示しているように、エッチング停止絶縁膜36上にストレージノード用の絶縁膜37を形成する。この時、ストレージノード用の絶縁膜37は、BPSG、USG、HDPまたはTEOSで形成する。
次いで、ストレージノード用の絶縁膜37とエッチング停止絶縁膜36とを順にドライエッチングし、少なくともストレージノードコンタクトプラグ35上部を開放させる開放部38を形成する。
上述のような開放部38形成のためのドライエッチング、特にエッチング停止絶縁膜36をエッチングする途中に、ストレージノードコンタクトプラグ35表面を完全に開放させるようにオーバエッチングが伴うが、この時、ストレージノードコンタクトスペーサアタックによってストレージノードコンタクトスペーサ34のエッチング損失が発生し得る。
しかし、本発明では、ストレージノードコンタクトスペーサアタックに対して最も脆弱な領域であるストレージノードコンタクトスペーサ34のトップ領域において予めシリコン窒化膜の厚さを非常に厚く形成しているため、ストレージノードコンタクトスペーサアタックによる損失の程度が最小となる。
開放部38の形成時にエッチングされるシリコン窒化膜(エッチング停止絶縁膜36)のエッチング量を一例に説明すると、ストレージノードコンタクトプラグ35の表面上と層間絶縁膜32の表面上とでエッチングされるシリコン窒化膜のエッチング量は、エッチング停止絶縁膜36の厚さ(図2CのW1、W2)に限定されるが、ストレージノードコンタクトプラグ35周辺でエッチングされるシリコン窒化膜のエッチング量は、エッチング停止絶縁膜36の厚さとストレージノードコンタクトスペーサ34の露出したトップ領域とにかけて非常に厚い。
したがって、ストレージノードコンタクトスペーサアタックに脆弱な部分において、窒化膜の厚さが、リセスされた深さDと同じだけ追加されており、非常に厚いため、エッチング停止絶縁膜36をエッチングする時に、ストレージノードコンタクトプラグ35表面が露出するまでエッチングを行っても、ストレージノードコンタクトスペーサ34がオーバエッチングされず、隙間が発生しない。
本発明では、層間絶縁膜32の表面を一定の深さDだけリセスし、ストレージノードコンタクトスペーサアタックに脆弱な部分の窒化膜の厚さを非常に厚く形成することによって、開放部38を形成するためにエッチング停止絶縁膜36をドライエッチングする時、ストレージノードコンタクトスペーサ34として用いられた窒化膜のオーバエッチングによって隙間が生じるのを防止し、平坦な構造を得ることができる。
次に、図2Eに示しているように、TiN下部電極を形成するために、バリアメタル39を形成する。
例えば、開放部38を含む全面に、PVDまたはCVD法によってチタニウムTiを蒸着した後、アニール(Anneal)を行って、チタニウムシリサイド(TiSi)を形成する。その後、未反応のチタニウムを、ウェットエッチングによって除去する。ここで、バリアメタル39であるチタニウムシリサイドは、ストレージノードコンタクトプラグ35として用いられたポリシリコンのシリコン(Si)とチタニウムTiとが反応して形成されたものであり、ストレージノードコンタクトプラグ35周辺の層間絶縁膜32やストレージノードコンタクトスペーサ34ではチタニウムシリサイドが形成されない。
上述のように、バリアメタル39であるチタニウムシリサイドを形成すると、ストレージノードコンタクトプラグ35と後続の工程で形成されるTiN下部電極とが接触する面の抵抗を低くすることができる。
次いで、下部電極分離(Storage node isolation)工程を行って、開放部38の内部にストレージノードコンタクトプラグ35と接続するTiN下部電極40を形成する。
TiN下部電極40を形成するための下部電極の分離工程は、開放部38を含むストレージノード用の絶縁膜37上に、CVD、PVDまたはALD法を用いてTiNを蒸着し、開放部38を除外したストレージノード用の絶縁膜37の表面上に形成されたTiNを化学的機械的研磨(CMP)またはエッチバックによって除去して、TiN下部電極40を形成するものである。ここで、化学的機械的研磨またはエッチバック時に研磨材やエッチングされた粒子などのパーティクルが、TiN下部電極40の内部に付着する虞があるため、ステップカバレッジ特性が良い感光膜で開放部38の内部を全て満たした後、ストレージノード用の絶縁膜37の表面が露出されるまでTiNを化学的機械的研磨またはエッチバックし、感光膜をアッシング(ashing)して除去するのが良い。
次いで、TiN下部電極40上に誘電膜41とTiN上部電極42とを順次形成してキャパシタを完成する。
この時、誘電膜41は、ONO、HFO、Al及びTaの中から選択される何れかであり、開放部38の底部分が平坦になった状態であるため、ステップカバレッジに敏感でない蒸着を用いて形成してもよい。また、TiN上部電極42は、ステップカバレッジに敏感でない蒸着を用いて形成しても良いが、CVD、PVDまたはALD法を用いて形成する。
上述のような誘電膜41とTiN上部電極42との形成時に、ストレージノードコンタクトプラグ35周辺に隙間が発生してない状態であるため、TiN上部電極42として用いられたTiNを蒸着する時点の空間を塞がず、誘電膜41とTiN上部電極42とに尖部が発生しない。
上述の実施の形態では、下部電極がTiNである場合を説明したが、本発明はストレージノードコンタクトスペーサに窒化膜系物質を用いる全てのキャパシタの製造方法に適用することができる。
尚、本発明は、上記した実施の形態に限定されるものではなく、本発明の技術的思想から逸脱しない範囲内で多様に変更が可能であり、それらも本発明の技術的範囲に属する。
従来の技術に係る半導体メモリ装置の製造方法の工程を簡略に示す断面図である。 従来の技術に係る半導体メモリ装置の製造方法の工程を簡略に示す断面図である。 本発明の実施の形態に係る半導体メモリ装置の製造方法の工程を示す断面図である。 本発明の実施の形態に係る半導体メモリ装置の製造方法の図2Aに続く工程を示す断面図である。 本発明の実施の形態に係る半導体メモリ装置の製造方法の図2Bに続く工程を示す断面図である。 本発明の実施の形態に係る半導体メモリ装置の製造方法の図2Cに続く工程を示す断面図である。 本発明の実施の形態に係る半導体メモリ装置の製造方法の図2Dに続く工程を示す断面図である。
符号の説明
31 半導体基板
32 層間絶縁膜
33 ストレージノードコンタクトホール
34 ストレージノードコンタクトスペーサ
35 ストレージノードコンタクトプラグ
36 エッチング停止絶縁膜
37 ストレージノード用絶縁膜
38 開放部
39 バリアメタル
40 TiN下部電極
41 誘電膜
42 TiN上部電極

Claims (14)

  1. 半導体基板上に、ストレージノードコンタクトホールを有する層間絶縁膜を形成するステップと、
    前記ストレージノードコンタクトホールの側壁に、ストレージノードコンタクトスペーサを形成するステップと、
    前記ストレージノードコンタクトホールの内部に、前記ストレージノードコンタクトスペーサによって取り囲まれるストレージノードコンタクトプラグを形成するステップと、
    前記ストレージノードコンタクトスペーサのトップ領域が露出するように前記層間絶縁膜の表面を一定の深さにリセスするステップと、
    前記リセスされた層間絶縁膜を含む全面にエッチング停止絶縁膜及びストレージノード用の絶縁膜を積層するステップと、
    前記ストレージノード用の絶縁膜及びエッチング停止絶縁膜を順次ドライエッチングし、少なくとも前記ストレージノードコンタクトプラグ及びストレージノードコンタクトスペーサを開放させる開放部を形成するステップと、
    前記開放部の内部に下部電極を形成するステップと、
    前記下部電極上に誘電膜及び上部電極を順に形成するステップと
    を含むことを特徴とする半導体メモリ装置の製造方法。
  2. 前記層間絶縁膜を酸化膜で形成し、
    前記層間絶縁膜の表面を一定の深さにリセスする前記ステップが、前記ストレージノードコンタクトプラグ及びストレージノードコンタクトスペーサをエッチングせず、前記層間絶縁膜だけを選択的にエッチングするドライエッチングまたはウェットエッチングによって行うステップであることを特徴とする請求項1に記載の半導体メモリ装置の製造方法。
  3. 前記ドライエッチングを、RFプラズマチャンバを用いて行うことを特徴とする請求項2に記載の半導体メモリ装置の製造方法。
  4. 前記層間絶縁膜のエッチング速度が、前記ストレージノードコンタクトプラグ及び前記ストレージノードコンタクトスペーサのエッチング速度よりも2倍〜4倍程度速い速度に維持されるように、前記ドライエッチングをフッ素系ガスを用いて行うことを特徴とする請求項2に記載の半導体メモリ装置の製造方法。
  5. 前記フッ素系ガスが、CまたはCFであることを特徴とする請求項4に記載の半導体メモリ装置の製造方法。
  6. 前記ウェットエッチングを、フッ酸溶液またはBOE溶液を用いて行うことを特徴とする請求項2に記載の半導体メモリ装置の製造方法。
  7. 前記層間絶縁膜のリセスされる深さが、500Å〜1000Åの範囲内であることを特徴とする請求項1または2に記載の半導体メモリ装置の製造方法。
  8. 半導体基板上にストレージノードコンタクトホールを有する酸化膜系の層間絶縁膜を形成するステップと、
    前記ストレージノードコンタクトホールの側壁に窒化膜系ストレージノードコンタクトスペーサを形成するステップと、
    前記ストレージノードコンタクトホールの内部に前記ストレージノードコンタクトスペーサによって取り囲まれるポリシリコン系ストレージノードコンタクトプラグを形成するステップと、
    前記ストレージノードコンタクトスペーサのトップ領域が露出するように前記層間絶縁膜の表面を一定の深さにリセスするステップと、
    前記リセスされた層間絶縁膜を含む全面に、窒化膜系エッチング停止絶縁膜及び酸化膜系ストレージノード用の絶縁膜を積層するステップと、
    前記ストレージノード用の絶縁膜及びエッチング停止絶縁膜を順次ドライエッチングし、少なくとも前記ストレージノードコンタクトプラグ及びストレージノードコンタクトスペーサを開放させる開放部を形成するステップと、
    前記開放部の内部に下部電極を形成するステップと、
    前記下部電極上に誘電膜及び上部電極を順に形成するステップと
    を含むことを特徴とする半導体メモリ装置の製造方法。
  9. 前記層間絶縁膜を一定の深さにリセスする前記ステップが、前記ストレージノードコンタクトプラグ及びストレージノードコンタクトスペーサをエッチングせず、前記層間絶縁膜だけを選択的にエッチングするドライエッチングまたはウェットエッチングによって行うステップであることを特徴とする請求項8に記載の半導体メモリ装置の製造方法。
  10. 前記ドライエッチングを、RFプラズマチャンバを用いて行うことを特徴とする請求項9に記載の半導体メモリ装置の製造方法。
  11. 前記層間絶縁膜のエッチング速度が、前記ストレージノードコンタクトプラグ及び前記ストレージノードコンタクトスペーサのエッチング速度よりも、2倍〜4倍程度速い速度に維持されるように、前記ドライエッチングをフッ素系ガスを用いて行うことを特徴とする請求項9に記載の半導体メモリ装置の製造方法。
  12. 前記フッ素系ガスが、CまたはCFであることを特徴とする請求項11に記載の半導体メモリ装置の製造方法。
  13. 前記ウェットエッチングを、フッ酸溶液またはBOE溶液を用いて行うことを特徴とする請求項9に記載の半導体メモリ装置の製造方法。
  14. 前記層間絶縁膜のリセスされる深さが、500Å〜1000Åの範囲内であることを特徴とする請求項9または10に記載の半導体メモリ装置の製造方法。
JP2005373851A 2004-12-28 2005-12-27 半導体メモリ装置の製造方法 Pending JP2006191053A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040114013A KR100558036B1 (ko) 2004-12-28 2004-12-28 반도체메모리장치의 제조 방법

Publications (1)

Publication Number Publication Date
JP2006191053A true JP2006191053A (ja) 2006-07-20

Family

ID=36612231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005373851A Pending JP2006191053A (ja) 2004-12-28 2005-12-27 半導体メモリ装置の製造方法

Country Status (3)

Country Link
US (1) US20060141699A1 (ja)
JP (1) JP2006191053A (ja)
KR (1) KR100558036B1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100689676B1 (ko) 2005-04-30 2007-03-09 주식회사 하이닉스반도체 반도체메모리장치의 제조 방법
KR100709568B1 (ko) 2006-06-29 2007-04-20 주식회사 하이닉스반도체 지그재그 배열의 스토리지노드를 구비한 반도체소자의 제조방법
US7610773B2 (en) * 2006-12-14 2009-11-03 General Electric Company Ice producing apparatus and method
CN113517288B (zh) * 2020-04-10 2024-03-29 长鑫存储技术有限公司 半导体结构及其形成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112503A (ja) * 1996-10-03 1998-04-28 Sony Corp 半導体装置の製造方法
JP2000323677A (ja) * 1999-05-12 2000-11-24 Mitsubishi Electric Corp 半導体記憶装置およびその製造方法
JP2001217201A (ja) * 2000-02-03 2001-08-10 Samsung Electronics Co Ltd 半導体集積回路の自己整列コンタクト構造体形成方法
JP2002124583A (ja) * 2000-09-15 2002-04-26 Samsung Electronics Co Ltd 層間絶縁膜の損傷を防止しうる半導体メモリ素子及びその製造方法
JP2002289814A (ja) * 2001-03-23 2002-10-04 Mitsubishi Electric Corp 半導体装置とその製造方法

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286675A (en) * 1993-04-14 1994-02-15 Industrial Technology Research Institute Blanket tungsten etchback process using disposable spin-on-glass
US5497017A (en) * 1995-01-26 1996-03-05 Micron Technology, Inc. Dynamic random access memory array having a cross-point layout, tungsten digit lines buried in the substrate, and vertical access transistors
US5963800A (en) * 1995-06-16 1999-10-05 Interuniversitair Micro-Elektronica Centrum (Imec Vzw) CMOS integration process having vertical channel
US5937294A (en) * 1995-08-11 1999-08-10 Micron Technology, Inc. Method for making a container capacitor with increased surface area
JP2814972B2 (ja) * 1995-12-18 1998-10-27 日本電気株式会社 半導体装置の製造方法
US5759892A (en) * 1996-09-24 1998-06-02 Taiwan Semiconductor Manufacturing Company Ltd Formation of self-aligned capacitor contact module in stacked cyclindrical dram cell
US5677223A (en) * 1996-10-07 1997-10-14 Vanguard International Semiconductor Corporation Method for manufacturing a DRAM with reduced cell area
US6184551B1 (en) * 1997-10-24 2001-02-06 Samsung Electronics Co., Ltd Method of forming integrated circuit capacitors having electrodes therein that comprise conductive plugs
TW356583B (en) * 1997-12-19 1999-04-21 United Microelectronics Corp Barrier layer forming method
US6103571A (en) * 1998-04-30 2000-08-15 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming a DRAM capacitor having improved capacitance and device formed
KR100292938B1 (ko) * 1998-07-16 2001-07-12 윤종용 고집적디램셀커패시터및그의제조방법
US6271131B1 (en) * 1998-08-26 2001-08-07 Micron Technology, Inc. Methods for forming rhodium-containing layers such as platinum-rhodium barrier layers
JP2000077622A (ja) * 1998-08-31 2000-03-14 Texas Instr Inc <Ti> 半導体記憶装置及びその製造方法
US6303956B1 (en) * 1999-02-26 2001-10-16 Micron Technology, Inc. Conductive container structures having a dielectric cap
US6421223B2 (en) * 1999-03-01 2002-07-16 Micron Technology, Inc. Thin film structure that may be used with an adhesion layer
US6348709B1 (en) * 1999-03-15 2002-02-19 Micron Technology, Inc. Electrical contact for high dielectric constant capacitors and method for fabricating the same
US6168989B1 (en) * 1999-05-26 2001-01-02 Taiwan Semiconductor Manufacturing Company Process for making new and improved crown-shaped capacitors on dynamic random access memory cells
US6165895A (en) * 1999-06-28 2000-12-26 United Semiconductor Corp. Fabrication method of an interconnect
US6159818A (en) * 1999-09-02 2000-12-12 Micron Technology, Inc. Method of forming a container capacitor structure
JP2001144263A (ja) * 1999-11-11 2001-05-25 Tokyo Ohka Kogyo Co Ltd 誘電体素子および誘電体素子の製造方法
JP2001217403A (ja) * 2000-02-04 2001-08-10 Hitachi Ltd 半導体集積回路装置およびその製造方法
US6503827B1 (en) * 2000-06-28 2003-01-07 International Business Machines Corporation Method of reducing planarization defects
KR100408742B1 (ko) * 2001-05-10 2003-12-11 삼성전자주식회사 집적회로소자의 캐패시터 및 그 제조방법
KR100389927B1 (ko) * 2001-06-07 2003-07-04 삼성전자주식회사 다층 배선 구조를 구비한 반도체 소자 및 그 제조 방법
JP2003023102A (ja) 2001-07-05 2003-01-24 Mitsubishi Electric Corp キャパシタの製造方法
KR100431656B1 (ko) * 2001-09-11 2004-05-17 삼성전자주식회사 반도체 장치의 제조 방법
KR100418573B1 (ko) * 2001-09-14 2004-02-11 주식회사 하이닉스반도체 반도체소자의 제조 방법
US6794245B2 (en) * 2002-07-18 2004-09-21 Micron Technology, Inc. Methods of fabricating double-sided hemispherical silicon grain electrodes and capacitor modules
KR100456699B1 (ko) * 2002-10-04 2004-11-10 삼성전자주식회사 하부 막질에 대한 하부 전극의 접촉 구조 및 그 형성 방법
US6638815B1 (en) * 2002-10-25 2003-10-28 International Business Machines Corporation Formation of self-aligned vertical connector
JP2004172474A (ja) 2002-11-21 2004-06-17 Renesas Technology Corp 半導体装置及びその製造方法
JP2004253730A (ja) * 2003-02-21 2004-09-09 Renesas Technology Corp 半導体集積回路装置およびその製造方法
US7399655B2 (en) * 2003-08-04 2008-07-15 Ovonyx, Inc. Damascene conductive line for contacting an underlying memory element
KR100534100B1 (ko) * 2003-12-15 2005-12-06 삼성전자주식회사 콘택 플러그의 상부 측벽을 노출시켜 전하저장전극을형성하는 반도체 소자의 제조 방법들
JP4032058B2 (ja) * 2004-07-06 2008-01-16 富士通株式会社 半導体装置および半導体装置の製造方法
JP4492947B2 (ja) * 2004-07-23 2010-06-30 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US7745865B2 (en) * 2005-07-20 2010-06-29 Taiwan Semiconductor Manufacturing Co., Ltd. Devices and methods for preventing capacitor leakage
KR100684905B1 (ko) * 2005-08-11 2007-02-20 삼성전자주식회사 다마신 공정의 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112503A (ja) * 1996-10-03 1998-04-28 Sony Corp 半導体装置の製造方法
JP2000323677A (ja) * 1999-05-12 2000-11-24 Mitsubishi Electric Corp 半導体記憶装置およびその製造方法
JP2001217201A (ja) * 2000-02-03 2001-08-10 Samsung Electronics Co Ltd 半導体集積回路の自己整列コンタクト構造体形成方法
JP2002124583A (ja) * 2000-09-15 2002-04-26 Samsung Electronics Co Ltd 層間絶縁膜の損傷を防止しうる半導体メモリ素子及びその製造方法
JP2002289814A (ja) * 2001-03-23 2002-10-04 Mitsubishi Electric Corp 半導体装置とその製造方法

Also Published As

Publication number Publication date
US20060141699A1 (en) 2006-06-29
KR100558036B1 (ko) 2006-03-07

Similar Documents

Publication Publication Date Title
JP4152276B2 (ja) 低温原子層蒸着による窒化膜をエッチング阻止層として利用する半導体素子及びその製造方法
KR100614803B1 (ko) 커패시터 제조 방법
KR100587635B1 (ko) 반도체소자의 제조 방법
KR102171265B1 (ko) 금속 마스크를 이용한 패터닝 방법 및 그 패터닝 방법을 포함한 반도체 소자 제조방법
JP2006173558A (ja) 半導体素子のキャパシタ製造方法
US7504300B2 (en) Method for fabricating semiconductor memory device having cylinder type storage node
TWI647822B (zh) 三維非揮發性記憶體及其製造方法
KR100413606B1 (ko) 캐패시터의 제조 방법
JP2006191056A (ja) リセスされたストレージノードコンタクトプラグを有する半導体メモリ装置の製造方法
JP2006191053A (ja) 半導体メモリ装置の製造方法
KR100505450B1 (ko) 다마신 공정을 이용한 반도체소자 제조 방법
JP2008091368A (ja) 半導体装置及びその製造方法
WO2022028164A1 (zh) 半导体结构及其制作方法
JP2006191097A (ja) 半導体メモリ装置及びその製造方法
JP2006148052A (ja) 半導体素子の格納電極形成方法
KR20100008556A (ko) 반도체 장치 제조방법
KR20060131144A (ko) 반도체 소자의 컨택 플러그 형성방법
KR100643568B1 (ko) 반도체소자의 깊은 콘택홀 형성 방법
KR100861367B1 (ko) 반도체 메모리소자의 캐패시터 형성방법
JP2005183916A (ja) フラッシュ素子の製造方法
KR100689676B1 (ko) 반도체메모리장치의 제조 방법
KR100622610B1 (ko) 반도체소자의 캐패시터 및 그의 제조 방법
KR100689678B1 (ko) 캐패시터 및 그의 제조 방법
KR20070002839A (ko) 반도체소자의 제조 방법
KR20070002798A (ko) 반도체소자의 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120522