EP0701647B1 - Bauelement - Google Patents

Bauelement

Info

Publication number
EP0701647B1
EP0701647B1 EP93917427A EP93917427A EP0701647B1 EP 0701647 B1 EP0701647 B1 EP 0701647B1 EP 93917427 A EP93917427 A EP 93917427A EP 93917427 A EP93917427 A EP 93917427A EP 0701647 B1 EP0701647 B1 EP 0701647B1
Authority
EP
European Patent Office
Prior art keywords
wires
insulating body
mat
wire grid
building component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93917427A
Other languages
English (en)
French (fr)
Other versions
EP0701647A1 (de
Inventor
Klaus Ritter
Gerhard Ritter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EVG Entwicklungs und Verwertungs GmbH
Original Assignee
EVG Entwicklungs und Verwertungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EVG Entwicklungs und Verwertungs GmbH filed Critical EVG Entwicklungs und Verwertungs GmbH
Publication of EP0701647A1 publication Critical patent/EP0701647A1/de
Application granted granted Critical
Publication of EP0701647B1 publication Critical patent/EP0701647B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/10Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
    • E04C2/20Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of plastics
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/044Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres of concrete
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/049Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres completely or partially of insulating material, e.g. cellular concrete or foamed plaster
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/06Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/26Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
    • E04C2/284Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
    • E04C2/288Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating composed of insulating material and concrete, stone or stone-like material

Definitions

  • the invention relates to a component two parallel welded wire mesh mats with square or rectangular meshes, from which wire mesh mats in web wires maintaining a predetermined mutual distance, and one arranged between the wire mesh mats, one-piece insulating body penetrated by the bridge wires.
  • AT-A-372 886 discloses a method and an apparatus known for producing a component. In doing so first two wire mesh webs in one of the desired thickness of the lattice body to be produced corresponding to each other Distance brought into parallel position. In the space between the wire mesh and at a distance from everyone An insulating body is inserted into the wire mesh. Bridge wires through one of the two wire mesh webs into the space guided between the insulator such that each bridge wire close to a grid wire each of the two wire grid tracks lie, whereupon the bridge wires with the grid wires of Wire mesh webs are welded. In conclusion, by corresponding to the lattice body produced in this way Length separated.
  • a similar component is known from GB-A-2 234 276, which concerns a lightweight board consisting of two parallel ones Wire mesh mats, consisting of several, the two wire mesh mats connecting straight bridge wires, made of layers of mortar, which enclose the two wire mesh mats, as well there is a core arranged between the mortar layers.
  • the core is either in between the finished lattice body the mortar layers applied in the area of the wire mesh mats inserted or inserted into the grid body from the side or before manufacturing the lattice body in the production plant the same between the two wire mesh mats inserted with the help of spacers.
  • a component which consists of a three-dimensional lattice body, in which in a one-piece insulating body is foamed in situ.
  • the grid body has two spaced wire mesh mats on that with the help of zigzag trained Bridge wires are connected.
  • the component is on the construction site with a layer on both of its top surfaces made of concrete or mortar.
  • the disadvantage here is that A change due to the complicated manufacturing process the shape and dimensions of the component, in particular to adapt to different static requirements is difficult and that as a material for the insulating body only foamable materials can be used.
  • Another disadvantage is that the web wires at their apices only connected to the grid wires at one point are.
  • Another component design is from US-A-4 297,820.
  • This component is also zigzag trained bridge wires only in one point of their Wave crests connected to the grid wires, and there are between two adjacent bridge wires in the direction of the longer one Component extension, individual insulators inserted, which significantly complicates the manufacture of the component.
  • a component is known from US-A-4 104 842, the three-dimensional lattice body also two at a distance from each other arranged wire mesh mats and the wire mesh mats connecting, zigzag-shaped web wires.
  • a cover layer made of construction paper, those to be applied later as a boundary layer Concrete shell is used. If two cover layers are used, this creates a cavity in the interior of the component that can be added later can be filled with material.
  • Another disadvantage is the complicated manufacturing process that is a change the shape and dimension of the component difficult, and the restriction of the materials for the insulating body Substances that have to be pourable or flowable in order to be zigzag-shaped bridge wires penetrate the cavity of the component to be able to fill out.
  • Another disadvantage is that the Bridge wires at their apices only at one point are connected to the grid wires.
  • the object of the invention is to initiate a component to create the specified genus that is suitable for practice optimally suited and manufactured in a simple manner and quickly can be adapted to different static requirements can.
  • the component is supposed to be the selection of different ones Allow materials for the insulating body and the application the concrete layer at the point of use of the component facilitate.
  • the invention relates to a component consisting of two parallel welded wire mesh mats with square or rectangular mesh, from straight, the wire mesh mats keeping at a predetermined mutual distance, to the wire mesh mats running diagonally and on each End with these welded single bridge wires that are between the wires of the wire mesh mats designed as reinforcement mats are arranged in parallel rows and one in comparison to the wire mesh wires have a larger diameter, so that they form shear reinforcement elements, the distances of the web wires to each other in the direction of the grid wire longitudinal wires and the wire mesh cross wires a multiple of the pitch of the mesh mesh, and from one between the wire mesh mats arranged at predetermined distances from them one-piece dimensionally stable insulating body, in particular Made of foam plastic, made exclusively by these penetrating, truss-like in each row of row wires, alternating oppositely sloping bridge wires between the Wire mesh mats is held, with at least one top surface of the insulating body for an existing of load-bearing material Out
  • the component according to the invention has the advantage that the land wires are designed as individual wires and therefore two welding spots in the connection area with the wire mesh wires are in place, so the static safety is practical is doubled.
  • a lattice body a multi-part insulating body within the grid body as well a material layer for fixing the insulating body parts inside of the lattice body.
  • the lattice body is made strip-shaped substructures, each composed of an upper and lower line wire and between them, oblique or perpendicular to the longitudinal wires Stiffening wires are formed, the longitudinal wires of the individual substructures with the help of perpendicular to the longitudinal wires arranged cross wires are connected. In the through the substructures formed gaps become the individual parts of the insulator.
  • the insulating cores can made from solid insulating materials, but also from hollow paper tubes consist.
  • the layer of material used to define the insulation cores consists of insulating material, e.g. Insulating foam, polystyrene, Latex etc.
  • insulating material e.g. Insulating foam, polystyrene, Latex etc.
  • this component is not one of the Cover surfaces of the three-dimensional lattice body as a wire mesh reinforcement mat is formed, the insulating body has none contiguous one-piece construction and the bridge wires do not penetrate the individual insulation cores, but run in the spaces between adjacent insulating cores.
  • the component therefore already differs generically from the invention.
  • a component is also known from US-A-4 702 053. This document deals with a concrete wall laminate with an insulating core made of a variety of panels, on the abutting faces of which conductors are arranged support the insulating cores. The construction concept of the component differs significantly from the invention.
  • the component As a wall or Ceiling element, it is particularly advantageous if at least a wire mesh mat the insulating body on at least one side surface of the same, as is known per se, protrudes laterally.
  • the inner wire mesh mat determined on the inside of the component an inner shell applied to the insulating body connects, the inner wire mesh mat encloses and together forms the load-bearing component of the component, the inner shell with an inner additional reinforcement mat is provided.
  • the component shown in Fig. 1 consists of two flat wire mesh mats 1 and 2 at a predetermined distance are arranged parallel to each other.
  • Any wire mesh mat 1 and 2 consists of several longitudinal wires 3 and 4 and several cross wires 5 and 6, which cross each other and on the Crossing points are welded together.
  • the mutual Distance between the longitudinal wires 3, 4 and the transverse wires 5, 6 to each other is according to the static arrangements on the component chosen. The distances are preferably the same, selected, for example, in the range from 50 to 100 mm, so that each adjacent line and cross wires square mesh form.
  • the mesh of the wire mesh mats 1, 2 can also be rectangular and for example short Side lengths of 50 mm and long side lengths in the range of 75 up to 100 mm.
  • the diameters of the line and cross wires are also selected and lie according to the static requirements preferably in the range of 2 to 6 mm.
  • the surface of the wire mesh wires can be smooth or ribbed be.
  • the two wire mesh mats 1, 2 are through with each other several bridge wires to form a stable spatial lattice body connected.
  • the web wires 7 are at their ends with welded the wires of the two wire mesh mats 1, 2, wherein the bridge wires 7 either, as in shown in the drawing, with the respective longitudinal wires 3, 4th or welded to the cross wires 5, 6.
  • the bridge wires 7 are alternately sloping in opposite directions, i.e. half-timbered arranged, whereby the lattice body against shear stresses is stiffened.
  • the distances between the web wires 7 to one another and their distribution in the component depend on the static requirements of the Component from and amount, for example, along the longitudinal wires 200 mm and along the cross wires 100 mm.
  • the mutual Distances of the web wires 7, 7 'in the direction of the grid wire longitudinal wires 3, 4 and the mesh cross wires 5, 6 expediently a multiple of the stitch division.
  • the diameter the bridge wires are preferably in the range from 3 to 7 mm, with components with thin longitudinal and cross wires the diameter of the web wires is preferably chosen to be larger than the diameter of the line and cross wires.
  • spatial lattice bodies not only dimensionally stable must be, but in its preferred use as Wall and / or ceiling element the function of a spatial reinforcement element must meet, i.e. Thrust and pressure forces has to take up both the longitudinal and transverse wires with each other, as usual with reinforcement mats, as well as the web wires 7 with the wire mesh wires 3, 4, 5, 6 in compliance a minimum strength of the weld nodes welded.
  • the grid wire 3, 4, 5, 6 and the bridge wires 7 consist of suitable materials and corresponding possess mechanical strength values in order as reinforcing wires for wire mesh mats to be used as mesh reinforcement mesh 1, 2 or as the two wire mesh mats 1, 2 connecting Reinforcing wires to be usable.
  • bridge wires 7, 7 'at both ends for example by means of Plastic cord knot or tie together.
  • the web wires 7, 7 'at one end on the aforementioned way and at its other end by means of welding can be connected to the grid wire 3, 4, 5, 6.
  • the insulating body 8 is, for example made of foam plastics, such as polystyrene or polyurethane foam, Foams based on rubber and rubber, Lightweight concrete, such as autoclave or gas concrete, porous plastics, porous rubber and rubber-based fabrics, pressed Slag, pressed mud, plasterboard, cement-bound Press plates made from wood chips, jute, hemp and sisal fibers, Rice husks, straw debris, sugar cane bottling, Mineral and glass wool, corrugated cardboard, pressed waste paper, bound brick chippings, melted recyclable Plastic waste, tied reeds and bamboo cane.
  • foam plastics such as polystyrene or polyurethane foam
  • Foams based on rubber and rubber Lightweight concrete, such as autoclave or gas concrete, porous plastics, porous rubber and rubber-based fabrics, pressed Slag, pressed mud, plasterboard, cement-bound Press plates made from wood chips, jute, hemp and sisal fibers, Rice husks
  • the insulating body 8 can be pre-drilled holes for receiving the web wires 7 may be provided.
  • the insulating body 8 can also on one or both sides with a vapor barrier Be plastic or aluminum layer. The location of the Insulator 8 in the component is due to the inclined Web wires 7 set that penetrate the insulating body 8.
  • the thickness of the insulating body 8 is freely selectable and lies for example in the range from 20 to 200 mm.
  • the distances of the Insulating body 8 to the wire mesh mats 1, 2 are also freely selectable and are, for example, in the range from 10 to 30 mm.
  • the component can be produced in any length and width, where due to the manufacturing process Minimum length of 100 cm and standard widths of 60 cm, 100 cm, 110 cm and 120 cm have proven to be advantageous.
  • FIG. 3 is a side view of the component according to Fig. 1, viewed in the direction of the cross wire family, shown. In this way, they alternate in opposite directions at an angle extending web wires 7 a row and are each with the corresponding longitudinal wires 3 and 4 arranged one above the other the wire mesh mat 1 or 2 welded.
  • Fig. 6 shows a component in which in a row Bridge wires 7 diagonally in the same direction between the longitudinal wires 3 and 4 of the wire mesh mats 1, 2 run while in the In the next row, the web wires 7 'drawn with dashed lines are also shown in the same direction, but with the opposite direction run between the corresponding longitudinal wires, i.e. the component has several rows of the same direction slanted bridge wires with changing direction from row to row Line.
  • the ranks of same mind slanted land wires can also be between the cross wires 5, 6 of the wire mesh mats 1, 2 run.
  • Fig. 7 shows a component with oppositely inclined Bridge wires 7 per row, with the spacing adjacent Bridge wires in the row can be chosen so that the each other facing ends of the bridge wires come as close as possible, whereby possibly two bridge wires together in one operation be welded with the appropriate wire mesh can.
  • the web wires 7 can, as in 8, also perpendicular to the wire mesh mats 1, 2 can be arranged. Because in this case the position of the insulator 8 in the lattice body due to the web wires 7 is insufficient is fixed, there are 8 for fixing the insulating body Spacers 9 are provided, each corresponding to the corresponding Support wire mesh wires of wire mesh mats 1, 2. The spacers 9 are also used for components inclined ridge wires 7 used when on the ground the material quality of the insulating body the fixation the same is not guaranteed in the lattice body by the web wires is. This applies, for example, to insulating bodies made of bonded Reed or bamboo cane.
  • the insulating body 8 can also be asymmetrical be arranged to the two wire mesh mats 1, 2. Hiebei are the diameter of the grid wires 4, 4 ', 6, 6' of wire mesh mat 2 lying further away from the insulating body 8 advantageously larger than the diameter of the grid wires 3, 3 ', 5, 5 'of the wire mesh mat lying closer to the insulating body 8 1.
  • Edge wires 10 are provided.
  • the diameter the edge web wires 10 are preferably equal to the diameter of the bridge wires 7, 7 '.
  • FIG. 11 shows a component according to the invention, whose insulating body 8 on the parallel to the cross wires 5, 6 extending side surfaces 11 not with the two Wire mesh mats 1, 2 completes, but laterally from these is towered over.
  • the insulating body 8 can also on its two side surfaces 11 finish flush with the inner wire mesh mat 2 and only the outer wire mesh mat 1 in practical use tower over.
  • wire mesh mats can be the insulating body 8 also protrude laterally on all side surfaces of the same.
  • any bridging wires can 10 can be arranged such that they are outside the insulating body run or connect to this on the side.
  • the longitudinal and transverse wires of the wire mesh mats 1, 2 and the bridge wires can have any cross section.
  • the cross-sections can be oval, rectangular, polygonal or how shown in Fig. 12, be square.
  • the reference numbers of the corresponding wires are 3 "or 4" for the square Line wires, 5 “or 6" for the square cross wires and 7 " for the square bridge wires.
  • FIG. 13 shows a component which has a two-part insulating body 8 '. If necessary, the Parts of the insulating body at their contact surfaces with one another be glued. Close the two parts of the insulating body 8 ' to save material cavities 12, but also with other materials, such as bulk, trickle and flowable insulating materials, such as wood and foam chips, Sand, plastic, rice or straw waste, filled can be.
  • the insulating body 8 ' can also consist of several interconnectable parts, for example one have a multilayer structure. It is still possible a one-piece insulating body 8 with cavities 12 Mistake.
  • the thickness of the outer shell 13 becomes corresponding the static, sound and thermal requirements the component selected and is for example 20 to 200 mm. If the component is used as a ceiling element, it must for structural reasons, the minimum thickness of the outer shell 13 50 mm.
  • an inner shell 14 is applied, which connects to the insulating body 8, the inner Wire mesh mat 2 encloses and for example made of concrete or Mortar.
  • the thickness of the inner shell 14 becomes corresponding the static, sound and thermal requirements the component selected and is for example 20 to 200 mm.
  • the two shells 13, 14 are preferably at the place of use of the component applied, for example in Sprayed on wet or dry process.
  • the wires 7, 7 'and 10 Since the partial areas lying in the interior of the component the bridge wires 7, 7 'and, if appropriate, also the edge bridge wires 10 not covered with concrete and therefore corrosion exposed, the wires 7, 7 'and 10 must be coated with an anti-corrosion layer be provided. This will be preferred by galvanizing and / or coating the wires 7, 7 'or 10 reached. For cost reasons, it has proven to be advantageous at least during the manufacture of the lattice body to use galvanized wire for the bridge wires 7, 7 '.
  • the Wires 7, 7 'and 10 can also be made of stainless steel or from other, non-corrosive materials, e.g. Aluminum alloys, be produced, these with the grid wires the wire mesh mats 1, 2 connectable, preferably must be weldable. As well like the bridge wires 7, 7 'and 10, the grid wire can also the wire mesh mats 1, 2 with a corrosion protection layer be provided or of stainless steel qualities or of other, non-corrosive materials.
  • 16a is a detail of a component with a very thick outer shell 13 'shown in concrete, the outer shell 13' with a outer, additional reinforcement mat 15 is reinforced, the distance to the outer wire mesh mat 1 according to the static Requirements for the component is freely selectable.
  • the outer additional reinforcement mat 15 prevented by temperature and Shrinkage caused by cracks in the outer shell 13 '.
  • the component can for static reasons and / or Increase the sound insulation even with a very thick inner shell 14 'are provided, these either with only one inner wire mesh mat 2 or, as Fig. 16b shows, with a inner wire mesh mat 2 and an inner, additional reinforcement mat 15 'is reinforced.
  • the distance of the inner additional reinforcement mat 15 'to the inner wire mesh mat 2 is corresponding the structural requirements for the component can be freely selected.
  • the diameter of the wire mesh of the inner additional reinforcement mat 15 'are preferably larger than the diameter of the Lattice wires of the two wire mesh mats 1, 2 and are, for example in the range of 6 to 6 mm.
  • the inner wire mesh mat 2 and the inner additional reinforcement mat 15 ' can be connected by a plurality of spacer wires 24 be preferably perpendicular to the inner wire mesh mat 2 and inner additional reinforcement mat 15 'and their mutual, lateral distance is freely selectable.
  • the diameter the spacer wires 24 are preferably equal to the diameters the grid wires of the wire mesh mats 1, 2.
  • outer additional reinforcement mat 15 and the outer wire mesh mat 1 can with spacer wires be connected, preferably perpendicular to the outer Wire mesh mat 1 and outer additional reinforcement mat 15 run.
  • These spacer wires are available with selectable lateral distances arranged to each other and have diameters, preferably equal to the diameter of the grid wires of the two Wire mesh mats 1, 2 are.
  • Concrete shells 13 'and 14' can be used at the place of use
  • Component can also be cast from in-situ concrete, the external limitation of the concrete shells 13 ', 14' by not Formwork shown is formed.
  • a lining plate 16 is arranged, which rests on the inner wire mesh mat 2 and is attached to an assembly aid 17.
  • the lining plate 16 forms the non-load-bearing inner wall of the component and can, since they do not perform any static tasks must, made of lightweight material, such as a plywood board, a plasterboard and the like. exist and according to the Equipment requests for the interior can be designed decoratively.
  • the assembly aid 17 is between the insulating body 8 and the inner wire mesh mat 2 and exists for example, from several strips between the Bridge wires run vertically, as far as the component is used as a wall component.
  • the assembly aid 17 can, if necessary, on the wires 4 and 6 the inner wire mesh mat 2, for example by means of not illustrated staples, or on the insulating body 8, for example by means of an adhesive layer.
  • the assembly aid 17 must be made of suitable material, for example are made of wood, which securely anchors the lining panel 16 on the inner wire mesh mat in between 2 guaranteed.
  • the lining plate 16 is not attached to the insulating body 8, naturally due to its material properties no secure attachment allowed, but on the inside Wire mesh mat 2 firmly anchored or clamped against it.
  • the top surfaces 18 of the Insulating body 8, 8 ' are roughened.
  • the top surfaces can be provided with depressions 19 with the help of gears or rollers, who wear spikes or pimples on their circumference while the manufacture of the component in the ceiling surfaces 18 of the Insulator are molded.
  • FIG Insulating body 8, 8 'on its top surfaces 18 with transverse grooves 20 can be provided when using the component as a wall element run in the horizontal direction.
  • the recesses 19 and the transverse grooves 20 can already are produced in the manufacture of the insulating body.
  • a plaster support grid 21 are used on the top surface 18 of the insulating body 8, 8 'rests and through the web wires 7 or the insulating body 8, 8 'is fixed.
  • the plaster support grid 21 consists for example of a fine mesh welded or woven wire mesh with a mesh size of for example 10 to 25 mm and wire diameters in the range from 0.8 to 1 mm.
  • the plaster support grid 21 can also consist of expanded metal.
  • an additional separating layer 22 made of, for example, impregnated Construction paper or cardboard can be arranged that also serves as a vapor barrier and preferably with the Plaster support grid 21 is connected.
  • the interface layers 22 can for example be made of cardboard, cardboard, plastic plates, with thin plasterboard or concrete slabs or exist without reinforcement.
  • the separation layers 22 are either from the bridge wires 7 or with the help of spacers fixed in their position relative to the wire mesh mats 1, 2.
  • the space 23 between the separation layers 22 is either during the manufacture of the component or only at the place of use the component filled with suitable insulating material, whereby a central insulating layer 8 "in the component arises.
  • the separating layers 22 are the boundary surfaces of the central insulation layer 8 "precisely, it is possible to use materials to build up the insulating layer do not have to be dimensionally stable or self-supporting.
  • the materials should however be pourable, pourable or flowable and can be made, for example, of plastics that are foamable in situ, Plastic, rubber or wood waste, foam chips, Sand, slag, expanded concrete, rice or straw waste or brick chippings consist.
  • On the wire mesh mats 1 and 2 facing Surfaces of the separating layers 22 can also each a plaster support grid 21 can be arranged.
  • the insulating body 8, 8 'and the central insulating layer 8 "and the separating layers 22 can be made of heavy or non-flammable materials or impregnated with substances or be provided, the insulating body 8, 8 ', the central insulating layer 8 "and the separating layers 22 heavy or make it non-flammable.
  • the insulating body 8, 8 'and the Separating layers 22 may also have a heavy or not flammable paint.
  • the Insulating body 8, 8 'or the central insulating layer 8 at least a side surface 11 of the insulating body 8, 8 'or central insulating layer 8 "at least one wire mesh mat 1, 2 protrudes from the side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Building Environments (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Glass Compositions (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Coupling Device And Connection With Printed Circuit (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Laminated Bodies (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Paper (AREA)
  • Exchange Systems With Centralized Control (AREA)
  • Indexing, Searching, Synchronizing, And The Amount Of Synchronization Travel Of Record Carriers (AREA)
  • Floor Finish (AREA)
  • Revetment (AREA)
  • Wire Processing (AREA)
  • Vending Machines For Individual Products (AREA)
  • Electronic Switches (AREA)
  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
  • Nonwoven Fabrics (AREA)

Description

Die Erfindung betrifft ein Bauelement aus zwei parallelen geschweißten Drahtgittermatten mit quadratischen oder rechteckigen Maschen, aus die Drahtgittermatten in einem vorbestimmten gegenseitigen Abstand haltenden Stegdrähten, und aus einem zwischen den Drahtgittermatten angeordneten, von den Stegdrähten durchdrungenen einteiligen Isolierkörper.
Aus der AT-A-372 886 sind ein Verfahren und eine Vorrichtung zum Herstellen eines Bauelementes bekannt. Dabei werden zunächst zwei Drahtgitterbahnen in einem der gewünschten Dicke des herzustellenden Gitterkörpers entsprechenden gegenseitigen Abstand in parallele Lage gebracht. In den Zwischenraum zwischen den Drahtgitterbahnen und mit einem Abstand von jeder Drahtgitterbahn wird ein Isolierkörper eingefügt. Stegdrähte werden durch eine der beiden Drahtgitterbahnen in den Zwischenraum zwischen den Isolierkörper derart geführt, daß jeder Stegdraht nahe je einem Gitterdraht der beiden Drahtgitterbahnen zu liegen kommt, worauf die Stegdrähte mit den Gitterdrähten der Drahtgitterbahnen verschweißt werden. Abschließend werden von dem auf diese Weise hergestellten Gitterkörper Bauelemente entsprechender Länge abgetrennt.
Ein ähnliches Bauelement ist aus der GB-A-2 234 276 bekannt, die eine Leichtbauplatte betrifft, welche aus zwei parallelen Drahtgittermatten, aus mehreren, die beiden Drahtgittermatten verbindenden geraden Stegdrähten, aus Mörtelschichten, welche die beiden Drahtgittermatten umschließen, sowie aus einem zwischen den Mörtelschichten angeordneten Kern besteht. Der Kern wird entweder in den fertigen Gitterkörper zwischen die im Bereich der Drahtgittermatten angebrachten Mörtelschichten eingefügt oder in den Gitterkörper von der Seite her eingeschoben oder vor dem Herstellen des Gitterkörpers in der Produktionsanlage desselben zwischen die beiden Drahtgittermatten unter Zuhilfenahme von Abstandhaltern eingelegt.
Aus der US-A-3 305 991 ist ein Bauelement bekannt, das aus einem dreidimensionalen Gitterkörper besteht, in welchen in situ ein einteiliger Isolierkörper eingeschäumt ist. Der Gitterkörper weist zwei mit Abstand zueinander angeordnete Drahtgittermatten auf, die mit Hilfe von zickzackförmig ausgebildeten Stegdrähten verbunden sind. Auf der Baustelle wird das Bauelement an seinen beiden Deckflächen jeweils mit einer Schicht aus Beton oder Mörtel versehen. Nachteilig ist hiebei, daß auf Grund des komplizierten Herstellungsverfahrens eine Änderung der Form und der Abmessungen des Bauelementes, insbesondere zwecks Anpassung an unterschiedliche statische Erfordernisse nur schwer möglich ist und daß als Material für den Isolierkörper nur in situ schäumbare Werkstoffe verwendet werden können. Nachteilig ist außerdem, daß die Stegdrähte an ihren Wellenscheiteln jeweils nur in einem Punkt mit den Gitterdrähten verbunden sind. Eine andere Bauelementausführung ist aus der US-A-4 297 820 bekannt. Bei diesem Bauelement sind ebenfalls zickzackförmig ausgebildete Stegdrähte nur in einem Punkt ihrer Wellenscheitel mit den Gitterdrähten verbunden, und es sind zwischen je zwei benachbarten Stegdrähten in Richtung der längeren Bauelementerstreckung einzelne Isolierkörper eingeschoben, was die Herstellung des Bauelementes erheblich erschwert.
Aus der US-A-4 104 842 ist ein Bauelement bekannt, dessen dreidimensionaler Gitterkörper ebenfalls zwei mit Abstand zueinander angeordnete Drahtgittermatten sowie die Drahtgittermatten verbindende, zickzackförmig ausgebildete Stegdrähte aufweist. Auf der Innenseite zumindest einer Drahtgittermatte und mit Abstand von dieser ist eine Deckschicht aus Baupapier angebracht, die als Begrenzungsschicht der nachträglich aufzubringenden Betonschale dient. Werden zwei Deckschichten verwendet, so entsteht im Inneren des Bauelementes ein Hohlraum, der nachträglich mit Material gefüllt werden kann. Nachteilig ist wiederum das komplizierte Herstellungsverfahren, das eine Änderung der Form und der Dimension des Bauelementes erschwert, sowie die Einschränkung der Materialien für den Isolierkörper auf Stoffe, die riesel- oder fließfähig sein müssen, um den von den zickzackförmigen Stegdrähten durchsetzten Hohlraum des Bauelementes ausfüllen zu können. Nachteilig ist außerdem, daß die Stegdrähte an ihren Wellenscheiteln jeweils nur in einem Punkt mit den Gitterdrähten verbunden sind.
Aufgabe der Erfindung ist es, ein Bauelement der einleitend angegebenen Gattung zu schaffen, das sich für die Praxis optimal eignet und auf einfache Weise hergestellt sowie rasch an unterschiedliche statische Erfordernisse angepaßt werden kann. Das Bauelement soll zugleich die Auswahl verschiedener Materialien für den Isolierkörper ermöglichen und das Aufbringen der Betonschicht an der Verwendungsstelle des Bauelementes erleichtern.
Gegenstand der Erfindung ist ein Bauelement, bestehend aus zwei parallelen geschweißten Drahtgittermatten mit quadratischen oder rechteckigen Maschen, aus geraden, die Drahtgittermatten in einem vorbestimmten gegenseitigen Abstand haltenden, zu den Drahtgittermatten schräg verlaufenden und an jedem Ende mit diesen verschweißten Einzelstegdrähten, die zwischen den Drähten der als Bewehrungsmatte ausgebildeten Drahtgittermatten in parallelen Reihen angeordnet sind und einen im Vergleich zu den Gittermattendrähten größeren Durchmesser haben, so daß sie Schubbewehrungselemente bilden, wobei die Abstände der Stegdrähte zueinander in Richtung der Gittermatten-Längsdrähte und der Gittermatten-Querdrähte ein Vielfaches der Teilung der Gittermattenmaschen betragen, und aus einem zwischen den Drahtgittermatten mit vorbestimmten Abständen zu diesen angeordneten einteiligen formstabilen Isolierkörper, insbesondere aus Schaumkunststoff, der ausschließlich durch die diesen durchsetzenden, in jeder Stegdrahtreihe fachwerkartig, abwechselnd gegensinnig schräg verlaufenden Stegdrähte zwischen den Drahtgittermatten gehalten ist, wobei zumindest eine Deckfläche des Isolierkörpers für eine aus tragfähigem Material bestehende Außenschale mit einem Putzträgergitter versehen ist und zwischen dem Putzträgergitter und der Deckfläche des Isolierkörpers eine die gesamte Deckfläche überdeckende Trennschicht vorgesehen ist, die vorzugsweise als Dampfsperre dient und mit dem Putzträgergitter verbunden ist.
Die erfindungsgemäße Merkmalskombination ergibt gegenüber dem Stand der Technik den Vorteil, daß das erfindungsgemäße Bauelement für den praktischen Einsatz optimal dimensioniert und geeignet ist, weil beide Gittermatten des Bauelementes als Bewehrungsmatten für tragfähige Schalen ausgebildet sind, die größeren Durchmesser als die Gittermattendrähte aufweisenden Stegdrähte Schubbewehrungselemente bilden und der als formstabiler Körper ausgebildete Isolierkörper nicht nur gegen unbeabsichtigte Bewegung im rauhen Baubetrieb sicher in seiner vorbestimmten Lage gehalten, sondern auch zur einwandfreien Verbindung mit den auf das Bauelement aufzubringenden Außenschalen vorbereitet ist. Das erfindungsgemäße Bauelement ist auf einfache Weise an unterschiedliche statische Erfordernisse anpaßbar.
Gegenüber den bekannten Bauelementen mit zickzackförmigen Stegdrähten und nur einem Schweißpunkt im Bereich der Wellenscheitel hat das Bauelement gemäß der Erfindung den Vorteil, daß die Stegdrähte als Einzeldrähte ausgebildet sind und daher im Verbindungsbereich mit den Gittermattendrähten zwei Schweißpunkte vorhanden sind, so daß die statische Sicherheit praktisch verdoppelt wird.
Es sei noch erwähnt, daß aus der US-A-3 879 908 ein modulares Bauelement hervorgeht, das einen Gitterkörper, einen mehrteiligen Isolierkörper innerhalb des Gitterkörpers sowie eine Materialschicht zum Fixieren der Isolierkörperteile innerhalb des Gitterkörpers aufweist. Der Gitterkörper wird aus streifenförmigen Substrukturen zusammengesetzt, die jeweils aus einem oberen und unteren Längsdraht sowie dazwischen verlaufenden, schrägen oder senkrecht zu den Längsdrähten verlaufenden Versteifungsdrähten gebildet werden, wobei die Längsdrähte der einzelnen Substrukturen mit Hilfe von senkrecht zu den Längsdrähten angeordneten Querdrähten verbunden werden. In die durch die Substrukturen gebildeten Zwischenräume werden die Einzelteile des Isolierkörpers eingeschoben. Die Isolierkerne können aus massiven Isoliermaterialien, aber auch aus hohlen Papierrohren bestehen. Die Materialschicht zum Festlegen der Isolierkerne besteht aus Isoliermaterial, wie z.B. Isolierschaum, Polystyrol, Latex u.ä. Bei diesem Bauelement ist jedoch keine der Deckflächen des dreidimensionalen Gitterkörpers als Drahtgitter-Bewehrungsmatte ausgebildet ist, der Isolierkörper hat keinen zusammenhängenden einteiligen Aufbau und die Stegdrähte durchdringen die einzelnen Isolierkerne nicht, sondern verlaufen in den Zwischenräumen zwischen benachbarten Isolierkernen. Das Bauelement unterscheidet sich somit schon gattungsmäßig von der Erfindung.
Aus der US-A-4 702 053 ist ebenfalls ein Bauelement bekannt. Diese Druckschrift beschäftigt sich mit einem Betonwandlaminat mit einem Isolierkern aus einer Vielzahl von Panelen, an deren Stoßflächen jeweils Leitern angeordnet sind, welche die Isolierkerne abstützen. Das Aufbaukonzept des Bauelementes unterscheidet sich wesentlich von der Erfindung.
Für den praktischen Einsatz des Bauelementes als Wandoder Deckenelement ist es besonders vorteilhaft, wenn zumindest eine Drahtgittermatte den Isolierkörper an zumindest einer Seitenfläche desselben, wie an sich bekannt, seitlich überragt.
Nach einem weiteren Merkmal der Erfindung kann an der zur Bildung der Bauelementaußenseite bestimmten äußeren Drahtgittermatte eine zweilagig ausgebildete Außenschale aus Beton aufgebracht sein, die an den Isolierkörper anschließt, die äußere Drahtgittermatte umschließt und zusammen mit dieser den tragenden Bestandteil des Bauelementes bildet, wobei die zweilagige Außenschale mit einer Zusatzbewehrungsmatte versehen ist.
Vorzugsweise wird an der zur Bildung der Bauelementinnenseite bestimmten inneren Drahtgittermatte eine Innenschale aufgebracht, die an den Isolierkörper anschließt, die innere Drahtgittermatte umschließt und zusammen mit dieser den tragenden Bestandteil des Bauelementes bildet, wobei die Innenschale mit einer inneren Zusatzbewehrungsmatte versehen ist.
Weitere Merkmale und Vorteile der Erfindung werden an Hand einiger Ausführungsbeispiele unter Bezugnahme auf die Zeichnungen näher erläutert. Es zeigen:
  • Fig. 1 in axonometrischer Ansicht ein Bauelement gemäß der Erfindung;
  • Fig. 2 eine Draufsicht des Bauelementes nach Fig. 1;
  • Fig. 3 eine Seitenansicht des Bauelementes nach Fig. 1 in Richtung der Querdrähte gesehen;
  • die Fig. 4 bis 8 Seitenansichten von Bauelementen gemäß der Erfindung mit verschiedenen Ausführungsbeispielen für die Anordnung der Stegdrähte innerhalb des Bauelementes;
  • Fig. 9 eine Seitenansicht eines Bauelementes mit asymmetrisch angeordnetem Isolierkörper;
  • Fig. 10 eine Seitenansicht eines Bauelementes mit zusätzlichen, senkrecht zu den Drahtgittermatten verlaufenden Randstegdrähten;
  • Fig. 11 eine Seitenansicht eines Bauelementes mit Drahtgittermatten, die den Isolierkörper am Rand des Bauelementes seitlich überragen;
  • Fig. 12 eine Seitenansicht eines Bauelementes mit quadratischen Drähten der Drahtgittermatten und quadratischen Stegdrähten;
  • Fig. 13 eine Seitenansicht eines Bauelementes mit einem mit Hohlräumen versehenen Isolierkörper;
  • Fig. 14 in schematischer, perspektivischer Ansicht ein Bauelement mit einer Außenschale und einer Innenschale aus Beton;
  • Fig. 15 einen Ausschnitt eines Schnittes durch ein Bauelement gemäß Fig. 14;
  • Fig. 16a einen Schnitt durch ein Bauelement mit einer zweilagigen Bewehrung, wobei in der Außenschale eine zusätzliche Bewehrungsmatte vorgesehen ist und die Innenschale aus Beton besteht;
  • Fig. 16b einen Schnitt durch ein Bauelement mit einer zweilagigen Bewehrung, wobei in der Innenschale eine zusätzliche Bewehrungsmatte vorgesehen ist und die Außenschale aus Beton besteht;
  • Fig. 17 einen Schnitt durch ein Bauelement mit einer Außenschale aus Beton und mit einer Auskleidungsplatte auf der Innenseite des Bauelementes;
  • Fig. 18 eine Seitenansicht eines Bauelementes mit einem Isolierkörper, dessen Deckflächen mit Vertiefungen versehen sind;
  • Fig. 19 eine Seitenansicht eines Bauelementes mit einem Isolierkörper, dessen Deckflächen mit Querrillen versehen sind;
  • Fig. 20 eine Seitenansicht eines Bauelementes mit einem Putzträgergitter sowie mit einer Trennschicht auf einer Deckfläche des Isolierkörpers, und
  • Fig. 21 eine Seitenansicht eines Bauelementes mit jeweils zwei Trennschichten und zwei Putzträgergittern sowie einer dazwischenliegenden Isoliermaterialschicht.
  • Das in Fig. 1 dargestellte Bauelement besteht aus zwei ebenen Drahtgittermatten 1 und 2, die in einem vorgegebenen Abstand parallel zueinander angeordnet sind. Jede Drahtgittermatte 1 bzw. 2 besteht aus mehreren Längsdrähten 3 bzw. 4 und aus mehreren Querdrähten 5 bzw. 6, die einander kreuzen und an den Kreuzungspunkten miteinander verschweißt sind. Der gegenseitige Abstand der Längsdrähte 3, 4 bzw. der Querdrähte 5, 6 zueinander wird entsprechend den statischen Anordnungen an das Bauelement gewählt. Die Abstände werden vorzugsweise gleich groß, beispielsweise im Bereich 50 bis 100 mm gewählt, so daß die jeweils benachbarten Längs- und Querdrähte quadratische Maschen bilden. Die Maschen der Drahtgittermatten 1, 2 können auch rechteckig sein und beispielsweise kurze Seitenlängen von 50 mm und lange Seitenlängen im Bereich von 75 bis 100 mm aufweisen.
    Die Durchmesser der Längs- und Querdrähte sind ebenfalls entsprechend den statischen Erfordernissen gewählt und liegen vorzugsweise im Bereich von 2 bis 6 mm. Die Oberfläche der Gittermattendrähte kann glatt oder gerippt sein.
    Die beiden Drahtgittermatten 1, 2 sind miteinander durch mehrere Stegdrähte zu einem formstabilen räumlichen Gitterkörper verbunden. Die Stegdrähte 7 sind an ihren Enden jeweils mit den Drähten der beiden Drahtgittermatten 1, 2 verschweißt, wobei die Stegdrähte 7 entweder, wie in der Zeichnung dargestellt, mit den jeweiligen Längsdrähten 3, 4 oder mit den Querdrähten 5, 6 verschweißt werden. Die Stegdrähte 7 sind alternierend gegensinnig schräg, d.h. fachwerkartig angeordnet, wodurch der Gitterkörper gegen Scherbeanspruchungen versteift wird.
    Die Abstände der Stegdrähte 7 zueinander und ihre Verteilung im Bauelement hängen von der statischen Anforderung an das Bauelement ab und betragen beispielsweise entlang der Längsdrähte 200 mm und entlang der Querdrähte 100 mm. Die gegenseitigen Abstände der Stegdrähte 7, 7' in Richtung der Gittermatten-Längsdrähte 3, 4 und der Gittermatten-Querdrähte 5, 6 betragen zweckmäßig ein Vielfaches der Maschenteilung. Der Durchmesser der Stegdrähte liegt vorzugsweise im Bereich von 3 bis 7 mm, wobei bei Bauelementen mit dünnen Längs- und Querdrähten der Durchmesser der Stegdrähte vorzugsweise größer gewählt wird als der Durchmesser der Längs- und Querdrähte.
    Da der aus den beiden Drahtgittermatten 1, 2 und den Stegdrähten 7 gebildete, räumliche Gitterkörper nicht nur formstabil sein muß, sondern bei seiner bevorzugten Verwendung als Wand- und/oder Deckenelement die Funktion eines räumlichen Bewehrungselementes erfüllen muß, d.h. Schub- und Druckkräfte aufzunehmen hat, sind sowohl die Längs- und Querdrähte untereinander, wie bei Bewehrungsmatten üblich, als auch die Stegdrähte 7 mit den Gittermattendrähten 3, 4, 5, 6 unter Einhaltung einer Mindestfestigkeit der Schweißknoten verschweißt. Um die Funktion eines räumlichen Bewehrungselementes erfüllen zu können, müssen die Gittermattendrähte 3, 4, 5, 6 und die Stegdrähte 7 aus geeigneten Werkstoffen bestehen und entsprechende mechanische Festigkeitswerte besitzen, um als Armierungsdrähte für die als Gitterbewehrungsmatten einzusetzenden Drahtgittermatten 1, 2 bzw. als die beiden Drahtgittermatten 1, 2 verbindende Armierungsdrähte verwendbar zu sein.
    Es ist auch möglich, die Stegdrähte 7, 7' an ihren beiden Enden beispielsweise mittels Kunststoffschnurknoten oder Verrödelung zu verbinden. Alternativ können die Stegdrähte 7, 7' an ihrem einen Ende auf die vorgenannte Weise und an ihrem anderen Ende mittels Schweißung mit den Gittermattendrähten 3, 4, 5, 6 verbunden werden.
    Im Zwischenraum zwischen den Drahtgittermatten 1, 2 ist in einem vorgegebenen Abstand von den Drahtgittermatten und mittig zu diesen ein Isolierkörper 8 angeordnet, der zur Wärmeisolierung und Schalldämmung dient. Der Isolierkörper 8 besteht beispielsweise aus Schaumkunststoffen, wie Polystyrol- oder Polyurethan-Schaum, Schaumstoffen auf Gummi- und Kautschukbasis, Leichtbeton, wie Autoklaven- oder Gasbeton, porösen Kunststoffen, porösen Stoffen auf Gummi- und Kautschukbasis, gepreßter Schlacke, gepreßtem Schlamm, Gipskartonplatten, zementgebundenen Preßplatten, die aus Holzschnitzeln, Jute-, Hanf- und Sisalfasern, Reisspelzen, Strohabfällen, Zuckerrohrabfüllen bestehen, Mineral- und Glaswolle, Wellkarton, gepreßten Altpapier, gebundenem Ziegelsplitt, aufgeschmolzenen wiederverwertbaren Kunststoffabfälle, zusammengebundenen Schilf- und Bambusrohr.
    Der Isolierkörper 8 kann mit vorgebohrten Löchern zur Aufnahme der Stegdrähte 7 versehen sein. Der Isolierkörper 8 kann auch ein- oder beidseitig mit einer als Dampfsperre dienenden Kunststoff- oder Aluminiumschicht versehen sein. Die Lage des Isolierkörpers 8 im Bauelement wird durch die schräg verlaufenden Stegdrähte 7 festgelegt, die den Isolierkörper 8 durchdringen.
    Die Dicke des Isolierkörpers 8 ist frei wählbar und liegt beispielsweise im Bereich von 20 bis 200 mm. Die Abstände des Isolierkörpers 8 zu den Drahtgittermatten 1, 2 sind ebenfalls frei wählbar und liegen beispielsweise im Bereich von 10 bis 30 mm. Das Bauelement ist in beliebiger Länge und Breite herstellbar, wobei sich auf Grund des Herstellungsverfahrens eine Mindestlänge von 100 cm und Standardbreiten von 60 cm, 100 cm, 110 cm und 120 cm als vorteilhaft erwiesen haben.
    Wie aus der in Fig. 2 dargestellten Draufsicht des Bauelementes zu entnehmen ist, schließen am Rand des Bauelementes die Längsdrähte 3 und die Randlängsdrähte 3' jeweils bündig mit den Randquerdrähten 5' sowie die Querdrähte 5 und die Randquerdrähte 5' jeweils bündig mit den Randlängsdrähten 3' ab. Entsprechendes gilt analog für die Gittermattendrähte 4, 4', 6, 6' der anderen Drahtgittermatte 2.
    In Fig. 3 ist eine Seitenansicht des Bauelementes nach Fig. 1, in Richtung der Querdrahtschar gesehen, dargestellt. Hiebei bilden die alternierend gegensinnig schräg zueinander verlaufenden Stegdrähte 7 eine Reihe und sind jeweils mit den entsprechenden, übereinander angeordneten Längsdrähten 3 bzw. 4 der Drahtgittermatte 1 bzw. 2 verschweißt.
    Die Fig. 4 und 5 zeigen jeweils Ausführungsbeispiele mit verschiedenen Winkeln zwischen den Stegdrähten 7 und den entsprechenden Längsdrähten 3, 4 der Drahtgittermatten 1, 2, wobei gemäß Fig. 5 innerhalb eines Bauelementes auch unterschiedliche Winkel innerhalb einer Reihe von Stegdrähten möglich sind.
    Fig. 6 zeigt ein Bauelement, bei dem in einer Reihe die Stegdrähte 7 gleichsinnig schräg zwischen den Längsdrähten 3 und 4 der Drahtgittermatten 1, 2 verlaufen, während in der nächsten Reihe die strichliert gezeichneten Stegdrähte 7' ebenfalls gleichsinnig schräg, jedoch mit entgegengesetztem Richtungssinn zwischen den entsprechenden Längsdrähten verlaufen, d.h. das Bauelement besitzt mehrere Reihen von gleichsinnig schrägen Stegdrähten mit wechselndem Richtungssinn von Reihe zu Reihe. Die Reihen von gleichsinnig schräg ausgerichteten Stegdrähten können auch zwischen den Querdrähten 5, 6 der Drahtgittermatten 1, 2 verlaufen.
    Fig. 7 zeigt ein Bauelement mit gegensinnig schräg verlaufenden Stegdrähten 7 je Reihe, wobei die Abstände benachbarter Stegdrähte in der Reihe derart gewählt werden, daß die einander zugekehrten Enden der Stegdrähte sich möglichst nahe kommen, wodurch gegebenenfalls zwei Stegdrähte gemeinsam in einem Arbeitsgang mit dem entsprechenden Gitterdraht verschweißt werden können.
    Die Stegdrähte 7 können, wie in Fig. 8 dargestellt, auch senkrecht zu den Drahtgittermatten 1, 2 angeordnet werden. Da in diesem Fall die Lage des Isolierkörpers 8 im Gitterkörper durch die Stegdrähte 7 nur ungenügend fixiert wird, sind zum Festlegen des Isolierkörpers 8 mehrere Abstandhalter 9 vorgesehen, die sich jeweils an den entsprechenden Gittermattendrähten der Drahtgittermatten 1, 2 abstützen. Die Abstandhalter 9 werden auch bei Bauelementen mit schräg verlaufenden Stegdrähten 7 eingesetzt, wenn auf Grund der Materialbeschaffenheit des Isolierkörpers die Fixierung desselben im Gitterkörper durch die Stegdrähte nicht gewährleistet ist. Dies gilt beispielsweise für Isolierkörper aus zusammengebundenem Schilf- oder Bambusrohr.
    Wie Fig. 9 zeigt, kann der Isolierkörper 8 auch asymmetrisch zu den beiden Drahtgittermatten 1, 2 angeordnet werden. Hiebei sind die Durchmesser der Gitterdrähte 4, 4', 6, 6' der zum Isolierkörper 8 entfernter liegenden Drahtgittermatte 2 vorteilhaft größer als die Durchmesser der Gitterdrähte 3, 3', 5, 5' der zum Isolierkörper 8 näher liegenden Drahtgittermatte 1.
    Zur Versteifung des Gitterkörpers an seinen Rändern können gemäß Fig. 10 zusätzliche, vorzugsweise senkrecht zu den Drahtgittermatten 1, 2 verlaufende und mit den entsprechenden Randgitterdrähten 3', 4', 5', 6' der Drahtgittermatten 1, 2 verschweißte Randstegdrähte 10 vorgesehen werden. Der Durchmesser der Randstegdrähte 10 ist vorzugsweise gleich dem Durchmesser der Stegdrähte 7, 7'.
    In Fig. 11 ist ein Bauelement gemäß der Erfindung dargestellt, dessen Isolierkörper 8 an den parallel zu den Querdrähten 5, 6 verlaufenden Seitenflächen 11 nicht mit den beiden Drahtgittermatten 1, 2 abschließt, sondern von diesen seitlich überragt wird. Durch diese Ausführungsform wird beim Verknüpfen zweier gleichartiger Bauelemente erreicht, daß die Isolierkörper benachbarter Bauelemente ohne Zwischenraum angeordnet werden können, während die Drahtgittermatten der beiden Bauelemente einander jeweils überlappen und dadurch einen tragenden Überlappungsstoß bilden.
    Der Isolierkörper 8 kann auch an seinen beiden Seitenflächen 11 bündig mit der inneren Drahtgittermatte 2 abschließen und nur die beim praktischen Einsatz äußere Drahtgittermatte 1 überragen.
    Eine oder beide der Drahtgittermatten können den Isolierkörper 8 auch an allen Seitenflächen desselben seitlich überragen. Bei diesen Ausführungsbeispielen können etwaige Randstegdrähte 10 derart angeordnet werden, daß sie außerhalb des Isolierkörpers verlaufen oder an diesen seitlich anschließen.
    Die Längs- und Querdrähte der Drahtgittermatten 1, 2 sowie die Stegdrähte können jeden beliebigen Querschnitt besitzen. Die Querschnitte können oval, rechteckig, vieleckig oder, wie in Fig. 12 dargestellt, quadratisch sein. Die Bezugszeichen der entsprechenden Drähte lauten 3" bzw. 4" für die quadratischen Längsdrähte, 5" bzw. 6" für die quadratischen Querdrähte und 7" für die quadratischen Stegdrähte.
    Fig. 13 zeigt ein Bauelement, das einen zweiteiligen Isolierkörper 8' aufweist. Hiebei können, falls erforderlich, die Teile des Isolierkörpers an ihren Berührungsflächen miteinander verklebt sein. Die beiden Teile des Isolierkörpers 8' schließen zwecks Materialersparnis Hohlräume 12 ein, die jedoch auch mit anderen Materialien, beispielsweise schütt-, riesel- und fließfähigen Isolierstoffen, wie Holz- und Schaumstoffschnitzeln, Sand, Kunststoff-, Reis- oder Strohabfällen, gefüllt werden können. Der Isolierkörper 8' kann auch aus mehreren, miteinander verbindbaren Teilen bestehen, beispielsweise einen mehrschichtigen Aufbau aufweisen. Es ist weiterhin möglich, einen einteiligen Isolierkörper 8 mit Hohlräumen 12 zu versehen.
    Wie in den Fig. 14 und 15 schematisch dargestellt ist, wird an der zur Bildung der Bauelementaußenseite bestimmten äußeren Drahtgittermatte 1 eine Außenschale 13 beispielsweise aus Beton aufgebracht, die an den Isolierkörper 8 anschließt, die äußere Drahtgittermatte 1 umschließt und zusammen mit dieser den tragenden Bestandteil des erfindungsgemäßen Bauelementes bildet. Die Dicke der Außenschale 13 wird entsprechend den statischen, schall- und wärmetechnischen Anforderungen an das Bauelement gewählt und beträgt beispielsweise 20 bis 200 mm. Wird das Bauelement als Deckenelement verwendet, so muß aus statischen Gründen die Mindestdicke der Außenschale 13 50 mm betragen.
    Auf der zur Bildung der Bauelementinnenseite bestimmten inneren Drahtgittermatte 2 wird eine Innenschale 14 aufgebracht, die an den Isolierkörper 8 anschließt, die innere Drahtgittermatte 2 umschließt und beispielsweise aus Beton oder Mörtel besteht. Die Dicke der Innenschale 14 wird entsprechend den statischen, schall- und wärmetechnischen Anforderungen an das Bauelement gewählt und beträgt beispielsweise 20 bis 200 mm. Die beiden Schalen 13, 14 werden vorzugsweise am Verwendungsort des Bauelementes aufgebracht, beispielsweise im Naß- oder Trockenverfahren aufgespritzt.
    Da die im Innenbereich des Bauelementes liegenden Teilbereiche der Stegdrähte 7, 7' sowie gegebenenfalls auch der Randstegdrähte 10 nicht mit Beton überdeckt und daher der Korrosion ausgesetzt sind, müssen die Drähte 7, 7' bzw. 10 mit einer Korrosionsschutzschicht versehen werden. Dies wird vorzugsweise durch Verzinken und/oder Beschichten der Drähte 7, 7' bzw. 10 erreicht. Aus Kostengründen hat es sich als vorteilhaft erwiesen, bereits bei der Herstellung des Gitterkörpers zumindest für die Stegdrähte 7, 7' verzinkten Draht zu verwenden. Die Drähte 7, 7' bzw. 10 können auch aus rostfreien Stahlqualitäten oder aus anderen, nicht korrodierenden Werkstoffen, z.B. Aluminiumlegierungen, hergestellt werden, wobei diese mit den Gitterdrähten der Drahtgittermatten 1, 2 verbindbar, vorzugsweise verschweißbar sein müssen. Ebenso wie die Stegdrähte 7, 7' bzw. 10 können auch die Gittermattendrähte der Drahtgittermatten 1, 2 mit einer Korrosionsschutzschicht versehen sein oder aus rostfreien Stahlqualitäten oder aus anderen, nicht korrodierenden Werkstoffen bestehen.
    Aus statischen Gründen und/oder zur Erhöhung der Schalldämmung kann es erforderlich sein, das Bauelement an zumindest einer Bauelementseite mit einer sehr dicken Betonschale mit einer zweilagigen Bewehrung zu versehen. In Fig. 16a ist ein Ausschnitt eines Bauelementes mit einer sehr dicken Außenschale 13' aus Beton dargestellt, wobei die Außenschale 13' mit einer äußeren, zusätzlichen Bewehrungsmatte 15 bewehrt ist, deren Abstand zur äußeren Drahtgittermatte 1 entsprechend den statischen Anforderungen an das Bauelement frei wählbar ist. Die äußere Zusatzbewehrungsmatte 15 verhindert durch Temperaturund Schwundspannungen bedingte Rißbildungen in der Außenschale 13'.
    Das Bauelement kann aus statischen Gründen und/oder zur Erhöhung der Schalldämmung auch mit einer sehr dicken Innenschale 14' versehen werden, wobei diese entweder nur mit einer inneren Drahtgittermatte 2 oder, wie Fig. 16b zeigt, mit einer inneren Drahtgittermatte 2 und einer inneren, zusätzlichen Bewehrungsmatte 15' bewehrt ist. Der Abstand der inneren Zusatzbewehrungsmatte 15' zur inneren Drahtgittermatte 2 ist entsprechend den statischen Anforderungen an das Bauelement frei wählbar. Die Durchmesser der Gitterdrähte der inneren Zusatzbewehrungsmatte 15' sind vorzugsweise größer als die Durchmesser der Gitterdrähte der beiden Drahtgittermatten 1, 2 und liegen beispielsweise im Bereich von 6 bis 6 mm. Wird die dicke Innenschale 14' nur mit der inneren Drahtgittermatte 2 bewehrt, sind die Durchmesser der Gitterdrähte 4, 4', 6, 6' der inneren Drahtgittermatte 2 und der Stegdrähte 7, 7' vorzugsweise größer als die Durchmesser der Gitterdrähte 3, 3', 5, 5' der äußeren Drahtgittermatte 1 und liegen beispielsweise im Bereich von 5 bis 6 mm.
    Die innere Drahtgittermatte 2 und die innere Zusatzbewehrungsmatte 15' können durch mehrere Distanzdrähte 24 verbunden sein, die vorzugsweise senkrecht zu der inneren Drahtgittermatte 2 und inneren Zusatzbewehrungsmatte 15' verlaufen und deren gegenseitiger, seitlicher Abstand frei wählbar ist. Der Durchmesser der Distanzdrähte 24 ist vorzugsweise gleich den Durchmessern der Gitterdrähte der Drahtgittermatten 1, 2.
    Auch die äußere Zusatzbewehrungsmatte 15 und die äußere Drahtgittermatte 1 können mit Distanzdrähten verbunden sein, die vorzugsweise senkrecht zur äußeren Drahtgittermatte 1 und äußeren Zusatzbewehrungsmatte 15 verlaufen. Diese Distanzdrähte sind mit wählbaren seitlichen Abständen zueinander angeordnet und weisen Durchmesser auf, die vorzugsweise gleich den Durchmessern der Gitterdrähte der beiden Drahtgittermatten 1, 2 sind.
    Die dicken, mit zweilagiger Bewehrung versehenen Betonschalen 13' und 14' können am Verwendungsort des Bauelementes auch aus Ortbeton gegossen werden, wobei die äußere Begrenzung der Betonschalen 13', 14' durch eine nicht dargestellte Verschalung gebildet wird.
    Wie Fig. 17 zeigt, kann an der Innenseite des Bauelementes anstelle der inneren Betonschale eine Auskleidungsplatte 16 angeordnet werden, die auf der inneren Drahtgittermatte 2 aufliegt und an einer Montagehilfsvorrichtung 17 befestigt ist. Die Auskleidungsplatte 16 bildet die nicht tragende Innenwand des Bauelementes und kann, da sie keine statischen Aufgaben erfüllen muß, aus Leichtbaumaterial, wie aus einer Sperrholzplatte, einer Gipskartonplatte u.dgl. bestehen und entsprechend den Ausstattungswünschen an den Innenraum dekorativ gestaltet werden. Die Montagehilfsvorrichtung 17 ist zwischen dem Isolierkörper 8 und der inneren Drahtgittermatte 2 angeordnet und besteht beispielsweise aus mehreren Leisten, die zwischen den Stegdrähten in vertikaler Richtung verlaufen, soferne das Bauelement als Wandbauelement verwendet wird. Die Montagehilfsvorrichtung 17 kann, falls erforderlich, an den Drähten 4 bzw. 6 der inneren Drahtgittermatte 2, beispielsweise mittels nicht dargestellter Heftklammern, oder am Isolierkörper 8, beispielsweise mittels einer Klebeschicht, befestigt sein. Die Montagehilfsvorrichtung 17 muß aus geeignetem Material, beispielsweise aus Holz bestehen, das eine sichere Verankerung der Auskleidungsplatte 16 an der dazwischenliegenden, inneren Drahtgittermatte 2 gewährleistet. Durch die erfindungsgemäße Ausgestaltung wird die Auskleidungsplatte 16 nicht am Isolierkörper 8 befestigt, der naturgemäß auf Grund seiner Materialbeschaffenheit keine sichere Anbringung gestattet, sondern an der inneren Drahtgittermatte 2 stabil verankert bzw. gegen diese festgeklemmt.
    Um beim Aufspritzen der Außenschale 13 und der Innenschale 14 aus Beton die Haftung auf den beiden, den Drahtgittermatten 1, 2 zugekehrten Deckflächen 18 des Isolierkörpers 8, 8' zu verbessern und ein unerwünschtes Herabfließen des Materials bei der Verarbeitung zu verhindern, können die Deckflächen 18 des Isolierkörpers 8, 8' aufgerauht werden. Wie in Fig. 18 dargestellt ist, können die Deckflächen mit Vertiefungen 19 versehen werden, die beispielsweise mit Hilfe von Zahnrädern oder Walzen, die auf ihren Umfang Stacheln oder Noppen tragen, während der Herstellung des Bauelementes in die Deckenflächen 18 des Isolierkörpers geformt werden.
    Es ist gemäß Fig. 19 möglich, den Isolierkörper 8, 8' an seinen Deckflächen 18 mit Querrillen 20 zu versehen, die bei Verwendung des Bauelementes als Wandelement in horizontaler Richtung verlaufen. Die Vertiefungen 19 und die Querrillen 20 können auch bereits bei der Herstellung des Isolierkörpers erzeugt werden.
    Zur Verbesserung der Haftung der äußeren Betonschale 13 auf dem Isolierkörper 8, 8' kann, wie in Fig. 20 dargestellt, ein Putzträgergitter 21 Verwendung finden, das auf der Deckfläche 18 des Isolierkörpers 8, 8' aufliegt und durch die Stegdrähte 7 oder den Isolierkörper 8, 8' fixiert wird. Das Putzträgergitter 21 besteht beispielsweise aus einem feinmaschigen geschweißten oder gewebten Drahtgitter mit einer Maschenweite von beispielsweise 10 bis 25 mm und Drahtdurchmessern im Bereich von 0,8 bis 1 mm. Das Putzträgergitter 21 kann auch aus Streckmetall bestehen. Zwischen dem Putzträgergitter 21 und der Deckfläche 18 des Isolierkörpers 8, 8' kann eine zusätzliche Trennschicht 22 aus beispielsweise imprägnierten Baupapier oder Karton angeordnet werden, die gleichzeitig als Dampfsperre dient und vorzugsweise mit dem Putzträgergitter 21 verbunden ist.
    In Fig. 21 ist ein weiteres Ausführungsbeispiel eines Bauelementes nach der Erfindung dargestellt, wobei im Bauelement zwei Trennschichten 22 mit wählbarem Abstand zur jeweils benachbarten Drahtgittermatte 1 bzw. 2 und derart mit einem wählbaren Abstand zueinander angeordnet sind, daß zwischen den Trennschichten 22 ein Zwischenraum 23 gebildet wird. Die Trennschichten 22 können beispielsweise aus Karton, Pappe, Kunststoffplatten, dünnen Gipskartonplatten oder Betonplatten mit oder ohne Bewehrung bestehen. Die Trennschichten 22 werden entweder von den Stegdrähten 7 oder mit Hilfe von Abstandhaltern in ihre Lage relativ zu den Drahtgittermatten 1, 2 festgelegt. Der Zwischenraum 23 zwischen den Trennschichten 22 wird entweder bei der Herstellung des Bauelementes oder erst am Verwendungsort des Bauelementes mit geeignetem Isoliermaterial gefüllt, wodurch eine zentrale Isolierschicht 8" im Bauelement entsteht. Da die Trennschichten 22 die Begrenzungsflächen der zentralen Isolierschicht 8" genau festlegen, ist es möglich, zum Aufbau der Isolierschicht Materialien zu verwenden, die nicht formstabil oder selbsttragend sein müssen. Die Materialien sollten jedoch schütt-, riesel- oder fließfähig sein und können beispielsweise aus in situ schäumbaren Kunststoffen, Kunststoff-, Gummi- oder Holzabfällen, Schaumstoffschnitzeln, Sand, Schlacke, Blähbeton, Reis- oder Strohabfällen oder Ziegelsplitt bestehen. Auf den den Drahtgittermatten 1 bzw. 2 zugekehrten Flächen der Trennschichten 22 kann außerdem jeweils ein Putzträgergitter 21 angeordnet werden.
    Es versteht sich, daß die geschilderten Ausführungsbeispiele im Rahmen der Ansprüche verschiedentlich abgewandelt werden können; insbesondere ist es möglich, die Außenschale 13 und/oder die Innenschale 14 bzw. die Auskleidungsplatte 16 bereits im Herstellerwerk am Bauelement anzubringen. Der Isolierkörper 8, 8' und die zentrale Isolierschicht 8" sowie die Trennschichten 22 können aus schwer oder nicht entflammbaren Materialien bestehen oder mit Stoffen imprägniert oder versehen werden, die den Isolierkörper 8, 8', die zentrale Isolierschicht 8" und die Trennschichten 22 schwer oder nicht entflammbar machen. Der Isolierkörper 8, 8' und die Trennschichten 22 können außerdem mit einem schwer- oder nicht entflammbaren Anstrich versehen werden.
    Es ist weiterhin möglich, daß der Isolierkörper 8, 8' oder die zentrale Isolierschicht 8" an zumindest einer Seitenfläche 11 des Isolierkörpers 8, 8' oder der zentralen Isolierschicht 8" zumindest eine Drahtgittermatte 1, 2 seitlich überragt.

    Claims (11)

    1. Bauelement, bestehend aus zwei parallelen geschweißten Drahtgittermatten (1, 2) mit quadratischen oder rechteckigen Maschen, aus geraden, die Drahtgittermatten in einem vorbestimmten gegenseitigen Abstand haltenden, zu den Drahtgittermatten schräg verlaufenden und an jedem Ende mit diesen verschweißten Einzelstegdrähten (7, 7'), die zwischen den Drähten der als Bewehrungsmatte ausgebildeten Drahtgittermatten (1, 2) in parallelen Reihen angeordnet sind und einen im Vergleich zu den Gittermattendrähten (3, 3', 3", 4, 4', 4", 5, 5', 5", 6, 6', 6") größeren Durchmesser haben, so daß sie Schubbewehrungselemente bilden, wobei die Abstände der Stegdrähte (7, 7') zueinander in Richtung der Gittermatten-Längsdrähte und der Gittermatten-Querdrähte ein Vielfaches der Teilung der Gittermattenmaschen betragen, und aus einem zwischen den Drahtgittermatten (1, 2) mit vorbestimmten Abständen zu diesen angeordneten einteiligen formstabilen Isolierkörper (8, 8'), insbesondere aus Schaumkunststoff, der ausschließlich durch die diesen durchsetzenden, in jeder Stegdrahtreihe fachwerkartig, abwechselnd gegensinnig schräg verlaufenden Stegdrähte (7, 7') zwischen den Drahtgittermatten (1, 2) gehalten ist, wobei zumindest eine Deckfläche des Isolierkörpers (8, 8') für eine aus tragfähigem Material bestehende Außenschale mit einem Putzträgergitter (21) versehen ist und zwischen dem Putzträgergitter (21) und der Deckfläche (18) des Isolierkörpers (8, 8') eine die gesamte Deckfläche überdeckende Trennschicht (22) vorgesehen ist, die vorzugsweise als Dampfsperre dient und mit dem Putzträgergitter (21) verbunden ist.
    2. Bauelement nach Anspruch 1, dadurch gekennzeichnet, daß die Trennschicht (22) aus Karton, Pappe, einer Kunststoffplatte, Gipskartonplatte oder dünnen Betonplatte mit oder ohne Bewehrung besteht.
    3. Bauelement nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Isolierkörper (8, 8') aus nicht oder zumindest schwer entflammbaren Materialien besteht.
    4. Bauelement nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Isolierkörper (8, 8') durch Imprägnierung und/oder Zusatzstoffe nicht oder zumindest schwer entflammbar gemacht sind.
    5. Bauelement nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Dicke des Isolierkörpers (8, 8') im Bereich von 20 bis 200 mm liegt und daß in zumindest einer Deckfläche (18) des Isolierkörpers (8, 8') mehrere, im Einbauzustand des Bauelementes horizontal verlaufende Querrillen (20) ausgebildet sind.
    6. Bauelement nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß der Isolierkörper (8, 8') mittig zu den beiden Drahtgittermatten (1, 2) angeordnet ist, wobei der Abstand zu jeder Drahtgittermatte (1, 2) vorzugsweise 10 bis 30 mm beträgt.
    7. Bauelement nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß zumindest eine Drahtgittermatte (1, 2) den Isolierkörper (8, 8') an zumindest einer Seitenfläche (11) desselben, wie an sich bekannt, seitlich überragt.
    8. Bauelement nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Isolierkörper (8, 8') an zumindest einer Seitenfläche (11) desselben zumindest eine Drahtgittermatte (1, 2) seitlich überragt.
    9. Bauelement nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß an der zur Bildung der Bauelementaußenseite bestimmten äußeren Drahtgittermatte (1) eine zweilagig ausgebildete Außenschale (13') aus Beton aufgebracht ist, die an den Isolierkörper (8, 8') anschließt, die äußere Drahtgittermatte (1) umschließt und zusammen mit dieser den tragenden Bestandteil des Bauelementes bildet, wobei die zweilagige Außenschale (13') mit einer Zusatzbewehrungsmatte (15) versehen ist.
    10. Bauelement nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß an der zur Bildung der Bauelementinnenseite bestimmten inneren Drahtgittermatte (2) eine Innenschale (14, 14') aufgebracht wird, die an den Isolierkörper (8, 8') anschließt, die innere Drahtgittermatte (2) umschließt und zusammen mit dieser den tragenden Bestandteil des Bauelementes bildet, wobei die Innenschale (14') mit einer inneren Zusatzbewehrungsmatte (15') versehen ist.
    11. Bauelement nach Anspruch 10, dadurch gekennzeichnet, daß die innere Zusatzbewehrungsmatte (15') mit der inneren Drahtgittermatte (2) und/oder die äußere Zusatzbewehrungsmatte (15) mit der äußeren Drahtgittermatte (1) je durch mehrere Distanzdrähte (24) verbunden ist, wobei die Distanzdrähte (24) mit wählbarem, gegenseitigen Abstand angeordnet sind und vorzugsweise senkrecht zu den Drahtgittermatten (1, 2) und den Zusatzbewehrungsmatten (15, 15') verlaufen, wobei ihre Durchmesser vorzugsweise gleich den Durchmessern der Gittermattendrähte (3, 3', 4, 4', 5, 5', 6, 6') sind.
    EP93917427A 1993-06-02 1993-07-22 Bauelement Expired - Lifetime EP0701647B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    AT0107293A AT406064B (de) 1993-06-02 1993-06-02 Bauelement
    AT1072/93 1993-06-02
    PCT/AT1993/000123 WO1994028264A1 (de) 1993-06-02 1993-07-22 Bauelement

    Publications (2)

    Publication Number Publication Date
    EP0701647A1 EP0701647A1 (de) 1996-03-20
    EP0701647B1 true EP0701647B1 (de) 1998-06-03

    Family

    ID=3505998

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP93917427A Expired - Lifetime EP0701647B1 (de) 1993-06-02 1993-07-22 Bauelement

    Country Status (16)

    Country Link
    US (3) US6272805B1 (de)
    EP (1) EP0701647B1 (de)
    JP (1) JPH09504844A (de)
    KR (1) KR100252612B1 (de)
    CN (1) CN1069727C (de)
    AT (2) AT406064B (de)
    AU (1) AU4689593A (de)
    DE (1) DE59308654D1 (de)
    DZ (1) DZ1737A1 (de)
    GR (1) GR960300025T1 (de)
    JO (1) JO1788B1 (de)
    MY (1) MY111596A (de)
    PL (2) PL56798Y1 (de)
    SA (1) SA94140688B1 (de)
    WO (1) WO1994028264A1 (de)
    ZA (1) ZA938397B (de)

    Families Citing this family (155)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    AT406064B (de) * 1993-06-02 2000-02-25 Evg Entwicklung Verwert Ges Bauelement
    DE19505969A1 (de) * 1995-02-21 1996-08-22 Gruenzweig & Hartmann Dämmplatte aus Mineralwolle sowie Verfahren zur Herstellung derselben
    DE19633874A1 (de) * 1996-08-13 1998-02-19 Joerg Kschiwan Mit Wasserzusatz aushärtbare dämmende Baustoffmasse
    AT410688B (de) 1996-11-21 2003-06-25 Evg Entwicklung Verwert Ges Bauelement
    IT1289898B1 (it) * 1997-01-15 1998-10-19 Froma S R L Pannello strutturale prefabbricato per la costruzione di edifici per uso civile o industriale
    AT408321B (de) 1998-10-09 2001-10-25 Evg Entwicklung Verwert Ges Verfahren und anlage zum kontinuierlichen herstellen von bauelementen
    FR2787049B1 (fr) * 1998-12-11 2001-02-23 Jacques Beurtheret Procede de fabrication d'armatures pour beton arme, et installation pour la mise en oeuvre de ce procede
    US20060016146A1 (en) * 1999-03-31 2006-01-26 Heath Mark D Structural panel and method of fabrication
    US6718712B1 (en) * 1999-03-31 2004-04-13 Mark David Heath Structural panel and method of fabrication
    US20050284088A1 (en) * 1999-03-31 2005-12-29 Heath Mark D Structural panel and method of fabrication
    AT411474B (de) 1999-11-26 2004-01-26 Evg Entwicklung Verwert Ges Verfahren und vorrichtung zum herstellen eines fertigteilelementes aus gussbeton
    KR20010066395A (ko) * 1999-12-31 2001-07-11 김용석 천정 및 벽면의 난연성 장식마감재 및 그 시공법
    DE10002383A1 (de) * 2000-01-20 2001-07-26 Oliver Matthaei Querkraftbeanspruchtes Stahl- oder Spannbetonteil
    EP1317591A1 (de) * 2000-09-13 2003-06-11 Serge Meilleur Isolierte schalungspaneele und verfahren zu ihrer herstellung
    US6622444B2 (en) * 2000-12-04 2003-09-23 Gabriel Humberto Zarate Sanchez Synthetic core construction panel and apparatus for making same
    US6718722B2 (en) * 2000-12-20 2004-04-13 Dharma Properties Taos, Inc. Construction composition, structure, and method
    US20050262786A1 (en) * 2002-03-06 2005-12-01 Messenger Harold G Concrete foundation wall with a low density core and carbon fiber and steel reinforcement
    US6701683B2 (en) * 2002-03-06 2004-03-09 Oldcastle Precast, Inc. Method and apparatus for a composite concrete panel with transversely oriented carbon fiber reinforcement
    US7627997B2 (en) * 2002-03-06 2009-12-08 Oldcastle Precast, Inc. Concrete foundation wall with a low density core and carbon fiber and steel reinforcement
    US6898908B2 (en) * 2002-03-06 2005-05-31 Oldcastle Precast, Inc. Insulative concrete building panel with carbon fiber and steel reinforcement
    US7100336B2 (en) * 2002-03-06 2006-09-05 Oldcastle Precast, Inc. Concrete building panel with a low density core and carbon fiber and steel reinforcement
    MXPA02004426A (es) * 2002-05-03 2004-09-10 Lopez Ochoa Fernando Muro panel termico estructural modificado y losa panel termico estructural modificado.
    US6951080B2 (en) 2002-05-10 2005-10-04 Oryzatech Inc. Culm blocks
    US20040103613A1 (en) * 2002-08-12 2004-06-03 Donald Salzsauler Composite structural member
    DE10250665B4 (de) * 2002-09-10 2004-08-26 Weinmann Holzbausystemtechnik Gmbh Verfahren zur Herstellung von Sandwich-Wandelementen
    US20040055247A1 (en) * 2002-09-25 2004-03-25 Keith David O. High strength composite wall connectors having a tapered edge
    US6895720B2 (en) * 2002-09-25 2005-05-24 Hk Marketing Lc High strength composite wall connectors having tapered or pointed ends
    KR100475509B1 (ko) * 2002-10-16 2005-03-10 이한웅 건축용 단열패널
    CN1771373A (zh) * 2002-10-30 2006-05-10 布纳斯特科瑞特设备公司 金属丝网找平层
    US8122662B2 (en) * 2002-10-30 2012-02-28 Met-Rock, Llc Low-cost, energy-efficient building panel assemblies comprised of load and non-load bearing substituent panels
    US20060137282A1 (en) * 2002-12-19 2006-06-29 Anvick Theodore E Anvick aperture device and method of forming and using same
    DE10327466B4 (de) * 2003-01-13 2008-08-07 Jan Forster Baukörper für Strahlenschutzbauwerke
    US7562508B2 (en) * 2003-11-07 2009-07-21 Martin Marietta Materials, Inc. Shelter and associated method of assembly
    JP4568728B2 (ja) * 2003-11-07 2010-10-27 全南大学校産業財団 連続ワイヤーで直接織られた3次元の多孔質軽量構造体及びその製造方法
    US7562613B2 (en) * 2003-12-19 2009-07-21 The Cooper Union For The Advancement Of Science And Art Protective structure and protective system
    US6973864B1 (en) * 2003-12-19 2005-12-13 The Cooper Union For The Advancement Of Science And Art Protective structure and protective system
    US20050223671A1 (en) * 2004-03-24 2005-10-13 Oryzatech, Inc. Culm block and method for forming the same
    US8112957B2 (en) * 2004-06-11 2012-02-14 Guillaum Eugene Hillers Building component based on a plastic foam material
    ITMI20041644A1 (it) * 2004-08-11 2004-11-11 Eni Spa Procedimento per lo stoccaggio di zolfo ad emissione zero
    US20060042874A1 (en) * 2004-08-24 2006-03-02 Matthew Foster Acoustical and firewall barrier assembly
    US7216462B2 (en) * 2004-10-26 2007-05-15 Fabcon, Inc. Insulated concrete panel billets
    US7614199B2 (en) * 2004-11-18 2009-11-10 Smalley Iii Arthur L Method and system for modular building construction
    US20060236627A1 (en) * 2005-04-01 2006-10-26 Messenger Harold G Combination lift and anchor connector for fabricated wall and floor panels
    US20060218870A1 (en) * 2005-04-01 2006-10-05 Messenger Harold G Prestressed concrete building panel and method of fabricating the same
    DE202005005924U1 (de) * 2005-04-12 2005-06-30 Glatthaar-Fertigkeller Gmbh Kerngedämmte Fertigteilwand mit Verbundnadeln
    US7805908B2 (en) * 2005-04-25 2010-10-05 Cortek, Inc. Load-bearing system for fill material structure formation
    US7856778B2 (en) * 2005-05-25 2010-12-28 University Of Utah Foundation FRP composite wall panels and methods of manufacture
    US7908810B2 (en) * 2005-06-30 2011-03-22 United States Gypsum Company Corrugated steel deck system including acoustic features
    US20070000202A1 (en) * 2005-06-30 2007-01-04 Yue-Yue Yang Artificial stone slab having a lining structure
    US20070144093A1 (en) * 2005-07-06 2007-06-28 Messenger Harold G Method and apparatus for fabricating a low density wall panel with interior surface finished
    US20070044426A1 (en) * 2005-08-25 2007-03-01 Scott Deans Lightweight Wall Structure For Building Construction
    US20080010920A1 (en) * 2005-09-07 2008-01-17 Andersen Erwin J Method of building construction
    WO2007040508A2 (en) * 2005-09-29 2007-04-12 Martin Marietta Materials, Inc. Shelter and associated method of assembly
    US20070095006A1 (en) * 2005-11-01 2007-05-03 Konersmann Ronald D Lightweight portable concrete enclosure and associated method of construction
    GB0522750D0 (en) * 2005-11-08 2005-12-14 Timber Sound Insulation Ltd Structural member
    US7891150B2 (en) * 2006-01-25 2011-02-22 Finfrock Industries, Inc. Composite truss
    AT503489B1 (de) * 2006-02-22 2009-12-15 Evg Entwicklung Verwert Ges Bauelement
    US8544240B2 (en) * 2006-03-11 2013-10-01 John P. Hughes, Jr. Ballistic construction panel
    US7762033B2 (en) * 2006-03-29 2010-07-27 Scott Robert E Wall construction system and method
    US7404690B2 (en) * 2006-03-31 2008-07-29 Champagne Edition, Inc. Temporary road element
    US20080104913A1 (en) * 2006-07-05 2008-05-08 Oldcastle Precast, Inc. Lightweight Concrete Wall Panel With Metallic Studs
    US20080155919A1 (en) * 2006-12-29 2008-07-03 Petros Keshishian Method of manufacturing composite structural panels and using superimposed truss members with same
    ES2315154B1 (es) * 2007-02-13 2009-12-09 Harley Resources, Inc Paneles estructurales conectados para edificaciones.
    KR100771248B1 (ko) 2007-03-30 2007-10-29 이귀복 건물용 조립 유닛과, 이의 제조 및 사용 방법
    US20080236069A1 (en) * 2007-03-30 2008-10-02 Jason Hensley Lightweight concrete panel
    US20080263978A1 (en) * 2007-04-27 2008-10-30 Zaher Ali Abou-Saleh Reinforcing Assemblies and Reinforced Concrete Structures
    US20090113829A1 (en) * 2007-05-14 2009-05-07 Meier Franz X Three dimensional building element
    US8485873B2 (en) 2007-07-03 2013-07-16 Frank A. Sisk Steel anchored reinforced mine seal
    ATE472398T1 (de) 2007-07-06 2010-07-15 Iconorm Gmbh Dämmkörper für eine wärmegedämmte betonwand und wärmegedämmte betonwand sowie verfahren zur herstellung
    US20090031661A1 (en) * 2007-07-30 2009-02-05 Khatchik Chris Khatchikian Panels and a method of making
    WO2009039440A2 (en) * 2007-09-21 2009-03-26 Oryzatech, Inc. Improved building block, building block mold, and method for forming building block
    DE502008001374D1 (de) * 2007-10-18 2010-11-04 Xella Baustoffe Gmbh Verfahren zur Herstellung eines Montagebauteils für selbsttragende Dachtafeln oder Wandplatten
    DE102007063668B4 (de) * 2007-10-18 2016-02-18 Institut für Fertigteiltechnik und Fertigbau Weimar e.V. Montagebauteil für selbsttragende Dachtafeln oder Wandplatten aus Porenbeton
    WO2009053765A1 (en) * 2007-10-23 2009-04-30 Schnell House S.A. Modular panel
    US20090113820A1 (en) * 2007-10-30 2009-05-07 Scott Deans Prefabricated wall panel system
    HU227029B1 (en) 2007-12-04 2010-05-28 Tamas Barkanyi Active heat-insulating building structure
    US7739844B2 (en) * 2008-05-27 2010-06-22 American Fortress Homes, Inc. Composite building panel
    KR101029176B1 (ko) 2008-08-14 2011-04-12 전남대학교산학협력단 트러스 형태의 주기적인 다공질 재료로 보강된 발포 심재를갖는 경량 샌드위치 판재 및 그 제조방법
    EP2182269A1 (de) * 2008-10-31 2010-05-05 Rockwool International A/S Isolierverbund
    US8256173B2 (en) * 2008-11-17 2012-09-04 Skidmore, Owings & Merrill Llp Environmentally sustainable form-inclusion system
    WO2010057229A1 (de) * 2008-11-20 2010-05-27 Evg Entwicklungs- Und Verwertungs-Gesellschaft M.B.H. Bauelement zur errichtung von wänden
    DE102008063289A1 (de) * 2008-12-30 2010-07-01 Kieselstein Gmbh Dreidimensionale Drahtstruktur in Leichtbauweise und Verfahren zu deren Herstellung
    WO2010098711A1 (en) * 2009-02-27 2010-09-02 Givent Holdings Ltd. Wall element and method for producing the element
    RU2011139426A (ru) * 2009-02-27 2013-04-10 Дживент Лтд. Элемент конструкции и способ его изготовления
    EP2236686A1 (de) * 2009-04-03 2010-10-06 F.J. Aschwanden AG Bewehrungselement für die Aufnahme von Kräften von betonierten Platten im Bereich von Stützelementen
    WO2011005464A2 (en) * 2009-06-22 2011-01-13 Portable Composite Structures, Inc. Method and system for a foldable structure employing material-filled panels
    CH701464B1 (de) 2009-07-03 2015-01-15 Misapor Ag Gegossenes Wand-, Boden- oder Deckenelement und Verfahren zu dessen Herstellung.
    JP5517226B2 (ja) * 2009-07-17 2014-06-11 ストーン トロイハンド アーゲー 建築物用の壁構造体
    FR2948708B1 (fr) * 2009-07-29 2011-08-05 Maisons Naturelles En Beton De Chanvre Procede de fabrication de panneaux avec isolation integree pour la realisation de batiments, panneaux ainsi realises
    KR101127930B1 (ko) * 2009-07-30 2012-03-23 다우산업 주식회사 현장 시공형 경량 벽체용 조성물과 이를 이용한 경량 벽체 제조 방법
    CN102630266B (zh) * 2009-09-29 2014-09-24 上海一金节能科技有限公司 加筋聚苯板
    ITMI20100071A1 (it) * 2010-01-21 2011-07-22 Isoltech Srl Manufatto per solai prefabbricati.
    US9016027B1 (en) 2010-03-03 2015-04-28 Kenneth Robert Kreizinger Method of building insulated concreted wall
    US8555583B2 (en) 2010-04-02 2013-10-15 Romeo Ilarian Ciuperca Reinforced insulated concrete form
    GB201006176D0 (en) * 2010-04-14 2010-06-02 Mccrea Brendan Structual panel and a building structure formed therefrom
    US8726598B2 (en) 2010-07-13 2014-05-20 Peter W Harding Non-structural insulating panel system
    GB2497230A (en) * 2010-08-06 2013-06-05 Shanghai One Gold Energy Saving Technology Co Ltd Externally insulated wall having machine anchored grid-enforced insulation board
    US20130143061A1 (en) * 2010-08-06 2013-06-06 Jinlie Zhou Grid-Reinforced Insulation Board
    DE102010062061A1 (de) * 2010-11-26 2012-05-31 Wacker Chemie Ag Bauelemente in Plattenform
    US20120247046A1 (en) * 2011-03-28 2012-10-04 Scott Jewett Wall construction panels and methods for forming structures using wall construction panels
    CH704894A2 (de) * 2011-05-04 2012-11-15 H D S Technology Ag Raumbegrenzungsaufbau, Verfahren zum Herstellen desselben und Element dafür.
    US8839580B2 (en) * 2011-05-11 2014-09-23 Composite Technologies Corporation Load transfer device
    US9421698B2 (en) * 2011-07-12 2016-08-23 The Boeing Company Masterless layup mandrel tool
    US8555584B2 (en) 2011-09-28 2013-10-15 Romeo Ilarian Ciuperca Precast concrete structures, precast tilt-up concrete structures and methods of making same
    US8756890B2 (en) * 2011-09-28 2014-06-24 Romeo Ilarian Ciuperca Insulated concrete form and method of using same
    AU2012336298B2 (en) 2011-11-11 2014-10-30 Romeo Ilarian Ciuperca Concrete mix composition, mortar mix composition and method of making and curing concrete or mortar and concrete or mortar objects and structures
    DE102012101498A1 (de) * 2012-01-03 2013-07-04 Groz-Beckert Kg Bauelement und Verfahren zur Herstellung eines Bauelements
    CN102979192A (zh) * 2012-05-24 2013-03-20 许昌宏创节能建材装饰有限公司 U型内置复合保温体系
    US8881480B1 (en) * 2012-05-25 2014-11-11 Phase Change Energy Solutions, Inc. Construction assembly and method
    US20140000199A1 (en) * 2012-07-02 2014-01-02 Integrated Structures, Inc. Internally Braced Insulated Wall and Method of Constructing Same
    US8532815B1 (en) 2012-09-25 2013-09-10 Romeo Ilarian Ciuperca Method for electronic temperature controlled curing of concrete and accelerating concrete maturity or equivalent age of concrete structures and objects
    US8636941B1 (en) 2012-09-25 2014-01-28 Romeo Ilarian Ciuperca Methods of making concrete runways, roads, highways and slabs on grade
    US9458637B2 (en) 2012-09-25 2016-10-04 Romeo Ilarian Ciuperca Composite insulated plywood, insulated plywood concrete form and method of curing concrete using same
    US8877329B2 (en) 2012-09-25 2014-11-04 Romeo Ilarian Ciuperca High performance, highly energy efficient precast composite insulated concrete panels
    US20140137727A1 (en) * 2012-11-05 2014-05-22 Hipertex Armor Group, LLC Blast-resistant reinforced cementitious panels and reinforcing structures for use therein
    EP2767373A1 (de) * 2013-02-15 2014-08-20 Bayer MaterialScience AG Verfahren zur Herstellung eines mehrschichtigen, bewehrten Betonelements
    US10065339B2 (en) 2013-05-13 2018-09-04 Romeo Ilarian Ciuperca Removable composite insulated concrete form, insulated precast concrete table and method of accelerating concrete curing using same
    US10220542B2 (en) 2013-05-13 2019-03-05 Romeo Ilarian Ciuperca Insulated concrete battery mold, insulated passive concrete curing system, accelerated concrete curing apparatus and method of using same
    DE102013011083A1 (de) * 2013-07-02 2015-01-08 Groz-Beckert Kg Verfahren zum Herstellen eines Betonbauteils, vorgefertigtes Bauelement eines Betonbauteils sowie Betonbauteil
    WO2015035409A2 (en) 2013-09-09 2015-03-12 Ciuperca Romeo Llarian Insulated concrete slip form and method of accelerating concrete curing using same
    EP2868826A1 (de) * 2013-10-31 2015-05-06 Basf Se Betonelement umfassend einen Schallabsorber
    US9797136B2 (en) 2013-10-31 2017-10-24 University Of North Carolina At Charlotte High performance architectural precast concrete wall system
    US9896841B2 (en) * 2014-03-18 2018-02-20 Angelo Candiracci Prefabricated building product structure made of sintered expanded polystyrene and method for the relative production
    US9371650B2 (en) * 2014-03-24 2016-06-21 Manuel R. Linares, III Precast concrete sandwich panels and system for constructing panels
    CN105275147A (zh) * 2014-06-16 2016-01-27 廖树汉 虫蚁不食保温隔音千度不燃的不锈钢复合谷壳板
    CN105275128A (zh) * 2014-06-16 2016-01-27 廖树汉 虫蚁不食保温隔音千度不燃的不锈钢复合蔗渣板
    AT516119B1 (de) * 2014-08-12 2016-05-15 Rapperstorfer Hubert Doppelwand sowie Verfahren zum Herstellen einer Doppelwand
    US20160222660A1 (en) * 2015-02-04 2016-08-04 Rodney I. Smith Prefabricated building panel
    US9534384B2 (en) * 2015-03-27 2017-01-03 Keith N. Homenko Concrete and insulation composite structural building panels including angled shear connectors
    US10358819B2 (en) 2015-07-16 2019-07-23 Yonathan TANAMI Construction block, a wall structure comprising the same, and a method for manufacture of said construction block and of said wall structure
    CN105421826B (zh) * 2015-12-08 2018-11-27 太空智造股份有限公司 一种装配式整体卫生间及其建造方法
    CN105421657B (zh) * 2015-12-08 2018-10-02 太空智造股份有限公司 具有燕尾槽式钢边肋结构的发泡水泥复合板及其连接方法
    LT6474B (lt) * 2016-01-20 2017-11-10 Uab „Trd Lt“ Kompozitinė pastato plokštė, jos gamybos ir panaudojimo būdas
    US10280622B2 (en) 2016-01-31 2019-05-07 Romeo Ilarian Ciuperca Self-annealing concrete forms and method of making and using same
    CN105649264A (zh) * 2016-03-17 2016-06-08 张家口建工集团广建新型建筑节能材料有限公司 一种钢筋网架轻质复合墙板及其施工方法
    RU2652728C1 (ru) * 2016-07-06 2018-04-28 Закрытое акционерное общество "Минеральная Вата" Способ теплоизоляции строительной поверхности и соответствующая ему теплоизоляционная плита
    RU173026U1 (ru) * 2017-01-24 2017-08-07 Общество с ограниченной ответственностью "Теплый Монолит" Стеновая 3D панель
    US9903111B1 (en) * 2017-02-14 2018-02-27 Orial Nir Construction assembly and method for laying blocks
    DE202017101111U1 (de) * 2017-02-28 2017-03-11 C.B.S. Team-Projektgesellschaft mbH Porenbeton-Hybrid-Bauelement
    KR20180002969U (ko) 2017-04-07 2018-10-17 임도근 건축용 와이어 메쉬 패널
    US11085186B2 (en) * 2017-07-04 2021-08-10 Shandong University Thermal-insulated exterior wall boards, dedicated molds and making methods thereof
    US10208493B1 (en) * 2017-11-08 2019-02-19 4M Co., Ltd. Column reinforcing structure using V-shaped tie bars
    US10364571B1 (en) * 2018-01-11 2019-07-30 Morteza Moghaddam Lightweight structural panel
    US11053675B1 (en) * 2018-11-17 2021-07-06 Juan Jose Santandreu Construction panel and construction panel assembly with improved structural integrity
    IT201800021286A1 (it) * 2018-12-28 2020-06-28 Botta S R L Opera da costruzione dotata di lastra in calcestruzzo e polimero.
    US11299886B2 (en) * 2019-04-24 2022-04-12 Protectiflex, LLC Composite stud wall panel assembly
    US11352780B2 (en) 2019-05-07 2022-06-07 Thermacrete Llc Autoclave aerated concrete structures with embedded hangers and connectors
    US20210040738A1 (en) * 2019-08-06 2021-02-11 Kim D. Blackburn Tilt-Up and Precast Construction Panels
    US11499306B2 (en) 2019-10-03 2022-11-15 Thermacrete Llc Differential settlement anchors
    RU205436U1 (ru) * 2020-03-27 2021-07-14 Игорь Сергеевич Чернец Армированная 3D панель
    CN114809336B (zh) * 2021-01-28 2024-01-16 灵丘县豪洋新型建材科技开发有限公司 一种石膏-水泥高效建筑保温板
    EP4123099A1 (de) * 2021-07-06 2023-01-25 Eiseko Engineering di Cenzon Francesco e Pomini Giorgio Vorgefertigte mehrzweckplatte
    IT202100017795A1 (it) * 2021-07-06 2023-01-06 Eiseko Eng Di Cenzon Francesco E Pomini Giorgio Solaio prefabbricato multiuso
    CN114293713B (zh) * 2021-12-28 2023-08-01 杭州电子科技大学 一种用于加气混凝土板材的钢筋网笼及夹取机构
    CN115235220B (zh) * 2022-07-23 2023-08-29 北京双盛时代建筑材料有限公司 一种保温板表面处理装置的处理工艺

    Family Cites Families (35)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2205534A (en) * 1938-06-04 1940-06-25 Pittsburgh Plate Glass Co Composite cellular glass block
    US3231451A (en) * 1961-11-01 1966-01-25 Yale Robert S Radiation barrier panels
    BE885615Q (fr) 1964-12-14 1981-02-02 Cs & M Inc Panneaux de matiere expansee modulaires renforces
    AT325270B (de) * 1971-05-07 1975-10-10 Roehle Dipl Ing Friedrich Verbundflachkörper
    US3879908A (en) 1971-11-29 1975-04-29 Victor P Weismann Modular building panel
    IL39049A (en) * 1971-11-29 1974-11-29 Cs & M Inc Modular building panel
    FR2324815A1 (fr) 1975-09-16 1977-04-15 Zonca Pierre Procede de fabrication de panneaux prefabriques destines a la construction
    BE885564Q (fr) * 1976-01-05 1981-02-02 Cs & M Inc Treillis de fil metallique et appareil pour sa fabrication
    SE403640B (sv) * 1976-06-24 1978-08-28 Thoren Torgny Byggelement
    US4104842A (en) 1977-02-25 1978-08-08 Rockstead Raymond H Building form and reinforcing matrix
    US4297820A (en) 1977-12-05 1981-11-03 Covington Brothers Technologies Composite structural panel with multilayered reflective core
    US4226067A (en) * 1977-12-05 1980-10-07 Covington Brothers Building Systems, Inc. Structural panel
    US4454702A (en) * 1981-03-24 1984-06-19 Bonilla Lugo Juan Building construction and method of constructing same
    AT372886B (de) 1981-05-14 1983-11-25 Evg Entwicklung Verwert Ges Verfahren und vorrichtung zum herstellen geschweisster gitterkoerper
    ATE10525T1 (de) * 1981-05-18 1984-12-15 Heinz Ing.Grad. Carl Bauplatte.
    US4541164A (en) * 1982-05-14 1985-09-17 Martin Monzon Indave Installation for the manufacture by a continuous process of compound panels for building construction
    US4505019A (en) * 1983-03-02 1985-03-19 Deinzer Dietrich F Method of forming construction panel
    US4702053A (en) * 1986-06-23 1987-10-27 Hibbard Construction Co. Composite insulated wall
    GB2196660B (en) * 1986-10-29 1991-06-26 Shimizu Construction Co Ltd Wire mesh truss used as building wall element
    CA1314681C (en) * 1989-06-22 1993-03-23 Grant Mccarthy Basewrap foundation wall insulation and drainage
    US5129203A (en) * 1990-07-26 1992-07-14 Romero Arturo J Building panel core
    JP2892145B2 (ja) * 1990-10-31 1999-05-17 早川ゴム株式会社 スベリ止め性を有す屋根下地材
    WO1992010624A1 (fr) 1990-12-12 1992-06-25 Kenitex S.A. Procede pour fixer une piece sur une surface et application de ce procede pour augmenter le coefficient d'isolation thermique global d'un mur de batiment
    AT396274B (de) * 1991-04-23 1993-07-26 Avi Alpenlaendische Vered Bewehrungskoerper fuer eine deckenplatte
    US5224316A (en) * 1991-08-05 1993-07-06 Fredericks Chester P Textured insulated building panel
    CA2104175C (en) * 1992-09-29 2003-11-04 Geoffrey W. Blaney Building block; system and method for construction using same
    AT406064B (de) * 1993-06-02 2000-02-25 Evg Entwicklung Verwert Ges Bauelement
    US5487248A (en) * 1993-11-22 1996-01-30 Artzer; Richard F. Structural panel
    US5704172A (en) * 1996-01-17 1998-01-06 The Dow Chemical Company Rigid foam board and foundation insulation system and method for treating same with insecticide/termiticide
    AT410688B (de) * 1996-11-21 2003-06-25 Evg Entwicklung Verwert Ges Bauelement
    WO1998029309A1 (en) * 1996-12-23 1998-07-09 Vacupanel, Inc. Vacuum insulated panel, container and production method
    US6202375B1 (en) * 1997-10-28 2001-03-20 Rolf Otto Kleinschmidt Method for concrete building system using composite panels with highly insulative plastic connector
    EP0937939B1 (de) * 1998-02-19 2000-08-02 Wacker-Chemie GmbH Verfahren zur Isolierung von gekrümmten Flächen
    US5979131A (en) * 1998-04-15 1999-11-09 Sto Corp. Exterior insulation and finish system
    US6226942B1 (en) * 1999-02-09 2001-05-08 Pete J. Bonin Building construction panels and method thereof

    Also Published As

    Publication number Publication date
    PL56798Y1 (en) 1999-01-29
    ZA938397B (en) 1994-06-09
    CN1093767A (zh) 1994-10-19
    EP0701647A1 (de) 1996-03-20
    US6272805B1 (en) 2001-08-14
    US20010010140A1 (en) 2001-08-02
    SA94140688B1 (ar) 2005-02-08
    AU4689593A (en) 1994-12-20
    US20030029107A1 (en) 2003-02-13
    AT406064B (de) 2000-02-25
    KR960702880A (ko) 1996-05-23
    MY111596A (en) 2000-09-27
    ATE166940T1 (de) 1998-06-15
    DZ1737A1 (fr) 2002-02-17
    WO1994028264A1 (de) 1994-12-08
    KR100252612B1 (ko) 2000-06-01
    ATA107293A (de) 1999-06-15
    US7067588B2 (en) 2006-06-27
    US6705055B2 (en) 2004-03-16
    DE59308654D1 (de) 1998-07-09
    GR960300025T1 (en) 1996-05-31
    CN1069727C (zh) 2001-08-15
    PL314849A1 (en) 1996-09-30
    JO1788B1 (en) 1994-12-25
    JPH09504844A (ja) 1997-05-13

    Similar Documents

    Publication Publication Date Title
    EP0701647B1 (de) Bauelement
    DE212004000002U1 (de) Bausteinverbund
    AT411474B (de) Verfahren und vorrichtung zum herstellen eines fertigteilelementes aus gussbeton
    WO2016091244A2 (de) Paneelsystem für die erstellung von räumen
    DE19711813C2 (de) Thermisch isolierendes Bauelement
    EP1525358B1 (de) Dämmschicht aus mineralfasern und gebäudewand
    DE3206163A1 (de) Bauelement
    DE102018207761B3 (de) Segment für ein Bauwerk, Verfahren zu dessen Herstellung, Bauwerk und Verfahren zu dessen Herstellung
    DE4421839C1 (de) Schalungstafel aus Beton
    DE2658620B2 (de) Bleibendes Schalungselement mit einer Isolierschicht
    CH670670A5 (de)
    WO2013017622A1 (de) Mehrschichtiges bauelement
    AT503489B1 (de) Bauelement
    WO1994017258A1 (de) Bauelement
    EP0083438B1 (de) Schalungselement aus geschäumtem Hartkunststoff für die Mantelbetonbauweise
    DE102008059364B4 (de) Gebäude-Schalldämmmatte
    EP0044467A1 (de) Profiliertes Bauelement und daraus errichtetes Raumbegrenzungs- und/oder Raumunterteilungs-Baukonstruktionsteil, sowie Verfahren zur Erzeugung solcher profilierter Bauelemente
    EP1264943B1 (de) Wand- Decken und Schallschutzelement
    CH655346A5 (de) Tragendes bauelement fuer decken oder daecher.
    DE19535390A1 (de) Wandelement
    DE202005016306U1 (de) Verpackungseinheit
    DE102020118711A1 (de) Mehrschichtiges Wandelement zur Erstellung von Trockenbauwänden sowie Trockenbauwand aufweisend das Wandelement
    DE3040322A1 (de) Wandelement
    EP0834625A1 (de) Verbundbauteil und Herstellungsverfahren hierfür
    DE102020118700A1 (de) Mehrschichtiges Wandelement zur Erstellung von Trockenbauwänden sowie Trockenbauwand aufweisend das Wandelement

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19951130

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE GR IT LI

    ITCL It: translation for ep claims filed

    Representative=s name: BARZANO' E ZANARDO MILANO S.P.A.

    17Q First examination report despatched

    Effective date: 19970127

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE GR IT LI

    REF Corresponds to:

    Ref document number: 166940

    Country of ref document: AT

    Date of ref document: 19980615

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    ITF It: translation for a ep patent filed

    Owner name: BARZANO' E ZANARDO MILANO S.P.A.

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: ISLER & PEDRAZZINI AG

    REF Corresponds to:

    Ref document number: 59308654

    Country of ref document: DE

    Date of ref document: 19980709

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19980731

    BERE Be: lapsed

    Owner name: ENTWICKLUNGS- U. VERWERTUNGS- G.M.B.H. EVG

    Effective date: 19980731

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PCAR

    Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20080723

    Year of fee payment: 16

    Ref country code: AT

    Payment date: 20080731

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20080929

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GR

    Payment date: 20080721

    Year of fee payment: 16

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100202

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090722

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100204

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090722

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20110728

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL