ES2886364T3 - Configuraciones de eyector y cuerpo de sustentación - Google Patents

Configuraciones de eyector y cuerpo de sustentación Download PDF

Info

Publication number
ES2886364T3
ES2886364T3 ES16855888T ES16855888T ES2886364T3 ES 2886364 T3 ES2886364 T3 ES 2886364T3 ES 16855888 T ES16855888 T ES 16855888T ES 16855888 T ES16855888 T ES 16855888T ES 2886364 T3 ES2886364 T3 ES 2886364T3
Authority
ES
Spain
Prior art keywords
ejector
fluid
control surface
leading edge
convex surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES16855888T
Other languages
English (en)
Inventor
Andrei Evulet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jetoptera Inc
Original Assignee
Jetoptera Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jetoptera Inc filed Critical Jetoptera Inc
Application granted granted Critical
Publication of ES2886364T3 publication Critical patent/ES2886364T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C9/38Jet flaps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D29/00Power-plant nacelles, fairings, or cowlings
    • B64D29/02Power-plant nacelles, fairings, or cowlings associated with wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C15/00Attitude, flight direction, or altitude control by jet reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C15/00Attitude, flight direction, or altitude control by jet reaction
    • B64C15/14Attitude, flight direction, or altitude control by jet reaction the jets being other than main propulsion jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C21/00Influencing air flow over aircraft surfaces by affecting boundary layer flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C21/00Influencing air flow over aircraft surfaces by affecting boundary layer flow
    • B64C21/02Influencing air flow over aircraft surfaces by affecting boundary layer flow by use of slot, ducts, porous areas or the like
    • B64C21/04Influencing air flow over aircraft surfaces by affecting boundary layer flow by use of slot, ducts, porous areas or the like for blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C23/00Influencing air flow over aircraft surfaces, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C23/00Influencing air flow over aircraft surfaces, not otherwise provided for
    • B64C23/005Influencing air flow over aircraft surfaces, not otherwise provided for by other means not covered by groups B64C23/02 - B64C23/08, e.g. by electric charges, magnetic panels, piezoelectric elements, static charges or ultrasounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/10Aircraft characterised by the type or position of power plants of gas-turbine type 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/16Aircraft characterised by the type or position of power plants of jet type
    • B64D27/18Aircraft characterised by the type or position of power plants of jet type within, or attached to, wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/02Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/04Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of exhaust outlets or jet pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/10Wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/15Propulsion using combustion exhausts other than turbojets or turbofans, e.g. using rockets, ramjets, scramjets or pulse-reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/002Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto with means to modify the direction of thrust vector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/36Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto having an ejector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2230/00Boundary layer controls
    • B64C2230/04Boundary layer controls by actively generating fluid flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2230/00Boundary layer controls
    • B64C2230/06Boundary layer controls by explicitly adjusting fluid flow, e.g. by using valves, variable aperture or slot areas, variable pump action or variable fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2230/00Boundary layer controls
    • B64C2230/16Boundary layer controls by blowing other fluids over the surface than air, e.g. He, H, O2 or exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/02Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes
    • B64D2033/0266Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes specially adapted for particular type of power plants
    • B64D2033/0273Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of combustion air intakes specially adapted for particular type of power plants for jet engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/25Fixed-wing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/60UAVs characterised by the material
    • B64U20/65Composite materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/90Application in vehicles adapted for vertical or short take off and landing (v/stol vehicles)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/30Wing lift efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Toys (AREA)
  • Pipeline Systems (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Un sistema de propulsión configurado para ser acoplado a un vehículo, el sistema comprende un eyector (200) que comprende una estructura de salida (101) de la que fluye fluido propulsor a una velocidad ajustable predeterminada; y una primera superficie de control (100) que tiene superficies superior e inferior y un borde de ataque (302); en donde la primera superficie de control (100) se ubica directamente aguas abajo de la estructura de salida (101) de manera que al menos una parte del borde de ataque (302) está dentro de los planos: (a) ocupados por la estructura de salida de superficies (101) que están paralelas al borde de ataque; y (b) que se extienden en dirección axial al eyector (200), por lo que el fluido propulsor desde el eyector (200) fluye sobre las superficies superior e inferior; la primera superficie de control (100) se posiciona suficientemente cerca de la estructura de salida (101) de manera que, durante el funcionamiento del sistema, únicamente fluido propulsor desde el eyector (200) fluye sobre las superficies superior e inferior; y el eyector (200) comprende además: una estructura de difusión (210); al menos un conducto acoplado a la estructura de difusión (210) y configurado para introducir a la estructura de difusión (210) un fluido primario producido por el vehículo; y una estructura de admisión (206) acoplada a la estructura de difusión (210) y configurada para introducir a la estructura de difusión (210) un fluido secundario accesible al vehículo, en donde la estructura de difusión (210) comprende la estructura de salida (101), y el fluido propulsor comprende el fluido primario y secundario; caracterizado por que el eyector (200) comprende además una superficie convexa (204), la estructura de difusión (210) se acopla a la superficie convexa (204) aguas abajo de la superficie convexa (204), y el al menos un conducto se acopla a la superficie convexa (204) aguas arriba de la superficie convexa (204) y se configura para introducir el fluido primario a la superficie convexa (204).

Description

DESCRIPCIÓN
Configuraciones de eyector y cuerpo de sustentación
Aviso de copyright
Esta divulgación está protegida por las leyes de Copyright de los Estados Unidos y las Internacionales. © 2016 Jetoptera. Todos los derechos reservados. Una parte de la divulgación de este documento de patente contiene material que está sujeto a protección de copyright. El propietario de copyright no tiene objeción a la reproducción por facsímil por del documento de patente o la divulgación de patente, como aparece en los registros o archivo de la Oficina de Patentes y Marcas registradas, pero de otro modo se reserva todos los derechos de copia cualesquiera que sean.
Reivindicación de prioridad
Esta solicitud reivindica prioridad de la solicitud provisional de EE. UU. n.° 62/213.465, presentada el 2 de septiembre de 2015.
Antecedentes
Las aeronaves que pueden planear, despegar y aterrizar verticalmente se denominan comúnmente aeronaves de despegue y aterrizaje vertical (VTOL, del inglés Vertical Take-Off and Landing). Esta clasificación incluye aeronaves de ala fija así como helicópteros y aeronaves con rotores energizados inclinables. Algunas aeronaves VTOL pueden funcionar también en otros modos, tales como despegue y aterrizaje cortos (STOL). VTOL es un subconjunto de V/STOL (despegue y aterrizaje vertical y/o corto).
Con fines ilustrativos, un ejemplo de una aeronave actual que tiene capacidad VTOL es la F-35 Lightning. Métodos convencionales para vectorizar el flujo de aire de elevación vertical incluyen el uso de toberas que se pueden girar en una única dirección junto con el uso de dos conjuntos de paletas de charnela plana dispuestas a 90 grados entre sí y ubicadas en la tobera externa. El sistema de propulsión de la F-35 Lightning, de manera similar, proporciona fuerza de elevación vertical usando una combinación de empuje vectorizado desde el motor de turbina y un ventilador de elevación orientado verticalmente. El ventilador de elevación se ubica detrás de la cabina en un compartimento con puertas de almeja superior e inferior. El motor envía productos de escape a través de una tobera giratoria de tres apoyos que puede desviar el empuje desde la horizontal justo hacia delante de la vertical. Conductos de control de alabeo se extienden fuera en cada ala y son suministrados con su empuje con aire del ventilador de motor. El control de cabeceo se ve afectado por medio de la división de ventilador de elevación/empuje de motor. El control de guiñada es a través del movimiento de guiñada de la tobera giratoria de motor. El control de alabeo es proporcionado por apertura y cierre diferenciales entre los agujeros en los extremos de los dos conductos de control de alabeo. El ventilador de elevación tiene una tobera telescópica en forma de “D” para proporcionar desviación de empuje en la direcciones hacia delante y popa. La tobera D tiene paletas fijas en el agujero de salida. El documento US3756542 A describe una aeronave que tiene en el borde de salida de su ala una aleta aumentadora de elevación hacia la que se puede dirigir, en la configuración de elevación máxima, una corriente de fluido alargada en la dirección de envergadura de ala y producida por una tobera plana de chorro en cola de pescado dispuesta por debajo de la superficie inferior de ala hacia delante y cerca de la aleta aumentadora de elevación, para aumentar la elevación por desviación de la corriente de fluido alargada con una adhesión de flujo correcta del fluido sobre la superficie superior de la aleta. La tobera de cola de pescado se subdivide en toberas elementales que producen tantas corrientes elementales de gases motores que contribuyen a la propulsión por chorro; estas toberas elementales son en forma de ranuras que se extienden paralelas entre sí, en la dirección de envergadura de ala y/o ángulos rectos con la misma.
El diseño de una aeronave o dron consiste más generalmente en sus elementos propulsores y el fuselaje en el que se integran esos elementos. Convencionalmente, el dispositivo propulsor en aeronaves puede ser un turbochorro, turboventilador, turbohélice o turboeje, motor de pistones o un motor eléctrico equipado con una hélice. El sistema de propulsión (propulsor) en vehículos aéreos no tripulados pequeños (UAV) es convencionalmente un motor de pistones o un motor eléctrico que proporciona potencia por medio de un vástago a una o varias hélices. El propulsor para una aeronave más grande, ya sea tripulada o no tripulada, es tradicionalmente un motor de chorro o un turbopropulsor. El propulsor se conecta generalmente al fuselaje o el cuerpo o las alas de la aeronave por medio de pilones o puntales capaces de transmitir la fuerza a la aeronave y sostener las cargas. El chorro mezclado emergente (eflujo a chorro) de aire y gases es lo que propulsa la aeronave en sentido opuesto al flujo del eflujo a chorro.
Convencionalmente, el eflujo de corriente de aire de una hélice grande no se usa para elevación en vuelo nivelado y por tanto no se utiliza una cantidad significativa de energía cinética para beneficio de la aeronave, a menos que se gire como en algunas de las aplicaciones existentes actualmente (es decir la Bell Boeing V-22 Osprey). En cambio, la elevación en la mayoría de aeronaves existentes es creada por las alas y la cola. Además, incluso en esas aplicaciones de VTOL particulares (p. ej., despegue a través de la transición a vuelo nivelado) encontrado en la Osprey, la elevación provocada por la propia hélice es mínima durante vuelo nivelado, y la mayor parte de la fuerza de elevación es no obstante desde las alas.
El estado de técnica actual para crear elevación en una aeronave es generar un flujo de aire a alta velocidad sobre el ala y elementos de ala, que generalmente son cuerpos de sustentación. Los cuerpos de sustentación se caracterizan por una línea de cuerda extendida principalmente en dirección axial, desde un borde de ataque a un borde de salida del cuerpo de sustentación. Sobre la base del ángulo de ataque formado entre el flujo de aire incidente y la línea de cuerda, y según los principios de generación de elevación de cuerpo de sustentación, aire a menor presión fluye sobre el lado de succión (superior) y por el contrario, por la ley de Bernoulli, se mueve a velocidades más altas que el lado inferior (lado de presión). Cuanto menor es la velocidad de aire de la aeronave, menor es la fuerza de elevación, y se requiere mayor área de superficie del ala o mayores ángulos de incidencia, incluso pare el despegue.
Los UAV grandes no son una excepción a esta regla. La elevación se genera al diseñar un cuerpo de sustentación de ala con ángulo de ataque, cuerda, envergadura de ala y línea de alabeo apropiados. Aletas, ranuras y muchos otros dispositivos son otras herramientas convencionales usadas para maximizar la elevación por medio de un aumento del coeficiente de elevación y el área de superficie del ala, pero será generando la elevación correspondiente en la velocidad de aire de la aeronave. (Aumentar el área (S) y el coeficiente de elevación (CL) permite generar una cantidad de elevación similar a una menor velocidad de aire (V0) de aeronave según la fórmula L = 1/ 2pV2SCi_, pero a costa de mayor rozamiento y peso). Estas técnicas actuales también se comportan mal con una caída significativa de la eficiencia en condiciones de vientos cruzados fuertes.
Si bien se puede decir que los UAV más pequeños usan el empuje generado por las hélices para elevar el vehículo, la tecnología actual depende estrictamente del control de las velocidades de motor eléctrico, y los VANT más pequeños pueden tener o no la capacidad de girar los motores para generar empuje y elevación, o hacer una transición a un vuelo nivelado inclinando las hélices. Es más, los UAV más pequeños que usan estos elementos de propulsión sufren de ineficiencias relacionadas con baterías, densidad de potencia y hélices grandes, que pueden ser eficientes al planear pero ineficientes en vuelo nivelado y crear dificultades y peligro cuando funcionan debido al rápido movimiento de la punta de las aspas. La mayoría de cuadricópteros actuales y otros vehículos aéreos propulsados eléctricamente únicamente son capaces de periodos de vuelo muy cortos y no se pueden elevar eficientemente o llevar grandes cargas útiles, ya que el peso del sistema de motor eléctrico y batería ya puede superar fácilmente el 70 % del peso del vehículo en todo momento del vuelo. Un vehículo similar que usa combustible a chorro o cualquier otro combustible de hidrocarburo típicamente usado en transporte llevará más combustible utilizable al menos en un orden de magnitud. Esto puede ser explicado por la densidad de energía mucho más alta del combustible de hidrocarburo comparado con los sistemas de batería (al menos un orden de magnitud), así como la menor relación de peso con el peso total del vehículo de un sistema basado en combustible de hidrocarburo.
Por consiguiente, existe la necesidad de mejor eficiencia, mejores capacidades, y otros avances tecnológicos en aeronaves, particularmente los UAV y ciertos vehículos aéreos tripulados. La presente invención se dirige a un sistema de propulsión según la reivindicación 1. En las reivindicaciones dependientes se definen realizaciones preferidas.
Breve descripción de las figuras de los dibujos
La Figura 1 es una sección transversal de un ejemplo que representa la mitad superior de un eyector y perfiles de velocidad y temperatura dentro del flujo interno;
La Figura 2 ilustra una vista parcial en perspectiva de una estructura de admisión;
La Figura 3 ilustra una vista en planta lateral de un eyector colocado delante de una superficie de control según una realización;
La Figura 4 es una vista en perspectiva de un eyector colocado delante de una superficie de control en combinación con otra superficie de control según una realización;
La Figura 5 es una vista en sección transversal parcial superior de una aeronave;
La Figura 6 es una vista en perspectiva lateral de un sistema de propulsión;
La Figura 7 es una vista lateral de un elemento del sistema de propulsión ilustrado en la Figura 6;
Las Figuras 8-9 ilustran otro sistema de propulsión; y
La Figura 10 ilustra incluso otro sistema de propulsión.
Descripción detallada
Esta solicitud pretende describir una o más realizaciones de la presente invención. Se tiene que entender que el uso de términos absolutos, tales como “debe”, “será” y similares, así como cantidades específicas, se tiene que interpretar como aplicables a una o más de tales realizaciones, pero no necesariamente a todas dichas realizaciones. Como tal, realizaciones de la invención pueden omitir o incluir una modificación de uno o más rasgos o funcionalidades descritos en el contexto de tales términos absolutos. Adicionalmente, los encabezados en esta solicitud son únicamente como referencia y no afectarán de ninguna manera al significado o interpretación de la presente invención.
Una realización de la presente invención incluye un propulsor que utiliza fluidos para el arrastre y la aceleración de aire ambiente y entrega un eflujo a chorro a alta velocidad de una mezcla del gas a alta presión (suministrado al propulsor desde un generador de gas) y aire ambiente arrastrado. En esencia, este objetivo se logra al descargar el gas adyacente a una superficie convexa. La superficie convexa es una denominada superficie Coanda que se beneficia del efecto Coanda descrito en la patente de EE. UU. N.° 2.052.869 expedida para Henri Coanda el 1 de sep. de 1936. En principio, el efecto Coanda es la tendencia de un gas o líquido emitidos a chorro a trasladarse cerca de un contorno de pared incluso si la dirección de curvatura de la pared se aleja del eje del chorro. Las superficies Coanda convexas discutidas en esta memoria con respecto a una o más realizaciones no tienen que consistir en ningún material particular.
La Figura 1 ilustra una sección transversal de la mitad superior de un eyector 200 que se puede conectar a un vehículo (no se muestra), tal como, como ejemplo no limitativo, un VANT o un vehículo aéreo tripulado tal como un avión. Una cámara impelente 211 es suministrada con aire más caliente que el ambiente (es decir, una corriente de gas motor presurizado) desde, por ejemplo, un motor de combustión que puede ser empleado por el vehículo. Esta corriente de gas motor presurizado, denotada con la flecha 600, se introduce por medio de al menos un conducto, tal como toberas primarias 203, al interior del eyector 200. Más específicamente, las toberas primarias 203 se configuran para acelerar la corriente de fluido motor 600 a una velocidad deseada predeterminada variable directamente sobre una superficie Coanda convexa 204 como chorro de pared. Adicionalmente, las toberas primarias 203 proporcionan volúmenes ajustables de la corriente de fluido 600. Este chorro de pared, a su vez, sirve para arrastrar a través de una estructura de admisión 206 un fluido secundario, tal como aire ambiente denotado con la flecha 1, que puede estar en reposo o aproximándose al eyector 200 a velocidad distinta de cero desde la dirección indicada con la flecha 1. En diversas realizaciones, las toberas 203 se pueden disponer en una distribución y en una orientación curvada, una orientación espiralada y/o una orientación en zigzag.
La mezcla de la corriente 600 y el aire 1 puede tener movimiento puramente axial en una sección de garganta 225 del eyector 200. A través de difusión en una estructura de difusión, tal como el difusor 210, el proceso de mezcla y suavización continúa de modo que los perfiles de temperatura (800) y velocidad (700) en la dirección axial del eyector 200 ya no tienen los valores altos y bajos presentes en la sección de garganta 225, sino que se vuelven más uniformes en el extremo terminal 101 del difusor 210. Conforme la mezcla de la corriente 600 y el aire 1 se aproxima al plano de salida del extremo terminal 101, los perfiles de temperatura y velocidad son casi uniformes. En particular, la temperatura de la mezcla es suficientemente baja como para ser dirigida hacia un cuerpo de sustentación tal como un ala o superficie de control.
En una realización, la estructura de admisión 206 y/o el extremo terminal 101 pueden tener una configuración circular. Sin embargo, en diversas realizaciones, y como se muestra mejor en la Figura 2, la estructura de admisión 206, así como el extremo terminal 101, pueden ser no circulares y, ciertamente, asimétricos (es decir, no idénticos en ambos lados de al menos un plano, o como alternativa cualquier plano dado, que biseca la estructura de admisión). Por ejemplo, como se muestra en la Figura 2, la estructura de admisión 206 puede incluir bordes opuestos laterales primero y segundo 401, 402, en donde el primer borde opuesto tiene un radio de curvatura mayor que el segundo borde opuesto lateral. El extremo terminal 101 se puede configurar de manera similar.
La Figura 3 ilustra el propulsor/eyector 200, colocado delante de una superficie de control, tal como un cuerpo de sustentación 100 que tiene un borde de ataque 302 y que genera una fuerza de elevación 400. Como se ilustra, el cuerpo de sustentación 100 se posiciona directamente detrás (es decir, aguas abajo) de la estructura de salida, tal como el extremo terminal 101 del difusor 210, del eyector de manera que fluido propulsor desde el eyector 200 fluye sobre el cuerpo de sustentación. Ciertamente, el cuerpo de sustentación 100 se posiciona suficientemente cerca del extremo terminal 101 de manera que únicamente fluido propulsor desde el eyector 200, exclusivo de otro aire ambiente, fluye sobre el cuerpo de sustentación. Como se emplea en esta memoria, el término “directamente detrás” se interpreta que significa al menos una parte del borde de ataque 302 está dentro o alineada con uno de los planos (a) ocupados por superficies del extremo terminal 101 que son paralelas al borde de ataque y (b) que se extienden en la dirección axial al eyector 200 (es decir, en la dirección de las flechas 300 discutidas más adelante).
El flujo local sobre el cuerpo de sustentación 100 es a velocidad más alta que la velocidad de la aeronave, debido a la velocidad más alta del eflujo de chorro de salida del eyector 200, denotado por las flechas 300, en comparación con la velocidad de aire de aeronave denotado con la flecha 500. El eyector 200 mezcla vigorosamente la corriente motriz 600 más caliente (Figura 1) con la corriente de aire ambiente frío viniente a alta tasa de arrastre. En el cuerpo de sustentación 100 se pueden implementar superficies de control adicionales, tal como la superficie elevadora 150. En una realización la totalidad de cualquiera de dicha superficie de control es rotatoria alrededor de un eje orientado paralelo al borde de ataque 302. Al cambiar el ángulo de dichas superficies 100 y/o 150, se puede cambiar rápidamente la postura de la aeronave con poco esfuerzo dada la velocidad local más alta del eflujo a chorro 300. La mezcla es suficientemente homogénea como para reducir la corriente motriz caliente 600 del perfil de temperatura de eyector a una temperatura de mezcla 800 que no impactará negativamente en los cuerpos de sustentación 100 o 150 mecánica o estructuralmente. El perfil de velocidad 700 del chorro de eflujo que deja el propulsor es de manera que permitirá que el cuerpo de sustentación 100 genere más elevación 400 debido a velocidades locales más altas.
La Figura 4 ilustra que el propulsor/eyector 200 también se puede colocar delante de una superficie de control 1500 en combinación con otro cuerpo de sustentación 1000 y en una configuración diferente a la de las superficies de control ilustradas en la Figura 3. En la realización ilustrada, el borde de ataque 1501 de la superficie de control 1500 se dispone en un ángulo de aproximadamente 90 grados con respecto al borde de ataque 1001 del cuerpo de sustentación 1000. El eyector 200 puede tener una forma no axisimétrica, y la superficie de control se puede colocar exactamente en la estela de dicho eyector 200. El eyector 200 mezcla vigorosamente la corriente motriz 600 más caliente (Figura 1) con la corriente de aire ambiente frío viniente a alta tasa de arrastre. De manera similar, la mezcla es suficientemente homogénea como para reducir la corriente motriz caliente 600 del perfil de temperatura de eyector a una temperatura de mezcla que no impactará negativamente en la superficie de control 1500 mecánica o estructuralmente. En esta realización, la guiñada se puede controlar cambiando la orientación de la superficie de control 1500. En formas similares, y variando la orientación de una superficie de control 1500 con respecto a un cuerpo principal de vehículo, tal como un fuselaje de aeronave, cabeceo y alabeo se pueden controlar de manera semejante. Una función del eyector 200 es generar empuje, pero también puede proporcionar elevación o control de postura. En esta realización, el control de guiñada es en la dirección 151 creando una rotación alrededor del eje de aeronave 10.
La Figura 5 ilustra un ejemplo que proporciona una alternativa al planteamiento tradicional de colocar motores de chorro en las alas de una aeronave para producir empuje. En la Figura 5, un generador de gas 501 produce una corriente de aire motor para alimentar una serie de eyectores 502 que se incrustan en los cuerpos de sustentación primarios, tales como las alas 503, para propulsión hacia delante al emitir la corriente de gas directamente desde el borde de salida de los cuerpos de sustentación primarios. En este ejemplo, el generador de gas 501 se incrusta en el fuselaje de cuerpo principal 504 de la aeronave, se acopla para trasmisión de fluidos a los eyectores 502 por medio de conductos 505 y son los únicos medios de propulsión de la aeronave. Los eyectores 502 pueden ser circulares o no circulares como se ilustra en la Figura 2, tener una estructura de salida similar formada correspondientemente en el extremo terminal 101 y proporcionar, a una velocidad ajustable predeterminada, la corriente de gas desde el generador 501 y los conductos 505. Adicionalmente, los eyectores 502 pueden ser movibles de una manera similar a la de aletas o alerones, rotatorio a través de un ángulo de 180° y se pueden accionar para controlar la postura de la aeronave además de proporcionar el empuje requerido. Cuerpos de sustentación secundarios 506 que tienen bordes de ataque 507 se colocan en tándem con las alas 503 y directamente detrás de los eyectores 502 de manera que la corriente de gas desde los eyectores 502 fluye sobre los cuerpos de sustentación secundarios 506. Los cuerpos de sustentación secundarios 506 por tanto reciben una velocidad mucho más alta que la velocidad de aire de la aeronave, y como tal crean una alta fuerza de elevación, ya que la última es proporcional al cuadrado de la velocidad de aire. La totalidad de los cuerpos de sustentación secundarios 506 pueden ser rotatorios alrededor de un eje orientado paralelo a los bordes de ataque 507.
En este ejemplo, el cuerpo de sustentación secundario 506 verá una temperatura moderadamente más alta debido a la mezcla del fluido motor producido por el generador de gas 501 (también denominado fluido primario) y el fluido secundario, que es aire ambiente, arrastrado por el fluido motor a una tasa entre 5-25 partes de fluido secundario por cada parte de fluido primario. Como tal, la temperatura que el cuerpo de sustentación secundario 506 ve es un poco más alta que la temperatura ambiente, pero significativamente menor que el fluido motor, permitiendo que los materiales del ala secundaria soporten y sostengan las cargas de elevación, según la fórmula: Tmezcla =(Tmotor+ER*Tamb)/(l+ER) donde Tmezcla es la temperatura de mezcla de fluido final del eflujo a chorro emergente desde el eyector 502, ER es la tasa de arrastre de partes de aire ambiente arrastrado por parte del aire motor, Tmotor es la temperatura más caliente del fluido motor o primario, y Tamb es la temperatura de aire ambiente aproximándose.
La Figura 6 ilustra un sistema de propulsión para un vehículo 700 según un ejemplo alternativo. Un primer cuerpo de sustentación de aumento 702 se acopla al vehículo 700 y se posiciona aguas abajo del fluido que fluye sobre un cuerpo de sustentación primario 701 del vehículo. El cuerpo de sustentación 702 se configura para rotar alrededor del eje 707 y ser controlado por un accionador 708. Como se ilustra mejor en la Figura 7, el primer cuerpo de sustentación de aumento 702 incluye una primera estructura de salida, tal como superficies de tobera opuestas 705, 706 y al menos un conducto, tal como la cámara impelente 704, en comunicación de fluidos con un extremo terminal 703 definido por las superficies de tobera. Las superficies de tobera 705, 706 pueden incluir o no toberas similares a las toberas 203 discutidas anteriormente con referencia a la Figura 1. Adicionalmente, una o más de las superficies de tobera 705, 706 pueden incluir una superficie convexa que puede, en consecuencia, promover el efecto Coanda y pueden tener superficies continuamente redondeadas sin esquinas afiladas o bruscas. La cámara impelente 704 es suministrada con aire más caliente que el ambiente (es decir, una corriente de gas motor presurizado) desde, por ejemplo, un motor de combustión que puede ser empleado por el vehículo 700. La cámara impelente 704 se configura para introducir esta corriente de gas al extremo terminal 703, que se configura para proporcionar la entrada de la corriente de gas hacia el cuerpo de sustentación primario 701 y fuera del primer cuerpo de sustentación de aumento 702.
Haciendo referencia a las Figuras 8-9, un ejemplo puede incluir un segundo cuerpo de sustentación de aumento 902 similar al cuerpo de sustentación 702, cada uno con un respectivo borde de salida 714, 914 divergente desde el otro borde de salida. Más particularmente, el segundo cuerpo de sustentación de aumento 902 se acopla al vehículo 700 y se posiciona aguas abajo del fluido que fluye sobre el cuerpo de sustentación primario 701 del vehículo. El cuerpo de sustentación 902 se configura para rotar de una manera similar a la discutida anteriormente con referencia al cuerpo de sustentación 702. El cuerpo de sustentación 902 incluye una primera estructura de salida, tal como superficies de tobera opuestas 905, 906 y al menos un conducto, tal como la cámara impelente 904, en comunicación de fluidos con un extremo terminal 903 definido por las superficies de tobera. Las superficies de tobera 905, 906 pueden incluir o no toberas similares a las toberas 203 discutidas anteriormente con referencia a la Figura 1. Adicionalmente, una o más de las superficies de tobera 905, 906 pueden incluir una superficie convexa que puede, en consecuencia, promover el efecto Coanda. La cámara impelente 904 es suministrada con aire más caliente que el ambiente (es decir, una corriente de gas motor presurizado) desde, por ejemplo, un motor de combustión que puede ser empleado por el vehículo 700. La cámara impelente 904 se configura para introducir esta corriente de gas al extremo terminal 903, que se configura para proporcionar la entrada de la corriente de gas hacia el cuerpo de sustentación primario 701 y fuera del segundo cuerpo de sustentación de aumento 902.
Cada uno de los cuerpos de sustentación de aumento primero y segundo 702, 902 tiene un borde de ataque 716, 916 dispuesto hacia el cuerpo de sustentación primario, con el primer cuerpo de sustentación de aumento opuesto al segundo cuerpo de sustentación de aumento. En funcionamiento, los cuerpos de sustentación de aumento primero y segundo 702, 902 definen una región de difusión 802, entre los mismos y a lo largo de sus longitudes, similar en función al difusor 210 discutido anteriormente en esta memoria. Los bordes de ataque 716, 916 definen una región de admisión 804 configurada para recibir e introducir a la región de difusión 802 las corrientes de gas desde las cámaras impelentes 704, 904 y el fluido que fluye sobre el cuerpo de sustentación primario 701. La región de difusión 802 incluye un extremo terminal primario 806 configurado para proporcionar salida de la región de difusión para las corrientes de gas introducidas y fluido que fluye sobre el cuerpo de sustentación primario 701.
La Figura 10 representa un ejemplo alternativo que cuenta con alas en tándem. En el ejemplo ilustrado, un cuerpo de sustentación secundario 1010 se coloca directamente aguas abajo de los cuerpos de sustentación de aumento 702, 902 de manera que el fluido que fluye sobre el cuerpo de sustentación primario 701 y la corriente de gas desde los cuerpos de sustentación de aumento fluye sobre el cuerpo de sustentación secundario. La combinación de las dos alas relativamente más cortas 701, 1010 produce más elevación que la de un ala expandida mucho más grande que carece de los cuerpos de sustentación de aumento 702, 902 y que depende de un chorro motor conectado a un ala más grande para producir empuje.
Aunque el texto anterior presenta una descripción detallada de numerosas realizaciones diferentes, se debe entender que el alcance de protección está definido por las palabras de las reivindicaciones que siguen. La descripción detallada se debe interpretar como ejemplar únicamente y no describe cada posible realización porque describir cada posible realización no sería práctico, si no imposible. Se podrían implementar numerosas realizaciones alternativas, ya sea usando tecnología actual o tecnología desarrollada tras la fecha de presentación de esta patente, que todavía estarían dentro del alcance de las reivindicaciones.
Así, se pueden hacer muchas modificaciones y variaciones en las técnicas y estructuras descritas e ilustradas en esta memoria sin salir del alcance de la presente reivindicaciones. Por consiguiente, se debe entender que los métodos y aparatos descritos en esta memoria son únicamente ilustrativos y no limitan el alcance de las reivindicaciones.

Claims (5)

REIVINDICACIONES
1. Un sistema de propulsión configurado para ser acoplado a un vehículo, el sistema comprende
un eyector (200) que comprende una estructura de salida (101) de la que fluye fluido propulsor a una velocidad ajustable predeterminada; y
una primera superficie de control (100) que tiene superficies superior e inferior y un borde de ataque (302);
en donde la primera superficie de control (100) se ubica directamente aguas abajo de la estructura de salida (101) de manera que al menos una parte del borde de ataque (302) está dentro de los planos:
(a) ocupados por la estructura de salida de superficies (101) que están paralelas al borde de ataque; y
(b) que se extienden en dirección axial al eyector (200),
por lo que el fluido propulsor desde el eyector (200) fluye sobre las superficies superior e inferior;
la primera superficie de control (100) se posiciona suficientemente cerca de la estructura de salida (101) de manera que, durante el funcionamiento del sistema, únicamente fluido propulsor desde el eyector (200) fluye sobre las superficies superior e inferior; y
el eyector (200) comprende además:
una estructura de difusión (210);
al menos un conducto acoplado a la estructura de difusión (210) y configurado para introducir a la estructura de difusión (210) un fluido primario producido por el vehículo; y
una estructura de admisión (206) acoplada a la estructura de difusión (210) y configurada para introducir a la estructura de difusión (210) un fluido secundario accesible al vehículo, en donde la estructura de difusión (210) comprende la estructura de salida (101), y el fluido propulsor comprende el fluido primario y secundario; caracterizado por que el eyector (200) comprende además una superficie convexa (204), la estructura de difusión (210) se acopla a la superficie convexa (204) aguas abajo de la superficie convexa (204), y el al menos un conducto se acopla a la superficie convexa (204) aguas arriba de la superficie convexa (204) y se configura para introducir el fluido primario a la superficie convexa (204).
2. El sistema de la reivindicación 1, en donde la totalidad de la superficie de control es rotatoria alrededor de un eje orientado paralelo al borde de ataque (302).
3. El sistema de la reivindicación 1, en donde la estructura de salida (101) es asimétrica.
4. El sistema de la reivindicación 3, en donde la estructura de salida (101) comprende bordes opuestos laterales primero y segundo, y el primer borde opuesto lateral tiene un radio de curvatura mayor que el segundo borde opuesto lateral.
5. El sistema de la reivindicación 1, que comprende además una segunda superficie de control (150) que tiene un borde de ataque y acoplada directamente al vehículo, en donde la primera superficie de control (100) se acopla a la segunda superficie de control (150) de manera que el borde de ataque (302) de la primera superficie de control (100) está en un ángulo distinto de cero con el borde de ataque de la segunda superficie de control (150).
ES16855888T 2015-09-02 2016-07-27 Configuraciones de eyector y cuerpo de sustentación Active ES2886364T3 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562213465P 2015-09-02 2015-09-02
PCT/US2016/044326 WO2017065858A2 (en) 2015-09-02 2016-07-27 Ejector and airfoil configurations

Publications (1)

Publication Number Publication Date
ES2886364T3 true ES2886364T3 (es) 2021-12-17

Family

ID=58097438

Family Applications (4)

Application Number Title Priority Date Filing Date
ES18165126T Active ES2844127T3 (es) 2015-09-02 2016-07-27 Configuraciones de eyector y perfil aerodinámico
ES16855888T Active ES2886364T3 (es) 2015-09-02 2016-07-27 Configuraciones de eyector y cuerpo de sustentación
ES16855889T Active ES2964957T3 (es) 2015-09-02 2016-07-27 Sistema de propulsión fluídica
ES18165121T Active ES2890927T3 (es) 2015-09-02 2016-07-27 Configuraciones de eyector y cuerpo de sustentación

Family Applications Before (1)

Application Number Title Priority Date Filing Date
ES18165126T Active ES2844127T3 (es) 2015-09-02 2016-07-27 Configuraciones de eyector y perfil aerodinámico

Family Applications After (2)

Application Number Title Priority Date Filing Date
ES16855889T Active ES2964957T3 (es) 2015-09-02 2016-07-27 Sistema de propulsión fluídica
ES18165121T Active ES2890927T3 (es) 2015-09-02 2016-07-27 Configuraciones de eyector y cuerpo de sustentación

Country Status (12)

Country Link
US (14) US10501197B2 (es)
EP (7) EP3363732B1 (es)
JP (3) JP6930743B2 (es)
KR (4) KR102586347B1 (es)
CN (3) CN108137149B (es)
AU (5) AU2016338382B2 (es)
CA (4) CA3216288A1 (es)
ES (4) ES2844127T3 (es)
HK (3) HK1256577A1 (es)
IL (4) IL257811B (es)
PL (1) PL3363732T3 (es)
WO (3) WO2017065858A2 (es)

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10562613B2 (en) * 2013-12-04 2020-02-18 Tamarack Aerospace Group, Inc. Adjustable lift modification wingtip
US11001378B2 (en) 2016-08-08 2021-05-11 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles
US11965456B2 (en) * 2015-09-02 2024-04-23 Jetoptera, Inc. Fluidic turbo heater system
US20180038262A1 (en) * 2016-08-08 2018-02-08 Jetoptera, Inc. Internal combustion engine exhaust pipe fluidic purger system
JP6930743B2 (ja) 2015-09-02 2021-09-01 ジェトプテラ、インコーポレイテッド エジェクタ及びエアフォイル形状
US10464668B2 (en) * 2015-09-02 2019-11-05 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles
USD856899S1 (en) * 2017-11-10 2019-08-20 Jetoptera, Inc. Airframe for an unmanned aerial vehicle
KR101607816B1 (ko) * 2015-10-26 2016-03-31 이진우 바람안내부를 구비하는 무인비행기
CN107150788A (zh) * 2017-04-26 2017-09-12 朱晓义 一种产生更大升力的固定翼飞行器
CN111655580B (zh) * 2017-06-16 2024-01-16 杰拓普特拉股份有限公司 小翼喷射器构造
CN109716326A (zh) * 2017-06-21 2019-05-03 微软技术许可有限责任公司 在自动聊天中提供个性化歌曲
BR112019027805A2 (pt) 2017-06-27 2020-07-07 Jetoptera, Inc. configuração de sistema de decolagem e aterrissagem vertical para veículos aéreos
US20190061905A1 (en) * 2017-08-30 2019-02-28 David Victor Bosse, JR. Airfoil
US11047874B1 (en) * 2017-10-18 2021-06-29 Government Of The United States As Represented By The Secretary Of The Air Force System, apparatus and method for predicting aerodynamic parameters using artifical hair sensor array
CN108052118A (zh) * 2017-12-12 2018-05-18 中国联合网络通信集团有限公司 一种无人飞行器控制方法及装置
US11370529B2 (en) * 2018-03-29 2022-06-28 Walmart Apollo, Llc Aerial vehicle turbine system
US10802507B2 (en) * 2018-03-30 2020-10-13 Ansel Misfeldt Aerial vehicles and control therefor
JP7097052B2 (ja) * 2018-04-04 2022-07-07 国立研究開発法人宇宙航空研究開発機構 飛行機の突風応答軽減システム及び飛行機の突風応答軽減方法
US10336452B1 (en) * 2018-04-16 2019-07-02 Muye Jia Drone with no external propeller blades
RO133664B1 (ro) * 2018-04-17 2024-07-30 Răzvan Sabie Aparat de zbor cu decolare şi aterizare verticală
EP3793898A4 (en) * 2018-05-17 2022-01-26 Jetoptera, Inc. COMBINATION OF PRESSURE LIQUID EJECTOR AND PROPELLER PROPULSION SYSTEM
AU2019279873A1 (en) * 2018-05-29 2020-12-17 Jetoptera, Inc. Streamline airframe with boundary ingestion fluidic propulsive elements
USD894807S1 (en) * 2018-06-14 2020-09-01 Transportation Ip Holdings, Llc Exhaust stack
PL426033A1 (pl) * 2018-06-22 2020-01-02 General Electric Company Płynowe pompy strumieniowe parowe, a także układy i sposoby porywania płynu przy użyciu płynowych pomp strumieniowych parowych
WO2020009871A1 (en) 2018-07-02 2020-01-09 Joby Aero, Inc. System and method for airspeed determination
WO2020061085A1 (en) 2018-09-17 2020-03-26 Joby Aero, Inc. Aircraft control system
WO2020059155A1 (ja) * 2018-09-22 2020-03-26 株式会社エアロネクスト 飛行体
CN113226925A (zh) * 2018-11-09 2021-08-06 杰托普特拉股份有限公司 自适应的竖直起降推进系统
EP3891067B1 (en) 2018-12-07 2024-01-17 Joby Aero, Inc. Aircraft control system and method
TWI719373B (zh) * 2018-12-13 2021-02-21 研能科技股份有限公司 無人飛行器之動力驅動器
KR20210118416A (ko) * 2019-01-18 2021-09-30 제톱테라 잉크. 유체 추진 시스템
US20220009617A1 (en) * 2019-01-18 2022-01-13 Jetoptera, Inc. Vertical take off and landing aircraft with fluidic propulsion system
US11440671B2 (en) * 2019-01-24 2022-09-13 Amazon Technologies, Inc. Adjustable motor fairings for aerial vehicles
DE102019105355B4 (de) * 2019-03-04 2024-04-25 Ebm-Papst Mulfingen Gmbh & Co. Kg Lüfterrad eines Axialventilators
US12071228B1 (en) * 2019-03-28 2024-08-27 Snap Inc. Drone with propeller guard configured as an airfoil
WO2020219747A2 (en) 2019-04-23 2020-10-29 Joby Aero, Inc. Battery thermal management system and method
US11230384B2 (en) * 2019-04-23 2022-01-25 Joby Aero, Inc. Vehicle cabin thermal management system and method
CA3150821A1 (en) * 2019-09-03 2021-03-11 Bae Systems Plc Fluidic control
CA3152208A1 (en) 2019-09-03 2021-03-11 Bae Systems Plc Vehicle control
WO2021076250A2 (en) * 2019-09-11 2021-04-22 Alexandru Balan 360° advanced rotation system
US11453488B2 (en) 2019-09-30 2022-09-27 Rolls-Royce Corporation Lightweight parallel combustion lift system for vertical takeoff aircraft
EP4051582A4 (en) * 2019-11-01 2023-12-06 Jetoptera, Inc. TURBO FLUIDIC HEATING SYSTEM
US11299284B2 (en) * 2019-12-11 2022-04-12 Zhenkun Wang Airplane providing enhanced aviation and a method to enhance aviation thereof
US10837402B2 (en) * 2020-01-09 2020-11-17 Guanhao Wu Thrust vector nozzle
CN111504129B (zh) * 2020-04-10 2022-10-21 中国航天空气动力技术研究院 一种机载激光器气动引射结构及方法
AU2021278813A1 (en) * 2020-04-27 2023-01-05 Andrei Evulet Vertical take off and landing aircraft with fluidic propulsion system
US12040730B2 (en) * 2020-05-21 2024-07-16 The Boeing Company Active flow control systems and methods for aircraft
CN112399786B (zh) * 2020-11-19 2022-12-13 杭州顾忠科技有限公司 一种电子信息抗干扰器
CN112373702B (zh) * 2020-11-24 2022-07-05 中国航空发动机研究院 一种背撑式翼身融合体飞机推进系统及其控制方法
KR20220092064A (ko) 2020-12-24 2022-07-01 현대자동차주식회사 비행체의 보조 추진 장치
CN113602478B (zh) * 2021-02-02 2023-06-13 中国空气动力研究与发展中心高速空气动力研究所 一种基于环量控制和垂直微喷流的流体控制舵面
KR20240068588A (ko) * 2021-05-19 2024-05-17 제톱테라 잉크. 적응형 유체 추진 시스템
US11148795B1 (en) * 2021-07-02 2021-10-19 Choudary Ramakrishna Bobba Radial airfoil and lift disc
CN113291459B (zh) * 2021-07-27 2021-11-30 中国空气动力研究与发展中心高速空气动力研究所 一种分布式涵道风扇高升力系统及其使用方法
US11781441B2 (en) 2021-12-30 2023-10-10 Hamilton Sundstrand Corporation Air cycle machine with separate compressor and turbine and fan and turbine
US12024285B1 (en) 2022-03-10 2024-07-02 Skypad Tech, Inc. Modular mobility system including thrusters movably connected to a support structure
US11808216B1 (en) 2022-06-10 2023-11-07 Rolls-Royce North American Technologies Inc. Air-provisioning system with ejectors
CN114996851B (zh) * 2022-06-14 2024-05-24 南京航空航天大学 一种模拟边界层泄流与亚声速外流耦合的实验台设计方法
US20240239531A1 (en) * 2022-08-09 2024-07-18 Pete Bitar Compact and Lightweight Drone Delivery Device called an ArcSpear Electric Jet Drone System Having an Electric Ducted Air Propulsion System and Being Relatively Difficult to Track in Flight
EP4415006A1 (en) * 2023-02-13 2024-08-14 Hitachi Energy Ltd An airflow generator
EP4421832A1 (en) * 2023-02-21 2024-08-28 Hitachi Energy Ltd A transformer arrangement
CN118094958B (zh) * 2024-04-19 2024-07-16 中南大学 一种射流振荡器简化模型的设计方法

Family Cites Families (756)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3216653A (en) 1962-07-09 1965-11-09 Bertin & Cie Ejectors and piping systems operating with a divergent fluid wall
US1495185A (en) 1922-08-18 1924-05-27 Ingersoll Rand Co Jet augmenter or ejector
US1821468A (en) 1928-04-16 1931-09-01 Hanley John Mixing device
US1891166A (en) * 1931-05-23 1932-12-13 Leupold Mathias Tilting-engine wing plane
GB431646A (en) * 1934-01-08 1935-07-08 Henri Coanda Improvements in or relating to the propulsion of solid bodies in fluid media
US2052869A (en) 1934-10-08 1936-09-01 Coanda Henri Device for deflecting a stream of elastic fluid projected into an elastic fluid
US2593420A (en) 1946-05-28 1952-04-22 Walter S Diehl Variable area nozzle
US2684817A (en) 1947-07-21 1954-07-27 Snecma Aircraft powered by ramjet units
US2585676A (en) * 1947-07-31 1952-02-12 Poisson-Quinton Philippe Aircraft wing and flap with boundary layer control
US2946540A (en) * 1948-09-13 1960-07-26 Sebac Nouvelle Sa Jet propelled aircraft
BE525114A (es) 1952-12-16
US2928238A (en) * 1953-06-08 1960-03-15 Lockheed Aircraft Corp Jet deflector and orifice control
DE1024364B (de) 1953-09-07 1958-02-13 Power Jets Res & Dev Ltd Quertriebsflaeche, insbesondere Luftfahrzeugfluegel
US2870600A (en) 1954-12-27 1959-01-27 Charles R Brown Variable ejector for iris nozzles
NL110393C (es) 1955-11-29 1965-01-15 Bertin & Cie
US2885162A (en) 1956-02-08 1959-05-05 Elizabeth M Griswold Integrated jet-wing
US2988303A (en) 1956-07-24 1961-06-13 Sebac Nouvelle Sa Jet sustained aircraft
BE560119A (es) 1956-09-13
US2989845A (en) 1957-12-02 1961-06-27 Curtiss Wright Corp Converging-diverging nozzle construction
US3045947A (en) 1959-04-24 1962-07-24 Bertin & Cie Ejectors, particularly for producing lift in aircraft
US3028121A (en) 1959-11-27 1962-04-03 Gen Electric Thrust augmenting means for aircraft
US3051413A (en) * 1960-03-18 1962-08-28 Pouit Robert Vtol aircraft
NL262125A (es) 1960-04-01
US3055614A (en) * 1960-05-12 1962-09-25 Wendell J Thompson Air-ejector aircraft
US3085770A (en) 1960-09-22 1963-04-16 Lockheed Aircraft Corp Aircraft propulsion system
US3116041A (en) 1961-02-10 1963-12-31 Lockheed Aircraft Corp Aircraft propulsion distribution system
FR1318816A (fr) 1962-01-13 1963-02-22 Aviation Louis Breguet Sa Avion à décollage et atterrissage verticaux ou courts
US3154267A (en) * 1962-03-13 1964-10-27 Charles H Grant Controlled temperature flow around airfoils
DE1292006B (de) * 1962-11-09 1969-04-03 Siebelwerke Atg Gmbh Tragflaechenflugzeug mit Strahlantrieb und Strahlsteuerung
US3337121A (en) 1964-07-22 1967-08-22 Huyck Corp Fluid propulsion system
US3318097A (en) 1964-10-12 1967-05-09 Garrett Corp Air mass flow multiplier for thrust augmentation
US3326500A (en) 1964-11-25 1967-06-20 Edward M Lanier Aircraft lift-increasing device
US3330500A (en) * 1965-03-22 1967-07-11 Ltv Aerospace Corp Propulsive wing airplane
US3347495A (en) 1965-05-17 1967-10-17 Boeing Co Airplane wing flap with augmented jet lift-increasing device
US3392529A (en) 1965-07-23 1968-07-16 Rolls Royce Aircraft provided with a gas turbine vertical lift engine
US3370794A (en) 1965-11-08 1968-02-27 Navy Usa Annular plenum nozzle for controlling trajectory of rockets
US3396538A (en) 1966-10-03 1968-08-13 United Aircraft Corp Water injection for thrust augmentation
US3441218A (en) 1966-11-07 1969-04-29 Paul Bucher Adjustable nozzle for jet propulsion engine
FR94023E (fr) 1967-05-24 1969-06-20 Bertin & Cie Systeme sustentateur ou propulso sustentateur pour aéronefs.
US3525474A (en) 1968-12-09 1970-08-25 Us Air Force Jet pump or thrust augmentor
US3664611A (en) 1969-12-17 1972-05-23 Flight Dynamics Res Aerodynamic vehicle
US3667680A (en) 1970-04-24 1972-06-06 Boeing Co Jet engine exhaust nozzle system
FR2087976B1 (es) * 1970-05-04 1973-03-16 Bertin & Cie
RO53910A2 (es) 1970-10-26 1973-09-20
US3722454A (en) 1970-10-28 1973-03-27 R Silvester Thrust augmenter
US3694107A (en) 1970-11-19 1972-09-26 Nash Engineering Co Ejector apparatus and method of utilizing same
GB1332026A (en) * 1971-08-07 1973-10-03 British Aircraft Corp Ltd Aircraft
US3887146A (en) 1971-08-23 1975-06-03 Univ Rutgers Aircraft with combination stored energy and engine compressor power source for augmentation of lift, stability, control and propulsion
US3747874A (en) 1971-08-25 1973-07-24 Rohr Corp Ejector nozzle having primary nozzles communicating with exhaust gases in plenum chamber
US3770227A (en) 1971-09-10 1973-11-06 Us Air Force Jet wing with multiple thrust augmentors
US3747855A (en) 1972-03-01 1973-07-24 Gen Electric Propulsion nozzles
US3885891A (en) 1972-11-30 1975-05-27 Rockwell International Corp Compound ejector
US3819134A (en) 1972-11-30 1974-06-25 Rockwell International Corp Aircraft system lift ejector
CA981918A (en) * 1972-11-30 1976-01-20 Lester W. Throndson Compound ejector for high energy flow fluid
US3834834A (en) 1973-03-07 1974-09-10 Us Air Force Compact high thrust augmentation ejector system
US3829044A (en) 1973-03-23 1974-08-13 Lockheed Aircraft Corp Engine arrangement for high performance stol aircraft
US3795367A (en) 1973-04-05 1974-03-05 Src Lab Fluid device using coanda effect
US3879939A (en) 1973-04-18 1975-04-29 United Aircraft Corp Combustion inlet diffuser employing boundary layer flow straightening vanes
US3878400A (en) 1973-04-30 1975-04-15 Gen Electric Excitation control arrangement for diesel-electric propulsion systems
US3831887A (en) 1973-06-28 1974-08-27 Rockwell International Corp Aircraft control methods
US3860200A (en) * 1973-09-05 1975-01-14 Rockwell International Corp Airfoil
US3875745A (en) 1973-09-10 1975-04-08 Wagner Minning Equipment Inc Venturi exhaust cooler
US4030289A (en) 1973-10-29 1977-06-21 Chandler Evans Inc. Thrust augmentation technique and apparatus
US4019696A (en) 1973-12-28 1977-04-26 The Boeing Company Method of and apparatus for enhancing Coanda flow attachment over a wing and flap surface
US3893638A (en) * 1974-02-14 1975-07-08 Boeing Co Dual cycle fan jet engine for stol aircraft with augmentor wings
US3926373A (en) 1974-07-26 1975-12-16 Us Air Force Thrust augmentation system with oscillating jet nozzles
US3942463A (en) 1974-10-01 1976-03-09 The United States Of America As Represented By The Secretary Of The Navy Movable ramp inlet for water jet propelled ships
US3920203A (en) * 1974-12-23 1975-11-18 Boeing Co Thrust control apparatus for obtaining maximum thrust reversal in minimum time upon landing of an aircraft
GB1465412A (en) * 1975-02-14 1977-02-23 Coxon J Aircraft
US3941335A (en) 1975-06-19 1976-03-02 The United States Of America As Represented By The Secretary Of The Air Force Automatic boundary layer control in an ejector wing aircraft
US4332529A (en) 1975-08-11 1982-06-01 Morton Alperin Jet diffuser ejector
US4030687A (en) 1976-02-23 1977-06-21 The Boeing Company Articulated nozzle for upper surface blown aircraft
DK140426B (da) * 1976-11-01 1979-08-27 Arborg O J M Fremdriftsdyse til transportmidler i luft eller vand.
US4099691A (en) * 1976-12-13 1978-07-11 The Boeing Company Boundary layer control system for aircraft
IL52613A (en) 1977-07-28 1980-11-30 Univ Ramot Method and apparatus for controlling the mixing of two fluids
CA1100463A (en) 1978-11-22 1981-05-05 Frederick L. Gilbertson Nozzle structure with notches
US4398683A (en) 1978-12-26 1983-08-16 Schmetzer William M Aircraft with thrust and lift augmenting airfoil
US4709880A (en) * 1978-12-29 1987-12-01 General Dynamics Corporation Method and system for improved V/STOL aircraft performance
US4285482A (en) * 1979-08-10 1981-08-25 The Boeing Company Wing leading edge high lift device
DE3014712A1 (de) 1980-04-17 1981-10-22 Robert Bosch Gmbh, 7000 Stuttgart Steuereinrichtung zum stillsetzen einer dieselbrennkraftmaschine
GB2469613B (en) * 1980-11-28 2011-03-23 Rolls Royce Plc Aircraft
US4398687A (en) 1981-02-25 1983-08-16 The United States Of America As Represented By The Secretary Of The Navy Thrust deflector and force augmentor
US4392621A (en) 1981-04-07 1983-07-12 Hermann Viets Directional control of engine exhaust thrust vector in a STOL-type aircraft
US4418352A (en) 1981-05-18 1983-11-29 Ricoh Company, Ltd. Ink jet printing apparatus
IT1144840B (it) * 1981-10-15 1986-10-29 Aeritalia Spa Velivolo con propulsone a getto utilizzante un sistema ad eiettore monofaccia per l incremento della portanza e della spinta
EP0078245B1 (en) 1981-10-15 1986-12-03 AERITALIA - Società Aerospaziale Italiana - p.A. Aircraft with jet propulsion
US4445338A (en) 1981-10-23 1984-05-01 The United States Of America As Represented By The Secretary Of The Navy Swirler assembly for a vorbix augmentor
US4477039A (en) 1982-06-30 1984-10-16 Mcdonnell Douglas Corporation Vented cowl variable geometry inlet for aircraft
US4448354A (en) * 1982-07-23 1984-05-15 The United States Of America As Represented By The Secretary Of The Air Force Axisymmetric thrust augmenting ejector with discrete primary air slot nozzles
US4442986A (en) * 1982-08-30 1984-04-17 The United States Of America As Represented By The Secretary Of The Navy Leading edge augmentor wing-in-ground effect vehicle
US4482108A (en) * 1982-09-29 1984-11-13 The Boeing Company Tilt wing short takeoff aircraft and method
US4815942A (en) 1982-10-25 1989-03-28 Elayne P. Alperin Axially-symmetric, jet-diffuser ejector
AU2443884A (en) 1983-02-15 1984-08-23 Commonwealth Of Australia, The Thrust augmentor
US4645140A (en) 1983-08-18 1987-02-24 Rockwell International Corporation Nozzle system
US4641800A (en) * 1983-08-18 1987-02-10 Rutan Elbert L Tandem or multi-winged high performance aircraft
US4648571A (en) 1984-07-19 1987-03-10 Northrop Corporation Transverse thrust lift augmentation system
US4796836A (en) 1985-02-28 1989-01-10 Dieter Schatzmayr Lifting engine for VTOL aircrafts
US5035377A (en) 1985-02-28 1991-07-30 Technolizenz Establishment Free standing or aircraft lift generator
USRE35387E (en) 1985-04-09 1996-12-03 Dynamic Engineering, Inc. Superfragile tactical fighter aircraft and method of flying it in supernormal flight
US4666104A (en) 1985-07-22 1987-05-19 Kelber Charles C Combination lift thrust device
JPS6257512A (ja) * 1985-08-14 1987-03-13 インバネス・コ−ポレ−シヨン 爪やすり、潤滑剤及び湿式やすり掛け方法
JPH0660640B2 (ja) 1985-09-09 1994-08-10 清之 堀井 管路に螺旋流体流を生成させる装置
US4840329A (en) 1986-04-08 1989-06-20 Rolls-Royce Inc. Aircraft with stowable vectorable nozzle and ejector thrust augmentation
US4713935A (en) 1986-04-08 1987-12-22 Rolls-Royce Inc. Vectorable nozzles for aircraft
US4835961A (en) 1986-04-30 1989-06-06 United Technologies Corporation Fluid dynamic pump
US4767083A (en) * 1986-11-24 1988-08-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High performance forward swept wing aircraft
US4848701A (en) 1987-06-22 1989-07-18 Belloso Gregorio M Vertical take-off and landing aircraft
US5016837A (en) 1987-06-25 1991-05-21 Venturi Applications, Inc. Venturi enhanced airfoil
US4819876A (en) 1987-06-25 1989-04-11 United Technologies Corporation Divergent flap actuation system for a two-dimensional exhaust nozzle
JPH01172098A (ja) 1987-12-25 1989-07-06 Fuji Heavy Ind Ltd V/stol機用尾翼兼推力偏向ベーン
JPH01301495A (ja) 1988-02-02 1989-12-05 Kobe Steel Ltd 揚力発生装置および揚力発生装置を用いた飛行体ならびに揚力発生方法
US4899954A (en) 1988-05-11 1990-02-13 Pruszenski Jr Anthony Ground-air-water craft
US5123613A (en) 1988-06-21 1992-06-23 Piasecki Aircraft Corporation Rotary wing aircraft shrouded propeller tail assembly and controls
US4969614A (en) * 1988-08-30 1990-11-13 Aeritalia - Societe Aerospaziale Italiana - S.P.A. Jet-propelled aircraft
US5174523A (en) 1989-01-09 1992-12-29 Westland Helicopters Limited Compound helicopter with engine shaft power output control
US5062588A (en) * 1989-02-08 1991-11-05 Boeing Of Canada Ltd. Segmented rotatable nozzles
DE3909347A1 (de) 1989-03-22 1990-09-27 Mtu Muenchen Gmbh Schubduese zur schubvektorsteuerung fuer mit strahltriebwerken ausgeruestete fluggeraete
US5246188A (en) 1989-09-14 1993-09-21 Koutsoupidis Theodore K Wing turbines in conjuction with propulsion systems for aircraft and helicopters
US5129602A (en) 1989-10-05 1992-07-14 Leonard Byron P Multistage launch vehicle employing interstage propellant transfer and redundant staging
US5098034A (en) * 1989-11-24 1992-03-24 Lendriet William C Vertical/short takeoff or landing aircraft having a rotatable wing and tandem supporting surfaces
US5071088A (en) * 1989-11-29 1991-12-10 The United States Of America As Represented By The Secretary Of The Navy High lift aircraft
US5115996A (en) 1990-01-31 1992-05-26 Moller International, Inc. Vtol aircraft
US5096012A (en) 1990-03-12 1992-03-17 American Hovercraft & Sports, Inc. Direction and lift control for hovercraft
US5074759A (en) 1990-03-14 1991-12-24 Cossairt Keith R Fluid dynamic pump
US5201478A (en) 1990-04-06 1993-04-13 Wooley Don H Airplane efficiency, safety and utilization
US5282357A (en) 1990-04-19 1994-02-01 Trw Inc. High-performance dual-mode integral propulsion system
US5214914A (en) 1990-04-30 1993-06-01 The Johns Hopkins University Translating cowl inlet with retractable propellant injection struts
US5154052A (en) 1990-05-07 1992-10-13 General Electric Company Exhaust assembly for a high speed civil transport aircraft engine
US5209428A (en) 1990-05-07 1993-05-11 Lockheed Corporation Propulsion system for a vertical and short takeoff and landing aircraft
US5152478A (en) 1990-05-18 1992-10-06 United Technologies Corporation Unmanned flight vehicle including counter rotating rotors positioned within a toroidal shroud and operable to provide all required vehicle flight controls
US5251846A (en) 1990-07-23 1993-10-12 Vehicle Research Corporation Supersonic aircraft shock wave energy recovery system
US5676333A (en) 1990-07-23 1997-10-14 Rethorst; Scott Supersonic aircraft shock wave energy recovery system
US5358156A (en) 1990-07-23 1994-10-25 Vehicle Research Corporation Supersonic aircraft shock wave energy recovery system
JPH06502364A (ja) 1990-07-25 1994-03-17 サドレアー・ヴィートール・エアクラフト・カンパニー・プロプライエタリー・リミテッド Vtol航空機のための推進ユニット
US5167383A (en) * 1990-08-18 1992-12-01 Yoshio Nozaki STOL aircraft
GB2249140B (en) 1990-08-30 1994-12-07 S & C Thermofluids Ltd Aircraft engine noise suppression
JPH04169397A (ja) 1990-10-31 1992-06-17 Sosuke Omiya 飛行船
US5158251A (en) 1990-11-16 1992-10-27 The United State Of America As Represented By The Secretary Of The Navy Aerodynamic surface tip vortex attenuation system
US5161953A (en) 1991-01-28 1992-11-10 Burtis Wilson A Aircraft propeller and blade element
US5102067A (en) 1991-04-11 1992-04-07 United Technologies Corporation Integrated helicopter empennage structure
EP0541761A1 (en) 1991-06-01 1993-05-19 KIM, Jae, Hwan Power and propulsion system utilizing fluid
US5145129A (en) 1991-06-06 1992-09-08 Grumman Aerospace Corporation Unmanned boom/canard propeller v/stol aircraft
US5205119A (en) 1991-06-14 1993-04-27 Aerojet-General Corporation Ejector ramjet
US5244167A (en) 1991-08-20 1993-09-14 John Turk Lift augmentation system for aircraft
US5267626A (en) 1991-08-29 1993-12-07 Tanfield Jr Theodore W Near surface vehicle
US5149012A (en) 1991-09-10 1992-09-22 Valverde Rene L Turbocraft
US5178344A (en) 1991-09-13 1993-01-12 Vaclav Dlouhy VTOL aircraft
US5170963A (en) 1991-09-24 1992-12-15 August H. Beck Foundation Company VTOL aircraft
US5395073A (en) 1992-03-13 1995-03-07 Freewing Aerial Robotics Corporation STOL/VTOL free wing aircraft with articulated tail boom
US5863013A (en) 1991-11-20 1999-01-26 Freewing Aerial Robotics Corporation STOL/VTOL free wing aircraft with improved shock dampening and absorbing means
US5280863A (en) 1991-11-20 1994-01-25 Hugh Schmittle Lockable free wing aircraft
US5340057A (en) 1991-11-20 1994-08-23 Freewing Aerial Robotics Corporation Thrust vectoring free wing aircraft
US5765777A (en) 1991-11-20 1998-06-16 Freewing Aerial Robotics Corporation STOL/VTOL free wing aircraft with variable pitch propulsion means
GB2264907A (en) 1992-02-10 1993-09-15 Peter Antony Hulmes Multi-engined aircraft.
US5242132A (en) 1992-03-31 1993-09-07 Edward Wukowitz Multi-hulled aircraft/boat
US5372337A (en) 1992-05-01 1994-12-13 Kress; Robert W. Unmanned aerial aircraft having a single engine with dual jet exhausts
US5312069A (en) 1992-07-15 1994-05-17 Lockheed Corporation Propulsion system for an aircraft providing V/STOL capability
US5253828A (en) 1992-07-17 1993-10-19 The Board Of Regents Of The University Of Oklahoma Concealable flap-actuated vortex generator
US5277381A (en) 1992-08-12 1994-01-11 Piasecki Aircraft Corporation Rotary wing aircraft shrouded propeller sidewall thruster
JPH0699899A (ja) 1992-09-21 1994-04-12 Ishikawajima Harima Heavy Ind Co Ltd 宇宙機の姿勢制御装置
US5320306A (en) 1992-10-14 1994-06-14 Gennaro Mark A Aircraft construction
US5295643A (en) 1992-12-28 1994-03-22 Hughes Missile Systems Company Unmanned vertical take-off and landing, horizontal cruise, air vehicle
US5351911A (en) 1993-01-06 1994-10-04 Neumayr George A Vertical takeoff and landing (VTOL) flying disc
RU2065380C1 (ru) 1993-01-20 1996-08-20 Демидов Герман Викторович Сверхзвуковой летательный аппарат
US5769359A (en) 1993-01-22 1998-06-23 Freewing Aerial Robotics Corporation Active feedback loop to control body pitch in STOL/VTOL free wing aircraft
JPH06257512A (ja) * 1993-03-04 1994-09-13 Mitsubishi Heavy Ind Ltd 可変排気ノズル
GB2323065B (en) 1993-03-13 1998-12-09 Rolls Royce Plc Vectorable nozzle for aircraft
JPH072188A (ja) 1993-04-13 1995-01-06 Toru Fujii 無尾翼傾斜ゼットロケット合成方式
US6003301A (en) 1993-04-14 1999-12-21 Adroit Systems, Inc. Exhaust nozzle for multi-tube detonative engines
US5454531A (en) 1993-04-19 1995-10-03 Melkuti; Attila Ducted propeller aircraft (V/STOL)
US5881970A (en) 1993-04-29 1999-03-16 Whitesides; Carl Wayne Levity aircraft design
US5454530A (en) 1993-05-28 1995-10-03 Mcdonnell Douglas Helicopter Company Canard rotor/wing
US5390877A (en) 1993-06-25 1995-02-21 Rolls Royce Plc Vectorable nozzle for aircraft
US5328098A (en) 1993-07-09 1994-07-12 United Technologies Corporation Thrust vectoring ejector nozzle
US5402938A (en) * 1993-09-17 1995-04-04 Exair Corporation Fluid amplifier with improved operating range using tapered shim
US5779188A (en) 1993-09-21 1998-07-14 Frick; Alexander Flight device
ES2105929B1 (es) 1993-11-23 1998-05-01 Sener Ing & Sist Tobera axisimetrica orientable de geometria variable para propulsores de turbina de gas.
US5435489A (en) 1994-01-13 1995-07-25 Bell Helicopter Textron Inc. Engine exhaust gas deflection system
DE4405975A1 (de) 1994-02-24 1995-08-31 Wolff Hans Dietrich Vertikal startendes und landendes Flächenflugzeug
GB9408394D0 (en) 1994-04-28 1994-06-22 Burns David J Thruster engine and aircraft with such an engine
US6082478A (en) 1994-05-02 2000-07-04 Hybricraft, Inc. Lift augmented ground effect platform
US5803199A (en) 1994-05-02 1998-09-08 Hybricraft, Inc. Lift augmented ground effect platform
RU2123963C1 (ru) 1994-07-11 1998-12-27 Ситдиков Саит Мансурович Мотодельтоплан
US5904320A (en) 1994-07-14 1999-05-18 Northrop Gunman Corporation Blockerless thrust reverser
US5713537A (en) 1995-12-11 1998-02-03 Northrop Grumman Corporation Blockerless thrust reverser
US5503351A (en) 1994-09-06 1996-04-02 Vass; Gabor I. Circular wing aircraft
RU2130863C1 (ru) 1994-09-30 1999-05-27 Елистратов Вадим Геннадьевич Самолет с вертикальным взлетом и посадкой
GB2295857B (en) 1994-12-07 1998-09-09 Michael V Rodrigues Satellite engine, compressor and motor
WO1996020867A1 (en) 1994-12-30 1996-07-11 Grumman Aerospace Corporation Fluidic control thrust vectoring nozzle
CA2141481A1 (en) 1995-01-31 1996-08-01 Youri Ouvarov Aircraft with "s"-rotor/"c" blades folding to the "o"-wing
US5810284A (en) 1995-03-15 1998-09-22 Hibbs; Bart D. Aircraft
US5769317A (en) 1995-05-04 1998-06-23 Allison Engine Company, Inc. Aircraft thrust vectoring system
GB9511159D0 (en) 1995-06-02 1996-06-19 British Aerospace Airbourne apparatus for ground erosion reduction
JPH0911991A (ja) 1995-07-03 1997-01-14 Mitsubishi Heavy Ind Ltd コアンダ効果高揚力発生装置
US5687934A (en) 1995-08-04 1997-11-18 Owens; Phillip R. V/STOL aircraft and method
US6142425A (en) 1995-08-22 2000-11-07 Georgia Institute Of Technology Apparatus and method for aerodynamic blowing control using smart materials
US5791601A (en) 1995-08-22 1998-08-11 Dancila; D. Stefan Apparatus and method for aerodynamic blowing control using smart materials
US5727754A (en) 1995-08-31 1998-03-17 Cartercopters, L.L.C. Gyroplane
CN1074373C (zh) * 1995-09-29 2001-11-07 克里斯蒂安·奥德纳松工程公司 带有喷气襟翼推进系统的飞机
WO1997012804A1 (en) * 1995-09-29 1997-04-10 Verkfrædistofa Kristjáns Árnasonar Aircraft with jet flap propulsion
US6000635A (en) 1995-10-02 1999-12-14 Lockheed Martin Corporation Exhaust nozzle for a turbojet engine
US5823468A (en) 1995-10-24 1998-10-20 Bothe; Hans-Jurgen Hybrid aircraft
DE19540272A1 (de) 1995-10-28 1997-04-30 Johannes Schier Ringflügel-Flugkörper
US5799874A (en) 1995-11-30 1998-09-01 United Technologies Corporation Aerodynamically controlled ejector
WO1997020734A2 (en) 1995-12-06 1997-06-12 Mc Donnell Douglas Corporation Flight control system for jet powered tri-mode aircraft
US5897078A (en) 1995-12-15 1999-04-27 The Boeing Company Multi-service common airframe-based aircraft
CN1204288A (zh) 1995-12-15 1999-01-06 波音公司 多用途通用机体基本结构的飞机
FR2745035B1 (fr) * 1996-02-15 1998-04-03 Hispano Suiza Sa Inverseur de poussee de turboreacteur a portes associees a un panneau amont
US6113028A (en) 1996-02-22 2000-09-05 Lohse; James R. Amphibious aircraft
GB2312709A (en) 1996-04-30 1997-11-05 David Johnston Burns Flying craft with magnetic field/electric arc vertical thrust producing means
US5924632A (en) 1996-05-02 1999-07-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Jet nozzle having centerbody for enhanced exit area mixing
US5758844A (en) 1996-05-28 1998-06-02 Boeing North American, Inc. Vertical/short take-off and landing (V/STOL) air vehicle capable of providing high speed horizontal flight
US6082635A (en) 1996-06-12 2000-07-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Undulated nozzle for enhanced exit area mixing
US6318668B1 (en) 1996-08-02 2001-11-20 Allison Advanced Development Company Thrust vectoring techniques
US6105901A (en) 1996-08-02 2000-08-22 Allison Engine Co., Inc. Thrust vectoring system
US5791875A (en) 1996-09-10 1998-08-11 Mcdonnell Douglas Helicopter Co. Tip vortex reduction system
US5765776A (en) 1996-10-22 1998-06-16 The United States Of America As Represented By The Secretary Of The Navy Omnidirectional and controllable wing using fluid ejection
GB2318558A (en) * 1996-10-23 1998-04-29 Everitt Ray Vehicle with lift producing arrangement
US5975462A (en) 1996-10-30 1999-11-02 The United States Of America As Represented By The Secretary Of The Navy Integrated propulsion/lift/control system for aircraft and ship applications
CA2195581A1 (en) 1997-01-21 1998-07-21 Stanley Ronald Meek Gyro stabilized triple mode aircraft
US6270036B1 (en) 1997-01-24 2001-08-07 Charles S. Lowe, Jr. Blown air lift generating rotating airfoil aircraft
US5984229A (en) 1997-06-02 1999-11-16 Boeing North American, Inc. Extremely short takeoff and landing of aircraft using multi-axis thrust vectoring
US5992140A (en) 1997-06-24 1999-11-30 Sikorsky Aircraft Corporation Exhaust nozzle for suppressing infrared radiation
US5934873A (en) 1997-06-30 1999-08-10 Safe Flight Instrument Corporation Helicopter rotor tip jet
BA97244A (bs) 1997-08-08 1999-08-02 Safedin Zelic Letece vozilo sa usponskim generatorima
EP0999965A4 (en) 1997-08-08 2002-05-08 Hybicraft Inc GROUND EFFECT PLATFORM WITH INCREASED BUOYANCY
US5971320A (en) 1997-08-26 1999-10-26 Jermyn; Phillip Matthew Helicopter with a gyroscopic rotor and rotor propellers to provide vectored thrust
JPH1182173A (ja) 1997-09-02 1999-03-26 Fuji Heavy Ind Ltd エゼクタロケット
US5996936A (en) 1997-09-29 1999-12-07 General Electric Company Fluidic throat exhaust nozzle
US6135393A (en) 1997-11-25 2000-10-24 Trw Inc. Spacecraft attitude and velocity control thruster system
RU2123443C1 (ru) 1997-12-24 1998-12-20 Назаров Валентин Васильевич Способ комплексного повышения аэродинамических и транспортных характеристик, способ управления полетом и летательный аппарат - наземно-воздушная амфибия для осуществления указанных способов
US5829714A (en) 1997-12-29 1998-11-03 Lechtenberg; William Francis Aerolift mechanism
US6113029A (en) 1998-01-08 2000-09-05 Chilecoptors, Inc. Aircraft capable of hovering and conventional flight
RU2151717C1 (ru) 1998-03-02 2000-06-27 Безруков Юрий Иванович Летающая тарелка
US6015115A (en) 1998-03-25 2000-01-18 Lockheed Martin Corporation Inflatable structures to control aircraft
US6171055B1 (en) 1998-04-03 2001-01-09 Aurora Flight Sciences Corporation Single lever power controller for manned and unmanned aircraft
RU2127202C1 (ru) 1998-04-16 1999-03-10 Назаров Валентин Васильевич Способ создания системы сил летательного аппарата самолетной схемы и наземно-воздушная амфибия (нва) для его осуществления
EP0960812A1 (en) 1998-05-28 1999-12-01 Boeing North American, Inc. Vertical/short take-off and landing (V/STOL) air vehicle capable of providing high speed horizontal flight
CN1240745A (zh) 1998-07-05 2000-01-12 石小潭 一种将飞机牵引力增大29%的方法
BR9806466A (pt) 1998-07-06 2000-03-21 Eduardo Bittencourt Sampaio Dispositivos de alta sustentação aerodinâmica por
RU2149799C1 (ru) 1998-07-08 2000-05-27 Малышкин Виктор Михайлович Комбинированная лопасть несущего винта летательного аппарата и способ полета летательного аппарата
GB2342079B (en) 1998-07-27 2002-10-23 S & C Thermofluids Ltd Rotating coanda surfaces for thrust vector
US6073881A (en) 1998-08-18 2000-06-13 Chen; Chung-Ching Aerodynamic lift apparatus
US6193187B1 (en) 1998-12-31 2001-02-27 Harry Scott Payload carry and launch system
US6086015A (en) 1999-05-07 2000-07-11 Aerovironment, Inc. Aerial transport method and apparatus
US6616094B2 (en) 1999-05-21 2003-09-09 Vortex Holding Company Lifting platform
RU2174484C2 (ru) 1999-06-29 2001-10-10 Безруков Юрий Иванович Самолет вертикального взлета и посадки - "дисколет безрукова-3"
GB9916153D0 (en) 1999-07-10 1999-09-08 Iles Frank Improvements in or relating to axial flow fans
US6471158B1 (en) 1999-07-15 2002-10-29 Robert P. Davis Vertical take-off and landing vehicle configured as a compound autogyro
US6382559B1 (en) 1999-08-13 2002-05-07 Rolls-Royce Corporation Thrust vectoring mechanism
US6382560B1 (en) 1999-09-24 2002-05-07 Go Aircraft Ltd. High speed vertical take-off and land aircraft
US6259976B1 (en) 1999-09-25 2001-07-10 Jerome H. Lemelson Fuzzy logic based emergency flight control with thrust vectoring
JP3120113B1 (ja) 1999-11-10 2000-12-25 科学技術庁航空宇宙技術研究所長 高速航空機用ジェットエンジン
GB9930728D0 (en) 1999-12-29 2000-02-16 Gkn Westland Helicopters Ltd Improvements in or relating to aircraft
BR0000053A (pt) 2000-01-12 2001-10-02 Eduardo Bittencourt Sampaio Dispositivo gerador de força aerodinâmica através da circulação do fluido sobre uma superfìcie
US20020014555A1 (en) 2000-02-23 2002-02-07 Tim Smith Method for altitude control and/or pitch angle control of airships, and an airship having a device for altitude control and/or pitch angle trimming
US6367243B1 (en) 2000-04-10 2002-04-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Atomic-based combined cycle propulsion system and method
US6623154B1 (en) 2000-04-12 2003-09-23 Premier Wastewater International, Inc. Differential injector
US6513752B2 (en) 2000-05-22 2003-02-04 Cartercopters, L.L.C. Hovering gyro aircraft
AU2001266599A1 (en) 2000-05-24 2001-12-03 Lance A. Liotta Lightweight remotely controlled aircraft
US6336319B1 (en) 2000-05-26 2002-01-08 General Electric Company Fluidic nozzle control system
GB0014064D0 (en) 2000-06-10 2001-05-02 Bae Systems Plc Improvements relating to aircraft
US6666406B2 (en) 2000-06-29 2003-12-23 The Boeing Company Blended wing and multiple-body airplane configuration
US6655631B2 (en) 2000-07-28 2003-12-02 John Frederick Austen-Brown Personal hoverplane with four tiltmotors
DE10126632A1 (de) 2000-08-08 2002-09-12 Sandor Nagy Kombinationsantrieb
CN1342589A (zh) 2000-09-13 2002-04-03 赵翼华 飞车
US6295805B1 (en) 2000-09-14 2001-10-02 Lockheed Martin Corporation Exhaust induced ejector nozzle system and method
US6848649B2 (en) 2000-10-03 2005-02-01 Charles Gilpin Churchman V/STOL biplane aircraft
US20020092948A1 (en) 2001-01-16 2002-07-18 Dugan John J. Apparatus and method for reducing jet engine noise
US6575406B2 (en) 2001-01-19 2003-06-10 The Boeing Company Integrated and/or modular high-speed aircraft
CA2331944A1 (en) 2001-01-19 2002-07-19 Ray Richards Seaplane having main wing mounted beneath fuselage
US20020139894A1 (en) 2001-02-01 2002-10-03 Sorensen Bradford T. Roadable aircraft boat that flies in a wind of its own making
CA2338852A1 (en) 2001-03-01 2002-09-01 Douglas J. Stevenson The ladybug
US6786450B1 (en) 2001-03-09 2004-09-07 Harry Einstein Rapidly-convertible roadable aircraft
US6464166B1 (en) 2001-05-29 2002-10-15 Romeo Yankee Ltd. Ducted fan vehicles particularly useful as VTOL aircraft
US7275712B2 (en) 2002-05-28 2007-10-02 Urban Aeronautics, Ltd. Ducted fan vehicles particularly useful as VTOL aircraft
US6883748B2 (en) 2001-06-04 2005-04-26 Rafi Yoeli Vehicles particularly useful as VTOL vehicles
US6695251B2 (en) 2001-06-19 2004-02-24 Space Systems/Loral, Inc Method and system for synchronized forward and Aft thrust vector control
US6568171B2 (en) 2001-07-05 2003-05-27 Aerojet-General Corporation Rocket vehicle thrust augmentation within divergent section of nozzle
AU2002354809A1 (en) 2001-07-06 2003-01-21 The Charles Stark Draper Laboratory, Inc. Vertical takeoff and landing aerial vehicle
AUPR706701A0 (en) 2001-08-17 2001-09-06 Arbortech Pty Ltd Material collection improvement
US6918244B2 (en) 2001-08-17 2005-07-19 John Eugene Dickau Vertical takeoff and landing aircraft propulsion systems
US6568630B2 (en) 2001-08-21 2003-05-27 Urban Aeronautics Ltd. Ducted vehicles particularly useful as VTOL aircraft
KR20030020731A (ko) 2001-09-04 2003-03-10 (주)에어로다빈치 펄럭임 운동을 하는 비행체의 날개구조
GB2379483A (en) 2001-09-08 2003-03-12 Rolls Royce Plc Augmented gas turbine propulsion system
US6592071B2 (en) 2001-09-25 2003-07-15 Sikorsky Aircraft Corporation Flight control system for a hybrid aircraft in the lift axis
US6474603B1 (en) 2001-09-25 2002-11-05 Sikorsky Aircraft Corporation Flight control system for a hybrid aircraft in the pitch axis
US6886776B2 (en) 2001-10-02 2005-05-03 Karl F. Milde, Jr. VTOL personal aircraft
US20030062443A1 (en) 2001-10-02 2003-04-03 Joseph Wagner VTOL personal aircraft
US20030062442A1 (en) 2001-10-02 2003-04-03 Milde Karl F. VTOL personal aircraft
US6622472B2 (en) 2001-10-17 2003-09-23 Gateway Space Transport, Inc. Apparatus and method for thrust vector control
CA2460598C (en) 2001-10-23 2012-12-18 The Nordam Group, Inc. Confluent variable exhaust nozzle
JP2003137192A (ja) 2001-10-31 2003-05-14 Mitsubishi Heavy Ind Ltd 垂直離着陸機
US6824095B2 (en) 2001-11-29 2004-11-30 Youbin Mao VSTOL vehicle
US20040104303A1 (en) 2001-11-29 2004-06-03 Youbin Mao Vstol vehicle
US6561456B1 (en) 2001-12-06 2003-05-13 Michael Thomas Devine Vertical/short take-off and landing aircraft
DE10160315A1 (de) 2001-12-07 2003-11-13 Airbus Gmbh Einrichtung zur Landeanflug-Steuerung eines Flugszeuges
US20040094662A1 (en) 2002-01-07 2004-05-20 Sanders John K. Vertical tale-off landing hovercraft
US7032861B2 (en) 2002-01-07 2006-04-25 Sanders Jr John K Quiet vertical takeoff and landing aircraft using ducted, magnetic induction air-impeller rotors
US6840478B2 (en) 2002-01-14 2005-01-11 Robert Jonathan Carr Aircraft internal wing and design
US6808140B2 (en) 2002-02-08 2004-10-26 Moller Paul S Vertical take-off and landing vehicles
US6786040B2 (en) 2002-02-20 2004-09-07 Space Access, Llc Ejector based engines
WO2003076224A2 (en) 2002-03-04 2003-09-18 Teacherson George A Ducted channel wing, high-lift devices and vehicles therefor
US20030175120A1 (en) 2002-03-12 2003-09-18 St. Clair Alexander Sasha Aqua / atmos propellor jet
US6622962B1 (en) 2002-04-29 2003-09-23 Bruce D. White Fixed wing aircraft having powered rotor VTOL capability with rotor blades stowable during horizontal flight
CN2542560Y (zh) 2002-04-30 2003-04-02 广州天象地效飞行器股份有限公司 一种具有独特气动布局的地效飞行器
CN2542561Y (zh) 2002-04-30 2003-04-02 广州天象地效飞行器股份有限公司 一种具有动力增升的地效飞行器
US6877960B1 (en) 2002-06-05 2005-04-12 Flodesign, Inc. Lobed convergent/divergent supersonic nozzle ejector system
US6751530B2 (en) 2002-06-10 2004-06-15 Ramot At Tel Aviv University Ltd. Aerial vehicle controlled and propelled by oscillatory momentum generators and method of flying a vehicle
BRPI0311741A2 (pt) 2002-06-12 2016-06-28 Thomas Sash controle de uma aeronave como um pêndulo orientado por vetores de empuxo na vertical, na horizontal e em todos os seus modos transicionais de vôo
RU2223891C1 (ru) 2002-06-27 2004-02-20 Авруцкий Гарри Израилевич Способ образования подъемной силы, аэроплан, способ взлета и посадки
CA2490886A1 (en) 2002-06-28 2004-01-08 Ashley Christopher Bryant Ducted air power plant
GB2390884A (en) 2002-07-16 2004-01-21 John William Rees A VSTL aircraft
US6860449B1 (en) 2002-07-16 2005-03-01 Zhuo Chen Hybrid flying wing
ITTO20020666A1 (it) 2002-07-26 2004-01-26 Fiat Ricerche Velivolo vtol
ITTO20020667A1 (it) 2002-07-26 2004-01-26 Fiat Ricerche Microvelivolo vtol
KR100472560B1 (ko) 2002-08-23 2005-03-08 한국항공우주연구원 비행선용 추력편향장치
US7607606B2 (en) 2002-09-11 2009-10-27 Milde Jr Karl F VTOL personal aircraft
US6892979B2 (en) 2002-09-11 2005-05-17 Karl F. Milde, Jr. VTOL personal aircraft
US7461811B2 (en) 2002-09-11 2008-12-09 Milde Jr Karl F VTOL personal aircraft
US7654486B2 (en) 2002-09-11 2010-02-02 Milde Jr Karl F VTOL personal aircraft
US6793174B2 (en) 2002-09-16 2004-09-21 The Boeing Company Pulsejet augmentor powered VTOL aircraft
US20040061025A1 (en) 2002-09-30 2004-04-01 Cordy Clifford Bernard Aerodynamics of small airplanes
US7121503B2 (en) 2002-09-30 2006-10-17 Cordy Jr Clifford B Better balanced canard airplane with forward engine
US9776715B2 (en) 2002-10-01 2017-10-03 Andrew H B Zhou Amphibious vertical takeoff and landing unmanned device
US9493235B2 (en) 2002-10-01 2016-11-15 Dylan T X Zhou Amphibious vertical takeoff and landing unmanned device
AU2002346997B2 (en) 2002-10-11 2009-01-08 Stefan Unzicker Vertical take-off and landing aircraft
US6983587B2 (en) 2002-10-28 2006-01-10 James Shumate Method and apparatus for thrust augmentation for rocket nozzles
RU2205760C1 (ru) 2002-10-29 2003-06-10 Ишков Юрий Григорьевич Экраноплан-амфибия на воздушной подушке
US6824109B2 (en) 2002-10-30 2004-11-30 E-Win Corporation Lift adjusting device for aircraft
US6848647B2 (en) 2002-11-04 2005-02-01 Testing Technologies, Inc. Methods of buoyant and/or semi-buoyant (basb) vehicles utilizing basb in conjunction with pressurized fluid stream jet (pjet) and variously shaped bodies, wings, outriggers, and propulsion/repulsion configurations
US6885917B2 (en) 2002-11-07 2005-04-26 The Boeing Company Enhanced flight control systems and methods for a jet powered tri-mode aircraft
GB2397809A (en) 2002-12-21 2004-08-04 Richard Cyril Adkins V/STOL aircraft with an ejector for providing vertical lift
US6843447B2 (en) 2003-01-06 2005-01-18 Brian H. Morgan Vertical take-off and landing aircraft
GB2398046B (en) 2003-01-15 2006-07-12 S & C Thermofluids Ltd The use of porous surfaces with coanda effect
US6866503B2 (en) 2003-01-29 2005-03-15 Air Products And Chemicals, Inc. Slotted injection nozzle and low NOx burner assembly
US20040164203A1 (en) 2003-02-21 2004-08-26 Charles Billiu Vertical take-off and landing aircraft
CA2516938A1 (en) 2003-02-24 2004-09-02 Charles Raymond Luffman Air vehicle
US7201346B2 (en) 2003-04-25 2007-04-10 Brad C Hansen Circular fixed wing VTOL aircraft
WO2005007506A2 (en) 2003-05-05 2005-01-27 Robert Daniel Hunt Air glider or sea glider alternately being lighter than air or water to being heavier than air or water, having a gas turbine of hydro-turbine to harness the kinetic energy of motion through the air or water, and method
US6880784B1 (en) 2003-05-08 2005-04-19 Supersonic Aerospace International, Llc Automatic takeoff thrust management system
FR2854962B1 (fr) 2003-05-14 2005-08-05 Airbus France Procede et dispositif de pilotage d'un aeronef
US6948682B1 (en) 2003-06-10 2005-09-27 Jon Stephenson Lifting body aircraft and reentry vehicle
US7654489B2 (en) 2003-06-10 2010-02-02 Aviation Dynamics, Corp Lifting body aircraft and reentry vehicle with chines
US20050116087A1 (en) 2003-06-11 2005-06-02 Page John S.Jr. Aircraft converts drag to lift
US7104498B2 (en) 2003-06-13 2006-09-12 Georgia Tech Research Corp. Channel-wing system for thrust deflection and force/moment generation
CN100354182C (zh) 2003-07-16 2007-12-12 肖立峰 伞翼喷气飞行器
US6824097B1 (en) 2003-08-27 2004-11-30 The Boeing Company Vertical takeoff and landing aircraft
US20070187547A1 (en) 2003-10-23 2007-08-16 Kelly Patrick D Vertical Lifting of Airplanes to Flying Heights
US7857253B2 (en) 2003-10-27 2010-12-28 Urban Aeronautics Ltd. Ducted fan VTOL vehicles
US7032698B2 (en) 2003-11-12 2006-04-25 Mattel, Inc. Hovercraft
US7143973B2 (en) 2003-11-14 2006-12-05 Kenneth Sye Ballew Avia tilting-rotor convertiplane
US6926229B2 (en) 2003-12-08 2005-08-09 The Boeing Company Aircraft with thrust vectoring for switchably providing upper surface blowing
FR2864029B1 (fr) 2003-12-23 2006-04-07 Eurocopter France Aeronef convertible pourvu de deux "tilt fan" de part et d'autre du fuselage et d'un "fan" fixe insere dans le fuselage
WO2005067413A2 (en) 2003-12-29 2005-07-28 Malvestuto Frank S Jr High-lift, low-drag, stall-resistant airfoil
GB2409845A (en) 2004-01-08 2005-07-13 Robert Graham Burrage Tilt-rotor aircraft changeable between vertical lift and forward flight modes
US7147183B1 (en) 2004-01-22 2006-12-12 Robert Jonathan Carr Lift system for an aerial crane and propulsion system for a vehicle
US7032835B2 (en) 2004-01-28 2006-04-25 United Technologies Corporation Convergent/divergent nozzle with modulated cooling
US7275711B1 (en) 2004-02-23 2007-10-02 Kenneth Warren Flanigan Gas-powered tip-jet-driven compound VTOL aircraft
US7147182B1 (en) 2004-02-23 2006-12-12 Kenneth Warren Flanigan Gas-powered tip-jet-driven tilt-rotor compound VTOL aircraft
KR20050088032A (ko) 2004-02-28 2005-09-01 박병남 원반형 비행기
WO2005085620A1 (ja) 2004-03-02 2005-09-15 Isamu Nemoto 亜音速機推進用可変サイクルエンジン
JP4441826B2 (ja) 2004-03-29 2010-03-31 ウィリアム・ディー・リーケン リング状の翼構造を有する航空機
WO2005099380A2 (en) 2004-04-07 2005-10-27 Lee John R Lift augmentation system
FR2869588B1 (fr) 2004-04-28 2006-07-14 Airbus France Sas Procede d'aide au decollage d'un aeronef.
DE102004024057B3 (de) * 2004-05-13 2005-09-15 Airbus Deutschland Gmbh Luftfahrzeug mit einem Fluidkanalsystem
US7137592B2 (en) 2004-05-24 2006-11-21 The Boeing Company High-aspect ratio hybrid airship
JP4478509B2 (ja) 2004-06-03 2010-06-09 富士重工業株式会社 高揚力発生装置
US7134631B2 (en) 2004-06-10 2006-11-14 Loth John L Vorticity cancellation at trailing edge for induced drag elimination
US7150432B2 (en) 2004-06-18 2006-12-19 The Boeing Company Horizontal augmented thrust system and method for creating augmented thrust
CA2471887A1 (en) 2004-06-29 2005-12-29 Andre David Milne Aero hoverjet mk-1
US7472863B2 (en) 2004-07-09 2009-01-06 Steve Pak Sky hopper
US7118066B2 (en) 2004-07-22 2006-10-10 Norman Carter Allen Tall V/STOL aircraft
US20060027679A1 (en) 2004-08-03 2006-02-09 Mr. Jack Gratteau Ejector Nozzle
US8262031B2 (en) 2004-08-20 2012-09-11 University Of Miami Co-flow jet aircraft
US8485476B2 (en) 2004-08-20 2013-07-16 University Of Miami Discrete co-flow jet (DCFJ) airfoil
WO2006022833A2 (en) 2004-08-20 2006-03-02 University Of Miami High performance airfoil with co-flow jet flow control
EP1796962A2 (en) 2004-09-17 2007-06-20 Aurora Flight Sciences Inbound transition control for a trail-sitting vertical take off and landing aircraft
US20070246601A1 (en) 2004-10-07 2007-10-25 Layton Otis F Manned/unmanned V.T.O.L. flight vehicle
US7322546B2 (en) 2004-10-07 2008-01-29 Snow Jr Harry T Performance airplane wing with tip tank assembly
US7290738B1 (en) 2004-10-28 2007-11-06 The United States Of America As Represented By The Secretary Of The Navy Dual jet emerging lift augmentation system for airfoils and hydrofoils
CN2753673Y (zh) 2004-11-01 2006-01-25 王忠信 纵列双涵道四喷口单人飞行器
JP2008526599A (ja) 2005-01-10 2008-07-24 アーバン エアロノーティクス リミテッド ダクト内ファン垂直離着陸ビークル
US7621463B2 (en) 2005-01-12 2009-11-24 Flodesign, Inc. Fluid nozzle system using self-propelling toroidal vortices for long-range jet impact
US7159817B2 (en) 2005-01-13 2007-01-09 Vandermey Timothy Vertical take-off and landing (VTOL) aircraft with distributed thrust and control
FR2880867A1 (fr) 2005-01-19 2006-07-21 Georges Gazuit Aeronef a decollage et atterissage court
JP4092728B2 (ja) 2005-01-25 2008-05-28 独立行政法人 宇宙航空研究開発機構 航空機用推進システム
US7219854B2 (en) 2005-03-04 2007-05-22 Information Systems Laboratories, Inc. Cycloidal hybrid advanced surface effects vehicle
US7568657B2 (en) 2005-03-14 2009-08-04 Milde Jr Karl F VTOL personal aircraft
US7556218B2 (en) 2005-03-15 2009-07-07 Entecho Pty Ltd. Aerodynamic lifting device and airborne craft
US8181902B2 (en) 2005-03-15 2012-05-22 Entecho Pty Ltd. Aerodynamic lifting device and airborne craft
US7520466B2 (en) 2005-03-17 2009-04-21 Nicolae Bostan Gyro-stabilized air vehicle
GB2424463A (en) 2005-03-23 2006-09-27 Gfs Projects Ltd Vehicle steering control
GB0505956D0 (en) 2005-03-23 2005-04-27 Gfs Projects Ltd Thrust generating apparatus
GB2424400A (en) 2005-03-23 2006-09-27 Gfs Projects Ltd Craft having aerofoil surface for controlling its spin
US7231997B2 (en) 2005-03-25 2007-06-19 Aerofex Corporation Hybrid drive powered lift platform
US7946528B2 (en) 2005-04-15 2011-05-24 Urban Aeronautics, Ltd. Flight control system especially suited for VTOL vehicles
JP2006300040A (ja) 2005-04-18 2006-11-02 Keigoro Shigiyama 波動圧電面/波動推進器/波動推進移動体
FR2885706B1 (fr) 2005-05-10 2007-06-15 Airbus France Sas Procede d'aide au decollage d'un aeronef.
JP5110241B2 (ja) 2005-05-16 2012-12-26 桂五郎 鴫山 波動圧電変換装置
JP4081550B2 (ja) 2005-05-19 2008-04-30 防衛省技術研究本部長 2段階拡大ノズルを有するフルイディック推力偏向ノズル
US7717368B2 (en) 2005-06-07 2010-05-18 Urban Aeronautics Ltd. Apparatus for generating horizontal forces in aerial vehicles and related method
BG65742B1 (bg) 2005-06-09 2009-09-30 Добромир АЛЕКСАНДРОВ Подемно устройство
US20070018034A1 (en) 2005-07-12 2007-01-25 Dickau John E Thrust vectoring
US7427048B2 (en) 2005-07-27 2008-09-23 The Boeing Company Linear acoustic pulsejet
US7581383B2 (en) 2005-07-27 2009-09-01 The Boeing Company Acoustic pulsejet helmet
US7128082B1 (en) 2005-08-10 2006-10-31 General Electric Company Method and system for flow control with fluidic oscillators
WO2007022315A2 (en) 2005-08-18 2007-02-22 University Of Cincinnati Integrated pulse detonation engine in a lifting surface with supercirculation
SG130968A1 (en) 2005-09-23 2007-04-26 Singapore Tech Aerospace Ltd An aircraft configured for at least a vtol or stol mode and a forward flight mode
US7434763B2 (en) 2005-09-28 2008-10-14 The Boeing Company Rotor/wing dual mode hub fairing system
US7677502B2 (en) 2005-09-29 2010-03-16 The Boeing Company Method and apparatus for generating lift
US20100120321A1 (en) 2005-09-30 2010-05-13 Rehco Llc Vertical take off plane
RU2287910C1 (ru) 2005-10-14 2006-11-20 Владимир Миронович Вишневский Способ формирования региональных беспроводных сетей передачи информации и телекоммутационная воздушная платформа для его реализации
GB2431626A (en) 2005-10-26 2007-05-02 Avcen Ltd Bypass turbofan engine
US7581696B2 (en) 2005-11-09 2009-09-01 Morgan Aircraft, Llc Aircraft attitude control configuration
US7788899B2 (en) 2005-12-29 2010-09-07 United Technologies Corporation Fixed nozzle thrust augmentation system
US20070158503A1 (en) 2006-01-12 2007-07-12 Burg Donald E Fluid dynamic foil with Coanda energizer
US8020804B2 (en) 2006-03-01 2011-09-20 Urban Aeronautics, Ltd. Ground effect vanes arrangement
EP2004483B1 (de) 2006-03-03 2012-05-23 David Posva Flugzeug mit der eigenschaft zu schwebeflug, schnellem vorwärtsflug, gleitflug, kurzstart, kurzlandung, senkrechtstart und senkrechtlandung
US7766274B1 (en) 2006-03-13 2010-08-03 Lockheed Martin Corporation Active maple seed flyer
US7410122B2 (en) 2006-03-20 2008-08-12 The Boeing Company VTOL UAV with lift fans in joined wings
WO2007108794A1 (en) 2006-03-20 2007-09-27 Nicolae Bostan Gyro-stabilized air vehicle
US7841563B2 (en) 2006-03-27 2010-11-30 Honeywell International Inc. Ducted fan air data system
US7584924B2 (en) 2006-04-11 2009-09-08 Go Aircraft Ltd. High speed vertical take-off and land aircraft with active fan balancing system
CA2543912A1 (en) 2006-04-20 2007-10-20 Jessey Roger Vertical lift aircraft
US20090065631A1 (en) 2006-04-28 2009-03-12 University Of Miami Emissionless silent and ultra-efficient airplane using cfj airfoil
US20090159757A1 (en) 2006-05-03 2009-06-25 Raphael Yoeli Ducted Fan Vtol Vehicles
US7793504B2 (en) 2006-05-04 2010-09-14 Rolls-Royce Corporation Nozzle with an adjustable throat
US20080054121A1 (en) 2006-05-11 2008-03-06 Urban Aeronautics Ltd. Ducted fan VTOL vehicles
GB2438848B (en) 2006-06-07 2011-08-17 Peter Frost-Gaskin Static wing for an aircraft
US7878798B2 (en) * 2006-06-14 2011-02-01 John Zink Company, Llc Coanda gas burner apparatus and methods
US20070290098A1 (en) * 2006-06-15 2007-12-20 Novak Charlie Airfoil having a movable control surface
FR2903455B1 (fr) 2006-07-05 2013-01-18 Airbus France Procede pour inverser la poussee produite par un ensemble propulsif d'un aeronef, dispositif pour sa mise en oeuvre, nacelle equipee dudit dispositif
RU2320518C1 (ru) 2006-07-06 2008-03-27 Владимир Степанович Григорчук Транспортный самолет
US8414260B2 (en) 2006-07-25 2013-04-09 Lockheed Martin Corporation Control system for controlling propeller aircraft engine during takeoff
RU2325307C1 (ru) 2006-08-16 2008-05-27 Открытое акционерное общество "Научно-производственное объединение "Сатурн" (ОАО "НПО "Сатурн") Способ взлета самолета
US7438259B1 (en) 2006-08-16 2008-10-21 Piasecki Aircraft Corporation Compound aircraft control system and method
GB2442712B (en) 2006-10-12 2009-02-25 Tyvik As Method, system and apparatus for producing a potential over a body
EA016402B1 (ru) 2006-10-20 2012-04-30 ЭлТиЭй КОРПОРЕЙШН Линзообразный дирижабль
US7937945B2 (en) 2006-10-27 2011-05-10 Kinde Sr Ronald August Combining a series of more efficient engines into a unit, or modular units
WO2008054234A1 (en) 2006-11-02 2008-05-08 Raposo Severino Manuel Oliveir System and process of vector propulsion with independent control of three translation and three rotation axis
US7604201B2 (en) 2006-11-17 2009-10-20 Pratt & Whitney Canada Corp. Nacelle drag reduction device for a turbofan gas turbine engine
US7665689B2 (en) 2006-11-24 2010-02-23 The Boeing Company Unconventional integrated propulsion systems and methods for blended wing body aircraft
US8833692B2 (en) 2006-11-27 2014-09-16 Urban Aeronautics Ltd. Wall effects on VTOL vehicles
US20080273961A1 (en) 2007-03-05 2008-11-06 Rosenkrans William E Flutter sensing and control system for a gas turbine engine
US7726609B2 (en) * 2007-03-16 2010-06-01 The Boeing Company High-performance low-noise aircraft exhaust systems and methods
US7753309B2 (en) 2007-03-22 2010-07-13 Oliver Garreau VTOL/STOL tilt-prop flying wing
JP5328681B2 (ja) 2007-03-23 2013-10-30 フローデザイン ウインド タービン コープ. ミキサーおよびエゼクターを有する風力タービン
US9272783B2 (en) 2007-03-28 2016-03-01 Star Technology And Research, Inc. Long endurance aircraft
GB0707512D0 (en) 2007-04-18 2007-05-30 Go Science Ltd Annular airborne vehicle
WO2008135973A2 (en) 2007-05-02 2008-11-13 Urban Aeronautics Ltd. Control flows and forces in vtol vehicles
US7891603B2 (en) 2007-05-16 2011-02-22 Michael Todd Voorhees Differential thrust control system
FR2916418B1 (fr) 2007-05-22 2009-08-28 Eurocopter France Helicoptere hybride rapide a grande distance franchissable.
US7988101B2 (en) 2007-05-25 2011-08-02 The Boeing Company Airfoil trailing edge plasma flow control apparatus and method
US20080315042A1 (en) 2007-06-20 2008-12-25 General Electric Company Thrust generator for a propulsion system
US20100019079A1 (en) 2007-06-20 2010-01-28 General Electric Company Thrust generator for a rotary wing aircraft
US20110215204A1 (en) * 2007-06-20 2011-09-08 General Electric Company System and method for generating thrust
JP2009029400A (ja) 2007-06-22 2009-02-12 Toyota Motor Corp 飛翔体
ITTO20070468A1 (it) * 2007-06-29 2008-12-30 Alenia Aeronautica Spa Metodo per incrementare la portanza di superfici aerodinamiche e per ridurre la resistenza all'avanzamento
US8661983B1 (en) 2007-07-26 2014-03-04 Kimball Rustin Scarr Ring airfoil glider with augmented stability
US8240125B2 (en) * 2007-07-26 2012-08-14 The Boeing Company Thrust vectoring system and method
US8291691B2 (en) 2007-08-02 2012-10-23 Aerojet-General Corporation Multi-functional pulse-divided rocket
EP2500262A1 (en) 2007-08-09 2012-09-19 LTA Corporation Lenticular Airship and Associated Controls
JP2009045976A (ja) 2007-08-16 2009-03-05 Mitsubishi Heavy Ind Ltd テールブーム
GB2452255A (en) 2007-08-28 2009-03-04 Gfs Projects Ltd Vertical-take-off air vehicle with lift created by a rotary impeller causing air to flow over convex outer surfaces
JP5290976B2 (ja) 2007-09-14 2013-09-18 株式会社ベルシオン 主翼両持型飛行機
JP2009083798A (ja) 2007-10-03 2009-04-23 Japan Aerospace Exploration Agency 電動垂直離着陸機の制御方法
DE102007048942A1 (de) 2007-10-12 2009-04-16 Stefan Szanto Coandaeffektflügel
US8894002B2 (en) 2010-07-20 2014-11-25 Lta Corporation System and method for solar-powered airship
US7878458B2 (en) 2007-10-29 2011-02-01 The Boeing Company Method and apparatus for enhancing engine-powered lift in an aircraft
US8087618B1 (en) 2007-10-29 2012-01-03 The Boeing Company Propulsion system and method for efficient lift generation
US7823840B2 (en) 2007-10-29 2010-11-02 The Boeing Company Systems and methods for control of engine exhaust flow
FR2923270B1 (fr) * 2007-11-06 2014-01-31 Airbus France Turbomoteur a tuyere de flux froid adaptee
US8046989B2 (en) 2007-11-14 2011-11-01 Paccar Inc Cooling device for high temperature exhaust
WO2009068835A1 (en) 2007-11-28 2009-06-04 Peter Frost-Gaskin Static wing for an aircraft
US8061119B2 (en) 2007-11-29 2011-11-22 United Technologies Corporation Actuation mechanism for a convertible gas turbine propulsion system
EP2252796A1 (de) 2007-12-11 2010-11-24 Nikolaos Papageorgiou Kreisflügel - aktinischer fluidantrieb (af)
US8191820B1 (en) * 2007-12-11 2012-06-05 Northrop Gurmman Corporation Flying wing aircraft
EP2234883B1 (en) 2007-12-14 2017-08-02 Urban Aeronautics Ltd. Vtol vehicle and method of operating
US8381528B2 (en) 2007-12-21 2013-02-26 Grossi Aerospace, Inc. Ramjet superheater
US8167233B2 (en) 2007-12-21 2012-05-01 Avx Aircraft Company Coaxial rotor aircraft
US7552722B1 (en) 2007-12-26 2009-06-30 Toyota Motor Engineering & Manufacturing North America, Inc. Exhaust gas recirculator devices
RU2371354C2 (ru) 2007-12-28 2009-10-27 Зубков Сергей Геннадьевич Способ полета в расширенном диапазоне скоростей на винтах с управлением вектором силы
GB2469431B (en) 2008-02-01 2012-07-04 Ashley Christopher Bryant Flying-wing aircraft
GB0802000D0 (en) 2008-02-04 2008-03-12 Wingtec Holdings Ltd Aerofoil control devices
US7883051B2 (en) 2008-03-27 2011-02-08 Johann Q. Sammy Ducted propulsion vector system
USD626056S1 (en) 2008-04-24 2010-10-26 Oliver Garreau Aircraft
US8387360B2 (en) 2008-05-21 2013-03-05 Raytheon Company Integral thrust vector and roll control system
EP2285676A1 (en) 2008-06-03 2011-02-23 Urban Aeronautics Ltd. Vtol vehicle with offset engine
GB2461051A (en) 2008-06-18 2009-12-23 Alexander Stuart Hardy VTOL aircraft control
US8746613B2 (en) 2008-08-20 2014-06-10 Williams International Co., L.L.C. Jet engine exhaust nozzle and associated system and method of use
WO2010024725A1 (ru) 2008-08-22 2010-03-04 Breyev Nikolay Innokentyevich Аэростатическая транспортная система с электроприводными винтомоторными установками
RU2374133C1 (ru) 2008-08-25 2009-11-27 Валерий Адамович Ковальчук Способ создания тяги (варианты) и аппарат для передвижения в текучей среде (варианты)
US20100051755A1 (en) 2008-08-26 2010-03-04 DarkStar LLC Tail-less boxed biplane air vehicle
DE102008044856A1 (de) 2008-08-28 2010-03-04 Heinig, Jürgen, Dr.-Ing. Anordnung eines Turbo-Schubgebläses und Verfahren zum Antrieb von Luftfahrzeugen
CN101353084A (zh) 2008-09-05 2009-01-28 龙川 垂直起落轻型飞行器
US8800259B2 (en) * 2008-09-22 2014-08-12 Rolls-Royce North American Technologies, Inc. Thrust vector system
US8336810B2 (en) 2008-10-29 2012-12-25 Rinaldo Brutoco System, method and apparatus for widespread commercialization of hydrogen as a carbon-free alternative fuel source
US10308340B2 (en) 2008-10-29 2019-06-04 Rinaldo Brutoco System, method and apparatus for widespread commercialization of hydrogen as a carbon-free fuel source
US9102391B2 (en) 2008-10-29 2015-08-11 Rinaldo Brutoco Hydrogen lighter-than-air craft structure
RU2401771C2 (ru) 2008-10-30 2010-10-20 Вениамин Михайлович Горобцов Турбовентиляторный способ создания подъемной силы летательного аппарата в горизонтальном полете, летательный аппарат-турболет, летательный аппарат самолетного типа повышенной грузоподъемности
US20100140416A1 (en) 2008-11-03 2010-06-10 Ohanian Iii Osgar John Ducted Fans with Flow Control Synthetic Jet Actuators and Methods for Ducted Fan Force and Moment Control
JP2010111216A (ja) 2008-11-05 2010-05-20 Toyota Motor Corp 飛翔体
JP2010120420A (ja) 2008-11-17 2010-06-03 Toyota Motor Corp 飛翔体
US20100140417A1 (en) 2008-12-05 2010-06-10 Phillip Rush Bose Modification of a NASA 4412 airfoil's upper surface produces increased lift
US8157520B2 (en) * 2008-12-12 2012-04-17 Kolacny Gordon S Fan, airfoil and vehicle propulsion systems
CN201371937Y (zh) 2008-12-15 2009-12-30 曹斌 非机动飞艇
US8572947B2 (en) 2008-12-31 2013-11-05 Rolls-Royce Corporation Gas turbine engine with ejector
US20100162680A1 (en) 2008-12-31 2010-07-01 Syed Jalaluddin Khalid Gas turbine engine with ejector
DE102009004239A1 (de) 2009-01-05 2010-07-08 Ivan Novikov-Kopp Verfahren zur komplexen Erhöhung von Aerodynamik- und Transporteigenschaften, Bodeneffektfahrzeug zur Ausführung des Verfahrens (Varianten) und Flugverfahren
CN101503114A (zh) 2009-01-14 2009-08-12 燕高飞 环形翼垂直起降飞行器
RU2419557C2 (ru) 2009-03-17 2011-05-27 Вениамин Михайлович Горобцов Водно-воздушное транспортное средство "аквалёт", безмачтовый парус, устройство управления парусом
US8292220B1 (en) 2009-03-19 2012-10-23 Northrop Grumman Corporation Flying wing aircraft with modular missionized elements
US9108711B2 (en) 2009-03-23 2015-08-18 Southern Methodist University Generation of a pulsed jet by jet vectoring through a nozzle with multiple outlets
US8167249B1 (en) 2009-03-25 2012-05-01 The Boeing Company Controllable upper surface blown nozzle
ES2377637B1 (es) 2009-04-07 2013-02-28 Airbus Operations, S.L. Avión con configuración alar en caja lambda.
RU2394723C1 (ru) 2009-04-13 2010-07-20 Дмитрий Сергеевич Дуров Многоцелевой криогенный конвертоплан
WO2010132901A1 (en) 2009-05-13 2010-11-18 Eric Norman Smith Aircraft
AU2009100459A4 (en) 2009-05-14 2009-07-02 Darren George Webster Vectored thrust operating system
IL199009A (en) 2009-05-27 2013-11-28 Israel Aerospace Ind Ltd aircraft
GB0909158D0 (en) 2009-05-29 2009-07-08 Rolls Royce Plc An aircraft having a lift/propulsion unit
WO2010148025A1 (en) 2009-06-15 2010-12-23 Blue Origin, Llc Compensating for wind prior to engaging airborne propulsion devices
WO2010148023A1 (en) 2009-06-15 2010-12-23 Blue Origin, Llc Predicting and correcting trajectories
CN101602404B (zh) 2009-07-03 2013-12-25 朱晓义 一种新型结构的飞行器
GB0911667D0 (en) 2009-07-06 2009-08-12 Aesir Ltd Improvements to controlling spin of an aircraft
GB2471663A (en) 2009-07-06 2011-01-12 Aesir Ltd Coanda effect vehicle
GB2472023A (en) 2009-07-21 2011-01-26 Aesir Ltd Steering flying vehicle by control of aerofoil
GB0914031D0 (en) 2009-08-11 2009-09-16 Airbus Operations Gmbh Gas exhaust diverter
US8162253B2 (en) 2009-08-19 2012-04-24 Seiford Sr Donald S Convertible vehicle for road, air, and water usage
US8936212B1 (en) 2009-08-25 2015-01-20 Qiang Fu System and method for compact and combinable aerial vehicle capable of vertical/short takeoff and landing
US9889928B2 (en) 2009-08-26 2018-02-13 Manuel Salz Lift, propulsion and stabilising system for vertical take-off and landing aircraft
DE102009039769A1 (de) * 2009-09-02 2011-03-17 Airbus Operations Gmbh Strömungskörper, Stellklappe oder Hauptflügel oder Flosse eines Flugzeugs sowie Strukturbauteil mit einem solchen Strömungskörper
US8689538B2 (en) 2009-09-09 2014-04-08 The Boeing Company Ultra-efficient propulsor with an augmentor fan circumscribing a turbofan
JP2011057195A (ja) * 2009-09-09 2011-03-24 Hideki Wakabayashi 揚力の高い翼
CZ303326B6 (cs) 2009-10-08 2012-08-01 Janda@Zdenek Letadlo pohánené dmychadlem
FR2953808B1 (fr) 2009-12-11 2016-09-09 li jing Chen Un avion dont le rapport poussee-poids est inferieur a 1 arrive a decoller et atterrir de facon verticale
FR2954275B1 (fr) 2009-12-22 2012-01-13 Astrium Sas Vehicule aerien ultra-rapide et procede de locomotion aerienne associe
US8408488B2 (en) 2010-01-04 2013-04-02 Glenn Leaver Safety flier—a parachute-glider air-vehicle with vertical take-off and landing capability
RU2010104373A (ru) 2010-02-08 2011-08-20 Александр Иосифович Филимонов (RU) Самолет на воздушной подушке с аэростатической разгрузкой
GB201002642D0 (en) 2010-02-16 2010-03-31 Beachy Head Michael A Engine for thrust and or shaft output
US8566000B2 (en) 2010-02-23 2013-10-22 Williams International Co., L.L.C. System and method for controlling a single-spool turboshaft engine
DE102010010128A1 (de) 2010-03-04 2011-09-08 Rolls-Royce Deutschland Ltd & Co Kg Flugzeugtriebwerk mit optimiertem Ölwärmetauscher
GB2478570B (en) 2010-03-11 2012-02-15 Edward Philip Ian Whittaker Apparatus for modifying fluid flows over an aerodynamic surface
US8544797B2 (en) 2010-03-29 2013-10-01 Dale Clifford Kramer Cargo carrying air vehicle
US20110240804A1 (en) 2010-04-01 2011-10-06 Nikolaos Kehayas Integrated aircraft
US9132915B2 (en) 2010-05-07 2015-09-15 Ohio Univeristy Multi-modal vehicle
US8505846B1 (en) 2010-05-11 2013-08-13 II Stanley Gordon Sanders Vertical takeoff and landing aircraft
FR2962713A1 (fr) 2010-07-13 2012-01-20 Eurocopter France Procede et aeronef muni d'un rotor arriere basculant
US8367993B2 (en) 2010-07-16 2013-02-05 Raytheon Company Aerodynamic flight termination system and method
US8495879B2 (en) 2010-07-16 2013-07-30 Winston Grace Compressed air vehicle having enhanced performance through use of magnus effect
US9016616B2 (en) 2010-07-26 2015-04-28 Hiroshi Kawaguchi Flying object
CA2806567C (en) 2010-07-26 2019-06-18 Rolls-Royce Corporation Gas turbine engine with ejector
US8573541B2 (en) 2010-09-13 2013-11-05 John Sullivan Wavy airfoil
WO2012035178A1 (es) 2010-09-14 2012-03-22 Munoz Saiz Manuel Sistema y procedimiento sustentador, propulsor y estabilizador para aeronaves de despegue y aterrizaje vertical
US8561935B2 (en) 2010-09-17 2013-10-22 Karl F. Milde, Jr. STOL and/or VTOL aircraft
CA2812250A1 (en) 2010-09-30 2012-04-05 General Electric Company Dual fuel aircraft system and method for operating same
US8876038B2 (en) 2010-10-05 2014-11-04 Urban Aeronautics Ltd. Ducted fan for VTOL vehicles with system and method to reduce roll moments
RO126028B1 (ro) 2010-10-08 2013-11-29 Octavian Preotu Carenă aero-hidrodinamică cu rezistenţă mică la înaintare şi efect coandă amplificat
US9212625B2 (en) 2010-11-19 2015-12-15 Rudolph Allen SHELLEY Hybrid gas turbine propulsion system
US20120128493A1 (en) 2010-11-19 2012-05-24 Shelley Rudolph Allen Hybrid free-air gas turbine engine
US9261019B2 (en) 2010-12-30 2016-02-16 Rolls-Royce North American Technologies, Inc. Variable cycle gas turbine engine
CN201923320U (zh) 2011-01-13 2011-08-10 杨苡 双发动机垂直起降固定翼无人机
US8910482B2 (en) 2011-02-02 2014-12-16 The Boeing Company Aircraft engine nozzle
US9527596B1 (en) 2011-03-01 2016-12-27 Richard D. Adams Remote controlled aerial reconnaissance vehicle
US9033281B1 (en) 2011-03-01 2015-05-19 Richard D. Adams Remote controlled aerial reconnaissance vehicle
CN102167163A (zh) 2011-03-25 2011-08-31 北京航空航天大学 一种提高机翼升力的合成射流环量控制方法
US8910464B2 (en) 2011-04-26 2014-12-16 Lockheed Martin Corporation Lift fan spherical thrust vectoring nozzle
NL2007124C2 (en) 2011-07-15 2013-02-12 Cor Leep Economical jet propulsion principle.
USD665333S1 (en) 2011-08-16 2012-08-14 Garreau Oliver VTOL aircraft
RO128282A2 (ro) 2011-09-13 2013-04-30 Octavian Preotu Metodă şi dispozitiv cu fante multiple independente pentru controlul curgerii pe extradosul aripii
RO128283A2 (ro) 2011-09-13 2013-04-30 Octavian Preotu Metodă şi dispozitiv cu fante multiple interconectate pentru controlul curgerii pe extradosul aripii
US20130068879A1 (en) 2011-09-15 2013-03-21 Hokan Colting Wing-in-ground effect vessel
DE102011082888B4 (de) 2011-09-16 2016-01-07 Airbus Defence and Space GmbH Auftriebsklappenanordnung, Tragflügel sowie Flugzeug
US20130087632A1 (en) 2011-10-11 2013-04-11 Patrick Germain Gas turbine engine exhaust ejector nozzle with de-swirl cascade
CN103057703A (zh) 2011-10-18 2013-04-24 顾惠群 具有羽翼翼形的双旋翼共轴直升机
US20130105635A1 (en) 2011-10-31 2013-05-02 King Abdullah II Design and Development Bureau Quad tilt rotor vertical take off and landing (vtol) unmanned aerial vehicle (uav) with 45 degree rotors
US8931729B2 (en) 2011-10-31 2015-01-13 King Abdullah II Design and Development Bureau Sided performance coaxial vertical takeoff and landing (VTOL) UAV and pitch stability technique using oblique active tilting (OAT)
FR2982236B1 (fr) 2011-11-03 2014-06-27 Snecma Pylone d'accrochage pour turbomachine
GB201120256D0 (en) 2011-11-24 2012-01-04 Rolls Royce Plc An aircraft
US20130134264A1 (en) 2011-11-28 2013-05-30 Carter Aviation Technologies, Llc Electric Motor Powered Rotor Drive for Slowed Rotor Winged Aircraft
FR2983171B1 (fr) 2011-11-30 2014-03-21 Eurocopter France Dispositif anti-couple a poussee longitudinale pour un giravion
DE102011120855B4 (de) 2011-12-13 2016-01-14 Airbus Defence and Space GmbH Schubvektorsteuerung
DE102011122071B4 (de) 2011-12-22 2013-10-31 Eads Deutschland Gmbh Stirlingmotor mit Schlagflügel für ein emissionsfreies Fluggerät
IL217501A (en) 2012-01-12 2017-09-28 Israel Aerospace Ind Ltd A method and system for maneuvering aircraft
CN102444500A (zh) 2012-01-17 2012-05-09 罗国沛 超高音速加速器发动机及运用方法
CN102556345B (zh) 2012-01-18 2016-04-13 朱晓义 飞机动力装置
FR2986275B1 (fr) * 2012-02-01 2016-07-01 Turbomeca Procede d'ejection de gaz d'echappement de turbine a gaz et ensemble d'echappement de configuration optimisee
DE102012002067A1 (de) 2012-02-03 2013-08-08 Eads Deutschland Gmbh Luft-Boden-Überwachungs- und/oder Wirksystem und Verfahren zur luftgestützten Inspektion und/oder Bekämpfung von auf dem Land oder auf See befindlichen Objekten
US20130206921A1 (en) 2012-02-15 2013-08-15 Aurora Flight Sciences Corporation System, apparatus and method for long endurance vertical takeoff and landing vehicle
FR2987821B1 (fr) 2012-03-09 2014-03-28 Airbus Operations Sas Procede et dispositif d'amelioration du controle lateral au sol d'un avion lors d'un decollage.
CN202508281U (zh) 2012-03-12 2012-10-31 北京工业大学 一种利用康达效应产生水平动力的飞行装置
CN202499129U (zh) 2012-03-23 2012-10-24 麻瑞 竞技比赛用气垫船
US9120559B2 (en) 2012-04-18 2015-09-01 Hamilton Sundstrand Corporation Propeller blade pitch actuation system
CA2776121A1 (en) 2012-04-30 2013-10-30 Gaonjur Rajesh Coaxial rotor/wing aircraft
US20130298540A1 (en) 2012-05-08 2013-11-14 Essam Tawfik Marcus Closed-cycle hydro-jet thruster
BG111231A (en) 2012-06-07 2013-12-31 КРЪСТЕВ ИванKrustev Ivan ROAD-AIR VEHICLE
US20130327014A1 (en) 2012-06-12 2013-12-12 Djamal Moulebhar Devices and Methods to Optimize Aircraft Power Plant and Aircraft Operations
US9341075B2 (en) 2012-06-25 2016-05-17 United Technologies Corporation Pre-turbine engine case variable area mixing plane
RU2500578C1 (ru) 2012-07-02 2013-12-10 Сергей Николаевич ПАВЛОВ Винтокрыл
EP2690012A1 (en) 2012-07-27 2014-01-29 Eurocopter Deutschland GmbH Semi-convertible rotorcraft
CN102765481A (zh) 2012-08-08 2012-11-07 南昌航空大学 吸气式升力体飞行器
US8950383B2 (en) 2012-08-27 2015-02-10 Cummins Intellectual Property, Inc. Gaseous fuel mixer for internal combustion engine
RU2518143C2 (ru) 2012-09-04 2014-06-10 Юрий Сергеевич Воронков Летательный аппарат вертикального взлета и посадки
IL222053A (en) 2012-09-23 2016-11-30 Israel Aerospace Ind Ltd A device, method, and computerized product for aircraft management
US20140084114A1 (en) 2012-09-25 2014-03-27 Ingo Valentin VTOL Aircraft with Propeller tiltable around two Axes and a retractable Rotor
RU2507122C1 (ru) 2012-10-08 2014-02-20 Общество с ограниченной ответственностью "Адванс Аэро МАИ" Летательный аппарат
US9694908B2 (en) 2012-10-16 2017-07-04 Aeroxo Limited Convertiplane (variants)
US20140103159A1 (en) 2012-10-17 2014-04-17 Wayne Curtis Bert Tunnel wing system for lift, altitude flight, and ground effect flight
US9663239B2 (en) 2012-11-12 2017-05-30 United Technologies Corporation Clocked thrust reversers
US9637218B2 (en) 2012-11-12 2017-05-02 United Technologies Corporation Aircraft with forward sweeping T-tail
US9567062B2 (en) 2012-11-12 2017-02-14 United Technologies Corporation Box wing with angled gas turbine engine cores
GB2508023A (en) 2012-11-14 2014-05-21 Jon Otegui Van Leeuw Aerofoil with leading edge cavity for blowing air
US9108725B1 (en) 2012-11-29 2015-08-18 The Boeing Company Method and apparatus for robust lift generation
US9714082B2 (en) 2012-11-29 2017-07-25 The Boeing Company Methods and apparatus for robust lift generation
EP2738091B1 (en) 2012-11-30 2015-07-22 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Vertical take-off and landing (VTOL) aerial vehicle and method of operating such a VTOL aerial vehicle
RU2531432C2 (ru) 2012-12-04 2014-10-20 Александр Владимирович Амброжевич Способ создания системы сил летательного аппарата вертикального взлёта и посадки и летательный аппарат для его осуществления
US9085355B2 (en) 2012-12-07 2015-07-21 Delorean Aerospace, Llc Vertical takeoff and landing aircraft
CN102991669B (zh) 2012-12-12 2014-12-03 北京理工大学 一种飞行器射流推力矢量控制系统
CN103057694A (zh) 2013-01-04 2013-04-24 北京航空航天大学 一种用于科恩达效应飞行器的开口式控制舵面
US9156564B2 (en) 2013-01-22 2015-10-13 Exhaustless, Inc. Airport capacity from takeoff assist
NZ710406A (en) * 2013-01-25 2017-11-24 Peter Ireland Energy efficiency improvements for turbomachinery
US20170300051A1 (en) 2013-02-06 2017-10-19 Dylan T X Zhou Amphibious vertical take off and landing unmanned device with AI data processing apparatus
US20170073070A1 (en) 2013-02-06 2017-03-16 Zhou Tian Xing Amphibious vertical takeoff and landing unmanned device with artificial intelligence (AI) and method and system for managing a crisis environment and controlling one or more targets
US9079663B2 (en) 2013-02-27 2015-07-14 Northrop Grumman Systems Corporation Canard-locked oblique wing aircraft
US9540113B2 (en) 2013-03-11 2017-01-10 United Technologies Corporation De-couple geared turbo-fan engine and aircraft
US20140263831A1 (en) 2013-03-13 2014-09-18 Lawrence C. Mitchell, Jr. Cross-wing Twin-Fuselage Aircraft
US20160061145A1 (en) 2013-04-03 2016-03-03 Rajan Kumar Hybrid Flow Control Method
CN103192989B (zh) 2013-04-08 2016-08-24 孙亮 陆地地效飞行器
US20140312177A1 (en) 2013-04-18 2014-10-23 Rajesh Gaonjur Coaxial rotor/wing aircraft
US9587585B1 (en) 2013-04-30 2017-03-07 The United States Of America As Represented By The Secretary Of The Air Force Augmented propulsion system with boundary layer suction and wake blowing
CN108438208A (zh) 2013-05-03 2018-08-24 威罗门飞行公司 垂直起落(vtol)飞行器
TWI504538B (zh) 2013-05-31 2015-10-21 Nat Applied Res Laboratories 雙旋流混合火箭引擎
ITTO20130495A1 (it) 2013-06-14 2014-12-15 Nimbus S R L Velivolo con apparato propulsivo a effetto coanda
FR3006992B1 (fr) 2013-06-18 2015-07-24 Eurocopter France Systeme de chauffage de l habitacle d un aeronef muni d un echangeur thermique annulaire autour de la tuyere d echappement
CN103419933B (zh) 2013-07-24 2016-12-28 南京航空航天大学 基于增升装置的前后翼布局垂直起降飞行器
CN103395491B (zh) 2013-08-07 2015-12-02 龙川 可开缝涵道螺旋桨系统以及运用该系统的飞行汽车
KR101513661B1 (ko) 2013-08-08 2015-04-20 한국항공대학교산학협력단 하이브리드 추력편향제어 시스템
UA94184U (uk) 2013-08-21 2014-11-10 Національний Авіаційний Університет Безпілотний конвертоплан
US10315758B2 (en) 2013-08-23 2019-06-11 Martin Leon Adam Omni-directional thrust vectoring propulsor
RU2532009C1 (ru) 2013-08-26 2014-10-27 Андрей Федорович Авраменко Летательный аппарат
US9428257B2 (en) 2013-09-18 2016-08-30 William Edmund Nelson Extended endurance air vehicle
CN203593159U (zh) * 2013-09-29 2014-05-14 国网山西省电力公司太原供电公司 多用途无人机
US9776710B2 (en) 2013-10-02 2017-10-03 John Hincks Duke Wingtip vortex drag reduction method using backwash convergence
US9187175B1 (en) 2013-10-31 2015-11-17 Franklin Y. K. Chen Flying-wing and VTOL flying-wing aircraft
US9777698B2 (en) 2013-11-12 2017-10-03 Daniel Keith Schlak Multiple motor gas turbine engine system with auxiliary gas utilization
KR20150055202A (ko) 2013-11-12 2015-05-21 성균관대학교산학협력단 무인비행기
CN103612751B (zh) 2013-11-18 2015-12-09 岑溪市东正新泵业贸易有限公司 航空器空气放大式推进装置
EP3085619A1 (en) 2013-12-16 2016-10-26 Chepik, Aleksandr Anufrievich Combination aircraft wing
JP2017501083A (ja) * 2013-12-23 2017-01-12 ハイドロ ブラスター インペラー アンパルツセルスカブ 船舶用の推進ユニット
USD724001S1 (en) 2013-12-27 2015-03-10 Elytron Aircraft LLC Joined-wing tilt-wing aircraft
EP2899118B1 (en) 2014-01-27 2019-01-16 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Rotorcraft with a fuselage and at least one main rotor
US20150226086A1 (en) 2014-02-03 2015-08-13 Devin Glenn Samuelson Rotational ducted fan (rdf) propulsion system
RU2563921C1 (ru) 2014-03-03 2015-09-27 Андрей Зелимханович Парастаев Винтокрылый летательный аппарат с вертикальным взлетом
RU2568234C2 (ru) 2014-04-04 2015-11-10 Михаил Николаевич Колеватов Комбинированный летательный аппарат
EP2933188A1 (en) 2014-04-17 2015-10-21 Li Jing Chen VTOL aircraft with a thrust-to-weight ratio smaller than 0.1
AU2015203190A1 (en) 2014-06-12 2016-01-07 Prospect Silver Limited A system for controlled vertical movement of an aircraft
US9771151B2 (en) 2014-06-20 2017-09-26 RJ Helicopter Corporation Reaction drive helicopter with circulation control
US9499266B1 (en) 2014-06-24 2016-11-22 Elytron Aircraft LLC Five-wing aircraft to permit smooth transitions between vertical and horizontal flight
US9767701B2 (en) 2014-06-26 2017-09-19 Amazon Technologies, Inc. Ground effect based surface sensing in automated aerial vehicles
CN104129500A (zh) 2014-07-02 2014-11-05 张力 一种固定翼式垂直起降飞行方法
GB201412188D0 (en) 2014-07-09 2014-08-20 Rolls Royce Plc Two-part gas turbine engine
US9751597B1 (en) 2014-07-15 2017-09-05 Lockheed Martin Corporation Unmanned fluid-propelled aerial vehicle
FR3024249B1 (fr) 2014-07-24 2021-04-30 Airbus Operations Sas Procede et systeme de commande de vol d'un aeronef.
US9845152B2 (en) 2014-08-11 2017-12-19 Dusan Milivoi Stan Apparatus and method for providing control and augmenting thrust at reduced speed and ensuring reduced drag at increased speed
US9533768B2 (en) 2014-08-12 2017-01-03 The Boeing Company Aircraft engine mounting system
WO2016053408A1 (en) 2014-10-01 2016-04-07 Sikorsky Aircraft Corporation Acoustic signature variation of aircraft utilizing a clutch
US10822076B2 (en) 2014-10-01 2020-11-03 Sikorsky Aircraft Corporation Dual rotor, rotary wing aircraft
US20170283046A1 (en) 2014-10-01 2017-10-05 Sikorsky Aircraft Corporation Sealed hub and shaft fairing for rotary wing aircraft
IL235072B (en) 2014-10-07 2019-09-26 Abramov Danny Landing method and system for aircraft
US20160101852A1 (en) 2014-10-09 2016-04-14 Yun Jiang Annular ducted lift fan VTOL aircraft
US20160101853A1 (en) 2014-10-10 2016-04-14 David Wayne Toppenberg Vertical take off and landing aircraft
CA2964284C (en) 2014-10-14 2022-05-31 Twingtec Ag Flying apparatus for generating electrical energy
EP3009345A1 (en) 2014-10-14 2016-04-20 Airbus Operations GmbH An aircraft
US9266609B1 (en) 2014-10-20 2016-02-23 Insitu, Inc Dual mode flight vehicle
CN104401480A (zh) 2014-11-06 2015-03-11 南京航空航天大学 涵道式倾转飞行器
WO2016078537A1 (zh) 2014-11-17 2016-05-26 朱晓义 一种动力装置以及汽车的发动机
US10379544B2 (en) 2014-11-25 2019-08-13 Sikorsky Aircraft Corporation Flight control system for a rotary wing aircraft
EP3031720B1 (en) 2014-12-09 2019-07-24 Sikorsky Aircraft Corporation Guide vanes for a pusher propeller for rotary wing aircraft
US9586683B1 (en) 2014-12-22 2017-03-07 Amazon Technologies, Inc. Transitioning an unmanned aerial vehicle to horizontal flight
JP5857293B1 (ja) 2015-01-05 2016-02-10 正裕 井尻 内燃機関の過給装置
US20160208742A1 (en) 2015-01-17 2016-07-21 John Bradley Pande DiscThruster, pressure thrust based aircraft engine
EP3261928A4 (en) 2015-02-02 2018-09-12 Devin G. Samuelson Rotational ducted fan (rdf) propulsion system
FR3032425A1 (fr) 2015-02-06 2016-08-12 Univ Tech De Compiegne - Utc Robot aerien et procede de catapultage d'un robot aerien
DE102015001704B4 (de) 2015-02-13 2017-04-13 Airbus Defence and Space GmbH Senkrechtstartfähiges Fluggerät
US9751614B1 (en) 2015-02-20 2017-09-05 The United States Of America As Represented By The Administrator Of Nasa Aeroelastic wing shaping using distributed propulsion
US10077108B2 (en) 2015-03-02 2018-09-18 Sikorsky Aircraft Corporation Vertical take-off and landing (VTOL) aircraft with exhaust deflector
US10370100B2 (en) 2015-03-24 2019-08-06 United States Of America As Represented By The Administrator Of Nasa Aerodynamically actuated thrust vectoring devices
JP6506069B2 (ja) 2015-03-27 2019-04-24 株式会社Subaru 航空機の推力偏向装置及び航空機の推力偏向方法
WO2016110756A1 (en) 2015-03-29 2016-07-14 Milani Kazem Vtol aircraft with tiltable propellers
CN104816823A (zh) 2015-04-21 2015-08-05 南京航空航天大学 一种涵道旋翼飞行器
CN204623838U (zh) 2015-04-21 2015-09-09 南京航空航天大学 一种涵道旋翼飞行器
FR3036140B1 (fr) 2015-05-11 2019-11-15 Safran Aircraft Engines Turbomachine d'aeronef a effet coanda
FR3036144B1 (fr) 2015-05-11 2019-03-22 Safran Aircraft Engines Helice de turbomachine
GB201508138D0 (en) 2015-05-13 2015-06-24 Rolls Royce Plc Aircraft
DE102015006511A1 (de) 2015-05-26 2016-12-01 Airbus Defence and Space GmbH Senkrechtstartfähiges Fluggerät
US9541924B2 (en) 2015-06-12 2017-01-10 Sunlight Photonics Inc. Methods and apparatus for distributed airborne transportation system
US9714090B2 (en) 2015-06-12 2017-07-25 Sunlight Photonics Inc. Aircraft for vertical take-off and landing
US20160376003A1 (en) 2015-06-26 2016-12-29 Yuri Feldman Aircraft
KR101660759B1 (ko) 2015-06-29 2016-09-28 한국항공대학교산학협력단 측판을 이용한 추력편향 제어 장치
US9789768B1 (en) 2015-07-06 2017-10-17 Wendel Clifford Meier Full-segregated thrust hybrid propulsion for airplanes
US10059442B2 (en) 2015-07-10 2018-08-28 Zenon Dragan Vertical takeoff and landing unmanned aircraft system
FR3038882B1 (fr) 2015-07-16 2018-03-23 Airbus Helicopters Aeronef combine muni d'un dispositif anticouple complementaire
CN105059542B (zh) 2015-08-10 2017-09-19 成都纵横自动化技术有限公司 一种垂直起降的固定翼长航时飞行器
CN108327893A (zh) 2015-08-14 2018-07-27 乌鲁木齐九品芝麻信息科技有限公司 喷气式襟翼增升连接翼系统及其飞行器
US9964960B2 (en) 2015-08-19 2018-05-08 Sikorsky Aircraft Corporation Hover attitude trim for vehicle
US9889924B2 (en) * 2015-08-24 2018-02-13 The Boeing Company Multi-directional control using upper surface blowing systems
WO2017116613A2 (en) 2015-12-04 2017-07-06 Jetoptera Inc. Micro-turbine gas generator and propulsive system
US10464668B2 (en) 2015-09-02 2019-11-05 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles
JP6930743B2 (ja) 2015-09-02 2021-09-01 ジェトプテラ、インコーポレイテッド エジェクタ及びエアフォイル形状
US20170283080A1 (en) 2015-09-02 2017-10-05 Jetoptera, Inc. Winglet ejector configurations
US9815552B1 (en) 2015-09-21 2017-11-14 Amazon Technologies, Inc. Unmanned aerial vehicle with center mounted fuselage and closed wing
US20170089298A1 (en) 2015-09-28 2017-03-30 Pratt & Whitney Canada Corp. Deployment mechanism for inflatable surface-increasing features for gas turbine engine
US10569857B2 (en) 2015-10-07 2020-02-25 Carbon Flyer LLC Aircraft body and method of making the same
EP3162701A1 (en) 2015-10-30 2017-05-03 BAE Systems PLC Air vehicle and method and apparatus for control thereof
KR101784372B1 (ko) 2015-11-26 2017-10-11 주식회사 네스앤텍 추진 로터가 구비된 멀티콥터
KR101766879B1 (ko) 2015-11-30 2017-08-10 (주)제이비드론코리아 드론 비행 보조 장치 및 이를 이용한 드론
RO131966B1 (ro) 2015-12-18 2022-11-29 Răzvan Sabie Aparat de zbor cu decolare şi aterizare verticală şi procedeu de operare a acestuia
US10099793B2 (en) 2016-01-01 2018-10-16 David G. Ullman Distributed electric ducted fan wing
US20170197700A1 (en) 2016-01-11 2017-07-13 Northrop Grumman Systems Corporation Electric distributed propulsion and high lift system
CN105460215A (zh) 2016-01-13 2016-04-06 绵阳空天科技有限公司 一种垂直或短距起降固定翼飞行器
US10926874B2 (en) 2016-01-15 2021-02-23 Aurora Flight Sciences Corporation Hybrid propulsion vertical take-off and landing aircraft
KR101646736B1 (ko) 2016-01-25 2016-08-08 주식회사 케바드론 조인드윙형 무인항공기
CN106043685B (zh) 2016-01-27 2018-09-11 北京航空航天大学 双矢量推进桨旋翼/固定翼复合式垂直起降飞行器
WO2017132515A2 (en) 2016-01-27 2017-08-03 Brent Harper Almost lighter than air vehicle
KR20170090936A (ko) 2016-01-29 2017-08-08 한국과학기술원 추진장치 및 이를 포함하는 비행체
US20170233081A1 (en) 2016-02-13 2017-08-17 Ge Aviation Systems Llc Method and aircraft for providing bleed air to an environmental control system
CN105649775B (zh) 2016-03-04 2017-06-23 王力丰 以压缩空气为施力源的系统及其方法、飞机
WO2017153807A1 (en) 2016-03-10 2017-09-14 Yoav Netzer Convertible rotor aircraft
AU2017274156B2 (en) 2016-03-11 2022-10-13 Jetoptera, Inc. Configuration for vertical take-off and landing system for aerial vehicles
RU2629475C1 (ru) 2016-03-15 2017-08-29 Дмитрий Сергеевич Дуров Скоростной турбовентиляторный винтокрыл
ITUA20161595A1 (it) 2016-03-15 2017-09-15 Navis S R L Velivolo a decollo verticale con ali girevoli e motori elettrici
US9663236B1 (en) 2016-03-28 2017-05-30 Amazon Technologies, Inc. Selectively thrusting propulsion units for aerial vehicles
US9840324B2 (en) 2016-03-28 2017-12-12 Amazon Technologies, Inc. Selectively thrusting propulsion units for aerial vehicles
US20170283048A1 (en) 2016-03-29 2017-10-05 Amazon Technologies, Inc. Convertable lifting propeller for unmanned aerial vehicle
US10669026B2 (en) 2016-04-01 2020-06-02 Albert Aguilar Lift cell modules and lift pods
CN205633041U (zh) 2016-04-06 2016-10-12 南京航空航天大学 一种在旋翼和固定翼之间布局可变的飞行器
CN105667781A (zh) 2016-04-06 2016-06-15 南京航空航天大学 一种在旋翼和固定翼之间布局可变的飞行器
RU2617014C1 (ru) 2016-04-11 2017-04-19 Светослав Владимирович Занегин Летательный аппарат
US9840339B1 (en) 2016-04-26 2017-12-12 Amazon Technologies, Inc. Sensors embedded within aerial vehicle control surfaces
RU2651947C2 (ru) 2016-05-04 2018-04-24 Борис Никифорович Сушенцев Реактивный самолет с укороченным либо вертикальным взлетом и посадкой (варианты)
CA2967221C (en) 2016-05-13 2021-08-24 Bell Helicopter Textron Inc. Forward folding rotor blades
CA2967228C (en) 2016-05-13 2020-08-25 Bell Helicopter Textron Inc. Vertical take off and landing closed wing aircraft
CA2967402C (en) 2016-05-13 2021-01-26 Bell Helicopter Textron Inc. Distributed propulsion
RU2636826C1 (ru) 2016-05-17 2017-11-28 Дмитрий Сергеевич Дуров Скоростной вертолет с перекрещивающимися винтами
CA3026260A1 (en) 2016-06-03 2017-12-07 Aerovironment, Inc. Vertical take-off and landing (vtol) winged air vehicle with complementary angled rotors
RU2627965C1 (ru) 2016-06-28 2017-08-14 Дмитрий Сергеевич Дуров Скоростной винтокрыл-амфибия
CN206265280U (zh) 2016-11-29 2017-06-20 北京航空航天大学 一种无舵面结构的飞艇
RU171505U1 (ru) 2017-02-07 2017-06-02 Юрий Иванович Безруков Самолет вертикального взлета и посадки
CN106864746A (zh) 2017-02-20 2017-06-20 西安爱生技术集团公司 一种可垂直起降的尾座式三旋翼鸭式布局飞行器
CN106938701A (zh) 2017-02-20 2017-07-11 西安爱生技术集团公司 一种可垂直起降的尾座式四旋翼鸭式布局飞行器
RU174731U1 (ru) 2017-03-07 2017-10-30 Борис Яковлевич Тузов Гибридный экранолет
CN106828915B (zh) 2017-03-15 2023-02-28 西北工业大学 一种倾转螺旋桨可垂直起降的高速飞行器的控制方法
CN107364571A (zh) 2017-07-26 2017-11-21 吴其兵 一种直升机
WO2017178899A2 (en) 2017-07-27 2017-10-19 Wasfi Alshdaifat Multiple task aerocarrier
CN107401956B (zh) 2017-08-09 2020-07-07 南京航空航天大学 基于喉道偏移式气动矢量喷管的两栖巡航导弹及其姿态控制方法
US11144070B1 (en) * 2020-07-28 2021-10-12 Chip West Erwin Short take off and land aircraft

Also Published As

Publication number Publication date
CN108349585B (zh) 2021-08-10
KR102663574B1 (ko) 2024-05-08
US20190118958A1 (en) 2019-04-25
EP3363731B1 (en) 2021-06-30
EP3344536B1 (en) 2023-09-06
ES2844127T3 (es) 2021-07-21
AU2016338382A1 (en) 2018-03-15
HK1256699A1 (zh) 2019-10-04
WO2017041018A1 (en) 2017-03-09
US20170057621A1 (en) 2017-03-02
WO2017065859A3 (en) 2017-07-20
EP3344537A1 (en) 2018-07-11
US20240228053A1 (en) 2024-07-11
AU2016338383A1 (en) 2018-03-22
WO2017065859A2 (en) 2017-04-20
CA2996285C (en) 2023-10-31
WO2017065858A2 (en) 2017-04-20
EP3344537A4 (en) 2019-08-21
IL257810B (en) 2022-07-01
US20180312268A1 (en) 2018-11-01
US10946976B2 (en) 2021-03-16
AU2016315450B2 (en) 2020-06-18
US10919636B2 (en) 2021-02-16
CN108137149A (zh) 2018-06-08
US10501197B2 (en) 2019-12-10
AU2016315450A1 (en) 2018-03-22
AU2021203495B2 (en) 2023-10-19
JP2018526287A (ja) 2018-09-13
CA2996285A1 (en) 2017-04-20
IL257812A (en) 2018-04-30
EP3344535B1 (en) 2021-06-09
AU2021203495A1 (en) 2021-07-01
WO2017041018A9 (en) 2018-04-12
IL257811A (en) 2018-04-30
CN108137149B (zh) 2021-07-06
KR102586347B1 (ko) 2023-10-10
EP3344535A2 (en) 2018-07-11
BR112018004252A2 (pt) 2019-02-12
JP6930743B2 (ja) 2021-09-01
KR102668106B1 (ko) 2024-05-22
KR20180061182A (ko) 2018-06-07
JP6885610B2 (ja) 2021-06-16
US10934011B2 (en) 2021-03-02
EP3344536A2 (en) 2018-07-11
EP3363731A1 (en) 2018-08-22
EP4306789A2 (en) 2024-01-17
ES2964957T3 (es) 2024-04-10
EP3344535A4 (en) 2019-05-15
CN108137150A (zh) 2018-06-08
CA2996302A1 (en) 2017-03-09
KR20180070560A (ko) 2018-06-26
IL257811B (en) 2022-08-01
HK1256577A1 (zh) 2019-09-27
CA3216288A1 (en) 2017-04-20
BR112018004256A2 (pt) 2019-02-12
CA2996284A1 (en) 2017-04-20
WO2017065858A3 (en) 2017-07-13
IL287449B2 (en) 2023-09-01
JP2018532647A (ja) 2018-11-08
EP4306789A3 (en) 2024-06-12
US20240182179A1 (en) 2024-06-06
EP3344536A4 (en) 2019-08-21
US11059600B2 (en) 2021-07-13
US20200354071A1 (en) 2020-11-12
PL3363732T3 (pl) 2021-06-14
US10875658B2 (en) 2020-12-29
EP3363732A1 (en) 2018-08-22
EP4403760A2 (en) 2024-07-24
EP3344537B1 (en) 2024-02-28
US20170057648A1 (en) 2017-03-02
IL257810A (en) 2018-04-30
US20240246689A1 (en) 2024-07-25
AU2016338382B2 (en) 2021-04-01
US20190047712A1 (en) 2019-02-14
EP4403760A3 (en) 2024-09-25
JP6964886B2 (ja) 2021-11-10
CN108349585A (zh) 2018-07-31
US20200023987A1 (en) 2020-01-23
IL287449B1 (en) 2023-05-01
US20190193864A1 (en) 2019-06-27
BR112018004262A2 (pt) 2018-10-09
HK1257209A1 (zh) 2019-10-18
US20220041297A1 (en) 2022-02-10
KR20230145238A (ko) 2023-10-17
AU2024200376A1 (en) 2024-02-08
IL257812B (en) 2021-12-01
US10207812B2 (en) 2019-02-19
IL287449A (en) 2021-12-01
US20190112062A1 (en) 2019-04-18
JP2018532075A (ja) 2018-11-01
EP3363732B1 (en) 2020-10-14
ES2890927T3 (es) 2022-01-25
KR20180073564A (ko) 2018-07-02
US10800538B2 (en) 2020-10-13
US20170057647A1 (en) 2017-03-02
CN108137150B (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
ES2886364T3 (es) Configuraciones de eyector y cuerpo de sustentación
US11053012B2 (en) Winglet ejector configurations
CN111655580B (zh) 小翼喷射器构造
US20220009627A1 (en) Vertical take off and landing aircraft with fluidic propulsion system
BR112018004252B1 (pt) Sistemas propulsores para veículos aéreos que usam os princípios da fluídica no arrasto e aceleração do ar ambiente e veículos que os utilizam
BR112018004256B1 (pt) Sistema de propulsão acoplado a um veículo