JP2007209155A - 放電装置 - Google Patents

放電装置 Download PDF

Info

Publication number
JP2007209155A
JP2007209155A JP2006026852A JP2006026852A JP2007209155A JP 2007209155 A JP2007209155 A JP 2007209155A JP 2006026852 A JP2006026852 A JP 2006026852A JP 2006026852 A JP2006026852 A JP 2006026852A JP 2007209155 A JP2007209155 A JP 2007209155A
Authority
JP
Japan
Prior art keywords
transformer
discharge
discharge device
capacitor
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006026852A
Other languages
English (en)
Other versions
JP4824419B2 (ja
Inventor
Sozaburo Hotta
宗三郎 堀田
Takeshi Sakuma
健 佐久間
Takayuki Sekiya
高幸 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2006026852A priority Critical patent/JP4824419B2/ja
Publication of JP2007209155A publication Critical patent/JP2007209155A/ja
Application granted granted Critical
Publication of JP4824419B2 publication Critical patent/JP4824419B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Generation Of Surge Voltage And Current (AREA)
  • Electronic Switches (AREA)

Abstract

【課題】簡単な回路構成で、リアクタの例えば誘電体に蓄積されたエネルギーを効果的に放電エネルギーに利用できるようにして、電源効率の改善を図る。
【解決手段】放電装置10は、高電圧パルス発生回路12とリアクタ14とを有する。高電圧パルス発生回路12は、直流電源部16(電源電圧Vcd)と、該直流電源部16の+端子18及び−端子20間に直列接続された過飽和型のトランス22及び半導体スイッチ24とを有する。電源電圧Vcdは、トランス22を飽和させるのに十分な電圧に設定されている。リアクタ14は、誘電体によるキャパシタンスCcと、空間306によるキャパシタンスCgとが直列に接続され、さらに、2つのツェナーダイオード50a及び50bをアノード端子同士を接続した直列回路52を、キャパシタンスCgに並列に接続した構成を有する。
【選択図】図1

Description

本発明は、トランスに対して、該トランスが飽和するレベルの高い電圧を印加し、トランスが飽和に達するまでの期間に1つの放電を行わせ、トランスが飽和に至った後に別の放電を行わせる放電装置に関する。
最近、高電圧パルスの放電によるプラズマにより、脱臭、殺菌、有害ガスの分解等を行う技術が適応されるようになってきたが、このプラズマを発生させるために高電圧の極めて幅の狭いパルスを供給できる高電圧パルス発生回路が必要となる。
そこで、従来においては、例えば特許文献1に示すような高電圧パルス発生回路が提案されている。この高電圧パルス発生回路200は、図9に示すように、直流電源部202の両端にトランス204、第1半導体スイッチ206及び第2半導体スイッチ208を直列に接続し、第1半導体スイッチ206のアノード端子に一端が接続されたトランス204の一次巻線の他端にカソード、第1半導体スイッチ206のゲート端子にアノードとなるようにダイオード210を接続した極めて簡単な回路である。
そして、第2半導体スイッチ208をオンすることにより、第1半導体スイッチ206も導通し、トランス204の一次巻線に直流電源部202の電圧が印加され、該トランス204に誘導エネルギーが蓄積される。その後、第2半導体スイッチ208をオフさせると、第1半導体スイッチ206も急速にターンオフするため、トランス204の二次巻線に非常に急峻に立ち上がる極めて幅の狭い高電圧パルスが発生し、出力端子212及び214より高電圧Voを取り出すことができる。
この高電圧パルス発生回路200によれば、高電圧が印加される半導体スイッチを複数個使用することなく、簡単な回路構成で、急峻な立ち上がり時間と極めて狭いパルス幅を有する高電圧Voを供給することができる。
特開2004−72994号公報
ところで、上述した高電圧パルス発生回路200の出力端子212及び214間にリアクタを接続し、該リアクタにて放電を発生させることが考えられる。特に、無声放電は、アーク放電にならず安定した非平衡プラズマ状態を作り出せることや印加電圧波形に対する制約が少ない等の利点がある。無声放電のリアクタとしては、一対の電極を有し、該一対の電極間に誘電体と空間とを介在させたリアクタを用いることが考えられる。誘電体としては、例えばアルミナが用いられる。
ここで、図10〜図13を参照しながら一対の電極間に誘電体305と空間が介在されたリアクタ300での放電作用について説明する。
まず、リアクタ300は、図10及び図11に示すように、誘電体305を構成する上下に配された2つのアルミナ板(上アルミナ板302及び下アルミナ板304)を有する誘電体305と、上アルミナ板302と下アルミナ板304との間に形成される空間306の間隔を一定に保つための支持板308と、上アルミナ板302の上面に配された上部電極310と、下アルミナ板304の下面に設けられた下部電極312(図11参照)とを有する。
このリアクタ300を等価回路で示すと、図12に示すように、上アルミナ板302及び下アルミナ板304による誘電体305のキャパシタンスCcと、空間306によるキャパシタンスCgとが直列に接続された構成となる。
空間306に加わる電圧(空間放電電圧Vg)は未知であるが、リアクタ300全体に印加される電圧(出力電圧Vo)とキャパシタンスCcに加わる電圧(誘電体305の充電電圧Vc)がわかれば、以下の関係式から求めることができる。
Vg=Vo−Vc
誘電体305の充電電圧Vcは、電荷をQ、リアクタ300に流れる電流をIoとすると、
Vc=Q/Cc=(1/Cc)×∫Iodt
となる。
そして、図12に示すように、高電圧パルス発生回路200の出力端子212及び214間にリアクタ300を接続して、上述した通常の回路動作を行い、第1半導体スイッチ206をオフにした後にリアクタ300に印加される電圧(出力電圧Vo)の波形は、図13に示すように、まず、リアクタ300間に順方向のピーク電圧Vp1が現れ、続いて逆方向のピーク電圧Vp2が現れる波形となる。誘電体305に印加される電圧(誘電体305の充電電圧Vc)の波形は、出力電圧Voの順方向のピーク電圧Vp1が現れる時点において順方向のピーク電圧Vpとなる波形を示す。
一方、空間放電電圧Vgは、上述した計算式に基づいてプロットしてもわかるように、順方向の出力電圧Voの期間において、ある一定の正電圧Vg1にクランプされ、逆方向の出力電圧Voの期間において、ある一定の負電圧Vg2にクランプされる。
従って、リアクタ300の空間306は、等価回路的にみると、図12に示すように、2つのツェナーダイオード314a及び314bをアノード端子同士を接続した直列回路316と、キャパシタンスCgとを並列接続した構成となる。
次に、リアクタ300に印加される電圧(出力電圧Vo)等の動きについて図13も参照しながら説明する。
まず、第2の半導体スイッチ208をオンにすることによって、第1半導体スイッチ206が導通し、トランス204の励磁インダクタンスに電流が流れ、該トランス204に誘導エネルギーが蓄積される。その後、時点t10において、第2半導体スイッチ208をオフさせると、トランス204の励磁インダクタンスに流れていた電流は、リアクタ300に転流する。
この初期段階では、リアクタ300の空間306のキャパシタンスCgに電流Igが流れて該キャパシタンスCgを充電し(図12の破線P参照)、放電電圧になった時点で空間306の電圧がクランプされ(順方向の放電電圧Vg1にてクランプ)、電流Ioは直列回路316を流れる(図12の破線Q参照)。このとき、誘電体305も同時に急速に充電が始まり、誘電体305にエネルギーが蓄積される。
リアクタ300に流れる電流Ioが零になった時点t11で誘電体305の充電が終了すると同時に、誘電体305に蓄積されたエネルギーの一部が放電によって消費される。
その後、電流Ioが逆方向に流れ、これにより、リアクタ300の空間306の静電容量Cgに電流Igが流れて該静電容量が充電され(図12の破線R参照)、放電電圧になった時点で空間306の電圧がクランプされ(逆方向の放電電圧Vg2にてクランプ)、電流Ioは直列回路316を流れる(図12の破線S参照)。このとき、誘電体305に残っていたエネルギーの一部が放電によって消費される。リアクタ300にて消費されなかったエネルギーは、直流電源部202(図9参照)に戻ることになる。その結果、誘電体305の充電電圧Vcは0Vとなる。
従って、図9に示す高電圧パルス発生回路200において、第1半導体スイッチ206と並列で、且つ、第1半導体スイッチ206のカソード側をアノードとするようにダイオード318を接続することによって、誘電体305を有するリアクタ300で放電(誘電体バリア放電)を行わせた場合、放電に使用されなかった余分なエネルギーを直流電源部202に回生することができる。
しかしながら、誘電体バリア放電を行う図10のようなリアクタ300を高電圧パルス発生回路200で駆動する場合、誘電体305に蓄積したエネルギーの処理に困るという問題がある。上述のように、誘電体305に蓄積したエネルギーを直流電源部202にエネルギー回生する方法もあるが、回生効率が低く、電源の効率にあまり寄与しないという問題がある。
本発明はこのような課題を考慮してなされたものであり、簡単な回路構成で、リアクタの例えば誘電体に蓄積されたエネルギーを効果的に放電エネルギーに利用でき、電源効率の改善を図ることができる放電装置を提供することを目的とする。
また、本発明の他の目的は、上述の事項に加えて、急峻な放電を実現させることができ、大気圧でのパルスプラズマ技術の応用(ガス処理等)や高密度のプラズマの生成が可能となる放電装置を提供することにある。
また、本発明の他の目的は、上述の事項に加えて、前記急峻な放電の前段階に発生する放電を予備放電として利用することができ、広範囲、高密度のプラズマ生成が可能となる放電装置を提供することにある。
本発明に係る放電装置は、電源部の両端に直列接続された過飽和型のトランス及び少なくとも1つの半導体スイッチと、前記トランスの二次側に接続されたリアクタとを有し、前記半導体スイッチのターンオンに伴って前記トランスの二次側に流れる一方向の電流による前記リアクタでの第1の放電と、前記トランスの飽和に伴って前記トランスの二次側に流れる逆方向の電流による前記リアクタでの第2の放電とを発生させることを特徴とする。
これにより、リアクタに蓄積されたエネルギーを効果的に放電エネルギーに利用でき、電源効率の改善を図ることができる。また、第2の放電として、急峻な放電を実現させることができ、大気圧でのパルスプラズマ技術の応用(ガス処理等)や高密度のプラズマの生成が可能となる。さらに、急峻な第2の放電の前段階に発生する第1の放電を予備放電として利用することができる。通常、ストリーマを拡散させた均一なグロー状の放電を発生させる手段として、放電励起エキシマレーザ装置に使われている予備電離パルス放電を用いる方法があるが、この予備電離パルス放電として前記第1の放電を利用することで広範囲で、高密度のプラズマ生成が可能となる。
そして、本発明において、前記リアクタは、一対の電極と、該一対の電極間に介在された誘電体と空間とを有するようにしてもよい。この場合、第1の放電によってリアクタの誘電体に蓄積されたエネルギーが、効果的に放電エネルギーに変換されて第2の放電として発生することになる。
また、本発明において、前記電源部は、電源電圧が供給されるコンデンサを有し、前記半導体スイッチのターンオンに伴う前記コンデンサの放電と、前記トランスの飽和後における前記トランスの一次側の共振に伴う回生エネルギーの伝達によって前記コンデンサへの再充電とが行われるようにしてもよい。
これは、コンデンサに蓄積されたエネルギーの対処方法であり、コンデンサに電荷が残った状態(コンデンサが例えば正電圧となっている状態)でトランスが飽和すると、コンデンサにおいてそのまま放電が続き、コンデンサは逆方向に充電され、コンデンサは負電圧となる。さらに、トランスの一次側において共振が行われると、コンデンサに残っていたエネルギーが回生によってコンデンサに伝達され、コンデンサは再度一方向に充電されて、再び正電圧となる。つまり、コンデンサに残ったエネルギーがトランスの一次側の共振現象によって回生されることから、コンデンサに回生されたエネルギーを次の放電に利用させることができる。
そして、この場合、前記半導体スイッチと並列に、且つ、前記回生エネルギーの前記コンデンサへの伝達による逆方向の電流に対して順方向にダイオードが接続されていてもよい。これにより、コンデンサに残っていたエネルギーが共振現象を利用して回生される際に、その回生に伴う電流が半導体スイッチをバイパスしてダイオードを流れるため、コンデンサへの再充電を効率よく行わせることができる。
また、前記本発明において、前記トランスの一次巻線と並列に、且つ、前記回生エネルギーの前記コンデンサへの伝達による逆方向の電流に対して順方向に第2ダイオードが接続されていてもよい。
この場合、前記共振現象を利用して回生される逆方向の電流が、トランスの一次巻線をバイパスして流れるため、コンデンサへの再充電をスムーズに行わせることができ、コンデンサへの充電効率をさらに向上させることができる。
また、本発明において、前記半導体スイッチと直列に、且つ、前記トランスの飽和後に、前記トランスの一次側に流れる一方向の電流に対して順方向に第3ダイオードが接続されていてもよい。
この場合、半導体スイッチをターンオフしなくても、半導体スイッチと並列に接続されたダイオードを介して回生に伴う逆方向の電流が流れることから、半導体スイッチを駆動制御する回路(制御回路)の構成を簡単にすることができ、コストの低廉化に有利になる。
また、本発明において、前記コンデンサに並列に、且つ、前記一方向の電流に対して順方向に第4ダイオードが接続されていてもよい。この場合、コンデンサの残留電荷を第4ダイオードにて消費させることができる。なお、残留電荷の熱的消費を効率よく行うために、第4ダイオードに直列に抵抗を接続してもよい。
また、本発明において、前記トランスの二次側に、飽和した前記トランスの前記飽和をリセットするためのリセット回路を有するようにしてもよい。これにより、第1の放電→第2の放電というサイクルを繰り返し行うことができ、脱臭、殺菌、有害ガスの分解、浄化等を効率よく行わせることができる。
以上説明したように、本発明に係る放電装置によれば、以下の効果を奏することができる。
(1)簡単な回路構成で、リアクタの例えば誘電体に蓄積されたエネルギーを効果的に放電エネルギーに利用でき、電源効率の改善を図ることができる。
(2)急峻な放電を実現させることができ、大気圧でのパルスプラズマ技術の応用(ガス処理等)や高密度のプラズマの生成が可能となる。
(3)前記急峻な放電の前段階に発生する放電を予備放電として利用することができ、広範囲、高密度のプラズマ生成が可能となる。
以下、本発明に係る放電装置の実施の形態例を図1〜図8を参照しながら説明する。
本実施の形態に係る放電装置10は、図1に示すように、高電圧パルス発生回路12とリアクタ14とを有する。
高電圧パルス発生回路12は、直流電源部16(電源電圧Vcd)と、該直流電源部16の+端子18及び−端子20間に直列接続されたトランス22及び半導体スイッチ24とを有する。
直流電源部16は、+端子18及び−端子20間に接続されたコンデンサ26と、該コンデンサ26に対して充電を行うコンデンサ充電器28と、該コンデンサ充電器28と+端子18間に接続されたインダクタ30とを有する。コンデンサ26の両端電圧である所定の電源電圧Vcdは、トランス22を飽和させるのに十分な電圧に設定されている。
トランス22は、一次巻線32と二次巻線34を有し、該トランス22の二次巻線34の第1出力端子36及び第2出力端子38から高電圧が取り出されるようになっている。すなわち、二次巻線34の第1出力端子36及び第2出力端子38間には、リアクタ14が接続される。また、トランス22の一次側と二次側とが加極性となるように一次巻線32と二次巻線34の巻き始めが決定されている。
また、このトランス22における一次巻線32の一端40には、半導体スイッチ24のアノード端子が接続され、この半導体スイッチ24に対して並列に第1ダイオード42が接続されている。この第1ダイオード42は、そのアノード端子が半導体スイッチ24のカソード端子に接続され、カソード端子が半導体スイッチ24のアノード端子に接続されている。
また、トランス22の一次巻線32に対して並列に第2ダイオード44が接続されている。この第2ダイオード44は、アノード端子が一次巻線32の一端40(半導体スイッチ24のアノード端子)に接続され、カソード端子が一次巻線32の他端46に接続されている。なお、第2ダイオードは省略してもよい。第2ダイオードを省略した例を参考として図7に示す。
半導体スイッチ24は、電流制御形のデバイス又は自己消弧形あるいは転流消弧形のデバイスを用いることができるが、この実施の形態では、ターンオフ時の電圧上昇率(dv/dt)に対する耐量が極めて大きく、且つ、電圧定格の高いSIサイリスタを用いている。半導体スイッチ24のゲート端子とカソード端子間には、SIサイリスタのオン/オフを制御する制御回路48が接続されている。
一方、リアクタ14は、高電圧パルス発生回路12におけるトランス22の第1出力端子36及び第2出力端子38間に接続され、図10及び図11と同様の構成を有する。すなわち、上下に配された2つのアルミナ板(上アルミナ板302及び下アルミナ板304)を有する誘電体305と、上アルミナ板302と下アルミナ板304との間に形成される空間306の間隔を一定に保つための支持板308と、上アルミナ板302の上面に配された上部電極310と、下アルミナ板304の下面に設けられた下部電極312とを有する。
このリアクタ14を等価回路で示すと、誘電体305(上アルミナ板302及び下アルミナ板304)によるキャパシタンスCcと、空間306によるキャパシタンスCgとが直列に接続され、さらに、2つのツェナーダイオード50a及び50bをアノード端子同士を接続した直列回路52を、キャパシタンスCgに並列に接続した構成となる。
そして、この実施の形態に係る放電装置10は、トランス22として、過飽和型トランスを用い、さらに、半導体スイッチ24のターンオンに伴ってトランス22の二次側に流れる一方向の電流により、リアクタ14において第1の放電(順放電)を発生させ(第1モードM1)、その後、トランス22の飽和に伴ってトランス22の二次側に流れる逆方向の電流により、リアクタ14において第2の放電(逆放電)を発生させるようにしている(第2モードM2)。
ここで、本実施の形態に係る放電装置10の回路動作について図1〜図5を参照しながら説明する。
なお、図2は、トランス22の二次側、特に、リアクタ14に印加される出力電圧Vo、リアクタ14の空間306に印加される電圧Vg、リアクタ14の誘電体305に印加される電圧Vc、リアクタ14に流れる出力電流Ioの波形を示す図であり、トランス22の一次側の電圧及び電流の波形は省略する。
また、図3は、トランス22の一次側、特に、コンデンサ26の両端電圧Vcd、コンデンサ26に流れる電流Icd、半導体スイッチ24に流れる電流Is、第1ダイオード42に流れる電流Id1の波形を示す図であり、トランス22の二次側の電圧及び電流の波形は省略する。
まず、直流電源部16のコンデンサ26に所定の電源電圧Vcdが充電されている段階から説明すると、図2及び図3の時点t0において、半導体スイッチ24がターンオンすると、第1モードM1が開始され、トランス22にコンデンサ26の両端電圧、すなわち、トランス22を飽和させるのに十分な所定の電源電圧Vcdが印加され、トランス22の一次側において、コンデンサ26の+端子18→トランス22の一次巻線32→半導体スイッチ24→コンデンサ26の−端子20の第1経路54(図1参照)で電流Icdが流れる。
また、トランス22の二次側において、トランス22の二次巻線34→第1出力端子36→誘電体305(キャパシタンスCc)→空間306(キャパシタンスCg)→第2出力端子38→二次巻線34の第2経路56(図1参照)で出力電流Io(図2参照)が流れる。この第2経路56に出力電流Ioが流れることで、リアクタ14の第1出力端子36及び第2出力端子38間の出力電圧Vo(図2参照)が上昇する。なお、トランス22の漏れインダクタンスの影響によって、出力電圧Voがピーク値に達するまでにある程度時間がかかる。
この第1モードM1では、リアクタ14の空間306のキャパシタンスCgに電流Ioが流れて該キャパシタンスCgを充電し、放電電圧になった時点で空間306の電圧がクランプされ(順方向の放電電圧にてクランプ:順放電)、電流Ioは直列回路52を流れる。このとき、誘電体305(上アルミナ板302及び下アルミナ板304)も同時に急速に充電が始まり、誘電体305にエネルギーが蓄積される。
そして、出力電圧Voがピーク値に達した時点t1で、トランス22が飽和状態となり、トランス22の二次側のインダクタンスが急激に小さくなる。これにより、図4に示すように、今度は、高電圧に充電されていたリアクタ14の誘電体305から磁気飽和したトランス22に向かって出力電流Ioが流れる(第2モードM2:図2参照)。すなわち、この第2モードM2では、リアクタ14の誘電体305に蓄積されていた電荷による起電力によって、誘電体305(キャパシタンスCc)→第1出力端子36→トランス22の二次巻線34→第2出力端子38→空間306(キャパシタンスCg)→誘電体305(キャパシタンスCc)で示す第3経路58で、つまり、第2経路56(図1参照)とは逆方向の経路で出力電流Ioが急激に流れる。
これにより、リアクタ14の空間306のキャパシタンスCgが充電され、放電電圧になった時点で空間306の電圧がクランプされる(逆方向の放電電圧にてクランプ:逆放電)。この逆方向の出力電流−Ioによる放電(逆放電)によって、誘電体305に残存するエネルギーによる電圧Vcが空間306に印加され、出力電圧Voは急峻に低下することとなる。この逆放電によって、誘電体305に残っていたエネルギーはすべて消費されることになる。
一方、トランス22の一次側では、図5に示すように、半導体スイッチ24がターンオンした時点t0から、コンデンサ26の+端子18→トランス22の一次巻線32→半導体スイッチ24→コンデンサ26の−端子20で示す第4経路60で電流Icd(図3参照)が流れ、コンデンサ26の両端電圧Vcd(図3参照)は徐々に下降する。つまり、コンデンサ26での一方向の放電が行われる。
その後、コンデンサ26に電荷が残った状態(コンデンサ26が例えば正電圧となっている状態)でトランス22が飽和すると(時点t1以降)、コンデンサ26においてそのまま放電が続き、コンデンサ26は逆方向に充電され、電流Icdがピーク値になった時点で、コンデンサ26の両端電圧Vcdがほぼ零になる。
その後、トランス22の一次側において共振(コンデンサ26の容量と配線及び一次巻線32のインダクタンスによるLC共振)が行われると、コンデンサ26に残っていたエネルギーが回生によってコンデンサ26に伝達される。この回生によって、コンデンサ26の−端子20→第1ダイオード42→第2ダイオード44→コンデンサ26の+端子18で示す第5経路で電流Icdが流れ、コンデンサ26は再度一方向に充電されて、再び正電圧となる。
なお、制御回路48による半導体スイッチ24のターンオフは、電流Icdが零となった時点t2以降で行われる。
このように、本実施の形態に係る放電装置10においては、トランス22として、過飽和型トランスを用い、さらに、半導体スイッチ24のターンオンに伴ってトランス22の二次側に流れる一方向の電流により、リアクタ14において第1の放電(順放電)を発生させ、その後、トランス22の飽和に伴ってトランス22の二次側に流れる逆方向の電流により、リアクタ14において第2の放電(逆放電)を発生させるようにしたので、第1の放電によってリアクタ14に蓄積されたエネルギーを効率的に放電エネルギーに変換して第2の放電として利用でき、電源効率の改善を図ることができる。
また、第2の放電として、急峻な放電を実現させることができ、大気圧でのパルスプラズマ技術の応用(ガス処理等)や高密度のプラズマの生成が可能となる。
さらに、急峻な第2の放電の前段階に発生する第1の放電を予備放電として利用することができる。通常、ストリーマを拡散させた均一なグロー状の放電を発生させる手段として、放電励起エキシマレーザ装置に使われている予備電離パルス放電を用いる方法があるが、この予備電離パルス放電として前記第1の放電を利用することで広範囲で、高密度のプラズマ生成が可能となる。
特に、この実施の形態に係る放電装置10においては、図3に示すように、トランス22の飽和後において、トランス22の一次側にて共振が行われると、コンデンサ26に残っていたエネルギーが回生によってコンデンサ26に伝達され、コンデンサは再度一方向に充電されて、再び正電圧となる。つまり、コンデンサ26に残ったエネルギーがトランス22の一次側の共振現象によって回生されることから、コンデンサ26に回生されたエネルギーを次の放電に利用させることができる。
また、半導体スイッチ24と並列に、且つ、回生エネルギーのコンデンサ26への伝達による逆方向の電流に対して順方向に第1ダイオード42を接続するようにしたので、コンデンサ26に残っていたエネルギーが共振現象を利用して回生される際に、その回生に伴う逆方向の電流が半導体スイッチ24をバイパスして第1ダイオード42を流れるため、コンデンサ26への再充電を効率よく行わせることができる。
また、トランス22の一次巻線と並列に、且つ、回生エネルギーのコンデンサ26への伝達による逆方向の電流に対して順方向に第2ダイオード44を接続するようにしたので、前記共振現象を利用して回生される逆方向の電流が、トランス22の一次巻線32をバイパスして流れるため、コンデンサ26への再充電をスムーズに行わせることができ、コンデンサ26への充電効率をさらに向上させることができる。
次に、上述した実施の形態に係る放電装置10のいくつかの変形例について図6〜図8を参照しながら説明する。
まず、第1の変形例に係る放電装置10aは、図6に示すように、上述した本実施の形態に係る放電装置10とほぼ同様の構成を有するが、半導体スイッチ24に対して直列に第3ダイオード64を接続した点で異なる。具体的には、第3ダイオード64のカソード端子を半導体スイッチ24のアノード端子に接続し、第3ダイオード64のアノード端子を一次巻線32の一端40(第1ダイオード42のカソード端子)に接続するようにしている。
これにより、半導体スイッチ24をターンオフする必要がなくなるため、半導体スイッチ24を駆動制御する制御回路48の構成を簡単にすることができる。半導体スイッチ24としてSIサイリスタを用いた場合、通常、SIサイリスタでターンオフを実現するためには、アノード・カソード間を流れる電流とほぼ同じ電流をゲートから引き抜く必要がある。これは、ゲート付近に空乏層を形成するために不可欠な条件であり、そのため大電流を制御することが可能なゲート回路を必要とする。さらに、電流遮断時の高di/dtを実現するためには、大電流をスナバ回路を接続することなく遮断する必要があり、信頼性の点で不利になるおそれがある。この第1の変形例では、半導体スイッチ24としてSIサイリスタを用いても、該SIサイリスタをターンオフさせる必要がないため、上述のような懸念を考慮する必要がなく、設計の自由度を向上させることができ、しかも、コストの低廉化に有利になる。
次に、第2の変形例に係る放電装置10bは、図7に示すように、上述した本実施の形態に係る放電装置10とほぼ同様の構成を有するが、コンデンサ26に対して並列に第4ダイオード66を接続した点で異なる。具体的には、第4ダイオード66のカソード端子をコンデンサ26の+端子に接続し、第4ダイオード66のアノード端子をコンデンサ26の−端子に接続するようにしている。
これにより、コンデンサ26の残留電荷を第4ダイオード66にて消費させることができる。なお、残留電荷の熱的消費を効率よく行うために、図示しないが、第4ダイオード66に直列に抵抗を接続してもよい。
次に、第3の変形例に係る放電装置10cは、図8に示すように、上述した本実施の形態に係る放電装置10とほぼ同様の構成を有するが、トランス22の二次側に、トランス22の飽和状態をリセットするためのリセット回路68を有する点で異なる。具体的には、このリセット回路68は、二次巻線34とは別に、トランス22の一次側に対して加極性となるように巻かれたリセット用巻線70と、このリセット用巻線70に直列に接続された直流電源72、抵抗74及びリアクトル76とを有する。
そして、第1モードM1にて一次巻線32に電流Icdが流れると、二次巻線34に出力電流Ioが流れると共に、リセット回路68にも電流が流れ、リアクトル76に誘導エネルギーが蓄積される。
トランス22が飽和した段階(第2モードM2)で、二次巻線34に急峻に出力電流Ioが流れて、パルス電圧がリセット回路68に加わっても、リアクトル76に蓄積されたエネルギーによってブロックすることができる。
その後、第2モードM2が終了して、出力電流Ioがほぼ零となった段階で、リアクトル76に蓄積されていたエネルギーが解放されて、リセット用巻線70に電流が流れることで、トランス22の飽和状態がリセットされることになる。
従って、第1の放電(第1モードでの順放電)→第2の放電(第2モードでの逆放電)というサイクルを繰り返し行うことができ、脱臭、殺菌、有害ガスの分解、浄化等を効率よく行わせることができる。
なお、本発明に係る放電装置は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。
本実施の形態に係る放電装置の構成を、第1モードでの電流の流通経路と共に示す回路図である。 本実施の形態に係る放電装置において、リアクタに印加される電圧Vo、リアクタの空間に印加される電圧Vg、リアクタの誘電体に印加される電圧Vc、リアクタに流れる電流Ioの波形を示す図である。 本実施の形態に係る放電装置において、コンデンサの両端電圧Vcd、コンデンサに流れる電流Icd、半導体スイッチに流れる電流Is、第1ダイオードに流れる電流Id1の波形を示す図である。 本実施の形態に係る放電装置における第2モードでの電流の流通経路を示す説明図である。 本実施の形態に係る放電装置におけるトランスの一次側での電流の動きを示す説明図である。 第1の変形例に係る放電装置の要部の構成を示す回路図である。 第2の変形例に係る放電装置の要部の構成を示す回路図である。 第3の変形例に係る放電装置の構成を示す回路図である。 従来例に係る高電圧パルス発生回路の構成を示す回路図である。 無声放電で使用される一般的なリアクタの構成を示す斜視図である。 無声放電で使用される一般的なリアクタの構成を示す縦断面図である。 高電圧パルス発生回路の出力端子間に接続されるリアクタの等価回路を示す図である。 従来例に係る高電圧パルス発生回路において、リアクタに印加される電圧Vo、リアクタの空間に印加される電圧Vg、リアクタの誘電体に印加される電圧Vc、リアクタに流れる電流Io、リアクタの空間に流れる電流Igの波形を示す図である。
符号の説明
10、10a〜10c…放電装置 12…高電圧パルス発生回路
14…リアクタ 16…直流電源部
22…トランス 24…半導体スイッチ
26…コンデンサ 32…一次巻線
34…二次巻線 42…第1ダイオード
44…第2ダイオード 48…制御回路
64…第3ダイオード 66…第4ダイオード
68…リセット回路

Claims (8)

  1. 電源部の両端に直列接続された過飽和型のトランス及び少なくとも1つの半導体スイッチと、
    前記トランスの二次側に接続されたリアクタとを有し、
    前記半導体スイッチのターンオンに伴って前記トランスの二次側に流れる一方向の電流による前記リアクタでの第1の放電と、
    前記トランスの飽和に伴って前記トランスの二次側に流れる逆方向の電流による前記リアクタでの第2の放電とを発生させることを特徴とする放電装置。
  2. 請求項1記載の放電装置において、
    前記リアクタは、一対の電極と、該一対の電極間に介在された誘電体と空間とを有することを特徴とする放電装置。
  3. 請求項1又は2記載の放電装置において、
    前記電源部は、電源電圧が供給されるコンデンサを有し、
    前記半導体スイッチのターンオンに伴う前記コンデンサの放電と、
    前記トランスの飽和後における前記トランスの一次側の共振に伴う回生エネルギーの伝達によって前記コンデンサへの再充電とが行われることを特徴とする放電装置。
  4. 請求項3記載の放電装置において、
    前記半導体スイッチと並列に、且つ、前記回生エネルギーの前記コンデンサへの伝達による逆方向の電流に対して順方向にダイオードが接続されていることを特徴とする放電装置。
  5. 請求項4記載の放電装置において、
    前記トランスの一次巻線と並列に、且つ、前記回生エネルギーの前記コンデンサへの伝達による逆方向の電流に対して順方向に第2ダイオードが接続されていることを特徴とする放電装置。
  6. 請求項4又は5記載の放電装置において、
    前記半導体スイッチと直列に、且つ、前記トランスの飽和後に、前記トランスの一次側に流れる一方向の電流に対して順方向に第3ダイオードが接続されていることを特徴とする放電装置。
  7. 請求項3〜6のいずれか1項に記載の放電装置において、
    前記コンデンサに並列に、且つ、前記一方向の電流に対して順方向に第4ダイオードが接続されていることを特徴とする放電装置。
  8. 請求項1〜7のいずれか1項に記載の放電装置において、
    前記トランスの二次側に、飽和した前記トランスの前記飽和をリセットするためのリセット回路を有することを特徴とする放電装置。

JP2006026852A 2006-02-03 2006-02-03 放電装置 Expired - Fee Related JP4824419B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006026852A JP4824419B2 (ja) 2006-02-03 2006-02-03 放電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006026852A JP4824419B2 (ja) 2006-02-03 2006-02-03 放電装置

Publications (2)

Publication Number Publication Date
JP2007209155A true JP2007209155A (ja) 2007-08-16
JP4824419B2 JP4824419B2 (ja) 2011-11-30

Family

ID=38488107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006026852A Expired - Fee Related JP4824419B2 (ja) 2006-02-03 2006-02-03 放電装置

Country Status (1)

Country Link
JP (1) JP4824419B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012127896A1 (ja) * 2011-03-22 2012-09-27 日本碍子株式会社 パルス発生装置及びパルス発生装置の設置方法
KR20190038582A (ko) * 2016-08-25 2019-04-08 클라테이스 전기 펄스 발생기

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03261186A (ja) * 1990-03-09 1991-11-21 Hitachi Ltd パルス電源装置
JPH09241007A (ja) * 1996-03-08 1997-09-16 Ebara Corp オゾン発生方法及び装置
JPH11288796A (ja) * 1998-03-31 1999-10-19 Mitsubishi Electric Corp プラズマ発生用電源装置
JP2000323772A (ja) * 1999-05-07 2000-11-24 Meidensha Corp パルス電源装置
JP2002345263A (ja) * 2001-05-17 2002-11-29 Miura Co Ltd 無声放電用電源装置
JP2004072994A (ja) * 2002-06-12 2004-03-04 Ngk Insulators Ltd 高電圧パルス発生回路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03261186A (ja) * 1990-03-09 1991-11-21 Hitachi Ltd パルス電源装置
JPH09241007A (ja) * 1996-03-08 1997-09-16 Ebara Corp オゾン発生方法及び装置
JPH11288796A (ja) * 1998-03-31 1999-10-19 Mitsubishi Electric Corp プラズマ発生用電源装置
JP2000323772A (ja) * 1999-05-07 2000-11-24 Meidensha Corp パルス電源装置
JP2002345263A (ja) * 2001-05-17 2002-11-29 Miura Co Ltd 無声放電用電源装置
JP2004072994A (ja) * 2002-06-12 2004-03-04 Ngk Insulators Ltd 高電圧パルス発生回路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012127896A1 (ja) * 2011-03-22 2012-09-27 日本碍子株式会社 パルス発生装置及びパルス発生装置の設置方法
US8466730B2 (en) 2011-03-22 2013-06-18 Ngk Insulators, Ltd. Pulse generator and method of disposing pulse generator
KR20190038582A (ko) * 2016-08-25 2019-04-08 클라테이스 전기 펄스 발생기
KR102315531B1 (ko) 2016-08-25 2021-10-20 클라테이스 전기 펄스 발생기

Also Published As

Publication number Publication date
JP4824419B2 (ja) 2011-11-30

Similar Documents

Publication Publication Date Title
US7084528B2 (en) High-voltage pulse generating circuit
US7919887B2 (en) High repetitous pulse generation and energy recovery system
JP2006230124A (ja) 着磁器用電源
WO2006057365A1 (ja) 高電圧パルス発生回路
JP4824419B2 (ja) 放電装置
JP2010154510A (ja) パルス発生回路
JP4684765B2 (ja) 電気回路及びパルス電源
JP4418212B2 (ja) 高電圧パルス発生回路
JP4783628B2 (ja) 放電装置
US7482786B2 (en) Electric discharger using semiconductor switch
JP5075775B2 (ja) パルスレーザ用電源装置
JP4516308B2 (ja) パルス発生装置
JP2004220985A (ja) プラズマ処理装置及びプラズマ処理方法
JP2000323772A (ja) パルス電源装置
WO2005041389A1 (ja) パルス発生回路
WO2012153764A1 (ja) パルス発生回路
JP5143547B2 (ja) パルス電源回路
JP2007104797A (ja) パルス電源装置
JP2021175332A (ja) 放電装置及びその制御方法
KR100510177B1 (ko) 비선형 캐패시터와 자력압축을 이용하는 나노초 펄스전압발생기
JP3376563B2 (ja) パルス発生装置およびこれを用いた集塵装置
JP3379653B2 (ja) パルス発生装置およびこれを用いた集塵装置
JP2004336923A (ja) 電源装置
JP2007174734A (ja) 高電圧パルス電源
JP2003009549A (ja) パルス電源

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110908

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees