EP1447695A2 - Module optique ayant élément de prise optique pour faciliter la communication optique et procédé de fabrication - Google Patents

Module optique ayant élément de prise optique pour faciliter la communication optique et procédé de fabrication Download PDF

Info

Publication number
EP1447695A2
EP1447695A2 EP04003477A EP04003477A EP1447695A2 EP 1447695 A2 EP1447695 A2 EP 1447695A2 EP 04003477 A EP04003477 A EP 04003477A EP 04003477 A EP04003477 A EP 04003477A EP 1447695 A2 EP1447695 A2 EP 1447695A2
Authority
EP
European Patent Office
Prior art keywords
optical
transparent substrate
optical module
module according
socket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04003477A
Other languages
German (de)
English (en)
Other versions
EP1447695B1 (fr
EP1447695A3 (fr
Inventor
Kimio Nagasaka
Takeo Kaneko
Akira Miyamae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of EP1447695A2 publication Critical patent/EP1447695A2/fr
Publication of EP1447695A3 publication Critical patent/EP1447695A3/fr
Application granted granted Critical
Publication of EP1447695B1 publication Critical patent/EP1447695B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3834Means for centering or aligning the light guide within the ferrule
    • G02B6/3838Means for centering or aligning the light guide within the ferrule using grooves for light guides
    • G02B6/3839Means for centering or aligning the light guide within the ferrule using grooves for light guides for a plurality of light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3845Details of mounting fibres in ferrules; Assembly methods; Manufacture ferrules comprising functional elements, e.g. filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres

Definitions

  • the present invention relates to an optical module for use in information communication (signal transmission) by means of optical signals between a plurality of devices or inside of a device.
  • the invention further relates to a method of manufacturing the optical module, to a plug for use with the optical module and to various components using the optical module.
  • a photo-electric conversion module described in [2] has a configuration in which an end surface of an optical fiber (optical transmission path) is directly arranged on a light-emitting surface or a light-receiving surface of an optical element via a small-sized connector (optical plug). Consequently, when the small-sized connector is removed, the light-emitting/light-receiving surface of the optical element and the end surface of the optical fiber are exposed, which is apt to cause defects such as damage of the light-emitting surface or the like, and adhesion of foreign materials.
  • the present invention aims to provide an optical module capable of miniaturization.
  • the present invention also aims to provide an optical module capable of protecting a light-emitting surface or light-receiving surface of an optical element with a simple configuration.
  • the optical module has a configuration, in which the signal light emitted from an optical element and the signal light emitted from the optical transmission path are reflected at substantially 90 degrees to achieve optical coupling, the longitudinal direction of the optical transmission path can be arranged along the surface of the transparent substrate, which enables miniaturization of the optical module.
  • the optical module according to the present invention is used to construct an opto-electrical hybrid circuit.
  • the optical module has a configuration, in which a light-emitting surface/light-receiving surface of the optical element faces the transparent substrate, the light-emitting surface, light-receiving surface or the like can be protected with a simple structure.
  • the above-described reflective portion is preferably formed in the optical socket. More preferably, the optical socket including the reflective portion may be integrally molded using resin or the like. Thereby, the simplification of the structure can reduce the number of components and simplify its manufacturing process.
  • the optical module preferably comprises a first lens, which converges the signal light emitted from the optical element to guide it to the reflective portion, or converges the signal light, emitted from the optical transmission path and reflected by the reflective portion, to guide it to the optical element. This can improve optical coupling efficiency.
  • the above-described first lens is preferably formed in the optical socket. More preferably, the optical socket including the first lens may be integrally molded using resin or the like. Thereby, the simplification of the structure can reduce the number of components and simplify its manufacturing process. Optical-axis alignment at assembly also becomes easy.
  • the first lens may be alternatively formed on the transparent substrate.
  • a manufacturing step of cutting and dividing a base material substrate after a batch formation of a plurality of first lenses on the base material substrate can be employed.
  • the optical module preferably comprises a second lens, which converges the signal, emitted from the optical element and reflected by the reflective portion, to guide it to the optical transmission path, or converges the signal light emitted from the optical transmission path to guide it to the reflective portion. This can improve optical coupling efficiency.
  • the above-described second lens is preferably formed in the optical plug or the optical socket. More preferably, the optical plug or the optical socket including the second lens may be integrally formed using resin or the like. Thereby, the simplification of the structure can reduce the number of components and simplify its manufacturing process. Optical-axis alignment at assembly also becomes easy.
  • the above-described first lens preferably converges the signal light emitted from the optical element into substantially parallel light
  • the above-described second lens preferably converges the signal light emitted from the optical transmission path into substantially parallel light.
  • the optical socket preferably has guide surfaces for positioning the optical plug. Because this makes it unnecessary to provide a positioning pin or a fitting hole corresponding to the pin, a decrease of the components in number and miniaturization of the optical socket and the optical plug can be achieved. Machining of the optical socket and the optical plug also becomes easy.
  • the above-described guide surfaces preferably include two surfaces which are substantially parallel to each other and substantially orthogonal to the other surface of the transparent substrate.
  • the two surfaces and the other surface of the transparent substrate enable the optical plug to be positioned precisely.
  • the optical module further comprises pressing means for pressing the optical plug to the other surface side of the transparent substrate.
  • pressing means for example, a leaf spring can be used. This can make a position of the optical plug in the vertical direction (orthogonal direction with respect to the transparent substrate) more stable.
  • the above-described guide surfaces preferably include the two surfaces which are substantially parallel to each other and substantially orthogonal to the other surface of transparent substrate, and include one surface which is substantially parallel to the other surface of the transparent substrate. These surfaces and the other surface of the transparent substrate enable the optical plug to be positioned precisely.
  • the above-described guide surfaces preferably include two surfaces substantially orthogonal to each other and arranged at an angle of substantially 45 degrees with respect to the other surface of the transparent substrate.
  • each of the two surfaces has a projection portion for biasing the optical plug. This enables the optical plug to be positioned precisely.
  • the optical module further comprises locking means for holding a state, in which the optical plug is fitted into the optical socket.
  • locking means for example, a hook formed using an elastic body such as a leaf spring can be used. This can securely prevent the optical plug from coming off the optical socket or being displaced.
  • the optical socket preferably has a guide groove for positioning the optical plug. Using the guide groove enables the optical plug to be positioned precisely.
  • the above-described guide groove preferably includes a surface substantially parallel to the one surface of the transparent substrate, and a surface substantially orthogonal to the one surface of the transparent substrate, and penetrates from one end side of the optical socket to the other end side of the optical socket. This can make the insertion of the optical plug into the optical socket more smoothly.
  • the present invention provides a manufacturing method of an optical module, to which an optical plug provided at one end of an optical transmission path is attached, so as to transmit and receive signal light via the optical transmission path for information communication.
  • the method includes the steps of: forming a wiring layer in each of a plurality of regions on one surface of a transparent substrate having light transmittance property; arranging an optical element on the other surface of the transparent substrate corresponding to each wiring layer: mounting an optical coupling component corresponding to each optical element on the one surface of the transparent substrate ; and cutting and dividing the transparent substrate into a plurality of regions.
  • optical coupling component indicates a component for optically coupling the optical transmission path (for example, optical fiber or the like) supported by the above-described optical plug and the optical element, and the optical socket according to the present, for example, corresponds to the optical coupling component.
  • the manufacturing method of the present invention enables a small-sized optical module excellent in protecting a light-emitting/light-receiving surface of an optical element or the like to be manufactured at low cost.
  • optical communication device optical transceiver
  • Such an optical communication device according to the present invention can be used for various electronic apparatuses such as a personal computer, a PDA (personal digital assistance) or the like, which perform information communication with external devices using light as a transmission medium.
  • the "optical communication device” herein includes not only a device, having both configurations for transmission of signal light (light-emitting element or the like) and receiving of signal light (light-receiving element or the like), but also a device, having only the configuration for transmission of signal light (so-called optical transmission module) or having only the configuration for receiving of signal light (so-called optical receiving module).
  • the present invention provides an opto-electrical hybrid integrated circuit comprising the above-described optical module and a circuit board comprising the above-described optical module and an optical waveguide having a role of the transmission of signal light.
  • a circuit board may be referred to as an "opto-electrical hybrid board”.
  • the present invention provides an electronic device comprising the above-described optical module. More specifically, the electronic device according to the present invention includes not only a case having the above-described optical module itself, but also a case having any of the above-described optical communication device, opto-electrical hybrid integrated circuit, and circuit board, which include the optical module.
  • the "electronic device” herein indicates a general apparatus, which implements a specific function using an electronic circuit or the like, whose configuration is not particularly limited, but various apparatuses such as a personal computer, a PDA (personal digital assistance), and an electronic data book are exemplified.
  • the optical module, optical communication device, opto-electrical hybrid integrated circuit, or circuit board of the present invention can be used for information communication inside of one apparatus or information communication with an external apparatus.
  • FIG. 1 illustrates a configuration of an optical module according to a first embodiment.
  • FIG. 1A is a plan view of the optical module and
  • FIG. 1B is a cross sectional view taken along the line A-A of FIG. 1A.
  • the optical module 1 shown in FIG. 1 is mounted with an optical plug 50, which is provided at one end of a tape fiber 52 serving as an optical transmission path, and transmits and receives signal light via the tape fiber 52 for information communication.
  • the optical module 1 includes a transparent substrate 10, one or more optical elements 12, an electronic circuit 14, a wiring layer 16, an optical socket 18, a lens 20, and a reflective portion 22.
  • the transparent substrate 10 has light transmittance property with respect to the wavelength of used light and supports each element constituting the optical module 1.
  • the transparent substrate 10 may be made of glass, plastic or the like.
  • the transparent substrate 10 may be made of silicon, germanium, or the like.
  • the optical element 12 which emits signal light according to a driving signal supplied from the electronic circuit 14, or generates an electrical signal according to the intensity of received signal light, is arranged at a predetermined position on a back surface of the transparent substrate 10 with a tight-emitting surface or light-receiving surface of the optical element facing the transparent substrate 10.
  • the optical element 12 has its light-emitting surface or light-receiving surface arranged in an opening provided in the wiring layer 16 on the transparent substrate 10 so that a light signal is emitted or enters through the opening and the transparent substrate 10. For example, in the case where the optical module 1 shown in FIG.
  • a light-emitting element such as a VCSEL (vertical-cavity surface emitting laser) is used as the optical element 12.
  • a light-receiving element is used as the optical element 12.
  • a configuration including four optical elements is exemplified, but the number of the optical elements 12 is not limited to this and, for example, one optical element may be used.
  • the electronic circuit 14 includes a driver for driving the optical element 12 and is arranged at a predetermined position on the back surface of the transparent substrate 10.
  • the electronic circuit 14 is coupled to the optical elements 12 via the wiring layer 16 formed on the transparent substrate 10, and further coupled to other circuit elements, circuit chips, external devices or the like (not shown), as required.
  • the wiring layer 16 is provided on the back surface side of the transparent substrate 10 using an electrical conductor layer made of copper or the like, and patterned into a predetermined shape.
  • the wiring layer 16 provides the electrical coupling between the optical elements 12, the electronic circuit 14, other circuit elements.
  • the optical socket 18, to which the optical plug 50 is attached is arranged on the front surface side of the transparent substrate 10.
  • the socket is formed using glass, plastic or the like.
  • the optical socket 18 has guide surfaces for positioning the optical plug 50.
  • the guide surfaces include two surfaces 24 substantially parallel to each other and substantially orthogonal to the top surface of the transparent substrate 10, and one surface 26 substantially orthogonal to these surfaces 24 and substantially orthogonal to the top surface of the transparent substrate 10.
  • the optical plug 50 is provided with abutting surfaces corresponding to these guide surfaces.
  • the above-described two surfaces 24 provided in the optical socket 18 are substantially parallel with respect to a y-z plane, and by forming the distance between these surfaces 24 with high accuracy, positioning of the optical plug 50 inserted into the optical socket 18 is performed with respect to a position in the x-axis direction and an arranging angle within an x-z plane. Furthermore, the above-described surface 26 is substantially parallel with respect to an x-y plane, and by abutting one end of the optical plug 50 to the surface 26, positioning of the optical plug 50 in the z-axis direction is made.
  • the (first) lens 20 formed integrally with the optical socket 18, is for converging signal light emitted from the optical element 12 to guide it to the reflective portion 22 as substantially parallel light, and for converging signal light, emitted from the tape fiber 52 and reflected by the reflective portion 22, to guide it to the optical element 12 as substantially parallel light.
  • the reflective portion 22 changes the path of the signal light converged by the lens 20 by substantially 90 degrees to guide it to the tape fiber 52, and changes the path of the signal light emitted from the tape fiber 52 by substantially 90 degrees to guide it to the optical element 12.
  • the reflective portion 22 is formed integrally with the optical socket 18 as a surface (reflective surface) arranged at an angle of substantially 45 degrees with respect to an optical axis of the optical element 12 (the main propagation direction of the signal light).
  • the refractive index of the material composing the optical socket 18 By setting the refractive index of the material composing the optical socket 18 to about 1.5, the signal light entering the reflective portion 22 can be totally reflected, by which the path of the signal light can be bent by substantially 90 degrees.
  • the reflective portion 22 may be formed.
  • the optical plug 50 to be attached to the above-described optical socket 18 supports the tape fiber 52 in such a manner as to make the extending direction of the tape fiber 52 (extending direction of a core) substantially parallel to the top surface of the transparent substrate 10.
  • the optical plug 50 is detachable from the optical socket 18.
  • a tape fiber 52 having four cores is illustrated, but the tape fiber is not limited to this example and a tape fiber with any desired number of cores (including one core) can be used.
  • a tape fiber composed as layer form is illustrated, but the tape fiber is not limited to this and an optical transmission path such as a general optical fiber can also be used.
  • the optical plug 50 is provided with a plurality of (second) lenses 54 on one end thereof abutting on the optical socket 18.
  • These lenses 54 converge the signal light, emitted from the optical element 12 and reflected by the reflective portion 22, to guide it to the tape fiber 52 as substantially parallel light, and converge the signal light emitted from the tape fiber 52 to guide it to the reflective portion 22 as substantially parallel light.
  • These lenses can take various configurations in addition to the configuration of being formed in the optical plug 50, and specific examples thereof will be described later.
  • FIG. 2 illustrates a configuration example in the case where a member for securely preventing displacement of the optical plug 50 is provided.
  • a leaf spring 28 (as pressing means) is arranged on the upper side of the optical plug 50 to press the optical plug 50 toward the transparent substrate 10 side. This allows the optical plug 50 to be positioned more securely with respect to the position in the y axis direction, the angle within the x-y plane, and the angle within the y-z plane of the optical plug 50 by setting the top surface of the transparent substrate 10 as a reference, thereby the relative position and posture of the optical plug 50 are determined.
  • a hook portion 30 is provided as locking means at one end of the leaf spring 28 to hold a fitting state of the optical plug 50 and the optical socket 18 while preventing coming off or displacement of the optical plug 50.
  • the leaf spring 28 may be supported, for example, by the transparent substrate 10, or may instead be supported by a housing or the like of various devices including the optical module 1 of the present embodiment (specific examples will be described later).
  • FIGs. 3 and 4 illustrate the manufacturing steps of the optical module 1 according to the present embodiment.
  • a base material substrate 100 is prepared, which is a base material from which a plurality of transparent substrates 10 are to be cut out later.
  • a conductive material such as aluminum, copper or the like is deposited on the surface of the base material substrate 100 by using a sputtering method, electroforming or the like to form a metal layer (conductive layer).
  • the metal layer is subjected to patterning corresponding to a desired circuit pattern to form the wiring layer 16.
  • the wiring layer 16 is formed in each sub-region of the base material substrate 100.
  • circuit elements such as the optical element(s) 12 and the electronic circuit 14 are mounted on the one surface side of the base material substrate 100.
  • the mounting can be performed using flip chip bonding, wire boding, solder reflow, or the like.
  • a plurality of optical elements are arranged on the one surface of the base material substrate 100 corresponding to the respective unit wiring patterns.
  • the optical socket 18 is mounted on the other surface side of the base material substrate 100 at positions corresponding to the optical elements 12. This mounting is performed by applying adhesive to the surface of respective the optical socket 18 and the surface of the base material substrate 100 that face each other, or applying adhesive to either of the surfaces, followed by placing the optical socket 18 on the base material substrate 100.
  • the adhesive substances that are cured later by undergoing some process (for example, light irradiation) may be used.
  • the optical sockets 18 are each adjusted in position to be placed in such a manner that the optical axis of the lens 20 substantially coincides with that of a respective optical element 12.
  • the adhesive is solidified to fix the optical sockets 18 on the base material substrate 100.
  • the adhesive for example, light-cured resin, thermosetting resin or the like can be used.
  • the step of placing, adjusting position, and fixing the optical sockets 18 is repeated for a required number of times. Then, the optical socket 18 is mounted to a plurality of sub-regions of the base material substrate 100 to compose the optical module 1.
  • the base material substrate 100 is cut, corresponding to the sub-regions, into a plurality of optical modules that are each to be the optical module 1.
  • Optical modules according to other embodiments described later can be manufactured by a similar method.
  • the optical module 1 according to the present embodiment has the configuration, in which the signal light emitted from the optical element 12 and the signal light emitted from the tape fiber (optical transmission path) 52 are reflected at substantially 90 degrees to achieve optical coupling, the longitudinal direction of the tape fiber 52 can be arranged along the surface of the transparent substrate 10. This enables miniaturization of the optical module. In particular, because space saving in the thickness direction of the transparent substrate 10 can be achieved, it is preferable for the case where the optical module according to the present invention is used to compose an opto-electrical hybrid circuit.
  • the optical module has the configuration, in which the light-emitting surface/light-receiving surface of the optical element 12 faces the transparent substrate 10, the light-emitting surface, light-receiving surface or the like can be protected with a simple structure.
  • the manufacturing method according to the present embodiment enables a small-sized optical module excellent in protection of the light-emitting surface/light-receiving surface of the optical element to be manufactured at lower cost.
  • FIG. 5 illustrates a configuration of an optical module according to a second embodiment.
  • FIG. 5A is a plan view of the optical module
  • FIG. 5B is a cross sectional view taken along the line B-B of FIG. 5A.
  • the optical module 1a a shown in the figures basically has a similar configuration to that of the optical module 1 according to the first embodiment, and common components are indicated by the same reference numerals and signs. Hereinafter, differences will be mainly described.
  • an optical socket 18a to which the optical plug 50 is attached, has a different shape from that of the first embodiment.
  • the optical socket 18a includes the surfaces 24 and the surface 26 serving as guide surfaces similarly to the optical socket 18, further including a surface 32 for positioning in the y-axis direction of the optical module 1 a.
  • the surface 32 is formed substantially in parallel to the x-z plane to position the optical plug 50 in the y-axis direction by setting the surface 32 and the top surface of the transparent substrate 10 as reference.
  • the optical socket 18a including the surface 32 can also be considered as providing the function of pressing means.
  • a leaf spring 28a provided in the optical module 1a according to the present embodiment is configured to surround the socket 18a and the optical plug 50 and be provided with a hook portion 30a as locking means at one end thereof.
  • the hook portion 30a holds a fitting state of the optical plug 50 and the optical socket 18a to prevent coming off of the optical plug 50.
  • FIG. 6 illustrates a configuration of an optical module according to a third embodiment.
  • FIG. 6A is a plan view of the optical module and
  • FIG. 6B is a cross sectional view taken along the line C-C of FIG. 6A.
  • the optical module 1b shown in the figures has a similar configuration to that of the above-described optical modules, and common components are indicated by the same reference numerals and signs. Hereinafter, differences will be mainly described.
  • the optical socket 18b to which the optical plug 50 is attached, has a different shape from those of the above-described embodiments.
  • the optical socket 18b according to the present embodiment has surfaces 24a, a surface 26a and a surface 32a serving as guide surfaces. Respective functions of the surfaces 24a, 26a and 32a are similar to those of the above-described surfaces 24, 26 and 32.
  • a lens 54a is formed as a second lens on the optical socket 18b side
  • the configuration of the optical plug 50a is simplified more than that of the optical plug 50 according to the above-described embodiments. This can reduce the cost.
  • a surface of the optical socket 18b on which the lens 54a is formed and the surface 32a serving as a guide surface independently an optical distance between the lens 54a and a fiber core of the tape fiber 52 supported by the optical plug 50a is secured and an end surface of the fiber core is protected.
  • a protection layer or the like for protecting the tape fiber 52 may be provided at an end surface of the optical plug 50a.
  • FIG. 7 illustrates a configuration of an optical module according to a fourth embodiment.
  • FIG. 7A is a plan view of the optical module and
  • FIG. 7B is a cross sectional view taken along the line D-D of FIG. 7A.
  • the optical module 1c shown in the figures has a similar configuration to that of the above-described optical modules, and common components are indicated by the same reference numerals and signs. Hereinafter, differences will be mainly described.
  • the optical module 1c shown in the FIG. 7 has a configuration in which an optical plug 50b and an optical socket 18c are attached directly.
  • the optical socket 18c has a surface 26b serving as a guide surface, and the surface 26b and an abutting surface provided in the optical plug 50b are stuck to attach the optical plug 50b.
  • a lens 54b is formed as a second lens on the optical socket 18c side, the configuration of the optical plug 50b is simplified. This can reduce the cost.
  • a surface of the optical socket 18c, on which the lens 54b is formed, and the surface 26b serving as a guide surface independently so as to form a cavity an optical distance between the lens 54b and a fiber core of the tape fiber 52 supported by the optical plug 50b is secured and an end surface of the fiber core is protected.
  • a protection layer or the like for protecting the tape fiber 52 may be provided at an end surface of the optical plug 50b.
  • a lens 20a serving as a first lens is arranged as a lens array including four lenses at positions on the top surface of the transparent substrate 10, which face the optical elements 12.
  • the optical socket 18c has surfaces 34 and 36 serving as guide surfaces and by making these surfaces 34 and 36 abut on the above-described lens array, the optical socket 18c is positioned.
  • FIG. 8 illustrates a configuration of an optical module according to a fifth embodiment.
  • FIG. 8A is a perspective view of the optical module and
  • FIG. 8B is a cross sectional view taken along the line E-E of FIG. 8A.
  • the optical module 1d shown in the figures has a similar configuration to that of the above-described optical modules, and common components are indicated by the same reference numerals and signs. Hereinafter, differences will be mainly described.
  • an optical socket 18d to which an optical plug 50c is attached, has a different shape from those of the above-described embodiments.
  • the optical socket 18d has a fitting hole 40, which has a cross section of an inverted T shape, and the optical plug 50c also has a cross section of an inverted T shape corresponding to the shape of the fitting hole 40.
  • the fitting hole 40 includes a guide groove 42 for guiding in the direction in insertion of the optical plug 50c.
  • the guide groove 42 includes a surface substantially parallel to the top surface of the transparent substrate 10 and surfaces substantially orthogonal to the top surface of the transparent substrate 10, and penetrates from one end of the optical socket 18d to the other end of the optical socket 18d. The guide groove 42 allows the optical plug 50c to be inserted into the optical socket 18c more smoothly.
  • a reflector plate 44 (reflective portion) is arranged on the one end of the optical socket 18d, and a lens 20b serving as a first lens is arranged at positions on the top surface of the transparent substrate 10, which face the optical elements 12.
  • the reflector plate 44 is arranged in such a manner that a reflective surface thereof is arranged at an angle of substantially 45 degrees with the top surface of the transparent substrate 10 and changes the path of signal light emitted from the optical element 12 by substantially 90 degrees to guide it to the tape fiber 52, or changes the path of signal light emitted from the tape fiber 52 by substantially 90 degrees to guide it to the optical element 12.
  • the reflector plate 44 can be obtained, for example, by forming a metal layer on a glass substrate using a thin-layer forming method such as a deposition, plating, sputtering method, or the like.
  • the reflector plate 44 according to the present embodiment functions as a reference position for determining a position in the insertion direction when the optical plug 50c is inserted.
  • the optical plug 50c is provided with an abutting surface 56 with an angle of substantially 45 degrees at a position where the optical plug 50c and the reflector plate 44 abut on each other.
  • the abutting surface 56 is provided above a part where the fiber core of the tape fiber 52 is exposed. This prevents an end surface of the fiber core from contacting other members, and secures an optical distance between the end surface of the fiber core and the reflector plate 44 to protect the end surface of the fiber core.
  • the distance from the end surface of the fiber core of the tape fiber 52 to the lens 20b via the reflector plate 44 becomes long and if the beam diameter of signal light becomes relatively large with respect to the lens diameter, a decrease in optical coupling efficiency or mutual interference (crosstalk) with an adjacent channel (optical system including another optical element 12) easily occurs. Therefore, optimization of the focal length becomes important. The optimization of the focal length depends on the lens diameter (lens pitch) of the lenses 20b and a divergence angle of emitted beam from the fiber core.
  • the focal length needs to be about 0.64 mm in order to prevent the emitted beam from entering an adjacent lens 20b.
  • the shape and the arrangement of the above-described reflector plate 44 are set so as to satisfy this focal length.
  • the present embodiment provides the configuration, in which the optical plug 50c abuts on the reflector plate 44 arranged at the one end of the optical socket 18d, the distance from the end surface of the optical plug 50c to the reflective position on the reflective surface of the reflector plate 42 and the distance from the reflective position to the lens 20b can be shortened (that is, the light path is shortened). Furthermore, in the present embodiment, because the guide groove 42 provided in the socket 18d is configured to penetrate from the one end of the optical socket 18d to the other end of the optical socket 18d, high-precision machining can be easily performed by cutting or the like, which brings about the advantage of easily realizing a high-precision of fitting position of the optical plug 50c and the optical socket 18d.
  • the second lens for converging signal light emitted from the tape fiber 52 may also be provided on the one end side of the optical plug 50c.
  • an opto-electrical hybrid integrated circuit composed of the optical modules described in the above embodiments and a circuit board composed of the opto-electrical hybrid integrated circuit will be described.
  • a case where the optical module 1a is used is illustrated, but the other optical modules may be used as well.
  • FIG. 9 illustrates a configuration example of an opto-electrical hybrid integrated circuit, i.e., a circuit board including the integrated circuit.
  • a circuit board 200 shown in the figure includes an opto-electrical hybrid integrated circuit 202 including the optical module 1a according to the above-described embodiment and a wiring substrate 204.
  • the opto-electrical hybrid integrated circuit 202 includes the optical module 1a and a signal processing chip 206, both of which are integrally molded using plastic or the like.
  • the optical module 1a and the signal processing chip 206 are electrically coupled by wire boding.
  • the optical module 1 a is arranged in such a manner that emitted light from optical elements is guided to the wiring substrate 204 side.
  • the optical socket provided in the optical module 1a is exposed from the mold resin so as to allow coupling with an optical plug.
  • the wiring substrate 204 is provided with a wiring layer 208 thereon and the opto-electrical hybrid integrated circuit 202 is placed thereon.
  • a socket 210 is arranged on the top surface of the wiring substrate 204. By inserting a pin grid array (PGA) provided in the opto-electrical hybrid integrated circuit 202 into the socket 210, the opto-electrical hybrid integrated circuit 202 is fixed.
  • PGA pin grid array
  • FIG. 10 illustrates another configuration example of an opto-electrical hybrid integrated circuit, i.e., a circuit board including the integrated circuit.
  • a circuit board 210 shown in the figure includes an opto-electrical hybrid integrated circuit 212 including the optical module 1a according to the above-described embodiment and a wiring substrate 214.
  • the opto-electrical hybrid integrated circuit 212 includes the optical module 1 and a signal processing chip 216, both of which are integrally molded using plastic or the like.
  • the optical module 1a is arranged in such a manner that emitted light from the optical element is guided to the direction opposite to the wiring substrate 214 side.
  • the optical socket provided in the optical module 1 is exposed from a mold resin to allow coupling with an optical plug.
  • the wiring substrate 214 is provided with a wiring layer 218 at an upper part thereof and the opto-electrical hybrid integrated circuit 212 is placed thereon.
  • the opto-electrical hybrid integrated circuit 212 is coupled to the wiring substrate 214 by a ball grid array (BGA).
  • BGA ball grid array
  • the opto-electrical integrated circuits and circuit boards according these embodiments can be applied to various electronic apparatuses such as a personal computer, and used for information communication inside of an apparatus or with external apparatuses or the like.
  • the present invention is not limited to the contents of the above-described embodiments, but various modifications can be made within the scope of the appended claims.
  • the positioning of the optical plug is performed by the guide surfaces provided in the optical socket, it is also possible that a projection portion is provided inside of a fitting hole (a space to which the optical plug is inserted) of the optical socket to bias the optical plug for positioning by the projection portion.
  • FIG. 11 illustrates a configuration example in the case where the optical plug is positioned using such projection portion.
  • FIG. 11A is a plan view, when an optical socket 118 according to the modified embodiment is viewed from the opening side of the fitting hole, into which the optical plug is inserted.
  • FIG. 11 B is a cross sectional view taken along the line F-F of FIG. 11A.
  • the optical socket 118 shown in FIG. 11 has inclined surfaces inside of the fitting hole, into which the optical plug is to be inserted, and the inclined surfaces are provided with a projection portion 120, which extends in the direction substantially parallel to the z axis and has a semicircular cross section.
  • the projection portion 120 has a function of contacting an abutting surface formed on the optical plug corresponding to the projection portion 120 (details will be described later) to bias the abutting surface.
  • a lens 122 and a reflective portion 124 are integrally formed on the other end side of the optical socket 118 according to the modified embodiment.
  • the optical socket 118 can be used, for example, in place of the above-described optical socket 18a in the optical module 1a of the above-described second embodiment.
  • FIG. 12 illustrates a configuration example of an optical plug, which is preferably used in combination with the optical socket 118 shown in FIG. 11.
  • FIG. 12A is a plan view, when an optical plug 150 is viewed from the upper side.
  • FIG. 12B is a front view of the optical plug 150.
  • FIG. 12C is a front view, in which components are disassembled for illustrating the configuration of the optical plug 150.
  • the optical plug 150 shown in FIG. 12 supports one end of a tape fiber 152 and includes a base 156, an upper plate 158, a lens support member 160, and a plurality of lenses 162.
  • a fiber clad 154 of the tape fiber 152 is placed along the V-shaped groove and the upper plate 158 is placed over the fiber clad 154 so as to sandwich the fiber clad 154 between the upper plate 158 and the base 156.
  • the base 156 and the upper plate 158 are adhered using adhesive 164.
  • the lens support member 160 is adhered to an end of a combined body of the base 156 and the upper plate 158.
  • the four lenses 162 are formed integrally with the lens support member 160, and the lens support member 160 is positioned and adhered so as to achieve optical coupling of the lenses 162 and the fiber cores 154.
  • Surfaces 166 provided in the base 156 are abutting surfaces corresponding to the above-described projection portion 120 of the optical plug 118, and the surfaces 166 are biased by the projection portion 120.
  • a bottom surface 168 of the base 156 is placed while abutting on the top surface of the transparent substrate 10 and the surfaces 166 are biased by the projection portion 120, thereby the position of the optical plug 150 inside of the optical socket 118 is determined.
  • FIG. 13 illustrates another configuration example of an optical plug, which may also be used in combination with the optical socket 118 shown in FIG. 11.
  • An optical plug 150a shown as an example in FIG. 13, has the same basic configuration as that of the optical plug 150 shown in the above-described FIG. 12, but it is different from that of the optical plug 150 in that a base 156a and lenses 162a are integrally formed and the fiber clad 154 of the tape fiber 152 is sandwiched by the base 156a and an upper plate 158a.
  • Employing such a configuration can reduce the number of components and simplify the manufacturing process.
  • the opto-electrical hybrid circuits and the circuit boards including the circuit are exemplified as applications of the optical module according to the present invention, but the applicable scope of the optical module of the present invention is not limited to these, and the optical module of the present invention can be included in various electronic apparatuses and applied to an optical transceiver (optical communication device) or the like for use in optical communication between electronic apparatuses.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
EP04003477A 2003-02-17 2004-02-17 Module optique ayant élément de prise optique pour faciliter la communication optique et procédé de fabrication Expired - Lifetime EP1447695B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003038546 2003-02-17
JP2003038546A JP2004246279A (ja) 2003-02-17 2003-02-17 光モジュール及びその製造方法、光通信装置、光電気混載集積回路、回路基板、電子機器

Publications (3)

Publication Number Publication Date
EP1447695A2 true EP1447695A2 (fr) 2004-08-18
EP1447695A3 EP1447695A3 (fr) 2005-04-20
EP1447695B1 EP1447695B1 (fr) 2009-04-29

Family

ID=32677661

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04003477A Expired - Lifetime EP1447695B1 (fr) 2003-02-17 2004-02-17 Module optique ayant élément de prise optique pour faciliter la communication optique et procédé de fabrication

Country Status (5)

Country Link
US (1) US7118293B2 (fr)
EP (1) EP1447695B1 (fr)
JP (1) JP2004246279A (fr)
CN (1) CN100410710C (fr)
DE (1) DE602004020816D1 (fr)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007002629A1 (fr) * 2005-06-27 2007-01-04 Intel Corporation Systeme de communication electro-optique
FR2921730A1 (fr) * 2007-10-02 2009-04-03 Intexys Sa Sous-ensemble optoelectronique et procede d'assemblage de ce sous-ensemble
WO2010040726A1 (fr) * 2008-10-09 2010-04-15 Cube Optics Ag Multiplexeur/demultiplexeur compact
US20110222859A1 (en) * 2008-10-09 2011-09-15 Cube Optics Ag Compact Multiplexer/Demultiplexer
EP2428828A1 (fr) * 2010-09-13 2012-03-14 Tyco Electronics Svenska Holdings AB Module optique haute vitesse miniaturisé
WO2012035428A1 (fr) * 2010-09-14 2012-03-22 Fci Dispositif de couplage optique, systèmes optiques et procédés d'assemblage
WO2013081909A1 (fr) * 2011-11-28 2013-06-06 Corning Cable Systems Llc Couplages optiques comprenant un réseau magnétique codé, et systèmes de connecteurs et dispositifs électroniques les comprenant
WO2013086117A3 (fr) * 2011-12-09 2013-08-15 Corning Cable Systems Llc Porte-lentilles à gradient d'indice (grin) utilisant une ou plusieurs caractéristiques d'alignement par rainures dans un couvercle à renfoncement et des éléments en une seule pièce, connecteurs et procédés
WO2013130949A1 (fr) * 2012-03-02 2013-09-06 Tyco Electronics Corporation Interposeur modulaire
US9151900B2 (en) 2010-12-07 2015-10-06 Corning Optical Communications LLC Optical couplings having coded magnetic arrays and devices incorporating the same
US9261651B2 (en) 2010-12-07 2016-02-16 Corning Optical Communications LLC Ferrule assemblies, connector assemblies, and optical couplings having coded magnetic arrays
TWI578049B (zh) * 2012-09-14 2017-04-11 鴻海精密工業股份有限公司 光電耦合模組
EP3163342A1 (fr) * 2015-11-02 2017-05-03 Aquaoptics Corp. Module de conversion photoélectrique
US9753235B2 (en) 2011-12-09 2017-09-05 Corning Optical Communications LLC Gradient index (GRIN) lens holders employing groove alignment feature(s) and total internal reflection (TIR) surface, and related components, connectors, and methods
US10114177B2 (en) 2011-09-13 2018-10-30 Corning Optical Communications LLC Translating lens holder assemblies employing bore relief zones, and optical connectors incorporating the same
US10191228B2 (en) 2014-09-23 2019-01-29 Corning Optical Communications LLC Optical connectors and complimentary optical receptacles having magnetic attachment
WO2019152612A1 (fr) * 2018-02-05 2019-08-08 Inneos, Llc Coupleur optique multicanal
US10481349B2 (en) 2015-10-20 2019-11-19 Sony Corporation Optical path conversion device, optical interface apparatus, and optical transmission system

Families Citing this family (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200283621Y1 (ko) * 2002-03-18 2002-07-27 (주)에스와이하이테크 음성도서유닛
DE112004000724B4 (de) * 2003-04-30 2021-08-05 Fujikura Ltd. Optischer Transceiver
JP2005315902A (ja) 2004-04-26 2005-11-10 Seiko Epson Corp 光コネクタ
US7389013B2 (en) * 2004-09-30 2008-06-17 Stmicroelectronics, Inc. Method and system for vertical optical coupling on semiconductor substrate
US20060071149A1 (en) * 2004-09-30 2006-04-06 Stmicroelectronics, Inc. Microlens structure for opto-electric semiconductor device, and method of manufacture
JP3960330B2 (ja) * 2004-11-12 2007-08-15 セイコーエプソン株式会社 光デバイスの接続構造、光デバイス、電子機器
US20060165415A1 (en) * 2005-01-21 2006-07-27 Seiko Epson Corporation Communication cable
JP4103894B2 (ja) * 2005-02-15 2008-06-18 セイコーエプソン株式会社 光モジュール、電子機器
JP4705432B2 (ja) * 2005-03-28 2011-06-22 富士通コンポーネント株式会社 コネクタ
US7366380B1 (en) * 2005-04-18 2008-04-29 Luxtera, Inc. PLC for connecting optical fibers to optical or optoelectronic devices
CN101176024B (zh) * 2005-05-19 2010-10-27 株式会社藤仓 连接器座、带连接器座的光电转换器、光连接器固定结构、以及连接器座的组装方法
JP4610478B2 (ja) * 2005-12-21 2011-01-12 株式会社エンプラス 光モジュール及びこれを備えた光コネクタ
JP4269291B2 (ja) 2006-01-27 2009-05-27 セイコーエプソン株式会社 光モジュール
DE102006010145A1 (de) * 2006-01-27 2007-08-09 Erbe Elektromedizin Gmbh Optokopplervorrichtung und Verfahren zur Fertigung dessen
JP4142050B2 (ja) * 2006-02-08 2008-08-27 セイコーエプソン株式会社 光モジュール
JP4688712B2 (ja) * 2006-02-09 2011-05-25 富士通コンポーネント株式会社 光導波路部材、光導波路組立体及び光モジュール
JP2007271998A (ja) 2006-03-31 2007-10-18 Nec Corp 光コネクタ及び光モジュール
JP4609375B2 (ja) * 2006-05-02 2011-01-12 日立電線株式会社 光配線部材の製造方法及び光配線部材
JP4189692B2 (ja) * 2006-07-07 2008-12-03 セイコーエプソン株式会社 光モジュール用パッケージおよび光モジュール
TW200821652A (en) * 2006-07-26 2008-05-16 Tomoegawa Co Ltd Optical connecting parts and optical connecting structure
US7399125B1 (en) * 2006-07-26 2008-07-15 Lockheed Martin Corporation Lens array with integrated folding mirror
US7556440B2 (en) * 2006-12-22 2009-07-07 Lightwire Inc. Dual-lensed unitary optical receiver assembly
JP5261823B2 (ja) * 2007-01-25 2013-08-14 住友電工ファインポリマー株式会社 光学モジュールおよびその製造方法
JP4769224B2 (ja) * 2007-05-10 2011-09-07 日東電工株式会社 タッチパネル用レンズ付き光導波路およびその製造方法
JP4903120B2 (ja) * 2007-10-03 2012-03-28 株式会社フジクラ 光路変更部材
US7794158B2 (en) 2007-10-04 2010-09-14 Hitachi Cable Ltd. Fabrication method of optical interconnection component and optical interconnection component itself
US7539366B1 (en) 2008-01-04 2009-05-26 International Business Machines Corporation Optical transceiver module
JP4661931B2 (ja) * 2008-09-24 2011-03-30 オムロン株式会社 光伝送モジュール、光伝送モジュールの製造方法、及び電子機器
US20100098374A1 (en) * 2008-10-20 2010-04-22 Avago Technologies Fiber Ip (Signgapore) Pte. Ltd. Optoelectronic component based on premold technology
US8985865B2 (en) 2008-11-28 2015-03-24 Us Conec, Ltd. Unitary fiber optic ferrule and adapter therefor
US8315492B2 (en) * 2009-04-24 2012-11-20 Avago Technologies Fiber Ip (Singapore) Pte. Ltd Fiber connector module including integrated optical lens turn block and method for coupling optical signals between a transceiver module and an optical fiber
US20100284647A1 (en) * 2009-05-09 2010-11-11 Sixis, Inc. Optical ribbon cable attachment mechanism for the backside of a circuit board
JP5238651B2 (ja) * 2009-09-11 2013-07-17 株式会社フジクラ 光路変更部材、光接続方法
JP5505424B2 (ja) * 2009-12-03 2014-05-28 株式会社オートネットワーク技術研究所 光通信モジュール
CN102103234B (zh) * 2009-12-21 2013-11-06 鸿富锦精密工业(深圳)有限公司 光纤连接器
US20110243509A1 (en) * 2010-04-05 2011-10-06 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Opto-electronic transceiver module system
TW201135299A (en) * 2010-04-14 2011-10-16 Hon Hai Prec Ind Co Ltd Optical couple connector and method for manufacturing same
US8876408B2 (en) * 2010-04-23 2014-11-04 Ruprecht-Karls-Universität Heidelberg Optical connectors and a method of production thereof
JP2011248312A (ja) * 2010-04-26 2011-12-08 Nippon Electric Glass Co Ltd 光学素子及びそれを備える光学装置
JP5531763B2 (ja) * 2010-05-07 2014-06-25 富士通株式会社 光伝送装置、及び、光伝送システム
EP2588906A1 (fr) * 2010-06-29 2013-05-08 Ultra Communications, Inc. Interface fibre/module de faible épaisseur avec une grande tolérance d'alignement
KR101176950B1 (ko) * 2010-09-17 2012-08-30 주식회사 유나이브 부품의 수동 정렬을 구현하는 광 송수신 장치 및 부품의 수동 정렬방법
US9239440B2 (en) * 2010-11-09 2016-01-19 Corning Incorporated Receptacle ferrules with monolithic lens system and fiber optic connectors using same
CN103201662B (zh) * 2010-11-09 2015-05-20 康宁光缆系统有限责任公司 具有光路径的金属箍及使用所述金属箍的光纤连接器
CN102486555A (zh) * 2010-12-04 2012-06-06 鸿富锦精密工业(深圳)有限公司 光纤传输系统
US8297856B2 (en) * 2010-12-13 2012-10-30 Sae Magnetics (H.K.) Ltd. Electro-optical module and multi-functional latch member therefor
TWI493896B (zh) * 2010-12-30 2015-07-21 Hon Hai Prec Ind Co Ltd 光纖通訊裝置
US8469610B2 (en) * 2011-01-18 2013-06-25 Avago Technologies General Ip (Singapore) Pte. Ltd. Optical connection system with plug having optical turn
WO2012108324A1 (fr) 2011-02-08 2012-08-16 古河電気工業株式会社 Module optique
JP5758658B2 (ja) * 2011-03-17 2015-08-05 株式会社エンプラス レンズアレイおよびこれを備えた光モジュール
JP5608122B2 (ja) * 2011-03-28 2014-10-15 日東電工株式会社 光電気混載基板およびその製法
JP5946611B2 (ja) * 2011-07-15 2016-07-06 株式会社エンプラス 光レセプタクルおよびこれを備えた光モジュール
TWI553364B (zh) * 2011-12-19 2016-10-11 鴻海精密工業股份有限公司 光電轉換器
TWI553367B (zh) * 2011-12-21 2016-10-11 鴻海精密工業股份有限公司 光電轉換器
JP6131858B2 (ja) * 2011-12-28 2017-05-24 住友電気工業株式会社 光モジュール
US9377594B2 (en) * 2011-12-29 2016-06-28 Intel Corporation Two-dimensional, high-density optical connector
US9507086B2 (en) 2011-12-30 2016-11-29 Intel Corporation Optical I/O system using planar light-wave integrated circuit
JP5889040B2 (ja) * 2012-02-28 2016-03-22 古河電気工業株式会社 光モジュール搭載回路基板、光モジュール搭載システム、光モジュール評価キットシステム、および通信システム
TWI578051B (zh) * 2013-03-07 2017-04-11 鴻海精密工業股份有限公司 光連接器
TWI561877B (en) * 2012-03-23 2016-12-11 Hon Hai Prec Ind Co Ltd Photoelectric transmitting module and optical fiber connector thereof
CN103364890B (zh) * 2012-03-26 2016-12-21 鸿富锦精密工业(深圳)有限公司 光电转换模块及光纤连接器
TW201346371A (zh) * 2012-05-04 2013-11-16 Hon Hai Prec Ind Co Ltd 光纖耦合連接器及其製造方法
CN103424812A (zh) * 2012-05-16 2013-12-04 鸿富锦精密工业(深圳)有限公司 光纤连接器
WO2014030563A1 (fr) * 2012-08-23 2014-02-27 株式会社村田製作所 Réceptacle, et module de transmission par fibre optique
JP6083437B2 (ja) * 2012-08-23 2017-02-22 株式会社村田製作所 位置決め部材、レセプタクル及び光伝送モジュール
JP5966201B2 (ja) * 2012-08-23 2016-08-10 株式会社村田製作所 光伝送モジュール
TWI483024B (zh) * 2012-08-23 2015-05-01 Murata Manufacturing Co The manufacturing method of the socket
JP2014041312A (ja) * 2012-08-24 2014-03-06 Alps Electric Co Ltd 光モジュール
JP5959366B2 (ja) * 2012-08-24 2016-08-02 アルプス電気株式会社 光学素子
TW201409104A (zh) * 2012-08-28 2014-03-01 Hon Hai Prec Ind Co Ltd 光纖連接器
TWI461775B (zh) * 2012-09-26 2014-11-21 Delta Electronics Inc 光通訊模組及其耦光組接方法
JP5737254B2 (ja) 2012-09-26 2015-06-17 日立金属株式会社 光通信モジュール
US20140086533A1 (en) * 2012-09-27 2014-03-27 Ezra GOLD Method for alignment between two optical components
TWI460484B (zh) * 2012-10-05 2014-11-11 Sintai Optical Shenzhen Co Ltd Optical coupling device (2)
TWI560482B (en) * 2012-11-23 2016-12-01 Hon Hai Prec Ind Co Ltd Photoelectric conversion device
TWI565998B (zh) * 2012-11-28 2017-01-11 鴻海精密工業股份有限公司 光電轉換裝置
TW201421077A (zh) * 2012-11-30 2014-06-01 Hon Hai Prec Ind Co Ltd 透鏡單元及光纖耦合連接器
US9140866B2 (en) * 2012-12-03 2015-09-22 Finisar Corporation Optical component arrays in optical connectors
KR20140079540A (ko) * 2012-12-14 2014-06-27 한국전자통신연구원 파장 분할 다중화 방식을 이용한 광수신 모듈
TWI565989B (zh) * 2012-12-14 2017-01-11 鴻海精密工業股份有限公司 光纖連接器
TWI575257B (zh) * 2012-12-17 2017-03-21 鴻海精密工業股份有限公司 光學耦合透鏡以及光學通訊模組
CN103885126B (zh) * 2012-12-19 2017-02-08 鸿富锦精密工业(深圳)有限公司 光纤连接器
TWI599807B (zh) * 2012-12-19 2017-09-21 鴻海精密工業股份有限公司 光纖連接器
TWI561879B (en) * 2012-12-26 2016-12-11 Hon Hai Prec Ind Co Ltd Optical to electrical coverter
JP2014137410A (ja) * 2013-01-15 2014-07-28 Furukawa Electric Co Ltd:The 光モジュール、光モジュールの製造方法
CN103926660A (zh) * 2013-01-15 2014-07-16 鸿富锦精密工业(深圳)有限公司 光耦合透镜
TWI572927B (zh) * 2013-01-17 2017-03-01 鴻海精密工業股份有限公司 光通訊模組
TWI578046B (zh) * 2013-01-17 2017-04-11 鴻海精密工業股份有限公司 光電轉換裝置及光纖耦合連接器
US20150331212A1 (en) * 2013-01-31 2015-11-19 Ccs Technology, Inc. Method for forming optoelectronic modules connectable to optical fibers and optoelectronic module connectable to at least one optical fiber
JP6036463B2 (ja) * 2013-03-26 2016-11-30 日立金属株式会社 光モジュール、光通信機器、および光伝送装置
TWI468760B (zh) * 2013-04-01 2015-01-11 Delta Electronics Inc 光學模組及光收發模組
TWI572929B (zh) * 2013-04-30 2017-03-01 鴻海精密工業股份有限公司 光學傳輸接頭
WO2015001681A1 (fr) 2013-07-05 2015-01-08 古河電気工業株式会社 Module optique, procédé de montage de ce module optique, substrat de circuit pourvu d'un module optique monté, système kit d'évaluation de module optique, substrat de circuit et système de communication
CN103513348B (zh) * 2013-09-23 2015-09-16 武汉光迅科技股份有限公司 光波导芯片和pd阵列透镜耦合装置
TW201516503A (zh) * 2013-10-25 2015-05-01 Hon Hai Prec Ind Co Ltd 光學裝置
CN104570233A (zh) * 2013-10-29 2015-04-29 鸿富锦精密工业(深圳)有限公司 光学装置
JP6357320B2 (ja) * 2014-02-21 2018-07-11 株式会社エンプラス 光レセプタクルおよび光モジュール
JP6245071B2 (ja) * 2014-05-23 2017-12-13 日立金属株式会社 光伝送モジュール
US9261660B2 (en) * 2014-07-09 2016-02-16 Hon Hai Precision Industry Co., Ltd. Optical coupling lens, optical communiction device, and method for assembling same
US9179541B1 (en) 2014-07-10 2015-11-03 International Business Machines Corporation Surface-mount connector structure for embedded optical and electrical traces
TWI617852B (zh) * 2014-10-16 2018-03-11 英屬開曼群島商鴻騰精密科技股份有限公司 光電轉換裝置
JP2016126034A (ja) * 2014-12-26 2016-07-11 日立金属株式会社 レンズホルダ及びそれを備えた光通信モジュール
US9939598B2 (en) * 2015-01-16 2018-04-10 Us Conec, Ltd. Fiber optic connector assembly, apparatus for forming a transceiver interface, and ferrule
WO2016121177A1 (fr) * 2015-01-30 2016-08-04 株式会社村田製作所 Socle, ensemble connecteur, et procédé de fabrication de socle
JP6460130B2 (ja) * 2015-01-30 2019-01-30 株式会社村田製作所 コネクタ及びコネクタセット
JP6621241B2 (ja) * 2015-02-02 2019-12-18 株式会社エンプラス 光モジュール
EP3265861A1 (fr) * 2015-03-05 2018-01-10 Corning Optical Communications LLC Dispositif connecteur pour connecter au moins une pièce d'extrémité de fibre optique à une borne de connexion électrique
US20160266340A1 (en) * 2015-03-10 2016-09-15 Finisar Corporation Latching and emi shielding mechanism for an optical module
WO2016148896A1 (fr) * 2015-03-19 2016-09-22 Corning Optical Communications LLC Dispositif connecteur permettant de connecter au moins une extrémité de fibre optique et procédé de fabrication
US10226838B2 (en) * 2015-04-03 2019-03-12 Kabushiki Kaisha Toshiba Laser light irradiation apparatus and laser peening treatment method
JP2017062342A (ja) * 2015-09-24 2017-03-30 富士通コンポーネント株式会社 光モジュール及びその製造方法
US9581776B1 (en) * 2015-11-02 2017-02-28 Aquaoptics Corp. Photoelectric conversion module
US9606305B1 (en) * 2015-11-05 2017-03-28 Sae Magnetics (H.K.) Ltd. Optical engine for data communication
CN105334580B (zh) * 2015-11-26 2019-01-25 武汉光迅科技股份有限公司 一种波分复用光接收组件
JP2018091946A (ja) * 2016-12-01 2018-06-14 日本航空電子工業株式会社 光モジュール
JP2017142325A (ja) * 2016-02-09 2017-08-17 住友電気工業株式会社 光学デバイス、光処理デバイス、及び光学デバイスを作製する方法
JP6649158B2 (ja) 2016-03-30 2020-02-19 株式会社エンプラス 光レセプタクル、光モジュールおよび光モジュールの製造方法
JPWO2017175279A1 (ja) * 2016-04-04 2019-02-28 オリンパス株式会社 内視鏡光源装置と内視鏡と内視鏡システム
JP6599285B2 (ja) * 2016-06-07 2019-10-30 三菱重工業株式会社 光学センサ
US10088639B2 (en) * 2016-06-28 2018-10-02 Mellanox Technologies, Ltd. Opto-mechanical coupler
US10345542B2 (en) * 2016-06-28 2019-07-09 Mellanox Technologies, Ltd. Opto-mechanical coupler
IT201600105881A1 (it) * 2016-10-20 2018-04-20 St Microelectronics Srl Sistema di accoppiamento ottico, dispositivo e procedimento corrispondenti
JP2018087869A (ja) 2016-11-28 2018-06-07 株式会社エンプラス 光モジュールおよび光モジュールの製造方法
JP2018091888A (ja) * 2016-11-30 2018-06-14 株式会社エンプラス 光レセプタクル、光モジュールおよび光モジュールの製造方法
JP2018097032A (ja) * 2016-12-08 2018-06-21 株式会社エンプラス 光レセプタクル、光モジュールおよび光モジュールの製造方法
JP2018097146A (ja) 2016-12-13 2018-06-21 株式会社エンプラス 光レセプタクル、光モジュールおよび光モジュールの製造方法
TWI647501B (zh) * 2016-12-13 2019-01-11 峰川光電股份有限公司 主動光纜之製造方法
CN106597614A (zh) * 2016-12-15 2017-04-26 武汉联特科技有限公司 单光口多路并行光接收耦合系统组件封装装置及其系统
KR102335733B1 (ko) * 2017-06-21 2021-12-03 엘에스엠트론 주식회사 광정렬 구조를 갖는 광커넥터
US10459179B2 (en) 2017-10-04 2019-10-29 Prime World International Holdings Ltd. Optical transceiver and optical lens thereof
US10151891B1 (en) * 2017-10-24 2018-12-11 Prime World International Holdings Ltd. Optical transceiver
US11495899B2 (en) 2017-11-14 2022-11-08 Samtec, Inc. Data communication system
JP7150449B2 (ja) * 2018-03-09 2022-10-11 株式会社エンプラス 光レセプタクルおよび光モジュール
US11287585B2 (en) * 2020-03-11 2022-03-29 Nubis Communications, Inc. Optical fiber-to-chip interconnection
WO2021232716A1 (fr) * 2020-05-22 2021-11-25 青岛海信宽带多媒体技术有限公司 Module optique
JP2022050209A (ja) * 2020-09-17 2022-03-30 住友電気工業株式会社 光モジュール及び光コネクタケーブル
CN114205990B (zh) * 2020-09-17 2024-03-22 深南电路股份有限公司 线路板及其制备方法
US20220196931A1 (en) * 2020-12-22 2022-06-23 Intel Corporation Micro-lens array optically coupled with a photonics die
US11982848B2 (en) 2021-03-11 2024-05-14 Nubis Communications, Inc. Optical fiber-to-chip interconnection
JP2023117101A (ja) * 2022-02-10 2023-08-23 株式会社エンプラス 光コネクター、光モジュール、および光コネクターの評価方法

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3871935A (en) * 1974-03-14 1975-03-18 Bell Telephone Labor Inc Method of encapsulating and terminating the fibers of an optical fiber ribbon
US4666238A (en) * 1985-01-07 1987-05-19 Itt Corporation Optical fiber alignment and retention device
JPS6356617A (ja) * 1986-08-27 1988-03-11 Nippon Telegr & Teleph Corp <Ntt> 光フアイバコネクタ
US4732599A (en) * 1984-04-06 1988-03-22 Plessey Overseas Limited Method for manufacture of optical devices
US4971422A (en) * 1987-04-09 1990-11-20 Alcatel N.V. Multiway connector for optical waveguides
US5168537A (en) * 1991-06-28 1992-12-01 Digital Equipment Corporation Method and apparatus for coupling light between an optoelectronic device and a waveguide
US5257334A (en) * 1991-09-24 1993-10-26 Seikoh Giken Co., Ltd. Ribbon type optical fiber connector
JPH05297245A (ja) * 1992-04-16 1993-11-12 Hitachi Ltd 多芯光コネクタ
US5369529A (en) * 1993-07-19 1994-11-29 Motorola, Inc. Reflective optoelectronic interface device and method of making
EP0637765A2 (fr) * 1993-08-03 1995-02-08 International Business Machines Corporation Prises enfichables encastrées dans un substrat pour connecter un faisceau de câbles optiques à un module
DE19510559C1 (de) * 1995-03-23 1996-07-25 Bosch Gmbh Robert Optische Sende- und Empfangsanordnung
DE19519486A1 (de) * 1995-05-27 1996-11-28 Bosch Gmbh Robert Optische Sende- und Empfangsanordnung
US5708743A (en) * 1993-02-23 1998-01-13 The Whitaker Corporation Light bending devices
JPH1010374A (ja) * 1996-06-25 1998-01-16 Sony Corp 受発光機構素子および光通信素子とその製造方法
US5764832A (en) * 1993-03-24 1998-06-09 Fujitsu Limited Integrated semiconductor optical devices and method of manufacture employing substrate having alignment groove
WO1999040578A1 (fr) * 1998-02-05 1999-08-12 Digital Optics Corporation Dispositif optique integre dirigeant des faisceaux separes sur un detecteur et procedes associes
US6012852A (en) * 1996-12-18 2000-01-11 The Whitaker Corporation Expanded beam fiber optic connector
DE19910164A1 (de) * 1999-02-24 2000-09-14 Siemens Ag Elektrooptisches Modul
US6128134A (en) * 1997-08-27 2000-10-03 Digital Optics Corporation Integrated beam shaper and use thereof
WO2001027676A1 (fr) * 1999-10-14 2001-04-19 Digital Optics Corporation Sous-ensemble optique
WO2001033262A2 (fr) * 1999-11-05 2001-05-10 Digital Optics Corporation Integration de reseau d'elements optiques de forme non lineaire avec un reseau de fibres dans une structure et procede s'y rapportant
EP1109041A1 (fr) * 1999-12-16 2001-06-20 Japan Aviation Electronics Industry, Limited Module à dispositif optique
US6318902B1 (en) * 1996-03-12 2001-11-20 3M Innovative Properties Company Optical connector assembly using partial large diameter alignment features
US20020001428A1 (en) * 2000-06-28 2002-01-03 Karl Schroedinger Optomodule and connection configuration
US20020150354A1 (en) * 2001-03-29 2002-10-17 Brett Zaborsky High frequency emmitter and detector packaging scheme for 10GB/S transceiver
US6488417B2 (en) * 1999-12-07 2002-12-03 Infineon Technologies Ag Opto-electronic assembly having an integrated imaging system
JP2003014987A (ja) * 2001-06-28 2003-01-15 Kyocera Corp 光路変換体及びその実装構造並びに光モジュール

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2659909B2 (ja) 1994-04-28 1997-09-30 古河電気工業株式会社 光多芯プラスチックコネクタ
DE19641393A1 (de) * 1996-08-28 1998-06-10 Siemens Ag Elektrooptisches Modul
JPH10153720A (ja) * 1996-11-25 1998-06-09 Sony Corp 光送受信装置
DE10001875C2 (de) * 2000-01-18 2002-01-24 Infineon Technologies Ag Optisches Sende-/Empfangsmodul mit internem Lichtwellenleiter
US6477303B1 (en) * 2000-05-15 2002-11-05 Litton Systems, Inc. MEMS optical backplane interface
US6556747B2 (en) * 2001-02-09 2003-04-29 Lightmatrix Technologies, Inc. Chemical mill method and structure formed thereby
WO2002075785A2 (fr) * 2001-03-16 2002-09-26 Peregrine Semiconductor Corporation Dispositifs optiques et optoelectroniques couples, et procede de fabrication de ceux-ci
JP2003207694A (ja) * 2002-01-15 2003-07-25 Nec Corp 光モジュール
US6846113B2 (en) * 2002-05-17 2005-01-25 Archcom Technology, Inc. Packaging for high power pump laser modules
DE10238741A1 (de) * 2002-08-19 2004-03-04 Infineon Technologies Ag Planare optische Komponente und Kopplungsvorrichtung zur Kopplung von Licht zwischen einer planaren optischen Komponente und einem optischen Bauteil

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3871935A (en) * 1974-03-14 1975-03-18 Bell Telephone Labor Inc Method of encapsulating and terminating the fibers of an optical fiber ribbon
US4732599A (en) * 1984-04-06 1988-03-22 Plessey Overseas Limited Method for manufacture of optical devices
US4666238A (en) * 1985-01-07 1987-05-19 Itt Corporation Optical fiber alignment and retention device
JPS6356617A (ja) * 1986-08-27 1988-03-11 Nippon Telegr & Teleph Corp <Ntt> 光フアイバコネクタ
US4971422A (en) * 1987-04-09 1990-11-20 Alcatel N.V. Multiway connector for optical waveguides
US5168537A (en) * 1991-06-28 1992-12-01 Digital Equipment Corporation Method and apparatus for coupling light between an optoelectronic device and a waveguide
US5257334A (en) * 1991-09-24 1993-10-26 Seikoh Giken Co., Ltd. Ribbon type optical fiber connector
JPH05297245A (ja) * 1992-04-16 1993-11-12 Hitachi Ltd 多芯光コネクタ
US5708743A (en) * 1993-02-23 1998-01-13 The Whitaker Corporation Light bending devices
US5764832A (en) * 1993-03-24 1998-06-09 Fujitsu Limited Integrated semiconductor optical devices and method of manufacture employing substrate having alignment groove
US5369529A (en) * 1993-07-19 1994-11-29 Motorola, Inc. Reflective optoelectronic interface device and method of making
EP0637765A2 (fr) * 1993-08-03 1995-02-08 International Business Machines Corporation Prises enfichables encastrées dans un substrat pour connecter un faisceau de câbles optiques à un module
DE19510559C1 (de) * 1995-03-23 1996-07-25 Bosch Gmbh Robert Optische Sende- und Empfangsanordnung
DE19519486A1 (de) * 1995-05-27 1996-11-28 Bosch Gmbh Robert Optische Sende- und Empfangsanordnung
US6318902B1 (en) * 1996-03-12 2001-11-20 3M Innovative Properties Company Optical connector assembly using partial large diameter alignment features
JPH1010374A (ja) * 1996-06-25 1998-01-16 Sony Corp 受発光機構素子および光通信素子とその製造方法
US6012852A (en) * 1996-12-18 2000-01-11 The Whitaker Corporation Expanded beam fiber optic connector
US6128134A (en) * 1997-08-27 2000-10-03 Digital Optics Corporation Integrated beam shaper and use thereof
WO1999040578A1 (fr) * 1998-02-05 1999-08-12 Digital Optics Corporation Dispositif optique integre dirigeant des faisceaux separes sur un detecteur et procedes associes
DE19910164A1 (de) * 1999-02-24 2000-09-14 Siemens Ag Elektrooptisches Modul
WO2001027676A1 (fr) * 1999-10-14 2001-04-19 Digital Optics Corporation Sous-ensemble optique
WO2001033262A2 (fr) * 1999-11-05 2001-05-10 Digital Optics Corporation Integration de reseau d'elements optiques de forme non lineaire avec un reseau de fibres dans une structure et procede s'y rapportant
US6488417B2 (en) * 1999-12-07 2002-12-03 Infineon Technologies Ag Opto-electronic assembly having an integrated imaging system
EP1109041A1 (fr) * 1999-12-16 2001-06-20 Japan Aviation Electronics Industry, Limited Module à dispositif optique
US20020001428A1 (en) * 2000-06-28 2002-01-03 Karl Schroedinger Optomodule and connection configuration
US20020150354A1 (en) * 2001-03-29 2002-10-17 Brett Zaborsky High frequency emmitter and detector packaging scheme for 10GB/S transceiver
JP2003014987A (ja) * 2001-06-28 2003-01-15 Kyocera Corp 光路変換体及びその実装構造並びに光モジュール

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 012, no. 276 (P-737), 30 July 1988 (1988-07-30) -& JP 63 056617 A (NIPPON TELEGR & TELEPH CORP <NTT>), 11 March 1988 (1988-03-11) *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 092 (P-1693), 15 February 1994 (1994-02-15) -& JP 05 297245 A (HITACHI LTD), 12 November 1993 (1993-11-12) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 05, 30 April 1998 (1998-04-30) -& JP 10 010374 A (SONY CORP), 16 January 1998 (1998-01-16) *
PATENT ABSTRACTS OF JAPAN vol. 2003, no. 05, 12 May 2003 (2003-05-12) -& JP 2003 014987 A (KYOCERA CORP), 15 January 2003 (2003-01-15) *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1913256B (zh) * 2005-06-27 2011-05-04 英特尔公司 电-光通信系统
WO2007002629A1 (fr) * 2005-06-27 2007-01-04 Intel Corporation Systeme de communication electro-optique
FR2921730A1 (fr) * 2007-10-02 2009-04-03 Intexys Sa Sous-ensemble optoelectronique et procede d'assemblage de ce sous-ensemble
US8977080B2 (en) * 2008-10-09 2015-03-10 Cube Optics Ag Compact multiplexer/demultiplexer
WO2010040726A1 (fr) * 2008-10-09 2010-04-15 Cube Optics Ag Multiplexeur/demultiplexeur compact
US20110222859A1 (en) * 2008-10-09 2011-09-15 Cube Optics Ag Compact Multiplexer/Demultiplexer
US20110222817A1 (en) * 2008-10-09 2011-09-15 Cube Optics Ag Compact Multiplexer/Demultiplexer
US8532444B2 (en) * 2008-10-09 2013-09-10 Cube Optics Ag Compact multiplexer/demultiplexer
EP2428828A1 (fr) * 2010-09-13 2012-03-14 Tyco Electronics Svenska Holdings AB Module optique haute vitesse miniaturisé
US8867869B2 (en) 2010-09-13 2014-10-21 Tyco Electronics Svenska Holdings Ab Miniaturized high speed optical module
WO2012035428A1 (fr) * 2010-09-14 2012-03-22 Fci Dispositif de couplage optique, systèmes optiques et procédés d'assemblage
US9261651B2 (en) 2010-12-07 2016-02-16 Corning Optical Communications LLC Ferrule assemblies, connector assemblies, and optical couplings having coded magnetic arrays
US9151900B2 (en) 2010-12-07 2015-10-06 Corning Optical Communications LLC Optical couplings having coded magnetic arrays and devices incorporating the same
US10114177B2 (en) 2011-09-13 2018-10-30 Corning Optical Communications LLC Translating lens holder assemblies employing bore relief zones, and optical connectors incorporating the same
WO2013081909A1 (fr) * 2011-11-28 2013-06-06 Corning Cable Systems Llc Couplages optiques comprenant un réseau magnétique codé, et systèmes de connecteurs et dispositifs électroniques les comprenant
US9547139B2 (en) 2011-11-28 2017-01-17 Corning Optical Communications LLC Optical couplings having a coded magnetic array, and connector assemblies and electronic devices having the same
US8734024B2 (en) 2011-11-28 2014-05-27 Corning Cable Systems Llc Optical couplings having a coded magnetic array, and connector assemblies and electronic devices having the same
WO2013086117A3 (fr) * 2011-12-09 2013-08-15 Corning Cable Systems Llc Porte-lentilles à gradient d'indice (grin) utilisant une ou plusieurs caractéristiques d'alignement par rainures dans un couvercle à renfoncement et des éléments en une seule pièce, connecteurs et procédés
US9753235B2 (en) 2011-12-09 2017-09-05 Corning Optical Communications LLC Gradient index (GRIN) lens holders employing groove alignment feature(s) and total internal reflection (TIR) surface, and related components, connectors, and methods
US9645329B2 (en) 2011-12-09 2017-05-09 Corning Optical Communications LLC Gradient index (GRIN) lens holders employing groove alignment feature(s) in recessed cover and single piece components, connectors, and methods
CN104220915A (zh) * 2012-03-02 2014-12-17 泰科电子公司 模块化的内插器
CN104220915B (zh) * 2012-03-02 2016-10-19 泰科电子公司 模块化的内插器
US9417408B2 (en) 2012-03-02 2016-08-16 Tyco Electronics Corporation Modularized interposer
WO2013130949A1 (fr) * 2012-03-02 2013-09-06 Tyco Electronics Corporation Interposeur modulaire
TWI578049B (zh) * 2012-09-14 2017-04-11 鴻海精密工業股份有限公司 光電耦合模組
US10191228B2 (en) 2014-09-23 2019-01-29 Corning Optical Communications LLC Optical connectors and complimentary optical receptacles having magnetic attachment
US10481349B2 (en) 2015-10-20 2019-11-19 Sony Corporation Optical path conversion device, optical interface apparatus, and optical transmission system
EP3163342A1 (fr) * 2015-11-02 2017-05-03 Aquaoptics Corp. Module de conversion photoélectrique
WO2019152612A1 (fr) * 2018-02-05 2019-08-08 Inneos, Llc Coupleur optique multicanal
JP2021513121A (ja) * 2018-02-05 2021-05-20 イネオス, エル・エル・シーInneos, LLC マルチチャネル光結合器
US11624879B2 (en) 2018-02-05 2023-04-11 Inneos, Llc Multi-channel optical coupler

Also Published As

Publication number Publication date
US7118293B2 (en) 2006-10-10
CN1523391A (zh) 2004-08-25
JP2004246279A (ja) 2004-09-02
EP1447695B1 (fr) 2009-04-29
EP1447695A3 (fr) 2005-04-20
US20040202477A1 (en) 2004-10-14
DE602004020816D1 (de) 2009-06-10
CN100410710C (zh) 2008-08-13

Similar Documents

Publication Publication Date Title
EP1447695B1 (fr) Module optique ayant élément de prise optique pour faciliter la communication optique et procédé de fabrication
US6504107B1 (en) Electro-optic module and method for the production thereof
US8641299B2 (en) Optical connector
TW392078B (en) Stubless optoelectronic device receptacle
JP2006023777A (ja) 光モジュール、光通信装置、光電気混載集積回路、回路基板、電子機器
US5446814A (en) Molded reflective optical waveguide
US6729771B2 (en) Parallel optics subassembly having at least twelve lenses
US6739766B2 (en) Lens array for use in parallel optics modules for fiber optics communications
US9477038B2 (en) Photoelectric composite wiring module
US7389015B1 (en) Mechanically decoupled opto-mechanical connector for flexible optical waveguides embedded and/or attached to a printed circuit board
US20060104576A1 (en) Connection structure for optical device, optical device and electronic device
US20080277571A1 (en) Optoelectronic component
EP2259113A1 (fr) Connecteur de montage de surface pour des réseaux comprenant des VCSEL et des photodiodes
JP2007271998A (ja) 光コネクタ及び光モジュール
JP2001324631A (ja) 基板、光ファイバ接続端部材、光素子ハウジング部材、光モジュール及び基板の製造方法
US5539200A (en) Integrated optoelectronic substrate
JP2004354532A (ja) 光モジュール及びその製造方法、光通信装置、電子機器
US6685363B2 (en) Passive self-alignment technique for array laser transmitters and receivers for fiber optic applications
US8940563B2 (en) Method for manufacturing optoelectronic module
US20130195470A1 (en) Optical module, optical transmission device and method of manufacturing optical transmission device
EP1930758A1 (fr) Cable optique et sous-ensemble d&#39;emission/reception
US6491446B1 (en) Passive self-alignment technique for array laser transmitters and receivers for fiber optic applications
JP4699262B2 (ja) 光導波路コネクタ及びそれを用いた光接続構造、並びに光導波路コネクタの製造方法
JP2006047682A (ja) 基板および光素子相互接続用基板
JP2008139492A (ja) 光モジュール

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20051013

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20060216

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602004020816

Country of ref document: DE

Date of ref document: 20090610

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100201

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190213

Year of fee payment: 16

Ref country code: DE

Payment date: 20190205

Year of fee payment: 16

Ref country code: FR

Payment date: 20190111

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004020816

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200901

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200217