WO2006057365A1 - 高電圧パルス発生回路 - Google Patents

高電圧パルス発生回路 Download PDF

Info

Publication number
WO2006057365A1
WO2006057365A1 PCT/JP2005/021734 JP2005021734W WO2006057365A1 WO 2006057365 A1 WO2006057365 A1 WO 2006057365A1 JP 2005021734 W JP2005021734 W JP 2005021734W WO 2006057365 A1 WO2006057365 A1 WO 2006057365A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor switch
voltage pulse
high voltage
power supply
gate
Prior art date
Application number
PCT/JP2005/021734
Other languages
English (en)
French (fr)
Inventor
Takayuki Sekiya
Takeshi Sakuma
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Priority to US11/791,140 priority Critical patent/US7649284B2/en
Priority to JP2006547882A priority patent/JP4783740B2/ja
Publication of WO2006057365A1 publication Critical patent/WO2006057365A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/53Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
    • H03K3/57Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/72Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices having more than two PN junctions; having more than three electrodes; having more than one electrode connected to the same conductivity region
    • H03K17/73Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices having more than two PN junctions; having more than three electrodes; having more than one electrode connected to the same conductivity region for dc voltages or currents

Definitions

  • the present invention provides a high voltage having an extremely short rise time and an extremely narrow pulse width by releasing electromagnetic energy accumulated in an inductor from a low voltage DC power supply unit with a simple circuit configuration.
  • the present invention relates to a high voltage pulse generation circuit capable of supplying a pulse.
  • the high-voltage pulse generation circuit 200 includes a transformer 204, a first semiconductor switch 206, and a second semiconductor switch 208 connected in series to both ends of a DC power supply unit 202. One end connected to the anode terminal of the switch 206.
  • a very simple circuit in which a power sword is connected to the other end of the primary winding of the transformer and a diode 210 is connected to the gate terminal of the first semiconductor switch 206 so as to be an anode. is there.
  • the second semiconductor switch 208 is turned on, the first semiconductor switch 206 is also turned on, and the voltage of the DC power supply unit 202 is applied to the primary winding of the transformer 204, and the transformer 204 is inducted. Energy is stored.
  • the second semiconductor switch 208 is turned off, the first semiconductor switch 206 is also turned off rapidly, so that a very narrow high voltage pulse Po that rises very rapidly on the secondary winding of the transformer 204 is generated.
  • the high voltage pulse Po can be taken out from the output terminals 212 and 214.
  • the high voltage pulse generation circuit 200 According to the high voltage pulse generation circuit 200, a high voltage pulse having a steep rise time and an extremely narrow pulse width with a simple circuit configuration without using a plurality of semiconductor switches to which a high voltage is applied. Po can be supplied.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-72994
  • the stable ON state means that the voltage between the anode and the first sword of the first semiconductor switch 206 is V, as shown by the waveform 220 in FIG. 11, and the second semiconductor switch 208 is turned on.
  • the above-described high voltage pulse generation circuit 200 is configured so that the power supply voltage Vdc of the DC power supply unit 202 is low or the first semiconductor switch 206 is turned on (on setting time). If is short, there is a case where the first semiconductor switch 206 cannot obtain a stable on-state.
  • the gate current hardly flows into the gate terminal of the first semiconductor switch 206, the power supply voltage Vdc of the DC power supply unit 202 is low, or the time for turning on the first semiconductor switch 206 ( If the ON setting time is short, the anode-power sword voltage V of the first semiconductor switch 206 gradually decreases as shown in the waveform 222 and the waveform 224 in FIG.
  • the force may also vary in the degree of voltage drop from cycle to cycle.
  • the present invention can further improve the above-described high voltage pulse generation circuit to obtain a stable on-state in the first semiconductor switch with a simple circuit configuration, thereby generating a high voltage pulse.
  • An object of the present invention is to provide a high voltage pulse generation circuit capable of reducing the circuit cost, reducing the size, increasing the frequency, and increasing the power.
  • a high voltage pulse generation circuit includes an inductor, a first semiconductor switch, a second semiconductor switch, and an anode terminal of the first semiconductor switch, which are connected in series to both ends of a DC power supply unit.
  • a gate current supply means for supplying a gate current toward the first semiconductor switch based on turning on of the second semiconductor switch.
  • the present invention it is possible to obtain a stable ON state in the first semiconductor switch with a simple circuit configuration, thereby having a steep rise time and a very narrow pulse width. High voltage pulses can be output stably. In addition, the on-time of the second semiconductor switch can be shortened, and high-frequency pulses can be increased in frequency.
  • the gate current supply means may have a resistor connected between the other end of the inductor and a gate terminal of the first semiconductor switch.
  • the second semiconductor switch when the second semiconductor switch is turned on, the power supply voltage of the DC power supply unit is applied to the resistor, and a gate current flows between the gates of the first semiconductor switch.
  • the gate current supply means may have a parallel circuit of a resistor and a capacitor connected between the other end of the inductor and the gate terminal of the first semiconductor switch.
  • the configuration further includes another power supply separately from the DC power supply unit, the power supply voltage of the other power supply is set lower than the power supply voltage of the DC power supply unit, and the gate current The supply means may be connected between the other power source and the gate terminal of the first semiconductor switch.
  • the gate current supply means may have a resistor connected between the other power source and the gate terminal of the first semiconductor switch.
  • the gate current supply means may include a parallel circuit of a resistor and a capacitor connected between the other power source and the gate terminal of the first semiconductor switch. Also good. Since the parallel circuit operates in the same way as the differentiation circuit, the current waveform output from this parallel circuit rises sharply at the moment when the second semiconductor switch is turned on, and the force also increases. For example, the current value is about 10 times higher than the current value when only a resistor is connected. Therefore, when the gate current having such a current waveform is supplied to the first semiconductor switch, the first semiconductor switch is more rapidly turned on. Even if the power supply voltage of another power supply connected to the gate current supply means is lowered, the peak current value of the gate current can be instantaneously increased, so that a stable on-state of the first semiconductor switch is obtained. be able to.
  • the power supply voltage of the other power supply is set lower than the power supply voltage of the DC power supply unit, the power supply voltage of the other power supply is set to be lower than the DC power supply unit, and the gate current supply
  • the means turns on the transistor connected between the other power source and the gate terminal of the first semiconductor switch and the second semiconductor switch substantially in synchronization with the gate current value. Even if you have a control circuit to control.
  • the transistor force can flow a current controlled by the transistor to the gate terminal of the first semiconductor switch.
  • the waveform of the current flowing through the gate terminal of the first semiconductor switch rises sharply at the moment when the second semiconductor switch is turned on.
  • the force can also be a waveform whose current value is, for example, about 10 times higher than the current value when only a resistor is connected.
  • a rectifying element having a forward direction on the contact side is provided between a contact between the gate terminal of the first semiconductor switch and the anode terminal of the diode and the gate current supply unit. It may be connected.
  • the second semiconductor switch When the second semiconductor switch is turned off, the current flowing through the inductor is changed from the anode terminal of the first semiconductor switch to the gate terminal ⁇
  • the first semiconductor switch is turned off by this, and the gate current supply means is connected between the first semiconductor switch and another power source.
  • the above-described current to be recirculated may flow into the gate current supply means and the first semiconductor switch may not shift to the off state. Therefore, by connecting the rectifying element, it is possible to prevent the current to be recirculated from flowing into the gate current supply means, and the first semiconductor switch can be stably shifted to the OFF state. This leads to a stable high voltage noise output.
  • FIG. 1 is a circuit diagram showing a configuration of a high voltage pulse generation circuit according to a first embodiment.
  • FIG. 2A to FIG. 2C are diagrams for explaining voltage and current operation waveforms of each part of the high-voltage pulse generation circuit according to the first embodiment.
  • FIG. 3 is a graph showing the voltage between the anodes of the first semiconductor switch at the stage when the second semiconductor switch is turned on in the high-voltage pulse generation circuit according to the first embodiment. It is a wave form diagram which shows a change.
  • FIG. 4 is a circuit diagram showing a configuration of a high voltage pulse generation circuit according to a second embodiment.
  • FIG. 5 is a circuit diagram showing a configuration of a high voltage pulse generating circuit according to a third embodiment.
  • FIG. 6 is a diagram illustrating a gate that flows into the gate terminal of the first semiconductor switch when the second semiconductor switch is turned on in the high-voltage pulse generation circuit according to the third embodiment.
  • FIG. 7 is a circuit diagram showing a configuration of a high voltage pulse generating circuit according to a fourth embodiment. It is.
  • FIG. 8 is a circuit diagram showing a configuration of a high voltage pulse generating circuit according to a fifth embodiment.
  • FIG. 9 is a circuit diagram showing a configuration of a high voltage pulse generating circuit according to a sixth embodiment.
  • FIG. 10 is a diagram showing a high voltage pulse generation circuit according to the prior art.
  • FIG. 11 is a waveform diagram showing changes in the voltage between the anode and the primary sword of the first semiconductor switch at the stage when the second semiconductor switch is turned on in the high voltage pulse generation circuit according to the prior art. It is.
  • a high voltage pulse generating circuit 10A includes a DC power supply 12 (power supply voltage Vdc) and a DC power supply having a capacitor 14 that reduces high-frequency impedance.
  • An inductor 22, a first semiconductor switch 24, and a second semiconductor switch 26 are connected in series to both ends 18 and 20 of the part 16.
  • the inductor 22 has a transformer 34 having a primary winding 30 and a secondary winding 32, and a high voltage pulse Po is generated from both ends 36 and 38 (output terminals) of the secondary winding 32 of the transformer 34. It is getting taken out.
  • a resistive load or a capacitive load is connected to the output terminals 36 and 38 of the secondary feeder 32.
  • the anode terminal of the first semiconductor switch 24 is connected to one end 40 of the inductor 22 (one end of the secondary winding 30).
  • a diode portion 44 is connected between the gate terminal G of the first semiconductor switch 24 and the other end 42 of the inductor 22 (the other end of the secondary winding 30).
  • the diode section 44 has two diodes 44 a and 44 b arranged in parallel, and the anode terminal of each diode 44 a and 44 b is connected to the gate terminal G of the first semiconductor switch 24.
  • a resistor 46 is connected between the gate terminal G of the first semiconductor switch 24 and the other end 42 of the inductor 22.
  • a diode 48 is connected in parallel to the first semiconductor switch 24.
  • the diode 48 has its anode terminal and force sword terminal connected to the force sword terminal and anode terminal of the first semiconductor switch 24, and is connected in reverse parallel to the first semiconductor switch 24.
  • the second semiconductor switch 26 is provided on the negative electrode terminal 20 side of the DC power supply unit 16, but it goes without saying that the same effect can be obtained even if provided on the positive electrode terminal 18 side. Absent. Further, the output may be taken out from both ends of the first semiconductor switch 24 which is not from the inductor 22.
  • the second semiconductor switch 26 is capable of using a self-extinguishing type or commutation-extinguishing type device.
  • a power metal-oxide-semiconductor electric field in which an avalanche diode is built in reverse parallel is used.
  • An effect transistor is used.
  • a control signal Sc from the drive circuit 50 is supplied between the gate terminal and the source terminal of the second semiconductor switch 26.
  • the drive circuit 50 generates a pulse signal 52 for generating a pulse signal Sp for turning on and off the second semiconductor switch 26, and amplifies the pulse signal Sp output from the pulse generation circuit 52 to a control signal.
  • An amplifier 54 that outputs as Sc, IC power supply 56 (for example, power supply voltage + 15V) is connected to the + side power supply terminal of amplifier 54, and the source terminal of the second semiconductor switch 26 is connected to the ⁇ side power supply terminal
  • IC power supply 56 for example, power supply voltage + 15V
  • the first semiconductor switch 24 is a force capable of using a current control type device or a self-extinguishing type device or a commutation extinguishing type device.
  • the rate of voltage increase at turn-off time
  • An SI thyristor with a very high tolerance for (dvZdt) and a high voltage rating is used.
  • the second semiconductor switch 26 is turned on by supplying the control signal Sc between the gate and source of the second semiconductor switch 26.
  • the power supply voltage Vdc of the DC power supply unit 16 is applied to the resistor 46 connected between the other end 42 of the inductor 22 and the gate terminal G of the first semiconductor switch 24, and the first semiconductor switch A gate current Ig flows between the 24 gate-force swords.
  • the gate current Ig is Ig
  • the power supply voltage is Vdc
  • the resistance value of the resistor is R
  • the resistor 46 functions as a gate current supply means for flowing a gate current Ig toward the first semiconductor switch 24 based on the second semiconductor switch 26 being turned on.
  • a constant negative voltage (negative pulse Pn) is output to the output terminals 36 and 38 of the secondary winding 32. It is done.
  • the power supply voltage of the DC power supply 16 is Vdc and the power ratio of the transformer 34 (number of secondary windings 32, n 2Z—number of secondary windings nl) is n
  • the waveform of the current 12 flowing in the secondary winding 32 also becomes a waveform according to the negative pulse Pn (see FIG. 2B).
  • the diodes 44a and 44b in the power diode section 44 act, and the current II of the primary winding 30 is changed from the anode terminal A of the first semiconductor switch 24 to the gate terminal G of the first semiconductor switch 24 ⁇ Anode ⁇
  • Each die It commutates to a path 62 (shown by a broken line) composed of force swords of Aethers 44a and 44b.
  • generation of the high voltage pulse Po to the output terminals 36 and 38 is started, and the output voltage Vo rises sharply by the induced electromotive force generated in the transformer 34.
  • the peak value of the high voltage pulse Po is expressed as follows: the power ratio of the transformer 34 is n, the primary inductance of the transformer 34 is L, and the cutoff speed of the current II flowing through the primary winding 30 of the transformer 34 is (diZdt). NLl (diZdt). This is because when the anode-power sword voltage V of the first semiconductor switch 24 is set to V, the peak value of the high-voltage pulse Po is nV, and the first semiconductor switch 24
  • the voltage is higher than the withstand voltage V of the anode sword.
  • the gate of the first semiconductor switch 24 is connected via the resistor 46 based on the turning on of the second semiconductor switch 26. Since the gate current Ig flows through the terminal G, the voltage between the anode and the source V of the first semiconductor switch 24 V force When the second semiconductor switch 26 is turned on, it suddenly falls.
  • the first semiconductor switch 24 is rapidly turned on. That is, the first semiconductor switch 24 is stably turned on. Therefore, in the first embodiment, it is possible to obtain a stable on-state in the first semiconductor switch 24 with a simple circuit configuration, whereby a high voltage having a steep rise time and an extremely narrow pulse width. Pulse Po can be output stably. In addition, the time during which the second semiconductor switch 26 is on (on time Ton) can be shortened, and the high voltage pulse Po can be increased in frequency.
  • a capacitor may be connected in parallel with resistor 46.
  • the load is a capacitive load such as a discharge gap
  • not all of the power consumed by the discharge can be consumed, or a large amount of energy can remain without discharge. is there.
  • the remaining charge force S is discharged through the exciting inductance of the inductor 22 (current flows through the exciting inductance of the inductor 22), and energy is transferred to the exciting inductance of the inductor 22 again.
  • the first path 66 is a path toward the load again, and the second path 68 is anti-parallel to the DC power supply unit 16, the antiparallel diode of the second semiconductor switch 26, and the first semiconductor switch 24. This is a path connecting the diodes 48 connected to the column.
  • the voltage generated in the inductor 22 at this time is clamped by the voltage generated by the antiparallel diode 48 of the DC power supply unit 16 and the second semiconductor switch 26 and the antiparallel diode 48 of the first semiconductor switch 24.
  • the current flow through the second path 68 is an operation for regenerating energy in the capacitor 14 of the DC power supply unit 16.
  • this is an operation of returning excess energy (unused energy) of the load to the DC power supply unit 16, which contributes to higher efficiency of the DC power supply unit 16.
  • the diode 48 when the diode 48 is absent, it resonates again with the excitation inductance of the inductor 22 and the load, and as a result, a reverse voltage exceeding the withstand voltage is applied to the first semiconductor switch 24. There is also a risk that the second semiconductor switch 26 malfunctions due to the pulsed noise superimposed at this time. Therefore, it is desirable to connect the diode 48 for the processing of the excitation inductance energy.
  • a high voltage pulse generation circuit 10B according to a second embodiment will be described with reference to FIG. Note that components corresponding to those of the first embodiment are denoted by the same reference numerals, and redundant description thereof is omitted.
  • the high voltage pulse generation circuit 10B according to the second embodiment has substantially the same configuration as the high voltage pulse generation circuit 10A according to the first embodiment described above, as shown in FIG. Current force The difference is that a series circuit 74 of a diode 70 and a resistor 72 is connected between the IC power source 56 and the gate terminal G of the first semiconductor switch 24.
  • a series circuit 74 of a diode 70 and a resistor 72 is connected between a contact 76 between the diode section 44 and the gate terminal G of the first semiconductor switch 24 and the IC power source 56.
  • a diode 70 is connected to the contact 76 side
  • a resistor 72 is connected to the IC power supply 56 side.
  • the diode 70 is connected so that the contact 76 side is a force sword and the resistor 72 side is an anode.
  • the high voltage pulse generation circuit 10A according to the first embodiment will be described in comparison with the high voltage pulse generation circuit 10B according to the second embodiment.
  • a resistor 46 is connected between the other end 42 of the inductor 22 and the gate terminal G of the first semiconductor switch 24. Therefore, the loss Wlon generated in the resistor 46 while the second semiconductor switch 26 is on is the duty cycle of the pulse signal Sp output from the pulse generation circuit 52 (the time during which the pulse signal is high). Z pulse signal pulse period) is D, the power supply voltage of DC power supply 16 is Vdc, and the resistance value of resistor 46 is R.
  • a resistor 72 is connected between the IC power supply 56 and the gate terminal G of the first semiconductor switch 24. Therefore, the loss W2on generated in the resistor 72 while the second semiconductor switch 26 is on is equal to the duty cycle of the pulse signal Sp output from the noise generation circuit 52, D, and the power supply voltage of the IC power supply 56.
  • the resistance value of Vic and resistor 72 is R,
  • the loss generated by the resistor 72 of the high voltage pulse generation circuit 10B according to the second embodiment is 1Z10 in the case of the first embodiment.
  • the loss at the resistor 72 can be suppressed low, so that the cost of the high voltage noise generation circuit 10B can be reduced. , Size reduction, high frequency, and high power can be efficiently achieved.
  • the second semiconductor switch 26 when the second semiconductor switch 26 is turned off, the current flowing through the inductor 22 is changed from the anode terminal A ⁇ the gate terminal G ⁇ the diode section 44 of the first semiconductor switch 24. Cycles through path 62, which forces the first semiconductor switch 24 to go to the off state.
  • the resistor 72 is connected between the first semiconductor switch 24 and the IC power supply 56.
  • the current to be recirculated flows into the resistor 72 side and the first semiconductor switch 24 is not turned off, or the voltage of the IC power supply 56 is greatly changed. May cause malfunction of the IC, or the IC power supply 56 may become overvoltage and destroy the IC.
  • the diode 70 is connected between the contact 76 and the resistor 72, it is possible to prevent the current to be returned from flowing into the resistor 72 side.
  • the first semiconductor switch 24 can be stably shifted to the OFF state without changing the voltage of the IC power source 56. This leads to a stable high voltage pulse Po output.
  • a high voltage pulse generation circuit IOC according to a third embodiment will be described with reference to FIG.
  • the high voltage pulse generation circuit 10C according to the third embodiment has substantially the same configuration as the high voltage pulse generation circuit 10B according to the second embodiment described above. However, the difference is that instead of the resistor 72, a parallel circuit 82 of the resistor 72 and the capacitor 80 is connected.
  • the parallel circuit 82 performs the same operation as the differentiation circuit, the current waveform output from the parallel circuit 82, that is, the waveform of the gate current Ig is, as shown in FIG.
  • switch 26 is turned on (time tO)
  • the current value rises sharply, and the current value is connected only to resistor 72 (see high-voltage pulse generation circuit 10B according to the second embodiment)
  • the waveform has a value about 10 times higher than the current value.
  • the gate current Ig having such a current waveform is supplied to the first semiconductor switch 24, the first semiconductor switch 24 is further rapidly turned on.
  • the gate is instantaneously connected. Since the peak current value of the current Ig can be increased, a stable ON state can be obtained for the first semiconductor switch 24.
  • the high voltage pulse generation circuit 10D according to the fourth embodiment has almost the same configuration as the high voltage pulse generation circuit 10B according to the second embodiment described above.
  • the pnp transistor is connected almost in synchronism with the ON state of the second semiconductor switch 26 and the point that the pnp transistor 90 is connected between the IC power supply 56 and the gate terminal G of the first semiconductor switch 24. It differs in that it has a control circuit 92 for turning on 90.
  • a diode 94 is connected between the collector and emitter of the pnp transistor 90.
  • a parallel circuit 108 of a series circuit 100 of a resistor 96 and a capacitor 98, a series circuit 106 of a Zener diode 102 and a resistor 104 is connected. ing.
  • the collector terminal of pnp transistor 90 is IC
  • the power source 56 is connected, and the gate terminal G of the first semiconductor switch 24 is connected to the emitter terminal via the diode 70.
  • an inverter 110 that outputs an inverted signal of the noise signal Sp from the noise generation circuit 52, a differentiation circuit that outputs a differential waveform of the pulse signal Sp, etc., which are not shown, are used. Can do.
  • the pnp transistor 90 is turned on.
  • the current from the IC power source 56 is amplified by the transistor 90 and supplied to the gate terminal G of the first semiconductor switch 24 as the gate current Ig.
  • the capacitor 98 connected to the base of the pnp transistor 90 allows a differential current to flow in the base current, and the emitter current of the pnp transistor 90 can also flow a large amplified differential current to the collector. Also in this case, the first semiconductor switch 24 is rapidly turned on.
  • the high voltage pulse generation circuit 10E according to the fifth embodiment has substantially the same configuration as the high voltage pulse generation circuit 10B according to the second embodiment described above.
  • another power supply 112 is connected to the negative electrode terminal 20 side of the DC power supply unit 16, and a diode 70 and a resistor 72 are connected between the power supply 112 and the gate terminal G of the first semiconductor switch 24. It is different.
  • the power supply voltage Ve of the power supply 112 is lower than the power supply voltage Vdc of the DC power supply unit 16, an arbitrary power supply voltage can be set without being constrained by the IC power supply 56.
  • the high voltage pulse generation circuit 10F according to the sixth embodiment has substantially the same configuration as the high voltage pulse generation circuit 10E according to the fifth embodiment described above.
  • the high voltage pulse generation circuit according to the fourth embodiment same The other difference is that a control circuit 92 (inverter 110 or the like) that turns on the pnp transistor 90 is provided almost in synchronization with the second semiconductor switch 26 being turned on. Therefore, the same members as those in the fourth embodiment are denoted by the same reference numerals, and redundant description thereof is omitted.
  • a high voltage pulse according to the third embodiment is provided between the power supply 112 connected to the negative electrode terminal 20 side of the DC power supply unit 16 and the gate terminal G of the first semiconductor switch 24.
  • a parallel circuit 82 (a parallel circuit of a resistor 72 and a capacitor 80) similar to the generation circuit may be connected.
  • the high-voltage pulse generation circuit according to the present invention is not limited to the above-described embodiment, and can of course have various configurations without departing from the gist of the present invention.

Landscapes

  • Generation Of Surge Voltage And Current (AREA)
  • Electronic Switches (AREA)

Abstract

 高電圧パルス発生回路(10A)は、直流電源部(16)の両端(18)及び(20)に直列接続されたインダクタ(22)、第1の半導体スイッチ(24)及び第2の半導体スイッチ(26)を有する。第1の半導体スイッチ(24)のゲート端子(G)とインダクタ(22)の他端(42)(一次巻線(30)の他端)間にダイオード部(44)が接続されている。第1の半導体スイッチ(24)のゲート端子(G)とインダクタ(22)の他端(42)間に抵抗(46)が接続されている。抵抗(46)は、第2の半導体スイッチ(26)のオンに基づいて、第1の半導体スイッチ(24)に向けてゲート電流(Ig)を流すゲート電流供給手段として機能する。

Description

明 細 書
高電圧パルス発生回路
技術分野
[0001] 本発明は、簡単な回路構成にて、低い電圧の直流電源部からインダクタに蓄積さ せた電磁エネルギを開放することにより、極めて短い立ち上がり時間と極めて狭いパ ルス幅とを有する高電圧パルスを供給できる高電圧パルス発生回路に関する。
背景技術
[0002] 最近、高電圧パルスの放電によるプラズマにより、脱臭、殺菌、有害ガスの分解等 を行う技術が適応されるようになってきたが、このプラズマを発生させるために高電圧 の極めて幅の狭いパルスを供給できる高電圧パルス発生回路が必要となる。
[0003] そこで、従来においては、例えば特許文献 1に示すような高電圧パルス発生回路が 提案されている。この高電圧パルス発生回路 200は、図 10に示すように、直流電源 部 202の両端にトランス 204、第 1の半導体スィッチ 206及び第 2の半導体スィッチ 2 08を直列に接続し、第 1の半導体スィッチ 206のアノード端子に一端が接続された 前記トランスの一次卷線の他端に力ソード、前記第 1の半導体スィッチ 206のゲート 端子にアノードとなるようにダイオード 210を接続した極めて簡単な回路である。
[0004] そして、第 2の半導体スィッチ 208をオンすることにより、第 1の半導体スィッチ 206 も導通し、トランス 204の一次卷線に直流電源部 202の電圧が印加され、該トランス 2 04に誘導エネルギが蓄積される。その後、第 2の半導体スィッチ 208をオフさせると、 第 1の半導体スィッチ 206も急速にターンオフするため、トランス 204の二次卷線に 非常に急峻に立ち上がる極めて幅の狭い高電圧パルス Poが発生し、出力端子 212 及び 214より高電圧パルス Poを取り出すことができる。
[0005] この高電圧パルス発生回路 200によれば、高電圧が印加される半導体スィッチを 複数個使用することなぐ簡単な回路構成で、急峻な立ち上がり時間と極めて狭いパ ルス幅を有する高電圧パルス Poを供給することができる。
[0006] 特許文献 1 :特開 2004— 72994号公報
発明の開示 [0007] ところで、上述した高電圧パルス発生回路 200において、安定した高電圧パルスを 出力させるためには、第 1の半導体スィッチ 206において安定したオン状態を得るこ とが必要である。
[0008] ここで、安定したオン状態とは、図 11の波形 220に示すように、第 1の半導体スイツ チ 206のアノード一力ソード間電圧 V 力 第 2の半導体スィッチ 208がオンとなった
AK
段階で、急峻に立ち下がり、第 1の半導体スィッチ 206が急速にオンとなる状態を示 す。
[0009] し力しながら、上述した高電圧パルス発生回路 200は、直流電源部 202の電源電 圧 Vdcが低力つたり、第 1の半導体スィッチ 206をオンさせておく時間(オン設定時間 )が短いと、第 1の半導体スィッチ 206において、安定したオン状態を得ることができ ない場合がある。
[0010] つまり、第 1の半導体スィッチ 206のゲート端子にゲート電流がほとんど流れ込まな い上、直流電源部 202の電源電圧 Vdcが低かったり、第 1の半導体スィッチ 206をォ ンさせておく時間(オン設定時間)が短いと、図 11の波形 222や波形 224に示すよう に、第 1の半導体スィッチ 206のアノード—力ソード間電圧 V は緩やかに低下し、し
AK
力も、サイクルごとにその電圧低下の度合いが変動する場合がある。
[0011] 従って、トランス 204の励磁インダクタンスが低い場合、第 1の半導体スィッチ 206の オン設定時間が短く設定されることから、第 1の半導体スィッチ 206でのオン状態が 安定しないまま出力期間が到来し、安定した高電圧パルス Poを出力することができ ない。これは、直流電源部 202の電源電圧 Vdcが低い場合も同様である。
[0012] 本発明は、上述した高電圧パルス発生回路にさらに改良を加えることで、簡単な回 路構成で、第 1の半導体スィッチにおいて安定したオン状態を得ることができ、高電 圧パルス発生回路のコストの低廉化、小型化、高周波化、大電力化を図ることができ る高電圧パルス発生回路を提供することを目的とする。
[0013] 本発明に係る高電圧パルス発生回路は、直流電源部の両端に直列接続されたィ ンダクタ、第 1の半導体スィッチ及び第 2の半導体スィッチと、前記第 1の半導体スィ ツチのアノード端子に一端が接続された前記インダクタの他端に力ソード端子が接続 され、前記第 1の半導体スィッチのゲート端子にアノード端子が接続されたダイオード と、前記第 2の半導体スィッチのオンに基づいて、前記第 1の半導体スィッチに向け てゲート電流を流すゲート電流供給手段とを有することを特徴とする。
[0014] これにより、第 2の半導体スィッチのオンに基づいて、ゲート電流供給手段から第 1 の半導体スィッチに向けてゲート電流が流れるため、第 1の半導体スィッチのアノード
—力ソード間電圧が、第 2の半導体スィッチがオンとなった段階で、急峻に立ち下が り、第 1の半導体スィッチは急速にオンとなる。すなわち、第 1の半導体スィッチは、安 定したオン状態となる。
[0015] このように、本発明においては、簡単な回路構成で、第 1の半導体スィッチにおい て安定したオン状態を得ることができ、これにより、急峻な立ち上がり時間と極めて狭 いパルス幅を有する高電圧パルスを安定に出力させることができる。また、第 2の半 導体スィッチのオン時間を短縮することが可能となり、高電圧パルスの高周波化を図 ることがでさる。
[0016] そして、前記構成において、前記ゲート電流供給手段は、前記インダクタの他端と 前記第 1の半導体スィッチのゲート端子との間に接続された抵抗を有するようにして もよい。この場合、第 2の半導体スィッチがオンとなった段階で、抵抗に直流電源部 の電源電圧が印加され、第 1の半導体スィッチのゲート一力ソード間にゲート電流が 流れる。これにより、第 1の半導体スィッチは急速にオン状態に移行する。前記ゲート 電流供給手段は、前記インダクタの他端と前記第 1の半導体スィッチのゲート端子と の間に接続された抵抗とコンデンサとの並列回路を有するようにしてもよい。
[0017] また、前記構成に、さらに、前記直流電源部とは別に他の電源を有し、前記他の電 源の電源電圧は前記直流電源部の電源電圧よりも低く設定され、前記ゲート電流供 給手段は、前記他の電源と前記第 1の半導体スィッチのゲート端子との間に接続され ていてもよい。この場合、前記ゲート電流供給手段は、前記他の電源と前記第 1の半 導体スィッチのゲート端子との間に接続された抵抗を有するようにしてもょ 、。
[0018] 第 2の半導体スィッチがオンしている間において、抵抗に電流が流れることになるが 、その間、抵抗において印加電圧の 2乗に比例した損失が発生することになる。従つ て、電源電圧が直流電源部の電源電圧よりも低く設定された他の電源を通じてゲート 電流供給手段に電力を供給するようにすれば、抵抗での損失を低く抑えることができ る。これは、高電圧パルス発生回路のコストの低廉化、小型化、高周波化、大電力化 の促進につながる。なお、他の電源としては、第 2の半導体スィッチを駆動するため の ICで使われる電源 (IC電源)や、その他の外部電源を使用することができる。
[0019] また、前記構成において、前記ゲート電流供給手段は、前記他の電源と前記第 1の 半導体スィッチのゲート端子との間に接続された抵抗とコンデンサとの並列回路を有 するようにしてもよい。並列回路は微分回路と同様の作用を行うことから、この並列回 路から出力される電流波形は、第 2の半導体スィッチがオンとなる瞬間において、電 流値が急峻に立ち上がり、し力も、その電流値が抵抗のみを接続した場合の電流値 よりも例えば 10倍程度高い値を有する波形となる。従って、このような電流波形を有 するゲート電流が第 1の半導体スィッチに供給されることにより、第 1の半導体スイツ チはさらに急速にオン状態〖こ移行すること〖こなる。ゲート電流供給手段に接続される 他の電源の電源電圧を低くしても、瞬間的にゲート電流のピーク電流値を高くするこ とができるため、第 1の半導体スィッチの安定したオン状態を得ることができる。
[0020] また、前記構成において、前記直流電源部とは別に他の電源を有し、前記他の電 源の電源電圧は前記直流電源部の電源電圧よりも低く設定され、前記ゲート電流供 給手段は、前記他の電源と前記第 1の半導体スィッチのゲート端子との間に接続され たトランジスタと、前記第 2の半導体スィッチのオンにほぼ同期して前記トランジスタを オンさせ、ゲート電流値を制御する制御回路とを有するようにしてもょ 、。
[0021] この場合も、第 2の半導体スィッチがオンとなる瞬間において、トランジスタ力も第 1 の半導体スィッチのゲート端子にトランジスタにて制御された電流を流すことができる 。例えば、前記抵抗とコンデンサを接続した場合と同様に、第 1の半導体スィッチの ゲート端子に流れる電流の波形は、第 2の半導体スィッチがオンとなった瞬間におい て電流値が急峻に立ち上がり、し力も、その電流値が抵抗のみを接続した場合の電 流値よりも例えば 10倍程度高い値を有する波形とすることが可能となる。
[0022] また、前記構成において、前記第 1の半導体スィッチのゲート端子と前記ダイオード のアノード端子との接点と、前記ゲート電流供給手段との間に、前記接点側を順方向 とする整流素子が接続されていてもよい。第 2の半導体スィッチをオフにすると、イン ダクタに流れていた電流が、第 1の半導体スィッチのアノード端子→ゲート端子→ダ ィオードのルートで還流し、これによつて、第 1の半導体スィッチはオフ状態に移行す ることになるが、第 1の半導体スィッチと他の電源との間にゲート電流供給手段が接 続されている場合、各部位の電位関係によっては、上述した還流されるべき電流が ゲート電流供給手段に流れ込んで、第 1の半導体スィッチがオフ状態に移行しない 場合が起こり得る。そこで、前記整流素子を接続することで、還流されるべき電流の ゲート電流供給手段への流れ込みを阻止することができ、第 1の半導体スィッチを安 定にオフ状態に移行させることができる。これは、安定した高電圧ノ ルスの出力につ ながる。
[0023] 以上説明したように、本発明に係る高電圧パルス発生回路によれば、簡単な回路 構成で、第 1の半導体スィッチにおいて安定したオン状態を得ることができ、高電圧 パルス発生回路のコストの低廉化、小型化、高周波化、大電力化を図ることができる
図面の簡単な説明
[0024] [図 1]図 1は、第 1の実施の形態に係る高電圧パルス発生回路の構成を示す回路図 である。
[図 2]図 2A〜図 2Cは、第 1の実施の形態に係る高電圧パルス発生回路の各部の電 圧及び電流の動作波形を説明する図である。
[図 3]図 3は、第 1の実施の形態に係る高電圧パルス発生回路において、第 2の半導 体スィッチがオンとなった段階の第 1の半導体スィッチのアノード一力ソード間電圧の 変化を示す波形図である。
[図 4]図 4は、第 2の実施の形態に係る高電圧パルス発生回路の構成を示す回路図 である。
[図 5]図 5は、第 3の実施の形態に係る高電圧パルス発生回路の構成を示す回路図 である。
[図 6]図 6は、第 3の実施の形態に係る高電圧パルス発生回路において、第 2の半導 体スィッチがオンとなった段階に、第 1の半導体スィッチのゲート端子に流れ込むゲ ート電流を示す波形図である。
[図 7]図 7は、第 4の実施の形態に係る高電圧パルス発生回路の構成を示す回路図 である。
[図 8]図 8は、第 5の実施の形態に係る高電圧パルス発生回路の構成を示す回路図 である。
[図 9]図 9は、第 6の実施の形態に係る高電圧パルス発生回路の構成を示す回路図 である。
[図 10]図 10は、従来技術に係る高電圧パルス発生回路を示す図である。
[図 11]図 11は、従来技術に係る高電圧パルス発生回路において、第 2の半導体スィ ツチがオンとなった段階の第 1の半導体スィッチのアノード一力ソード間電圧の変化 を示す波形図である。
発明を実施するための最良の形態
[0025] 以下、本発明に係る高電圧パルス発生回路の実施の形態例を図 1〜図 9を参照し ながら説明する。
[0026] まず、第 1の実施の形態に係る高電圧パルス発生回路 10Aは、図 1に示すように、 直流電源 12 (電源電圧 Vdc)と高周波インピーダンスを低くするコンデンサ 14とを有 する直流電源部 16の両端 18及び 20に直列接続されたインダクタ 22、第 1の半導体 スィッチ 24及び第 2の半導体スィッチ 26を有する。
[0027] インダクタ 22は、一次卷線 30と二次卷線 32を有するトランス 34を有し、該トランス 3 4の二次卷線 32の両端 36及び 38 (出力端子)から高電圧パルス Poが取り出されるよ うになつている。二次卷線 32の出力端子 36及び 38には、図示しないが、抵抗負荷 が接続されたり、容量性負荷が接続される。このインダクタ 22の一端 40 (—次卷線 3 0の一端)には、第 1の半導体スィッチ 24のアノード端子が接続されている。
[0028] また、第 1の半導体スィッチ 24のゲート端子 Gとインダクタ 22の他端 42 (—次卷線 3 0の他端)間にダイオード部 44が接続されている。該ダイオード部 44は、並列とされ た 2つのダイオード 44a及び 44bを有し、各ダイオード 44a及び 44bのアノード端子が 第 1の半導体スィッチ 24のゲート端子 Gに接続されている。
[0029] さらに、第 1の半導体スィッチ 24のゲート端子 Gとインダクタ 22の他端 42間に抵抗 4 6が接続されている。
[0030] なお、第 1の半導体スィッチ 24に対して並列にダイオード 48が接続されている。つ まり、ダイオード 48は、そのアノード端子及び力ソード端子が、第 1の半導体スィッチ 2 4の力ソード端子及びアノード端子に接続され、第 1の半導体スィッチ 24に対して逆 並列接続されている。
[0031] 図 1の例では、第 2の半導体スィッチ 26が直流電源部 16の負極端子 20側に設けら れているが、正極端子 18側に設けても同じ効果をもたらすことはいうまでもない。また 、出力もインダクタ 22からではなぐ第 1の半導体スィッチ 24の両端から取り出すよう にしてもよい。
[0032] 第 2の半導体スィッチ 26は、自己消弧形あるいは転流消弧形のデバイスを用いるこ とができる力 この例では、アバランシヱ形ダイオードが逆並列で内蔵された電力用 金属酸化半導体電界効果トランジスタを使用している。第 2の半導体スィッチ 26のゲ ート端子とソース端子間には、駆動回路 50からの制御信号 Scが供給されるようにな つている。駆動回路 50は、第 2の半導体スィッチ 26をオン及びオフするためのパル ス信号 Spを発生するパルス発生回路 52と、該パルス発生回路 52から出力されたパ ルス信号 Spを増幅して制御信号 Scとして出力するアンプ 54とを有し、アンプ 54の + 側電源端子に IC電源 56 (例えば電源電圧 + 15V)が接続され、—側電源端子に第 2の半導体スィッチ 26のソース端子が接続されて 、る。
[0033] 第 1の半導体スィッチ 24は、電流制御形のデバイス又は自己消弧形あるいは転流 消弧形のデバイスを用いることができる力 この第 1の実施の形態では、ターンオフ時 の電圧上昇率 (dvZdt)に対する耐量が極めて大きぐ且つ、電圧定格の高い SIサ イリスタを用いている。
[0034] 次に、この第 1の実施の形態に係る高電圧パルス発生回路 10Aの回路動作につい て図 1の回路図と図 2A〜図 2Cの波形図とを参照しながら説明する。
[0035] まず、時点 tOにおいて、第 2の半導体スィッチ 26のゲート ソース間に制御信号 S cを供給することによって、第 2の半導体スィッチ 26がオンになる。
[0036] このとき、インダクタ 22の他端 42と第 1の半導体スィッチ 24のゲート端子 G間に接 続された抵抗 46に直流電源部 16の電源電圧 Vdcが印加され、第 1の半導体スイツ チ 24のゲート—力ソード間にゲート電流 Igが流れる。ゲート電流を Ig、電源電圧を Vd c、抵抗の抵抗値を Rとしたとき、ゲート電流 Igは、
Figure imgf000010_0001
となる。
[0037] 第 1の半導体スィッチ 24のゲート一力ソード間にゲート電流 Igが流れることにより、 第 1の半導体スィッチ 24は急速にオン状態に移行する。すなわち、図 3の波形 60に 示すように、第 1の半導体スィッチ 24のアノード一力ソード間電圧 V 1S 第 2の半導
AK
体スィッチ 26がオンとなった段階で、急峻に立ち下がり、第 1の半導体スィッチ 24は 急速にオン状態に移行する。このことから、前記抵抗 46は、第 2の半導体スィッチ 26 のオンに基づいて、第 1の半導体スィッチ 24に向けてゲート電流 Igを流すゲート電流 供給手段として機能する。
[0038] このようにして、時点 tOで第 2の半導体スィッチ 26及び第 1の半導体スィッチ 24が 導通すると、トランス 34に直流電源部 16の電源電圧 Vdcとほぼ同じ電圧が印加され 、トランス 34の一次インダクタンスを Lとしたとき、図 2Aに示すように、トランス 34の一 次卷線 30に流れる電流 IIは勾配 (VZL)で時間の経過に伴って直線状に増加する
[0039] そして、第 1の半導体スィッチ 24がオンとなっている期間 Tonにおいて、二次卷線 3 2の出力端子 36及び 38には、一定の負極性の電圧 (負極性パルス Pn)が出力され る。直流電源部 16の電源電圧を Vdc、トランス 34の卷数比(二次卷線 32の卷線数 n 2Z—次卷線 30の卷線数 nl)を nとしたとき、二次卷線 32の出力端子 36及び 38に 現れる出力電圧 Voのレベルは—nVである(Vo=—nV)。この期間 Tonにおいては 、二次卷線 32に流れる電流 12の波形も負極性のパルス Pnに準じた波形となる(図 2 B参照)。
[0040] その後、時点 tlにおいて、第 2の半導体スィッチ 26のゲート ソース間への制御信 号 Scの供給を停止することにより、第 2の半導体スィッチ 26がターンオフし、第 1の半 導体スィッチ 24の力ソード力もの電流もゼロ、つまり、開放状態となるため、一次卷線 30に流れていた電流 IIは遮断され、一次卷線 30は残留電磁エネルギによって逆誘 起電圧を発生させようとする力 ダイオード部 44におけるダイオード 44a及び 44bが 作用し、一次卷線 30の電流 IIは、第 1の半導体スィッチ 24のアノード端子 A→第 1 の半導体スィッチ 24のゲート端子 G→各ダイオード 44a及び 44bのアノード→各ダイ オード 44a及び 44bの力ソードで構成される経路 62 (破線で示す)に転流する。この とき、出力端子 36及び 38への高電圧パルス Poの発生が開始されると共に、トランス 34に発生する誘導起電力によって出力電圧 Voが急峻に上昇する。
[0041] そして、前記経路 62での電流の還流によって、第 1の半導体スィッチ 24内のキヤリ ァがなくなると、第 1の半導体スィッチ 24は急速にオフ状態に移行する。第 1の半導 体スィッチ 24がオフになって、電流 IIがゼロになった時点 t2で、高電圧パルス Poが ピークとなる。
[0042] 高電圧パルス Poのピーク値は、トランス 34の卷数比を n、トランス 34の一次インダク タンスを L、トランス 34の一次卷線 30を流れる電流 IIの遮断速度を (diZdt)としたと き、 nLl (diZdt)である。これは、第 1の半導体スィッチ 24のアノード—力ソード間電 圧 V としたとき、高電圧パルス Poのピーク値は nV となり、第 1の半導体スィッチ 24
AK AK
のアノード一力ソード間電圧 V の耐量以上の電圧となる。また、第 1の半導体スイツ
AK
チ 24の電気容量の等価容量を Cとすると、高電圧パルス Poのパルス幅 Tpは、
[数 1]
Figure imgf000011_0001
となる。
[0043] また、第 1の半導体スィッチ 24がターンオフすることによって、インダクタ 22の励磁 インダクタンスに流れていた電流力 Sインダクタ 22を介して出力端子 36及び 38間に接 続された図示しない負荷に転流する (破線で示す経路 64参照)。このとき、インダクタ 22に大きなパルス電圧が発生し、負荷 (例えば放電ギャップ)にて放電が発生するこ とになる。
[0044] このように、第 1の実施の形態に係る高電圧ノ ルス発生回路 10Aにおいては、第 2 の半導体スィッチ 26のオンに基づいて、抵抗 46を介して第 1の半導体スィッチ 24の ゲート端子 Gにゲート電流 Igが流れるため、第 1の半導体スィッチ 24のアノード一力ソ ード間電圧 V 力 第 2の半導体スィッチ 26がオンとなった段階で、急峻に立ち下が
AK
り、第 1の半導体スィッチ 24は急速にオンとなる。すなわち、第 1の半導体スィッチ 24 は、安定したオン状態となる。 従って、第 1の実施の形態においては、簡単な回路構成で、第 1の半導体スィッチ 24において安定したオン状態を得ることができ、これにより、急峻な立ち上がり時間と 極めて狭いパルス幅を有する高電圧パルス Poを安定に出力させることができる。また 、第 2の半導体スィッチ 26がオンしている時間(オン時間 Ton)を短縮することが可能 となり、高電圧パルス Poの高周波化を図ることができる。図示しないが、抵抗 46に対 して並列にコンデンサを接続するようにしてもょ 、。
[0045] なお、第 1の半導体スィッチ 24を含む一般の半導体スィッチは、寄生する容量成分 が存在するため、転流する電流はすべて負荷に流れるわけではなぐ第 1の半導体 スィッチ 24の寄生容量の充電のために電流が流れる。
[0046] 負荷が、放電ギャップのように容量性の負荷である場合においては、放電によって エネルギが消費される力 すべてが消費されな力つたり、放電が起こらずにエネルギ が多く残留することがある。
[0047] この場合、残った電荷力 Sインダクタ 22の励磁インダクタンスを介して放出され (イン ダクタ 22の励磁インダクタンスに電流が流れ)、再度インダクタ 22の励磁インダクタン スにエネルギが移動する。
[0048] 負荷にたまった電荷がなくなり、エネルギが励磁インダクタンスに移動し終わると、 2 つの経路(一点鎖線で示す第 1及び第 2の経路 66及び 68)に電流が流れることとな る。
[0049] 第 1の経路 66は、もう一度負荷へ向かう経路であり、第 2の経路 68は、直流電源部 16、第 2の半導体スィッチ 26の逆並列ダイオード、第 1の半導体スィッチ 24に逆並 列に接続されたダイオード 48を結ぶ経路である。
[0050] 但し、このときインダクタ 22で発生する電圧は、直流電源部 16と第 2の半導体スイツ チ 26の逆並列ダイオード及び第 1の半導体スィッチ 24の逆並列ダイオード 48で生 ずる電圧でクランプされ、電流の多くは第 2の経路 68に流れる。この第 2の経路 68を 通じての電流の流れは、直流電源部 16のコンデンサ 14にエネルギを回生する動作 になる。
[0051] つまり、負荷の余分なエネルギ(使われないエネルギ)を直流電源部 16に戻すとい う動作ということになり、直流電源部 16の高効率化に寄与する。 [0052] また、実際上、前記ダイオード 48がな 、と、再度、インダクタ 22の励磁インダクタン スと負荷で共振し、結果的に第 1の半導体スィッチ 24に耐圧を超える逆電圧が印加 されるおそれがあり、また、このとき重畳するパルス状のノイズで第 2の半導体スィッチ 26が誤動作する等の悪影響がある。従って、励磁インダクタンスのエネルギの処理 のためにも、前記ダイオード 48を接続することが望ま ヽ。
[0053] 次に、第 2の実施の形態に係る高電圧パルス発生回路 10Bについて図 4を参照し ながら説明する。なお、第 1の実施の形態に対応するものについては、同符号を記し 、その重複説明を省略する。
[0054] この第 2の実施の形態に係る高電圧パルス発生回路 10Bは、図 4に示すように、上 述した第 1の実施の形態に係る高電圧パルス発生回路 10Aとほぼ同様の構成を有 する力 IC電源 56と第 1の半導体スィッチ 24のゲート端子 Gとの間にダイオード 70と 抵抗 72の直列回路 74が接続されている点で異なる。
[0055] 図 4の例では、ダイオード部 44と第 1の半導体スィッチ 24のゲート端子 Gとの接点 7 6と、 IC電源 56との間に、ダイオード 70と抵抗 72の直列回路 74が接続され、特に、 前記接点 76側にダイオード 70が接続され、 IC電源 56側に抵抗 72が接続されて ヽ る。ダイオード 70は、接点 76側が力ソード、抵抗 72側がアノードとなるように接続され ている。
[0056] ここで、第 1の実施の形態に係る高電圧パルス発生回路 10Aと第 2の実施の形態 に係る高電圧パルス発生回路 10Bとを対比して説明する。
[0057] 第 1の実施の形態に係る高電圧パルス発生回路 10Aでは、インダクタ 22の他端 42 と第 1の半導体スィッチ 24のゲート端子 Gとの間に抵抗 46を接続している。従って、 第 2の半導体スィッチ 26がオンしている間に抵抗 46で発生する損失 Wlonは、パル ス発生回路 52から出力されるパルス信号 Spのデューティサイクル (パルス信号が高 レベルとなっている時間 Zパルス信号のパルス周期)を D、直流電源部 16の電源電 圧を Vdc、抵抗 46の抵抗値を Rとしたとき、
Wlon=D XVdc2/R
となる。具体的に、電源電圧 Vdcを 150V、パルス信号 Spのデューティサイクルを 0. 1、ゲート電流 Igとして 0. 3Aの電流を流すとすると、抵抗 46で発生する損失は、 Wlon=0. 1 X 1502/ (150/0. 3) =4. 5W
となる。
[0058] 一方、第 2の実施の形態に係る高電圧パルス発生回路 10Bでは、 IC電源 56と第 1 の半導体スィッチ 24のゲート端子 Gとの間に抵抗 72を接続している。従って、第 2の 半導体スィッチ 26がオンしている間に抵抗 72で発生する損失 W2onは、ノ ルス発生 回路 52から出力されるパルス信号 Spのデューティサイクルを D、 IC電源 56の電源電 圧を Vic、抵抗 72の抵抗値を Rとしたとき、
W2on=D XVic2/R
となる。具体的に、電源電圧 Vicを 15V、パルス信号 Spのデューティサイクルを 0. 1 、ゲート電流 Igとして 0. 3Aの電流を流すとすると、抵抗 72で発生する損失は、
W2on=0. 1 Χ 152/ (15/0. 3) =0. 45W
となる。つまり、第 2の実施の形態に係る高電圧パルス発生回路 10Bの抵抗 72で発 生する損失は、第 1の実施の形態の場合の 1Z10で済む。
[0059] このように、第 2の実施の形態に係る高電圧ノ ルス発生回路 10Bにおいては、抵抗 72での損失を低く抑えることができるため、高電圧ノ ルス発生回路 10Bのコストの低 廉化、小型化、高周波化、大電力化を効率よく図ることができる。
[0060] ところで、上述したように、第 2の半導体スィッチ 26をオフにすると、インダクタ 22に 流れていた電流が、第 1の半導体スィッチ 24のアノード端子 A→ゲート端子 G→ダイ オード部 44の経路 62で還流し、これによつて、第 1の半導体スィッチ 24はオフ状態 に移行することになる力 第 1の半導体スィッチ 24と IC電源 56との間に抵抗 72が接 続されている場合、各部位の電位関係によっては、上述した還流されるべき電流が 抵抗 72側に流れ込んで、第 1の半導体スィッチ 24がオフ状態に移行しなカゝつたり、 I C電源 56の電圧を大きく変化させ、 ICの誤動作を引き起こしたり、 IC電源 56が過電 圧になり、 ICを破壊したりする場合が起こり得る。
[0061] しかし、この第 2の実施の形態では、接点 76と抵抗 72との間にダイオード 70を接続 するようにしたので、還流されるべき電流の抵抗 72側への流れ込みを阻止することが でき、 IC電源 56の電圧を変動させずに、第 1の半導体スィッチ 24を安定にオフ状態 に移行させることができる。これは、安定した高電圧パルス Poの出力につながる。 [0062] 次に、第 3の実施の形態に係る高電圧パルス発生回路 IOCについて図 5を参照し ながら説明する。
[0063] この第 3の実施の形態に係る高電圧パルス発生回路 10Cは、図 5に示すように、上 述した第 2の実施の形態に係る高電圧パルス発生回路 10Bとほぼ同様の構成を有 するが、抵抗 72の代わりに、抵抗 72とコンデンサ 80との並列回路 82を接続した点で 異なる。
[0064] 並列回路 82は、微分回路と同様の作用を行うことから、この並列回路 82から出力さ れる電流波形、すなわち、ゲート電流 Igの波形は、図 6に示すように、第 2の半導体ス イッチ 26がオンとなる瞬間(時点 tO)において、電流値が急峻に立ち上がり、しかも、 その電流値が抵抗 72のみを接続した場合 (第 2の実施の形態に係る高電圧パルス 発生回路 10B参照)の電流値よりも例えば 10倍程度高い値を有する波形となる。
[0065] 従って、このような電流波形を有するゲート電流 Igが第 1の半導体スィッチ 24に供 給されることにより、第 1の半導体スィッチ 24はさらに急速にオン状態に移行すること になる。この場合、 IC電源 56の電源電圧 Vicを低くしても、あるいは、論理回路に接 続される例えば TTLレベル(3. 3 V〜 5 V)の電源を接続したとしても、瞬間的にゲー ト電流 Igのピーク電流値を高くすることができるため、第 1の半導体スィッチ 24につい て安定したオン状態を得ることができる。
[0066] 次に、第 4の実施の形態に係る高電圧パルス発生回路 10Dについて図 7を参照し ながら説明する。
[0067] この第 4の実施の形態に係る高電圧パルス発生回路 10Dは、図 7に示すように、上 述した第 2の実施の形態に係る高電圧パルス発生回路 10Bとほぼ同様の構成を有 する力 IC電源 56と第 1の半導体スィッチ 24のゲート端子 Gとの間に例えば pnpトラ ンジスタ 90が接続されている点と、第 2の半導体スィッチ 26のオンにほぼ同期して pn pトランジスタ 90をオンにする制御回路 92とを有する点で異なる。なお、 pnpトランジ スタ 90のコレクタ一ェミッタ間にはダイオード 94が接続される。
[0068] 制御回路 92の出力端子と pnpトランジスタ 90のベース端子との間には、抵抗 96と コンデンサ 98の直列回路 100とツエナーダイオード 102と抵抗 104の直列回路 106 との並列回路 108が接続されている。また、 pnpトランジスタ 90のコレクタ端子には IC 電源 56が接続され、ェミッタ端子にはダイオード 70を介して第 1の半導体スィッチ 24 のゲート端子 Gが接続されて 、る。
[0069] 制御回路 92としては、ノ ルス発生回路 52からのノ ルス信号 Spの反転信号を出力 するインバータ 110や、図示しな 、がパルス信号 Spの微分波形を出力する微分回路 等を用いることができる。
[0070] 従って、アンプ 54から出力されるパルス波形が立ち上がるとほぼ同時に、 pnpトラン ジスタ 90のベース端子には、ェミッタ端子の電位よりも低 、電圧が印加されることから 、 pnpトランジスタ 90がオンし、これにより、 IC電源 56からの電流カ¾!1 トランジスタ 9 0にて増幅されて第 1の半導体スィッチ 24のゲート端子 Gにゲート電流 Igとして供給 されることになる。 pnpトランジスタ 90のベースに接続するコンデンサ 98によりベース 電流に微分電流が流れ、 pnpトランジスタ 90のェミッタ力もコレクタには増幅された大 きな微分電流を流すことができる。この場合も、第 1の半導体スィッチ 24は急速にォ ン状態に移行することになる。
[0071] 次に、第 5の実施の形態に係る高電圧パルス発生回路 10Eについて図 8を参照し ながら説明する。
[0072] この第 5の実施の形態に係る高電圧パルス発生回路 10Eは、図 8に示すように、上 述した第 2の実施の形態に係る高電圧パルス発生回路 10Bとほぼ同様の構成を有 するが、直流電源部 16の負極端子 20側に別の電源 112を接続し、この電源 112と 第 1の半導体スィッチ 24のゲート端子 Gとの間にダイオード 70と抵抗 72とを接続した 点で異なる。
[0073] この電源 112の電源電圧 Veは、直流電源部 16の電源電圧 Vdcよりも低ければ、 I C電源 56にとらわれずに任意の電源電圧を設定することができる。
[0074] 次に、第 6の実施の形態に係る高電圧パルス発生回路 10Fについて図 9を参照し ながら説明する。
[0075] この第 6の実施の形態に係る高電圧パルス発生回路 10Fは、図 9に示すように、上 述した第 5の実施の形態に係る高電圧パルス発生回路 10Eとほぼ同様の構成を有 するが、直流電源部 16の負極端子 20側に接続された電源 112と第 1の半導体スイツ チ 24のゲート端子 Gとの間に、第 4の実施の形態に係る高電圧パルス発生回路と同 様の pnpトランジスタとダイオードを接続し、さらに、第 2の半導体スィッチ 26のオンに ほぼ同期して pnpトランジスタ 90をオンにする制御回路 92 (インバータ 110等)とを設 置した点で異なる。従って、第 4の実施の形態と同様の部材には同符号を記してその 重複説明を省略する。
[0076] 従って、アンプ 54から出力されるパルス波形が立ち上がるとほぼ同時に、 pnpトラン ジスタ 90のベース端子には、ェミッタ端子の電位よりも低 、電圧が印加されることから 、 pnpトランジスタ 90がオンし、これにより、 IC電源 56からの電流カ¾!1 トランジスタ 9 0にて増幅されて第 1の半導体スィッチ 24のゲート端子 Gにゲート電流 Igとして供給 されることになる。この場合も、第 1の半導体スィッチ 24は急速にオン状態に移行す ることになる。
[0077] 図示しないが、直流電源部 16の負極端子 20側に接続された電源 112と第 1の半 導体スィッチ 24のゲート端子 Gとの間に、第 3の実施の形態に係る高電圧パルス発 生回路と同様の並列回路 82 (抵抗 72とコンデンサ 80との並列回路)を接続するよう にしてもよい。
[0078] なお、本発明に係る高電圧パルス発生回路は、上述の実施の形態に限らず、本発 明の要旨を逸脱することなぐ種々の構成を採り得ることはもちろんである。

Claims

請求の範囲
[1] 直流電源部(16)の両端(18, 20)に直列接続されたインダクタ(22)、第 1の半導 体スィッチ(24)及び第 2の半導体スィッチ(26)と、
前記第 1の半導体スィッチ(24)のアノード端子に一端が接続された前記インダクタ (22)の他端 (42)に力ソード端子が接続され、前記第 1の半導体スィッチ(24)のゲ ート端子 (G)にアノード端子が接続されたダイオード (44)と、
前記第 2の半導体スィッチ(26)のオンに基づ 1ヽて、前記直流電源部(16)から前記 第 1の半導体スィッチ(24)のゲート端子 (G)にゲート電流 (Ig)を流すゲート電流供 給手段と
を有することを特徴とする高電圧パルス発生回路。
[2] 請求項 1記載の高電圧パルス発生回路において、
前記ゲート電流供給手段は、
前記インダクタ(22)の他端 (42)と前記第 1の半導体スィッチ(24)のゲート端子 (G )との間に接続された抵抗 (46)を有することを特徴とする高電圧パルス発生回路。
[3] 請求項 1記載の高電圧パルス発生回路において、
前記ゲート電流供給手段は、
前記インダクタ(22)の他端 (42)と前記第 1の半導体スィッチ(24)のゲート端子 (G )との間に接続された抵抗 (46)とコンデンサとの並列回路を有することを特徴とする 高電圧パルス発生回路。
[4] 請求項 1記載の高電圧パルス発生回路において、
さらに、前記直流電源部(16)とは別に他の電源 (56)を有し、
前記他の電源 (56)の電源電圧は前記直流電源部(16)の電源電圧よりも低く設定 され、
前記ゲート電流供給手段は、
前記他の電源 (56)と前記第 1の半導体スィッチ(24)のゲート端子 (G)との間に接 続されて!ヽることを特徴とする高電圧パルス発生回路。
[5] 請求項 4記載の高電圧パルス発生回路にぉ 、て、
前記ゲート電流供給手段は、 前記他の電源 (56)と前記第 1の半導体スィッチ(24)のゲート端子 (G)との間に接 続された抵抗 (72)を有することを特徴とする高電圧パルス発生回路。
[6] 請求項 4記載の高電圧パルス発生回路にぉ 、て、
前記ゲート電流供給手段は、
前記他の電源 (56)と前記第 1の半導体スィッチ(24)のゲート端子 (G)との間に接 続された抵抗 (72)とコンデンサ (80)との並列回路を有することを特徴とする高電圧 パルス発生回路。
[7] 請求項 4記載の高電圧パルス発生回路にぉ 、て、
さらに、前記直流電源部(16)とは別に他の電源 (56)を有し、
前記他の電源 (56)の電源電圧は前記直流電源部(16)の電源電圧よりも低く設定 され、
前記ゲート電流供給手段は、
前記他の電源 (56)と前記第 1の半導体スィッチ(24)のゲート端子 (G)との間に接 続されたトランジスタ(90)と、
前記第 2の半導体スィッチ(26)のオンにほぼ同期して前記トランジスタ(90)をオン し、ゲート電流値を制御する制御回路(92)とを有することを特徴とする高電圧パルス 発生回路。
[8] 請求項 2〜7のいずれか 1項に記載の高電圧パルス発生回路において、
前記第 1の半導体スィッチ(24)のゲート端子 (G)と前記ダイオード(22)のアノード 端子との接点と、前記ゲート電流供給手段との間に、前記接点側を順方向とする整 流素子(70)が接続されて!ヽることを特徴とする高電圧パルス発生回路。
PCT/JP2005/021734 2004-11-26 2005-11-25 高電圧パルス発生回路 WO2006057365A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/791,140 US7649284B2 (en) 2004-11-26 2005-11-25 High-voltage pulse generating circuit
JP2006547882A JP4783740B2 (ja) 2004-11-26 2005-11-25 高電圧パルス発生回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-343023 2004-11-26
JP2004343023 2004-11-26

Publications (1)

Publication Number Publication Date
WO2006057365A1 true WO2006057365A1 (ja) 2006-06-01

Family

ID=36498098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021734 WO2006057365A1 (ja) 2004-11-26 2005-11-25 高電圧パルス発生回路

Country Status (3)

Country Link
US (1) US7649284B2 (ja)
JP (1) JP4783740B2 (ja)
WO (1) WO2006057365A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008106546A2 (en) * 2007-02-27 2008-09-04 Stangenes Industries, Inc. High voltage pulsed power supply using solid state switches with voltage cell isolation
WO2009068164A1 (de) * 2007-11-27 2009-06-04 Peter Moosbauer Schaltung und verfahren zur regelung der stromversorgung eines verbrauchers mit strompulsen, die steile flanken aufweisen
US7554221B2 (en) 2004-05-04 2009-06-30 Stangenes Industries, Inc. High voltage pulsed power supply using solid state switches with droop compensation
US7817396B2 (en) * 2007-10-25 2010-10-19 General Electric Company High efficiency and high bandwidth plasma generator system for flow control and noise reduction
US8487482B2 (en) 2007-11-27 2013-07-16 Messtec Power Converter Gmbh Circuit for controlling power supply to a consumer and method for operating a circuit
WO2019220868A1 (ja) * 2018-05-18 2019-11-21 株式会社デンソー 放電装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9780688B2 (en) * 2013-01-18 2017-10-03 Diversified Technologies, Inc. System for regulating the output of a high-voltage, high-power, DC supply
US10056833B2 (en) * 2015-05-12 2018-08-21 Hamilton Sundstrand Corporation Voltage regulator for inductive loads

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172816A (ja) * 1986-01-27 1987-07-29 Toshiba Corp 半導体スイツチング素子用オンゲ−ト回路
JPH01288011A (ja) * 1988-05-14 1989-11-20 Matsushita Electric Works Ltd 静電誘導サイリスタの駆動回路
JPH04125057A (ja) * 1990-09-17 1992-04-24 Toshiba Corp ゲートターンオフサイリスタのゲート駆動装置
JPH1052030A (ja) * 1996-07-31 1998-02-20 Matsushita Electric Ind Co Ltd サイリスタ駆動回路
JP2004072994A (ja) * 2002-06-12 2004-03-04 Ngk Insulators Ltd 高電圧パルス発生回路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910738A (en) * 1995-04-07 1999-06-08 Kabushiki Kaisha Toshiba Driving circuit for driving a semiconductor device at high speed and method of operating the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62172816A (ja) * 1986-01-27 1987-07-29 Toshiba Corp 半導体スイツチング素子用オンゲ−ト回路
JPH01288011A (ja) * 1988-05-14 1989-11-20 Matsushita Electric Works Ltd 静電誘導サイリスタの駆動回路
JPH04125057A (ja) * 1990-09-17 1992-04-24 Toshiba Corp ゲートターンオフサイリスタのゲート駆動装置
JPH1052030A (ja) * 1996-07-31 1998-02-20 Matsushita Electric Ind Co Ltd サイリスタ駆動回路
JP2004072994A (ja) * 2002-06-12 2004-03-04 Ngk Insulators Ltd 高電圧パルス発生回路

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7554221B2 (en) 2004-05-04 2009-06-30 Stangenes Industries, Inc. High voltage pulsed power supply using solid state switches with droop compensation
WO2008106546A2 (en) * 2007-02-27 2008-09-04 Stangenes Industries, Inc. High voltage pulsed power supply using solid state switches with voltage cell isolation
WO2008106546A3 (en) * 2007-02-27 2008-10-23 Stangenes Ind Inc High voltage pulsed power supply using solid state switches with voltage cell isolation
US7817396B2 (en) * 2007-10-25 2010-10-19 General Electric Company High efficiency and high bandwidth plasma generator system for flow control and noise reduction
WO2009068164A1 (de) * 2007-11-27 2009-06-04 Peter Moosbauer Schaltung und verfahren zur regelung der stromversorgung eines verbrauchers mit strompulsen, die steile flanken aufweisen
US8487482B2 (en) 2007-11-27 2013-07-16 Messtec Power Converter Gmbh Circuit for controlling power supply to a consumer and method for operating a circuit
US8729871B2 (en) 2007-11-27 2014-05-20 Messtec Power Converter Gmbh Circuit and method for controlling the power supply of a consumer with current pulses having steep flanks
WO2019220868A1 (ja) * 2018-05-18 2019-11-21 株式会社デンソー 放電装置
JP2019201508A (ja) * 2018-05-18 2019-11-21 株式会社デンソー 放電装置
JP7075046B2 (ja) 2018-05-18 2022-05-25 株式会社デンソー 放電装置

Also Published As

Publication number Publication date
JPWO2006057365A1 (ja) 2008-06-05
JP4783740B2 (ja) 2011-09-28
US7649284B2 (en) 2010-01-19
US20070296278A1 (en) 2007-12-27

Similar Documents

Publication Publication Date Title
JP3811681B2 (ja) 高電圧パルス発生回路
WO2006057365A1 (ja) 高電圧パルス発生回路
US7154763B2 (en) Push-pull switching power converter
JP5642621B2 (ja) スイッチング電源装置
EP2099263B1 (en) Discharge lamp lighting circuit
JP2002010486A (ja) コンデンサ充電装置及び充電方法
JP4418212B2 (ja) 高電圧パルス発生回路
US7499293B2 (en) High voltage pulse power circuit
JP6673801B2 (ja) ゲートパルス発生回路およびパルス電源装置
JP4970009B2 (ja) スイッチング素子のゲート駆動回路
US20070242492A1 (en) Pulse generator circuit
WO2005096486A1 (ja) 高電圧パルス発生回路
CN210536518U (zh) 高压辅助电源及高压辅助电源控制系统
EP1693945A1 (en) Pulse generator circuit
JP2008048484A (ja) 直流交流変換装置の駆動方法
JP4516308B2 (ja) パルス発生装置
US20020122321A1 (en) Voltage converter
KR101656021B1 (ko) 직렬공진형 컨버터
WO2023089666A1 (ja) パルス電源装置
JP2006166602A (ja) 放電装置
KR100430670B1 (ko) 승압형 컨버터의 직렬 배열 구조를 갖는 펄스전압발생회로
JP2007181295A (ja) 放電装置
JP2021175332A (ja) 放電装置及びその制御方法
JP2002027753A (ja) スイッチング電源回路
JP2022060729A (ja) 低損失スナバ回路および電源装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006547882

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11791140

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05809717

Country of ref document: EP

Kind code of ref document: A1

WWP Wipo information: published in national office

Ref document number: 11791140

Country of ref document: US