JP2004222362A - 電圧変換装置、故障処理をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体および故障処理方法 - Google Patents

電圧変換装置、故障処理をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体および故障処理方法 Download PDF

Info

Publication number
JP2004222362A
JP2004222362A JP2003004220A JP2003004220A JP2004222362A JP 2004222362 A JP2004222362 A JP 2004222362A JP 2003004220 A JP2003004220 A JP 2003004220A JP 2003004220 A JP2003004220 A JP 2003004220A JP 2004222362 A JP2004222362 A JP 2004222362A
Authority
JP
Japan
Prior art keywords
voltage
motor
electric load
power generation
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003004220A
Other languages
English (en)
Other versions
JP3928559B2 (ja
Inventor
Eiji Sato
栄次 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003004220A priority Critical patent/JP3928559B2/ja
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to EP03774161A priority patent/EP1581407B1/en
Priority to KR1020057012893A priority patent/KR100747140B1/ko
Priority to PCT/JP2003/014949 priority patent/WO2004064235A2/en
Priority to CN200380108491A priority patent/CN100591547C/zh
Priority to DE60314292T priority patent/DE60314292T2/de
Priority to US10/537,262 priority patent/US7400104B2/en
Publication of JP2004222362A publication Critical patent/JP2004222362A/ja
Application granted granted Critical
Publication of JP3928559B2 publication Critical patent/JP3928559B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/20AC to AC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)
  • Stopping Of Electric Motors (AREA)

Abstract

【課題】インバータの入力側に挿入されるコンデンサの耐電圧性能を向上させることなく、昇圧コンバータの故障処理が可能な電圧変換装置を提供する。
【解決手段】制御装置30は、電圧センサー10からの直流電圧Vbと、電圧センサー13からの出力電圧Vmと、NPNトランジスタQ1,Q2をスイッチング制御するときのデューティー比とに基づいて昇圧コンバータ12が故障しているか否かを検出する。そして、制御装置30は、昇圧コンバータ12の故障を検出すると、交流モータM1の回生発電を禁止するようにインバータ14および交流モータM1を制御する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
この発明は、直流電源からの直流電圧を出力電圧に変換する電圧変換器の故障処理が可能な電圧変換装置、故障処理をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体および故障処理方法に関するものである。
【0002】
【従来の技術】
最近、環境に配慮した自動車としてハイブリッド自動車(Hybrid Vehicle)および電気自動車(Electric Vehicle)が大きな注目を集めている。そして、ハイブリッド自動車は、一部、実用化されている。
【0003】
このハイブリッド自動車は、従来のエンジンに加え、直流電源とインバータとインバータによって駆動されるモータとを動力源とする自動車である。つまり、エンジンを駆動することにより動力源を得るとともに、直流電源からの直流電圧をインバータによって交流に変換し、その変換した交流によりモータを回転することによって動力源を得るものである。また、電気自動車は、直流電源とインバータとインバータによって駆動されるモータとを動力源とする自動車である。
【0004】
このようなハイブリッド自動車または電気自動車においては、直流電源からの直流電圧を昇圧コンバータによって昇圧し、その昇圧した直流電圧をモータを駆動するインバータに供給することも提案されている。
【0005】
特開平2−308935号公報には、図13に示す電気装置300が開示されている。この電気装置300は、ハイブリッド自動車に搭載される。図13を参照して、電気装置300は、直流電源310と、バイパスライン311と、リレー312と、昇圧チョッパ320と、コンデンサ326と、インバータ330と、電気装置本体350と、界磁コントローラ360とを備える。
【0006】
バイパスライン311およびリレー312は、電源ラインと直流電源310の正極との間に直列に接続される。
【0007】
昇圧チョッパ320は、リアクトル321と、MOSトランジスタ322,323と、ダイオード324,325とを含む。リアクトル321の一方端は直流電源310の電源ラインに接続され、他方端はMOSトランジスタ322とMOSトランジスタ323との中間点に接続される。MOSトランジスタ322,323は、電源ラインとアースラインとの間に直列に接続される。そして、MOSトランジスタ322のドレインは電源ラインに接続され、MOSトランジスタ323のソースはアースラインに接続される。また、各MOSトランジスタ322,323のソース−ドレイン間には、ソース側からドレイン側へ電流を流すダイオード324,325が配置されている。
【0008】
インバータ330は、U相アーム343と、V相アーム344と、W相アーム345とから成る。U相アーム343、V相アーム344、およびW相アーム345は、電源ラインとアースラインとの間に並列に設けられる。
【0009】
U相アーム343は、直列接続されたMOSトランジスタ331,332から成り、V相アーム344は、直列接続されたMOSトランジスタ333,334から成り、W相アーム345は、直列接続されたMOSトランジスタ335,336から成る。また、各MOSトランジスタ331〜336のソース−ドレイン間には、ソース側からドレイン側へ電流を流すダイオード337〜342がそれぞれ接続されている。
【0010】
電気装置本体350は、3相のコイルを含み、エンジンに対して発電機およびモータとして機能する。そして、インバータ330の各相アームの中間点は、電気装置本体350の各相コイルの各相端に接続されている。U相コイルの他端がMOSトランジスタ331,332の中間点に、V相コイルの他端がMOSトランジスタ333,334の中間点に、W相コイルの他端がMOSトランジスタ335,336の中間点にそれぞれ接続されている。
【0011】
界磁コントローラ360は、ダイオード361と、NPNトランジスタ362と、ベースアンプ363とを含む。ダイオード361は、電気装置本体350のフィールドコイルのプラス端子F+と、NPNトランジスタ362のコレクタとの間に接続される。NPNトランジスタ362は、フィールドコイルのマイナス端子F−と、アースラインとの間に接続され、ベースアンプ363からの電圧をベースに受ける。ベースアンプ363は、制御装置(図示せず)からの制御信号に応じて所定の電圧をNPNトランジスタ362のベースへ出力し、NPNトランジスタ362をオン/オフする。
【0012】
直流電源310は、直流電圧を出力する。リレー312が制御装置(図示せず)からの制御信号によってオンされると、バイパスライン311は、コンデンサ326の両端の電圧を直流電源310に供給する。昇圧チョッパ320は、制御装置(図示せず)によってMOSトランジスタ322,323がオン/オフされ、直流電源310から供給された直流電圧を昇圧して出力電圧をインバータ330に供給する。また、昇圧チョッパ320は、電気装置300が搭載されたハイブリッド自動車の回生制動時、電気装置本体350によって発電され、インバータ330によって変換された直流電圧を降圧して直流電源310を充電する。
【0013】
コンデンサ326は、昇圧チョッパ320から供給された直流電圧を平滑化し、その平滑化した直流電圧をインバータ330へ供給する。
【0014】
インバータ330は、コンデンサ326から直流電圧が供給されると制御装置(図示せず)からの制御に基づいて直流電圧を交流電圧に変換して電気装置本体350を駆動モータとして駆動する。また、界磁コントローラ360は、NPNトランジスタ362がオンされた期間に応じてフィールドコイルに電流を流す。これにより、電気装置本体350は、トルク指令値によって指定されたトルクを発生するように駆動モータとして駆動される。また、インバータ330は、電気装置300が搭載されたハイブリッド自動車の回生制動時、電気装置本体350が発電した交流電圧を制御装置からの制御に基づいて直流電圧に変換し、その変換した直流電圧をコンデンサ326を介して昇圧チョッパ320へ供給する。
【0015】
電気装置300においては、昇圧チョッパ320の出力電圧が基準値よりも低くなることを検出することによって、昇圧チョッパ320の故障を検出する。そして、昇圧チョッパ320の故障が検出されると、リレー312は、制御装置からの制御信号によってオンされ、バイパスライン311は、コンデンサ326の両端の電圧を直流電源310に直接供給する。
【0016】
【特許文献1】
特開平2−308935号公報
【0017】
【発明が解決しようとする課題】
しかし、特開平2−308935号公報に開示された電気装置300においては、昇圧チョッパ320が故障した場合、コンデンサ326の両端の電圧が降圧されずに直流電源310に供給されるため、電気装置本体350による発電量が多い場合には、コンデンサ326の両端に印加される電圧は高電圧になり、コンデンサ326の耐電圧性能を向上させる必要があり、高コスト化するという問題があった。
【0018】
そこで、この発明は、かかる問題を解決するためになされたものであり、その目的は、インバータの入力側に挿入されるコンデンサの耐電圧性能を向上させることなく、昇圧コンバータの故障処理が可能な電圧変換装置を提供することである。
【0019】
また、この発明の別の目的は、インバータの入力側に挿入されるコンデンサの耐電圧性能を向上させることなく、昇圧コンバータの故障処理が可能な故障処理方法を提供することである。
【0020】
さらに、この発明の別の目的は、インバータの入力側に挿入されるコンデンサの耐電圧性能を向上させることなく、昇圧コンバータの故障処理をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体を提供することである。
【0021】
【課題を解決するための手段および発明の効果】
この発明によれば、電圧変換装置は、電気負荷と、コンデンサと、降圧コンバータと、制御手段とを備える。電気負荷は、発電機能を有する。コンデンサは、電気負荷の入力側に接続される。降圧コンバータは、コンデンサの電圧を降圧する。制御手段は、降圧コンバータの故障時、電気負荷における発電を禁止し、または電気負荷による発電量を低下させるように電気負荷を制御する。
【0022】
好ましくは、降圧コンバータは、昇圧機能を有する。
好ましくは、電気負荷は、発電機能を有するモータである。そして、制御手段は、降圧コンバータの故障時、モータによる回生発電機能を抑制する。
【0023】
好ましくは、制御手段は、モータによる回生発電を禁止する。
好ましくは、電圧変換装置は、もう1つの電気負荷をさらに備える。もう1つの電気負荷は、モータと異なる。そして、制御手段は、もう1つの電気負荷における消費電力よりも小さい値にモータによる回生発電量を抑制する。
【0024】
また、この発明によれば、電圧変換装置は、第1および第2の電気負荷と、コンデンサと、降圧コンバータと、制御手段とを備える。第1の電気負荷は、発電機能を有する。コンデンサは、第1の電気負荷の入力側に接続される。降圧コンバータは、コンデンサの電圧を降圧する。第2の電気負荷は、第1の電気負荷と異なる。制御手段は、降圧コンバータの故障時、第2の電気負荷における消費電力量が増大するように第2の電気負荷を制御する。
【0025】
好ましくは、第2の電気負荷は、モータである。そして、制御手段は、正のトルクを出力するようにモータを制御する。
【0026】
さらに、この発明によれば、電圧変換装置における故障処理をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体は、発電機能を有する電気負荷と、電気負荷の入力側に接続されるコンデンサと、コンデンサの電圧を降圧する降圧コンバータとを備える電圧変換装置における故障処理をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体であって、降圧コンバータの故障を検出する第1のステップと、第1のステップにおいて降圧コンバータの故障が検出されると、電気負荷における発電を禁止し、または電気負荷による発電量を低下させるように電気負荷を制御する第2のステップとをコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体である。
【0027】
好ましくは、電気負荷は発電機能を有するモータである。そして、プログラムの第2のステップは、モータの回生発電機能を抑制する。
【0028】
好ましくは、プログラムの第2のステップは、モータの回生発電を禁止する。好ましくは、電圧変換装置は、電気負荷と異なるもう1つの電気負荷をさらに備える。そして、プログラムの第2のステップは、もう1つの電気負荷における消費電力よりも小さい値にモータによる回生発電量を抑制する。
【0029】
さらに、この発明によれば、電圧変換装置における故障処理をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体は、発電機能を有する第1の電気負荷と、電気負荷の入力側に接続されるコンデンサと、第1の電気負荷と異なる第2の電気負荷と、コンデンサの電圧を降圧する降圧コンバータとを備える電圧変換装置における故障処理をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体であって、降圧コンバータの故障を検出する第1のステップと、第1のステップにおいて降圧コンバータの故障が検出されると、第2の電気負荷における消費電力量を増大させる第2のステップとをコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体である。
【0030】
好ましくは、第2の電気負荷はモータである。プログラムの第2のステップは、第1のステップにおいて降圧コンバータの故障が検出されると、正のトルクを出力するようにモータを制御する。
【0031】
さらに、この発明によれば、故障処理方法は、発電機能を有する電気負荷と、電気負荷の入力側に接続されるコンデンサと、コンデンサの電圧を降圧する降圧コンバータとを備える電圧変換装置における故障処理方法であって、降圧コンバータの故障を検出する第1のステップと、第1のステップにおいて降圧コンバータの故障が検出されると、電気負荷における発電を禁止し、または電気負荷による発電量を低下させるように電気負荷を制御する第2のステップとを含む。
【0032】
好ましくは、電気負荷は発電機能を有するモータである。そして、第2のステップは、モータの回生発電機能を抑制する。
【0033】
好ましくは、第2のステップは、モータの回生発電を禁止する。
好ましくは、電圧変換装置は、電気負荷と異なるもう1つの電気負荷をさらに備える。そして、故障処理方法の第2のステップは、もう1つの電気負荷における消費電力よりも小さい値にモータによる回生発電量を抑制する。
【0034】
さらに、この発明によれば、故障処理方法は、発電機能を有する第1の電気負荷と、電気負荷の入力側に接続されるコンデンサと、第1の電気負荷と異なる第2の電気負荷と、コンデンサの電圧を降圧する降圧コンバータとを備える電圧変換装置における故障処理方法であって、降圧コンバータの故障を検出する第1のステップと、第1のステップにおいて降圧コンバータの故障が検出されると、第2の電気負荷における消費電力量を増大させる第2のステップとを含む。
【0035】
好ましくは、第2の電気負荷はモータである。故障処理方法の第2のステップは、第1のステップにおいて降圧コンバータの故障が検出されると、正のトルクを出力するようにモータを制御する。
【0036】
この発明においては、昇圧コンバータが故障すると、昇圧コンバータの出力側に接続された電気負荷における発電が禁止され、または電気負荷における発電量が抑制される。また、昇圧コンバータが故障すると、2つの電気負荷のうち、一方の電気負荷における発電量が他方の電気負荷における消費エネルギー以下になるように制御される。
【0037】
したがって、この発明によれば、昇圧コンバータが故障しても、電気負荷(第1および第2の電気負荷を含む)の入力側に接続されたコンデンサに耐電圧以上の電圧が印加されるのを防止できる。
【0038】
【発明の実施の形態】
本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
【0039】
[実施の形態1]
図1を参照して、この発明の実施の形態1による電圧変換装置100は、直流電源Bと、電圧センサー10,13と、システムリレーSR1,SR2と、コンデンサC1,C2と、昇圧コンバータ12と、インバータ14と、電流センサー24と、制御装置30と、交流モータM1とを備える。交流モータM1は、ハイブリッド自動車または電気自動車の駆動輪を駆動するためのトルクを発生するための駆動モータである。あるいは、このモータはエンジンにて駆動される発電機の機能を持つように、そして、エンジンに対して電動機として動作し、たとえば、エンジン始動を行ない得るようなものとしてハイブリッド自動車に組み込まれるようにしてもよい。
【0040】
昇圧コンバータ12は、リアクトルL1と、NPNトランジスタQ1,Q2と、ダイオードD1,D2とを含む。リアクトルL1の一方端は直流電源Bの電源ラインに接続され、他方端はNPNトランジスタQ1とNPNトランジスタQ2との中間点、すなわち、NPNトランジスタQ1のエミッタとNPNトランジスタQ2のコレクタとの間に接続される。NPNトランジスタQ1,Q2は、電源ラインとアースラインとの間に直列に接続される。そして、NPNトランジスタQ1のコレクタは電源ラインに接続され、NPNトランジスタQ2のエミッタはアースラインに接続される。また、各NPNトランジスタQ1,Q2のコレクタ−エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードD1,D2が配置されている。
【0041】
インバータ14は、U相アーム15と、V相アーム16と、W相アーム17とから成る。U相アーム15、V相アーム16、およびW相アーム17は、電源ラインとアースラインとの間に並列に設けられる。
【0042】
U相アーム15は、直列接続されたNPNトランジスタQ3,Q4から成り、V相アーム16は、直列接続されたNPNトランジスタQ5,Q6から成り、W相アーム17は、直列接続されたNPNトランジスタQ7,Q8から成る。また、各NPNトランジスタQ3〜Q8のコレクタ−エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードD3〜D8がそれぞれ接続されている。
【0043】
各相アームの中間点は、交流モータM1の各相コイルの各相端に接続されている。すなわち、交流モータM1は、3相の永久磁石モータであり、U,V,W相の3つのコイルの一端が中点に共通接続されて構成され、U相コイルの他端がNPNトランジスタQ3,Q4の中間点に、V相コイルの他端がNPNトランジスタQ5,Q6の中間点に、W相コイルの他端がNPNトランジスタQ7,Q8の中間点にそれぞれ接続されている。
【0044】
直流電源Bは、ニッケル水素またはリチウムイオン等の二次電池から成る。電圧センサー10は、直流電源Bから出力される直流電圧Vbを検出し、その検出した直流電圧Vbを制御装置30へ出力する。システムリレーSR1,SR2は、制御装置30からの信号SEによりオン/オフされる。より具体的には、システムリレーSR1,SR2は、制御装置30からのH(論理ハイ)レベルの信号SEによりオンされ、制御装置30からのL(論理ロー)レベルの信号SEによりオフされる。
【0045】
コンデンサC1は、直流電源Bから供給された直流電圧Vbを平滑化し、その平滑化した直流電圧を昇圧コンバータ12へ供給する。
【0046】
昇圧コンバータ12は、コンデンサC1から供給された直流電圧を昇圧してインバータ14へ供給する。より具体的には、昇圧コンバータ12は、制御装置30から信号PWMUを受けると、信号PWMUによってNPNトランジスタQ2がオンされた期間に応じて直流電圧を昇圧してインバータ14に供給する。この場合、NPNトランジスタQ1は、信号PWMUによってオフされている。また、昇圧コンバータ12は、制御装置30から信号PWMDを受けると、コンデンサC2を介してインバータ14から供給された直流電圧を降圧して直流電源Bを充電する。
【0047】
コンデンサC2は、昇圧コンバータ12からの直流電圧を平滑化し、その平滑化した直流電圧をインバータ14へ供給する。電圧センサー13は、コンデンサC2の両端の電圧、すなわち、昇圧コンバータ12の出力電圧Vm(インバータ14への入力電圧に相当する。以下同じ。)を検出し、その検出した出力電圧Vmを制御装置30へ出力する。
【0048】
インバータ14は、コンデンサC2から直流電圧が供給されると制御装置30からの信号PWMI1に基づいて直流電圧を交流電圧に変換して正のトルクを出力するように交流モータM1を駆動する。また、インバータ14は、制御装置30からの信号PWMI2に基づいて直流電圧を交流電圧に変換してトルクが零になるように交流モータM1を駆動する。これにより、交流モータM1は、トルク指令値TRによって指定された零または正のトルクを発生するように駆動される。
【0049】
さらに、インバータ14は、電圧変換装置100が搭載されたハイブリッド自動車または電気自動車の回生制動時、交流モータM1が発電した交流電圧を制御装置30からの信号PWMI3に基づいて直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して昇圧コンバータ12へ供給する。なお、ここで言う回生制動とは、ハイブリッド自動車または電気自動車を運転するドライバーによるフットブレーキ操作があった場合の回生発電を伴う制動や、フットブレーキを操作しないものの、走行中にアクセルペダルをオフすることで回生発電をさせながら車両を減速(または加速の中止)させることを含む。
【0050】
電流センサー24は、交流モータM1に流れるモータ電流MCRTを検出し、その検出したモータ電流MCRTを制御装置30へ出力する。
【0051】
制御装置30は、外部に設けられたECU(Electrical Control Unit)から入力されたトルク指令値TRおよびモータ回転数MRN、電圧センサー10からの直流電圧Vb、電圧センサー13からの出力電圧Vmおよび電流センサー24からのモータ電流MCRTに基づいて、後述する方法により昇圧コンバータ12を駆動するための信号PWMUとインバータ14を駆動するための信号PWMI1,2とを生成し、その生成した信号PWMUおよび信号PWMI1,2をそれぞれ昇圧コンバータ12およびインバータ14へ出力する。
【0052】
信号PWMUは、昇圧コンバータ12がコンデンサC1からの直流電圧を出力電圧Vmに変換する場合に昇圧コンバータ12を駆動するための信号である。そして、制御装置30は、昇圧コンバータ12が直流電圧を出力電圧Vmに変換する場合に、出力電圧Vmをフィードバック制御し、出力電圧Vmが指令された電圧指令Vdc_comになるように昇圧コンバータ12を駆動するための信号PWMUを生成する。信号PWMUの生成方法については後述する。
【0053】
また、制御装置30は、ハイブリッド自動車または電気自動車が回生制動モードに入ったことを示す信号RGEを外部ECUから受けると、交流モータM1で発電された交流電圧を直流電圧に変換するための信号PWMI3を生成してインバータ14へ出力する。この場合、インバータ14のNPNトランジスタQ3〜Q8は信号PWMI3によってスイッチング制御される。これにより、インバータ14は、交流モータM1で発電された交流電圧を直流電圧に変換して昇圧コンバータ12へ供給する。
【0054】
さらに、制御装置30は、ハイブリッド自動車または電気自動車が回生制動モードに入ったことを示す信号RGEを外部ECUから受けると、インバータ14から供給された直流電圧を降圧するための信号PWMDを生成し、その生成した信号PWMDを昇圧コンバータ12へ出力する。これにより、交流モータM1が発電した交流電圧は、直流電圧に変換され、降圧されて直流電源Bに供給される。
【0055】
さらに、制御装置30は、NPNトランジスタQ1,Q2をスイッチング制御するときのデューティー比、電圧センサー10からの直流電圧Vbおよび電圧センサー13からの電圧Vmに基づいて昇圧コンバータ12が故障したか否かを判定する。そして、制御装置30は、昇圧コンバータ12が故障していると判定したとき、外部ECUから信号RGEを受けると交流モータM1における回生発電を禁止するようにインバータ14を制御する。より具体的には、制御装置30は、昇圧コンバータ12が故障しているとき、回生制動モードにおいて正のトルクを出力するように交流モータM1を駆動するための信号PWMI1またはトルクが零になるように交流モータM1を駆動するための信号PWMI2を生成してインバータ14へ出力する。
【0056】
さらに、制御装置30は、システムリレーSR1,SR2をオン/オフするための信号SEを生成してシステムリレーSR1,SR2へ出力する。
【0057】
図2は、制御装置30の機能ブロック図である。図2を参照して、制御装置30は、モータトルク制御手段301と、電圧変換制御手段302とを含む。モータトルク制御手段301は、トルク指令値TR、直流電源Bの出力電圧Vb、モータ電流MCRT、モータ回転数MRNおよび昇圧コンバータ12の出力電圧Vmに基づいて、正のトルクを出力するように交流モータM1を駆動する時、後述する方法により昇圧コンバータ12のNPNトランジスタQ1,Q2をオン/オフするための信号PWMUと、インバータ14のNPNトランジスタQ3〜Q8をオン/オフするための信号PWMI1とを生成し、その生成した信号PWMUおよび信号PWMI1をそれぞれ昇圧コンバータ12およびインバータ14へ出力する。
【0058】
また、モータトルク制御手段301は、NPNトランジスタQ1,Q2をスイッチング制御するときのデューティー比および電圧Vb,Vmに基づいて昇圧コンバータ12が故障したか否かを判定する。そして、モータトルク制御手段301は、昇圧コンバータ12が故障していると判定したとき、外部ECUからの信号RGEに応じて信号EMGを生成して電圧変換制御手段302へ出力するとともに、正のトルクを出力するように交流モータM1を駆動するための信号PWMI1またはトルクが零になるように交流モータを駆動するための信号PWMI2を生成してインバータ14へ出力する。
【0059】
電圧変換制御手段302は、回生制動時、ハイブリッド自動車または電気自動車が回生制動モードに入ったことを示す信号RGEを外部ECUから受けると、交流モータM1が発電した交流電圧を直流電圧に変換するための信号PWMI3を生成してインバータ14へ出力する。
【0060】
また、電圧変換制御手段302は、回生制動時、信号RGEを外部ECUから受けると、インバータ14から供給された直流電圧を降圧するための信号PWMDを生成して昇圧コンバータ12へ出力する。このように、昇圧コンバータ12は、直流電圧を降圧するための信号PWMDにより電圧を降下させることもできるので、双方向コンバータの機能を有するものである。
【0061】
さらに、電圧変換制御手段302は、モータトルク制御手段301から信号EMGを受けると、信号PWMI3および信号PWMDの生成を停止する。
【0062】
図3は、モータトルク制御手段301の機能ブロック図である。図3を参照して、モータトルク制御手段301は、モータ制御用相電圧演算部40と、インバータ用PWM信号変換部42と、インバータ入力電圧指令演算部50と、コンバータ用デューティー比演算部52と、コンバータ用PWM信号変換部54と、判定部56とを含む。
【0063】
モータ制御用相電圧演算部40は、昇圧コンバータ12の出力電圧Vm、すなわち、インバータ14への入力電圧を電圧センサー13から受け、交流モータM1の各相に流れるモータ電流MCRTを電流センサー24から受け、トルク指令値TRを外部ECUから受け、信号DTE1,2を判定部56から受ける。そして、モータ制御用相電圧演算部40は、判定部56から信号DTE1を受けたとき、トルク指令値TR、出力電圧Vmおよびモータ電流MCRTに基づいて、交流モータM1の各相のコイルに印加する電圧を計算し、その計算した結果をインバータ用PWM信号変換部42へ供給する。
【0064】
また、モータ制御用相電圧演算部40は、判定部56から信号DTE2を受けると、交流モータM1が零または正のトルクを出力するように、交流モータM1の各相のコイルに印加する電圧を計算し、その計算した結果をインバータ用PWM信号変換部42へ供給する。
【0065】
インバータ用PWM信号変換部42は、モータ制御用相電圧演算部40から受けた計算結果に基づいて、実際にインバータ14の各NPNトランジスタQ3〜Q8をオン/オフする信号PWMI1,2を生成し、その生成した信号PWMI1,2をインバータ14の各NPNトランジスタQ3〜Q8へ出力する。
【0066】
これにより、各NPNトランジスタQ3〜Q8は、スイッチング制御され、交流モータM1が零または正のトルクを出すように交流モータM1の各相に流す電流を制御する。このようにして、モータ駆動電流が制御され、トルク指令値TRに応じたモータトルクが出力される。
【0067】
一方、インバータ入力電圧指令演算部50は、トルク指令値TRおよびモータ回転数MRNに基づいてインバータ入力電圧の最適値(目標値)、すなわち、電圧指令Vdc_comを演算し、その演算した電圧指令Vdc_comをコンバータ用デューティー比演算部52へ出力する。
【0068】
コンバータ用デューティー比演算部52は、電圧センサー10から出力された直流電圧Vb(「バッテリ電圧Vb」とも言う。)に基づいて、電圧センサー13からの電圧Vmを、インバータ入力電圧指令演算部50から出力される最適値に設定するためのデューティー比を演算する。そして、コンバータ用デューティー比演算部52は、演算したデューティー比をコンバータ用PWM信号変換部54および判定部56へ出力する。
【0069】
コンバータ用PWM信号変換部54は、コンバータ用デューティー比演算部52からのデューティー比に基づいて昇圧コンバータ12のNPNトランジスタQ1,Q2をオン/オフするための信号PWMUを生成し、その生成した信号PWMUを昇圧コンバータ12へ出力する。
【0070】
なお、昇圧コンバータ12の下側のNPNトランジスタQ2のオンデューティーを大きくすることによりリアクトルL1における電力蓄積が大きくなるため、より高電圧の出力を得ることができる。一方、上側のNPNトランジスタQ1のオンデューティーを大きくすることにより電源ラインの電圧が下がる。そこで、NPNトランジスタQ1,Q2のデューティー比を制御することで、電源ラインの電圧を直流電源Bの出力電圧以上の任意の電圧に制御可能である。
【0071】
判定部56は、電圧センサー10からのバッテリ電圧Vbと、電圧センサー13からの電圧Vmと、コンバータ用デューティー比演算部52からのデューティー比DRと、外部ECUからの信号RGEとを受ける。そして、判定部56は、バッテリ電圧Vbにデューティー比DRを乗算し、その乗算した乗算値APが電圧センサー13からの電圧Vmに一致するか否かを判定する。乗算値APが電圧Vmに一致するとき、判定部56は、昇圧コンバータ12は正常であると判定し、信号DTE1を生成してモータ制御用相電圧演算部40へ出力する。また、乗算値APが電圧Vmに不一致であるとき、判定部56は、昇圧コンバータ12は故障していると判定し、外部ECUから信号RGEを受けると信号EMGおよび信号DTE2を生成してそれぞれ電圧変換制御手段302およびモータ制御用相電圧演算部40へ出力する。
【0072】
図4は、実施の形態1における昇圧コンバータ12の故障処理の動作を説明するためのフローチャートである。図4を参照して、一連の動作が開始されると、判定部56は、電圧センサー10からのバッテリ電圧Vb、電圧センサー13からの電圧Vmおよびコンバータ用デューティー比演算部52からのデューティー比DRに基づいて、上述した方法により昇圧コンバータ12の故障を検出する(ステップS10)。そして、判定部56は、昇圧コンバータ12が故障したことを検出し、かつ、外部ECUから信号RGEを受けると、信号EMGおよび信号DTE2を生成してそれぞれ電圧変換制御手段302およびモータトルク制御手段301へ出力する。
【0073】
そうすると、電圧変換制御手段302は、信号PWMI3および信号PWMDの生成を停止する。また、モータ制御用相電圧演算部40は、判定部56からの信号DTE2に応じて、正のトルクを出力するように交流モータM1を駆動するための信号PWMI1またはトルクが零になるように交流モータM1を駆動するための信号PWMI2を生成するときの各相コイルに印加する電圧を演算し、その演算結果をインバータ用PWM信号変換部42へ出力する。
【0074】
インバータ用PWM信号変換部42は、モータ制御用相電圧演算部40からの演算結果に基づいて信号PWMI1または信号PWMI2を生成してインバータ14へ出力する。インバータ14は、インバータ用PWM信号変換部42からの信号PWMI1または信号PWMI2に応じて、零または正のトルクを出力するように交流モータM1を駆動し、回生発電が禁止される(ステップS20)。そして、一連の動作が終了する。
【0075】
これにより、昇圧コンバータ12が故障したとき、外部ECUから回生発電を指示する信号RGEが制御装置30へ入力されても、交流モータM1における回生発電が禁止され、コンデンサC2に耐圧以上の直流電圧が印加されるのを防止できる。
【0076】
なお、昇圧コンバータ12が故障したとき、交流モータM1における回生発電を禁止するためにインバータ14を停止することも想定されるが、外部ECUから正のトルクを出力するためのトルク指令値TRが入力されたとき、指令されたトルクを直ちに出力できるようにするために交流モータM1の駆動を継続しながら回生発電を禁止することにしたものである。
【0077】
再び、図1を参照して、電圧変換装置100における動作について説明する。制御装置30は、外部ECUからトルク指令値TRが入力されると、システムリレーSR1,SR2をオンするためのHレベルの信号SEを生成してシステムリレーSR1,SR2へ出力するとともに、交流モータM1がトルク指令値TRを発生するように昇圧コンバータ12およびインバータ14を制御するための信号PWMUおよび信号PWMI1を生成してそれぞれ昇圧コンバータ12およびインバータ14へ出力する。
【0078】
そして、直流電源Bは直流電圧Vbを出力し、システムリレーSR1,SR2は直流電圧VbをコンデンサC1へ供給する。コンデンサC1は、供給された直流電圧Vbを平滑化し、その平滑化した直流電圧を昇圧コンバータ12へ供給する。
【0079】
そうすると、昇圧コンバータ12のNPNトランジスタQ1,Q2は、制御装置30からの信号PWMUに応じてオン/オフされ、直流電圧Vbを出力電圧Vmに変換してインバータ14に供給する。電圧センサー13は、コンデンサC2の両端の電圧である出力電圧Vmを検出し、その検出した出力電圧Vmを制御装置30へ出力する。コンデンサC2は、昇圧コンバータ12の出力電圧Vmを平滑化してインバータ14へ供給する。
【0080】
インバータ14のNPNトランジスタQ3〜Q8は、制御装置30からの信号PWMI1に従ってオン/オフされ、インバータ14は、直流電圧を交流電圧に変換し、トルク指令値TRによって指定されたトルクを交流モータM1が発生するように交流モータM1のU相、V相、W相の各相に所定の交流電流を流す。これにより、交流モータM1は、トルク指令値TRによって指定されたトルクを発生する。
【0081】
電圧変換装置100が搭載されたハイブリッド自動車または電気自動車が回生制動モードになった場合、制御装置30は、回生制動モードになったことを示す信号RGEを外部ECUから受け、信号PWMI3および信号PWMDを生成してそれぞれインバータ14および昇圧コンバータ12へ出力する。
【0082】
交流モータM1は、交流電圧を発電し、その発電した交流電圧をインバータ14へ供給する。そして、インバータ14は、制御装置30からの信号PWMI3に従って、交流電圧を直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して昇圧コンバータ12へ供給する。
【0083】
昇圧コンバータ12は、制御装置30からの信号PWMDに従って直流電圧を降圧して直流電源Bに供給し、直流電源Bを充電する。
【0084】
そして、制御装置30は、上述した方法によって、直流電圧Vb、電圧VmおよびNPNトランジスタQ1,Q2をスイッチング制御するときのデューティー比DRに基づいて昇圧コンバータ12が故障しているか否かを判定し、昇圧コンバータ12が故障しているとき回生制動モードにおいて交流モータM1の回生発電を禁止するようにインバータ14を制御する。
【0085】
このように、電圧変換装置100においては、昇圧コンバータ12が故障した場合、回生制動モードにおける交流モータM1の回生発電が禁止される。これにより、コンデンサC2に耐圧以上の電圧が印加されるのを防止できる。
【0086】
この発明による故障処理方法は、図4に示すフローチャートに従って昇圧コンバータ12の故障を検出し、回生発電を禁止する故障処理方法である。
【0087】
また、モータトルク制御手段301における故障処理の制御は、実際にはCPU(Central Processing Unit)によって行なわれ、CPUは、図4に示すフローチャートの各ステップを備えるプログラムをROM(Read Only Memory)から読出し、その読出したプログラムを実行して図4に示すフローチャートに従って昇圧コンバータ12の故障処理を制御する。したがって、ROMは、図4に示すフローチャートの各ステップを備えるプログラムを記録したコンピュータ(CPU)読取り可能な記録媒体に相当する。
【0088】
なお、交流モータM1は、「電気負荷」を構成する。
また、「回生(発電)を禁止すること」は、零または正のトルクを出力するように交流モータM1を駆動することを意味する。
【0089】
実施の形態1によれば、電圧変換装置は、昇圧コンバータが故障したとき交流モータの回生発電を禁止するように、インバータを制御する制御装置を備えるので、インバータの入力側に設けられたコンデンサに耐圧以上の電圧が印加されるのを防止できる。
【0090】
[実施の形態2]
図5を参照して、実施の形態2による電圧変換装置100Aは、電圧変換装置100の制御装置30を制御装置30Aに代え、整流器18、発電機G1および電流センサー25を追加したものであり、その他は電圧変換装置100と同じである。
【0091】
インバータ14および整流器18は、コンデンサC2の両端のノードN1,N2間に並列に接続される。また、発電機G1は、エンジン55に接続される。
【0092】
整流器18は、U相アーム19、V相アーム20およびW相アーム21から成る。U相アーム19、V相アーム20およびW相アーム21は、電源ラインとアースラインとの間に並列に接続される。U相アーム19は、直列接続されたダイオードD9,D10から成り、V相アーム20は、直列接続されたダイオードD11,D12から成り、W相アーム21は、直列接続されたダイオードD13,D14から成る。ダイオードD9とダイオードD10との中間点は発電機G1のU相コイルの端に接続され、ダイオードD11とダイオードD12との中間点は発電機G1のV相コイルの端に接続され、ダイオードD13とダイオードD14との中間点は発電機G1のW相コイルの端に接続される。
【0093】
整流器18は、発電機G1が発電した交流電圧を整流し、その整流した直流電圧をコンデンサC2を介して昇圧コンバータ12へ供給する。発電機G1は、ロータがエンジン55の回転動力により回転することにより交流電圧を発電し、その発電した交流電圧を整流器18へ供給する。
【0094】
電流センサー25は、発電機G1の各相に流れる発電機電流GCRTを検出し、その検出した発電機電流GCRTを制御装置30Aへ出力する。
【0095】
制御装置30Aは、インバータ14を駆動するための信号である信号PWMI1〜3のうち、信号PWMI1および信号PWMI3を生成してインバータ14へ出力する。信号PWMI1,3の生成方法は、実施の形態1において説明したとおりである。
【0096】
また、制御装置30Aは、上述した方法により昇圧コンバータ12が故障していると判定したとき、外部ECUからのアクセル開度ACCおよびモータ回転数MRNに基づいて交流モータM1における消費エネルギーPmを演算し、電圧センサー13からの電圧Vmおよび電流センサー25からの発電機電流GCRTに基づいて発電機G1における発電量Pgを演算する。そして、制御装置30Aは、発電機G1における発電量Pgが交流モータM1における消費エネルギーPm以下になるようにエンジン55の回転数を設定するための信号RDNを生成してエンジンECU65へ出力する。
【0097】
制御装置30Aは、その他、制御装置30と同じ機能を有する。
エンジン55は、エンジンECU65により制御され、駆動輪を駆動するための所定のトルクを出力するとともに、回転動力を発電機G1に伝達する。エンジンECU65は、エンジン55を制御する。そして、エンジンECU65は、制御装置30Aから信号RDNを受けるとエンジン55の回転数を保持または低下させる。
【0098】
図6を参照して、制御装置30Aは、制御装置30のモータトルク制御手段301をモータトルク制御手段301Aに代えたものであり、その他は、制御装置30と同じである。
【0099】
モータトルク制御手段301Aは、モータトルク制御手段301と同じ方法により信号PWMUおよび信号PWMI1を生成してそれぞれ昇圧コンバータ12およびインバータ14へ出力する。
【0100】
また、モータトルク制御手段301Aは、モータトルク制御手段301と同じ方法により昇圧コンバータ12が故障したか否かを判定する。そして、モータトルク制御手段301Aは、昇圧コンバータ12が故障していると判定したとき、アクセル開度ACCおよびモータ回転数MRNに基づいて交流モータM1の消費エネルギーPmを演算し、発電機電流GCRTおよび電圧Vmに基づいて発電機G1における発電量Pgを演算する。さらに、モータトルク制御手段301Aは、発電量Pgが消費エネルギーPm以下になるようにエンジン55の回転数を設定するための信号RDNを生成してエンジンECU65へ出力する。
【0101】
図7を参照して、モータトルク制御手段301Aは、モータトルク制御手段301の判定部56を判定部56Aに代え、演算部58および制御部60を追加したものであり、その他はモータトルク制御手段301と同じである。
【0102】
判定部56Aは、判定部56と同じ方法により昇圧コンバータ12が故障したか否かを判定し、昇圧コンバータ12が正常であると判定したとき信号DTE1を生成して制御部60へ出力する。また、判定部56Aは、昇圧コンバータ12が故障していると判定したとき信号DTE2を生成して制御部60へ出力する。
【0103】
演算部58は、外部ECUからのアクセル開度ACCおよびモータ回転数MRNに基づいて交流モータM1の消費エネルギーPmを演算する。また、演算部58は、電圧センサー13からの電圧Vmと、電流センサー25からの発電機電流GCRTとに基づいて発電機G1における発電量Pgを演算する。そして、演算部58は、演算した消費エネルギーPmおよび発電量Pgを制御部60へ出力する。
【0104】
制御部60は、判定部56Aから信号DTE1を受けたとき、制御信号を生成しない。制御部60は、判定部56Aから信号DTE2を受けると、発電量Pgが消費エネルギーPm以下になるようにエンジン55の回転数を設定するための信号RDNを生成してエンジンECU65へ出力する。
【0105】
図8は、実施の形態2における昇圧コンバータ12の故障処理の動作を説明するためのフローチャートである。図8を参照して、一連の動作が開始されると、制御装置30Aの判定部56Aは、電圧センサー10からのバッテリ電圧Vb、電圧センサー13からの電圧Vmおよびコンバータ用デューティー比演算部52からのデューティー比DRに基づいて昇圧コンバータ12の故障を検出し、信号DTE2を生成して制御部60へ出力する(ステップS10)。そして、演算部58は、外部ECUからアクセル開度ACCを受け(ステップS11)、外部ECUから車速、すなわち、モータ回転数MRNを受ける(ステップS12)。
【0106】
そうすると、演算部58は、交流モータM1が出力しているトルクTがアクセル開度ACCに比例することを利用して、アクセル開度ACCに基づいてトルクTを演算する。そして、演算部58は、演算したトルクTと、外部ECUからのモータ回転数MRNとに基づいて交流モータM1における消費エネルギーPmを演算する(ステップS13)。
【0107】
また、演算部58は、電圧センサー13からの電圧Vmと、電流センサー25からの発電機電流GCRTとに基づいて発電機G1における発電量Pgを演算する(ステップS14)。そして、演算部58は、演算した消費エネルギーPmおよび発電量Pgを制御部60へ出力する。
【0108】
そうすると、制御部60は、判定部56Aからの信号DTE2に応じて、発電量Pgが消費エネルギーPm以下になるようにエンジン55の回転数を設定するための信号RDNを生成してエンジンECU65へ出力する。すなわち、制御部60は、交流モータM1における消費エネルギーPmを超えないように発電機G1における発電量Pgに上限を設定して発電機G1を制御する。
【0109】
より詳細には、制御部60は、判定部56Aから信号DTE2を受けると、演算部58からの発電量Pgを消費エネルギーPmと比較する。そして、制御部60は、発電量Pgが消費エネルギーPm以下であるとき、エンジン55の現在の回転数を保持するための信号RDN1を生成してエンジンECU65へ出力し、発電量Pgが消費エネルギーPmよりも大きいとき、エンジン55の現在の回転数を低下させるための信号RDN2を生成してエンジンECU65へ出力する。したがって、信号RDNは、信号RDN1,2から成る。
【0110】
エンジンECU65は、制御部60からの信号RDN1に応じて回転数を保持し、または制御部60からの信号RDN2に応じて回転数が低下するようにエンジン55を制御する。そして、エンジン55の回転数は、一定値に保持され、または低下する。これにより、発電機G1における発電量Pgは、消費エネルギーPm以下に低下する(ステップS15)。
【0111】
そして、発電機G1が発電した電力は、全て交流モータM1で消費され、コンデンサC2の両端に耐電圧以上の電圧が印加されるのを防止できる。
【0112】
再び、図5を参照して、電圧変換装置100Aにおける動作について説明する。制御装置30Aが昇圧コンバータ12およびインバータ14を駆動するための信号PWMUおよび信号PWMI1を生成してそれぞれ昇圧コンバータ12およびインバータ14へ出力し、昇圧コンバータ12が直流電圧Vbを出力電圧Vmに昇圧し、インバータ14が交流モータM1を駆動するまでの動作は、実施の形態1において説明したとおりである。
【0113】
そして、発電機G1は、エンジン55の回転動力により発電し、その発電した交流電圧を整流器18へ供給する。整流器18は、交流電圧を整流して直流電圧をコンデンサC2に供給する。また、電流センサー25は、発電機電流GCRTを検出して制御装置30Aへ出力する。
【0114】
制御装置30Aは、上述した方法により昇圧コンバータ12が故障しているか否かを判定し、昇圧コンバータ12が故障しているとき、さらに、交流モータM1の消費エネルギーPmおよび発電機G1の発電量Pgを演算する。そして、制御装置30Aは、発電量Pgが消費エネルギーPm以下になるようにエンジン55の回転数を設定するための信号RDNを生成してエンジンECU65へ出力する。エンジンECU65は、制御装置30Aからの信号RDNに応じて、回転数を保持し、または低下させてエンジン55を回転させる。これにより、発電機G1の発電量Pgが交流モータM1の消費エネルギーPm以下になるように制御される。
【0115】
交流モータM1が回生制動モードになった場合、制御装置30Aは、信号RGEを外部ECUから受け、信号PWMI3および信号PWMDを生成してそれぞれインバータ14および昇圧コンバータ12へ出力する。
【0116】
交流モータM1は、交流電圧を発電し、その発電した交流電圧をインバータ14へ供給する。そして、インバータ14は、制御装置30Aからの信号PWMI3に従って、交流電圧を直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して昇圧コンバータ12へ供給する。
【0117】
昇圧コンバータ12は、制御装置30Aからの信号PWMDに従って直流電圧を降圧して直流電源Bに供給し、直流電源Bを充電する。
【0118】
上述したように、電圧変換装置100Aにおいては、昇圧コンバータ12が故障した場合、発電機G1における発電量Pgが交流モータM1における消費エネルギーPm以下になるように制御される。これにより、コンデンサC2に耐圧以上の電圧が印加されるのを防止できる。
【0119】
この発明による故障処理方法は、図8に示すフローチャートに従って昇圧コンバータ12の故障を検出し、発電機G1における発電量Pgを交流モータM1における消費エネルギーPm以下に制御する故障処理方法である。
【0120】
また、モータトルク制御手段301Aにおける故障処理の制御は、実際にはCPUによって行なわれ、CPUは、図8に示すフローチャートの各ステップを備えるプログラムをROMから読出し、その読出したプログラムを実行して図8に示すフローチャートに従って昇圧コンバータ12の故障処理を制御する。したがって、ROMは、図8に示すフローチャートの各ステップを備えるプログラムを記録したコンピュータ(CPU)読取り可能な記録媒体に相当する。
【0121】
その他は、実施の形態1と同じである。
実施の形態2によれば、電圧変換装置は、昇圧コンバータが故障したとき発電機の発電量が交流モータの消費エネルギー以下になるように制御する制御装置を備えるので、インバータの入力側に設けられたコンデンサに耐圧以上の電圧が印加されるのを防止できる。
【0122】
[実施の形態3]
図9を参照して、実施の形態3による電圧変換装置100Bは、電圧変換装置100Aの制御装置30Aを制御装置30Bに代え、整流器18をインバータ31に代え、発電機G1を交流モータM2に代え、電流センサー25を電流センサー28に代えたものであり、その他は電圧変換装置100Aと同じである。
【0123】
なお、電圧変換装置100Bにおいては、電流センサー24は、モータ電流MCRT1を検出して制御装置30Bへ出力する。また、交流モータM2は、エンジン55に接続される。さらに、コンデンサC2は、昇圧コンバータ12からの直流電圧をノードN1,N2を介して受け、その受けた直流電圧を平滑化してインバータ14のみならずインバータ31にも供給する。さらに、インバータ14は、制御装置30Bからの信号PWMI11に基づいてコンデンサC2からの直流電圧を交流電圧に変換して交流モータM1を駆動し、信号PWM13に基づいて交流モータM1が発電した交流電圧を直流電圧に変換する。
【0124】
インバータ31は、インバータ14と同じ構成から成る。そして、インバータ31は、制御装置30Bからの信号PWMI21に基づいて、コンデンサC2からの直流電圧を交流電圧に変換して交流モータM2を駆動し、信号PWMI23に基づいて交流モータM2が発電した交流電圧を直流電圧に変換する。電流センサー28は、交流モータM2の各相に流れるモータ電流MCRT2を検出し、その検出したモータ電流MCRT2を制御装置30Bへ出力する。
【0125】
制御装置30Bは、直流電源Bから出力される直流電圧Vbを電圧センサー10から受け、モータ電流MCRT1,MCRT2をそれぞれ電流センサー24,28から受け、昇圧コンバータ12の出力電圧Vm(すなわち、インバータ14,31への入力電圧)を電圧センサー13から受け、トルク指令値TR1,TR2、モータ回転数MRN1,MRN2およびアクセル開度ACCを外部ECUから受ける。そして、制御装置30Bは、直流電圧Vb、出力電圧Vm、モータ電流MCRT1、トルク指令値TR1およびモータ回転数MRN1に基づいて、上述した方法によりインバータ14が交流モータM1を駆動するときにインバータ14のNPNトランジスタQ3〜Q8をスイッチング制御するための信号PWMI11を生成し、その生成した信号PWMI11をインバータ14へ出力する。
【0126】
また、制御装置30Bは、直流電圧Vb、出力電圧Vm、モータ電流MCRT2、トルク指令値TR2およびモータ回転数MRN2に基づいて、上述した方法によりインバータ31が交流モータM2を駆動するときにインバータ31のNPNトランジスタQ3〜Q8をスイッチング制御するための信号PWMI21を生成し、その生成した信号PWMI21をインバータ31へ出力する。
【0127】
さらに、制御装置30Bは、インバータ14または31が交流モータM1またはM2を駆動するとき、直流電圧Vb、出力電圧Vm、モータ電流MCRT1(またはMCRT2)、トルク指令値TR1(またはTR2)およびモータ回転数MRN1(またはMRN2)に基づいて、上述した方法により昇圧コンバータ12のNPNトランジスタQ1,Q2をスイッチング制御するための信号PWMUを生成して昇圧コンバータ12へ出力する。
【0128】
さらに、制御装置30Bは、回生制動時に交流モータM1が発電した交流電圧を直流電圧に変換するための信号PWM13、または交流モータM2が発電した交流電圧を直流電圧に変換するための信号PWM23を生成し、その生成した信号PWM13または信号PWM23をそれぞれインバータ14またはインバータ31へ出力する。この場合、制御装置30Bは、インバータ14または31からの直流電圧を降圧して直流電源Bを充電するように昇圧コンバータ12を制御する信号PWMDを生成して昇圧コンバータ12へ出力する。
【0129】
さらに、制御装置30Bは、上述した方法によって昇圧コンバータ12が故障しているか否かを判定し、昇圧コンバータ12が故障しているとき、アクセル開度ACCおよびモータ回転数MRN1に基づいて交流モータM1におけるエネルギーPmを演算する。そして、制御装置30Bは、演算したエネルギーPmに基づいて、交流モータM1が力行モードにあるか回生モードにあるかを判定し、交流モータM1が力行モードにあるとき、演算したエネルギーPmを消費エネルギーPm1であると見做す。交流モータM1が力行モードにあるとき交流モータM2は回生モードにあるので、制御装置30Bは、交流モータM2の発電量Pg2を演算し、実施の形態2で説明した方法により交流モータM2の発電量Pg2が交流モータM1の消費エネルギーPm1以下になるように制御する。
【0130】
また、交流モータM1が回生モードにあるとき、制御装置30Bは、演算したエネルギーPmを発電量Pg1と見做し、信号CUTを生成してエンジンECU65へ出力し、エンジン55の燃料をカットするように制御するとともに、正のトルクを出力するように交流モータM2を制御する。そして、制御装置30Bは、交流モータM2の消費エネルギーPm2を演算し、発電量Pg1と消費エネルギーPm2との和Pg1+Pm2が負であるとき、交流モータM1における発電量Pg1が消費エネルギーPm2以下になるように交流モータM1を制御する。
【0131】
さらに、制御装置30Bは、システムリレーSR1,SR2をオン/オフするための信号SEを生成してシステムリレーSR1,SR2へ出力する。
【0132】
図10を参照して、制御装置30Bは、モータトルク制御手段301Bおよび電圧変換制御手段302Aを含む。モータトルク制御手段301Bは、モータ電流MCRT1、トルク指令値TR1、モータ回転数MRN1、直流電圧Vbおよび電圧Vmに基づいて信号PWMI11を生成し、その生成した信号PWMI11をインバータ14へ出力する。また、モータトルク制御手段301Bは、モータ電流MCRT2、トルク指令値TR2、モータ回転数MRN2、直流電圧Vbおよび電圧Vmに基づいて信号PWMI21を生成し、その生成した信号PWMI21をインバータ31へ出力する。
【0133】
さらに、モータトルク制御手段301Bは、直流電圧Vb、電圧Vm、モータ電流MCRT1(またはMCRT2)、トルク指令値TR1(またはTR2)およびモータ回転数MRN1(またはMRN2)に基づいて、信号PWMUを生成し、その生成した信号PWMUを昇圧コンバータ12へ出力する。
【0134】
さらに、モータトルク制御手段301Bは、上述した方法によって昇圧コンバータ12が故障しているか否かを判定する。そして、モータトルク制御手段301Bは、昇圧コンバータ12が故障していると判定すると、アクセル開度ACCおよびモータ回転数MRN1に基づいて交流モータM1におけるエネルギーPmを演算し、その演算したエネルギーPmに基づいて交流モータM1が力行モードにあるか回生モードにあるかをさらに判定する。より具体的には、制御装置30Bは、演算したエネルギーPmが正のとき交流モータM1は力行モードにあると判定し、エネルギーPmが負であるとき交流モータM1は回生モードにあると判定する。
【0135】
そして、交流モータM1が力行モードにあるとき、モータトルク制御手段301Bは、電圧センサー13からの電圧Vmと電流センサー28からのモータ電流MCRT2とに基づいて交流モータM2における発電量Pg2を演算し、交流モータM2における発電量Pg2が交流モータM1における消費エネルギーPm1以下になるようにエンジン55の回転数を設定するための信号RDNを生成してエンジンECU65へ出力するとともに、信号RGE2を生成して電圧変換制御手段302Aへ出力する。
【0136】
一方、交流モータM1が回生モードにあるとき、モータトルク制御手段301Bは、エンジン55の燃料をカットするための信号CUTを生成してエンジンECU65へ出力し、信号RGE1を生成して電圧変換制御手段302Aへ出力し、交流モータM2が正のトルクを出力するための信号PWMI21を生成してインバータ31へ出力する。そして、モータトルク制御手段301Bは、交流モータM2における消費エネルギーPm2を演算し、交流モータM1における発電量Pg1と交流モータM2における消費エネルギーPm2との和が負であるとき交流モータM1における発電量Pg1が交流モータM2における消費エネルギーPm2以下になるように交流モータM1を制御する。また、モータトルク制御手段301Bは、発電量Pg1と消費エネルギーPm2との和が正であるとき交流モータM1,M2の現在の状態を保持する。
【0137】
電圧変換制御手段302Aは、電圧変換装置100Bが搭載されたハイブリッド自動車または電気自動車が回生制動モードに入ったことを示す信号RGEを外部ECUから受けると、信号PWM13,23および信号PWMDを生成し、その生成した信号PWM13,23をそれぞれインバータ14,31へ出力し、信号PWMDを昇圧コンバータ12へ出力する。
【0138】
また、電圧変換制御手段302Aは、モータトルク制御手段301Bから信号RGE1を受けると、交流モータM1の発電量Pg1が交流モータM2の消費エネルギーPm2以下になるように制御するための信号PWMI13を生成してインバータ14へ出力する。
【0139】
さらに、電圧変換制御手段302Aは、モータトルク制御手段301Bから信号RGE2を受けると、交流モータM2の発電量Pg2が交流モータM1の消費エネルギーPm1以下になるように制御するための信号PWMI23を生成してインバータ31へ出力する。
【0140】
図11を参照して、モータトルク制御手段301Bは、モータトルク制御手段301Aのモータ制御用相電圧演算部40をモータ制御用相電圧演算部40Aに代え、判定部56Aを判定部56Bに代え、演算部58を演算部58Aに代え、制御部60を制御部60Aに代えたものであり、その他は、モータトルク制御手段301Aと同じである。
【0141】
モータ制御用相電圧演算部40Aは、昇圧コンバータ12の出力電圧Vm、モータ電流MCRT1、およびトルク指令値TR1に基づいて交流モータM1の各相に印加する電圧を演算し、出力電圧Vm、モータ電流MCRT2、およびトルク指令値TR2に基づいて交流モータM2の各相に印加する電圧を演算する。そして、モータ制御用相電圧演算部40Aは、演算した交流モータM1またはM2用の電圧をインバータ用PWM信号変換部42へ出力する。
【0142】
また、モータ制御用相電圧演算部40Aは、制御部60Aからトルク指令値TREを受けると、トルク指令値TRE、出力電圧Vmおよびモータ電流MCRT2に基づいて交流モータM2の各相に印加する電圧を計算してインバータ用PWM信号変換部42へ出力する。
【0143】
インバータ用PWM信号変換部42は、モータ制御用相電圧演算部40Aから交流モータM1用の電圧を受けると、その受けた電圧に基づいて信号PWMI11を生成してインバータ14へ出力する。また、インバータ用PWM信号変換部42は、モータ制御用相電圧演算部40Aから交流モータM2用の電圧を受けると、その受けた電圧に基づいて信号PWMI21を生成してインバータ31へ出力する。
【0144】
インバータ入力電圧指令演算部50は、トルク指令値TR1およびモータ回転数MRN1(またはトルク指令値TR2およびモータ回転数MRN2)に基づいて電圧指令Vdc_comを演算し、その演算した電圧指令Vdc_comをコンバータ用デューティー比演算部52へ出力する。
【0145】
判定部56Bは、電圧センサー10からのバッテリ電圧Vb、電圧センサー13からの出力電圧Vmおよびコンバータ用デューティー比演算部52からのデューティー比DRに基づいて、上述した方法により昇圧コンバータ12が故障しているか否かを判定する。そして、判定部56Bは、昇圧コンバータ12が故障していると判定したとき、演算部58AからのエネルギーPmが正か負かを判定する。判定部56Bは、エネルギーPmが正であるとき交流モータM1が力行モードにあると判定し、エネルギーPmを消費エネルギーPm1と見做す。一方、エネルギーPmが負であるとき、判定部56Bは、交流モータM1が回生モードにあると判定し、エネルギーPmを発電量Pg1と見做す。
【0146】
また、判定部56Bは、交流モータM1が力行モードにあるとき、交流モータM2の発電量Pg2を交流モータM1の消費エネルギーPm1以下に制御すべきとの判定結果を示す信号DTE3を生成して制御部60Aへ出力する。
【0147】
さらに、判定部56Bは、交流モータM1が回生モードにあるとき、エンジン55の燃料をカットすべきとの判定結果を示す信号DTE4を生成して制御部60Aへ出力する。
【0148】
さらに、判定部56Bは、信号DTE4を制御部60Aへ出力した後、交流モータM1における発電量Pg1と交流モータM2における消費エネルギーPm2との和Pg1+Pm2を演算部58Aから受け、その受けた和Pg1+Pm2が正か負かを判定する。そして、判定部56Bは、和Pg1+Pm2が負であるとき、交流モータM1の発電量Pg1を交流モータM2の消費エネルギーPm2以下に制御すべきとの判定結果を示す信号DTE5を生成して制御部60Aへ出力する。
【0149】
さらに、判定部56Bは、和Pg1+Pm2が正であるとき、交流モータM1,M2の現在の状態を保持すべきとの判定結果を示す信号DTE6を生成して制御部60Aへ出力する。
【0150】
演算部58Aは、外部ECUからのアクセル開度ACCに基づいて交流モータM1が出力しているトルクTを演算し、その演算したトルクTと外部ECUからのモータ回転数MRN1とに基づいて交流モータM1におけるエネルギーPmを演算して判定部56Bおよび制御部60Aへ出力する。
【0151】
また、演算部58Aは、電圧センサー13からの出力電圧Vmと電流センサー28からのモータ電流MCRT2とに基づいて交流モータM2における発電量Pg2を演算し、その演算した発電量Pg2を制御部60Aへ出力する。
【0152】
さらに、演算部56Bは、制御部60Aからトルク指令値TREを受けると、トルク指令値TREと外部ECUからのモータ回転数MRN2とに基づいて交流モータM2の消費エネルギーPm2を演算し、その演算した消費エネルギーPm2を制御部60Aへ出力する。そして、演算部58Aは、交流モータM1におけるエネルギーPmと消費エネルギーPm2との和を交流モータM1における発電量Pg1と消費エネルギーPm2との和として演算し、その演算した和Pg1+Pm2を判定部58Aへ出力する。
【0153】
制御部60Aは、判定部56Bからの信号DTE3に応じて、演算部58AからのエネルギーPmを交流モータM1の消費エネルギーPm1と見做し、演算部58Aからの発電量Pg2を消費エネルギーPm1と比較する。そして、制御部60Aは、発電量Pg2が消費エネルギーPm1以下になるようにエンジン55の回転数を設定するための信号RDN(RDN1,2から成る。)を生成してエンジンECU65へ出力する。より具体的には、制御部60Aは、発電量Pg2が消費エネルギーPm1以下であるとき、エンジン55の現在の回転数を保持するための信号RDN1を生成してエンジンECU65へ出力し、発電量Pg2が消費エネルギーPm1よりも大きいとき、発電量Pg2が消費エネルギーPm1以下になるようにエンジン55の現在の回転数を低下させるための信号RDN2を生成してエンジンECU65へ出力する。そして、制御部60Aは、さらに、信号RGE2を生成して電圧変換制御手段302Aへ出力する。
【0154】
また、制御部60Aは、判定部56Bからの信号DTE4に応じて信号CUTとトルク指令値TREとを生成し、信号CUTをエンジンECU65へ出力し、トルク指令値TREをモータ制御用相電圧演算部40Aへ出力する。トルク指令値TREは、エンジン55の回転数を維持または上昇させるように交流モータM2が出力すべき正のトルクを指定するための指令値である。
【0155】
さらに、制御部60Aは、判定部56Bからの信号DTE5に応じて、演算部58AからのエネルギーPmを交流モータM1における発電量Pg1と見做し、発電量Pg1を演算部58Aからの消費エネルギーPm2と比較する。そして、制御部60Aは、発電量Pg1が消費エネルギーPm2以下になるように交流モータM1からの回生量を制限するための信号RGE1を生成して電圧変換制御手段302Aへ出力する。
【0156】
さらに、制御部60Aは、判定部56Bから信号DTE6を受けると制御信号を何も生成しない。これにより、交流モータM1,M2は、現在の状態が保持される。
【0157】
図12は、実施の形態3における昇圧コンバータ12の故障処理の動作を説明するためのフローチャートである。図12に示すフローチャートは、図8に示すフローチャートにステップS16〜S19,S21,S22を追加したものであり、その他は、図8に示すフローチャートと同じである。図12に示すフローチャートにおいては、ステップS16は、ステップS13とステップS14との間に挿入され、ステップS14,S15は、ステップS16において「No」と判定されたときに実行される。
【0158】
図12を参照して、一連の動作が開始されると、上述したようにステップS10〜S13が実行される。ステップS13の後、判定部56Bは、演算部58Aから受けたエネルギーPmが正か負かを判定する(ステップS16)。そして、判定部56Bは、エネルギーPmが正であると判定したとき、交流モータM1は力行モードにあると判定する。そして、上述したステップS14,S15が実行され、交流モータM2における発電量Pg2が交流モータM1における消費エネルギーPm1以下になるように制御される。
【0159】
より具体的には、判定部56Bは、信号DTE3を生成して制御部60Aへ出力する。制御部60Aは、判定部56Bからの信号DTE3に応じて演算部58AからのエネルギーPmを交流モータM1における消費エネルギーPm1と見做す。また、演算部58Aは、電圧センサー13からの電圧Vmと電流センサー28からのモータ電流MCRT2とに基づいて交流モータM2における発電量Pg2を演算し(ステップS14)、その演算した発電量Pg2を制御部60Aへ出力する。制御部60Aは、演算部58Aからの発電量Pg2を消費エネルギーPm1と比較し、発電量Pg2が消費エネルギーPm1以下になるようにエンジン55の回転数を設定するための信号RDNを生成してエンジンECU65へ出力し、信号RGE2を生成して電圧変換制御手段302Aへ出力する。そして、エンジンECU65は、制御部60Aからの信号RDNに応じてエンジン55の回転数を発電量Pg2が消費エネルギーPm1以下になる回転数に設定する。これにより、交流モータM2は、消費エネルギーPm1以下の電力を発電する。また、電圧変換制御手段302Aは、制御部60Aからの信号RGE2に応じて信号PWMI23を生成してインバータ31へ出力する。インバータ31のNPNトランジスタQ3〜Q8は、信号PWMI23に応じてオン/オフされ、交流モータM2により発電された交流電圧を直流電圧に変換する(ステップS15)。
【0160】
一方、ステップS16においてエネルギーPmが負であると判定されたとき、判定部56Bは、交流モータM1は回生モードにあると判定し、信号DTE4を生成して制御部60Aへ出力する。そして、制御部60Aは、判定部56Bからの信号DTE4に応じて、信号CUTを生成してエンジンECU65へ出力し、トルク指令値TREを生成してモータ制御用相電圧演算部40Aおよび演算部58Aへ出力する。
【0161】
そうすると、エンジンECU65は、信号CUTに応じてエンジン55の燃料をカットする(ステップS17)。また、モータ制御用相電圧演算部40Aは、制御部60Aからのトルク指令値TREと、電圧センサー13からの出力電圧Vmと、電流センサー28からのモータ電流MCRT2とに基づいて交流モータM2の各相に印加される電圧を演算し、その演算した電圧をインバータ用PWM信号変換部42へ出力する。そして、インバータ用PWM信号変換部42は、モータ制御用相電圧演算部40Aからの計算結果に基づいて、実際にインバータ31の各NPNトランジスタQ3〜Q8をオン/オフする信号PWMI21を生成し、その生成した信号PWMI21をインバータ31の各NPNトランジスタQ3〜Q8へ出力する。インバータ31のNPNトランジスタQ3〜Q8は、信号PWMI21に応じてオン/オフされ、インバータ31は、正のトルクを出力するように交流モータM2を駆動する。これにより、交流モータM2は、正のトルクを出力し、エンジン55を所定回転数以上で回転する(ステップS18)。
【0162】
一方、演算部58Aは、制御部60Aからトルク指令値TREを受けると、トルク指令値TREと外部ECUからのモータ回転数MRN2とに基づいて交流モータM2における消費エネルギーPm2を演算し(ステップS19)、さらに、ステップS13において演算したエネルギーPmと消費エネルギーPm2との和を交流モータM1における発電量Pg1と消費エネルギーPm2との和Pg1+Pm2として演算して判定部56Bへ出力する。
【0163】
そうすると、判定部56Bは、和Pg1+Pm2が正か負かを判定し(ステップS21)、和Pg1+Pm2が負であると判定したとき、信号DTE5を生成して制御部60Aへ出力する。制御部60Aは、判定部56Bからの信号DTE5に応じて、演算部58AからのエネルギーPmを交流モータM1における発電量Pg1と見做し、発電量Pg1を演算部58Aからの消費エネルギーPm2と比較する。そして、制御部60Aは、発電量Pg1が消費エネルギーPm2以下になるように交流モータM1からの回生量を制限するための信号RGE1を生成して電圧変換制御手段302Aへ出力する。
【0164】
電圧変換制御手段302Aは、制御部60Aからの信号RGE1に応じて、発電量Pg1を消費エネルギーPm2以下に制限するための信号PWMI13を生成してインバータ14へ出力する。インバータ14のNPNトランジスタQ3〜Q8は、信号PWMI13に応じてオン/オフされ、交流モータM1における発電量Pg1が交流モータM2における消費エネルギーPm2以下に制限される(ステップS22)。
【0165】
一方、ステップS21において、和Pg1+Pm2が正であると判定されると、判定部56Bは、信号DTE6を制御部60Aへ出力する。そして、制御部60Aは、判定部56Bから信号DTE6を受けると、制御信号を何も生成しない。これにより、交流モータM1は、ステップS13で演算されたエネルギーPmに等しい発電量Pg1を発電し、交流モータM2は、ステップS19で演算された消費エネルギーPm2を消費する。つまり、交流モータM1,M2は、現在の状態に保持される。そして、一連の動作が終了する。
【0166】
図9に示すステップS18においては、交流モータM1が回生モードにある場合、正のトルクを出力するように交流モータM2を制御した。このように、実施の形態3においては、エンジン55に接続されない交流モータM1が回生モードにある場合、エンジン55に接続された交流モータM2を正のトルクを出力するように制御、すなわち、交流モータM2における消費エネルギーを増加させてコンデンサC2に耐電圧以上の電圧が印加されるのを防止することを特徴とする。
【0167】
再び、図9を参照して、電圧変換装置100Bにおける全体動作について説明する。全体動作が開始されると、制御装置30Bは、Hレベルの信号SEを生成してシステムリレーSR1,SR2へ出力し、システムリレーSR1,SR2がオンされる。直流電源Bは直流電圧をシステムリレーSR1,SR2を介して昇圧コンバータ12へ出力する。
【0168】
電圧センサー10は、直流電源Bから出力される直流電圧Vbを検出し、その検出した直流電圧Vbを制御装置30Bへ出力する。また、電圧センサー13は、コンデンサC2の両端の電圧Vmを検出し、その検出した電圧Vmを制御装置30Bへ出力する。さらに、電流センサー24は、交流モータM1に流れるモータ電流MCRT1を検出して制御装置30Bへ出力し、電流センサー28は、交流モータM2に流れるモータ電流MCRT2を検出して制御装置30Bへ出力する。そして、制御装置30Bは、外部ECUからトルク指令値TR1,2、およびモータ回転数MRN1,2を受ける。
【0169】
そうすると、制御装置30Bは、直流電圧Vb、出力電圧Vm、モータ電流MCRT1、トルク指令値TR1およびモータ回転数MRN1に基づいて、上述した方法により信号PWMI11を生成し、その生成した信号PWMI11をインバータ14へ出力する。また、制御装置30Bは、直流電圧Vb、出力電圧Vm、モータ電流MCRT2、トルク指令値TR2およびモータ回転数MRN2に基づいて、上述した方法により信号PWMI21を生成し、その生成した信号PWMI21をインバータ31へ出力する。
【0170】
さらに、制御装置30Bは、インバータ14(または31)が交流モータM1(またはM2)を駆動するとき、直流電圧Vb、出力電圧Vm、モータ電流MCRT1(またはMCRT2)、トルク指令値TR1(またはTR2)、およびモータ回転数MRN1(またはMRN2)に基づいて、昇圧コンバータ12のNPNトランジスタQ1,Q2をスイッチング制御するための信号PWMUを生成し、その生成した信号PWMUを昇圧コンバータ12へ出力する。
【0171】
そうすると、昇圧コンバータ12は、信号PWMUに応じて、直流電源Bからの直流電圧Vbを昇圧し、その昇圧した直流電圧をノードN1,N2を介してコンデンサC2に供給する。そして、インバータ14は、コンデンサC2によって平滑化された直流電圧を制御装置30Bからの信号PWMI11によって交流電圧に変換して交流モータM1を駆動する。また、インバータ31は、コンデンサC2によって平滑化された直流電圧を制御装置30Bからの信号PWMI21によって交流電圧に変換して交流モータM2を駆動する。これによって、交流モータM1は、トルク指令値TR1によって指定されたトルクを発生し、交流モータM2は、トルク指令値TR2によって指定されたトルクを発生する。
【0172】
また、電圧変換装置100Bが搭載されたハイブリッド自動車または電気自動車の回生制動時、制御装置30Bは、外部ECUから信号RGEを受け、その受けた信号RGEに応じて、信号PWM13,23を生成してそれぞれインバータ14,31へ出力し、信号PWMDを生成して昇圧コンバータ12へ出力する。
【0173】
そうすると、インバータ14は、交流モータM1が発電した交流電圧を信号PWM13に応じて直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して昇圧コンバータ12へ供給する。また、インバータ31は、交流モータM2が発電した交流電圧を信号PWM23に応じて直流電圧に変換し、その変換した直流電圧をコンデンサC2を介して昇圧コンバータ12へ供給する。そして、昇圧コンバータ12は、コンデンサC2からの直流電圧をノードN1,N2を介して受け、その受けた直流電圧を信号PWMDによって降圧し、その降圧した直流電圧を直流電源Bに供給する。これにより、交流モータM1またはM2によって発電された電力が直流電源Bに充電される。
【0174】
さらに、制御装置30Bは、上述した方法により昇圧コンバータ12の故障を検出し、交流モータM1におけるエネルギーPmに基づいて交流モータM1が力行モードにあるか回生モードにあるかを判定する。そして、制御装置30Bは、交流モータM1が力行モードにあるとき、交流モータM2の発電量Pg2が交流モータM1の消費エネルギーPm1以下になるように交流モータM2を制御し、交流モータM1が回生モードにあるとき、交流モータM1の発電量Pg1が交流モータM2の消費エネルギーPm2以下になるように交流モータM1を制御する。
【0175】
これによって、昇圧コンバータ12が故障してもコンデンサC2に耐電圧以上の電圧が印加されるのを防止できる。
【0176】
なお、この発明による故障処理方法は、図12に示すフローチャートに従って昇圧コンバータ12の故障を検出し、交流モータM1における発電量Pg1を交流モータM2における消費エネルギーPm2以下に制御し、または交流モータM2における発電量Pg2を交流モータM1における消費エネルギーPm1以下に制御する故障処理方法である。
【0177】
また、モータトルク制御手段301Bにおける故障処理の制御は、実際にはCPUによって行なわれ、CPUは、図12に示すフローチャートの各ステップを備えるプログラムをROMから読出し、その読出したプログラムを実行して図12に示すフローチャートに従って昇圧コンバータ12の故障処理を制御する。したがって、ROMは、図12に示すフローチャートの各ステップを備えるプログラムを記録したコンピュータ(CPU)読取り可能な記録媒体に相当する。
【0178】
さらに、交流モータM1,M2は、「電気負荷(第1および第2の電気負荷を含む)」を構成する。
【0179】
その他は、実施の形態1と同じである。
実施の形態3によれば、電圧変換装置は、昇圧コンバータが故障したとき、2つの交流モータのうち、一方の交流モータの発電量が他方の交流モータの消費エネルギー以下になるように制御する制御装置を備えるので、インバータの入力側に設けられたコンデンサに耐圧以上の電圧が印加されるのを防止できる。
【0180】
なお、上述の実施の形態に記載した内容以外にも、この発明は、種々のハイブリッド自動車または電気自動車に適用できることは言うまでもない。たとえば、コンデンサC2に対して複数のインバータおよびモータを並列に接続し、それぞれのモータ(あるいはモータジェネレータ)を独立に駆動するようにしてもよい。この場合、1つのモータを後輪駆動用に用い、他のモータを前輪駆動用に用いてもよい。また、遊星ギア機構を用いたハイブリッド自動車としては、1つのモータジェネレータを遊星ギア機構のサンギアに接続し、エンジンを遊星ギア機構のキャリアに接続し、もう1つのモータジェネレータをリングギアに接続するものも公知であるが、この発明は、このようなハイブリッド自動車にも適用できる。
【0181】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【図面の簡単な説明】
【図1】実施の形態1による電圧変換装置の概略ブロック図である。
【図2】図1に示す制御装置の機能ブロック図である。
【図3】図2に示すモータトルク制御手段の機能を説明するための機能ブロック図である。
【図4】実施の形態1における昇圧コンバータの故障処理の動作を説明するためのフローチャートである。
【図5】実施の形態2による電圧変換装置の概略ブロック図である。
【図6】図5に示す制御装置の機能ブロック図である。
【図7】図6に示すモータトルク制御手段の機能を説明するための機能ブロック図である。
【図8】実施の形態2における昇圧コンバータの故障処理の動作を説明するためのフローチャートである。
【図9】実施の形態3による電圧変換装置の概略ブロック図である。
【図10】図9に示す制御装置の機能ブロック図である。
【図11】図10に示すモータトルク制御手段の機能を説明するための機能ブロック図である。
【図12】実施の形態3における昇圧コンバータの故障処理の動作を説明するためのフローチャートである。
【図13】従来の電気装置の概略ブロック図である。
【符号の説明】
10,13 電圧センサー、12 昇圧コンバータ、14,31,330 インバータ、15,343 U相アーム、16,344 V相アーム、17,345 W相アーム、24,25,28 電流センサー、30,30A,30B 制御装置、40,40A モータ制御用相電圧演算部、42 インバータ用PWM信号変換部、50 インバータ入力電圧指令演算部、52 コンバータ用デューティー比演算部、54 コンバータ用PWM信号変換部、55 エンジン、56,56B 判定部、58,58A 演算部、60,60A 制御部、65 エンジンECU、100,100A,100B 電圧変換装置、300 電気装置、301,301A,301B モータトルク制御手段、302,302A 電圧変換制御手段、311 バイパスライン、312 リレー、320 昇圧チョッパ、350 電気装置本体、360 界磁コントローラ、363 ベースアンプ、B,310 直流電源、SR1,SR2 システムリレー、C1,C2,326 コンデンサ、L1,321 リアクトル、322,323,331〜336MOSトランジスタ、Q1〜Q8,362 NPNトランジスタ、D1〜D14,324,325,337〜342,361 ダイオード、M1,M2 交流モータ、G1 発電機。

Claims (19)

  1. 発電機能を有する電気負荷と、
    前記電気負荷の入力側に接続されるコンデンサと、
    前記コンデンサの電圧を降圧する降圧コンバータと、
    前記降圧コンバータの故障時、前記電気負荷における発電を禁止し、または前記電気負荷による発電量を低下させるように前記電気負荷を制御する制御手段とを備える電圧変換装置。
  2. 前記降圧コンバータは、昇圧機能を有する、請求項1に記載の電圧変換装置。
  3. 前記電気負荷は、発電機能を有するモータであり、
    前記制御手段は、前記降圧コンバータの故障時、前記モータによる回生発電機能を抑制する、請求項1または請求項2に記載の電圧変換装置。
  4. 前記制御手段は、前記モータによる回生発電を禁止する、請求項3に記載の電圧変換装置。
  5. 前記モータと異なるもう1つの電気負荷をさらに備え、
    前記制御手段は、前記もう1つの電気負荷における消費電力よりも小さい値に前記モータによる回生発電量を抑制する、請求項3に記載の電圧変換装置。
  6. 発電機能を有する第1の電気負荷と、
    前記第1の電気負荷の入力側に接続されるコンデンサと、
    前記コンデンサの電圧を降圧する降圧コンバータと、
    前記第1の電気負荷と異なる第2の電気負荷と、
    前記降圧コンバータの故障時、前記第2の電気負荷における消費電力量が増大するように前記第2の電気負荷を制御する制御手段とを備える電圧変換装置。
  7. 前記第2の電気負荷は、モータであり、
    前記制御手段は、正のトルクを出力するように前記モータを制御する、請求項6に記載の電圧変換装置。
  8. 電圧変換装置における故障処理をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体であって、
    前記電圧変換装置は、
    発電機能を有する電気負荷と、
    前記電気負荷の入力側に接続されるコンデンサと、
    前記コンデンサの電圧を降圧する降圧コンバータとを備え、
    前記プログラムは、
    前記降圧コンバータの故障を検出する第1のステップと、
    前記第1のステップにおいて前記降圧コンバータの故障が検出されると、前記電気負荷における発電を禁止し、または前記電気負荷による発電量を低下させるように前記電気負荷を制御する第2のステップとをコンピュータに実行させる、プログラムを記録したコンピュータ読取り可能な記録媒体。
  9. 前記電気負荷は発電機能を有するモータであり、
    前記第2のステップは、前記モータの回生発電機能を抑制する、請求項8に記載のコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体。
  10. 前記第2のステップは、前記モータの回生発電を禁止する、請求項9に記載のコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体。
  11. 前記電圧変換装置は、前記電気負荷と異なるもう1つの電気負荷をさらに備え、
    前記プログラムの前記第2のステップは、前記もう1つの電気負荷における消費電力よりも小さい値に前記モータによる回生発電量を抑制する、請求項9に記載のコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体。
  12. 電圧変換装置における故障処理をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体であって、
    前記電圧変換装置は、
    発電機能を有する第1の電気負荷と、
    前記電気負荷の入力側に接続されるコンデンサと、
    前記第1の電気負荷と異なる第2の電気負荷と、
    前記コンデンサの電圧を降圧する降圧コンバータとを備え、
    前記プログラムは、
    前記降圧コンバータの故障を検出する第1のステップと、
    前記第1のステップにおいて前記降圧コンバータの故障が検出されると、前記第2の電気負荷における消費電力量を増大させる第2のステップとをコンピュータに実行させる、プログラムを記録したコンピュータ読取り可能な記録媒体。
  13. 前記第2の電気負荷はモータであり、
    前記プログラムの前記第2のステップは、前記第1のステップにおいて前記降圧コンバータの故障が検出されると、正のトルクを出力するように前記モータを制御する、請求項12に記載のコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体。
  14. 電圧変換装置における故障処理方法であって、
    前記電圧変換装置は、
    発電機能を有する電気負荷と、
    前記電気負荷の入力側に接続されるコンデンサと、
    前記コンデンサの電圧を降圧する降圧コンバータとを備え、
    前記故障処理方法は、
    前記降圧コンバータの故障を検出する第1のステップと、
    前記第1のステップにおいて前記降圧コンバータの故障が検出されると、前記電気負荷における発電を禁止し、または前記電気負荷による発電量を低下させるように前記電気負荷を制御する第2のステップとを含む、故障処理方法。
  15. 前記電気負荷は発電機能を有するモータであり、
    前記第2のステップは、前記モータの回生発電機能を抑制する、請求項14に記載の故障処理方法。
  16. 前記第2のステップは、前記モータの回生発電を禁止する、請求項15に記載の故障処理方法。
  17. 前記電圧変換装置は、前記電気負荷と異なるもう1つの電気負荷をさらに備え、
    前記故障処理方法の前記第2のステップは、前記もう1つの電気負荷における消費電力よりも小さい値に前記モータによる回生発電量を抑制する、請求項15に記載の故障処理方法。
  18. 電圧変換装置における故障処理方法であって、
    前記電圧変換装置は、
    発電機能を有する第1の電気負荷と、
    前記電気負荷の入力側に接続されるコンデンサと、
    前記第1の電気負荷と異なる第2の電気負荷と、
    前記コンデンサの電圧を降圧する降圧コンバータとを備え、
    前記故障処理方法は、
    前記降圧コンバータの故障を検出する第1のステップと、
    前記第1のステップにおいて前記降圧コンバータの故障が検出されると、前記第2の電気負荷における消費電力量を増大させる第2のステップとを含む、故障処理方法。
  19. 前記第2の電気負荷はモータであり、
    前記故障処理方法の前記第2のステップは、前記第1のステップにおいて前記降圧コンバータの故障が検出されると、正のトルクを出力するように前記モータを制御する、請求項18に記載の故障処理方法。
JP2003004220A 2003-01-10 2003-01-10 電圧変換装置、故障処理をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体および故障処理方法 Expired - Lifetime JP3928559B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003004220A JP3928559B2 (ja) 2003-01-10 2003-01-10 電圧変換装置、故障処理をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体および故障処理方法
KR1020057012893A KR100747140B1 (ko) 2003-01-10 2003-11-21 전압 변환 장치, 컴퓨터가 고장 처리를 실행하기 위한프로그램이 기록된 컴퓨터로 판독가능한 기록 매체 및 고장처리 방법
PCT/JP2003/014949 WO2004064235A2 (en) 2003-01-10 2003-11-21 Voltage converting device, computer readable recording medium with program recorded thereon for causing computer to execute failure processing, and failure processing method
CN200380108491A CN100591547C (zh) 2003-01-10 2003-11-21 电压转换设备、计算机可读记录介质及故障处理方法
EP03774161A EP1581407B1 (en) 2003-01-10 2003-11-21 Voltage converting device, computer readable recording medium with program recorded thereon for causing computer to execute failure processing, and failure processing method
DE60314292T DE60314292T2 (de) 2003-01-10 2003-11-21 Spannungswandler-gerät, computerlesbares aufnahmemedium mit darauf aufgenommenen programm zur veranlassung des computers fehlerverarbeitung auszuführen, und fehlerverarbeitungsverfahren
US10/537,262 US7400104B2 (en) 2003-01-10 2003-11-21 Voltage converting device, computer readable recording medium with program recorded thereon for causing computer to execute failure processing, and failure processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003004220A JP3928559B2 (ja) 2003-01-10 2003-01-10 電圧変換装置、故障処理をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体および故障処理方法

Publications (2)

Publication Number Publication Date
JP2004222362A true JP2004222362A (ja) 2004-08-05
JP3928559B2 JP3928559B2 (ja) 2007-06-13

Family

ID=32708942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003004220A Expired - Lifetime JP3928559B2 (ja) 2003-01-10 2003-01-10 電圧変換装置、故障処理をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体および故障処理方法

Country Status (7)

Country Link
US (1) US7400104B2 (ja)
EP (1) EP1581407B1 (ja)
JP (1) JP3928559B2 (ja)
KR (1) KR100747140B1 (ja)
CN (1) CN100591547C (ja)
DE (1) DE60314292T2 (ja)
WO (1) WO2004064235A2 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006033966A (ja) * 2004-07-14 2006-02-02 Toyota Motor Corp 電動機駆動装置
JP2006327568A (ja) * 2005-04-25 2006-12-07 Honda Motor Co Ltd 車両用電力システム及び昇圧電源
JP2007116773A (ja) * 2005-10-18 2007-05-10 Toyota Motor Corp 駆動装置およびこれを搭載する車両並びに駆動装置の制御方法
WO2008004418A1 (fr) * 2006-07-07 2008-01-10 Toyota Jidosha Kabushiki Kaisha Dispositif de production de puissance de véhicule et son procédé de commande
WO2009119246A1 (ja) * 2008-03-28 2009-10-01 アイシン・エィ・ダブリュ株式会社 回転電機制御システム及び車両駆動システム
JP2011095915A (ja) * 2009-10-28 2011-05-12 Omron Corp 異常判定装置、パワーコンディショナ、異常判定方法、及びプログラム
JP2014125053A (ja) * 2012-12-26 2014-07-07 Toyota Motor Corp 電動車両および電動車両の制御方法
CN104401335A (zh) * 2014-12-02 2015-03-11 南车资阳机车有限公司 混合动力机车主传动系统
JP2018122697A (ja) * 2017-01-31 2018-08-09 トヨタ自動車株式会社 電源システム
JP2020028138A (ja) * 2018-08-09 2020-02-20 本田技研工業株式会社 回転電機の制御装置
US10647202B2 (en) 2016-12-22 2020-05-12 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle, control device for hybrid vehicle and control method for hybrid vehicle
KR20200142820A (ko) * 2019-06-13 2020-12-23 주식회사 피플웍스 Ess의 능동형 컨택터 제어 장치

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4593973B2 (ja) * 2004-05-26 2010-12-08 トヨタ自動車株式会社 モータ駆動装置
JP4513494B2 (ja) * 2004-10-15 2010-07-28 トヨタ自動車株式会社 電圧変換装置の制御装置及び制御方法
JP4622872B2 (ja) 2006-01-26 2011-02-02 トヨタ自動車株式会社 車両の電源装置、車両および車両の電源装置の制御方法
JP4479919B2 (ja) * 2006-03-29 2010-06-09 株式会社デンソー 電気自動車の制御装置
DE102006018054A1 (de) * 2006-04-19 2007-10-31 Daimlerchrysler Ag Vorrichtung zum Betreiben einer elektrischen Maschine
JP4353222B2 (ja) * 2006-09-05 2009-10-28 日産自動車株式会社 電力供給装置及びその制御方法
DE102006041925A1 (de) * 2006-09-07 2008-03-27 Bayerische Motoren Werke Ag Bordnetz-System eines Fahrzeugs vorbereitet für dessen Abschleppen
JP4275704B2 (ja) * 2007-03-13 2009-06-10 三菱電機株式会社 車両用電力変換装置
JP2008295280A (ja) * 2007-04-27 2008-12-04 Meidensha Corp モータ駆動装置
US7728562B2 (en) * 2007-07-27 2010-06-01 Gm Global Technology Operations, Inc. Voltage link control of a DC-AC boost converter system
KR100993360B1 (ko) * 2008-11-28 2010-11-09 현대자동차주식회사 타이어 구동 최적화 시스템 및 이의 제어방법
JP4748245B2 (ja) * 2009-04-10 2011-08-17 株式会社デンソー 回転機の制御装置
JP5365586B2 (ja) * 2010-06-18 2013-12-11 富士電機株式会社 電力変換装置
DE102010041016A1 (de) * 2010-09-20 2012-03-22 Sb Limotive Company Ltd. Verfahren zum Einstellen einer Gleichspannungszwischenkreisspannung
JP5397410B2 (ja) * 2011-05-16 2014-01-22 株式会社デンソー 車載用電気システム
WO2013001820A1 (ja) * 2011-06-28 2013-01-03 京セラ株式会社 系統連系インバータ装置およびその制御方法
US9834100B2 (en) 2012-11-12 2017-12-05 Volvo Truck Corporation Charge/discharge system
JP5618023B1 (ja) 2013-06-11 2014-11-05 住友電気工業株式会社 インバータ装置
JP6327106B2 (ja) * 2014-01-10 2018-05-23 住友電気工業株式会社 変換装置
US10018972B2 (en) * 2014-06-10 2018-07-10 General Electric Company Economic optimization of power generation system with alternative operating modes
US9630504B2 (en) * 2014-07-24 2017-04-25 Ford Global Technologies, Llc Distance to empty prediction with kinetic energy change compensation
JP6303970B2 (ja) 2014-10-17 2018-04-04 住友電気工業株式会社 変換装置
DE112015000284B4 (de) * 2015-01-19 2022-02-03 Mitsubishi Electric Corporation Rückspeisender Wandler
JP6354623B2 (ja) * 2015-03-05 2018-07-11 住友電気工業株式会社 変換装置
KR101703590B1 (ko) * 2015-03-30 2017-02-07 현대자동차 주식회사 연료전지 차량의 비상운전 제어 시스템 및 그 방법
KR101875996B1 (ko) * 2015-06-17 2018-07-06 현대자동차주식회사 친환경 차량용 양방향 컨버터 제어 장치 및 방법
JP5964488B1 (ja) * 2015-07-31 2016-08-03 ファナック株式会社 保護動作制御部を有するモータ制御装置、ならびに機械学習装置およびその方法
KR20170021614A (ko) * 2015-08-18 2017-02-28 엘지전자 주식회사 청소기 및 그 제어방법
EP3353374A4 (en) * 2015-09-22 2019-05-22 Services Petroliers Schlumberger HOLE GENERATOR SYSTEM
JP6770986B2 (ja) * 2018-03-06 2020-10-21 日本電産モビリティ株式会社 誘導性負荷制御装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107698A (ja) * 1985-10-31 1987-05-19 Mitsubishi Electric Corp インバ−タ装置の停電時停止回路
JPH02308935A (ja) 1989-05-23 1990-12-21 Mazda Motor Corp エンジンの制御装置
US5023537A (en) * 1989-08-23 1991-06-11 Sundstrand Corporation Low frequency feeder fault protection
JP2879486B2 (ja) 1992-03-06 1999-04-05 日野自動車工業株式会社 内燃機関の制動および補助動力装置
US5552681A (en) * 1992-03-06 1996-09-03 Hino Jidosha Kogyo Kabushiki Kaisha Apparatus for storing energy generated during breaking of a vehicle and for providing energy to the internal combustion engine of the vehicle at other times
JP2884942B2 (ja) * 1992-09-17 1999-04-19 株式会社日立製作所 電気車制御装置
US5373195A (en) * 1992-12-23 1994-12-13 General Electric Company Technique for decoupling the energy storage system voltage from the DC link voltage in AC electric drive systems
JPH06261404A (ja) * 1993-03-08 1994-09-16 Nissan Motor Co Ltd 電気自動車用インバータ装置
US6420793B1 (en) * 2000-09-21 2002-07-16 Ford Global Technologies, Inc. Power delivery circuit with boost for energetic starting in a pulsed charge starter/alternator system
JP3531622B2 (ja) 2001-04-18 2004-05-31 トヨタ自動車株式会社 動力出力装置
JP4158363B2 (ja) * 2001-08-01 2008-10-01 アイシン・エィ・ダブリュ株式会社 ハイブリッド型車両駆動制御装置
KR100739391B1 (ko) * 2001-08-02 2007-07-13 도요다 지도샤 가부시끼가이샤 모터 구동 제어 장치
JP3517405B2 (ja) * 2001-08-10 2004-04-12 三菱電機株式会社 車両用回転電機の制御装置および制御法
US6917179B2 (en) * 2001-10-25 2005-07-12 Toyota Jidosha Kabushiki Kaisha Load driver and control method for safely driving DC load and computer-readable recording medium with program recorded thereon for allowing computer to execute the control
JP3632657B2 (ja) * 2001-12-20 2005-03-23 トヨタ自動車株式会社 電圧変換装置
JP2003199207A (ja) * 2001-12-26 2003-07-11 Aisin Aw Co Ltd 電動車両駆動制御装置、電動車両駆動制御方法及びそのプログラム
WO2003061104A1 (fr) * 2002-01-16 2003-07-24 Toyota Jidosha Kabushiki Kaisha Dispositif de regulation d'un convertisseur de tension, procede de conversion de tension, support de stockage, programme, systeme d'entrainement et vehicule equipe du systeme d'entrainement
JP2004201421A (ja) * 2002-12-19 2004-07-15 Aisin Aw Co Ltd 車両駆動制御装置、車両駆動制御方法及びそのプログラム
CN100442620C (zh) * 2005-02-03 2008-12-10 昂宝电子(上海)有限公司 用于开关电源变换器的多阈值过流保护的系统和方法
US7277304B2 (en) * 2005-09-23 2007-10-02 Gm Global Technology Operations, Inc. Multiple inverter system with single controller and related operating method
US7279862B1 (en) * 2006-08-04 2007-10-09 Gm Global Technology Operations, Inc. Fault handling of inverter driven PM motor drives

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006033966A (ja) * 2004-07-14 2006-02-02 Toyota Motor Corp 電動機駆動装置
JP4590960B2 (ja) * 2004-07-14 2010-12-01 トヨタ自動車株式会社 電動機駆動装置
JP4676869B2 (ja) * 2005-04-25 2011-04-27 本田技研工業株式会社 車両用電力システム及び昇圧電源
JP2006327568A (ja) * 2005-04-25 2006-12-07 Honda Motor Co Ltd 車両用電力システム及び昇圧電源
JP2007116773A (ja) * 2005-10-18 2007-05-10 Toyota Motor Corp 駆動装置およびこれを搭載する車両並びに駆動装置の制御方法
JP4692207B2 (ja) * 2005-10-18 2011-06-01 トヨタ自動車株式会社 駆動装置およびこれを搭載する車両並びに駆動装置の制御方法
WO2008004418A1 (fr) * 2006-07-07 2008-01-10 Toyota Jidosha Kabushiki Kaisha Dispositif de production de puissance de véhicule et son procédé de commande
US7999499B2 (en) 2008-03-28 2011-08-16 Aisin Aw Co., Ltd. Rotating electrical machine control system and vehicle drive system
DE112009000043T5 (de) 2008-03-28 2011-04-21 Aisin AW Co., Ltd., Anjo Steuersystem einer drehenden Elektromaschine und Fahrzeugantriebssystem
WO2009119246A1 (ja) * 2008-03-28 2009-10-01 アイシン・エィ・ダブリュ株式会社 回転電機制御システム及び車両駆動システム
CN101873947B (zh) * 2008-03-28 2013-03-20 爱信艾达株式会社 旋转电机控制系统和车辆驱动系统
JP2011095915A (ja) * 2009-10-28 2011-05-12 Omron Corp 異常判定装置、パワーコンディショナ、異常判定方法、及びプログラム
JP2014125053A (ja) * 2012-12-26 2014-07-07 Toyota Motor Corp 電動車両および電動車両の制御方法
CN104401335A (zh) * 2014-12-02 2015-03-11 南车资阳机车有限公司 混合动力机车主传动系统
US10647202B2 (en) 2016-12-22 2020-05-12 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle, control device for hybrid vehicle and control method for hybrid vehicle
US10611360B2 (en) 2017-01-31 2020-04-07 Toyota Jidosha Kabushiki Kaisha Electric power source system
JP2018122697A (ja) * 2017-01-31 2018-08-09 トヨタ自動車株式会社 電源システム
JP2020028138A (ja) * 2018-08-09 2020-02-20 本田技研工業株式会社 回転電機の制御装置
US10804792B2 (en) 2018-08-09 2020-10-13 Honda Motor Co., Ltd. Control device of rotary electric machine
KR20200142820A (ko) * 2019-06-13 2020-12-23 주식회사 피플웍스 Ess의 능동형 컨택터 제어 장치
KR102262098B1 (ko) 2019-06-13 2021-06-09 주식회사 피플웍스 Ess의 능동형 컨택터 제어 장치

Also Published As

Publication number Publication date
KR100747140B1 (ko) 2007-08-07
CN1735523A (zh) 2006-02-15
WO2004064235A3 (en) 2004-09-30
CN100591547C (zh) 2010-02-24
US7400104B2 (en) 2008-07-15
US20060156096A1 (en) 2006-07-13
DE60314292D1 (de) 2007-07-19
EP1581407B1 (en) 2007-06-06
EP1581407A2 (en) 2005-10-05
WO2004064235A2 (en) 2004-07-29
JP3928559B2 (ja) 2007-06-13
KR20050095842A (ko) 2005-10-04
DE60314292T2 (de) 2008-01-31

Similar Documents

Publication Publication Date Title
JP3928559B2 (ja) 電圧変換装置、故障処理をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体および故障処理方法
JP3661689B2 (ja) モータ駆動装置、それを備えるハイブリッド車駆動装置、モータ駆動装置の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
US7898208B2 (en) Control device and corresponding control method for a boost converter in a motor drive system
JP4280573B2 (ja) 負荷駆動装置
JP4623065B2 (ja) 電圧変換装置および電圧変換方法
JP4220851B2 (ja) 電圧変換装置および電圧変換装置における電圧変換の制御をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP4001120B2 (ja) 電圧変換装置
JP4013739B2 (ja) 電圧変換装置、電圧変換方法および電圧変換をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP4120310B2 (ja) 電気負荷駆動装置、電気負荷駆動方法、電気負荷の駆動をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
JP2009278705A (ja) 電動車両の電源システムおよびその制御方法
JP3879528B2 (ja) 電圧変換装置
JP2006254593A (ja) 電圧変換装置
JP2005143259A (ja) 負荷駆動装置およびその動作をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP2004088866A (ja) 電圧変換装置、判定方法、電圧変換における異常原因の判定をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP2004194475A (ja) インバータ装置
JP2004242375A (ja) 電圧変換装置および電圧変換装置の故障判定をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP2004166370A (ja) 電圧変換装置
JP3931734B2 (ja) 電気負荷駆動装置
JP4019953B2 (ja) 電圧変換装置、電圧変換方法、電力供給方法および電力供給の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
JP2004201400A (ja) リアクトル装置
JP2004194476A (ja) 電圧変換装置、異常検出方法、および異常検出をコンピュータに実行させるためのプログラムを記録したコンピュータ読取り可能な記録媒体
JP2004180421A (ja) モータ駆動装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070226

R151 Written notification of patent or utility model registration

Ref document number: 3928559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

EXPY Cancellation because of completion of term