EP3550045A1 - Nickel-chrom-legierung - Google Patents
Nickel-chrom-legierung Download PDFInfo
- Publication number
- EP3550045A1 EP3550045A1 EP19172613.2A EP19172613A EP3550045A1 EP 3550045 A1 EP3550045 A1 EP 3550045A1 EP 19172613 A EP19172613 A EP 19172613A EP 3550045 A1 EP3550045 A1 EP 3550045A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alloy
- nickel
- chromium
- aluminum
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/053—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 30% but less than 40%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/055—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
Definitions
- petrochemicals require materials that are resistant to both temperature and corrosion and, in particular, have grown on the one hand from the hot product and, on the other hand, from the hot combustion gases of, for example, steam crackers.
- Their coils are subject to external oxidizing aufstickenden combustion gases with temperatures up to 1100 ° C and more and in the interior at temperatures up to about 900 ° C and optionally also high pressure of a carburizing and oxidizing atmosphere.
- the carburizing hydrocarbon atmosphere inside the pipes is associated with the danger that diffuses from there the carbon in the pipe material, the carbides in the material and increase from the existing carbide M 23 C 9 with increasing carburizing the carbon-rich carbide M 7 C 6 forms.
- the consequence of this is internal stresses due to the increase in carbide volume associated with carbide formation or conversion as well as a reduction in the strength and toughness of the tubing material.
- German patent specification describes 103 02 989 a nickel-chromium casting alloy also suitable as a material for coils of cracking and reforming furnaces with up to 0.8% carbon, 15 to 40% chromium, 0.5 to 13% iron, 1.5 to 7% aluminum, to 0, 2% silicon, to 0.2% manganese, 0.1 to 2.5% niobium, to 11% tungsten and molybdenum, to 1.5% titanium, 0.1 to 0.4% zirconium and 0.01 to 0 , 1% yttrium, balance nickel.
- This alloy has proven itself in particular when used as a pipe material, although the practice continues to call for pipe materials with extended life.
- the invention is therefore directed to a nickel-chromium alloy having improved durability under conditions such as cracking and reforming of hydrocarbons.
- the solution to this problem consists in a nickel-chromium alloy with 0.4 to 0.6% carbon, 28 to 33% chromium, 15 to 25% iron, 2 to 6% aluminum, each up to 2% silicon and manganese, respectively up to 1.5% niobium and tantalum, each up to 1.0% tungsten, titanium and zirconium, each up to 0.5% yttrium and cerium, up to 0.5% molybdenum and up to 0.1% nitrogen remainder including nickel impurities caused by melting.
- this alloy contains, individually or side by side, 17 to 22% iron, 3 to 4.5% aluminum, in each case 0.01 to 1% silicon, to 0.5% manganese, 0.5 to 1.0% niobium, bis 0.5 tantalum, to 0.6% tungsten, 0.001 to 0.5% titanium each, to 0.3% zirconium, to 0.3% yttrium, to 0.3% cerium, 0.01 to 0.5% Molybdenum and 0.001 to 0.1% nitrogen.
- the alloy according to the invention is characterized in particular by its comparatively high contents of chromium and nickel and by a compelling carbon content within a comparatively narrow range.
- the silicon improves the oxidation and carburization resistance.
- the manganese also has a positive effect on the oxidation resistance and additionally favorable on the weldability, deoxidizes the melt and binds the sulfur stable.
- Niobium improves creep strength, forms stable carbides and carbonitrides; It also serves as a mixed crystal hardener. Titanium and Tantalum improve creep strength. Even at very low levels, very finely divided carbides and carbonitrides form. At higher levels, titanium and tantalum act as mixed crystal hardeners.
- Tungsten improves the creep rupture strength. Particularly at high temperatures, tungsten improves the strength by means of solid solution hardening, since the carbides partly dissolve at higher temperatures.
- Cobalt also improves creep strength by means of solid solution hardening, zirconium through the formation of carbides, especially in conjunction with titanium and tantalum.
- Yttrium and cerium obviously not only improve the oxidation resistance and especially the adhesion and growth of the Al 2 O 3 cover layer.
- yttrium and cerium improve the creep resistance even at very low levels, since they stably bind the remaining free sulfur.
- Low levels of boron also improve creep strength, prevent sulfur segregation, and retard aging by coarsening the M 23 C 6 carbides.
- Molybdenum also improves the creep rupture strength, especially at high temperatures, by means of solid solution hardening. Especially because at high temperatures, the carbides partially go into solution.
- the nitrogen improves the creep rupture strength by means of carbonitride formation, while hafnium, even at low levels, improves the oxidation resistance by means of better adhesion of the cover layer and has a positive effect on the creep rupture strength.
- Phosphorous, sulfur, zinc, lead, arsenic, bismuth, tin and tellurium are among the impurities, their contents should therefore be as low as possible.
- the alloy is particularly suitable as a casting material for components of petrochemical plants, for example for producing pipe coils for cracking and reforming furnaces, reformer tubes, but also as a material for iron ore direct reduction plants and for similarly stressed components.
- these include furnace parts, radiant tubes for heating ovens, rolls for annealing furnaces, parts of Strip and strip casting plants, hoods and sleeves for annealing furnaces, parts of large diesel engines and shaped bodies for catalyst fillings.
- the alloy is characterized by a high oxidation and carburization resistance as well as good creep strength and creep resistance.
- the inner surface of cracking or reformer tubes is characterized by a catalytically inert, aluminum-containing oxide layer, thus preventing the formation of catalytic coke strands, known as carbon nanotubes.
- the properties that characterize the material also remain with multiple burn-out of the coke which inevitably deposits on the inner wall of the pipes during cracking.
- the alloy for producing centrifugally cast tubes if they are drilled with a contact pressure of 10 to 40 MPa, for example 10 to 25 MPa. In such a boring occurs due to the contact pressure to a cold deformation or work hardening of the pipe material in a near-surface zone with depths of, for example, 0.1 to 0.5 mm.
- the cold-worked zone recrystallizes, resulting in a very fine-grained microstructure.
- the recrystallization structure enhances the diffusion of the oxide-forming elements aluminum and chromium, which promotes the formation of a closed layer of high density and stability consisting primarily of alumina.
- the resulting adherent aluminum-containing oxide forms a closed protective layer of the tube inner wall, which is largely free of catalytically active centers such as nickel or iron and even after a prolonged cyclic heat stress is still stable.
- This aluminum-containing oxide layer prevents, in contrast to other pipe materials without such a cover layer, the penetration of oxygen into the base material and thus an internal oxidation of the pipe material.
- the cover layer suppresses not only the carburizing of the pipe material, but also corrosion by impurities in the process gas.
- the top layer consists mainly of Al 2 O 3 and the mixed oxide (Al, Cr) 2 O 3 and is largely inert to a catalytic coke formation. It is poor in elements that catalyze coke formation, such as iron and nickel.
- a durable oxide protective layer serves to condition, for example, the inner surface of steam cracker pipes after their installation when the relevant furnace is heated to its operating temperature.
- This conditioning can be carried out as heating with interposed isothermal heat treatments in a furnace atmosphere, which is set during the heating according to the invention, for example in a very weakly oxidizing water vapor-containing atmosphere with an oxygen partial pressure of at most 10 -20 , preferably at most 10 -30 bar.
- Particularly suitable is a protective gas atmosphere of 0.1 to 10 mol% of water vapor, 7 to 99.9 mol% of hydrogen and hydrocarbon individually or side by side and 0 to 88 mol% noble gases.
- the atmosphere during the conditioning preferably consists of an extremely weakly oxidizing mixture of water vapor, hydrogen, hydrocarbons and noble gases in an amount ratio such that the oxygen partial pressure of the mixture at a temperature of 600 ° C is less than 10 -20 bar, preferably less than 10 -30 bar is.
- the initial heating of the tube interior after a previous mechanical removal of a surface layer, d. H. the separate heating of the resulting cold-formed surface zone is preferably carried out under very weak oxidizing inert gas in several phases each at a rate of 10 to 100 ° C / h initially to 400 to 750 ° C, preferably about 550 ° C at the inner surface of the tube.
- This heating phase is followed by a one to fifty-hour hold within the temperature range mentioned.
- the heating takes place in the presence of a water vapor atmosphere as soon as the temperature has reached a value which precludes the formation of condensed water. Following this holding the tube is then brought to the operating temperature, for example to 800 to 900 ° C and is ready for operation.
- the tube temperature gradually increases in the cracking operation as a result of the deposition of pyrolytic coke and finally reaches about 1000 ° C or even 1050 ° C on the inner surface.
- the inner layer consisting essentially of Al 2 O 3 and to a small extent of (Al, Cr) 2 O 3 converts from a transition oxide such as ⁇ , ⁇ or ⁇ -Al 2 O 3 into stable ⁇ -aluminum oxide.
- the tube has reached its operating state with its mechanically removed inner layer in a multi-stage, but preferably eintoxicityen method.
- the process does not necessarily have to run in one stage, but can also start with a separate preliminary stage.
- This precursor includes initial heating after abrading the inner surface to holding at 400 to 750 ° C.
- the pipe pretreated in this way can then be further treated in situ in another factory, for example, starting from its cold state in the manner described above, ie brought to the operating temperature in the installed state.
- the mentioned separate pretreatment is not limited to tubes, but is also suitable for a partial or complete conditioning of surface zones of other workpieces, which are then treated according to their nature and use as in the invention or by other methods, but with a defined initial state.
- the invention is explained below by way of example with reference to five nickel alloys according to the invention in comparison with ten conventional nickel alloys, the composition of which is shown in Table I and which in particular with regard to their contents of carbon (alloys 5 and 6), chromium (alloys 4, 13 and 14). , Aluminum (alloys 12, 13), cobalt (alloys 1, 2) and iron (alloys 3, 12, 14, 15), differ from the nickel-chromium-iron alloy according to the invention.
- the alloy 9 is also characterized by a high carburization resistance; because, according to the diagram of FIG. 2, it has the lowest weight gain after all three carburizing treatments, compared with the conventional alloys 12 and 13, due to the low weight gain.
- FIGS. 3a and 3b show that the creep rupture strength of the nickel alloy 11 according to the invention is even better in a substantial range than in the two comparative alloys 12 and 13.
- An exception here is the alloy 15, which is not covered by the invention because of its low iron content with, however, much lower oxidation, carburization and coking resistance.
- FIGS. 5 and 6 Examples of the surface condition of the tube interior of furnace tubes with the composition of the alloy 8 falling under the invention are shown in FIGS. 5 and 6.
- the FIGS Figure 6 (Experiment 7 according to Table II) shows the superiority of a surface after a conditioning according to the invention in comparison to the Figure 5 , which relates to a not according to the invention conditioned surface (Table II, Experiment 2).
- the micrograph of the image 7 in the form of the dark areas shows the large-area and thus large-volume result of internal oxidation on the inside of a tube in a conventional nickel-chromium casting alloy compared to the micrograph of the image 8 of the alloy 9 according to the invention, which is practical was subjected to no internal oxidation, although both samples were similarly subjected to a multiple cyclic treatment of cracking on the one hand and removal of the carbon deposits on the other.
- the stability of the oxide layer on an alloy according to the invention is particularly clear from the course of the aluminum concentration over the depth of the edge zone after ten cracking phases with respective removal of the coke deposits by burnout in an intermediate phase when the diagrams according to FIGS. 9 and 10 are compared of the image 9 in the near-surface region due to the local failure of the protective overcoat and then onset of strong internal aluminum oxidation of the material is depleted of aluminum, the aluminum concentration in the diagram of the image 10 moves approximately at the initial level of the casting material. This clearly shows the importance of a continuous, dense and in particular firmly adhering inner aluminum-containing oxide layer in the tubes according to the invention.
- the stability of the aluminum-containing oxide layer was also investigated by long-term tests in a laboratory plant under process-related conditions.
- the samples of alloys 9 and 11 according to the invention were heated to 950.degree. C. under steam and then subjected three times to cracking at this temperature for 72 hours; they were then subjected to burnout at 900 ° C for four hours each.
- Image 12 shows the closed aluminum-containing oxide layer after the three crack cycles and beyond how the aluminum-containing oxide layer covers the material itself over chromium carbides in the surface. It can be seen that chromium carbides present on the surface are completely covered by the aluminum-containing oxide layer.
- the inventive nickel-chromium-iron alloy is characterized, for example, as a pipe material after removal of the inner surface under mechanical pressure and a subsequent multi-stage in situ heat treatment for conditioning the inner surface by a high oxidation, corrosion and especially high Creep rupture and creep resistance.
- Table II attempt Gas composition during the heating phase Temperature profile during the heating phase: Relative surface coverage of catalytic coke *: 1 1 00% air From 150 ° C to 875 ° C, 50 ° C / h; 40 h Hold at 875 ° C 1.4% 2 100% water vapor 1.1% 3 70% water vapor 30% methane From 150 ° C to 600 ° C, 50 ° C / h; 40 hours hold at 600 ° C; from 600 ° C to 875 ° C, 50 ° C / h 1.2% 4 3% water vapor 97% methane 0.37% 5 3% water vapor 97% methane (+ H 2 S-shock **) 0.26% 6 3% water vapor 97% ethane (+ H 2 S-shock **) 0.08% 7 3% water vapor 97% ethane 0.05% *: This value was determined by counting the coke threads on a defined pipe surface. **: After reaching operating temperature for 1 h treatment with 250 ppm sulfur (H 2 S)
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008051014A DE102008051014A1 (de) | 2008-10-13 | 2008-10-13 | Nickel-Chrom-Legierung |
EP17207317.3A EP3330390B1 (de) | 2008-10-13 | 2009-10-13 | Nickel-chrom-legierung |
EP09744619.9A EP2350329B1 (de) | 2008-10-13 | 2009-10-13 | Nickel-chrom-legierung |
PCT/EP2009/007345 WO2010043375A1 (de) | 2008-10-13 | 2009-10-13 | Nickel-chrom-legierung |
Related Parent Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09744619.9A Division EP2350329B1 (de) | 2008-10-13 | 2009-10-13 | Nickel-chrom-legierung |
EP17207317.3A Division-Into EP3330390B1 (de) | 2008-10-13 | 2009-10-13 | Nickel-chrom-legierung |
EP17207317.3A Division EP3330390B1 (de) | 2008-10-13 | 2009-10-13 | Nickel-chrom-legierung |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3550045A1 true EP3550045A1 (de) | 2019-10-09 |
Family
ID=41491665
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19172613.2A Withdrawn EP3550045A1 (de) | 2008-10-13 | 2009-10-13 | Nickel-chrom-legierung |
EP09744619.9A Active EP2350329B1 (de) | 2008-10-13 | 2009-10-13 | Nickel-chrom-legierung |
EP17207317.3A Active EP3330390B1 (de) | 2008-10-13 | 2009-10-13 | Nickel-chrom-legierung |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09744619.9A Active EP2350329B1 (de) | 2008-10-13 | 2009-10-13 | Nickel-chrom-legierung |
EP17207317.3A Active EP3330390B1 (de) | 2008-10-13 | 2009-10-13 | Nickel-chrom-legierung |
Country Status (20)
Country | Link |
---|---|
US (2) | US9249482B2 (pt) |
EP (3) | EP3550045A1 (pt) |
JP (4) | JP2012505314A (pt) |
KR (4) | KR101738390B1 (pt) |
CN (1) | CN102187003B (pt) |
BR (2) | BR122016030244A2 (pt) |
CA (1) | CA2740160C (pt) |
DE (1) | DE102008051014A1 (pt) |
EA (1) | EA020052B1 (pt) |
ES (2) | ES2747898T3 (pt) |
HU (2) | HUE037289T2 (pt) |
IL (1) | IL212098A (pt) |
MX (1) | MX2011003923A (pt) |
MY (1) | MY160131A (pt) |
PL (2) | PL3330390T3 (pt) |
PT (2) | PT3330390T (pt) |
TR (1) | TR201802979T4 (pt) |
UA (1) | UA109631C2 (pt) |
WO (1) | WO2010043375A1 (pt) |
ZA (1) | ZA201102259B (pt) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019034845A1 (en) | 2017-08-15 | 2019-02-21 | Paralloy Limited | ALLOY RESISTANT TO OXIDATION |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008051014A1 (de) * | 2008-10-13 | 2010-04-22 | Schmidt + Clemens Gmbh + Co. Kg | Nickel-Chrom-Legierung |
DE102012011161B4 (de) | 2012-06-05 | 2014-06-18 | Outokumpu Vdm Gmbh | Nickel-Chrom-Aluminium-Legierung mit guter Verarbeitbarkeit, Kriechfestigkeit und Korrosionsbeständigkeit |
DE102012011162B4 (de) * | 2012-06-05 | 2014-05-22 | Outokumpu Vdm Gmbh | Nickel-Chrom-Legierung mit guter Verarbeitbarkeit, Kriechfestigkeit und Korrosionsbeständigkeit |
US9540714B2 (en) | 2013-03-15 | 2017-01-10 | Ut-Battelle, Llc | High strength alloys for high temperature service in liquid-salt cooled energy systems |
US9377245B2 (en) | 2013-03-15 | 2016-06-28 | Ut-Battelle, Llc | Heat exchanger life extension via in-situ reconditioning |
US10017842B2 (en) | 2013-08-05 | 2018-07-10 | Ut-Battelle, Llc | Creep-resistant, cobalt-containing alloys for high temperature, liquid-salt heat exchanger systems |
US9435011B2 (en) | 2013-08-08 | 2016-09-06 | Ut-Battelle, Llc | Creep-resistant, cobalt-free alloys for high temperature, liquid-salt heat exchanger systems |
CN105723009B (zh) * | 2013-11-12 | 2017-08-18 | 新日铁住金株式会社 | Ni‑Cr合金材料以及使用其的油井用无缝管 |
US9683280B2 (en) | 2014-01-10 | 2017-06-20 | Ut-Battelle, Llc | Intermediate strength alloys for high temperature service in liquid-salt cooled energy systems |
DE102014001329B4 (de) | 2014-02-04 | 2016-04-28 | VDM Metals GmbH | Verwendung einer aushärtenden Nickel-Chrom-Titan-Aluminium-Legierung mit guter Verschleißbeständigkeit, Kriechfestigkeit, Korrosionsbeständigkeit und Verarbeitbarkeit |
DE102014001330B4 (de) | 2014-02-04 | 2016-05-12 | VDM Metals GmbH | Aushärtende Nickel-Chrom-Kobalt-Titan-Aluminium-Legierung mit guter Verschleißbeständigkeit, Kriechfestigkeit, Korrosionsbeständigkeit und Verarbeitbarkeit |
US11674212B2 (en) | 2014-03-28 | 2023-06-13 | Kubota Corporation | Cast product having alumina barrier layer |
JP6247977B2 (ja) * | 2014-03-28 | 2017-12-13 | 株式会社クボタ | アルミナバリア層を有する鋳造製品 |
ES2549704B1 (es) | 2014-04-30 | 2016-09-08 | Abengoa Hidrógeno, S.A. | Tubo reactor de reformado con vapor de agua |
US9683279B2 (en) | 2014-05-15 | 2017-06-20 | Ut-Battelle, Llc | Intermediate strength alloys for high temperature service in liquid-salt cooled energy systems |
US9605565B2 (en) | 2014-06-18 | 2017-03-28 | Ut-Battelle, Llc | Low-cost Fe—Ni—Cr alloys for high temperature valve applications |
WO2016023745A1 (de) * | 2014-08-13 | 2016-02-18 | Basf Se | Verfahren zur herstellung von ethylenhaltigem spaltgas und spaltrohr zur verwendung in dem verfahren |
CN104404349A (zh) * | 2014-11-03 | 2015-03-11 | 无锡贺邦金属制品有限公司 | 镍铬合金压铸件 |
CN104404338A (zh) * | 2014-11-04 | 2015-03-11 | 无锡贺邦金属制品有限公司 | 一种镍铬基合金冲压件 |
CN104404343A (zh) * | 2014-11-04 | 2015-03-11 | 无锡贺邦金属制品有限公司 | 镍铬合金冲压件 |
RU2581337C1 (ru) * | 2015-06-10 | 2016-04-20 | Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" АО "НПО "ЦНИИТМАШ" | Жаропрочный сплав на основе никеля для литья деталей горячего тракта газотурбинных установок, имеющих равноосную структуру |
CN105755321A (zh) * | 2016-03-31 | 2016-07-13 | 苏州睿昕汽车配件有限公司 | 汽车柴油机高强度活塞材料的制备方法 |
EP3287535A1 (de) * | 2016-08-22 | 2018-02-28 | Siemens Aktiengesellschaft | Sx-nickel-legierung mit verbesserten tmf-eigenschaften, rohmaterial und bauteil |
DE102016012907A1 (de) | 2016-10-26 | 2018-04-26 | Schmidt + Clemens Gmbh + Co. Kg | Tieflochbohrverfahren sowie Werkzeug für eine Tieflochbohrmaschine und Tieflochbohrmaschine |
JP6335248B2 (ja) * | 2016-11-09 | 2018-05-30 | 株式会社クボタ | 肉盛溶接用合金及び溶接用粉末 |
JP6335247B2 (ja) * | 2016-11-09 | 2018-05-30 | 株式会社クボタ | 内面突起付反応管 |
ES2979387T3 (es) * | 2016-11-09 | 2024-09-25 | Kubota Kk | Aleación para soldadura por recubrimiento, polvo para soldadura y tubo de reacción |
US11612967B2 (en) | 2016-11-09 | 2023-03-28 | Kubota Corporation | Alloy for overlay welding and reaction tube |
EP3384981B1 (de) | 2017-04-07 | 2024-03-06 | Schmidt + Clemens GmbH + Co. KG | Rohr und vorrichtung zum thermischen spalten von kohlenwasserstoffen |
DE102017003409B4 (de) | 2017-04-07 | 2023-08-10 | Schmidt + Clemens Gmbh + Co. Kg | Rohr und Vorrichtung zum thermischen Spalten von Kohlenwasserstoffen |
CA3058824A1 (en) | 2017-04-07 | 2018-10-11 | Schmidt + Clemens Gmbh + Co. Kg | Pipe and device for thermally cleaving hydrocarbons |
US10456768B2 (en) | 2017-09-12 | 2019-10-29 | Exxonmobil Chemical Patents Inc. | Aluminum oxide forming heat transfer tube for thermal cracking |
JP6422608B1 (ja) * | 2017-11-06 | 2018-11-14 | 株式会社クボタ | 耐熱合金及び反応管 |
CN107739896A (zh) * | 2017-11-28 | 2018-02-27 | 宁波市鄞州龙腾工具厂 | 一种拖车组件 |
KR101998979B1 (ko) * | 2017-12-07 | 2019-07-10 | 주식회사 포스코 | 고온변형 저항성 및 균열 저항성이 우수한 복사관용 Cr-Ni계 합금 및 그 제조방법 |
JP7016283B2 (ja) * | 2018-04-25 | 2022-02-04 | 株式会社クボタ | 耐高温腐食性を有する耐熱合金、溶接用粉末及び外周面に肉盛溶接層を具える配管 |
FR3082209B1 (fr) | 2018-06-07 | 2020-08-07 | Manoir Pitres | Alliage austenitique avec haute teneur en aluminium et procede de conception associe |
CN109112327B (zh) * | 2018-11-08 | 2019-09-03 | 青岛新力通工业有限责任公司 | 一种抗氧化耐热合金及制备方法 |
CN113227328A (zh) * | 2018-12-20 | 2021-08-06 | 埃克森美孚化学专利公司 | 用于热裂化反应器的耐侵蚀合金 |
CN110016602B (zh) * | 2019-04-22 | 2020-06-02 | 陕西科技大学 | 一种Laves相Cr2Nb基高温合金 |
WO2021087133A1 (en) * | 2019-11-01 | 2021-05-06 | Exxonmobil Chemical Patents Inc. | Bimetallic materials comprising cermets with improved metal dusting corrosion and abrasion/erosion resistance |
JP7560732B2 (ja) | 2020-02-14 | 2024-10-03 | 日本製鉄株式会社 | オーステナイト系ステンレス鋼材 |
US11413744B2 (en) | 2020-03-03 | 2022-08-16 | Applied Materials, Inc. | Multi-turn drive assembly and systems and methods of use thereof |
CN111850348B (zh) * | 2020-07-30 | 2021-11-09 | 北京北冶功能材料有限公司 | 一种高强高韧镍基高温合金箔材及其制备方法 |
CN112853155A (zh) * | 2021-01-08 | 2021-05-28 | 烟台玛努尔高温合金有限公司 | 具有优异高温耐腐蚀性和抗蠕变性的高铝奥氏体合金 |
US11479836B2 (en) | 2021-01-29 | 2022-10-25 | Ut-Battelle, Llc | Low-cost, high-strength, cast creep-resistant alumina-forming alloys for heat-exchangers, supercritical CO2 systems and industrial applications |
US11866809B2 (en) | 2021-01-29 | 2024-01-09 | Ut-Battelle, Llc | Creep and corrosion-resistant cast alumina-forming alloys for high temperature service in industrial and petrochemical applications |
CN113073234B (zh) * | 2021-03-23 | 2022-05-24 | 成都先进金属材料产业技术研究院股份有限公司 | 镍铬系高电阻电热合金及其制备方法 |
CN113444950B (zh) * | 2021-07-08 | 2022-04-29 | 烟台新钢联冶金科技有限公司 | 一种硅钢高温加热炉用铬基高氮合金垫块及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3826689A (en) * | 1971-03-09 | 1974-07-30 | Kobe Steel Ltd | Austenite type heat-resisting steel having high strength at an elevated temperature and the process for producing same |
US4388125A (en) * | 1981-01-13 | 1983-06-14 | The International Nickel Company, Inc. | Carburization resistant high temperature alloy |
EP0322156B1 (en) * | 1987-12-21 | 1993-04-07 | Inco Alloys International, Inc. | High nickel chromium alloy |
US5306358A (en) | 1991-08-20 | 1994-04-26 | Haynes International, Inc. | Shielding gas to reduce weld hot cracking |
EP1065290B1 (en) * | 1999-06-30 | 2003-08-27 | Sumitomo Metal Industries, Ltd. | Heat resistant nickel base alloy |
JP2004052036A (ja) * | 2002-07-19 | 2004-02-19 | Kubota Corp | 耐浸炭性にすぐれる加熱炉用部材 |
DE10302989A1 (de) | 2003-01-25 | 2004-08-05 | Schmidt + Clemens Gmbh & Co. Kg | Hitze- und korrosionsbeständige Nickel-Chrom-Gußlegierung |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR929727A (fr) | 1944-02-24 | 1948-01-06 | William Jessop Ans Sons Ltd | Acier au nickel-chrome à caractère austénitique |
US2564498A (en) * | 1949-08-26 | 1951-08-14 | Gen Electric | Preparation of alloys |
DE1096040B (de) | 1953-08-11 | 1960-12-29 | Wiggin & Co Ltd Henry | Verfahren zur Herstellung einer Nickellegierung hoher Kriechfestigkeit bei hohen Temperaturen |
US3306736A (en) | 1963-08-30 | 1967-02-28 | Crucible Steel Co America | Austenitic stainless steel |
DE2105750C3 (de) | 1971-02-08 | 1975-04-24 | Battelle-Institut E.V., 6000 Frankfurt | Verwendung einer Chrombasislegierung zur Herstellung von Feingußoder FormguBkörhern |
JPS5631345B2 (pt) | 1972-01-27 | 1981-07-21 | ||
FR2429843A2 (fr) | 1978-06-29 | 1980-01-25 | Pompey Acieries | Alliages refractaires a base de nickel et de chrome, possedant une resistance tres elevee a la carburation a tres haute temperature |
GB2017148B (en) | 1978-03-22 | 1983-01-12 | Pompey Acieries | Nickel chromium iron alloys possessing very high resistantance to carburization at very high temperature |
JPS57131348A (en) * | 1981-02-09 | 1982-08-14 | Nippon Steel Corp | Heat and wear resistant build-up welding material |
JPS5837160A (ja) | 1981-08-27 | 1983-03-04 | Mitsubishi Metal Corp | 継目無鋼管製造用熱間傾斜圧延機のガイドシユ−用鋳造合金 |
AU547863B2 (en) * | 1981-09-02 | 1985-11-07 | Exxon Research And Engineering Company | Heat resistant, alumina forming (ni+cr) based oxidation and carburisation resistant alloy |
JPS6353234A (ja) | 1986-08-22 | 1988-03-07 | Toshiba Corp | 耐熱・高強度構造部材 |
JPH02263895A (ja) | 1989-04-03 | 1990-10-26 | Sumitomo Metal Ind Ltd | 耐コーキング性に優れたエチレン分解炉管およびその製造方法 |
DE19524234C1 (de) * | 1995-07-04 | 1997-08-28 | Krupp Vdm Gmbh | Knetbare Nickellegierung |
JPH09243284A (ja) * | 1996-03-12 | 1997-09-19 | Kubota Corp | 内面突起付き熱交換用管 |
CA2175439C (en) * | 1996-04-30 | 2001-09-04 | Sabino Steven Anthony Petrone | Surface alloyed high temperature alloys |
DK173136B1 (da) * | 1996-05-15 | 2000-02-07 | Man B & W Diesel As | Bevægeligt vægelement i form af en udstødsventilspindel eller et stempel i en forbrændingsmotor. |
JP3644532B2 (ja) | 1999-07-27 | 2005-04-27 | 住友金属工業株式会社 | 熱間加工性、溶接性および耐浸炭性に優れたNi基耐熱合金 |
JP4256614B2 (ja) | 2002-01-31 | 2009-04-22 | 三菱重工業株式会社 | 高クロム−高ニッケル系耐熱合金 |
US20050131263A1 (en) | 2002-07-25 | 2005-06-16 | Schmidt + Clemens Gmbh + Co. Kg, | Process and finned tube for the thermal cracking of hydrocarbons |
JP4415544B2 (ja) | 2002-12-17 | 2010-02-17 | 住友金属工業株式会社 | 高温強度に優れた耐メタルダスティング金属材料 |
EP1717330B1 (en) | 2004-02-12 | 2018-06-13 | Nippon Steel & Sumitomo Metal Corporation | Metal tube for use in carburizing gas atmosphere |
DE102006053917B4 (de) * | 2005-11-16 | 2019-08-14 | Ngk Spark Plug Co., Ltd. | Für Verbrennungsmotoren benutzte Zündkerze |
DE102008051014A1 (de) * | 2008-10-13 | 2010-04-22 | Schmidt + Clemens Gmbh + Co. Kg | Nickel-Chrom-Legierung |
-
2008
- 2008-10-13 DE DE102008051014A patent/DE102008051014A1/de not_active Withdrawn
-
2009
- 2009-10-13 KR KR1020117008378A patent/KR101738390B1/ko active IP Right Grant
- 2009-10-13 PL PL17207317T patent/PL3330390T3/pl unknown
- 2009-10-13 EP EP19172613.2A patent/EP3550045A1/de not_active Withdrawn
- 2009-10-13 PL PL09744619T patent/PL2350329T3/pl unknown
- 2009-10-13 MY MYPI2011001580A patent/MY160131A/en unknown
- 2009-10-13 UA UAA201106001A patent/UA109631C2/ru unknown
- 2009-10-13 EP EP09744619.9A patent/EP2350329B1/de active Active
- 2009-10-13 PT PT172073173T patent/PT3330390T/pt unknown
- 2009-10-13 BR BR122016030244A patent/BR122016030244A2/pt not_active Application Discontinuation
- 2009-10-13 PT PT97446199T patent/PT2350329T/pt unknown
- 2009-10-13 HU HUE09744619A patent/HUE037289T2/hu unknown
- 2009-10-13 WO PCT/EP2009/007345 patent/WO2010043375A1/de active Application Filing
- 2009-10-13 EA EA201170560A patent/EA020052B1/ru not_active IP Right Cessation
- 2009-10-13 JP JP2011531390A patent/JP2012505314A/ja active Pending
- 2009-10-13 US US13/124,016 patent/US9249482B2/en active Active
- 2009-10-13 BR BRPI0920279-0A patent/BRPI0920279B1/pt active IP Right Grant
- 2009-10-13 ES ES17207317T patent/ES2747898T3/es active Active
- 2009-10-13 MX MX2011003923A patent/MX2011003923A/es active IP Right Grant
- 2009-10-13 KR KR1020197028227A patent/KR102064375B1/ko active IP Right Grant
- 2009-10-13 ES ES09744619.9T patent/ES2661333T3/es active Active
- 2009-10-13 TR TR2018/02979T patent/TR201802979T4/tr unknown
- 2009-10-13 CN CN2009801407879A patent/CN102187003B/zh active Active
- 2009-10-13 EP EP17207317.3A patent/EP3330390B1/de active Active
- 2009-10-13 CA CA2740160A patent/CA2740160C/en active Active
- 2009-10-13 KR KR1020177013029A patent/KR102029019B1/ko active IP Right Grant
- 2009-10-13 HU HUE17207317A patent/HUE046718T2/hu unknown
- 2009-10-13 KR KR1020197035927A patent/KR102080674B1/ko active IP Right Grant
-
2011
- 2011-03-25 ZA ZA2011/02259A patent/ZA201102259B/en unknown
- 2011-04-03 IL IL212098A patent/IL212098A/en active IP Right Grant
-
2014
- 2014-06-17 JP JP2014124723A patent/JP2014185397A/ja active Pending
-
2015
- 2015-12-21 US US14/976,389 patent/US10053756B2/en active Active
-
2017
- 2017-03-13 JP JP2017047576A patent/JP6320590B2/ja active Active
-
2018
- 2018-04-02 JP JP2018070880A patent/JP6486532B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3826689A (en) * | 1971-03-09 | 1974-07-30 | Kobe Steel Ltd | Austenite type heat-resisting steel having high strength at an elevated temperature and the process for producing same |
US4388125A (en) * | 1981-01-13 | 1983-06-14 | The International Nickel Company, Inc. | Carburization resistant high temperature alloy |
EP0322156B1 (en) * | 1987-12-21 | 1993-04-07 | Inco Alloys International, Inc. | High nickel chromium alloy |
US5306358A (en) | 1991-08-20 | 1994-04-26 | Haynes International, Inc. | Shielding gas to reduce weld hot cracking |
EP1065290B1 (en) * | 1999-06-30 | 2003-08-27 | Sumitomo Metal Industries, Ltd. | Heat resistant nickel base alloy |
JP2004052036A (ja) * | 2002-07-19 | 2004-02-19 | Kubota Corp | 耐浸炭性にすぐれる加熱炉用部材 |
DE10302989A1 (de) | 2003-01-25 | 2004-08-05 | Schmidt + Clemens Gmbh & Co. Kg | Hitze- und korrosionsbeständige Nickel-Chrom-Gußlegierung |
DE10302989B4 (de) * | 2003-01-25 | 2005-03-03 | Schmidt + Clemens Gmbh & Co. Kg | Verwendung einer Hitze- und korrosionsbeständigen Nickel-Chrom-Stahllegierung |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019034845A1 (en) | 2017-08-15 | 2019-02-21 | Paralloy Limited | ALLOY RESISTANT TO OXIDATION |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3330390B1 (de) | Nickel-chrom-legierung | |
EP1501953B1 (de) | Hitze- und korrosionsbeständige nickel-chrom-grusslegierung | |
DE60004737T2 (de) | Hitzebeständige Nickelbasislegierung | |
DE60224277T2 (de) | Metallwerkstoff mit guter beständigkeit gegen metal dusting | |
DE2265684C2 (de) | Nickel-Chrom-Legierung | |
DE69127704T2 (de) | Spaltöfen | |
DE102007062417B4 (de) | Austenitische warmfeste Nickel-Basis-Legierung | |
DE3046412A1 (de) | Verfahren zur hochtemperaturbehandlung von kohlenwasserstoffhaltigen materialien | |
DE102019216995A1 (de) | Lagerbauteil mit einem metallischen Grundkörper und einer Beschichtung mit legiertem Stahl | |
DE69716388T2 (de) | Teil oder Zubehör für einen Aufkohlungsofen | |
WO2013182178A1 (de) | Nickel-chrom-legierung mit guter verarbeitbarkeit, kriechfestigkeit und korrosionsbeständigkeit | |
DE102018107248A1 (de) | Verwendung einer nickel-chrom-eisen-aluminium-legierung | |
CH666288A5 (de) | Matrize aus stahl, verfahren zu deren herstellung und deren verwendung. | |
DE69904098T2 (de) | Verwendung niedrig legierter Stähle, die nicht zur Koksbildung neigen | |
DE19629977A1 (de) | Austenitische Nickel-Chrom-Stahllegierung | |
DE69522783T2 (de) | Anti-Verkokungsstähle | |
DE4035114C2 (de) | Fe-Cr-Ni-Al Ferritlegierungen | |
DE1533429C3 (de) | Verwendung einer Chrom-Nickel-Kobalt-Stahllegierung als korrosionsbeständiger Werkstoff | |
DE10255372A1 (de) | Verwendung Quasi-Kristalliner Aluminiumlegierungen bei Anwendungen in der Raffination und der Petrochemie | |
DE1608181A1 (de) | Verwendung eines Nickelstahls | |
EP1630243A2 (de) | Verfahren zum Herstellen eines Bauteils | |
DE10354434B4 (de) | Werkzeug zum Herstellen von Werkstücken | |
DE2531835C3 (de) | Verfahren zur Bildung eines Überzugs auf der Grundlage von Nickel und/oder Kobalt auf Gegenständen aus hochwarmfesten Metallmaterialien | |
DE102022110383A1 (de) | Verwendung einer Nickel-Eisen-Chrom-Legierung mit hoher Beständigkeit in aufkohlenden und sulfidierenden und chlorierenden Umgebungen und gleichzeitig guter Verarbeitbarkeit und Festigkeit | |
DE102022110384A1 (de) | Verwendung einer Nickel-Eisen-Chrom-Legierung mit hoher Beständigkeit in hoch korrosiven Umgebungen und gleichzeitig guter Verarbeitbarkeit und Festigkeit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2350329 Country of ref document: EP Kind code of ref document: P Ref document number: 3330390 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SCHMIDT + CLEMENS GMBH + CO. KG |
|
17P | Request for examination filed |
Effective date: 20200319 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20200603 |