EP1192652A1 - Vefahren zur herstellung einer nichtflüchtigen halbleiter-speicherzelle mit separatem tunnelfenster - Google Patents

Vefahren zur herstellung einer nichtflüchtigen halbleiter-speicherzelle mit separatem tunnelfenster

Info

Publication number
EP1192652A1
EP1192652A1 EP00943661A EP00943661A EP1192652A1 EP 1192652 A1 EP1192652 A1 EP 1192652A1 EP 00943661 A EP00943661 A EP 00943661A EP 00943661 A EP00943661 A EP 00943661A EP 1192652 A1 EP1192652 A1 EP 1192652A1
Authority
EP
European Patent Office
Prior art keywords
tunnel
layer
memory cell
implantation
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00943661A
Other languages
English (en)
French (fr)
Inventor
Peter Wawer
Oliver Springmann
Konrad Wolf
Olaf Heitzsch
Kai Huckels
Reinhold Rennekamp
Mayk Röhrich
Elard Stein Von Kamienski
Christoph Kutter
Christoph Ludwig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of EP1192652A1 publication Critical patent/EP1192652A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66825Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • H01L29/7883Programmable transistors with only two possible levels of programmation charging by tunnelling of carriers, e.g. Fowler-Nordheim tunnelling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a method for producing a non-volatile semiconductor memory cell with a separate tunnel window and in particular to a method for producing an EEPROM cell with a small footprint and a high number of programming / Losch cycles.
  • Rewritable non-volatile semiconductor memory cells are becoming increasingly important in highly integrated circuits because, for example, they can store changeable data in chip cards over a long period of time and without using a power supply.
  • FIG. 5 shows a sectional view of a conventional EEPROM memory cell SZ, which essentially consists of a tunnel window cell TF and a transistor memory cell TZ.
  • the transistor memory cell TZ consists of a relatively thick gate layer 3 which is insensitive to leakage currents, a floating gate layer 5 arranged above it, a dielectric layer 6 and a control electrode layer 7.
  • a layer in the floating gate layer 5 brought charge determines the switching behavior of the corresponding field effect transistor, which is controlled via source / dram regions 1 and the control electrode layer 7.
  • the memory cell has the tunnel window cell TF, which has essentially the same layer sequence as the transistor memory cell TZ, but with an insulating layer between a semiconductor substrate 100 and the float tmg gate layer 5 consists of a very thin tunnel layer 4.
  • this conventional EEPROM memory cell SZ In the production of this conventional EEPROM memory cell SZ, an ion implantation is first carried out in the region of the tunnel window cell TF to form a homogeneous tunnel area 2 '. Then the insulating tunnel layer 4 or gate layer 3 as well as the floating gate layer 5, dielectric layer 6 and the control electrode layer 7 are applied. Finally, the source / dram regions 1 are formed in a self-adjusting manner using the memory cell SZ as a mask in the semiconductor substrate 100 by means of one (or more) further ion implantation. In this way, an extremely high-quality rewritable non-volatile semiconductor memory cell is obtained, which is a very good one
  • the “Endurance” indicates the number of programming / losch cycles and is usually about 10 cycles in such conventional EEPROMs.
  • FIG. 6 shows a sectional view of a conventional FLASH-EPROM memory cell, a tunnel oxide layer 4, a floating gate layer 5, a dielectric layer 6 and a control electrode layer 7 being applied in stacks on a semiconductor substrate 100.
  • implantation areas 2 are formed in the semiconductor substrate 100 using the stack-shaped memory cell in a self-adjusting manner.
  • source / dram regions 1 are introduced using the memory cell and additional auxiliary layers or spacers 8 m, the semiconductor substrate 100 itself.
  • this type of non-volatile memory cell has a major disadvantage in that its “endurance”, ie the number of programming / erasing cycles, is significantly less than that of the conventional EEPROM memory cell Figure 4.
  • the endurance of these FLASH-EPROM memory cells is approximately 10 3 cycles.
  • US Pat. No. 5,565,371 describes a method for producing a non-volatile semiconductor Memory cell with a separate tunnel window is known, in which the transistor memory cell is programmed by injecting hot charge carriers and the transistor memory cell is erased using Fowler-Nordheim tunnels.
  • the extremely high space requirement and the introduction of a large number of non-standardized manufacturing processes are disadvantageous here. A combination of this method with conventional methods is therefore not possible.
  • the invention is therefore based on the object of creating a method for producing a non-volatile semiconductor memory cell with a separate tunnel window which, using standard processes, reduces the space requirement of the memory cell and at the same time improves the “endurance”.
  • a non-volatile semiconductor memory cell can be produced which has an endurance, i.e. Programming / erasing cycles equivalent to a conventional EEPROM cell, but significantly improved in terms of space requirements.
  • a memory cell produced in this way can be easily implemented with conventional FLASH-EPROM memory cells using standard processes in a common integrated circuit.
  • the threshold voltages (programming / erasing / reading voltages) can be the same for a wide variety of non-volatile semiconductor memory cell shapes.
  • the tunnel regions are preferably designed to be self-aligning using at least one layer of the tunnel window cell by means of implantation. Especially at In this way, highly integrated circuits with structure sizes of ⁇ 1 ⁇ m can be manufactured easily and reliably.
  • the implantation can take place vertically and / or obliquely under the tunnel layer, with implantation areas touching completely below the tunnel layer or being formed so close to one another that their space charge zones carry out a so-called punch-through effect when an operating voltage is applied. In this way, a very homogeneous tunnel area is obtained below the tunnel layer, which is comparable to a previously implanted tunnel area, which is why uniform field strengths occur during programming / deletion and the "endurance" is improved.
  • a floating gate connection area and a control electrode connection area are formed simultaneously with the associated floating gate layers and control electrode layers of the tunnel window cell and the transistor memory cell, thereby ensuring a further simplification of the manufacturing process.
  • Figure 1 is a sectional view of a non-volatile semiconductor memory cell with a separate tunnel window according to a first embodiment
  • Figure 2 is an enlarged sectional view of a tunnel window cell shown in Figure 1 according to the first
  • Figure 3 is an enlarged sectional view of a tunnel window cell according to a second embodiment
  • FIG. 4 shows an enlarged sectional view of a tunnel window cell according to a third exemplary embodiment
  • FIG. 5 shows a sectional view of an EEPROM memory cell according to the prior art
  • Figure 6 is a sectional view of a FLASH EPROM memory cell according to the prior art.
  • FIG. 1 shows a schematic sectional view of a non-volatile semiconductor memory cell with a separate tunnel window according to a first exemplary embodiment.
  • the same reference numerals designate the same or similar layers or components as in FIGS. 5 and 6, which is why a detailed description is not given below.
  • Transistor memory cell TZ Transistor memory cell TZ, a tunnel window cell TF and a connection area VB formed.
  • the transistor memory cell TZ, the connection region VB and the tunnel window cell TF represent an actual memory cell SZ.
  • the semiconductor substrate 100 is preferably made of Si, but it can also have a III-V compound semiconductor or another semiconductor substrate.
  • the memory cell SZ can be implemented, for example, as a PMOS cell, as an NMOS cell or as a CMOS cell in the semiconductor substrate 100, corresponding p and / or n wells being provided.
  • the transistor memory cell TZ consists of an insulating gate layer 3, such as. B. thermally trained Si0 2 .
  • a conductive floating gate layer 5 (poly-Si) for storing charges is located above the gate layer 3.
  • a charged area below the gate layer 3 becomes conductive or non-conductive, whereby the logic information 0 or 1 can be read out when the memory cell SZ is read.
  • a control electrode layer 7 is provided which is insulated from the floating gate layer 5 by a dielectric layer 6. In this way, the charge held in the floating gate layer 5 can neither flow into the semiconductor substrate 100 nor into the control electrode layer 7.
  • a tunnel window cell TF is located at a distance from the transistor memory cell TZ -Tunnels serves.
  • the tunnel window cell TF preferably consists of the same layers as the transistor memory cell TZ, only one tunnel layer 4 having a thickness which is sufficiently small for tunneling.
  • the tunnel layer 4 preferably consists of a tunnel oxide layer such as SiO 2 .
  • An overlying tunnel window floating gate layer T5 preferably consists of the same material as the floating gate layer 5 of the transistor memory cell TZ and is insulated from the electrically conductive tunnel window control electrode layer T7 via a dielectric tunnel window layer T6.
  • the dielectric tunnel window layer T6 preferably consists of an ONO (oxide / nitride / oxide) layer sequence, although it can also consist of a further insulating dielectric layer.
  • the conductive tunnel window control electrode layer T7 and the conductive tunnel window floating gate layer T5, like the control electrode layer 7 and the floating gate layer 5, are preferably made of poly-Si, but can also consist of another conductive and / or charge-storing material.
  • the connection area VB usually consists of the same layer sequence as the transistor memory cell TZ or the tunnel window cell TF, with essentially the control electrode layer 7 via a control electrode connection area VB7 with the tunnel window control electrode layer T7 and the floating gate Layer 5 is connected via a floating gate connection area VB5 to the tunnel window floating gate layer T5.
  • the control electrode connection region 7 and the floating gate connection region 5 can, however, also be made via metallically conductive tracks and / or
  • Diffusion areas can be realized in the semiconductor substrate 100.
  • the tunnel window cell TF can in this case have a projection, a nose or some other geometric structure, in which preferably a bilateral implantation with a tunnel implantation I ⁇ is possible.
  • Gem ß Figure 1 is thus a tunnel region TG formed by a relatively late in the manufacturing process carried out tunnel implantation ⁇ I, preferably corresponding to a tunnel implantation at the same time produced FLASH-EPROM memory cells.
  • both the tunnel window cells TF of the memory cell SZ and tunnel window regions can be formed from FLASH-EPROM memory cells produced (not shown) in the same process.
  • the tunnel layer 4 of the memory cell SZ according to the invention is preferably formed in the same manufacturing step as a FLASH-EPROM memory cell (not shown), both memory cells have the same electrical programming / erasure properties, the space requirement being reduced and the “endurance” being improved , The method for producing the non-volatile semiconductor memory cell is described in detail below.
  • active regions are formed in the semiconductor substrate 100 using an STI process (shallow trench isolation) for the tunnel window cell TF and the transistor memory cell TZ.
  • the trenches formed in this way are preferably filled with a deposited SiO 2 layer and then planarized.
  • a LOCOS process can be used to isolate the active areas.
  • the gate layer 3 and the tunnel layer 4 are subsequently formed and structured accordingly in the active regions of the transistor memory cell TZ and the tunnel window cell TF.
  • the floating gate layer 5, the dielectric layer 6, and the control electrode layer 7 are then applied and structured in such a way that the sectional view shown in FIG. 1 results.
  • the STI layers are located in areas (not shown) of the memory cell SZ lying parallel to the sectional view shown.
  • the control electrode connection region VB7 and the floating gate connection region VB5 designate the corresponding layers in a (spatial) underlying cutting plane.
  • etching of the layers 3, 5, 6 and 7 or 4, T5, T ⁇ and T7 is subsequently carried out, as a result of which the stack-shaped cells TF and TZ shown in FIG. 1 result - ben.
  • an implantation area 2 is formed in a self-aligning manner next to the stack-shaped tunnel window cell TF, the tunnel area TG below the tunnel layer 4 being generated by scattering effects.
  • source / drain regions 1 are then self-aligned between the tunnel window cell TF and on both sides of the transistor Memory cell TZ formed.
  • the tunnel window cell TF can use, for example, an auxiliary layer (not shown) or a spacer.
  • the source / drain region 1 between the transistor memory cell TZ and the tunnel window cell TF here makes contact both with the tunnel window cell TF and with the transistor memory cell TZ and serves both for reading and for programming / erasing the memory cell SZ.
  • FIG. 2 shows an enlarged sectional view of the tunnel window cell TF shown in FIG. 1 during a tunnel implantation step.
  • the tunnel layer 4 there is a stacked arrangement of the tunnel layer 4, the tunnel window floating gate layer T5, the dielectric tunnel window layer T ⁇ and the tunnel window control electrode layer T7 on a semiconductor substrate 100.
  • the actual tunnel implantation I ⁇ takes place to form the tunnel region TG below the tunnel layer 4.
  • an implantation region 2 is formed on both sides in a self-adjusting manner using the stack-like tunnel window cell TF in such a way that touched below the tunnel layer 4 and thus forms a homogeneous tunnel area TG.
  • Such a formation of implantation areas 2 is possible in particular in the case of very small structure sizes below one ⁇ m, scattering effects being used during the implantation for the formation of the overlapping tunnel areas TG.
  • n-regions because it has a low penetration depth and a relatively high diffusion.
  • Ph and / or Sb can also be used for doping.
  • p-dopants can be used to form p-regions, provided that they have sufficient scatter beneath the tunnel layer 4 and thereby generate a sufficiently homogeneous tunnel region TG.
  • an oblique tunnel implantation I ⁇ s can also be carried out according to FIG.
  • the implantation taking place at an angle of approximately 5 to 8 degrees obliquely under the tunnel layer 4.
  • the implantation area 2 is completely formed from one side under the tunnel window cell TF acting as a mask in the semiconductor substrate 100. In this way, a homogeneous tunnel area TG can also be generated below the tunnel layer 4.
  • the tunnel implantation can also be carried out obliquely under the tunnel layer 4 from several sides (two).
  • the tunnel implantation I ⁇ can also be carried out in such a way that the respective implantation regions 2 formed in the semiconductor substrate 100 do not touch one another, but rather only extend partially under the tunnel layer 4.
  • the implantation areas 2 extend so far below the tunnel layer 4 that when an operating voltage (for example programming / erasing voltage of, for example, -10 volts / + 6 volts) is applied, the space charge zones RLZ of the implantation areas 2 touch, as a result of which a so-called "punch-through” occurs - Effect "occurs and again a homogeneous tunnel area is formed below the tunnel layer 4.
  • an improved" endurance ie the number of programming / erasing cycles.
  • the tunnel implantation I ⁇ is preferably carried out using the entire tunnel window cell TF as a mask.
  • the layers in the tunnel window cell can be used as a mask layer, or an additional mask layer in the form of a photoresist and / or a hard mask can be used.
  • the LDD- which are already present in standard processes are preferably Implantation (lightly doped dram) or MD implantation (matrix dram) is used.
  • another layer sequence can also be used (e.g. SONOX), provided that a rewritable non-volatile semiconductor memory cell is possible as a result.
  • SONOX a rewritable non-volatile semiconductor memory cell

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung einer nichtflüchtigen Halbleiter-Speicherzelle (SZ) mit separater Tunnelfenster-Zelle (TF), wobei ein Tunnelgebiet (TG) unter Verwendung der Tunnelfenster-Zelle (TF) als Maske in einem späten Implantationsschritt durch eine Tunnelimplantation (IT) ausgebildet wird. Dadurch erhält man eine Speicherzelle mit geringem Flächenbedarf und einer hohen Anzahl von Programmier/Lösch-Zyklen.

Description

Beschreibung
Verfahren zur Herstellung einer nichtfluchtigen Halbleiter- Speicherzelle mit separatem Tunnelfenster
Die vorliegende Erfindung bezieht sich auf ein Verfahren zur Herstellung einer nichtfluchtigen Halbleiter-Speicherzelle mit separatem Tunnelfenster und insbesondere auf ein Verfahren zur Herstellung einer EEPROM-Zelle mit geringem Flachen- bedarf und einer hohen Anzahl von Programmier/Losch-Zyklen.
Wiederbeschreibbare nichtfluchtige Halbleiter-Speicherzellen gewinnen in hochintegrierten Schaltungen zunehmend an Bedeutung, da sie beispielsweise in Chipkarten veränderbare Daten über einen langen Zeitraum und ohne Verwendung einer Spannungsversorgung speichern können.
Je nach Art der verwendeten nichtfluchtigen Halbleiter-Speicherzellen unterscheidet man grundsatzlich zwischen EEPROMs, EPROMs und FLASH-EPROM-Speichern.
Figur 5 zeigt eine Schnittansicht einer herkömmlichen EEPROM- Speicherzelle SZ, die im wesentlichen aus einer Tunnelfenster-Zelle TF und einer Transistor-Speicherzelle TZ besteht. Gemäß Figur 5 besteht die Transistor-Speicherzelle TZ aus einer relativ dicken und gegenüber Leckstromen unempfindlichen Gateschicht 3, einer darüber angeordneten Floatmg-Gate- Schicht 5, einer dielektrischen Schicht 6 und einer Steuerelektrodenschicht 7. Eine in der Floating-Gate-Schicht 5 em- gebrachte Ladung bestimmt hierbei das Schaltverhalten des entsprechenden Feldeffekttransistors, der über Source/Dram- Gebiete 1 und die Steuerelektrodenschicht 7 angesteuert wird. Zum Einbringen der Ladungen in die Floating-Gate-Schicht 5 besitzt die Speicherzelle die Tunnelfenster-Zelle TF, die im wesentlichen die gleiche Schichtfolge wie die Transistor- Speicherzelle TZ aufweist, wobei jedoch eine isolierende Schicht zwischen einem Halbleitersubstrat 100 und der Floa- tmg-Gate-Schicht 5 aus einer sehr dünnen Tunnelschicht 4 besteht .
Bei der Herstellung dieser herkömmlichen EEPROM-Speicherzelle SZ wird zunächst eine Ionenimplantation im Bereich der Tunnelfenster-Zelle TF zum Ausbilden eines homogenen Tunnelge- bietes 2' durchgeführt. Anschließend werden die isolierende Tunnelschicht 4 bzw. Gateschicht 3 sowie die Floating-Gate- Schicht 5, dielektrische Schicht 6 und die Steuerelektroden- schicht 7 aufgebracht. Abschließend werden durch eine (oder mehrere) weitere Ionenimplantation die Source/Dram-Gebiete 1 selbstjustierend unter Verwendung der Speicherzelle SZ als Maske im Halbleitersubstrat 100 ausgebildet. Auf diese Weise erhalt man eine äußerst hochwertige wiederbeschreibbare nichtfluchtige Halbleiter-Speicherzelle, die eine sehr gute
„Endurance" aufweist. Die „Endurance" gibt hierbei die Anzahl der Programmier/Losch-Zyklen an und liegt bei derartigen herkömmlichen EEPROMs üblicherweise bei ca. 10 Zyklen.
Nachteilig ist bei diesen herkömmlichen EEPROMs jedoch der hohe Flachenbedarf für die Speicherzelle SZ, weshalb sie n hochintegrierten Schaltungen nur bedingt zum Einsatz kommt.
Demgegenüber besitzen FLASH-EPROM-Speicherzellen einen außer- ordentlich geringen Flachenbedarf. Figur 6 zeigt eine Schnittansicht einer herkömmlichen FLASH-EPROM-Speicherzelle, wobei auf einem Halbleitersubstrat 100 eine Tunneloxidschicht 4, eine Floating-Gate-Schicht 5, eine dielektrische Schicht 6 und eine Steuerelektrodenschicht 7 stapelformig aufgebracht werden. Zum Ausbilden eines Tunneigebiets in einem Tunnelfen- sterbereich TF' der FLASH-EPROM-Speicherzelle werden unter Verwendung der stapelformigen Speicherzelle selbstjustierend Implantationsgebiete 2 im Halbleitersubstrat 100 ausgebildet. Anschließend werden Source/Dram-Gebiete 1 unter Verwendung der Speicherzelle und zusätzlicher Hilfsschichten bzw. Spacer 8 m das Halbleitersubstrat 100 selbst ustierend eingebracht. Bei dieser herkömmlichen FLASH-EPROM-Speicherzelle wird in ahnlicher Weise wie bei der vorstehend beschriebenen EEPROM- Speicherzelle Ladung durch beispielsweise Injektion heißer Ladungsträger und/oder Fowler-Nordheim-Tunneln im Tunnelfensterbereich TF' über die Tunnelschicht 4 m die Floating- Gate-Schicht 5 gebracht. Die so eingebrachten Ladungsträger bestimmen anschließend das Schaltverhalten eines Transistorzellenbereichs TZ' .
Trotz des wesentlich geringeren Flachenbedarfs dieser her- kommlichen FLASH-EPROM-Speicherzelle besitzt diese Art von nichtfluchtiger Speicherzelle einen wesentlichen Nachteil dahingehend, daß ihre „Endurance", d. h. Anzahl der Programmier/Losch-Zyklen wesentlich geringer ist als die der herkömmlichen EEPROM-Speicherzelle gemäß Figur 4. Üblicherweise liegt die Endurance dieser FLASH-EPROM-Speicherzellen bei ca. 103 Zyklen.
Ein weiterer Nachteil dieser wiederbeschreibbaren herkömmlichen nichtfluchtigen Speicherzellen besteht darin, daß sie nur bedingt in einer gemeinsamen integrierten Schaltung kombiniert werden können. Dies liegt insbesondere daran, daß die gemäß Figur 5 vorab durchgeführte Implantation des Tunnelgebiets 2' die Dicke der nachfolgend ausgebildeten Tunnelschicht 4 beeinflußt. Genauer gesagt wird bei Verwendung des gleichen Herstellungsprozesses eine Tunnelschicht 4 für eine Tunnelfenster-Zelle TF gemäß Figur 5 eine andere Dicke aufweisen als in der FLASH-EPROM-Speicherzelle gemäß Figur 6. Ferner ist das Implantationsgebiet 2' gemäß Figur 5 sehr empfindlich gegenüber einer thermischen Nachbehandlung, wahrend das Implantationsgebiet 2 gemäß Figur 6 erst zu einem relativ spaten Zeitpunkt im Herstellungsprozeß ausgebildet wird. Dadurch ergeben sich für die in der gleichen integrierten Schaltung ausgebildeten Speicherzellen gemäß Figur 4 und Figur 5 unterschiedliche Programmier/Losch-Spannungen.
Ferner ist aus der Druckschrift US 5,565,371 ein Verfahren zur Herstellung einer nichtfluchtigen Halbleiter- Speicherzelle mit separatem Tunnelfenster bekannt, bei dem ein Programmieren der Transistor-Speicherzelle über Injektion heißer Ladungsträger erfolgt und ein Löschen der Transistor- Speicherzelle über Fowler-Nordheim-Tunneln durchgeführt wird. Nachteilig ist hierbei jedoch der außerordentlich hohe Flächenbedarf sowie die Einführung einer Vielzahl von nichtstan- dardisierten Herstellungsprozessen. Eine Kombination dieses Verfahrens mit herkömmlichen Verfahren ist daher nicht möglich.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Herstellung einer nichtflüchtigen Halbleiter-Speicherzelle mit separatem Tunnelfenster zu schaffen, welches unter Verwendung von Standardprozessen den Flächenbedarf der Spei- cherzelle verringert und gleichzeitig die „Endurance" verbessert .
Erfindungsgemäß wird diese Aufgabe durch die Maßnahmen des Patentanspruchs 1 gelöst.
Insbesondere durch das Ausbilden von Tunnelgebieten im aktiven Gebiet der Tunnelfenster-Zellen nach dem Ausbilden der Tunnelschicht kann eine nichtflüchtige Halbleiter-Speicherzelle erzeugt werden, die hinsichtlich ihrer Endurance, d.h. Programmier/Lösch-Zyklen gleichwertig mit einer herkömmlichen EEPROM-Zelle, jedoch bezüglich ihres Flächenbedarfs wesentlich verbessert ist. Darüber hinaus kann eine derart hergestellte Speicherzelle problemlos mit herkömmlichen FLASH- EPROM-Speicherzellen unter Verwendung von Standardprozessen in einer gemeinsamen integrierten Schaltung realisiert werden. Die Einsatzspannungen (Programmier-/Lösch/Lese- Spannungen) können hierbei für die verschiedensten nichtflüchtigen Halbleiter-Speicherzellenformen gleich sein.
Vorzugsweise werden die Tunnelgebiete selbstjustierend unter Verwendung von zumindest einer Schicht der Tunnelfenster- Zelle mittels Implantation ausgebildet. Insbesondere bei hochintegrierten Schaltungen mit Strukturgroßen < 1 μm können auf diese Weise Speicherzellen einfach und zuverlässig hergestellt werden. Die Implantation kann hierbei vertikal und/oder schräg unter die Tunnelschicht erfolgen, wobei sich Implantationsgebiete vollständig unterhalb der Tunnelschicht berühren oder derart nahe zueinander ausgebildet werden, daß bei Anlegen einer Betriebsspannung ihre Raumladungszonen einen sogenannten Punch-Through-Effekt durchführen. Auf diese Weise erhalt man ein sehr homogenes Tunnelgebiet unterhalb der Tunnelschicht, das vergleichbar ist mit einem vorab implantierten Tunnelgebiet, weshalb sich beim Programmieren/Loschen gleichmaßige Feldstarken einstellen und die „Endurance" verbessert wird.
Vorzugsweise wird ein Floating-Gate-Verbindungsbereich und ein Steuerelektroden-Verbindungsbereich gleichzeitig mit den dazugehörigen Floating-Gate-Schichten und Steuerelektrodenschichten der Tunnelfenster-Zelle und der Transistor- Speicherzelle ausgebildet, wodurch eine weitere Vereinfachung des Herstellungsprozesses sichergestellt ist.
In den weiteren Unteranspruchen s nd vorteilhafte Ausgestaltungen der Erfindung gekennzeichnet.
Die Erfindung wird nachstehend anhand von Ausfuhrungsbeispielen unter Bezugnahme auf die Zeichnung naher beschrieben.
Es zeigen:
Figur 1 eine Schnittansicht einer nichtfluchtigen Halbleiter-Speicherzelle mit separatem Tunnelfenster gemäß einem ersten Ausfuhrungsbeispiel;
Figur 2 eine vergrößerte Schnittansicht einer in Figur 1 dargestellten Tunnelfenster-Zelle gemäß dem ersten
Ausfuhrungsbeispiel; Figur 3 eine vergrößerte Schnittansicht einer Tunnelfenster-Zelle gemäß einem zweiten Ausführungsbeispiel;
Figur 4 eine vergrößerte Schnittansicht einer Tunnelfen- ster-Zelle gemäß einem dritten Ausführungsbeispiel;
Figur 5 eine Schnittansicht einer EEPROM-Speicherzelle gemäß dem Stand der Technik; und
Figur 6 eine Schnittansicht einer FLASH-EPROM-Speicherzelle gemäß dem Stand der Technik.
Figur 1 zeigt eine schematische Schnittansicht einer nichtflüchtigen Halbleiter-Speicherzelle mit separatem Tunnelfen- ster gemäß einem ersten Ausführungsbeispiel. Gleiche Bezugszeichen bezeichnen gleiche oder ähnliche Schichten bzw. Komponenten wie in Figuren 5 und 6, weshalb auf eine detaillierte Beschreibung nachfolgend verzichtet wird.
Gemäß Figur 1 sind auf einem Halbleitersubstrat 100 eine
Transistor-Speicherzelle TZ, eine Tunnelfenster-Zelle TF und ein Verbindungsbereich VB ausgebildet. Die Transistor- Speicherzelle TZ, der Verbindungsbereich VB und die Tunnelfenster-Zelle TF stellen hierbei eine eigentliche Speicher- zelle SZ dar. Vorzugsweise besteht das Halbleitersubstrat 100 aus Si, es kann jedoch auch einen III-V-Verbundhalbleiter oder ein sonstiges Halbleitersubstrat aufweisen. Die Speicherzelle SZ kann beispielsweise als PMOS-Zelle, als NMOS- Zelle oder als CMOS-Zellen im Halbleitersubstrat 100 reali- siert werden, wobei entsprechende p- und/oder n-Wannen vorgesehen sind.
Gemäß Figur 1 besteht die Transistor-Speicherzelle TZ aus einer isolierenden Gateschicht 3, wie z. B. thermisch ausgebil- deten Si02. Über der Gateschicht 3 befindet sich eine leitende Floating-Gate-Schicht 5 (poly-Si) zum Speichern von Ladungen. Entsprechend der in der Floating-Gate-Schicht 5 gespei- cherten Ladungen wird ein unterhalb der Gateschicht 3 befindliches Kanalgebiet KG leitend oder nichtleitend, wodurch beim Lesen der Speicherzelle SZ die logischen Informationen 0 bzw. 1 ausgelesen werden können. Zum Ansteuern der Transistor- Speicherzelle TZ bzw. Speicherzelle SZ ist eine Steuerelektrodenschicht 7 vorgesehen, die durch eine dielektrische Schicht 6 von der Floating-Gate-Schicht 5 isoliert ist. Auf diese Weise kann die in der Floating-Gate-Schicht 5 gehaltene Ladung weder in das Halbleitersubstrat 100 noch in die Steu- erelektrodenschicht 7 abfließen. Von der Transistor-Speicherzelle TZ beabstandet befindet sich gemäß Figur 1 eine Tunnelfenster-Zelle TF, die über einen Verbindungsbereich VB mit der Transistor-Speicherzelle TZ in Verbindung steht und dem Schreiben/Löschen über beispielsweise Injektion heißer La- dungsträger und/oder Fowler-Nordheim-Tunneln dient.
Die Tunnelfenster-Zelle TF besteht vorzugsweise aus den gleichen Schichten wie die Transistor-Speicherzelle TZ, wobei lediglich eine Tunnelschicht 4 eine für das Tunneln ausreichend geringe Dicke aufweist. Die Tunnelschicht 4 besteht vorzugsweise aus einer Tunneloxidschicht wie z.B. Si02. Eine darüber liegende Tunnelfenster-Floating-Gate-Schicht T5 besteht vorzugsweise aus dem gleichen Material wie die Floating-Gate- Schicht 5 der Transistor-Speicherzelle TZ und ist über eine dielektrische Tunnelfenster-Schicht T6 von der elektrisch leitenden Tunnelfenster-Steuerelektrodenschicht T7 isoliert. Die dielektrische Tunnelfenster-Schicht T6 besteht wie die dielektrische Schicht 6 vorzugsweise aus einer ONO (Oxid/Nitrid/Oxid) -Schichtenfolge, wobei sie jedoch auch aus einer weiteren isolierenden dielektrischen Schicht bestehen kann. Die leitende Tunnelfenster-Steuerelektrodenschicht T7 sowie die leitende Tunnelfenster-Floating-Gate-Schicht T5 bestehen wie die Steuerelektrodenschicht 7 und die Floating- Gate-Schicht 5 vorzugsweise aus Poly-Si, können jedoch auch aus einem anderen leitenden und/oder ladungsspeichernden Material bestehen. Der Verbindungsbereich VB besteht üblicherweise aus der gleichen Schichtenfolge wie die Transistor-Speicherzelle TZ oder die Tunnelfenster-Zelle TF, wobei im wesentlichen die Steuer- elektrodenschicht 7 über einen Steuerelektroden-Verbmdungs- bereich VB7 mit der Tunnelfenster-Steuerelektrodenschicht T7 und die Floating-Gate-Schicht 5 über einen Floating-Gate- Verbindungsbereich VB5 mit der Tunnelfenster-Floating-Gate- Schicht T5 m Verbindung steht. Der Ξteuerelektroden-Ver- bindungsbereich 7 und der Floatmg-Gate-Verbindungsbereich 5 kann jedoch auch über metallisch leitende Bahnen und/oder
Diffusionsgebiete im Halbleitersubstrat 100 realisiert werden.
Wesentlich für die vorliegende Erfindung ist insbesondere die voneinander getrennte Ausbildung der Transistor-Speicherzelle TZ und der Tunnelfenster-Zelle TF, die beispielsweise durch eine geeignete Atzung und/oder Fotolithographie realisiert werden kann. Die Tunnelfenster-Zelle TF kann hierbei einen Vorsprung, eine Nase oder eine sonstige geometrische Struktur aufweisen, bei der vorzugsweise eine beidseitige Implantation mit einer Tunnelimplantation Iτ möglich ist.
Gem ß Figur 1 wird demzufolge ein Tunnelgebiet TG durch eine im Herstellungsprozeß relativ spat durchgeführte Tunnelim- plantation Iτ ausgebildet, die vorzugsweise einer Tunnelimplantation bei gleichzeitig hergestellten FLASH-EPROM-Speicherzellen entspricht. Dadurch können sowohl die Tunnelfenster-Zellen TF der Speicherzelle SZ als auch Tunnelfensterbereiche von im gleichen Prozeß hergestellten (nicht darge- stellten) FLASH-EPROM-Speicherzellen ausgebildet werden. Da die Tunnelschicht 4 der erfindungsgemaßen Speicherzelle SZ vorzugsweise in einem gleichen Herstellungsschπtt ausgebildet wird wie eine nicht dargestellte FLASH-EPROM-Speicherzelle, besitzen beide Speicherzellen die gleichen elektri- sehen Programmier/Losch-Eigenschaften, wobei der Flachenbedarf verringert und die „Endurance" verbessert sind. Nachfolgend wird das Verfahren zur Herstellung der nichtflüchtigen Halbleiter-Speicherzelle im einzelnen beschrieben. Zunächst werden im Halbleitersubstrat 100 aktive Bereiche mittels einem STI-Prozeß (shallow trench isolation) für die Tunnelfenster-Zelle TF und die Transistor-Speicherzelle TZ ausgebildet. Die so entstehenden Gräben werden vorzugsweise mit einer abgeschiedenen Si02-Schicht aufgefüllt und anschließend planarisiert . In gleicher Weise kann auch ein LOCOS-Prozeß zur Isolation der aktiven Gebiete verwendet wer- den.
Nachfolgend werden an den aktiven Gebieten der Transistor- Speicherzelle TZ und der Tunnelfenster-Zelle TF die Gateschicht 3 und die Tunnelschicht 4 ausgebildet und entspre- chend strukturiert. Anschließend wird die Floating-Gate- Schicht 5, die dielektrische Schicht 6, und die Steuerelektrodenschicht 7 aufgebracht und derart strukturiert, daß sich die in Figur 1 dargestellte Schnittansicht ergibt.
Gemäß Figur 1 befinden sich die STI-Schichten in parallel zur dargestellten Schnittansicht liegenden (nicht dargestellten) Bereichen der Speicherzelle SZ. In gleicher Weise bezeichnet der Steuerelektroden-Verbindungsbereich VB7 und der Floating- Gate-Verbindungsbereich VB5 die entsprechenden Schichten in einer (räumlich) dahinterliegenden Schnittebene. Zum Ausbilden der Tunnelfenster-Zelle TF und der Transistor-Speicherzelle TZ wird nachfolgend eine Ätzung der Schichten 3, 5, 6 und 7 bzw. 4, T5, Tβ und T7 durchgeführt, wodurch sich die in Figur 1 dargestellten stapeiförmigen Zellen TF und TZ erge- ben. In der nachfolgend durchgeführten Tunnelimplantation Iτ wird hierbei ein Implantationsgebiet 2 selbstjustierend neben der stapeiförmigen Tunnelfenster-Zelle TF ausgebildet, wobei durch Streueffekte das Tunnelgebiet TG unterhalb der Tunnelschicht 4 erzeugt wird. Bei einer nicht dargestellten nach- folgenden Source/Drain-Implantation werden anschießend Sour- ce/Drain-Gebiete 1 selbstjustierend zwischen der Tunnelfenster-Zelle TF und an beiden Seiten der Transistor- Speicherzelle TZ ausgebildet. Hierbei kann die Tunnelfenster- Zelle TF beispielsweise eine nicht dargestellte Hilfsschicht bzw. einen Spacer verwenden.
Das Source/Drain-Gebiet 1 zwischen der Transistor-Speicherzelle TZ und der Tunnelfenster-Zelle TF stellt hierbei einen Kontakt sowohl zur Tunnelfenster-Zelle TF als auch zur Transistor-Speicherzelle TZ her und dient sowohl dem Lesen als auch dem Programmieren/Löschen der Speicherzelle SZ.
Figur 2 zeigt eine vergrößerte Schnittansicht, der in Figur 1 dargestellten Tunnelfenster-Zelle TF während eines Tunnelimplantationsschritts. Gemäß Figur 2 befindet sich auf einem Halbleitersubstrat 100 eine stapeiförmige Anordnung der Tun- nelschicht 4, der Tunnelfenster-Floating-Gate-Schicht T5, der dielektrischen Tunnelfenster-Schicht Tβ und der Tunnelfenster-Steuerelektrodenschicht T7. Nach der Strukturierung dieser stapeiförmigen Tunnelfenster-Zelle TF erfolgt die eigentliche Tunnelimplantation Iτ zur Ausbildung des Tunnelgebiets TG unterhalb der Tunnelschicht 4. Hierbei wird in selbstjustierender Weise unter Verwendung der stapeiförmigen Tunnelfenster-Zelle TF an beiden Seiten ein Implantationsgebiet 2 derart ausgebildet, daß es sich unterhalb der Tunnelschicht 4 berührt und damit ein homogenes Tunnelgebiet TG ausbildet.
Ein derartiges Ausbilden von Implantationsgebieten 2 ist insbesondere bei sehr kleinen Strukturgrößen unterhalb von einem μm möglich, wobei Streueffekte bei der Implantation für die Ausbildung der überlappenden Tunnelgebiete TG ausgenutzt wer- den. Für die Implantation von n-Gebieten eignet sich insbesondere As, da es eine geringe Eindringtiefe und eine relativ hohe Diffusion aufweist. Es kann jedoch auch Ph und/oder Sb zur Dotierung verwendet werden. In gleicher Weise können p- Dotierstoffe zur Ausbildung von p-Gebieten verwendet werden, sofern sie eine ausreichende Streuung unterhalb der Tunnelschicht 4 aufweisen und dadurch ein ausreichend homogenes Tunnelgebiet TG erzeugen. Alternativ zur senkrechten Tunnelimplantation Iτ kann gemäß Figur 3 auch eine schräge Tunnelimplantation Iτs durchgeführt werden, wobei die Implantation in einem Winkel von ca. 5 bis 8 Grad schräg unter die Tunnelschicht 4 erfolgt. Hierbei wird beispielsweise das Implantationsgebiet 2 von einer Seite vollständig unter die als Maske wirkende Tunnelfenster-Zelle TF im Halbleitersubstrat 100 ausgebildet. Auf diese Weise kann ebenfalls ein homogenes Tunnelgebiet TG unterhalb der Tunnelschicht 4 erzeugt werden. Alternativ zu der in Figur 3 dargestellten einseitig schrägen Tunnelimplantation Iτs kann die Tunnelimplantation auch von mehreren Seiten (zwei) schräg unter die Tunnelschicht 4 erfolgen.
Gemäß Figur 4 kann die Tunnelimplantation Iτ ferner derart erfolgen, daß sich die im Halbleitersubstrat 100 ausgebildeten jeweiligen Implantationsgebiete 2 nicht berühren, sondern sich nur teilweise unter die Tunnelschicht 4 erstrecken. Die Implantationsgebiete 2 erstrecken sich jedoch derart weit un- ter die Tunnelschicht 4, daß bei Anlegen einer Betriebsspannung (z.B. Programmier/Löschspannung von beispielsweise -10 Volt/+6 Volt) die Raumladungsszonen RLZ der Implantationsgebiete 2 berühren, wodurch ein sogenannter „Punch-Through- Effekt" auftritt und wiederum ein homogenes Tunnelgebiet un- terhalb der Tunnelschicht 4 ausgebildet wird. Auch in diesem Fall erhält man eine Speicherzelle, die sich durch eine verbesserte „Endurance" , d. h. Anzahl der Programmier/Lösch- Zyklen auszeichnet.
Gemäß der vorliegenden Erfindung wird die Tunnelimplantation Iτ vorzugsweise unter Verwendung der gesamten Tunnelfenster- Zelle TF als Maske durchgeführt. Es kann jedoch auch nur eine der in der Tunnelfenster-Zelle befindlichen Schichten als Maskenschicht verwendet werden, oder eine zusätzliche Masken- schicht in Form eines Fotoresists und/oder einer Hartmaske verwendet werden. Vorzugsweise werden für die Tunnelimplantation Iτ die in Standardprozessen ohnehin vorhandene LDD- Implantation (lightly doped dram) oder eine MD-Implantation (matrix dram) verwendet.
Anstelle der vorstehend beschriebenen Schichtenfolge kann auch eine andere Schichtenfolge verwendet werden (z.B SONOX), sofern dadurch eine Ausbildung einer wiederbeschreibbaren nichtfluchtigen Halbleiter-Speicherzelle möglich ist.

Claims

Patentansprüche
1. Verfahren zur Herstellung einer nichtflüchtigen Halbleiter-Speicherzelle mit separatem Tunnelfenster bestehend aus den Schritten:
Ausbilden einer Tunnelfenster-Zelle (TF) mit einem Tunnelgebiet (TG), einer Tunnelschicht (4), einer Tunnelfenster- Speicher-Schicht (T5) , einer dielektrischen Tunnelfenster- Schicht (Tβ) und einer Tunnelfenster-Steuerelektrodenschicht (T7) und einer Transistor-Speicherzelle (TZ) mit einem Kanalgebiet (KG), einer Gateschicht (3), einer Speicher-Schicht (5), einer dielektrischen Schicht (6) und einer Steuerelektrodenschicht (7) in aktiven Gebieten eines Halbleitersubstrats (100), sowie eines Verbindungsbereichs (VB) zum Verbinden der Tunnelfenster-Zelle (TF) mit der Transistor-Speicherzelle (TZ) in einem inaktiven Gebiet des Halbleitersubstrats (100) d a d u r c h g e k e n n z e i c h n e t, daß das Ausbilden des Tunnelgebietes (TG) im aktiven Gebiet der
Tunnelfenster-Zelle (TF) nach dem Ausbilden der Tunnelschicht (4) erfolgt.
2. Verfahren nach Patentanspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß das Ausbilden des Tunnelgebiets (TG) ein selbstjustierendes Ausbilden von Implantationsgebieten (2) unter Verwendung von zumindest einer Schicht der Tunnelfenster-Zelle (TF) als Maske aufweist .
3. Verfahren nach Patentanspruch 2, d a d u r c h g e k e n n z e i c h n e t, daß beim Ausbilden der Implantationsgebiete (2) eine Implantation (Iτ) vertikal und/oder schräg unter die Tunnelschicht (4) erfolgt
Verfahren nach Patentanspruch 2 oder 3, d a d u r c h g e k e n n z e i c h n e t, daß das Ausbilden des Tunnelgebiets (TG) derart durchgeführt wird, daß sich die Implantationsgebiete (2) vollständig unter die Tunnelschicht (4) erstrecken.
5. Verfahren nach Patentanspruch 2 oder 3, d a d u r c h g e k e n n z e i c h n e t, daß das Ausbilden der Tunnelgebiete (TG) derart durchgeführt wird, daß sich bei Anlegen einer Betriebsspannung Raumladungszonen (RLZ) der Implantationsgebiete (2) vollständig unter die Tunnelschicht (4) erstrecken.
6. Verfahren nach einem der Patentansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t, daß ein Spei- cherschicht-Verbindungsbereich (VB5) gleichzeitig mit der
Speicher-Schicht (5) und der Tunnelfenster-Speicher-Schicht (T5) ausgebildet wird.
7. Verfahren nach einem der Patentansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t, daß ein Steuerelektroden-Verbindungsbereich (VB7) gleichzeitig mit der Steuerelektrodenschicht (7) und der Tunnelfenster- Steuerelektrodenschicht (T7) ausgebildet wird.
8. Verfahren nach einem der Patentansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t, daß das Ausbilden des Tunnelgebiets (TG) mit einer MD-Implantation erfolgt.
9. Verfahren nach einem der Patentansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t, daß das Ausbilden des Tunnelgebietes (TG) mit einer LDD-Implantation erfolgt.
10. Verfahren nach einem der Patentansprüche 1 bis 9, d a d u r c h g e k e n n z e i c h n e t, daß die nichtflüchtige Halbleiter-Speicherzelle ein EEPROM-Speicherzelle darstellt.
EP00943661A 1999-06-28 2000-05-30 Vefahren zur herstellung einer nichtflüchtigen halbleiter-speicherzelle mit separatem tunnelfenster Withdrawn EP1192652A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19929618A DE19929618B4 (de) 1999-06-28 1999-06-28 Verfahren zur Herstellung einer nichtflüchtigen Halbleiter-Speicherzelle mit separatem Tunnelfenster
DE19929618 1999-06-28
PCT/DE2000/001769 WO2001001476A1 (de) 1999-06-28 2000-05-30 Vefahren zur herstellung einer nichtflüchtigen halbleiter-speicherzelle mit separatem tunnelfenster

Publications (1)

Publication Number Publication Date
EP1192652A1 true EP1192652A1 (de) 2002-04-03

Family

ID=7912849

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00943661A Withdrawn EP1192652A1 (de) 1999-06-28 2000-05-30 Vefahren zur herstellung einer nichtflüchtigen halbleiter-speicherzelle mit separatem tunnelfenster

Country Status (11)

Country Link
US (1) US6645812B2 (de)
EP (1) EP1192652A1 (de)
JP (2) JP2003503851A (de)
KR (1) KR100447962B1 (de)
CN (1) CN1171293C (de)
BR (1) BR0011998A (de)
DE (1) DE19929618B4 (de)
MX (1) MXPA01013170A (de)
RU (1) RU2225055C2 (de)
UA (1) UA73508C2 (de)
WO (1) WO2001001476A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10235072A1 (de) * 2002-07-31 2004-02-26 Micronas Gmbh EEPROM-Struktur für Halbleiterspeicher
JP4393106B2 (ja) * 2003-05-14 2010-01-06 シャープ株式会社 表示用駆動装置及び表示装置、並びに携帯電子機器
JP4497290B2 (ja) * 2004-04-14 2010-07-07 富士通株式会社 半導体装置とその製造方法
CN113054001B (zh) * 2021-03-16 2021-11-09 中国电子科技集团公司第五十八研究所 可编程的电源开关器件及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01232769A (ja) * 1988-03-11 1989-09-18 Seiko Instr & Electron Ltd 半導体不揮発性メモリの製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57112078A (en) * 1980-12-29 1982-07-12 Fujitsu Ltd Manufacture of electrically rewritable fixed memory
US4477825A (en) * 1981-12-28 1984-10-16 National Semiconductor Corporation Electrically programmable and erasable memory cell
US4608585A (en) * 1982-07-30 1986-08-26 Signetics Corporation Electrically erasable PROM cell
JPS6325980A (ja) * 1986-07-17 1988-02-03 Nec Corp 不揮発性半導体記憶装置及びその製造方法
JPS6384168A (ja) * 1986-09-29 1988-04-14 Toshiba Corp 不揮発性半導体記憶装置
JP2792028B2 (ja) * 1988-03-07 1998-08-27 株式会社デンソー 半導体記憶装置およびその製造方法
JPH0334579A (ja) * 1989-06-30 1991-02-14 Toshiba Corp 不揮発性半導体記憶装置およびその製造方法
US5565371A (en) * 1990-04-12 1996-10-15 Texas Instruments Incorporated Method of making EPROM with separate erasing and programming regions
US5371031A (en) * 1990-08-01 1994-12-06 Texas Instruments Incorporated Method of making EEPROM array with buried N+ windows and with separate erasing and programming regions
JP3222705B2 (ja) * 1993-11-30 2001-10-29 東芝マイクロエレクトロニクス株式会社 不揮発性半導体記憶装置及びその製造方法
KR0147452B1 (ko) * 1993-11-30 1998-08-01 사토 후미오 불휘발성 반도체기억장치
US5793081A (en) * 1994-03-25 1998-08-11 Nippon Steel Corporation Nonvolatile semiconductor storage device and method of manufacturing
US5633186A (en) * 1995-08-14 1997-05-27 Motorola, Inc. Process for fabricating a non-volatile memory cell in a semiconductor device
EP0782196A1 (de) * 1995-12-28 1997-07-02 STMicroelectronics S.r.l. Herstellungsverfahren für EEPROM-Speicherbauelemente und dadurch hergestellte EEPROM-Speicherbauelemente
TW437099B (en) * 1997-09-26 2001-05-28 Matsushita Electronics Corp Non-volatile semiconductor memory device and the manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01232769A (ja) * 1988-03-11 1989-09-18 Seiko Instr & Electron Ltd 半導体不揮発性メモリの製造方法

Also Published As

Publication number Publication date
CN1171293C (zh) 2004-10-13
US6645812B2 (en) 2003-11-11
BR0011998A (pt) 2002-03-05
KR100447962B1 (ko) 2004-09-08
MXPA01013170A (es) 2002-08-12
CN1361924A (zh) 2002-07-31
DE19929618A1 (de) 2001-01-11
US20020119626A1 (en) 2002-08-29
WO2001001476A1 (de) 2001-01-04
UA73508C2 (en) 2005-08-15
KR20020019472A (ko) 2002-03-12
JP2006319362A (ja) 2006-11-24
RU2225055C2 (ru) 2004-02-27
DE19929618B4 (de) 2006-07-13
JP2003503851A (ja) 2003-01-28

Similar Documents

Publication Publication Date Title
DE69733630T2 (de) EEPROM-und NVRAM-Niederspannungstransistoren und Verfahren zur Herstellung
DE69633958T2 (de) Verfahren und Vorrichtung für Injektion von heissen Ladungsträgern
DE4241457B4 (de) P-leitendes floatendes Gate aus Poly-Silizium zur Verwendung bei einem Halbleiterbautransistorelement und daraus hergestelltes Flash-E2PROM
DE102005029493B4 (de) Integrierte Speicherschaltungsanordnung mit Tunnel-Feldeffekttransistoren und zugehöriges Verfahren
DE4016346C2 (de) Nichtflüchtige Halbleiterspeichervorrichtung und ein Verfahren zu ihrer Herstellung
DE69432568T2 (de) Selbstjustierende flash-eeprom-zelle mit doppelbit-geteiltem gat
DE4404270C2 (de) Halbleiterspeichervorrichtungen, die Information elektrisch schreiben und löschen können und Verfahren zur Herstellung derselben
DE10039441A1 (de) Speicherzelle, Speicherzellenanordnung und Herstellungsverfahren
DE102004006505B4 (de) Charge-Trapping-Speicherzelle und Herstellungsverfahren
DE102008021396B4 (de) Speicherzelle, Speicherzellenarray und Verfahren zum Herstellen einer Speicherzelle
DE102006034263A1 (de) Nichtflüchtige Speicherzelle und Herstellungsverfahren
DE69732618T2 (de) Eine asymmetrische Zelle für eine Halbleiterspeichermatrix und deren Herstellungsmethode
DE19748495C2 (de) EEPROM-Zellstruktur und Verfahren zum Programmieren bzw. Löschen ausgewählter EEPROM-Zellstrukturen sowie EEPROM-Zellenfeld
DE10204873C1 (de) Herstellungsverfahren für Speicherzelle
DE10220922B4 (de) Flash-Speicherzelle, Anordnung von Flash-Speicherzellen und Verfahren zur Herstellung von Flash-Speicherzellen
DE102004060697A1 (de) Halbleiterschaltungsanordung und Verfahren zum Herstellen einer Halbleiterschaltungsanordnung
DE19949805C2 (de) In Silizium-auf-Isolator gebildetes, nichtflüchtiges Direktzugriffs-Speicherelement
DE69635842T2 (de) Speicherredundanzschaltung, die einzelne polysilizium-schwebegattertransistoren als redundanzelemente verwendet
EP1374308B1 (de) Speicherzellenanordnung mit individuel adressierbaren speicherzellen und verfahren zur herstellung derselben
DE10229065A1 (de) Verfahren zur Herstellung eines NROM-Speicherzellenfeldes
EP1590832B1 (de) Speicherzelle, speicherzellen-anordnung und verfahren zum herstellen einer speicherzelle
EP1259964B1 (de) Nichtflüchtige nor-zweitransistor-halbleiterspeicherzelle sowie dazugehörige nor-halbleiterspeichereinrichtung und verfahren zu deren herstellung
DE19929618B4 (de) Verfahren zur Herstellung einer nichtflüchtigen Halbleiter-Speicherzelle mit separatem Tunnelfenster
EP1330845B1 (de) Halbleiter-speicherzelle und verfahren zu deren herstellung
EP1466370B1 (de) Verfahren zur herstellung einer nichtflüchtigen dualbit halbleiter-speicherzelle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20070115

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090303