EP3330390A1 - Nickel-chrom-legierung - Google Patents
Nickel-chrom-legierung Download PDFInfo
- Publication number
- EP3330390A1 EP3330390A1 EP17207317.3A EP17207317A EP3330390A1 EP 3330390 A1 EP3330390 A1 EP 3330390A1 EP 17207317 A EP17207317 A EP 17207317A EP 3330390 A1 EP3330390 A1 EP 3330390A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alloy
- nickel
- chromium
- heating
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 title claims abstract description 5
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 36
- 239000000956 alloy Substances 0.000 claims abstract description 36
- 239000000463 material Substances 0.000 claims abstract description 30
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 28
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 27
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 25
- 230000003647 oxidation Effects 0.000 claims abstract description 19
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 19
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 16
- 238000005336 cracking Methods 0.000 claims abstract description 15
- 239000011651 chromium Substances 0.000 claims abstract description 14
- 229910052742 iron Inorganic materials 0.000 claims abstract description 14
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 12
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 12
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 10
- 239000010936 titanium Substances 0.000 claims abstract description 10
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 9
- 239000010955 niobium Substances 0.000 claims abstract description 9
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims abstract description 9
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 9
- 239000010937 tungsten Substances 0.000 claims abstract description 9
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 9
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims abstract description 9
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 8
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 8
- 239000011733 molybdenum Substances 0.000 claims abstract description 8
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 8
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 8
- 239000010703 silicon Substances 0.000 claims abstract description 8
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 8
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 8
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 7
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 6
- 238000002407 reforming Methods 0.000 claims abstract description 5
- 238000010438 heat treatment Methods 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 229930195733 hydrocarbon Natural products 0.000 claims description 8
- 150000002430 hydrocarbons Chemical class 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 7
- 238000000137 annealing Methods 0.000 claims description 7
- 238000005266 casting Methods 0.000 claims description 7
- 239000007789 gas Substances 0.000 claims description 7
- 230000001590 oxidative effect Effects 0.000 claims description 7
- 230000003750 conditioning effect Effects 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 239000011572 manganese Substances 0.000 claims description 4
- 229910052756 noble gas Inorganic materials 0.000 claims description 4
- 150000002835 noble gases Chemical class 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 230000001681 protective effect Effects 0.000 claims description 3
- 239000003054 catalyst Substances 0.000 claims description 2
- 150000002431 hydrogen Chemical class 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- 238000002844 melting Methods 0.000 claims description 2
- 238000005299 abrasion Methods 0.000 claims 1
- 238000009833 condensation Methods 0.000 claims 1
- 230000005494 condensation Effects 0.000 claims 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 abstract description 5
- 239000010410 layer Substances 0.000 description 26
- 239000000571 coke Substances 0.000 description 18
- 230000015572 biosynthetic process Effects 0.000 description 17
- 230000003197 catalytic effect Effects 0.000 description 8
- 150000001247 metal acetylides Chemical class 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 238000005255 carburizing Methods 0.000 description 5
- 125000004122 cyclic group Chemical group 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 239000011593 sulfur Substances 0.000 description 5
- 229910000990 Ni alloy Inorganic materials 0.000 description 4
- 239000002041 carbon nanotube Substances 0.000 description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- -1 C 6 carbides Chemical class 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- 229910000640 Fe alloy Inorganic materials 0.000 description 3
- BIJOYKCOMBZXAE-UHFFFAOYSA-N chromium iron nickel Chemical compound [Cr].[Fe].[Ni] BIJOYKCOMBZXAE-UHFFFAOYSA-N 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 239000000567 combustion gas Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- 229910018487 Ni—Cr Inorganic materials 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 2
- 238000004939 coking Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000004848 polyfunctional curative Substances 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 230000004584 weight gain Effects 0.000 description 2
- 235000019786 weight gain Nutrition 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910000713 I alloy Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 230000008642 heat stress Effects 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000003348 petrochemical agent Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/053—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 30% but less than 40%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/055—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
Definitions
- petrochemicals require materials that are resistant to both temperature and corrosion and, in particular, have grown on the one hand from the hot product and, on the other hand, from the hot combustion gases of, for example, steam crackers.
- Their coils are subject to external oxidizing aufstickenden combustion gases with temperatures up to 1100 ° C and more and in the interior at temperatures up to about 900 ° C and optionally also high pressure of a carburizing and oxidizing atmosphere.
- the carburizing hydrocarbon atmosphere inside the pipes is associated with the risk that diffuses from there the carbon in the pipe material, the carbides in the material increase and from the existing carbide M 23 C 9 with increasing carburizing the carbon-rich carbide M 7 C 6 forms.
- the consequence of this is internal stresses due to the increase in carbide volume associated with carbide formation or conversion as well as a reduction in the strength and toughness of the tubing material.
- German patent specification describes 103 02 989 a nickel-chromium casting alloy also suitable as a material for coils of cracking and reforming furnaces with up to 0.8% carbon, 15 to 40% chromium, 0.5 to 13% iron, 1.5 to 7% aluminum, to 0, 2% silicon, to 0.2% manganese, 0.1 to 2.5% niobium, to 11% tungsten and molybdenum, to 1.5% titanium, 0.1 to 0.4% zirconium and 0.01 to 0 , 1% yttrium, balance nickel.
- This alloy has proven itself in particular when used as a pipe material, although the practice continues to call for pipe materials with extended life.
- the invention is therefore directed to a nickel-chromium alloy having improved durability under conditions such as cracking and reforming of hydrocarbons.
- the solution to this problem consists in a nickel-chromium alloy with 0.4 to 0.6% carbon, 28 to 33% chromium, 15 to 25% iron, 2 to 6% aluminum, each up to 2% silicon and manganese, respectively up to 1.5% niobium and tantalum, each up to 1.0% tungsten, titanium and zirconium, each up to 0.5% yttrium and cerium, up to 0.5% molybdenum and up to 0.1% nitrogen remainder including nickel impurities caused by melting.
- this alloy contains, individually or side by side, 17 to 22% iron, 3 to 4.5% aluminum, in each case 0.01 to 1% silicon, to 0.5% manganese, 0.5 to 1.0% niobium, bis 0.5 tantalum, to 0.6% tungsten, 0.001 to 0.5% titanium each, to 0.3% zirconium, to 0.3% yttrium, to 0.3% cerium, 0.01 to 0.5% Molybdenum and 0.001 to 0.1% nitrogen.
- the alloy according to the invention is characterized in particular by its comparatively high contents of chromium and nickel and by a compelling carbon content within a comparatively narrow range.
- Tungsten improves the creep rupture strength. In particular at high temperatures, tungsten improves the strength by means of solid solution hardening, since the carbides partly dissolve at higher temperatures.
- Cobalt also improves creep strength by means of solid solution hardening, zirconium through the formation of carbides, especially in conjunction with titanium and tantalum.
- Yttrium and cerium obviously not only improve the oxidation resistance and especially the adhesion and growth of the Al 2 O 3 cover layer.
- yttrium and cerium improve the creep resistance even at very low levels, since they stably bind the remaining free sulfur.
- Low levels of boron also improve creep strength, prevent sulfur segregation, and retard aging by coarsening the M 23 C 6 carbides.
- Molybdenum also improves the creep rupture strength, especially at high temperatures, by means of solid solution hardening. Especially because at high temperatures, the carbides partially go into solution.
- the nitrogen improves the creep rupture strength by means of carbonitride formation, while hafnium, even at low levels, improves the oxidation resistance by means of better adhesion of the cover layer and has a positive effect on the creep rupture strength.
- Phosphorous, sulfur, zinc, lead, arsenic, bismuth, tin and tellurium are among the impurities, their contents should therefore be as low as possible.
- the alloy is particularly suitable as a casting material for components of petrochemical plants, for example for the production of pipe coils for cracking and reforming furnaces, reformer tubes, but also as a material for iron ore direct reduction plants and similarly loaded components.
- these include furnace parts, radiant tubes for heating ovens, rolls for annealing furnaces, parts of Strip and strip casting plants, hoods and sleeves for annealing furnaces, parts of large diesel engines and shaped bodies for catalyst fillings.
- the alloy is characterized by a high oxidation and carburization resistance as well as good creep strength and creep resistance.
- the inner surface of cracking or reformer tubes is characterized by a catalytically inert, aluminum-containing oxide layer, thus preventing the formation of catalytic coke strands, known as carbon nanotubes.
- the properties that characterize the material also remain with multiple burn-out of the coke which inevitably deposits on the inner wall of the pipes during cracking.
- the alloy for producing centrifugally cast tubes if they are drilled with a contact pressure of 10 to 40 MPa, for example 10 to 25 MPa. In such a boring occurs due to the contact pressure to a cold deformation or work hardening of the pipe material in a near-surface zone with depths of, for example, 0.1 to 0.5 mm.
- the cold-worked zone recrystallizes, resulting in a very fine-grained microstructure.
- the recrystallization structure enhances the diffusion of the oxide-forming elements aluminum and chromium, which promotes the formation of a closed layer of high density and stability consisting primarily of alumina.
- the resulting adherent aluminum-containing oxide forms a closed protective layer of the tube inner wall, which is largely free of catalytically active centers such as nickel or iron and even after a prolonged cyclic heat stress is still stable.
- This aluminum-containing oxide layer prevents, in contrast to other pipe materials without such a cover layer, the penetration of oxygen into the base material and thus an internal oxidation of the pipe material.
- the cover layer suppresses not only the carburizing of the pipe material, but also corrosion by impurities in the process gas.
- the top layer consists mainly of Al 2 O 3 and the mixed oxide (Al, Cr) 2 O 3 and is largely inert to a catalytic coke formation. It is poor in elements that catalyze coke formation, such as iron and nickel.
- a durable oxide protective layer serves to condition, for example, the inner surface of steam cracker pipes after their installation when the relevant furnace is heated to its operating temperature.
- This conditioning can be carried out as heating with interposed isothermal heat treatments in a furnace atmosphere, which is set during the heating according to the invention, for example in a very weakly oxidizing water vapor-containing atmosphere with an oxygen partial pressure of at most 10 -20 , preferably at most 10 -30 bar.
- Particularly suitable is a protective gas atmosphere of 0.1 to 10 mol% of water vapor, 7 to 99.9 mol% of hydrogen and hydrocarbon individually or side by side and 0 to 88 mol% noble gases.
- the atmosphere during the conditioning preferably consists of an extremely weakly oxidizing mixture of water vapor, hydrogen, hydrocarbons and noble gases in an amount such that the oxygen partial pressure of the mixture at a temperature of 600 ° C is less than 10 -20 bar, preferably less than 10 -30 bar is.
- the initial heating of the tube interior after a previous mechanical removal of a surface layer, d. H. the separate heating of the resulting cold-formed surface zone is preferably carried out under very weak oxidizing inert gas in several phases each at a rate of 10 to 100 ° C / h initially to 400 to 750 ° C, preferably about 550 ° C at the inner surface of the tube.
- This heating phase is followed by a one to fifty-hour hold within the temperature range mentioned.
- the heating takes place in the presence of a water vapor atmosphere as soon as the temperature has reached a value which precludes the formation of condensed water. Following this holding the tube is then brought to the operating temperature, for example to 800 to 900 ° C and is ready for operation.
- the tube temperature gradually increases in the cracking operation as a result of the deposition of pyrolytic coke and finally reaches about 1000 ° C or even 1050 ° C on the inner surface.
- the existing essentially of Al 2 O 3 and a small amount of (Al, Cr) 2 O 3 existing inner layer of a transition oxide such as ⁇ . ⁇ - or ⁇ - Al 2 O 3 in stable ⁇ -alumina to.
- the tube has reached its operating state with its mechanically removed inner layer in a multi-stage, but preferably eintoxicityen method.
- This precursor includes initial heating after abrading the inner surface to holding at 400 to 750 ° C.
- the pipe thus pretreated can then be further processed in situ, for example in another manufacturing facility, starting from its cold state in the manner described above, that is to say in another factory. H. be brought to the operating temperature in the installed state.
- the mentioned separate pretreatment is not limited to tubes, but is also suitable for a partial or complete conditioning of surface zones of other workpieces, which are then treated according to their nature and use as in the invention or by other methods, but with a defined initial state.
- the invention is explained below by way of example with reference to five nickel alloys according to the invention in comparison with ten conventional nickel alloys, the composition of which is shown in Table I and which in particular with regard to their contents of carbon (alloys 5 and 6), chromium (alloys 4, 13 and 14). , Aluminum (alloys 12, 13), cobalt (alloys 1, 2) and iron (alloys 3, 12, 14, 15), differ from the nickel-chromium-iron alloy according to the invention.
- the alloy 9 is also characterized by a high carburization resistance; because, according to the diagram of FIG. 2, it has the lowest weight gain after all three carburizing treatments, compared with the conventional alloys 12 and 13, due to the low weight gain.
- FIGS. 3a and 3b show that the creep rupture strength of the nickel alloy 11 according to the invention is even better in a substantial range than in the two comparative alloys 12 and 13.
- An exception here is the alloy 15, which is not covered by the invention because of its low iron content with, however, much lower oxidation, carburization and coking resistance.
- FIGS. 5 and 6 Examples of the surface condition of the tube interior of furnace tubes with the composition of the alloy 8 falling under the invention are shown in FIGS. 5 and 6.
- the FIGS Figure 6 (Experiment 7 according to Table II) shows the superiority of a surface after a conditioning according to the invention in comparison to the Figure 5 , which relates to a not according to the invention conditioned surface (Table II, Experiment 2).
- the micrograph of the image 7 in the form of the dark areas shows the large-area and thus large-volume result of internal oxidation on the inside of a tube in a conventional nickel-chromium casting alloy compared to the micrograph of the image 8 of the alloy 9 according to the invention, which is practical was subjected to no internal oxidation, although both samples were similarly subjected to a multiple cyclic treatment of cracking on the one hand and removal of the carbon deposits on the other.
- the stability of the oxide layer on an alloy according to the invention is particularly clear from the course of the aluminum concentration over the depth of the edge zone after ten cracking phases with respective removal of the coke deposits by burnout in an intermediate phase when the diagrams according to FIGS. 9 and 10 are compared of the image 9 in the near-surface region due to the local failure of the protective overcoat and then onset of strong internal aluminum oxidation of the material is depleted of aluminum, the aluminum concentration in the diagram of the image 10 moves approximately at the initial level of the casting material. This clearly shows the importance of a continuous, dense and in particular firmly adhering inner aluminum-containing oxide layer in the tubes according to the invention.
- the stability of the aluminum-containing oxide layer was also investigated by long-term tests in a laboratory plant under process-related conditions.
- the samples of alloys 9 and 11 according to the invention were heated to 950.degree. C. under steam and then subjected three times to cracking at this temperature for 72 hours; they were then subjected to burnout at 900 ° C for four hours each.
- Image 12 shows the closed aluminum-containing oxide layer after the three crack cycles and beyond how the aluminum-containing oxide layer covers the material itself over chromium carbides in the surface. It can be seen that chromium carbides present on the surface are completely covered by the aluminum-containing oxide layer.
- micrographs of the near-surface zone according to Figures 14 and 15 show that even after the long-term cyclic tests, no internal oxidation has occurred, which is due to the stable and continuous aluminum-containing oxide layer.
- the inventive nickel-chromium-iron alloy is characterized, for example, as a pipe material after removal of the inner surface under mechanical pressure and a subsequent multi-stage in situ heat treatment for conditioning the inner surface by a high oxidation, corrosion and especially high Creep rupture and creep resistance.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
Description
- Die Erdölchemie verlangt für Hochtemperatur-Verfahren Werkstoffe, die sowohl temperatur- als auch korrosionsbeständig sind und insbesondere einerseits den heißen Produkt- und andererseits den ebenfalls heißen Verbrennungsgasen beispielsweise von Steam-Crackern gewachsen sind. Deren Rohrschlangen unterliegen von außen den oxidierenden aufstickenden Verbrennungsgasen mit Temperaturen bis 1.100 °C und mehr sowie im Innern bei Temperaturen bis etwa 900 °C und gegebenenfalls auch hohem Druck einer aufkohlenden und oxidierenden Atmosphäre.
- Im Kontakt mit den heißen Verbrennungsgasen kommt es deshalb, ausgehend von der äußeren Rohroberfläche zu einer Aufstickung des Rohrwerkstoffs und zum Entstehen einer Zunderschicht.
- Die aufkohlende Kohlenwasserstoff-Atmosphäre im Innern der Rohre ist mit der Gefahr verbunden, dass von dort der Kohlenstoff in den Rohrwerkstoff diffundiert, die Karbide im Werkstoff zunehmen und aus dem dort vorhandenen Karbid M23C9 mit zunehmender Aufkohlung das kohlenstoffreichere Karbid M7C6 bildet. Die Folge davon sind innere Spannungen aufgrund der mit der Karbidbildung bzw. -umwandlung verbundenen Volumenzunahme der Karbide sowie eine Verringerung der Festigkeit und Zähigkeit des Rohrwerkstoffs. Des weiteren kommt es an der Innenoberfläche zum Entstehen einer festhaftenden, bis zu mehreren Millimeter dicken Koksschicht. Zyklische Temperaturbelastungen, wie sie als Folge eines Herunterfahrens der Anlage auftreten, führen des weiteren dazu, dass die Rohre infolge der unterschiedlichen Wärmeausdehnungskoeffizienten des metallischen Rohrs und der Koksschicht auf die Koksschicht aufschrumpfen. Das führt zu hohen Spannungen im Rohr, die zum Entstehen von Rissen in der inneren Rohroberfläche führen. Durch solche Risse kann dann vermehrt Kohlenstoffwasserstoff in den Rohrwerkstoff gelangen.
- Aus der
US-Patentschrift 5 306 358 ist eine nach dem WIG-Verfahren schweißbare Nickel-Chrom-Eisen-Legierung mit bis 0,5% Kohlenstoff, 8 bis 22% Chrom, bis 36% Eisen, bis 8% Mangan, Silizium und Niob, bis 6% Aluminium, bis 1% Titan, bis 0,3% Zirkonium, bis 40% Kobalt, bis 20% Molybdän und Wolfram sowie bis 0,1% Yttrium, Rest Nickel bekannt. - Des weiteren beschreibt die deutsche Patentschrift
103 02 989 eine auch als Werkstoff für Rohrschlangen von Crack- und Reformeröfen geeignete Nickel-Chrom-Gusslegierung mit bis 0,8% Kohlenstoff, 15 bis 40% Chrom, 0,5 bis 13% Eisen, 1,5 bis 7% Aluminium, bis 0,2% Silizium, bis 0,2% Mangan, 0,1 bis 2,5% Niob, bis 11% Wolfram und Molybdän, bis 1,5% Titan, 0,1 bis 0,4% Zirkonium und 0,01 bis 0,1% Yttrium, Rest Nickel. Diese Legierung hat sich insbesondere bei der Verwendung als Rohrwerkstoff durchaus bewährt, wenngleich die Praxis weiterhin nach Rohrwerkstoffen mit verlängerter Lebensdauer verlangt. - Die Erfindung ist daher auf eine Nickel-Chrom-Legierung mit verbesserter Beständigkeit unter Bedingungen gerichtet, wie sie beispielsweise beim Cracken und Reformieren von Kohlenwasserstoffen gegeben sind.
- Die Lösung dieser Aufgabe besteht in einer Nickel-Chrom-Legierung mit 0,4 bis 0,6% Kohlenstoff, 28 bis 33% Chrom, 15 bis 25% Eisen, 2 bis 6% Aluminium, jeweils bis 2% Silizium und Mangan, jeweils bis 1,5% Niob und Tantal, jeweils bis 1,0% Wolfram, Titan und Zirkonium, jeweils bis 0,5% Yttrium und Cer, bis 0,5% Molybdän und bis 0,1% Stickstoff Rest einschließlich erschmelzungsbedingter Verunreinigungen Nickel.
- Vorzugsweise enthält diese Legierung jeweils einzeln oder nebeneinander, 17 bis 22% Eisen, 3 bis 4,5% Aluminium, jeweils 0,01 bis 1% Silizium, bis 0,5% Mangan, 0,5 bis 1,0% Niob, bis 0,5 Tantal, bis 0,6% Wolfram, jeweils 0,001 bis 0,5% Titan, bis 0,3% Zirkonium, bis 0,3% Yttrium, bis 0,3% Cer, 0,01 bis 0,5% Molybdän und 0,001 bis 0,1% Stickstoff.
- Die erfindungsgemäße Legierung ist insbesondere geprägt durch ihre vergleichsweise hohen Gehalte an Chrom und Nickel sowie einen zwingenden Kohlenstoffgehalt innerhalb eines vergleichsweise engen Bereichs.
- Von den fakultativen Legierungsbestandteilen verbessert das Silizium die Oxidations- und die Aufkohlungsbeständigkeit. Das Mangan wirkt sich ebenfalls positiv auf die Oxidationsbeständigkeit sowie zusätzlich günstig auf die Schweißbarkeit aus, desoxidiert die Schmelze und bindet den Schwefel stabil ab:
- Niob verbessert die Zeitstandfestigkeit, bildet stabile Karbide und Karbonitride; es dient zudem als Mischkristallhärter. Titan und Tantal verbessern die Zeitstandfestigkeit. Schon bei sehr geringen Gehalten bilden sich sehr fein verteilte Karbide und Karbonitride. Bei höheren Gehalten wirken Titan und Tantal als Mischkristallhärter.
- Wolfram verbessert die Zeitstandfestigkeit, Insbesondere bei hohen Temperaturen verbessert Wolfram im Wege einer Mischkristallhärtung die Festigkeit, da die Karbide bei höheren Temperaturen zum Teil in Lösung gehen.
- Kobalt verbessert ebenfalls die Zeitstandfestigkeit im Wege einer Mischkristallhärtung, Zirkonium durch die Bildung von Karbiden, insbesondere im Zusammenwirken mit Titan und Tantal.
- Yttrium und Cer verbessern offensichtlich nicht nur die Oxidationsbeständigkeit und insbesondere die Haftung sowie das Wachstum der Al2O3-Deckschicht. Zudem verbessern Yttrium und Cer schon bei sehr geringen Gehalten die Kriechbeständigkeit, da sie den etwa noch vorhandenen freien Schwefel stabil abbinden. Geringe Gehalte an Bor verbessern ebenfalls die Zeitstandfestigkeit, verhindern eine Schwefelseigerung und verzögern die Alterung durch Vergröberung der M23C6-Carbide.
- Auch Molybdän verbessert die Zeitstandfestigkeit insbesondere bei hohen Temperaturen im Wege einer Mischkristallhärtung. Insbesondere weil bei hohen Temperaturen die Karbide teilweise in Lösung gehen. Der Stickstoff verbessert die Zeitstandfestigkeit im Wege einer Karbonitridbildung, während Hafnium schon bei geringen Gehalten die Oxidationsbeständigkeit im Wege einer besseren Haftung der Deckschicht verbessert und sich positiv auf die Zeitstandfestigkeit auswirkt.
- Phosphor, Schwefel, Zink, Blei, Arsen, Wismut, Zinn und Tellur zählen zu den Verunreinigungen, ihre Gehalte sollten daher geringstmöglich sein.
- Unter diesen Bedingungen eignet sich die Legierung insbesondere als Gusswerkstoff für Komponenten von petrochemischen Anlagen, beispielsweise zum Herstellen von Rohrschlangen für Crack- und Reformeröfen, Reformerrohre, aber auch als Werkstoff für Eisenerz-Direktreduktionsanlagen sowie für ähnlich beanspruchte Bauteile. Hierzu gehören Ofenteile, Strahlrohre zum Beheizen von Öfen, Rollen für Glühöfen, Teile von Strang- und Bandgussanlagen, Hauben und Muffen für Glühöfen, Teile von Großdieselmotoren und Formkörper für Katalysatorfüllungen.
- Insgesamt zeichnet sich die Legierung durch eine hohe Oxidations- und Aufkohlungsbeständigkeit sowie eine gute Zeitstandsfestigkeit und Kriechfestigkeit aus. Die Innenoberfläche von Crack- oder Reformerrohren zeichnet sich zudem durch eine katalytisch inerte aluminiumhaltige Oxidschicht aus und unterbindet damit das Entstehen katalytischer Koksfäden, sogenannten Carbon-Nanotubes. Die den Werkstoff auszeichnenden Eigenschaften bleiben auch bei einem vielfachen Herausbrennen des sich beim Cracken zwangsläufig an der Innenwand der Rohre abscheidenden Kokses erhalten.
- Besonders vorteilhaft ist eine Verwendung der Legierung zum Herstellen von Schleudergussrohren, wenn diese mit einem Anpressdruck von 10 bis 40 MPa, beispielsweise 10 bis 25 MPa, aufgebohrt werden. Bei einem derartigen Aufbohren kommt es aufgrund des Anpressdrucks zu einer Kaltverformung bzw. Kaltverfestigung des Rohrwerkstoffs in einer oberflächennahen Zone mit Tiefen von beispielsweise 0,1 bis 0,5 mm. Beim Aufheizen des Rohrs rekristallisiert die kaltverformte Zone, wobei es zu einem sehr feinkörnigen Gefüge kommt. Das Rekristallisationsgefüge verbessert die Diffusion der oxidbildenden Elemente Aluminium und Chrom, die das Entstehen einer vornehmlich aus Aluminiumoxid bestehenden geschlossenen Schicht mit hoher Dichte und Stabilität fördert.
- Das dabei entstehende fest haftende aluminiumhaltige Oxid bildet eine geschlossene Schutzschicht der Rohrinnenwand, die weitestgehend frei von katalytisch aktiven Zentren beispielsweise aus Nickel oder Eisen und selbst nach einer längeren zyklischen Wärmebeanspruchung noch stabil ist. Diese aluminiumhaltige Oxidschicht verhindert im Gegensatz zu anderen Rohrwerkstoffen ohne eine solche Deckschicht das Eindringen von Sauerstoff in den Grundwerkstoff und damit eine innere Oxidation des Rohrwerkstoffs. Des Weiteren unterdrückt die Deckschicht nicht nur die Aufkohlung des Rohrwerkstoffs, sondern auch eine Korrosion durch Verunreinigungen im Prozessgas. Die Deckschicht besteht vornehmlich aus Al2O3 und dem Mischoxid (Al, Cr)2O3 und ist weitgehend inert gegen eine katalytische Koksbildung. Sie ist arm an Elementen, die wie Eisen und Nickel die Koksbildung katalysieren.
- Von besonderem Vorteil für die Bildung einer haltbaren oxidischen Schutzschicht ist die Wärmebehandlung, die in sehr wirtschaftlicher Weise auch in situ stattfinden kann; sie dient einer Konditionierung beispielsweise der Innenoberfläche von Steam-Cracker-Rohren nach deren Einbau, wenn der betreffende Ofen auf seine Betriebstemperatur aufgeheizt wird.
- Dieses Konditionieren lässt sich als Aufheizen mit zwischengeschalteten isothermen Wärmebehandlungen in einer Ofenatmosphäre durchführen, die während des erfindungsgemäßen Aufheizens eingestellt wird, beispielsweise in einer sehr schwach oxidierenden wasserdampfhaltigen Atmosphäre mit einem Sauerstoffpartialdruck von höchstens 10-20, vorzugsweise höchstens 10-30 bar.
- Besonders geeignet ist eine Schutzgasatmosphäre aus 0,1 bis 10 Mol-% Wasserdampf, 7 bis 99,9 Mol-% Wasserstoff und Kohlenwasserstoff einzeln oder nebeneinander sowie 0 bis 88 Mol-% Edelgase.
- Die Atmosphäre beim Konditionieren besteht vorzugsweise aus einem äußerst schwach oxidierenden Gemisch aus Wasserdampf, Wasserstoff, Kohlenwasserstoffen und Edelgasen in einem Mengenverhältnis, dass der Sauerstoffpartialdruck des Gemischs bei einer Temperatur von 600 °C geringer als 10-20 bar, vorzugsweise geringer als 10-30 bar ist.
- Das anfängliche Aufheizen des Rohrsinnern nach einem vorherigen mechanischen Abtragen einer Oberflächenschicht, d. h. das separate Aufheizen der dabei entstandenen kaltverformten Oberflächenzone geschieht vorzugsweise unter sehr schwach oxidierendem Schutzgas in mehreren Phasen jeweils mit einer Geschwindigkeit von 10 bis 100 °C/h zunächst auf 400 bis 750 °C, vorzugsweise etwa 550 °C an der die Innenoberfläche des Rohrs. Diese Aufheizphase schließt sich ein ein- bis fünfzigstündiges Halten innerhalb des erwähnten Temperaturbereich an. Das Aufheizen geschieht in Anwesenheit einer Wasserdampf-Atmosphäre, sobald die Temperatur einen Wert erreicht hat, der das Entstehen von kondensiertem Wasser ausschließt. Im Anschluss an dieses Halten wird das Rohr sodann bis auf die Betriebstemperatur, beispielsweise auf 800 bis 900 °C gebracht und ist damit betriebsbereit.
- Die Rohrtemperatur erhöht sich jedoch im Crack-Betrieb allmählich als Folge des Abscheidens von pyrolytischem Koks weiter und erreicht schließlich an der Innenoberfläche etwa 1.000 °C oder auch 1.050 °C. Bei dieser Temperatur wandelt sich die im wesentlichen aus Al2O3 und in geringem Maße aus (Al, Cr)2O3 bestehende Innenschicht aus einem Übergangsoxid wie γ. δ- oder θ - Al2O3 in stabiles α-Aluminiumoxid um.
- Damit hat das Rohr mit seiner mechanisch abgetragenen Innenschicht in einem mehrstufigen, jedoch vorzugsweise einzügigen Verfahren seinen Betriebszustand erreicht.
- Das Verfahren braucht jedoch nicht zwingend einstufig abzulaufen, sondern kann auch mit einer separaten Vorstufe beginnen. Diese Vorstufe umfasst das anfängliche Aufheizen nach dem Abtragen der Innenoberfläche bis zu dem Halten bei 400 bis 750 °C.
- Das so vorbehandelte Rohr kann dann beispielsweise in einer anderen Fabrikationsstätte ausgehend von seinem kalten Zustand in der oben beschriebenen Weise in situ weiterbehandelt, d. h. im eingebauten Zustand auf die Betriebstemperatur gebracht werden.
- Die erwähnte separate Vorbehandlung ist allerdings nicht auf Rohre beschränkt, sondern eignet sich auch für eine partielle oder auch vollständige Konditionierung von Oberflächenzonen anderer Werkstücke, die sodann entsprechend ihrer Beschaffenheit und Verwendung weiterbehandelt werden wie nach der Erfindung oder auch nach anderen Verfahren, jedoch mit einem definierten Ausgangszustand.
- Die Erfindung wird nachfolgend beispielhaft anhand von fünf erfindungsgemäßen Nickellegierungen im Vergleich mit zehn herkömmlichen Nickellegierungen erläutert, deren Zusammensetzung sich aus Tabelle I ergibt und die sich insbesondere hinsichtlich ihrer Gehalte an Kohlenstoff (Legierungen 5 und 6), Chrom (Legierungen 4, 13 und 14), Aluminium (Legierungen 12, 13), Kobalt (Legierungen 1, 2) und Eisen (Legierungen 3, 12, 14, 15), von der erfindungsgemäßen Nickel-Chrom-Eisen-Legierung unterscheiden.
- Wie sich aus dem Diagramm gemäß Bild 1 ergibt, kommt es bei der erfindungsgemäßen Legierung 9 nach einem fünfundvierzigminütigen Glühen bei 1.150 °C an Luft auch bei mehr als 200 Zyklen zu keinerlei Innenoxidation, während die beiden Vergleichslegierungen 12 und 13 schon nach wenigen Zyklen einer zunehmenden Gewichtsabnahme als Folge einer katastrophalen Oxidation unterliegen.
- Des Weiteren zeichnet sich die Legierung 9 auch durch eine hohe Aufkohlungsbeständigkeit aus; denn sie besitzt nach dem Diagramm des Bildes 2 aufgrund der geringen Gewichtszunahme nach allen drei Aufkohlungsbehandlungen die geringste Gewichtszunahme im Vergleich zu den herkömmlichen Legierungen 12 und 13.
- Weiterhin zeigen die Diagramme der Bilder 3a und 3b, dass die Zeitstandfestigkeit der erfindungsgemäßen Nickellegierung 11 in einem wesentlichen Bereich noch besser ist als bei den beiden Vergleichslegierungen 12 und 13. Eine Ausnahme bildet hier die wegen ihres zu geringen Eisengehalts nicht unter die Erfindung fallende Legierung 15, mit ihrer jedoch wesentlich schlechteren Oxidations-, Aufkohlungs- und Verkokungsbeständigkeit.
- Schließlich ergibt sich aufgrund des Diagramms nach Bild 4, dass die Kriechfestigkeit der Legierung 11 weitaus besser ist, als diejenige der Vergleichslegierung 12.
- Des weiteren wurden bei der Simulationsreihe eines Crack-Betriebes mehrere Rohrabschnitte aus einer erfindungsgemäßen Nickellegierung in einer Laboranlage eingesetzt, um Aufheizversuche mit unterschiedlichen Gasatmosphären und Aufheizbedingungen durchzuführen, denen sich eine dreißigminütige Crackphase bei einer Temperatur von 900 °C anschloss, um die Anfangsphase der katalytischen Koksbildung, bzw. die Neigung zur katalytischen Koksbildung zu untersuchen und zu bewerten.
- Die Daten und die Ergebnisse dieser Versuche mit Proben der erfindungsgemäßen Legierung 11 aus Tabelle I sind in der Tabelle II zusammengestellt Sie zeigen, dass die jeweilige Gasatmosphäre in Verbindung mit einer erfindungsgemäßen Temperatursteuerung mit einer erheblichen Reduzierung der ohnehin geringen katalytischen Koksbildung verbunden ist
- Beispiele für die Oberflächenbeschaffenheit des Rohrinneren von Ofenrohren mit der Zusammensetzung der unter die Erfindung fallenden Legierung 8 ergeben sich aus den Abbildungen 5 und 6. Die
Abbildung 6 (Versuch 7 nach Tabelle II) zeigt die Überlegenheit einer Oberfläche nach einem erfindungsgemäßen Konditionieren im Vergleich zu derAbbildung 5 , die eine nicht erfindungsgemäß konditionierte Oberfläche betrifft (Tabelle II, Versuch 2). - In den Bildern 7 (Legierung 14) und 8 (Erfindung) sind oberflächennahe Bereiche im Querschliff dargestellt. Die Proben wurden auf 950 °C aufgeheizt und unterlagen sodann 10 Crack-Zyklen von jeweils 10 Stunden in einer Atmosphäre aus Wasserdampf, Wasserstoff und Kohlenwasserstoffen. Nach jedem Zyklus wurden die Proberohre zum Entfernen der Koksablagerungen eine Stunde ausgebrannt. Dazu zeigt die Gefügeaufnahme des Bildes 7 in Gestalt der dunklen Bereiche das großflächige und damit auch großvolumige Ergebnis einer inneren Oxidation an der Innenseite eines Rohrs bei einer herkömmlichen Nickel-Chrom-Gusslegierung im Vergleich zu der Gefügeaufnahme des Bildes 8 der erfindungsgemäßen Legierung 9, die praktisch keiner Innenoxidation unterlag, obgleich beide Proben in gleicher Weise einer mehrfachen zyklischen Behandlung aus Cracken einerseits und Entfernen der Kohlenstoffablagerungen andererseits unterworfen wurden.
- Die Versuche zeigen, dass es bei den Proben aus den herkömmlichen Legierungen ausgehend von Oberflächendefekten zu einer starken inneren Oxidation auf der Rohrinnenseite kommt. Dadurch bedingt entstehen auf der inneren Rohroberfläche kleine metallische Zentren mit einem hohen Anteil an Nickel, an denen sich in erheblichem Maße Kohlenstoff in Form von Carbon-Nanotubes bildet (Bild 11).
- Die Probe 9 aus einer erfindungsgemäßen Legierung weist hingegen nach demselben zehnfachen zyklischen Cracken und einem anschließenden Auslagern in einer Verkokungsatmosphäre keine Carbon-Nanotubes auf, was auf eine im wesentlichen durchgehend dichte, katalytisch inerte aluminiumhaltige Oxidschicht zurückzuführen ist. Dagegen betrifft Bild 11 eine REM-Draufsicht der in Bild 7 im Schliff dargestellten herkömmlichen Probe; sie zeigt aufgrund der fehlenden Deckschicht eine katastrophale Oxidation und ein dementsprechend katastrophales Entstehen von katalytischem Koks in Gestalt von Carbon-Nanotubes.
- Besonders anschaulich zeigt sich die Stabilität der Oxidschicht auf einer erfindungsgemäßen Legierung anhand des Verlaufs der Aluminiumkonzentration über die Tiefe der Randzone nach zehn Crackphasen mit jeweiligem Entfernen der Koksablagerungen durch Ausbrennen in einer Zwischenphase bei einem Vergleich der Diagramme nach Bild 9 und 10. Während nach dem Diagramm des Bildes 9 im oberflächennahen Bereich infolge des lokalen Versagens der schützenden Deckschicht und danach einsetzender starker innerer Aluminiumoxidation der Werkstoff an Aluminium verarmt ist, bewegt sich die Aluminiumkonzentration bei dem Diagramm des Bildes 10 in etwa auf dem Ausgangsniveau des Gusswerkstoffs. Hier zeigt sich deutlich die Bedeutung einer durchgehenden, dichten und insbesondere fest haftenden inneren aluminiumhaltigen Oxidschicht bei den Rohren nach der Erfindung.
- Die Stabilität der aluminiumhaltigen Oxidschicht wurde ebenfalls durch Langzeitversuche in einer Laboranlage unter prozessnahen Bedingungen untersucht. Die Proben der erfindungsgemäßen Legierungen 9 und 11 wurden unter Wasserdampf auf 950 °C aufgeheizt und unterlagen sodann jeweils dreimal einem 72-stündigen Cracken bei dieser Temperatur; sie wurden sodann jeweils vier Stunden einem Ausbrennen bei 900 °C unterworfen. Die Aufnahme des Bildes 12 zeigt die geschlossene aluminiumhaltige Oxidschicht nach den drei Crackzyklen und darüber hinaus, wie die aluminiumhaltige Oxidschicht den Werkstoff selbst über Chromkarbide in der Oberfläche hinweg abdeckt. Es ist erkennbar, dass an der Oberfläche vorhandene Chromkarbide von der aluminiumhaltigen Oxidschicht vollständig überdeckt sind.
- Selbst in gestörten Oberflächenbereichen, in denen primäre Karbide des Grundwerkstoffs gehäuft vorliegen und die deshalb besonders anfällig für eine innere Oxidation sind, wird der Werkstoff durch eine gleichmäßige aluminiumhaltige Oxidschicht geschützt, wie dies die Gefügeaufnahme des Bildes 13 deutlich macht. Es ist erkennbar, wie oxidiertes ehemaliges MC-Karbid von aluminiumhaltigem Oxid überwachsen und somit gekapselt ist.
- Die Gefügeaufnahmen der oberflächennahen Zone nach den Bildern 14 und 15 zeigen, dass selbst nach den zyklischen Langzeitversuchen keine innere Oxidation aufgetreten ist, was durch die stabile und durchgehende aluminiumhaltige Oxidschicht bedingt ist.
- Bei diesen Versuchen wurden Proben der erfindungsgemäßen Legierungen 8 bis 11 eingesetzt.
- Insgesamt zeichnet sich die erfindungsgemäße Nickel-Chrom-Eisen-Legierung beispielsweise als Rohrwerkstoff nach einem Abtragen der Innenoberfläche unter mechanischem Druck und einer sich anschließenden mehrstufigen In-situ-Wärmebehandlung zum Konditionieren der Innenoberfläche durch eine hohe Oxidations-, Korrosions- und insbesondere durch eine hohe Zeitstandfestigkeit und Kriechbeständigkeit aus.
- Besonders hervorzuheben ist jedoch vor allem die außerordentliche Aufkohlungsbeständigkeit des Werkstoffs, die durch einen raschen Aufbau einer im wesentlichen geschlossenen und stabilen Oxid- bzw. Al2O3-Schicht bedingt ist. Vor ailem auch unterdrückt diese Schicht bei Steam-Cracker- und Reformerrohren weitestgehend das Entstehen von katalytisch aktiven Zentren mit der Gefahr einer katalytischen Koksbildung. Diese Werkstoffeigenschaften gehen auch nicht nach einer Vielzahl von jeweils deutlich verlängerten Crack-Zyklen, verbunden jeweils mit einem Ausbrennen des abgelagerten Kokses, verloren.
Tabelle I Legierung C Si Mn P S Cr Mo Ni Fe W Co Nb Al Ti Hf Zr Y Ta Ce 1 0,44 0,30 0,02 0,002 0,003 29,50 0,20 46,90 18,20 0,07 0,40 0,68 3,05 0,15 0,15 0,06 - - - 2 0,44 0,30 0,02 0,002 0,003 29,60 0,15 46,75 17,90 0,07 0,30 0,67 3,18 0,16 0,60 0,06 - - - 3 0,49 0,02 0,01 0,010 0,004 30,80 0,01 51,60 12,50 0,08 0,01 0,64 3,58 0,10 - 0,06 0,004 0,01 0,005 4 0,42 0,03 0,03 0,007 0,005 26,70 0,02 46,10 Rest 0,07 0,01 0,69 2,24 0,08 - 0,05 0,004 0,01 - 5 0,20 0,01 0,01 0,010 0,003 30,40 0,01 52,30 Rest 0,07 0,01 0,52 3,17 0,12 - 0,06 0,004 - - 6 0,38 0,11 0,01 0,006 0,003 29,75 0,05 44,50 19,70 0,03 0,05 0,68 4,25 0,19 0,20 0,06 - - - 7 0,48 0,11 0,01 0,007 0.003 30,35 0,05 44,00 19,40 0,38 0,05 0,69 4,05 0,13 - 0,04 - - - 8 0,47 0,59 0,13 0,006 0,002 29,50 0,07 42,70 20,72 0,09 0,06 0,80 4,54 0,18 - 0,06 0,24 - - 9 0,44 0,16 0,09 0,006 0,002 30,35 0,07 42,20 Rest 0,03 0,01 0,78 3,17 0.1 - 0,07 0.013 - - 10 0,50 1,43 0,17 0,006 0,002 30,10 0,01 Rest 19,20 0,05 0,05 0,78 4,00 0,15 - 0,07 0,18 - - 11 0,42 0,07 0,09 0,007 0,003 30,30 0,02 Rest 21,20 0,04 0,01 0,77 3,28 0,23 - 0,11 0,15 - - 12 0,45 1,85 1,26 0,007 0,003 35.02 0,01 45,70 14,85 0,01 0,05 0,81 0,10 0,20 - 0,05 - - 0,01 13 0,44 1,72 1,23 0,010 0,005 25,02 0,01 34,40 Rest 0,04 0,01 0,84 0,13 0,10 - 0,02 - - - 14 0,45 0,14 0,06 0,01 0,003 25,7 0,02 57,50 11,40 0,04 0,01 0,53 3,90 0,15 - 0,05 0,04 - - 15 0,44 0,05 0,19 0,01 0,002 30,4 0,07 55,27 10,71 0,05 0,09 0,10 2,40 0,14 - 0,05 0,024 - - Tabelle II Versuch Gaszusammensetzung während der Aufheizphase: Temperaturverlauf während der Aufheizphase: Relative Bedeckung der Oberfläche mit katalytischem Koks*: 1 1 00% Luft Von 150°C bis 875°C, 50°C/h; 40 h Halten bei 875°C 1,4% 2 100% Wasserdampf 1,1% 3 70% Wasserdampf 1,2% 30%Methan 4 3% Wasserdampf 0,37% 97% Methan 5 3% Wasserdampf Von 150°C bis 600°0, 50°C/h; 40 h Halten bei 600°C; von 600°C bis 875°C, 50°C/h 0,26% 97% Methan (+H2S-Schock**) 6 3% Wasserdampf 0,08% 97% Ethan(+H2S-Schock**) 7 3% Wasserdampf 97% Ethan 0,05% *: Dieser Wert wurde durch Auszählen der Koksfäden auf einer definierten Rohrfläche bestimmt.
**: Nach Erreichen der Betriebstemperatur 1 h Behandlung mit 250 ppm Schwefel (H2S) in Wasserdampf.
Claims (15)
- Nickel-Chrom-Legierung mit hoher Oxidations- und Aufkohlungsbeständigkeit, Zeitstandsfestigkeit und Kriechbeständigkeit aus0,4 bis 0,6% Kohlenstoff28 bis 33% Chrom15 bis 25% Eisen2 bis 6% Aluminiumbis 2% Siliziumbis 2% Manganbis 1,5% Niobbis 1,5% Tantalbis 1,0% Wolframbis 1,0% Titanbis 1,0% Zirkoniumbis 0,5% Yttriumbis 0,5% Cerbis 0,5% Molybdänbis 0,1% StickstoffRest Nickel einschließlich erschmelzungsbedingter Verunreinigungen.
- Legierung nach Anspruch 1, die jedoch einzeln oder nebeneinander0,4 bis 0,6% Kohlenstoff28 bis 33 % Chrom17 bis 22% Eisen3 bis 4,5% Aluminium0,01 bis 1% Silizium0,01 bis 0,5% Mangan0,01 bis 1,0% Niob0,01 bis 0.5% Tantal0,01 bis 0.6% Wolfram0,001 bis 0,5% Titan0,001 bis 0,3% Zirkonium0,001 bis 0,3% Yttrium0,001 bis 0,3% Cer0,01 bis 0,5% Molybdän0,001 bis 0,1% Stickstoffenthält.
- Verfahren zum mindestens partiellen Konditionieren von Gegenständen aus einer Legierung nach Anspruch 1 oder 2 in einer Oberflächenzone durch mechanisches Abtragen mit einem Anpressdruck von 10 bis 40 MPa und anschließendes Erwärmen mit einer Aufheizgeschwindigkeit von 10 bis 100 °C/h auf eine Temperatur an der Oberfläche von 400 bis 740 °C unter schwach oxidierenden Bedingungen unter Vermeidung einer Kondensatbildung.
- Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Anpressdruck 15 bis 30 MPa beträgt.
- Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass das Aufheizen unter Schutzgas stattfindet.
- Verfahren nach Anspruch 3 bis 5. dadurch gekennzeichnet, dass beim Abtragen eine Oberflächenzone von 0,1 bis 0,5 mm Tiefe kaltverformt wird.
- Verfahren nach einem der Ansprüche 3 bis 6, gekennzeichnet durch ein abschließendes Glühen, ein- bis fünfzigstündiges Halten bei 400 bis 750 °C sowie ein abschließendes Aufheizen mit einer Geschwindigkeit von 10 bis 100 °C/h auf die Betriebstemperatur.
- Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Haltetemperatur 550 bis 650 °C beträgt.
- Verfahren nach einem der Ansprüche 7 bis 8, dadurch gekennzeichnet, dass die Glühatmosphäre aus einem schwach oxidierenden Gemisch von Wasserdampf, Wasserstoff, Kohlenwasserstoffen und Edelgasen mit einem Sauerstoffpartialdruck bei 600 °C unter 10-20 bar besteht.
- Verfahren nach Anspruch 9, gekennzeichnet durch einen Sauerstoffpartialdruck unter 10-30 bar.
- Verfahren nach einem der Ansprüche 3 bis 10, dadurch gekennzeichnet, dass die Glühatmosphäre aus 0,1 bis 10 Mol-% Wasserdampf, 7 bis 99,9 Mol-% Wasserstoff und Kohlenwasserstoffen einzeln oder nebeneinander sowie 0 bis 88 Mol-% Edelgasen einzeln oder nebeneinander besteht.
- Verwendung einer Legierung nach einem oder mehreren der Ansprüche 1 bis 11 als Werkstoff zum Herstellen von Gussstücken,
- Verwendung einer Legierung nach einem oder mehreren der Ansprüche 1 bis 11 als Werkstoff für petrochemische Anlagen.
- Verwendung einer Legierung nach einem oder mehreren der Ansprüche 1 bis 11 als Werkstoff für Rohrschlangen von Crack- und Reformeröfen, Vorwärmer, Reformerrohre sowie Eisen-Direktreduktionsanlagen.
- Verwendung einer Legierung nach einem oder mehrerer der Ansprüche 1 bis 11 als Werkstoff zum Herstellen von Ofenteilen, Strahlrohren zum Beheizen von Öfen, Rollen für Glühöfen, Teilen von Strang- und Bandgussanlagen, Hauben und Muffen für Glühöfen, Teilen von Großdieselmotoren und Formkörper für Katalysatorfüllungen.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL17207317T PL3330390T3 (pl) | 2008-10-13 | 2009-10-13 | Stop niklowo-chromowy |
EP19172613.2A EP3550045A1 (de) | 2008-10-13 | 2009-10-13 | Nickel-chrom-legierung |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008051014A DE102008051014A1 (de) | 2008-10-13 | 2008-10-13 | Nickel-Chrom-Legierung |
EP09744619.9A EP2350329B1 (de) | 2008-10-13 | 2009-10-13 | Nickel-chrom-legierung |
PCT/EP2009/007345 WO2010043375A1 (de) | 2008-10-13 | 2009-10-13 | Nickel-chrom-legierung |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2009/007345 Previously-Filed-Application WO2010043375A1 (de) | 2008-10-13 | 2009-10-13 | Nickel-chrom-legierung |
EP09744619.9A Division EP2350329B1 (de) | 2008-10-13 | 2009-10-13 | Nickel-chrom-legierung |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19172613.2A Division-Into EP3550045A1 (de) | 2008-10-13 | 2009-10-13 | Nickel-chrom-legierung |
EP19172613.2A Division EP3550045A1 (de) | 2008-10-13 | 2009-10-13 | Nickel-chrom-legierung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3330390A1 true EP3330390A1 (de) | 2018-06-06 |
EP3330390B1 EP3330390B1 (de) | 2019-08-28 |
Family
ID=41491665
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09744619.9A Active EP2350329B1 (de) | 2008-10-13 | 2009-10-13 | Nickel-chrom-legierung |
EP19172613.2A Withdrawn EP3550045A1 (de) | 2008-10-13 | 2009-10-13 | Nickel-chrom-legierung |
EP17207317.3A Active EP3330390B1 (de) | 2008-10-13 | 2009-10-13 | Nickel-chrom-legierung |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09744619.9A Active EP2350329B1 (de) | 2008-10-13 | 2009-10-13 | Nickel-chrom-legierung |
EP19172613.2A Withdrawn EP3550045A1 (de) | 2008-10-13 | 2009-10-13 | Nickel-chrom-legierung |
Country Status (20)
Country | Link |
---|---|
US (2) | US9249482B2 (de) |
EP (3) | EP2350329B1 (de) |
JP (4) | JP2012505314A (de) |
KR (4) | KR102064375B1 (de) |
CN (1) | CN102187003B (de) |
BR (2) | BRPI0920279B1 (de) |
CA (1) | CA2740160C (de) |
DE (1) | DE102008051014A1 (de) |
EA (1) | EA020052B1 (de) |
ES (2) | ES2661333T3 (de) |
HU (2) | HUE046718T2 (de) |
IL (1) | IL212098A (de) |
MX (1) | MX2011003923A (de) |
MY (1) | MY160131A (de) |
PL (2) | PL2350329T3 (de) |
PT (2) | PT2350329T (de) |
TR (1) | TR201802979T4 (de) |
UA (1) | UA109631C2 (de) |
WO (1) | WO2010043375A1 (de) |
ZA (1) | ZA201102259B (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3578676A1 (de) * | 2018-06-07 | 2019-12-11 | Manoir Pitres | Austenitische legierung mit hohem aluminiumgehalt und assoziiertes designverfahren |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008051014A1 (de) * | 2008-10-13 | 2010-04-22 | Schmidt + Clemens Gmbh + Co. Kg | Nickel-Chrom-Legierung |
DE102012011162B4 (de) * | 2012-06-05 | 2014-05-22 | Outokumpu Vdm Gmbh | Nickel-Chrom-Legierung mit guter Verarbeitbarkeit, Kriechfestigkeit und Korrosionsbeständigkeit |
DE102012011161B4 (de) | 2012-06-05 | 2014-06-18 | Outokumpu Vdm Gmbh | Nickel-Chrom-Aluminium-Legierung mit guter Verarbeitbarkeit, Kriechfestigkeit und Korrosionsbeständigkeit |
US9540714B2 (en) | 2013-03-15 | 2017-01-10 | Ut-Battelle, Llc | High strength alloys for high temperature service in liquid-salt cooled energy systems |
US9377245B2 (en) | 2013-03-15 | 2016-06-28 | Ut-Battelle, Llc | Heat exchanger life extension via in-situ reconditioning |
US10017842B2 (en) | 2013-08-05 | 2018-07-10 | Ut-Battelle, Llc | Creep-resistant, cobalt-containing alloys for high temperature, liquid-salt heat exchanger systems |
US9435011B2 (en) | 2013-08-08 | 2016-09-06 | Ut-Battelle, Llc | Creep-resistant, cobalt-free alloys for high temperature, liquid-salt heat exchanger systems |
WO2015072458A1 (ja) * | 2013-11-12 | 2015-05-21 | 新日鐵住金株式会社 | Ni-Cr合金材およびそれを用いた油井用継目無管 |
US9683280B2 (en) | 2014-01-10 | 2017-06-20 | Ut-Battelle, Llc | Intermediate strength alloys for high temperature service in liquid-salt cooled energy systems |
DE102014001329B4 (de) | 2014-02-04 | 2016-04-28 | VDM Metals GmbH | Verwendung einer aushärtenden Nickel-Chrom-Titan-Aluminium-Legierung mit guter Verschleißbeständigkeit, Kriechfestigkeit, Korrosionsbeständigkeit und Verarbeitbarkeit |
DE102014001330B4 (de) | 2014-02-04 | 2016-05-12 | VDM Metals GmbH | Aushärtende Nickel-Chrom-Kobalt-Titan-Aluminium-Legierung mit guter Verschleißbeständigkeit, Kriechfestigkeit, Korrosionsbeständigkeit und Verarbeitbarkeit |
JP6247977B2 (ja) * | 2014-03-28 | 2017-12-13 | 株式会社クボタ | アルミナバリア層を有する鋳造製品 |
US11674212B2 (en) | 2014-03-28 | 2023-06-13 | Kubota Corporation | Cast product having alumina barrier layer |
ES2549704B1 (es) | 2014-04-30 | 2016-09-08 | Abengoa Hidrógeno, S.A. | Tubo reactor de reformado con vapor de agua |
US9683279B2 (en) | 2014-05-15 | 2017-06-20 | Ut-Battelle, Llc | Intermediate strength alloys for high temperature service in liquid-salt cooled energy systems |
US9605565B2 (en) | 2014-06-18 | 2017-03-28 | Ut-Battelle, Llc | Low-cost Fe—Ni—Cr alloys for high temperature valve applications |
WO2016023745A1 (de) * | 2014-08-13 | 2016-02-18 | Basf Se | Verfahren zur herstellung von ethylenhaltigem spaltgas und spaltrohr zur verwendung in dem verfahren |
CN104404349A (zh) * | 2014-11-03 | 2015-03-11 | 无锡贺邦金属制品有限公司 | 镍铬合金压铸件 |
CN104404343A (zh) * | 2014-11-04 | 2015-03-11 | 无锡贺邦金属制品有限公司 | 镍铬合金冲压件 |
CN104404338A (zh) * | 2014-11-04 | 2015-03-11 | 无锡贺邦金属制品有限公司 | 一种镍铬基合金冲压件 |
RU2581337C1 (ru) * | 2015-06-10 | 2016-04-20 | Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" АО "НПО "ЦНИИТМАШ" | Жаропрочный сплав на основе никеля для литья деталей горячего тракта газотурбинных установок, имеющих равноосную структуру |
CN105755321A (zh) * | 2016-03-31 | 2016-07-13 | 苏州睿昕汽车配件有限公司 | 汽车柴油机高强度活塞材料的制备方法 |
EP3287535A1 (de) * | 2016-08-22 | 2018-02-28 | Siemens Aktiengesellschaft | Sx-nickel-legierung mit verbesserten tmf-eigenschaften, rohmaterial und bauteil |
DE102016012907A1 (de) | 2016-10-26 | 2018-04-26 | Schmidt + Clemens Gmbh + Co. Kg | Tieflochbohrverfahren sowie Werkzeug für eine Tieflochbohrmaschine und Tieflochbohrmaschine |
CA3014861C (en) | 2016-11-09 | 2023-04-11 | Kubota Corporation | Alloy for overlay welding, powder for welding, and reaction tube |
JP6335248B2 (ja) * | 2016-11-09 | 2018-05-30 | 株式会社クボタ | 肉盛溶接用合金及び溶接用粉末 |
JP6335247B2 (ja) * | 2016-11-09 | 2018-05-30 | 株式会社クボタ | 内面突起付反応管 |
US11612967B2 (en) | 2016-11-09 | 2023-03-28 | Kubota Corporation | Alloy for overlay welding and reaction tube |
KR102576003B1 (ko) | 2017-04-07 | 2023-09-07 | 슈미트+클레멘즈 게엠베하+콤파니.카게 | 탄화 수소를 열적으로 분해하기 위한 파이프 및 디바이스 |
DE102017003409B4 (de) | 2017-04-07 | 2023-08-10 | Schmidt + Clemens Gmbh + Co. Kg | Rohr und Vorrichtung zum thermischen Spalten von Kohlenwasserstoffen |
PT3384981T (pt) | 2017-04-07 | 2024-04-09 | Schmidt Clemens Gmbh & Co Kg | Tubo e dispositivo para craqueamento térmico de hidrocarbonetos |
GB201713066D0 (en) | 2017-08-15 | 2017-09-27 | Paralloy Ltd | Oxidation resistant alloy |
WO2019055060A1 (en) | 2017-09-12 | 2019-03-21 | Exxonmobil Chemical Patents Inc. | HEAT TRANSFER TUBE FOR THERMAL CRACKING FORMING ALUMINUM OXIDE |
JP6422608B1 (ja) * | 2017-11-06 | 2018-11-14 | 株式会社クボタ | 耐熱合金及び反応管 |
CN107739896A (zh) * | 2017-11-28 | 2018-02-27 | 宁波市鄞州龙腾工具厂 | 一种拖车组件 |
KR101998979B1 (ko) * | 2017-12-07 | 2019-07-10 | 주식회사 포스코 | 고온변형 저항성 및 균열 저항성이 우수한 복사관용 Cr-Ni계 합금 및 그 제조방법 |
JP7016283B2 (ja) * | 2018-04-25 | 2022-02-04 | 株式会社クボタ | 耐高温腐食性を有する耐熱合金、溶接用粉末及び外周面に肉盛溶接層を具える配管 |
CN109112327B (zh) * | 2018-11-08 | 2019-09-03 | 青岛新力通工业有限责任公司 | 一种抗氧化耐热合金及制备方法 |
CN113227328A (zh) * | 2018-12-20 | 2021-08-06 | 埃克森美孚化学专利公司 | 用于热裂化反应器的耐侵蚀合金 |
CN110016602B (zh) * | 2019-04-22 | 2020-06-02 | 陕西科技大学 | 一种Laves相Cr2Nb基高温合金 |
WO2021087133A1 (en) * | 2019-11-01 | 2021-05-06 | Exxonmobil Chemical Patents Inc. | Bimetallic materials comprising cermets with improved metal dusting corrosion and abrasion/erosion resistance |
JP7560732B2 (ja) | 2020-02-14 | 2024-10-03 | 日本製鉄株式会社 | オーステナイト系ステンレス鋼材 |
US11413744B2 (en) | 2020-03-03 | 2022-08-16 | Applied Materials, Inc. | Multi-turn drive assembly and systems and methods of use thereof |
CN111850348B (zh) * | 2020-07-30 | 2021-11-09 | 北京北冶功能材料有限公司 | 一种高强高韧镍基高温合金箔材及其制备方法 |
CN112853155A (zh) * | 2021-01-08 | 2021-05-28 | 烟台玛努尔高温合金有限公司 | 具有优异高温耐腐蚀性和抗蠕变性的高铝奥氏体合金 |
US11479836B2 (en) | 2021-01-29 | 2022-10-25 | Ut-Battelle, Llc | Low-cost, high-strength, cast creep-resistant alumina-forming alloys for heat-exchangers, supercritical CO2 systems and industrial applications |
US11866809B2 (en) | 2021-01-29 | 2024-01-09 | Ut-Battelle, Llc | Creep and corrosion-resistant cast alumina-forming alloys for high temperature service in industrial and petrochemical applications |
CN113073234B (zh) * | 2021-03-23 | 2022-05-24 | 成都先进金属材料产业技术研究院股份有限公司 | 镍铬系高电阻电热合金及其制备方法 |
CN113444950B (zh) * | 2021-07-08 | 2022-04-29 | 烟台新钢联冶金科技有限公司 | 一种硅钢高温加热炉用铬基高氮合金垫块及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3826689A (en) * | 1971-03-09 | 1974-07-30 | Kobe Steel Ltd | Austenite type heat-resisting steel having high strength at an elevated temperature and the process for producing same |
US4388125A (en) * | 1981-01-13 | 1983-06-14 | The International Nickel Company, Inc. | Carburization resistant high temperature alloy |
EP0322156B1 (de) * | 1987-12-21 | 1993-04-07 | Inco Alloys International, Inc. | Nickellegierung mit hohem Chromgehalt |
EP1065290B1 (de) * | 1999-06-30 | 2003-08-27 | Sumitomo Metal Industries, Ltd. | Hitzebeständige Nickelbasislegierung |
JP2004052036A (ja) * | 2002-07-19 | 2004-02-19 | Kubota Corp | 耐浸炭性にすぐれる加熱炉用部材 |
DE10302989B4 (de) * | 2003-01-25 | 2005-03-03 | Schmidt + Clemens Gmbh & Co. Kg | Verwendung einer Hitze- und korrosionsbeständigen Nickel-Chrom-Stahllegierung |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR929727A (fr) | 1944-02-24 | 1948-01-06 | William Jessop Ans Sons Ltd | Acier au nickel-chrome à caractère austénitique |
US2564498A (en) * | 1949-08-26 | 1951-08-14 | Gen Electric | Preparation of alloys |
DE1096040B (de) | 1953-08-11 | 1960-12-29 | Wiggin & Co Ltd Henry | Verfahren zur Herstellung einer Nickellegierung hoher Kriechfestigkeit bei hohen Temperaturen |
US3306736A (en) | 1963-08-30 | 1967-02-28 | Crucible Steel Co America | Austenitic stainless steel |
DE2105750C3 (de) | 1971-02-08 | 1975-04-24 | Battelle-Institut E.V., 6000 Frankfurt | Verwendung einer Chrombasislegierung zur Herstellung von Feingußoder FormguBkörhern |
JPS5631345B2 (de) | 1972-01-27 | 1981-07-21 | ||
FR2429843A2 (fr) | 1978-06-29 | 1980-01-25 | Pompey Acieries | Alliages refractaires a base de nickel et de chrome, possedant une resistance tres elevee a la carburation a tres haute temperature |
GB2017148B (en) | 1978-03-22 | 1983-01-12 | Pompey Acieries | Nickel chromium iron alloys possessing very high resistantance to carburization at very high temperature |
JPS57131348A (en) * | 1981-02-09 | 1982-08-14 | Nippon Steel Corp | Heat and wear resistant build-up welding material |
JPS5837160A (ja) | 1981-08-27 | 1983-03-04 | Mitsubishi Metal Corp | 継目無鋼管製造用熱間傾斜圧延機のガイドシユ−用鋳造合金 |
CA1196805A (en) * | 1981-09-02 | 1985-11-19 | Trikur A. Ramanarayanan | Alumina-forming nickel-based austenitic alloys |
JPS6353234A (ja) | 1986-08-22 | 1988-03-07 | Toshiba Corp | 耐熱・高強度構造部材 |
JPH02263895A (ja) | 1989-04-03 | 1990-10-26 | Sumitomo Metal Ind Ltd | 耐コーキング性に優れたエチレン分解炉管およびその製造方法 |
US5306358A (en) | 1991-08-20 | 1994-04-26 | Haynes International, Inc. | Shielding gas to reduce weld hot cracking |
DE19524234C1 (de) * | 1995-07-04 | 1997-08-28 | Krupp Vdm Gmbh | Knetbare Nickellegierung |
JPH09243284A (ja) * | 1996-03-12 | 1997-09-19 | Kubota Corp | 内面突起付き熱交換用管 |
CA2175439C (en) * | 1996-04-30 | 2001-09-04 | Sabino Steven Anthony Petrone | Surface alloyed high temperature alloys |
DK173136B1 (da) * | 1996-05-15 | 2000-02-07 | Man B & W Diesel As | Bevægeligt vægelement i form af en udstødsventilspindel eller et stempel i en forbrændingsmotor. |
JP3644532B2 (ja) | 1999-07-27 | 2005-04-27 | 住友金属工業株式会社 | 熱間加工性、溶接性および耐浸炭性に優れたNi基耐熱合金 |
JP4256614B2 (ja) | 2002-01-31 | 2009-04-22 | 三菱重工業株式会社 | 高クロム−高ニッケル系耐熱合金 |
US20050131263A1 (en) | 2002-07-25 | 2005-06-16 | Schmidt + Clemens Gmbh + Co. Kg, | Process and finned tube for the thermal cracking of hydrocarbons |
JP4415544B2 (ja) | 2002-12-17 | 2010-02-17 | 住友金属工業株式会社 | 高温強度に優れた耐メタルダスティング金属材料 |
CA2556128A1 (en) | 2004-02-12 | 2005-08-25 | Sumitomo Metal Industries, Ltd. | Metal tube for use in a carburizing gas atmosphere |
DE102006053917B4 (de) * | 2005-11-16 | 2019-08-14 | Ngk Spark Plug Co., Ltd. | Für Verbrennungsmotoren benutzte Zündkerze |
DE102008051014A1 (de) * | 2008-10-13 | 2010-04-22 | Schmidt + Clemens Gmbh + Co. Kg | Nickel-Chrom-Legierung |
-
2008
- 2008-10-13 DE DE102008051014A patent/DE102008051014A1/de not_active Withdrawn
-
2009
- 2009-10-13 BR BRPI0920279-0A patent/BRPI0920279B1/pt active IP Right Grant
- 2009-10-13 KR KR1020197028227A patent/KR102064375B1/ko active IP Right Grant
- 2009-10-13 HU HUE17207317A patent/HUE046718T2/hu unknown
- 2009-10-13 MY MYPI2011001580A patent/MY160131A/en unknown
- 2009-10-13 CA CA2740160A patent/CA2740160C/en active Active
- 2009-10-13 ES ES09744619.9T patent/ES2661333T3/es active Active
- 2009-10-13 CN CN2009801407879A patent/CN102187003B/zh active Active
- 2009-10-13 KR KR1020117008378A patent/KR101738390B1/ko active IP Right Grant
- 2009-10-13 ES ES17207317T patent/ES2747898T3/es active Active
- 2009-10-13 MX MX2011003923A patent/MX2011003923A/es active IP Right Grant
- 2009-10-13 EP EP09744619.9A patent/EP2350329B1/de active Active
- 2009-10-13 PT PT97446199T patent/PT2350329T/pt unknown
- 2009-10-13 PL PL09744619T patent/PL2350329T3/pl unknown
- 2009-10-13 JP JP2011531390A patent/JP2012505314A/ja active Pending
- 2009-10-13 TR TR2018/02979T patent/TR201802979T4/tr unknown
- 2009-10-13 UA UAA201106001A patent/UA109631C2/ru unknown
- 2009-10-13 KR KR1020177013029A patent/KR102029019B1/ko active IP Right Grant
- 2009-10-13 US US13/124,016 patent/US9249482B2/en active Active
- 2009-10-13 WO PCT/EP2009/007345 patent/WO2010043375A1/de active Application Filing
- 2009-10-13 EP EP19172613.2A patent/EP3550045A1/de not_active Withdrawn
- 2009-10-13 EA EA201170560A patent/EA020052B1/ru not_active IP Right Cessation
- 2009-10-13 PT PT172073173T patent/PT3330390T/pt unknown
- 2009-10-13 KR KR1020197035927A patent/KR102080674B1/ko active IP Right Grant
- 2009-10-13 EP EP17207317.3A patent/EP3330390B1/de active Active
- 2009-10-13 BR BR122016030244A patent/BR122016030244A2/pt not_active Application Discontinuation
- 2009-10-13 PL PL17207317T patent/PL3330390T3/pl unknown
- 2009-10-13 HU HUE09744619A patent/HUE037289T2/hu unknown
-
2011
- 2011-03-25 ZA ZA2011/02259A patent/ZA201102259B/en unknown
- 2011-04-03 IL IL212098A patent/IL212098A/en active IP Right Grant
-
2014
- 2014-06-17 JP JP2014124723A patent/JP2014185397A/ja active Pending
-
2015
- 2015-12-21 US US14/976,389 patent/US10053756B2/en active Active
-
2017
- 2017-03-13 JP JP2017047576A patent/JP6320590B2/ja active Active
-
2018
- 2018-04-02 JP JP2018070880A patent/JP6486532B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3826689A (en) * | 1971-03-09 | 1974-07-30 | Kobe Steel Ltd | Austenite type heat-resisting steel having high strength at an elevated temperature and the process for producing same |
US4388125A (en) * | 1981-01-13 | 1983-06-14 | The International Nickel Company, Inc. | Carburization resistant high temperature alloy |
EP0322156B1 (de) * | 1987-12-21 | 1993-04-07 | Inco Alloys International, Inc. | Nickellegierung mit hohem Chromgehalt |
EP1065290B1 (de) * | 1999-06-30 | 2003-08-27 | Sumitomo Metal Industries, Ltd. | Hitzebeständige Nickelbasislegierung |
JP2004052036A (ja) * | 2002-07-19 | 2004-02-19 | Kubota Corp | 耐浸炭性にすぐれる加熱炉用部材 |
DE10302989B4 (de) * | 2003-01-25 | 2005-03-03 | Schmidt + Clemens Gmbh & Co. Kg | Verwendung einer Hitze- und korrosionsbeständigen Nickel-Chrom-Stahllegierung |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3578676A1 (de) * | 2018-06-07 | 2019-12-11 | Manoir Pitres | Austenitische legierung mit hohem aluminiumgehalt und assoziiertes designverfahren |
FR3082209A1 (fr) * | 2018-06-07 | 2019-12-13 | Manoir Pitres | Alliage austenitique avec haute teneur en aluminium et procede de conception associe |
US11408057B2 (en) | 2018-06-07 | 2022-08-09 | Manoir Pitres | Austenitic alloy with high aluminum content and associated design process |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2350329B1 (de) | Nickel-chrom-legierung | |
EP1501953B1 (de) | Hitze- und korrosionsbeständige nickel-chrom-grusslegierung | |
DE60004737T2 (de) | Hitzebeständige Nickelbasislegierung | |
DE60224277T2 (de) | Metallwerkstoff mit guter beständigkeit gegen metal dusting | |
DE2265684C2 (de) | Nickel-Chrom-Legierung | |
EP2227572B1 (de) | Austenitische warmfeste nickel-basis-legierung | |
DE69010351T2 (de) | Mechanisch legierte Nickel-Kobalt-Chrom-Eisen-Legierung. | |
WO2013182178A1 (de) | Nickel-chrom-legierung mit guter verarbeitbarkeit, kriechfestigkeit und korrosionsbeständigkeit | |
DE69716388T2 (de) | Teil oder Zubehör für einen Aufkohlungsofen | |
DE102018107248A1 (de) | Verwendung einer nickel-chrom-eisen-aluminium-legierung | |
DE19941411A1 (de) | Hitzebeständiger Stahl | |
CH666288A5 (de) | Matrize aus stahl, verfahren zu deren herstellung und deren verwendung. | |
DE69904098T2 (de) | Verwendung niedrig legierter Stähle, die nicht zur Koksbildung neigen | |
DE19629977A1 (de) | Austenitische Nickel-Chrom-Stahllegierung | |
DE69522783T2 (de) | Anti-Verkokungsstähle | |
DE4035114C2 (de) | Fe-Cr-Ni-Al Ferritlegierungen | |
DE1533429C3 (de) | Verwendung einer Chrom-Nickel-Kobalt-Stahllegierung als korrosionsbeständiger Werkstoff | |
DE10255372A1 (de) | Verwendung Quasi-Kristalliner Aluminiumlegierungen bei Anwendungen in der Raffination und der Petrochemie | |
DE1608181A1 (de) | Verwendung eines Nickelstahls | |
EP1630243A2 (de) | Verfahren zum Herstellen eines Bauteils | |
DE3121782C2 (de) | Verwendung einer austenitischen Chrom-Nickel-Stahllegierung für Wärmetauscherkomponenten | |
DE102022110383A1 (de) | Verwendung einer Nickel-Eisen-Chrom-Legierung mit hoher Beständigkeit in aufkohlenden und sulfidierenden und chlorierenden Umgebungen und gleichzeitig guter Verarbeitbarkeit und Festigkeit | |
EP1612296B1 (de) | Verfahren zur Vermeidung von Entkohlung und Verzunderung an emailierten Behältern | |
DE102022110384A1 (de) | Verwendung einer Nickel-Eisen-Chrom-Legierung mit hoher Beständigkeit in hoch korrosiven Umgebungen und gleichzeitig guter Verarbeitbarkeit und Festigkeit | |
EP0690140B1 (de) | Hochtemperatur-Knetlegierung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2350329 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180622 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180907 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
INTG | Intention to grant announced |
Effective date: 20181030 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTC | Intention to grant announced (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20190404 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SCHMIDT + CLEMENS GMBH + CO. KG |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 2350329 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502009015933 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1172490 Country of ref document: AT Kind code of ref document: T Effective date: 20190915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Ref document number: 3330390 Country of ref document: PT Date of ref document: 20191024 Kind code of ref document: T Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20191001 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20190828 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191228 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191129 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2747898 Country of ref document: ES Kind code of ref document: T3 Effective date: 20200312 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E046718 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009015933 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191013 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191031 |
|
26N | No opposition filed |
Effective date: 20200603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190828 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230513 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20230928 Year of fee payment: 15 Ref country code: NL Payment date: 20231023 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231025 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20231117 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20231005 Year of fee payment: 15 Ref country code: SE Payment date: 20231025 Year of fee payment: 15 Ref country code: RO Payment date: 20231004 Year of fee payment: 15 Ref country code: PT Payment date: 20230929 Year of fee payment: 15 Ref country code: NO Payment date: 20231023 Year of fee payment: 15 Ref country code: IT Payment date: 20231031 Year of fee payment: 15 Ref country code: HU Payment date: 20231005 Year of fee payment: 15 Ref country code: FR Payment date: 20231023 Year of fee payment: 15 Ref country code: FI Payment date: 20231023 Year of fee payment: 15 Ref country code: DE Payment date: 20231120 Year of fee payment: 15 Ref country code: CZ Payment date: 20231002 Year of fee payment: 15 Ref country code: BG Payment date: 20231019 Year of fee payment: 15 Ref country code: AT Payment date: 20231019 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20231023 Year of fee payment: 15 |