EP0426832B1 - Verfahren zur reduktion von farbstoffen - Google Patents

Verfahren zur reduktion von farbstoffen Download PDF

Info

Publication number
EP0426832B1
EP0426832B1 EP90908918A EP90908918A EP0426832B1 EP 0426832 B1 EP0426832 B1 EP 0426832B1 EP 90908918 A EP90908918 A EP 90908918A EP 90908918 A EP90908918 A EP 90908918A EP 0426832 B1 EP0426832 B1 EP 0426832B1
Authority
EP
European Patent Office
Prior art keywords
potential
dye
reducing agent
cathode
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90908918A
Other languages
English (en)
French (fr)
Other versions
EP0426832A1 (de
Inventor
Thomas Bechtold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Verein Zur Forderung der Forschung u Entwicklung der Textilwirts
Original Assignee
Verein Zur Forderung der Forschung u Entwicklung der Textilwirts
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Verein Zur Forderung der Forschung u Entwicklung der Textilwirts filed Critical Verein Zur Forderung der Forschung u Entwicklung der Textilwirts
Priority to AT9090908918T priority Critical patent/ATE105345T1/de
Publication of EP0426832A1 publication Critical patent/EP0426832A1/de
Application granted granted Critical
Publication of EP0426832B1 publication Critical patent/EP0426832B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P1/00General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
    • D06P1/22General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using vat dyestuffs including indigo
    • D06P1/221Reducing systems; Reducing catalysts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/20Physical treatments affecting dyeing, e.g. ultrasonic or electric
    • D06P5/2016Application of electric energy

Definitions

  • the invention relates to a process for the reduction of dyes in aqueous solution with pH> 9, using a reducing agent with a redox potential of over 400 mV, which is present in a reduced and oxidized form, a pair of electrodes being introduced into the solution, the Cathode potential is kept below the value at which hydrogen evolution occurs.
  • vat dyes for dyeing cellulose fibers have a considerable market share (approx. 12.5%, world consumption approx. 25,000 t / year).
  • This dye class is one of the high-quality dyes, particularly due to its high fastness properties.
  • the primarily non-fiber-insoluble dye particles are reduced to their alkali-soluble leuco form by reduction.
  • the reduced dye has a high affinity for the substrate and is now quickly absorbed by the dye.
  • the pull-up phase has ended, the leuco form is oxidized to fix the dye, forming the water-insoluble pigment.
  • the basic chemical structure of the dyes is often anthraquinone or indigoide.
  • sulfur dyes are inferior to vat dyes, but their price is very cheap, so that they have a relatively large market share in cellulose dyeing (25%, 50,000 t / year).
  • the sulfur dyes are used analogously to the vat dyes, with the reduction of the sulfur dyes being possible even at lower redox potentials.
  • Reducing agents are also used to destroy excess bleaching agents, reductive bleaching (wool) and reductive wastewater treatment (decolorization).
  • the main reducing agent for vat dyeing and for the reductive cleavage of azo dyes is Na2S2O4 sodium dithionite ("Hydro"), which has a reduction potential of approximately -1000 mV in an alkaline environment.
  • Sulfinic acid derivatives (Rongalit types BASF) are used for reductions at higher temperatures (steaming processes, HT processes) (reduction potential at 50 o C approx. -1000 mV).
  • Sulfinic acid derivatives can be activated through the use of heavy metal compounds such as Ni-cyano complexes, Co complexes etc.
  • the use of anthraquinone compounds as accelerators for the reducing agents used has been proposed, but is practically not carried out.
  • reducing agents are thiourea dioxide (-1100 mV), hydroxyacetone (-810 mV) and sodium borohydride (-1100 mV).
  • indigo lies between the vat dyes and sulfur dyes.
  • hydroxyacetone / sodium hydroxide solution can also be used here as a reducing agent.
  • iron vitriol (FeSO4) lime vats, zinc lime vats and fermentation vats were used.
  • other reducing agents can also be used for sulfur dyeing.
  • the main reducing agents are Na2S and NaHS (reduction potential approx. -500 mV). Mixtures of glucose and sodium hydroxide were also used.
  • Na2S2O4 is a relatively expensive chemical that has to be imported by many countries.
  • a large excess of Na2S2O4 based on the amount theoretically required for the reduction, must be used.
  • the oxygen present in the liquor must first be removed, only then can the dye reduction begin.
  • atmospheric oxygen from the environment continuously consumes Na2S2O4.
  • the quantities used are approx. 1.25 to 2.5 kg of reducing agent per kg of dye.
  • the amount of reducing agent must be in the dyebath sufficient for complete reduction to complete the dyeing process.
  • the dye bath is therefore drained off with a relatively large amount of reducing agent. The oxidation therefore takes place in a new treatment bath, since otherwise the entire excess of reducing agent still present in the dye bath must also be oxidized.
  • the reducing agent bath leads to considerable oxygen consumption in the wastewater, which leads to wastewater problems.
  • the procurement costs are relatively low, but the wastewater problem is becoming increasingly important here, since not only oxygen depletion, but also considerable toxicity and odor problems occur.
  • the invention has for its object to avoid the disadvantages of the previous reducing agents. This is achieved in that a reducing agent is used whose redox potential (half-stage potential), increased by the charge transfer overvoltage for the return of the oxidized form of the reducing agent to the reduced one below the cathode potential.
  • the dye is therefore not reduced directly at the electrode, which has already been proposed, but has not proven successful. Rather, a reducing agent is used which reduces the dye in a conventional manner, is oxidized in the process and reaches the cathode in this oxidized form, where it is returned to its original state.
  • Redox systems of this type are called mediators in electrochemistry. The use of such mediators for the reduction of dyes was not obvious for several reasons. So far, mediators have hardly been watery per se
  • the cathode thus reduces the reversible redox system which, in turn, is able to reduce the dye after the reduction potential of the dye has been reached.
  • the upstream reversible redox system has the task of generating a continuously regenerable reduction potential in the dye liquor, as a result of which no further reducing agent has to be added to the dye liquor.
  • the proportion of reducing agent consumed by air oxidation is continuously renewed at the cathode. There are no secondary products from the addition of reducing agents in the dyeing liquor. Enrichment by the usually necessary addition of reducing agent does not occur either.
  • the dye bath After removing the unfixed dye (centrifugation, filtration, ..), the dye bath can be reused, only the liquor volume lost with the goods having to be replaced. Chemical consumption in the usual sense does not occur. Even the dye reoxidation can be carried out in the dye bath, which according to the literature should lead to an improvement in the rub fastness of the dye (doubtful). This procedure is not economically justifiable with the reducing agents currently used, since at the end of the dyeing process large amounts of reducing agent remain in the dye liquor and draining the dye liquor is more cost-effective. A closed recycling of the entire dyeing liquor without time-consuming reprocessing is out of the question, also because of the ongoing enrichment with secondary reducing agent products.
  • Various upstream redox systems can be used for indirect electrochemical dye reduction:
  • organic compounds with which the redox system can be implemented in particular those with an anthrachinoid basic structure have been investigated.
  • Experiments with anthraquinone mono- and disulfonic acids, hydroxyanthraquinones and mixed substituted products enabled the reduction of sulfur dyes and vat dyes with the corresponding potential.
  • the quantities of anthrachinoid compound used are between 0.5. 10 ⁇ 3 mol / l and 3. 10 ⁇ 3 mol / l, with concentrations of about 1.5. 10 ⁇ 3 mol / l are cheap.
  • the oxygen input from the air must also be taken into account. The amount of catalyst required can be reduced by a closed apparatus.
  • Inorganic compounds for the invention Can be used, one has to look above all under the metal complex salts.
  • the system Fe (II / III) triethanolamine sodium hydroxide solution is suitable as a reduction mediator.
  • the achievable potentials of up to -980 mV enable the reduction of all common vat dyes, indigoid dyes, sulfur dyes, azo dyes without the use of other reducing substances.
  • the device shown comprises a container 11, on the bottom of which there is a working cathode 1 made of copper.
  • a magnetic stirrer 8 is located above the working cathode 1 to accelerate the removal of the reduction products.
  • a reference electrode 4 (Ag / AgCl) is provided for measuring the cathode potential by means of the voltmeter 5.
  • the potential in solution is measured using a separate measuring electrode 3 made of copper or platinum, which is connected to the reference electrode. As a result, the potential increase in the solution can be tracked as a result of the reduction system that is building up.
  • a container 10 filled with textiles to be dyed is introduced into the electrolysis chamber on the cathode side with respect to the diaphragm 7, through which the solution is sucked by means of the liquor circulation pump 9, whereupon it returns to the container 11.
  • the temperatures were between 40 and 50 o C, but in itself the entire temperature range from 20 to 90 o C could be used.
  • the potential in the solution rises to -940 mV within 20 minutes and is held there for 1 hour.
  • the reduced dye on the goods is oxidized by rinsing.
  • the dyeing is completed by boiling soap according to the dye manufacturer's instructions.
  • the color depth achieved during coloring corresponds to the guide values of the dye manufacturers.
  • the potential in the solution rises to over -800 mV within 20 min and is held there for 40 min.
  • the dyeing temperature was increased to approx. 60 ° C
  • the working current rises to 60 mA
  • the potential in the solution reaches -870 mV.
  • the reduced dye on the goods is oxidized by rinsing.
  • the dyeing is completed by boiling soap according to the instructions of the dye manufacturer The color depth achieved corresponds to the guide values of the dye manufacturers.
  • the potential in the solution rises to over -870 mV within 60 min, especially after the addition of Na2SO4.
  • the dyeing temperature is increased to approx. 45 ° C.
  • the reduced dye on the goods is oxidized by rinsing.
  • the dyeing is completed by boiling soap according to the dye manufacturer's instructions.
  • the color depth achieved during coloring corresponds to the guide values of the dye manufacturers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Coloring (AREA)

Abstract

Beschrieben wird ein Verfahren zur Reduktion von Farbstoffen in wäßriger Lösung, wobei ein Elektrodenpaar in die Lösung eingebracht wird, dessen Kathodenpotential unterhalb des Wertes gehalten wird, bei dem Wasserstoffentwicklung auftritt und nachher ein Reduktionsmittel verwendet wird, dessen Redoxpotential (Halbstufenpotential), vermehrt um die Ladungstransferüberspannung zur an der Kathode stattfindenden Rückführung der oxidierten Form des Reduktionsmittels in die reduzierte, unterhalb des Kathodenpotentials liegt.

Description

  • Die Erfindung bezieht sich auf ein Verfahren zur Reduktion von Farbstoffen in wäßriger Lösung mit pH >9, unter Verwendung eines Reduktionsmittels mit einem Redoxpotential von über 400 mV, das in reduzierter und oxidierter Form gelöst vorliegt, wobei ein Elektrodenpaar in die Lösung eingebracht wird, dessen Kathodenpotential unterhalb des Wertes gehalten wird, bei dem Wasserstoffentwicklung auftritt.
  • In der Textilveredlung besitzen Küpenfarbstoffe zur Färbung von Cellulosefasern einen beachtlichen Marktanteil (ca. 12,5 %, Weltverbrauch ca. 25 000 t/Jahr). Insbesondere aufgrund der hohen Echtheiten zählt diese Farbstoffklasse zu den hochwertigen Farbstoffen. Bei der Anwendung in der Färberei werden die primär nicht faseraffinen, unlöslichen Farbstoffpartikel durch Reduktion in ihre laugenlösliche Leukoform übergeführt. Der reduzierte Farbstoff besitzt hohe Affinität zum Substrat und zieht nun rasch auf das Färbegut auf. Ist die Aufziehphase beendet, erfolgt die Oxidation der Leukoform zur Fixierung des Farbstoffs, wobei sich das wasserunlösliche Pigment bildet. Die Farbstoffe sind in ihrer chemischen Grundstruktur häufig anthrachinoide oder indigoide Typen. Schwefelfarbstoffe sind den Küpenfarbstoffen in qualitativer Sicht unterlegen, preislich aber sehr günstig, sodaß sie einen relativ großen Marktanteil in der Cellulosefärberei besitzen (25 %, 50 000 t/Jahr). Die Anwendung der Schwefelfarbstoffe erfolgt analog den Küpenfarbstoffen, wobei die Reduktion der Schwefelfarbstoffe bereits bei niedrigeren Redoxpotentialen möglich ist.
  • Viele Textilfarbstoffe anderer Farbstoffklassen besitzen in ihren farbgebenden Molekülteilen Azo-Gruppen. Diese Azogruppen lassen sich reduktiv irreversibel spalten, was zur Zerstörung von Farbstoffen (Abziehen und Korrektur von Fehlfärbungen) ausgenutzt werden kann.
  • Reduktionsmittel werden auch zur Zerstörung überschüssiger Bleichmittel, zur reduktiven Bleiche (Wolle) und reduktiven Abwasserbehandlung (Entfärbung) eingesetzt.
  • Das Hauptreduktionsmittel für Küpenfärbungen und zur reduktiven Spaltung von Azofarbstoffen ist Na₂S₂O₄ Natriumdithionit ("Hydro"), das im alkalischen Milieu ein Reduktionspotential von ca. -1000 mV aufweist. Sulfinsäurederivate (Rongalit-Typen BASF) werden für Reduktionen bei höheren Temperaturen (Dämpfprozesse, HT-Verfahren) eingesetzt (Reduktionspotential bei 50oC ca. -1000 mV). Sulfinsäurederivate können durch den Einsatz von Schwermetallverbindungen, wie Ni-Cyanokomplexen, Co-Komplexen etc. aktiviert werden. Der Einsatz von Anthrachinon-Verbindungen als Beschleuniger für die eingesetzten Reduktionsmittel wurde vorgeschlagen, wird aber praktisch wenig durchgeführt.
    Andere Reduktionsmittel sind Thioharnstoffdioxid (-1100 mV), Hydroxyaceton (-810 mV) und Natriumborhydrid (-1100 mV). Indigo liegt bezüglich des erforderlichen Reduktionspotentials (ca. -600 mV) zwischen den Küpenfarbstoffen und Schwefelfarbstoffen. Hier können neben "Hydro" auch Hydroxyaceton/Natronlauge als Reduktionsmittel eingesetzt werden. Historisch wurden Eisenvitriol (FeSO₄)-Kalk-Küpen, Zink-Kalk-Küpen und Gärungsküpen eingesetzt.
    Für Schwefelfärbungen können aufgrund des niedrigeren erforderlichen Reduktionspotentials auch andere Reduktionsmittel verwendet werden. Hauptreduktionsmittel sind Na₂S und NaHS (Reduktionspotential ca. -500 mV). Auch Glucose/Natronlauge Mischungen wurden eingesetzt.
  • In verschiedenen indischen Arbeiten (vgl. "Dyeing with less chemicals" E. H. Daruwalla in TEXTILE ASIA, September 1975, Seiten 165-169) wurde bereits ein Verfahren der eingangs charakterisierten Art vorgeschlagen, bei welchem durch das Anlegen einer Gleichspannung der Verbrauch von Natriumdithionit verringert wird. Diese Verringerung ist darauf zurückzuführen, daß das Reduktionsmittel an der Kathode in eine Form übergeführt wird, welche ein erhöhtes Reduktionsvermögen aufweist. Durch die Reaktion mit dem Farbstoff zerfällt dieser Stoff in dieselben Produkte wie das Natriumdithionit selbst. Diese Produkte können bei der angelegten Spannung an der Kathode nicht regeneriert werden. Dabei liegt diese Spannung ohnedies in einer Höhe, die nur bei der verwendeten Quecksilberelektrode brauchbar ist, bei praktisch anwendbaren Elektrodenmaterialien aber bereits zu schädlicher Wasserstoffentwicklung führen würde.
  • Aus der DE-A-13 95 67 und im wesentlichen auch aus der inhaltsähnlichen FR-A-319 390 ist ein Verfahren bekannt, bei dem durch die Einwirkung des elektrischen Stromes aus Natriumhydrogensulfit das Reduktionsmittel Natriumdithionit erzeugt wird, welches nun in der Lage ist, Indigo zu reduzieren. Beim bekannten Verfahren wird die Reduktion im sauren pH-Bereich begonnen und der pH-Wert wandert erst im Laufe des Verfahrens in den schwach alkalischen Bereich ab, wodurch eine Küpe entsteht. Entsprechend den Erkenntnissen über die Elektrolyse von Sulfitlösungen kommt dabei die kathodische Reduktion des Sulfits zum Erliegen, sodaß kein reversibles Redoxsystem mehr vorliegt. Die elektrochemische Bildung von Natriumdithionit aus Natriumhydrogensulfit/-sulfit gelingt also nur in sauren Lösungen, in alkalischen Lösungen liegt kein reversibles Redoxsystem im Sinne eines Mediators vor.
  • Die derzeit eingesetzten Reduktionsmittel führen zu verschiedenen Nachteilen bei ihrer Anwendung: Na₂S₂O₄ ist eine relativ teure Chemikalie, die von vielen Ländern eingeführt werden muß. Bei den Färbevorgängen muß ein großer Überschuß an Na₂S₂O₄, bezogen auf die theoretisch zur Reduktion benötigte Menge, eingesetzt werden. Im Färbebad muß zuerst der in der Flotte vorhandene Sauerstoff entfernt werden, erst danach kann die Farbstoffreduktion beginnen. Während des Färbevorganges wird durch Luftsauerstoff aus der Umgebung laufend Na₂S₂O₄ verbraucht. Die Einsatzmengen betragen pro kg Farbstoff ca. 1,25 bis 2,5 kg Reduktionsmittel.
  • Durch die hohen Einsatzmengen kommt es zu einer Anreicherung von Oxidationsprodukten des Reduktionsmittels in der Färbeflotte. Eine Wiederverwertung der Färbeflotte wird dadurch nur in den wenigsten Fällen möglich. Die Reduktionsmittelmenge muß im Färbebad bis zur Beendigung des Färbevorgangs zur vollständigen Reduktion ausreichen. Das Färbebad wird daher mit einer relativ großen Reduktionsmittelmenge abgelassen. Die Oxidation erfolgt daher in einem neuen Behandlungsbad, da sonst der gesamte noch vorhandene Reduktionsmittelüberschuß im Färbebad mit oxidiert werden muß.
  • Das Reduktionsmittelbad führt im Abwasser zu einer beachtlichen Sauerstoffzehrung, was zu Abwasserproblemen führt. Bei der Verwendung von Sulfiden als Reduktionsmittel sind die Beschaffungskosten relativ gering, die Abwasserproblematik gewinnt hier aber laufend an Bedeutung, da hier neben der Sauerstoffzehrung auch beachtliche Toxizität und Geruchsprobleme auftreten.
  • Der Erfindung liegt die Aufgabe zugrunde, die dargestellten Nachteile der bisherigen Reduktionsmittel zu vermeiden. Dies wird dadurch erreicht, daß ein Reduktionsmittel verwendet wird, dessen Redoxpotential (Halbstufenpotential),vermehrt um die Ladungstransferüberspannung zur an der Kathode stattfindenden Rückführung der oxidierten Form des Reduktionsmittels in die reduzierte,unterhalb des Kathodenpotentials liegt.
  • Gemäß der Erfindung wird somit der Farbstoff nicht direkt an der Elektrode reduziert, was zwar bereits vorgeschlagen worden ist, sich jedoch nicht bewährt hat. Vielmehr wird ein Reduktionsmittel eingesetzt, das in üblicher Weise den Farbstoff reduziert, dabei    oxidiert wird und in dieser oxidierten Form an die Kathode gelangt, wo es wieder in seinen ursprünglichen Zustand rückgeführt wird. Redoxsysteme dieser Art bezeichnet man in der Elektrochemie als Mediatoren. Solche Mediatoren zur Reduktion von Farbstoffen anzuwenden, lag aus mehreren Gründen nicht nahe. Es wurden Mediatoren bisher an sich kaum in wäßriger
  • Lösung eingesetzt, im alkalischen Bereich nur ganz ausnahmsweise, und über einem pH-Wert 9 überhaupt nicht. Die bisher zur Reduktion von Farbstoffen eingesetzten Substanzen sind andererseits für das erfindungsgemäße Verfahren nicht verwendbar, da ihre Oxidationsprodukte nur bei Kathodenspannungen in den Grundzustand überführbar wären, bei denen längst eine unzumutbare Wasserstoffentwicklung an der Kathode stattfinden würde.
  • Die Kathode reduziert also das reversible Redoxsystem, welches nach Erreichen des Reduktionspotentials des Farbstoffs seinerseits in der Lage ist, den Farbstoff zu reduzieren. Durch die Einstellung des optimalen Redoxpotentials in Lösung können Farbtonverschiebungen, wie sie durch überreduktion hervorgerufen werden, vermieden werden. Das vorgelagerte reversible Redoxsystem hat die Aufgabe, in der Färbeflotte ein laufend regenerierbares Reduktionspotential zu erzeugen, wodurch kein weiteres Reduktionsmittel der Färbeflotte zugegeben werden muß. Der durch Luftoxidation verbrauchte Anteil an Reduktionsmittel wird laufend an der Kathode wiedererneuert. In der Färbeflotte entstehen keine Folgeprodukte aus der Reduktionsmittelzugabe. Eine Anreicherung durch den üblicherweise notwendigen Nachsatz an Reduktionsmittel tritt ebenfalls nicht auf. Nach einer Entfernung des nicht fixierten Farbstoffs (Zentrifugation, Filtration,..) kann das Färbebad wiederverwendet werden, wobei nur das mit der Ware verlorene Flottenvolumen ersetzt werden muß. Ein Chemikalienverbrauch im üblichen Sinn tritt nicht auf. Sogar die Farbstoffwiederoxidation kann im Färbebad vorgenommen werden, was laut Literaturangabe zu einer Verbesserung der Reibechtheit des Farbstoffs führen soll (zweifelhaft). Diese Arbeitsweise ist bei den derzeit verwendeten Reduktionsmitteln nicht wirtschaftlich vertretbar, da am Ende des Färbeprozesses zu große Reduktionsmittelmengen in der färbeflotte verbleiben und ein Ablassen der Färbeflotte kostengünstiger ist. Eine geschlossene Wiederverwertung der gesamten Färbeflotte ohne aufwendige Aufarbeitung kommt hier auch aufgrund der laufenden Anreicherung mit Reduktionsmittelfolgeprodukten nicht in Frage.
  • Der Einsatz der indirekten elektrochemischen Reduktion senkt daher nicht nur die Kosten an Reduktionschemikalien, sondern ermöglicht erstmalig auch die geschlossene Kreislaufführung der Färbeflotten nach einer Entfernung des Restfarbstoffs. Ein mit Ausnahme der Spülwässer abwasserfreies Färben ist dadurch möglich. Gerade die mit Chemikalien derzeit hoch belasteten Färbeflotten können vollständig im Kreislauf geführt werden.
  • Verschiedene vorgelagerte Redoxsysteme können zur indirekten elektrochemischen Farbstoffreduktion eingesetzt werden:
    Als organische Verbindungen, mit denen das Redoxsystem realisiert werden kann, wurden insbesondere solche mit anthrachinoider Grundstruktur untersucht. Versuche mit Anthrachinonmono- und disulfonsäuren, Hydroxyanthrachinonen und gemischt substituierten Produkten ermöglichten die Reduktion von Schwefelfarbstoffen und Küpenfarbstoffen mit entsprechenden Potentialen. Die Einsatzmengen an der anthrachinoiden Verbindung liegen zwischen 0,5 . 10⁻³ mol/l und 3 . 10⁻³ mol/l, wobei Konzentrationen von etwa 1,5 . 10⁻³ mol/l günstig sind. Zur Beurteilung der erforderlichen Einsatzmengen an Redoxkatalysator ist aber auch der Sauerstoffeintrag aus der Luft zu berücksichtigen. Durch eine geschlossene Apparatur kann die erforderliche Katalysatormenge reduziert werden.
  • Anorganische Verbindungen, die für den erfindungsgemäßen Einsatz verwendbar sind, hat man vor allem unter den Metallkomplexsalzen zu suchen. Beispielsweise ist das System Fe(II/III)-Triethanolamin-Natronlauge als Reduktionsmediator geeignet. Die erreichbaren Potentiale von bis zu -980 mV ermöglichen die Reduktion aller gängigen Küpenfarbstoffe, indigoider Farbstoffe, Schwefelfarbstoffe, Azofarbstoffe ohne Einsatz von sonstigen reduzierenden Substanzen.
  • Dem Fachmann, dem die Lehre der Erfindung bekannt ist, ist es durchaus zuzumuten,weitere Reduktionsmittel zu finden, welche unter den vorgegebenen Verfahrensbedingungen als Mediatoren einsetzbar sind. Wichtig ist dabei, daß die Aktivität dieser Stoffe während der Nutzungsdauer höchstens geringfügig abnimmt, sodaß eine große Zahl von Reduktionszyklen gewährleistet ist. An der Elektrodenoberfläche soll ein rascher Umsatz erfolgen. Die Katalyse von Nebenreaktionen durch das Reduktionsmittel soll ausgeschlossen sein. Für die technische Anwendung ist natürlich auch noch geringe Toxizität zu fordern.
  • Die Reduktionswirkung der verschiedenen Redoxsysteme wird im Rahmen dieser Beschreibung immer durch ihr Halbstufenpotential charakterisiert. An sich stellt sich ja bei jedem Potential ein bestimmtes Verhältnis zwischen der reduzierten und der oxidierten Form des verwendeten Stoffes ein. Für technisch einsetzbare Systeme muß aber eine gewisse Belastbarkeit gegeben sein, das erreichte Reduktionspotential darf nicht sofort zusammenbrechen. Praktisch bedeutet dies, daß man etwa in dem Bereich arbeiten wird, in Welchem reduzierte und oxidierte Spezies in etwa gleicher Menge vorliegen. Um dieses Potential festzustellen, muß nicht die Ausbildung eines Gleichgewichtszustandes abgewartet werden, es ist vielmehr auch möglich, dynamisch die
  • Peakpotentiale der Cv-Kurven festzustellen, zwischen denen das Halbstufenpotential liegt.
  • Anschließend wird die Erfindung anhand einer Einrichtung zur Durchführung des Verfahrens und mittels einiger Anwendungsbeispiele näher erläutert. Die Einrichtung zur Durchführung des Verfahrens ist in der einzigen Zeichnung schematisch dargestellt. Die in den Anwendungsbeispielen beschriebenen Färbe- und Entfärbeverfahren für Textilien fallen jedoch als solche nicht unter den Gegenstand der Patentansprüche.
  • Die dargestellte Einrichtung umfaßt einen Behälter 11, an dessen Boden sich eine Arbeitskathode 1 aus Kupfer befindet. Zur Beschleunigung des Abtransports der Reduktionsprodukte befindet sich über der Arbeitskathode 1 ein Magnetrührer 8. Zur Messung des Kathodenpotentials mittels des Spannungsmessers 5 ist eine Referenzelektrode 4 (Ag/AgCl) vorgesehen. Die Messung des Potentials in Lösung erfolgt über eine eigene Meßelektrode 3 aus Kupfer oder Platin, die mit der Referenzelektrode verbunden wird. Dadurch ist der Potentialanstieg in der Lösung als Folge des sich aufbauenden Reduktionssystems verfolgbar.
  • Wesentlich ist, daß die Arbeitsanode 2 durch ein Diaphragma 7 abgeschirmt wird, um in bekannter Weise eine Reoxidation an der Anode zu vermeiden. In den hinsichtlich des Diaphragmas 7 kathodenseitigen Elektrolysenraum wird ein mit zu färbenden Textilien gefüllter Behälter 10 eingebracht, durch den die Lösung mittels der Flottenumwälzpumpe 9 gesaugt wird, woraufhin sie wieder in den Behälter 11 gelangt.
  • Durch Verwendung von Kathodenmaterial mit hoher Wasserstoffüberspannung kann je nach Laugengehalt mittels des Netzgerätes 6 ein Arbeitspotential von bis zu -1200 mV an der Kathode realisiert werden, ohne daß es zu Wasserstoffentwicklung kommt.
  • Bei den anschließend beschriebenen Versuchen lagen die Temperaturen zwischen 40 und 50oC, an sich wäre jedoch der gesamte Temperaturbereich von 20 bis 90oC verwendbar.
  • Anwendungsbeispiel 1 Reduktion eines Küpenfarbstoffs - Indanthrenblau GC
  • Verfahrenstechnische Bedingungen:
    Ausziehverfahren Flottenverhältnis 1:20
    Warengewicht: 6,6 g Bw (100%) Flottenvolumen 130 ml
    Farbtiefe: 3% (197 mg Farbstoff)
    Färbebad: 4 g/l NaOH, 2 g/l Triethanolamin, 0,5 g/l Fe₂(SO₄)₃ Die Arbeitskathode besteht aus Cu (Fläche 36 cm²), die Arbeitsanode besteht aus Pt (Fläche 10 cm²). Das Arbeitspotential der Cu-Kathode beträgt -1150 mV gegen eine AgCl-Referenzelektrode. Die Ware wird bei 40°C mit der Lauge benetzt. Nach der Zugabe des Redoxsystems und dem Einschalten des Arbeitsstroms (ca. 35 mA) steigt das Potential in der Lösung innnerhalb von 20 min auf -940 mV an und wird dort 1 Stunde gehalten. Der auf der Ware befindliche reduzierte Farbstoff wird durch Spülen oxidiert. Die Fertigstellung der Färbung erfolgt durch kochendes Seifen entsprechend den Angaben der Farbstoffhersteller.
  • Die bei der Färbung erreichte Farbtiefe entspricht den Richtwerten der Farbstoffhersteller.
  • Anwendungsbeispiel 2 Reduktion eines Schwefelfarbstoffs - Hydrosollichtgrün 3B
  • Verfahrenstechnische Bedingungen:
    Ausziehverfahren Flottenverhältnis 1:20
    Warengewicht: 6,68 g Bw (100%) Flottenvolumen 135 ml
    Farbtiefe: 5% (334 mg Farbstoff)
    Färbebad: 8 g/l Na₂CO₃, 4 g/l Triethanolamin, 0,5 g/l Fe₂(SO₄)₃ Die Arbeitskathode besteht aus Cu (Fläche 36 cm², die Arbeitsanode besteht aus Pt (Fläche 10 cm²). Das Arbeitspotential der Cu-Kathode beträgt -1150 mV gegen eine AgCl-Referenzelektrode. Die Ware wird bei RT mit der Lauge benetzt. Nach der Zugabe des Redoxsystems und dem Einschalten des Arbeitsstroms (ca. 30 mA) steigt das Potential in der Lösung innerhalb von 20 min auf über -800 mV an und wird dort 40 min gehalten. Während dieser Zeit wurde die Färbetemperatur auf ca. 60°C erhöht, der Arbeitsstrom steigt dabei bis auf 60 mA an, das Potential in der Lösung erreicht -870 mV. Der auf der Ware befindliche reduzierte Farbstoff wird durch Spülen oxidiert. Die Fertigstellung der Färbung erfolgt durch kochendes Seifen entsprechend den Angaben der Farbstoffhersteller. Die bei der Färbung erreichte Farbtiefe entspricht den Richtwerten der Farbstoffhersteller.
  • Anwendungsbeispiel 3 Reduktion eines Azofarbstoffs - Remazolbrillantrot BB
  • Verfahrenstechnische Bedingungen:
    Abziehversuch Flottenverhältnis 1:20
    Warengewicht: 5,76 g Bw (100%) Flottenvolumen 115 ml
    Farbtiefe: Ausgangsfärbung 10 g Farbst/kg Ware (KKV-gefärbt)
    Färbebad: 8,8 g/l NaOH, 4 g/l Triethanolamin, 0,5 g/l Fe₂(SO₄)₃
    Die Arbeitskathode besteht aus CU (Fläche 36 cm²), die Arbeitsanode besteht aus Pt (Fläche 10 cm²). Das Arbeitspotential der Cu-Kathode beträgt -1150 mV gegen eine AgCl-Referenzelektrode. Die Ware wird bei RT mit der Lauge benetzt. Nach der Zugabe des Redoxsystems und dem Einschalten des Arbeitsstroms (ca. 20 mA) steigt das Potential in der Lösung innerhalb von 20 min auf -450 mV an. Mit der Erhöhung der Temperatur auf 55°C steigt das Potential auf -800 bis -900 mV an und wird dort 1 Stunde gehalten. Der auf der Ware befindliche Azofarbstoff wird praktisch vollständig zerstört, was normalerweise durch eine Behandlung mit NaOH / Na₂S₂O₄ erreicht wird.
  • Anwendungsbeispiel 4 Reduktion eines indigoiden Farbstoffs BASF Brillantindigo 4B-D
  • Verfahrenstechnische Bedingungen:
    Ausziehverfahren Flottenverhältnis 1:20
    Warengewicht: 7,0 g Bw (100%) Flottenvolumen 140 ml
    Farbtiefe: 4% (280 mg Farbstoff)
    Färbebad: 1,4 g/l NaOH, 30 g/l Na₂SO₄, 4 g/l Triethanolamin. 0,5 g/l FeSO₄ . 7H₂O
    Die Arbeitskathode besteht aus Cu (Fläche 36 cm²), die Arbeitsanode besteht aus Pt (Fläche 10 cm²). Das Arbeitspotential der Cu-Kathode beträgt -1150 mV gegen eine AgCl-Referenzelektrode. Die Ware wird bei RT mit der Laufe benetzt. Nach der Zugabe des Redoxsystems und dem Einschalten des Arbeitsstroms (ca. 10-20 mA) steigt das Potential in der Lösung insbesondere nach der Zugabe des Na₂SO₄ innerhalb von 60 min auf über -870 mV an. Während dieser Zeit wird die Färbetemperatur auf ca. 45°C erhöht. Der auf der Ware befindliche reduzierte Farbstoff wird durch Spülen oxidiert. Die Fertigstellung der Färbung erfolgt durch kochendes Seifen entsprechend den Angaben der Farbstoffhersteller.
  • Die bei der Färbung erreichte Farbtiefe entspricht den Richtwerten der Farbstoffhersteller.
  • Anwendungsbeispiel 5 Reduktion eines Schwefelfarbstoffs - Hydronblau 3R
  • Verfahrenstechnische Bedingungen:
    Die Reduktion des Farbstoffs wurde kolorimetrisch erfaßt und ausgewertet.
    Färbebad: 4 g/l NaOH, 0,5 g/l Anthrachinon-1,5-disulfonsäure, 10 mg/l Hydronblau 3R
    Die Arbeitshathode besteht aus Cu (Fläche 88 cm²), die Arbeitsanode besteht aus Pt (Fläche 6 cm²). Das Arbeitspotential der Cu-Kathode beträgt -850 mV gegen eine AgCl-Referenzelektrode. Nach der Zugabe des Redoxsystems und dem Einschalten des Arbeitsstroms (ca. 10-20 mA) wird die Reduktion des Farbstoffs kolorimetrisch verfolgt. Bereits bei Raumtemperatur wird das vorgelagerte Anthrachinon-System innerhalb von 20 min bis zu ca. 34% reduziert (Erreichung des Halbstufenpotentials), der nun zugegebene Schwefelfarbstoff wird sofort quantitativ reduziert. Nach Abschalten des Arbeitsstromes kann die Rückoxidation des Schwefelfarbstoffs beobachtet werden.

Claims (6)

  1. Verfahren zur Reduktion von Farbstoffen in wäßriger Lösung mit pH >9, unter Verwendung eines Reduktionsmittels mit einem Redoxpotential von über 400 mV, das in reduzierter und oxidierter Form gelöst vorliegt, wobei ein Elektrodenpaar in die Lösung eingebracht wird, dessen Kathodenpotential unterhalb des Wertes gehalten wird, bei dem Wasserstoffentwicklung auftritt, dadurch gekennzeichnet, daß ein Reduktionsmittel verwendet wird, dessen Redoxpotential (Halbstufenpotential), vermehrt um die Ladungstransferüberspannung zur an der Kathode stattfindenden Rückführung der oxidierten Form des Reduktionsmittels in die reduzierte, unterhalb des Kathodenpotentials liegt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Kathode aus Cu, Zn, Pb oder Edelstahl verwendet wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß ein Reduktionsmittel mit anthrachinoider Grundstruktur verwendet wird.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß 0,5 . 10⁻³ mol/l bis 3 . 10⁻³ mol/l, vorzugsweise etwa 1,5 . 10⁻³ mol/l, der anthrachinoiden Verbindung verwendet wird.
  5. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als Reduktionsmittel ein Metallkomplexsalz verwendet wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß eine Mischung von 0,5 . 10⁻³ mol/l bis 5 . 10⁻³ mol/l Eisen (II)- oder Eisen(III)-Salz mit Triethanolamin verwendet wird.
EP90908918A 1989-06-01 1990-05-31 Verfahren zur reduktion von farbstoffen Expired - Lifetime EP0426832B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT9090908918T ATE105345T1 (de) 1989-06-01 1990-05-31 Verfahren zur reduktion von farbstoffen.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT1329/89 1989-06-01
AT0132989A AT398316B (de) 1989-06-01 1989-06-01 Verfahren zur reduktion von farbstoffen
PCT/AT1990/000052 WO1990015182A1 (de) 1989-06-01 1990-05-31 Verfahren zur reduktion von farbstoffen

Publications (2)

Publication Number Publication Date
EP0426832A1 EP0426832A1 (de) 1991-05-15
EP0426832B1 true EP0426832B1 (de) 1994-05-04

Family

ID=3511548

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90908918A Expired - Lifetime EP0426832B1 (de) 1989-06-01 1990-05-31 Verfahren zur reduktion von farbstoffen

Country Status (6)

Country Link
US (1) US5244549A (de)
EP (1) EP0426832B1 (de)
AT (1) AT398316B (de)
DE (1) DE59005612D1 (de)
ES (1) ES2054358T3 (de)
WO (1) WO1990015182A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001046497A2 (de) * 1999-12-22 2001-06-28 Dystar Textilfarben Gmbh & Co. Deutschland Kg Verfahren zur elektrochemischen reduktion von reduzierbaren farbstoffen
DE102004040601A1 (de) * 2004-08-21 2006-03-02 Dystar Textilfarben Gmbh & Co. Deutschland Kg Neuartige flüssige Chinonimin-Schwefelfarbstoff-Zusammensetzungen sowie Verfahren zu ihrer Herstellung und ihre Verwendung zum Färben von cellulosehaltigem Material

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE135765T1 (de) * 1990-12-03 1996-04-15 Verein Zur Foerderung Der Fors Verfahren zur reduktion von textilfarbstoffen
TW251325B (de) * 1993-03-30 1995-07-11 Basf Ag
DE19513839A1 (de) * 1995-04-12 1996-10-17 Basf Ag Verfahren zur elektrochemischen Reduktion von Küpenfarbstoffen
DE19723889A1 (de) * 1997-06-06 1998-12-10 Consortium Elektrochem Ind System zur elektrochemischen Delignifizierung ligninhaltiger Materialien sowie Verfahren zu seiner Anwendung
AT408455B (de) * 1997-09-04 2001-12-27 Basf Ag Verfahren zur reduktion von schwefelfarbstoffen
ATE304075T1 (de) 1998-11-24 2005-09-15 Walter Marte Verfahren und apparatur zur reduktion von küpen- und schwefelfarbstoffen
DE19919746A1 (de) * 1999-04-29 2000-11-02 Basf Ag Verfahren zur Herstellung von wäßrig-alkalischen Lösungen reduzierter indigoider Farbstoffe
DE10010060A1 (de) 2000-03-02 2001-09-06 Dystar Textilfarben Gmbh & Co Mediatorsysteme auf Basis gemischter Metallkomplexe zur Reduktion von Farbstoffen
DE10010059A1 (de) 2000-03-02 2001-09-06 Dystar Textilfarben Gmbh & Co Mediatorsysteme auf Basis gemischter Metallkomplexe zur Reduktion von Farbstoffen
DE10161265A1 (de) * 2001-12-13 2003-06-26 Dystar Textilfarben Gmbh & Co Verfahren zur Farbveränderung von gefärbten textilen Substraten
DE10234825A1 (de) * 2002-07-31 2004-02-19 Dystar Textilfarben Gmbh & Co. Deutschland Kg Verfahren zum Färben mit Schwefel- und Schwefelküpenfarbstoffen
WO2004042138A1 (de) * 2002-11-06 2004-05-21 Tex-A-Tec Ag Verfahren zur elektrochemischen reduktion von küpen- und schwefelfarbstoffen
ES2222077B1 (es) * 2002-12-23 2006-03-16 Argelich, Termes Y Cia S.A. Proceso de tintura con colorantes de tina y similares mediante reduccion electrolitica.
HK1067926A2 (en) * 2004-01-20 2005-03-24 Hong Kong Productivity Council An electrochemical dye reducing method.
DE102005040469A1 (de) * 2005-08-26 2007-03-01 Dystar Textilfarben Gmbh & Co. Deutschland Kg Farbstoffzubereitungen von indigoiden Farbstoffen, von Küpen- und Schwefelfarbstoffen enthaltend anorganische und/oder organische elektrochemisch aktive Mediatorsysteme sowie deren Verwendung
EP1870494A1 (de) 2006-06-23 2007-12-26 ETH Zürich, ETH Transfer Elektrochemischer Reaktor
US8291683B2 (en) * 2010-02-13 2012-10-23 Ruetenik Monty L Equine exercise boot assembly and method
CN102174731B (zh) * 2011-03-04 2012-11-07 东华大学 一种电化学还原的染色装置
CN102154793A (zh) * 2011-03-23 2011-08-17 东华大学 一种用于棉纱线电化学还原的染色装置
CN102433770A (zh) * 2011-08-31 2012-05-02 常州耀春格瑞纺织品有限公司 还原染料电化学快速清洁染色工艺
BR112015004395A2 (pt) 2012-08-30 2016-02-16 Cargill Inc agente redutor para corantes de enxofre, processo para fabricar o agente redutor, uso do agente, método para reduzir os corantes de enxofre e método para tingir tecidos
CN108691116A (zh) * 2018-05-24 2018-10-23 武汉纺织大学 一种导电纱线电化学还原染色装置及方法
CN113166954B (zh) 2018-11-30 2024-07-26 赛杜工程股份有限公司 电化学反应器和它的清洁或再生
CN113166953A (zh) 2018-11-30 2021-07-23 赛杜工程股份有限公司 副产物(杂质)的除去
US11753730B2 (en) 2018-11-30 2023-09-12 Sedo Engineering Sa Leucodye (such as leucoindigo) as dispersing aid
CN113549938B (zh) * 2021-06-17 2022-06-21 武汉纺织大学 一种回收废旧牛仔激光废灰中靛蓝的方法
CN113416967B (zh) * 2021-06-17 2022-09-06 武汉纺织大学 一种回收废旧牛仔中靛蓝染料的方法和织物染色方法
WO2023161441A2 (en) 2022-02-25 2023-08-31 Laboratoire Biosthetique Kosmetik Gmbh & Co. Kg Colorant composition comprising leucoindigo for coloring fibers and fabrics

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE139567C (de) *
FR319390A (fr) * 1902-03-07 1902-11-11 Cie Parisienne De Couleurs D A Procédé pour la réduction de l'indigo
FR384866A (fr) * 1907-02-18 1908-04-24 Baudot Et Cie Soc Procédé de pénétration et d'oxydation électrique des produits tinctoriaux dans la teinture des fibres et des tissus
DE534464C (de) * 1928-06-21 1931-09-28 Walter Haendel Verfahren zum Faerben und Bemustern von Geweben, Wirkwaren, Geflechten, Leder und anderen Stoffen aus pflanzlichen und tierischen Fasern durch elektrolytische Zersetzung einer im Gut befindlichen Loesung
US2147635A (en) * 1938-02-08 1939-02-21 Du Pont Dyestuff pastes and process for applying the same
US2433632A (en) * 1942-12-23 1947-12-30 Rca Corp Fibrous sheet material for the electrolytic formation of azo dye image records thereon
US2729726A (en) * 1953-08-31 1956-01-03 Ite Circuit Breaker Ltd Position indicator for enclosed disconnect switch
US3518038A (en) * 1965-10-20 1970-06-30 Allied Chem Electrographic recording mixture containing a morpholinyl diphenyl methane and 2 triphenyl methane
BE757171A (fr) * 1969-10-08 1971-04-07 Basf Ag Procede pour la teinture et l'impression de matieres textiles
DE2263138C3 (de) * 1972-12-22 1978-06-29 The Bombay Textile Research Association, Bombay (Indien) Verfahren zum Färben von Textilmaterial mit Küpenfarbstoffen und Vorrichtung hierfür
FR2265901B1 (de) * 1974-04-02 1977-10-14 Bombay Textile Res Assoc
EP0021432B1 (de) * 1979-07-02 1983-10-19 Hoechst Aktiengesellschaft Zweiphasendruckverfahren zur Herstellung von Konversions- und Ätzreserveartikeln
US4394227A (en) * 1981-03-05 1983-07-19 Ciba-Geigy Ag Electrochemical process for the preparation of benzanthrones and planar, polycyclic aromatic oxygen-containing compounds
SU1183585A1 (ru) * 1982-04-23 1985-10-07 Таджикский государственный университет им.В.И.Ленина Способ крашени текстильного материала из хлопка,полиамида или из их смеси
DK153412C (da) * 1984-11-22 1988-12-19 Ferring A S Fremgangsmaade til fremstilling af p-aminophenoler ved elektrolyse

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001046497A2 (de) * 1999-12-22 2001-06-28 Dystar Textilfarben Gmbh & Co. Deutschland Kg Verfahren zur elektrochemischen reduktion von reduzierbaren farbstoffen
WO2001046497A3 (de) * 1999-12-22 2001-12-13 Dystar Textilfarben Gmbh & Co Verfahren zur elektrochemischen reduktion von reduzierbaren farbstoffen
DE102004040601A1 (de) * 2004-08-21 2006-03-02 Dystar Textilfarben Gmbh & Co. Deutschland Kg Neuartige flüssige Chinonimin-Schwefelfarbstoff-Zusammensetzungen sowie Verfahren zu ihrer Herstellung und ihre Verwendung zum Färben von cellulosehaltigem Material

Also Published As

Publication number Publication date
ES2054358T3 (es) 1994-08-01
EP0426832A1 (de) 1991-05-15
AT398316B (de) 1994-11-25
DE59005612D1 (de) 1994-06-09
US5244549A (en) 1993-09-14
ATA132989A (de) 1994-03-15
WO1990015182A1 (de) 1990-12-13

Similar Documents

Publication Publication Date Title
EP0426832B1 (de) Verfahren zur reduktion von farbstoffen
EP1056900B1 (de) Verfahren und apparatur zur reduktion von küpen- und schwefelfarbstoffen
DE10161265A1 (de) Verfahren zur Farbveränderung von gefärbten textilen Substraten
EP0513291B1 (de) Verfahren zur reduktion von textilfarbstoffen
DE2803289C2 (de)
DE19513839A1 (de) Verfahren zur elektrochemischen Reduktion von Küpenfarbstoffen
DE3209533A1 (de) Reaktivfarbstoffmischung und verfahren zum anfaerben von cellulosefasern
EP1527228B1 (de) Verfahren zum färben mit schwefel und schwefelküpenfarbstoffen
DE2638236C3 (de) Verfahren zum Färben von Leder durch gleichzeitige Anwendung saurer und basischer Farbstoffe
DE410180C (de) Verfahren zur Reduktion organischer oder anorganischer Stoffe durch Natriumamalgam
DE3721765C2 (de)
DE10010059A1 (de) Mediatorsysteme auf Basis gemischter Metallkomplexe zur Reduktion von Farbstoffen
DE2727112A1 (de) Verfahren zur vorreinigung und zum faerben von textilen materialien
DE4320867A1 (de) Verfahren zum Färben von cellulosehaltigen Textilmaterialien mit Küpenfarbstoffen oder Schwefelfarbstoffen
DE10010060A1 (de) Mediatorsysteme auf Basis gemischter Metallkomplexe zur Reduktion von Farbstoffen
DE2011387A1 (de) Verbessertes Verfahren zur Küpenfärbung von Textilien
DE102005040469A1 (de) Farbstoffzubereitungen von indigoiden Farbstoffen, von Küpen- und Schwefelfarbstoffen enthaltend anorganische und/oder organische elektrochemisch aktive Mediatorsysteme sowie deren Verwendung
DE3437717C2 (de)
DE1912678C3 (de) Verfahren zum Färben von Cellulosematerlalien mit Schwefelküpenfarbstoffen der Carbazolreihe
DE102005006214A1 (de) Verfahren zur elektrochemischen Entfärbung von Indigo aus wässrigen Dispersionen
DE518759C (de) Verfahren zur Oxydation von Kuepenfarbstoffen der Anthrachinon- bzw. Benzanthronreihe auf der Faser
DE208998C (de)
DE294666C (de)
DE2555046A1 (de) Verfahren zur oxydativen nachbehandlung mit schwefelfarbstoffen gefaerbter oder bedruckter textilmaterialien
DE3623299A1 (de) Mittel zur reoxidation von faerbungen mit kuepen-, schwefelkuepen- oder schwefelfarbstoffen, verfahren zu seiner herstellung und seine verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910107

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE ES FR GB IT LI SE

17Q First examination report despatched

Effective date: 19920506

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI SE

REF Corresponds to:

Ref document number: 105345

Country of ref document: AT

Date of ref document: 19940515

Kind code of ref document: T

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 59005612

Country of ref document: DE

Date of ref document: 19940609

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940517

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2054358

Country of ref document: ES

Kind code of ref document: T3

EAL Se: european patent in force in sweden

Ref document number: 90908918.7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980514

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: VEREIN ZUR FOERDERUNG DER FORSCHUNG UND ENTWICKLUN

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20050506

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG

Ref country code: CH

Ref legal event code: PUE

Owner name: DYSTAR TEXTILFARBEN GMBH & CO. DEUTSCHLAND KG

Free format text: BASF AKTIENGESELLSCHAFT##67056 LUDWIGSHAFEN (DE) -TRANSFER TO- DYSTAR TEXTILFARBEN GMBH & CO. DEUTSCHLAND KG#INDUSTRIEPARK HOECHST#65926 FRANKFURT (DE)

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060601

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

EUG Se: european patent has lapsed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090605

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090521

Year of fee payment: 20

Ref country code: DE

Payment date: 20090529

Year of fee payment: 20

Ref country code: FR

Payment date: 20090515

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090513

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090527

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20100601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100531