JP2004072994A - 高電圧パルス発生回路 - Google Patents

高電圧パルス発生回路 Download PDF

Info

Publication number
JP2004072994A
JP2004072994A JP2003056308A JP2003056308A JP2004072994A JP 2004072994 A JP2004072994 A JP 2004072994A JP 2003056308 A JP2003056308 A JP 2003056308A JP 2003056308 A JP2003056308 A JP 2003056308A JP 2004072994 A JP2004072994 A JP 2004072994A
Authority
JP
Japan
Prior art keywords
voltage pulse
semiconductor switch
circuit according
inductor
generating circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003056308A
Other languages
English (en)
Other versions
JP3811681B2 (ja
Inventor
Tatsuhiko Hatano
波多野 達彦
Takeshi Sakuma
佐久間 健
Katsuji Iida
飯田 克二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2003056308A priority Critical patent/JP3811681B2/ja
Priority to US10/457,164 priority patent/US7084528B2/en
Priority to EP03253708A priority patent/EP1376868B1/en
Priority to KR1020030037877A priority patent/KR100572163B1/ko
Publication of JP2004072994A publication Critical patent/JP2004072994A/ja
Priority to US11/447,377 priority patent/US7414333B2/en
Application granted granted Critical
Publication of JP3811681B2 publication Critical patent/JP3811681B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/53Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/10Modifications for increasing the maximum permissible switched voltage
    • H03K17/105Modifications for increasing the maximum permissible switched voltage in thyristor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/53Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
    • H03K3/57Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device

Landscapes

  • Generation Of Surge Voltage And Current (AREA)
  • Electronic Switches (AREA)
  • Power Conversion In General (AREA)

Abstract

【課題】複数個の半導体スイッチを用いずに、急峻な立ち上がり時間と極めて狭いパルス幅を有する高電圧パルスを供給できるようにする。
【解決手段】高電圧パルス発生回路10Aは、直流電源22の両端に直列接続されたインダクタ32、第1の半導体スイッチ34及び第2の半導体スイッチ14と、第1の半導体スイッチ34のアノード端子Aに接続されたインダクタ32の他端42にカソード端子が接続され、第1の半導体スイッチ34のゲート端子にアノード端子が接続されたダイオード36とを有する。第2の半導体スイッチ14のターンオンによる第1の半導体スイッチ34の導通に伴うインダクタ32への誘導エネルギの蓄積と、第2の半導体スイッチ14のターンオフによる第1の半導体スイッチ34のターンオフに伴うインダクタ32での高電圧パルスの発生が行われる。
【選択図】図1

Description

【0001】
【発明の属する技術分野】
本発明は、簡単な回路構成にて、低い電圧の直流電源部からインダクタに蓄積させた電磁エネルギを開放することにより、極めて短い立ち上がり時間と極めて狭いパルス幅とを有する高電圧パルスを供給できる高電圧パルス発生回路に関する。
【0002】
【従来の技術】
最近、高電圧パルスの放電によるプラズマにより、脱臭、殺菌、有害ガスの分解等を行う技術が適応されるようになってきたが、このプラズマを発生させるために高電圧の極めて幅の狭いパルスを供給できる高電圧パルス発生回路が必要となる。
【0003】
従来の高電圧パルス発生回路100は、図15に示すように、高電圧パルスの波高値に略等しい直流高電圧を発生する充電装置102と、該充電装置102からの直流高電圧に充電されるキャパシタ104と、大きな耐電圧を得るために直列接続された複数個の静電誘導サイリスタ(以下、SIサイリスタと記す)等の半導体素子106によるスイッチ108と、該スイッチ108の高速スイッチングによってキャパシタ104に充電された直流高電圧が高電圧パルスとして供給される負荷110とを有する(例えば特許文献1参照)。
【0004】
各半導体素子106には、これら半導体素子106をターンオンさせるために、ゲート駆動回路112が接続されている。また、各半導体素子106の非導通時におけるインピーダンスのばらつきによる各半導体素子106の分担電圧のアンバランスを小さくするために、バランサ抵抗114が半導体素子106に並列に接続されている。
【0005】
即ち、高電圧パルス発生回路100には、負荷110に対して直列に、複数個の半導体素子106とバランサ抵抗114とからなる多直列回路116が接続されている。
【0006】
一方、提案例に係る高電圧パルス発生回路118は、図16に示すように、半導体スイッチ126をターンオンすることによって、直流電源120(電源電圧E)から抵抗136(抵抗値R)→各磁性体コア128の1ターンの1次巻線→半導体スイッチ126→直流電源120に、略E/Rの大きさの電流が流れる。
【0007】
このとき、磁性体コア128のトランス作用により各磁性体コア128の1ターンの2次巻線にも同じ大きさの電流が各半導体素子134のゲート−カソードを経由して流れるため、全ての半導体素子134を同時にターンオンすることとなる(例えば非特許文献1参照)。
【0008】
これにより、半導体スイッチ126と直列接続された半導体素子134とが導通するため、インダクタ138には略Eの電圧が印加され、電流Iが直線状に増加して行き、電磁エネルギがインダクタに蓄積される。
【0009】
インダクタ138に流れる電流Iが増加して、所望の電磁エネルギが蓄積された段階で、半導体スイッチ126をターンオフさせると、インダクタの電流の流れる経路が断たれようとするため、インダクタの残留電磁エネルギによる誘起電圧が逆極性に発生する。
【0010】
その結果、ダイオード140が導通し、インダクタ138→各半導体素子134→各磁性体コア128の1次巻線→ダイオード140→インダクタ138という経路でインダクタの電流が引き続き流れるようになる。このとき、各磁性体コアの2次巻線にも同じ大きさの電流が流れる。
【0011】
つまり、各半導体素子134のアノードに流れ込む電流は全てゲートへ流れ出し、カソードには電流が流れなくなる。この電流は半導体素子134に蓄積された電荷が放出されるまで流れる。この状態では電流経路に大きな電圧降下は生じず、時間も極く短時間なため、インダクタの電流の減少は僅かであり、インダクタの電磁エネルギの減少も少ない。
【0012】
この電荷の放出と共に、半導体素子134はオフ状態に移行し、急速に空乏層が形成されていき、これによる少量の電気容量でインダクタ電流が充電されるため、アノード−カソード間の電圧も急峻に立ち上がっていく。このため、インダクタ電圧は急速に増大し、電流は急速に減少する。言い換えれば、インダクタの電磁エネルギが半導体素子134のアノード−カソード間容量に静電エネルギとして移行することになる。この電圧は負荷142にも供給されるので、この移行の過程でインダクタの電磁エネルギ及び半導体素子134のアノード−カソード間容量による静電エネルギが負荷で消費される。
【0013】
高電圧パルス発生回路118では、直流電源120は低電圧でもよく、半導体素子134のターンオン及びターンオフは磁性体コア128の2次電流のみで行われ、ゲート駆動回路が不要になり、装置を簡単化することが可能となる。
【0014】
【特許文献1】
特開2002−44965号公報(図3、図4)
【非特許文献1】
電気学会プラズマ研究会、講演番号PST−02−16号(図1)
【0015】
【発明が解決しようとする課題】
しかしながら、図15に示す従来の高電圧パルス発生回路100は、回路構成が複雑である。また、充電装置102をはじめとして、全ての回路部品に高電圧が印加される。そのため、絶縁距離を大きく取る等、高電圧絶縁を行う必要がある。従って、高電圧パルス発生回路100の大型化とコストの増大化を招くという問題がある。
【0016】
また、万一の誤動作により、直列された半導体素子106の一部のみが、ターンオンした場合には、残りの半導体素子106に定格を超えた過電圧の印加による破壊が生じるおそれがあり、高信頼性の動作が期待できないという問題がある。
【0017】
更に、極めて急峻に立上がるパルス(10kV/μ秒以上)を発生させるために半導体素子106を急速にターンオンさせる必要があることから、半導体素子106へのゲート信号の印加タイミングのズレや各半導体素子106のターンオン時間のズレが、2n秒や3n秒のオーダーでもターンオン時の過渡電圧バランスが大きく崩れるという問題があり、通常のインバータ等(数百V/μ秒程度)のような半導体素子の直列接続の場合に比べて桁違いの困難さがある。
【0018】
一方、図16に示す提案例に係る高電圧パルス発生回路118では、直流電源120は低電圧でよく、万一のターンオン誤動作等の場合において、半導体素子134に対して耐電圧以上の電圧が印加されるということが全くなく、その点での改良はなされているが、半導体素子134のターンオフ時間のばらつきにより、急速に行われるターンオフ時において過渡電圧バランスの崩れを防止するのが非常に難しい。つまり、複数の半導体素子を直列接続に伴う問題は相変わらず存在している。
【0019】
更に、ダイオード140の直列回路に複数の磁性体コアが配されるため、これによる物理的な距離、並びに有限の1次巻線及び2次巻線間の漏れによるインダクタンスの存在により、半導体スイッチ126のターンオフによるインダクタ電流のダイオード140への転流に時間を要し、半導体素子134のターンオフゲート電流の増加率が抑えられてしまい、半導体素子134のカソードに電流が流れている間に空乏層が広がり始め(ターンオフ利得が1以上となり)、急峻なターンオフでは不安定となるおそれがあった。
【0020】
本発明はこのような問題を考慮してなされたものであり、高電圧が印加される半導体スイッチを複数個使用することなく、簡単な回路構成で、急峻な立ち上がり時間と極めて狭いパルス幅を有する高電圧パルスを供給できるようにした高電圧パルス発生回路を提供することを目的としている。
【0021】
【課題を解決するための手段】
本発明に係る高電圧パルス発生回路は、直流電源部の両端にインダクタ、第1の半導体スイッチ(できるだけ電圧定格の高いことが好ましい)及び第2の半導体スイッチ(直流電源電圧程度の低い電圧定格でよい)を直列に接続し、前記第1の半導体スイッチのアノード端子に一端が接続された前記インダクタの他端にカソード、前記第1の半導体スイッチの制御(ゲート)端子にアノードとなるようにダイオードを接続した極めて簡単な回路で構成する。
【0022】
まず、前記第2の半導体スイッチをターンオンすることにより、第1の半導体スイッチも導通し、前記インダクタに直流電源部の電圧が印加され、該インダクタに誘導エネルギが蓄積される。その後、前記第2の半導体スイッチをターンオフさせると、前記第1の半導体スイッチも急速にターンオフするため、前記インダクタに非常に急峻に立ち上がる極めて幅の狭い高電圧パルスが発生することとなる。
【0023】
前記インダクタで高電圧パルスの発生を行い、高電圧パルスの供給を受ける負荷は該インダクタと並列に接続する、あるいは前記第1の半導体スイッチと並列に接続してもよい。
【0024】
また、本発明においては、前記インダクタを、1次巻線と、該1次巻線と磁気的に結合された2次巻線とを有するようにしてもよい。上述した本発明においては、前記インダクタに発生する電圧に略等しい電圧が前記第1の半導体スイッチにも印加されるため、前記インダクタに発生する電圧は前記第1の半導体スイッチの耐電圧以上に設定できない。
【0025】
従って、これ以上の出力電圧が要求される場合には、前記2次巻線を、前記1次巻線の巻数よりも多い巻数とし、前記第1の半導体スイッチの耐電圧よりも高い電圧を有する高電圧パルスを該インダクタの2次巻線に発生するようにする。
【0026】
また、本発明においては、前記インダクタの2次巻線を1次巻線とは直流的に絶縁せずに結合された2次巻線を有するようにしてもよい。この場合、1次巻線に加極となるように2次巻線を巻き足し、1次巻線及び2次巻線の両端の合計された電圧を有する高電圧パルスを取り出すようにしてもよい。
【0027】
そして、上述の1次巻線と2次巻線を使用してインダクタを構成する場合におおては、1次巻線と2次巻線間の磁気結合を密にし、漏れ磁束の発生を抑制するために、インダクタは磁性体コア入りとすることが好ましい。
【0028】
ここで、第1の半導体スイッチとして用いるデバイスについて簡単に説明する。本発明では、第1の半導体スイッチとして、電流制御形のデバイス又は自己消弧形あるいは転流消弧形のデバイスを用いることができる。具体的には、SIサイリスタ、GTO(ゲートターンオフサイリスタ)、SIT(静電誘導トランジスタ)、バイポーラトランジスタ、サイリスタ等を使用することができる。その中でも前記GTOのような電流制御形で、かつ、自己消弧形のサイリスタが適しており、特に、短幅パルスの発生のためにターンオン・ターンオフ速度の早いデバイスが要求される場合には、SIサイリスタが好適である。このSIサイリスタは、ターンオン時の電流上昇率が比較的緩やかな場合には、ゲート−カソード間に若干の正電圧を印加するだけで電界効果によるターンオンが可能となる。
【0029】
また、ターンオフに際しては、ゲートから電流を流し出すことで、デバイス内部に蓄積された電荷を消滅させ、空乏層を形成し、ターンオフを達成する。通常のインバータ等に使用した場合には、ターンオフ利得が1以上、つまり、ゲート電流がアノード電流より小さく、かつ、この電流の増加率が大きくなくても電荷の引き抜きが完了すればターンオフを達成できる。
【0030】
ところが、パルスパワー用途のように急峻なターンオフを行う必要がある場合には、このターンオフゲート電流がアノード電流と同じ(この場合、ターンオフ利得が1)か、それ以上(この場合、ターンオフ利得は1以下)に大きく、かつ、急速に増大させ、デバイス内部に蓄積された電荷の引き抜きが終了する前にカソード電流がゼロとなる理想的で、安定したターンオフを達成する必要がある。
【0031】
しかし、通常、アノード電流は大きく、従って、ターンオフ利得を1ないしそれ以下、かつ急峻(アノード電流に等しくなるまでの時間が十数n秒以下)にターンオフさせるために、通常使用するゲート駆動回路でゲートからこのような電流を流すことは非常に困難であり、また、実用的ではない。
【0032】
本発明に係る高電圧パルス発生回路は、このようなゲート駆動回路を使用せずにターンオフ利得を見かけ上、1以下とすることができる機能を有している。
【0033】
一方、第2の半導体スイッチとしては、自己消弧形あるいは転流消弧形のデバイスを使用することができる。例えば電力用金属酸化半導体電界効果トランジスタが好適である。
【0034】
また、本発明においては、前記第2の半導体スイッチのターンオフ後に前記インダクタでの残存エネルギを前記直流電源部に回生させる回路素子を接続するようにしてもよい。
【0035】
この場合、前記回路素子は、前記第1の半導体スイッチに対して並列に接続され、かつ、前記第1の半導体スイッチの前記アノード端子にカソード端子が接続されたダイオードを有するようにしてもよいし、あるいは、前記直流電源部と前記第2の半導体スイッチとの間にアノード端子が接続され、かつ、前記インダクタの前記一端にカソード端子が接続されたダイオードを有するようにしてもよい。
【0036】
この構成により、前記インダクタでの残存エネルギ、例えばインダクタに負荷が接続されていれば、該負荷の余分なエネルギ(使われないエネルギ)を直流電源部に戻す動作が行われ、電源の高効率化に寄与する。
【0037】
また、本発明においては、前記第2の半導体スイッチのターンオフ後に前記第1の半導体スイッチに流れる電流を転流させる経路を有するようにしてもよい。この経路は、前記第1の半導体スイッチと並列に接続されていてもよい。
【0038】
この場合、前記経路は、前記第1の半導体スイッチのアノード端子とカソード端子との間に接続されたコンデンサを有するようにしてもよいし、あるいは前記第1の半導体スイッチのゲート端子とアノード端子との間に接続されたコンデンサを有するようにしてもよい。
【0039】
これにより、第1の半導体スイッチの動作責務を軽減することができ、第1の半導体スイッチのスイッチング損失の低減や電流遮断耐量の向上を図ることができる。特に、電流遮断耐量の向上は、パルス電源の大容量化につながる。
【0040】
また、第1の半導体スイッチが高速に、もしくは大電流を遮断した場合に、インダクタの励磁インダクタンスには大きなサージ電圧が第1の半導体スイッチに加わることになるが、上述の経路を接続することで、前記サージ電圧を抑えることができ、第1の半導体スイッチの信頼性の向上を図ることができる。
【0041】
しかも、使用する第1の半導体スイッチによっては、ターンオフ時の電圧上昇率(dv/dt)をあまり高くできない場合があるが、上述の経路にコンデンサを接続することで、使用する第1の半導体スイッチの許容可能なレベルの電圧上昇率(dv/dt)まで、前記コンデンサの容量で調整することができる。
【0042】
なお、前記経路にコンデンサを接続した場合においては、コンデンサに残ったエネルギの多くは直流電源部に回生されることから、前記経路にコンデンサを接続することによる効率低下は少ない。
【0043】
また、本発明においては、前記インダクタに負荷が接続されている場合に、前記負荷に並列にコンデンサを接続するようにしてもよい。この場合、インダクタの励磁インダクタンスが第1の半導体スイッチでの電流遮断動作後に負荷に転流しやすくなる。この場合、上述した経路を接続した効果と同様に、第1の半導体スイッチにおけるスイッチング損失の低減や電流遮断耐量の向上を図ることができる。また、負荷に前記励磁インダクタンスに蓄積されたエネルギを吸収することができ、励磁インダクタンスに発生するサージ電圧を抑制することができる。この場合も、コンデンサに残ったエネルギの多くは直流電源部に回生されることから、前記経路にコンデンサを接続することによる効率低下は少ない。
【0044】
また、本発明に係る高電圧パルス発生回路は、直流電源部の両端に直列接続されたインダクタ、第1の半導体スイッチ及び第2の半導体スイッチと、前記第1の半導体スイッチのアノード端子に一端が接続された前記インダクタの他端と前記第1の半導体スイッチのゲート端子との間に接続された抵抗とを有するようにしてもよい。
【0045】
これにより、第2の半導体スイッチをターンオンさせたときに、第1の半導体スイッチをより確実にターンオンさせることができる。特に、第1の半導体スイッチを電流制御形のデバイスで構成した場合、ゲートに電流を流し込まないとターンオンしないが、上述のように抵抗を接続することで、第1の半導体スイッチを確実にターンオンさせることができる。
【0046】
なお、上述の抵抗を用いた構成においては、直流電源部で使用する電源電圧を高電圧とした場合においても低コストで構成することができる。
【0047】
【発明の実施の形態】
以下、本発明に係る高電圧パルス発生回路のいくつかの実施の形態例を図1〜図14を参照しながら説明する。
【0048】
第1の実施の形態に係る高電圧パルス発生回路10Aは、直流電源22と高周波インピーダンスを低くするコンデンサ24とを有する直流電源部12の両端42及び44に、インダクタ32、第1の半導体スイッチ34及び第2の半導体スイッチ14を直列接続し、更に、一端44が第1の半導体スイッチ34のアノード端子Aに接続されたインダクタ32の他端42と、第1の半導体スイッチ34の制御端子(ゲート端子)Gとの間に制御端子G側がアノードとなるようにダイオード36が挿入接続され、高電圧パルスを必要とする負荷20がインダクタ32と並列に接続されて構成されている。
【0049】
図1の例では、第2の半導体スイッチ14が直流電源部12の負極端子48側に設けられているが、正極端子46側に設けても同じ効果をもたらすことはいうまでもない。また、負荷20もインダクタ32と並列ではなく、第1の半導体スイッチ34と並列に接続してもよい。
【0050】
第2の半導体スイッチ14は、自己消弧形あるいは転流消弧形のデバイスを用いることができるが、この第1の実施の形態では、アバランシェ形ダイオード30が逆並列で内蔵された電力用金属酸化半導体電界効果トランジスタ(以下、パワーMOSFETと記す)26を使用し、該パワーMOSFET26と、パワーMOSFET26のゲート端子Gとソース端子Sに接続され、パワーMOSFET26のオン及びオフを制御するゲート駆動回路28とから構成されている。
【0051】
第1の半導体スイッチ34は、電流制御形のデバイス又は自己消弧形あるいは転流消弧形のデバイスを用いることができるが、この第1の実施の形態では、ターンオフ時の電圧上昇率(dv/dt)に対する耐量が極めて大きく、かつ、電圧定格の高いSIサイリスタを用いている。
【0052】
次に、この第1の実施の形態に係る高電圧パルス発生回路10Aが負荷20に対して高電圧パルスVを供給する時間経過について、図1の回路図と図2A〜図2Eの動作波形図とを参照しながら説明する。
【0053】
まず、時点tにおいて、ゲート駆動回路28からパワーMOSFET26のゲート−ソース間に制御信号Vc(図2E参照)が供給され、パワーMOSFET26がオフからオンになる(図2D参照)。
【0054】
このとき、ダイオード36の逆極性の極めて大きなインピーダンスにより、第1の半導体スイッチ34は、ゲートG及びカソードK間に正に印加される電界効果によりターンオンする。第1の半導体スイッチ34のアノード電流の立ち上がりは、インダクタ32により抑制されるため、電界効果だけでも、正常なターンオンが行われる。なお、ダイオード36と並列に抵抗を接続するか、あるいは他の電源から抵抗を介して第1の半導体スイッチ34のゲート端子Gに積極的にゲート電流を流してもよいことはいうまでもない。
【0055】
このようにして、時点tで第2の半導体スイッチ14及び第1の半導体スイッチ34が導通すると、インダクタ32に略直流電源電圧Eが印加され、インダクタ32のインダクタンスをLとすると、図2Aに示すように、インダクタ32の電流Iは勾配(E/L)で時間の経過に伴って直線状に増加する。
【0056】
前記電流Iは、時点tで電流がIp(=ET/L)となり、所望の電磁エネルギ(=LIp/2)が得られると、ゲート駆動回路28からの制御信号供給を停止し、パワーMOSFET26をターンオフさせる(図2E参照)。
【0057】
このとき、前記電流Iの通流経路に存在するインダクタ32以外の図示しない浮遊インダクタンス(主に配線インダクタンス)が大きいと、パワーMOSFET26は瞬時に遮断状態とはならず、若干、電流が流れ続ける時間があり、パワーMOSFET26の出力容量を充電し、ダイオード30のアバランシェ電圧に達すると、該ダイオード30がアバランシェ電圧を持ったまま導通し、大きな損失を発生させる。このため、前記浮遊インダクタンスを極力低減させることにより、ダイオード30がアバランシェまで至らないようにし、ほぼ理想的なターンオフが行われるようにする。
【0058】
パワーMOSFET26がターンオフすることにより、第1の半導体スイッチ34のカソードKからの電流もゼロ、つまり、開放状態となるため、インダクタ32に流れていた電流Iは遮断され、インダクタ32は残留電磁エネルギによって逆誘起電圧を発生させようとするが、ダイオード36が作用し、インダクタ32の電流Iは、第1の半導体スイッチ34のアノードA→第1の半導体スイッチ34のゲートG→ダイオード36のアノード→ダイオード36のカソードの経路に転流する。
【0059】
この場合、ダイオード36が存在する分岐回路の浮遊インダクタンスも極力低くし、転流が短時間で終了するように配慮する必要がある。第1の半導体スイッチ34は、今まで流れていた電流によって電荷が蓄積されており、この電荷がゼロとなるまでは(ストレージ期間)、第1の半導体スイッチ34のアノード−ゲート間は導通状態を維持するため、上記経路の電圧降下は少ない。
【0060】
従って、インダクタ32の逆誘起電圧Vは十分低い値に抑えられるため、時間の短いストレージ期間(図2Aの時間T)内の前記電流Iの減少はほとんどないが、該時間Tは第1の半導体スイッチ34のゲート端子Gから引き抜かれる電荷量により決まる。そのため、できるだけ大きな電流(この第1の実施の形態の場合は、アノード電流以上は流せない)を急峻に流し、見かけ上のターンオフ利得を1以下として時間Tを短縮し、インダクタ32の電流Iの減少を極力抑える必要がある。
【0061】
時点tで第1の半導体スイッチ34の内部に蓄積されていた電荷の引き抜きを完了し、空乏層がカソード側並びにゲート側からアノード側へ広がり、ターンオフ動作を開始する。空乏層は内蔵電位で決まる量により、接合にかかる電圧が増大し、ターンオフが進行するに従い拡大し、最終的にアノード近傍に到達する。
【0062】
従って、空乏層による電気容量は、アクティブな電荷が多数存在する飽和状態(導通状態)から、構造で決まる少量の電気容量まで変化していく。インダクタ32の電磁エネルギによる電流が引き続きアノード→ゲートに流れ、この空乏層の電気容量を充電する。この充電電圧、つまり、第1の半導体スイッチ34のアノード−ゲート間電圧VAGは、初めは大きい電気容量のため、比較的緩やかに上昇するが、空乏層の拡がりとともに急速に上昇していく。
【0063】
時点tで電流Iがゼロになると、図2B及び図2Cに示すように、電圧VAG及びVが最大となり、それぞれVAP及びVLPとなる。この時点で、インダクタ32の電磁エネルギが全て第1の半導体スイッチ34の空乏層の電気容量に移行したことになる。
【0064】
また、この現象は、インダクタ32のインダクタンスと第1の半導体スイッチ34の電気容量とによる共振動作であるため、ほぼインダクタ32の電流Iは余弦波形、第1の半導体スイッチ34のアノード−ゲート間電圧VAGは正弦波形となる。
【0065】
従って、自由に定数を決められるインダクタ32のインダクタンスの値を選ぶことにより、インダクタ32並びに該インダクタ32と並列の負荷に発生するパルスの幅をコントロールできる。つまり、第1の半導体スイッチ34の電気容量の等価容量をCとすると、パルス幅Tpは、
【0066】
【数1】
Figure 2004072994
【0067】
となる。
【0068】
時点tで最大値VAPに充電された第1の半導体スイッチ34の空乏層の電気容量に蓄えられた電荷は、共振現象の継続により、インダクタ32及び蓄積電荷によって逆方向に導通状態のダイオード36の経路で放電が始まり、時点tでダイオード36が逆回復し、非導通になるまで続く。時点tでインダクタ32及び第1の半導体スイッチ34の空乏層の電気容量にエネルギが残存していれば、このエネルギによる電流は、直流電源部12→第2の半導体スイッチ14のダイオード30→第1の半導体スイッチ34のカソードK→アノードAの経路で流れる。
【0069】
直流電源部12に流れる時間Tは回生動作となり、インダクタ32及び第1の半導体スイッチ34の空乏層の電気容量に残存しているエネルギが回生され、運転効率の向上に大きく寄与する。従って、ダイオード36の逆回復時間を極力短縮し、時間Tを短くすることが重要となる。
【0070】
以上の説明では、負荷20を等価的に抵抗負荷のような線形性のもので説明したが、図5に示すように、負荷20が放電ギャップ50のような非線形なものでは、電圧の上昇中に負荷インピーダンスが急減し、その後の波形は図2Bや図2Cとは違ったものとなるが、この場合、図2Bや図2Cの波形よりもパルス幅の狭いパルス状の波形となる。
【0071】
ところで、図1に示す第1の実施の形態に係る高電圧パルス発生回路10Aでは、第1の半導体スイッチ34のアノード−カソード間電圧VAKはインダクタ32の電圧とほぼ同じであるため、この第1の半導体スイッチ34のアノード−カソード間電圧VAKの耐量以上の電圧をインダクタ32においてパルス出力させることはできない。
【0072】
そこで、図3及び図4に示す第2及び第3の実施の形態に係る高電圧パルス発生回路10B及び10Cは、第1の半導体スイッチ34のアノード−カソード間電圧VAKの耐量以上の電圧を出力したい場合に好適となる。
【0073】
まず、この第2の実施の形態に係る高電圧パルス発生回路10Bは、図3に示すように、上述した第1の実施の形態に係る高電圧パルス発生回路10Aとほぼ同様の構成を有するが、インダクタ32が、1次巻線33と、該1次巻線33と磁気的に結合され、かつ、1次巻線33の巻数よりも多い巻数の2次巻線38とを有する点で異なる。
【0074】
一方、第3の実施の形態に係る高電圧パルス発生回路10Bは、図4に示すように、インダクタ32が、1次巻線33と、該1次巻線33に対して直流的に絶縁せずに1次巻線33に加極となるように巻き足した2次巻線38とを有する点で異なる。
【0075】
これら第2及び第3の実施の形態においては、1次巻線33と2次巻線38間の磁気結合を密にし、漏れ磁束の発生を抑制するために、磁性体コアに巻きつけることが好ましい。
【0076】
そして、1次巻線33の巻数をN1、2次巻線の巻数をN2とすれば、この第2の実施の形態に係る高電圧パルス発生回路10Bの場合には、VAG×N2/ N1の電圧を負荷20に出力することができる。一方、第3の実施の形態に係る高電圧パルス発生回路10Cの場合には、VAG×(N1+N2)/ N1の電圧を負荷20に出力することができる。
【0077】
なお、第2の実施の形態では、2次巻線38の巻数を1次巻線33の巻数よりも多くして加極性としたが、その他、2次巻線38の巻数を1次巻線33の巻数よりも少なくして減極性としてもよい。
【0078】
また、第3の実施の形態では、2次巻線38を、該1次巻線33に対して直流的に絶縁せずに1次巻線33に加極となるように巻き足して構成したが、その他、2次巻線38を、1次巻線33に減極となるように巻くようにして構成してもよい。
【0079】
これは、2次巻線38を加極の場合とは逆向きに例えば磁性体コアに巻き付けることで実現できる。これにより、出力端の正極、負極の向きが逆になる。そのため、加極時の出力電圧=VAG×(N1+N2)/N1に対して、出力電圧=VAG×(N1−N2)/N1となり減極性となる。この減極性の構成は、第1の半導体スイッチ34として、化合物半導体等を用いた超高耐圧を有する半導体スイッチを適用した場合などに有効である。
【0080】
次に、第4の実施の形態に係る高電圧パルス発生回路10Dについて図5〜図7を参照しながら説明する。なお、この第4の実施の形態に係る高電圧パルス発生回路10Dの説明では、負荷20として放電ギャップ50を使用した場合について説明する。
【0081】
この第4の実施の形態に係る高電圧パルス発生回路10Dは、上述した第2の実施の形態に係る高電圧パルス発生回路10B(図3参照)とほぼ同様の構成を有するが、図5に示すように、第1の半導体スイッチ34に対して並列に接続されたダイオード52を有する点で異なる。このダイオード52は、アノード端子及びカソード端子が、第1の半導体スイッチ34のカソード端子及びアノード端子に接続され、第1の半導体スイッチ34に対して逆並列接続されている。
【0082】
図5の例では、インダクタ32の他端42と第1の半導体スイッチ34のゲート電極G間に接続されたダイオード36として、2つのダイオード36a及び36bを並列に接続させたものを使用しているが、その作用、機能は、第1の実施の形態に係る高電圧パルス発生回路10Aにおけるダイオード36とほぼ同じである。
【0083】
そして、この第4の実施の形態に係る高電圧パルス発生回路10Dにおいても、パワーMOSFET26をオンすることで、図5の経路54に示すように、インダクタ32の励磁インダクタンスに電流が流れ、エネルギが蓄積される。その後、パワーMOSFET26をオフすることで、図5の経路56に示すように、第1の半導体スイッチ34のアノード端子Aからカソード端子Kに流れていた電流がアノード端子Aからゲート端子Gに転流し、第1の半導体スイッチ34の内部に残留する電荷がゲートから引き抜かれ、第1の半導体スイッチ34がターンオフすることとなる。
【0084】
第1の半導体スイッチ34がターンオフすることによって、図6に示すように、インダクタ32の励磁インダクタンスに流れていた電流がインダクタ32を介して負荷20に転流する。このとき、インダクタ32に大きなパルス電圧が発生し、負荷20の放電ギャップ50にて放電が発生することになる。
【0085】
このとき、第1の半導体スイッチ34を含む一般の半導体スイッチは、寄生する容量成分が存在するため、転流する電流はすべて負荷20に流れるわけではなく、第1の半導体スイッチ34の寄生容量の充電のために電流が流れる。
【0086】
負荷20が、放電ギャップ50のように容量性の負荷である場合においては、放電によってエネルギが消費されるが、すべてが消費されなかったり、放電が起こらずにエネルギが多く残留することがある。
【0087】
この場合、残った電荷がインダクタ32の励磁インダクタンスを介して放出され(インダクタ32の励磁インダクタンスに電流が流れ)、再度インダクタ32の励磁インダクタンスにエネルギが移動する。
【0088】
負荷20にたまった電荷がなくなり、エネルギが励磁インダクタンスに移動し終わると、図7に示すように、2つの経路(第1及び第2の経路60及び62)で電流が流れることとなる。
【0089】
第1の経路60は、もう一度負荷20へ向かう経路であり、第2の経路62は、直流電源部12、パワーMOSFET26の逆並列ダイオード30、第1の半導体スイッチ34に逆並列に接続されたダイオード52を結ぶ経路である。
【0090】
但し、このときインダクタ32で発生する電圧は、直流電源部12と2つのダイオード30及び52で生ずる電圧でクランプされ、電流の多くは第2の経路62に流れる。この第2の経路62を通じての電流の流れは、図7では、直流電源部12のコンデンサ24にエネルギを回生する動作になる。
【0091】
つまり、負荷の余分なエネルギ(使われないエネルギ)を直流電源部12に戻すという動作ということになり、直流電源部12の高効率化に寄与する。
【0092】
また、実際上、前記ダイオード52がないと、再度、インダクタ32の励磁インダクタンスと負荷20で共振し、結果的に第1の半導体スイッチ34に耐圧を超える逆電圧が印加されるおそれがあり、また、このとき重畳するパルス状のノイズで第2の半導体スイッチ14が誤動作するなどの悪影響がある。従って、励磁インダクタンスのエネルギの処理のためにも、前記ダイオード52を接続することが望ましい。
【0093】
上述の第4の実施の形態に係る高電圧パルス発生回路10Dでは、第1の半導体スイッチ34に対して逆並列にダイオード52を接続した場合を示したが、その他、図8に示す第5の実施の形態に係る高電圧パルス発生回路10Eのように、直流電源部12の負極端子48にアノード端子が接続され、かつ、インダクタ32の一端にカソード端子が接続されたダイオード64を有するようにしてもよい。
【0094】
この場合、直流電源部12及びダイオード64を結ぶ経路66で電流が流れ、直流電源部12にエネルギが回生されることになる。特に、この例では、上述の例(図5参照)と異なり、回生する電流の経路に接続されたダイオードが1つ(ダイオード64)であるため、回生時の損失が少ないことと、機構的に前記回生する電流の経路の配線を短くすることができるため、回生効率がよくなるという利点がある。
【0095】
次に、第6及び第7の実施の形態に係る高電圧パルス発生回路10F及び10Gを図9〜図12Bを参照しながら説明する。
【0096】
まず、第6の実施の形態に係る高電圧パルス発生回路10Fは、上述した第4の実施の形態に係る高電圧パルス発生回路10D(図5参照)とほぼ同様の構成を有するが、図9に示すように、第1の半導体スイッチ34のアノード端子とカソード端子との間に、該第1の半導体スイッチ34と並列にコンデンサ68が接続されている点で異なる。
【0097】
一方、第7の実施の形態に係る高電圧パルス発生回路10Gは、図10に示すように、第1の半導体スイッチ34のアノード端子とゲート端子との間に、該第1の半導体スイッチ34と並列にコンデンサ70が接続されている点で異なる。
【0098】
そして、第6及び第7の実施の形態に係る高電圧パルス発生回路10F及び10Gにおいても、パワーMOSFET26をオフすることで、第1の半導体スイッチ34のアノード端子からカソード端子に流れていた電流がアノード端子からゲート端子に転流し、第1の半導体スイッチ34の内部に残留する電荷がゲートから引き抜かれ、第1の半導体スイッチ34がターンオフに移行することになるが、このとき、図11に示すように、第1の半導体スイッチ34に流れていた電流Iが、コンデンサ68が接続された経路72(図9に示す第6の実施の形態の場合)又はコンデンサ70が接続された経路74(図10に示す第7の実施の形態の場合)に転流し、これにより、第1の半導体スイッチ34の動作責務が軽減されることになる。
【0099】
前記コンデンサ68又は70を接続しない場合、図12Aに示すように、第1の半導体スイッチ34に流れているアノード電流Iは、パワーMOSFET26のオフに伴って低減していくが、第1の半導体スイッチ34のアノード−カソード間電圧VAKは、破線Aに示すように、パワーMOSFET26のオフとほぼ同時に急峻に立ち上がることとなる。この立ち上がり時にオーバーシュート(パルスひずみ)が生じ、図12Bの破線Cに示すように、第1の半導体スイッチ34のスイッチング損失(電圧×電流)は大きくなる。一方、コンデンサ68又は70を接続した場合には、図12Aの実線Bに示すように、アノード−カソード間電圧VAKの立ち上がりが緩やかになることから、図12Bの実線Dに示すように、第1の半導体スイッチ34のスイッチング損失は大幅に低減される。
【0100】
即ち、前記コンデンサ68又は70を接続することで、第1の半導体スイッチ34のスイッチング損失の低減や電流遮断耐量の向上を図ることができる。
【0101】
特に、電流遮断耐量の向上は、パルス電源の大容量化につながる。つまり、インダクタ32の励磁インダクタンスに蓄積されるエネルギは、1/2×(励磁インダクタンス)×(第1の半導体スイッチ34の遮断電流)で決まることから、第1の半導体スイッチ34の遮断電流が電源の出力容量に大きく影響するからである。
【0102】
また、第1の半導体スイッチ34が高速に、もしくは大電流を遮断した場合に、インダクタ32の励磁インダクタンスには大きなサージ電圧(パルス出力)が第1の半導体スイッチ34に加わる。当然、電圧定格以上の電圧が第1の半導体スイッチ34に印加されると該第1の半導体スイッチ34に悪影響を与えるおそれがあるが、上述したようにコンデンサ68又は70を接続することで、前記サージ電圧を抑えることができ、第1の半導体スイッチ34の信頼性の向上を図ることができる。
【0103】
また、使用する第1の半導体スイッチ34によっては、ターンオフ時の電圧上昇率(dv/dt)をあまり高くできない場合がある。上述のように第1の半導体スイッチ34に対して並列にコンデンサ68又は70を接続することで、使用する第1の半導体スイッチ34の許容可能なレベルの電圧上昇率(dv/dt)、例えば1kV/μs以上まで、前記コンデンサ68又は70の容量で調整することができ、設計の自由度を広げることができる。
【0104】
なお、前記コンデンサ68又は70を接続した場合においては、コンデンサ68又は70に残ったエネルギの多くは直流電源部12に回生されることから、前記コンデンサ68又は70を接続することによる効率低下は少ない。
【0105】
次に、第8の実施の形態に係る高電圧パルス発生回路10Hについて図13を参照しながら説明する。
【0106】
この第8の実施の形態に係る高電圧パルス発生回路10Hは、上述した第4の実施の形態に係る高電圧パルス発生回路10D(図5参照)とほぼ同様の構成を有するが、図13に示すように、負荷20と並列にコンデンサ76が接続されている点で異なる。
【0107】
この場合も、第1の半導体スイッチ34がターンオフすることによって、インダクタ32の励磁インダクタンスに流れていた電流がインダクタ32を介して負荷20に転流することになるが、負荷20に並列にコンデンサ76を接続することで、励磁インダクタンスに流れている電流が、第1の半導体スイッチ34での電流遮断動作後において、負荷20に転流しやすくなる。その結果、上述した第6及び第7の実施の形態に係る高電圧パルス発生回路10F及び10Gと同様に、第1の半導体スイッチ34の小型化やスイッチング損失の低減や電流遮断耐量の向上を図ることができ、パルス電源の大容量化にもつながる。
【0108】
また、第1の半導体スイッチ34が高速に、もしくは大電流を遮断した場合に、インダクタ32の励磁インダクタンスには大きなサージ電圧(パルス出力)が第1の半導体スイッチ34に加わる。しかし、負荷20に並列にコンデンサ76を接続することで、インダクタ32の励磁インダクタンスに蓄積されたエネルギを吸収でき、励磁インダクタンスに発生するサージ電圧を抑制することができる。
【0109】
また、この場合も、コンデンサ76に残ったエネルギの多くは、直流電源部12に回生されることから、前記コンデンサ76を接続することによる効率低下は少ない。
【0110】
但し、負荷20に並列にコンデンサ76を接続することは、パルス出力のパルス幅、パルス電圧の立ち上がりに大きく影響するため、仕様に合ったコンデンサ76のセッティングが望ましい。
【0111】
次に、第9の実施の形態に係る高電圧パルス発生回路10Iについて図14を参照しながら説明する。
【0112】
この第9の実施の形態に係る高電圧パルス発生回路10Iは、上述した第1の実施の形態に係る高電圧パルス発生回路10A(図1参照)とほぼ同様の構成を有するが、第1の半導体スイッチ34のゲート端子Gとインダクタ32の他端42との間に接続された素子が、ダイオード36の代わりに抵抗78とした点で異なる。
【0113】
この場合、パワーMOSFET26をオンさせたときに、第1の半導体スイッチ34をより確実にターンオンさせることができる。特に、第1の半導体スイッチ34を電流制御形のデバイスで構成した場合、ゲートに電流を流し込まないとターンオンしないが、上述のように抵抗78を接続することで、第1の半導体スイッチ34を確実にターンオンさせることができる。
【0114】
なお、上述の抵抗78を用いた構成においては、直流電源部12で使用する電源電圧を高電圧とした場合においても低コストで構成することができる。つまり、第1の半導体スイッチ34のゲート端子Gとインダクタ32の他端42との間にダイオード36を接続した場合は、直流電源部12で使用する電源電圧として高電圧を使用したいとき、ダイオード36の耐圧の問題上、複数個のダイオードを直列に接続するか、耐圧が高いダイオード(一般に高価である)が必要であるが、抵抗78であれば、比較的低コストで済む。
【0115】
このように、第1〜第9の実施の形態に係る高電圧パルス発生回路10A〜10Iは、従来の高電圧パルス発生回路100並びに提案例に係る高電圧パルス発生回路118と比較して、高電圧が印加される半導体スイッチとして1個の第1の半導体スイッチ34のみでよく、しかも、該第1の半導体スイッチ34のゲート駆動には通常使用される電子回路によるゲート駆動回路を必要としないことが大きな利点である。
【0116】
また、第1〜第9の実施の形態に係る高電圧パルス発生回路10A〜10Iは、高電圧が発生又は供給される部分は、第1の半導体スイッチ34のアノード端子Aとインダクタ32の一端44のみであり、他の回路要素は全て低電圧仕様の回路部品でよい。
【0117】
例えば、自動車の排ガスのパルス放電によるプラズマ分解のような場合には、自動車のバッテリーである42V程度の直流電源からでも動作可能であり、部品の電圧定格も数10Vあれば十分である。特に、図15に示す従来の高電圧パルス発生回路100では直流電源としてキャパシタ充電装置102を必要とし、通常この装置は非常に高価である。
【0118】
従って、第1〜第9の実施の形態に係る高電圧パルス発生回路10A〜10Iは、有害ガスの分解のためのプラズマ発生装置等、極めて短時間で急峻に立ち上がり、高い電圧上昇率(dv/dt)を有するパルスを必要とするものに好適に利用できる。
【0119】
なお、本発明に係る高電圧パルス発生回路は、上述の実施の形態に限らず、この発明の要旨を逸脱することなく、種々の構成を採り得ることは勿論である。
【0120】
【発明の効果】
以上説明したように、本発明に係る高電圧パルス発生回路によれば、高電圧が印加される半導体スイッチを複数個使用することなく、簡単な回路構成で、急峻な立ち上がり時間と極めて狭いパルス幅を有する高電圧パルスを供給することが可能となる。
【図面の簡単な説明】
【図1】第1の実施の形態に係る高電圧パルス発生回路を示す図である。
【図2】図2A〜図2Eは第1の実施の形態に係る高電圧パルス発生回路の各部の電圧および電流の動作波形を説明する図である。
【図3】第2の実施の形態に係る高電圧パルス発生回路を示す図である。
【図4】第3の実施の形態に係る高電圧パルス発生回路を示す図である。
【図5】第4の実施の形態に係る高電圧パルス発生回路を示す図である。
【図6】インダクタの励磁インダクタンスに流れていた電流がインダクタを介して負荷に転流する状態を示す説明図である。
【図7】エネルギの回生動作を示す説明図である。
【図8】第5の実施の形態に係る高電圧パルス発生回路を示す図である。
【図9】第6の実施の形態に係る高電圧パルス発生回路を示す図である。
【図10】第7の実施の形態に係る高電圧パルス発生回路を示す図である。
【図11】第1の半導体スイッチに流れていた電流がコンデンサに転流する状態を示す説明図である。
【図12】図12Aはコンデンサを接続しない場合とコンデンサを接続した場合における第1の半導体スイッチのアノード−カソード間電圧の変化の違いを示す特性図であり、図12Bはスイッチング損失の違いを示す特性図である。
【図13】第8の実施の形態に係る高電圧パルス発生回路を示す図である。
【図14】第9の実施の形態に係る高電圧パルス発生回路を示す図である。
【図15】従来技術に係る高電圧パルス発生回路を示す図である。
【図16】提案例に係る高電圧パルス発生回路を示す図である。
【符号の説明】
10A〜10I…高電圧パルス発生回路   12…直流電源部
14…第2の半導体スイッチ        20…負荷
22…直流電源              32…インダクタ
33…1次巻線              34…第1の半導体スイッチ
36…ダイオード             38…2次巻線
50…放電ギャップ            52、64…ダイオード
68、70、76…コンデンサ       78…抵抗

Claims (21)

  1. 直流電源部の両端に直列接続されたインダクタ、第1の半導体スイッチ及び第2の半導体スイッチと、
    前記第1の半導体スイッチのアノード端子に一端が接続された前記インダクタの他端にカソード端子が接続され、前記第1の半導体スイッチのゲート端子にアノード端子が接続されたダイオードとを有することを特徴とする高電圧パルス発生回路。
  2. 直流電源部の両端に直列接続されたインダクタ、第1の半導体スイッチ及び第2の半導体スイッチと、
    前記第1の半導体スイッチのアノード端子に一端が接続された前記インダクタの他端と前記第1の半導体スイッチのゲート端子との間に接続された抵抗とを有することを特徴とする高電圧パルス発生回路。
  3. 請求項1又は2記載の高電圧パルス発生回路において、
    前記第2の半導体スイッチのターンオンによる前記第1の半導体スイッチの導通に伴う前記インダクタへの誘導エネルギの蓄積と、
    前記第2の半導体スイッチのターンオフによる前記第1の半導体スイッチのターンオフに伴う前記インダクタでの高電圧パルスの発生が行われることを特徴とする高電圧パルス発生回路。
  4. 請求項1〜3のいずれか1項に記載の高電圧パルス発生回路において、
    前記インダクタは、
    1次巻線と、
    前記1次巻線と磁気的に結合された2次巻線とを有することを特徴とする高電圧パルス発生回路。
  5. 請求項4記載の高電圧パルス発生回路において、
    前記2次巻線は、前記1次巻線の巻数よりも多い巻数であることを特徴とする高電圧パルス発生回路。
  6. 請求項1〜3のいずれか1項に記載の高電圧パルス発生回路において、
    前記インダクタは、
    1次巻線と、
    前記1次巻線とは直流的に絶縁せずに結合された2次巻線とを有することを特徴とする高電圧パルス発生回路。
  7. 請求項6記載の高電圧パルス発生回路において、
    前記2次巻線は、前記1次巻線とは直流的に絶縁せずに前記1次巻線に加極となるように巻き足されて構成されていることを特徴とする高電圧パルス発生回路。
  8. 請求項1〜7のいずれか1項に記載の高電圧パルス発生回路において、
    前記インダクタは、磁性体コアを有することを特徴とする高電圧パルス発生回路。
  9. 請求項1〜8のいずれか1項に記載の高電圧パルス発生回路において、
    前記第1の半導体スイッチは、ターンオフ時には電流制御形、ターンオン時には電圧制御形のデバイスを有することを特徴とする高電圧パルス発生回路。
  10. 請求項1〜9のいずれか1項に記載の高電圧パルス発生回路において、
    前記第1の半導体スイッチは、自己消弧形あるいは転流消弧形のデバイスを有することを特徴とする高電圧パルス発生回路。
  11. 請求項10記載の高電圧パルス発生回路において、
    前記第1の半導体スイッチは、静電誘導サイリスタを有することを特徴とする高電圧パルス発生回路。
  12. 請求項1〜11のいずれか1項に記載の高電圧パルス発生回路において、
    前記第2の半導体スイッチは、自己消弧形あるいは転流消弧形のデバイスを有することを特徴とする高電圧パルス発生回路。
  13. 請求項12記載の高電圧パルス発生回路において、
    前記第2の半導体スイッチは、電力用金属酸化半導体電界効果トランジスタを有することを特徴とする高電圧パルス発生回路。
  14. 請求項3〜13のいずれか1項に記載の高電圧パルス発生回路において、
    前記第2の半導体スイッチのターンオフ後に前記インダクタでの残存エネルギを前記直流電源部に回生させる回路素子が接続されていることを特徴とする高電圧パルス発生回路。
  15. 請求項14記載の高電圧パルス発生回路において、
    前記回路素子は、
    前記第1の半導体スイッチに対して並列に接続され、かつ、前記第1の半導体スイッチの前記アノード端子にカソード端子が接続されたダイオードを有することを特徴とする高電圧パルス発生回路。
  16. 請求項14記載の高電圧パルス発生回路において、
    前記回路素子は、
    前記直流電源部と前記第2の半導体スイッチとの間にアノード端子が接続され、かつ、前記インダクタの前記一端にカソード端子が接続されたダイオードを有することを特徴とする高電圧パルス発生回路。
  17. 請求項3〜16のいずれか1項に記載の高電圧パルス発生回路において、
    前記第2の半導体スイッチのターンオフ後に前記第1の半導体スイッチに流れる電流を転流させる経路を有することを特徴とする高電圧パルス発生回路。
  18. 請求項17記載の高電圧パルス発生回路において、
    前記経路が前記第1の半導体スイッチと並列に接続されていることを特徴とする高電圧パルス発生回路。
  19. 請求項18記載の高電圧パルス発生回路において、
    前記経路は、前記第1の半導体スイッチのアノード端子とカソード端子との間に接続されたコンデンサを有することを特徴とする高電圧パルス発生回路。
  20. 請求項18記載の高電圧パルス発生回路において、
    前記経路は、前記第1の半導体スイッチのゲート端子とアノード端子との間に接続されたコンデンサを有することを特徴とする高電圧パルス発生回路。
  21. 請求項1〜20のいずれか1項に記載の高電圧パルス発生回路において、
    前記インダクタに負荷が接続されている場合に、
    前記負荷に並列にコンデンサが接続されていることを特徴とする高電圧パルス発生回路。
JP2003056308A 2002-06-12 2003-03-03 高電圧パルス発生回路 Expired - Fee Related JP3811681B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003056308A JP3811681B2 (ja) 2002-06-12 2003-03-03 高電圧パルス発生回路
US10/457,164 US7084528B2 (en) 2002-06-12 2003-06-09 High-voltage pulse generating circuit
EP03253708A EP1376868B1 (en) 2002-06-12 2003-06-11 High-voltage pulse generating circuit
KR1020030037877A KR100572163B1 (ko) 2002-06-12 2003-06-12 고전압 펄스 발생 회로
US11/447,377 US7414333B2 (en) 2002-06-12 2006-06-06 High-voltage pulse generating circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002171684 2002-06-12
JP2003056308A JP3811681B2 (ja) 2002-06-12 2003-03-03 高電圧パルス発生回路

Publications (2)

Publication Number Publication Date
JP2004072994A true JP2004072994A (ja) 2004-03-04
JP3811681B2 JP3811681B2 (ja) 2006-08-23

Family

ID=29718396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003056308A Expired - Fee Related JP3811681B2 (ja) 2002-06-12 2003-03-03 高電圧パルス発生回路

Country Status (4)

Country Link
US (2) US7084528B2 (ja)
EP (1) EP1376868B1 (ja)
JP (1) JP3811681B2 (ja)
KR (1) KR100572163B1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050826A1 (ja) * 2003-11-21 2005-06-02 Ngk Insulators, Ltd. 高電圧パルス発生回路
JP2005184888A (ja) * 2003-12-16 2005-07-07 Ngk Insulators Ltd パルス発生装置
WO2005096486A1 (ja) * 2004-03-31 2005-10-13 Ngk Insulators, Ltd. 高電圧パルス発生回路
WO2005112246A1 (ja) * 2004-05-14 2005-11-24 Ngk Insulators, Ltd. 高電圧パルス発生回路
JP2006025543A (ja) * 2004-07-08 2006-01-26 Ngk Insulators Ltd パルス電源
WO2006057365A1 (ja) * 2004-11-26 2006-06-01 Ngk Insulators, Ltd. 高電圧パルス発生回路
JP2006166602A (ja) * 2004-12-07 2006-06-22 Ngk Insulators Ltd 放電装置
JP2006185715A (ja) * 2004-12-27 2006-07-13 Ngk Insulators Ltd プラズマ発生電極及びプラズマ反応器
US7084528B2 (en) 2002-06-12 2006-08-01 Ngk Insulators, Ltd. High-voltage pulse generating circuit
JP2006278236A (ja) * 2005-03-30 2006-10-12 Ngk Insulators Ltd プラズマ発生電極及びプラズマ反応器
WO2007000839A1 (ja) * 2005-06-29 2007-01-04 Ngk Insulators, Ltd. 電気回路及びパルス電源
JP2007181295A (ja) * 2005-12-27 2007-07-12 Ngk Insulators Ltd 放電装置
JP2007188748A (ja) * 2006-01-13 2007-07-26 Ngk Insulators Ltd リモート式プラズマ処理方法
JP2007209155A (ja) * 2006-02-03 2007-08-16 Ngk Insulators Ltd 放電装置
JP2007259308A (ja) * 2006-03-24 2007-10-04 Ngk Insulators Ltd パルス発生回路
US7443110B2 (en) 2005-05-13 2008-10-28 Ngk Insulators, Ltd. Discharge lamp energizing circuit and method of energizing discharge lamp
JP2011182207A (ja) * 2010-03-02 2011-09-15 Sekisui Chem Co Ltd パルスパワー発生装置および水処理装置
EP2608265A2 (en) 2011-12-22 2013-06-26 NGK Insulators, Ltd. Semiconductor device having a gate electrode
EP2608266A2 (en) 2011-12-22 2013-06-26 NGK Insulators, Ltd. Semiconductor device having a gate electrode
JP2013258412A (ja) * 2008-03-31 2013-12-26 Ngk Insulators Ltd シリコン系薄膜量産装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1835789B1 (en) * 2004-12-27 2013-05-29 NGK Insulators, Ltd. Plasma generating electrode and plasma reactor
US20070242492A1 (en) * 2006-04-18 2007-10-18 Ngk Insulators, Ltd. Pulse generator circuit
US7914692B2 (en) 2006-08-29 2011-03-29 Ngk Insulators, Ltd. Methods of generating plasma, of etching an organic material film, of generating minus ions, of oxidation and nitriding
JP2009005498A (ja) * 2007-06-21 2009-01-08 Ngk Insulators Ltd パルス電源回路
JP5143547B2 (ja) * 2007-12-28 2013-02-13 日本碍子株式会社 パルス電源回路
JP5198114B2 (ja) * 2008-03-27 2013-05-15 日本碍子株式会社 アモルファス炭素成膜方法
JP5390230B2 (ja) 2008-03-31 2014-01-15 日本碍子株式会社 シリコン系薄膜成膜装置及びその方法
JP5208554B2 (ja) * 2008-03-31 2013-06-12 日本碍子株式会社 Dlc成膜方法
JP5144562B2 (ja) 2008-03-31 2013-02-13 日本碍子株式会社 Dlc膜量産方法
CN102377422B (zh) * 2011-06-15 2013-05-08 广东美的电器股份有限公司 用于高压集成电路的dV/dt防止电路
US10637461B2 (en) 2014-03-14 2020-04-28 General Elelctric Company Gate drive devices and switching systems
US9401708B2 (en) * 2014-05-20 2016-07-26 General Electric Company Gate drive unit and method for controlling a gate drive unit
JP5729514B1 (ja) * 2014-06-14 2015-06-03 プラスウェア株式会社 プラズマ発生装置、液上溶融方法及び給電装置
US10298220B2 (en) * 2015-02-16 2019-05-21 Aisin Aw Co., Ltd. Switching element drive circuit
CN107086810A (zh) * 2017-06-29 2017-08-22 张玉炜 一种高能脉冲电源控制电路
RU2698152C1 (ru) * 2018-07-23 2019-08-22 Елена Владимировна Яремченко Четырехпроводный коммутатор
CN110993478A (zh) 2019-12-18 2020-04-10 北京北方华创微电子装备有限公司 脉冲电源控制电路及半导体加工设备
CN112713798B (zh) * 2020-12-18 2021-12-03 华中科技大学 一种脉冲功率电源、gw级功率行波磁场产生装置及方法
CN114652422A (zh) * 2022-03-07 2022-06-24 重庆大学 协同脉冲的产生装置和方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1297338A (fr) * 1961-05-19 1962-06-29 Schlumberger Prospection Générateur déclenché d'oscillations électriques
US3367314A (en) * 1964-09-16 1968-02-06 Honda Gijutsu Kenkyusho Kk Non-contact ignition device
US3485227A (en) * 1968-01-12 1969-12-23 Network Res & Mfg Corp Switching circuit
US3510676A (en) * 1968-05-22 1970-05-05 Air Reduction Pulsed power supply
US3671761A (en) * 1970-01-22 1972-06-20 Nippon Electric Co Single pulse generating circuit
US3877864A (en) * 1974-07-29 1975-04-15 Itt Spark igniter system for gas appliance pilot ignition
GB1486374A (en) * 1975-01-10 1977-09-21 Plessey Co Ltd Regenerative repeater circuit arrangements for use in digital data transmission systems
GB2105927A (en) 1981-07-16 1983-03-30 Plessey Co Ltd A switching circuit
JPS62159515A (ja) * 1986-01-07 1987-07-15 Fuji Electric Co Ltd 複合半導体装置
JP2649340B2 (ja) 1986-06-10 1997-09-03 増田 佳子 極短パルス高電圧加電式ガス浄化装置
US5151762A (en) * 1990-04-12 1992-09-29 Mitsubishi Denki Kabushiki Kaisha Semiconductor device, fabricating method thereof and flash control device using the semiconductor device
JP3318981B2 (ja) * 1992-10-09 2002-08-26 株式会社明電舎 パルス電源
US5530617A (en) * 1994-05-12 1996-06-25 Simmonds Precision Engine Systems, Inc. Exciter circuit with oscillatory discharge and solid state switchiing device
JP3396984B2 (ja) * 1995-02-15 2003-04-14 松下電工株式会社 電源装置
US5774348A (en) * 1996-06-24 1998-06-30 The United States Of America As Represented By The United States Department Of Energy Light-weight DC to very high voltage DC converter
JP3592852B2 (ja) 1996-09-05 2004-11-24 オリジン電気株式会社 電気集塵機用パルス電源装置
JPH11145793A (ja) 1997-11-07 1999-05-28 Meidensha Corp パルス電源
EP0959562A1 (en) 1998-05-21 1999-11-24 STMicroelectronics S.r.l. A circuit for controlling the switching of a load by means of an emitter-switching device
US6879062B2 (en) * 2000-03-18 2005-04-12 Alstom Electrical substation
JP4223176B2 (ja) 2000-07-24 2009-02-12 日本碍子株式会社 パルス電力発生用スイッチ装置
FI118026B (fi) * 2001-08-07 2007-05-31 Salcomp Oy Tasasuunnatun kuvajännitteen käyttö hakkuriteholähteen ensiöpuolen kytkimen ohjaukseen
JP2003272887A (ja) * 2002-03-12 2003-09-26 Koito Mfg Co Ltd 放電灯点灯回路
JP2003338648A (ja) 2002-05-20 2003-11-28 Meidensha Corp パルス電源装置
JP3811681B2 (ja) 2002-06-12 2006-08-23 日本碍子株式会社 高電圧パルス発生回路

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7084528B2 (en) 2002-06-12 2006-08-01 Ngk Insulators, Ltd. High-voltage pulse generating circuit
US7414333B2 (en) 2002-06-12 2008-08-19 Ngk Insulators, Ltd. High-voltage pulse generating circuit
US7489052B2 (en) 2003-11-21 2009-02-10 Ngk Insulators, Ltd. High voltage pulse generating circuit
WO2005050826A1 (ja) * 2003-11-21 2005-06-02 Ngk Insulators, Ltd. 高電圧パルス発生回路
JP2005184888A (ja) * 2003-12-16 2005-07-07 Ngk Insulators Ltd パルス発生装置
JP4516308B2 (ja) * 2003-12-16 2010-08-04 日本碍子株式会社 パルス発生装置
WO2005096486A1 (ja) * 2004-03-31 2005-10-13 Ngk Insulators, Ltd. 高電圧パルス発生回路
JP2005295667A (ja) * 2004-03-31 2005-10-20 Ngk Insulators Ltd 高電圧パルス発生回路
JP4494066B2 (ja) * 2004-03-31 2010-06-30 日本碍子株式会社 高電圧パルス発生回路
WO2005112246A1 (ja) * 2004-05-14 2005-11-24 Ngk Insulators, Ltd. 高電圧パルス発生回路
JP4585792B2 (ja) * 2004-05-14 2010-11-24 日本碍子株式会社 高電圧パルス発生回路
US7548402B2 (en) 2004-05-14 2009-06-16 Ngk Insulators, Ltd. High voltage pulse generating circuit
JP2005328653A (ja) * 2004-05-14 2005-11-24 Ngk Insulators Ltd 高電圧パルス発生回路
JP2006025543A (ja) * 2004-07-08 2006-01-26 Ngk Insulators Ltd パルス電源
JP4783740B2 (ja) * 2004-11-26 2011-09-28 日本碍子株式会社 高電圧パルス発生回路
WO2006057365A1 (ja) * 2004-11-26 2006-06-01 Ngk Insulators, Ltd. 高電圧パルス発生回路
US7649284B2 (en) 2004-11-26 2010-01-19 Ngk Insulators, Ltd. High-voltage pulse generating circuit
JP4538305B2 (ja) * 2004-12-07 2010-09-08 日本碍子株式会社 放電装置
US7482786B2 (en) 2004-12-07 2009-01-27 Ngk Insulators, Ltd. Electric discharger using semiconductor switch
JP2006166602A (ja) * 2004-12-07 2006-06-22 Ngk Insulators Ltd 放電装置
JP4634138B2 (ja) * 2004-12-27 2011-02-16 日本碍子株式会社 プラズマ発生電極及びプラズマ反応器
JP2006185715A (ja) * 2004-12-27 2006-07-13 Ngk Insulators Ltd プラズマ発生電極及びプラズマ反応器
JP2006278236A (ja) * 2005-03-30 2006-10-12 Ngk Insulators Ltd プラズマ発生電極及びプラズマ反応器
US7443110B2 (en) 2005-05-13 2008-10-28 Ngk Insulators, Ltd. Discharge lamp energizing circuit and method of energizing discharge lamp
WO2007000839A1 (ja) * 2005-06-29 2007-01-04 Ngk Insulators, Ltd. 電気回路及びパルス電源
JP2007014089A (ja) * 2005-06-29 2007-01-18 Ngk Insulators Ltd 電気回路及びパルス電源
US7499293B2 (en) 2005-06-29 2009-03-03 Ngk Insulators, Ltd. High voltage pulse power circuit
JP4684765B2 (ja) * 2005-06-29 2011-05-18 日本碍子株式会社 電気回路及びパルス電源
JP2007181295A (ja) * 2005-12-27 2007-07-12 Ngk Insulators Ltd 放電装置
JP2007188748A (ja) * 2006-01-13 2007-07-26 Ngk Insulators Ltd リモート式プラズマ処理方法
JP2007209155A (ja) * 2006-02-03 2007-08-16 Ngk Insulators Ltd 放電装置
JP2007259308A (ja) * 2006-03-24 2007-10-04 Ngk Insulators Ltd パルス発生回路
JP2013258412A (ja) * 2008-03-31 2013-12-26 Ngk Insulators Ltd シリコン系薄膜量産装置
JP2011182207A (ja) * 2010-03-02 2011-09-15 Sekisui Chem Co Ltd パルスパワー発生装置および水処理装置
EP2608265A2 (en) 2011-12-22 2013-06-26 NGK Insulators, Ltd. Semiconductor device having a gate electrode
EP2608266A2 (en) 2011-12-22 2013-06-26 NGK Insulators, Ltd. Semiconductor device having a gate electrode
US9159820B2 (en) 2011-12-22 2015-10-13 Ngk Insulators, Ltd. Buried gate static induction thyristor

Also Published As

Publication number Publication date
EP1376868A3 (en) 2005-11-02
EP1376868A2 (en) 2004-01-02
KR20030096054A (ko) 2003-12-24
US7084528B2 (en) 2006-08-01
JP3811681B2 (ja) 2006-08-23
US7414333B2 (en) 2008-08-19
US20030230938A1 (en) 2003-12-18
US20060226883A1 (en) 2006-10-12
EP1376868B1 (en) 2012-09-26
KR100572163B1 (ko) 2006-04-19

Similar Documents

Publication Publication Date Title
JP3811681B2 (ja) 高電圧パルス発生回路
Grekhov et al. Physical basis for high-power semiconductor nanosecond opening switches
US7919887B2 (en) High repetitous pulse generation and energy recovery system
JPS6056062B2 (ja) ゲ−トタ−ンオフサイリスタのゲ−ト回路
US11862416B2 (en) Hybrid DC circuit breaker
WO2006057365A1 (ja) 高電圧パルス発生回路
JP4418212B2 (ja) 高電圧パルス発生回路
Ravi et al. TVS diode coupled gate driver circuit for series connected power devices used in circuit breaker applications
Liu et al. Design and comparison of passive gate driver solution for series-connected power devices in DC circuit breaker applications
Grekhov et al. High-voltage RSD switches of submegaampere current pulses of microsecond duration
JP4516308B2 (ja) パルス発生装置
WO2005096486A1 (ja) 高電圧パルス発生回路
JP2002530823A (ja) 接続された負荷を保護するための電力モジュレータにおける保護システム
JP2005328653A (ja) 高電圧パルス発生回路
EP1693945A1 (en) Pulse generator circuit
JPH06284749A (ja) スナバレス・インバータ
JPH06165510A (ja) インバータ
US11588483B1 (en) Quasi-resonant thyristor current interrupter
WO2012153764A1 (ja) パルス発生回路
KR960016810B1 (ko) 펄스 발생 장치 및 이를 사용한 집진 장치
Grekhov et al. A high-voltage changer based on reverse switch-on dynistors
Redondo et al. Resonant converter topology for the new ISOLDE/CERN modulator
JPH11145791A (ja) バイアス機能付パルス電源装置
Souda et al. Development of high power, high voltage dc power supply for pulsed-power applications and accelerators
JPH02106165A (ja) スナバ回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060529

R150 Certificate of patent or registration of utility model

Ref document number: 3811681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140602

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees