EP0426832B1 - Verfahren zur reduktion von farbstoffen - Google Patents
Verfahren zur reduktion von farbstoffen Download PDFInfo
- Publication number
- EP0426832B1 EP0426832B1 EP90908918A EP90908918A EP0426832B1 EP 0426832 B1 EP0426832 B1 EP 0426832B1 EP 90908918 A EP90908918 A EP 90908918A EP 90908918 A EP90908918 A EP 90908918A EP 0426832 B1 EP0426832 B1 EP 0426832B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- potential
- dye
- reducing agent
- cathode
- reduction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000975 dye Substances 0.000 title claims abstract description 55
- 238000000034 method Methods 0.000 title claims abstract description 34
- 230000008569 process Effects 0.000 title claims abstract description 26
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 38
- 230000002829 reductive effect Effects 0.000 claims abstract description 18
- 239000000243 solution Substances 0.000 claims abstract description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 7
- 239000001257 hydrogen Substances 0.000 claims abstract description 7
- 239000007864 aqueous solution Substances 0.000 claims abstract description 3
- 238000012546 transfer Methods 0.000 claims abstract description 3
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 3
- -1 metal complex salt Chemical class 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical class [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 claims 1
- 229910000831 Steel Inorganic materials 0.000 claims 1
- 229910052745 lead Inorganic materials 0.000 claims 1
- 239000010959 steel Substances 0.000 claims 1
- 229960004418 trolamine Drugs 0.000 claims 1
- 230000009467 reduction Effects 0.000 abstract description 37
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 25
- 238000004043 dyeing Methods 0.000 description 21
- 239000010949 copper Substances 0.000 description 11
- 239000000126 substance Substances 0.000 description 11
- JVBXVOWTABLYPX-UHFFFAOYSA-L sodium dithionite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])=O JVBXVOWTABLYPX-UHFFFAOYSA-L 0.000 description 10
- 239000000988 sulfur dye Substances 0.000 description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 7
- 239000000984 vat dye Substances 0.000 description 7
- 229910021607 Silver chloride Inorganic materials 0.000 description 6
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 6
- 229910004878 Na2S2O4 Inorganic materials 0.000 description 5
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000000987 azo dye Substances 0.000 description 4
- XLSMFKSTNGKWQX-UHFFFAOYSA-N hydroxyacetone Chemical compound CC(=O)CO XLSMFKSTNGKWQX-UHFFFAOYSA-N 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 239000004753 textile Substances 0.000 description 4
- 239000002351 wastewater Substances 0.000 description 4
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 3
- 150000004056 anthraquinones Chemical class 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 238000004040 coloring Methods 0.000 description 3
- COHYTHOBJLSHDF-UHFFFAOYSA-N indigo powder Natural products N1C2=CC=CC=C2C(=O)C1=C1C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-UHFFFAOYSA-N 0.000 description 3
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 3
- 238000010405 reoxidation reaction Methods 0.000 description 3
- 239000000344 soap Substances 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 235000000177 Indigofera tinctoria Nutrition 0.000 description 2
- 239000007832 Na2SO4 Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004042 decolorization Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 2
- 229940097275 indigo Drugs 0.000 description 2
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 2
- QTWZICCBKBYHDM-UHFFFAOYSA-N leucomethylene blue Chemical compound C1=C(N(C)C)C=C2SC3=CC(N(C)C)=CC=C3NC2=C1 QTWZICCBKBYHDM-UHFFFAOYSA-N 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 2
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 150000003452 sulfinic acid derivatives Chemical class 0.000 description 2
- RYYXDZDBXNUPOG-UHFFFAOYSA-N 4,5,6,7-tetrahydro-1,3-benzothiazole-2,6-diamine;dihydrochloride Chemical compound Cl.Cl.C1C(N)CCC2=C1SC(N)=N2 RYYXDZDBXNUPOG-UHFFFAOYSA-N 0.000 description 1
- OZTBHAGJSKTDGM-UHFFFAOYSA-N 9,10-dioxoanthracene-1,5-disulfonic acid Chemical compound O=C1C=2C(S(=O)(=O)O)=CC=CC=2C(=O)C2=C1C=CC=C2S(O)(=O)=O OZTBHAGJSKTDGM-UHFFFAOYSA-N 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- VDQVEACBQKUUSU-UHFFFAOYSA-M disodium;sulfanide Chemical compound [Na+].[Na+].[SH-] VDQVEACBQKUUSU-UHFFFAOYSA-M 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 150000004338 hydroxy anthraquinones Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- COHYTHOBJLSHDF-BUHFOSPRSA-N indigo dye Chemical compound N\1C2=CC=CC=C2C(=O)C/1=C1/C(=O)C2=CC=CC=C2N1 COHYTHOBJLSHDF-BUHFOSPRSA-N 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- SURQXAFEQWPFPV-UHFFFAOYSA-L iron(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O SURQXAFEQWPFPV-UHFFFAOYSA-L 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000036284 oxygen consumption Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000009895 reductive bleaching Methods 0.000 description 1
- 238000006894 reductive elimination reaction Methods 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- XWGJFPHUCFXLBL-UHFFFAOYSA-M rongalite Chemical compound [Na+].OCS([O-])=O XWGJFPHUCFXLBL-UHFFFAOYSA-M 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 229940079827 sodium hydrogen sulfite Drugs 0.000 description 1
- HYHCSLBZRBJJCH-UHFFFAOYSA-M sodium hydrosulfide Chemical compound [Na+].[SH-] HYHCSLBZRBJJCH-UHFFFAOYSA-M 0.000 description 1
- 229910052979 sodium sulfide Inorganic materials 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- HGFNRQUOPIESSK-UHFFFAOYSA-M sodium;2-[bis(2-hydroxyethyl)amino]ethanol;hydroxide Chemical compound [OH-].[Na+].OCCN(CCO)CCO HGFNRQUOPIESSK-UHFFFAOYSA-M 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000009988 textile finishing Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000004048 vat dyeing Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06P—DYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
- D06P1/00—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed
- D06P1/22—General processes of dyeing or printing textiles, or general processes of dyeing leather, furs, or solid macromolecular substances in any form, classified according to the dyes, pigments, or auxiliary substances employed using vat dyestuffs including indigo
- D06P1/221—Reducing systems; Reducing catalysts
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06P—DYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
- D06P5/00—Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
- D06P5/20—Physical treatments affecting dyeing, e.g. ultrasonic or electric
- D06P5/2016—Application of electric energy
Definitions
- the invention relates to a process for the reduction of dyes in aqueous solution with pH> 9, using a reducing agent with a redox potential of over 400 mV, which is present in a reduced and oxidized form, a pair of electrodes being introduced into the solution, the Cathode potential is kept below the value at which hydrogen evolution occurs.
- vat dyes for dyeing cellulose fibers have a considerable market share (approx. 12.5%, world consumption approx. 25,000 t / year).
- This dye class is one of the high-quality dyes, particularly due to its high fastness properties.
- the primarily non-fiber-insoluble dye particles are reduced to their alkali-soluble leuco form by reduction.
- the reduced dye has a high affinity for the substrate and is now quickly absorbed by the dye.
- the pull-up phase has ended, the leuco form is oxidized to fix the dye, forming the water-insoluble pigment.
- the basic chemical structure of the dyes is often anthraquinone or indigoide.
- sulfur dyes are inferior to vat dyes, but their price is very cheap, so that they have a relatively large market share in cellulose dyeing (25%, 50,000 t / year).
- the sulfur dyes are used analogously to the vat dyes, with the reduction of the sulfur dyes being possible even at lower redox potentials.
- Reducing agents are also used to destroy excess bleaching agents, reductive bleaching (wool) and reductive wastewater treatment (decolorization).
- the main reducing agent for vat dyeing and for the reductive cleavage of azo dyes is Na2S2O4 sodium dithionite ("Hydro"), which has a reduction potential of approximately -1000 mV in an alkaline environment.
- Sulfinic acid derivatives (Rongalit types BASF) are used for reductions at higher temperatures (steaming processes, HT processes) (reduction potential at 50 o C approx. -1000 mV).
- Sulfinic acid derivatives can be activated through the use of heavy metal compounds such as Ni-cyano complexes, Co complexes etc.
- the use of anthraquinone compounds as accelerators for the reducing agents used has been proposed, but is practically not carried out.
- reducing agents are thiourea dioxide (-1100 mV), hydroxyacetone (-810 mV) and sodium borohydride (-1100 mV).
- indigo lies between the vat dyes and sulfur dyes.
- hydroxyacetone / sodium hydroxide solution can also be used here as a reducing agent.
- iron vitriol (FeSO4) lime vats, zinc lime vats and fermentation vats were used.
- other reducing agents can also be used for sulfur dyeing.
- the main reducing agents are Na2S and NaHS (reduction potential approx. -500 mV). Mixtures of glucose and sodium hydroxide were also used.
- Na2S2O4 is a relatively expensive chemical that has to be imported by many countries.
- a large excess of Na2S2O4 based on the amount theoretically required for the reduction, must be used.
- the oxygen present in the liquor must first be removed, only then can the dye reduction begin.
- atmospheric oxygen from the environment continuously consumes Na2S2O4.
- the quantities used are approx. 1.25 to 2.5 kg of reducing agent per kg of dye.
- the amount of reducing agent must be in the dyebath sufficient for complete reduction to complete the dyeing process.
- the dye bath is therefore drained off with a relatively large amount of reducing agent. The oxidation therefore takes place in a new treatment bath, since otherwise the entire excess of reducing agent still present in the dye bath must also be oxidized.
- the reducing agent bath leads to considerable oxygen consumption in the wastewater, which leads to wastewater problems.
- the procurement costs are relatively low, but the wastewater problem is becoming increasingly important here, since not only oxygen depletion, but also considerable toxicity and odor problems occur.
- the invention has for its object to avoid the disadvantages of the previous reducing agents. This is achieved in that a reducing agent is used whose redox potential (half-stage potential), increased by the charge transfer overvoltage for the return of the oxidized form of the reducing agent to the reduced one below the cathode potential.
- the dye is therefore not reduced directly at the electrode, which has already been proposed, but has not proven successful. Rather, a reducing agent is used which reduces the dye in a conventional manner, is oxidized in the process and reaches the cathode in this oxidized form, where it is returned to its original state.
- Redox systems of this type are called mediators in electrochemistry. The use of such mediators for the reduction of dyes was not obvious for several reasons. So far, mediators have hardly been watery per se
- the cathode thus reduces the reversible redox system which, in turn, is able to reduce the dye after the reduction potential of the dye has been reached.
- the upstream reversible redox system has the task of generating a continuously regenerable reduction potential in the dye liquor, as a result of which no further reducing agent has to be added to the dye liquor.
- the proportion of reducing agent consumed by air oxidation is continuously renewed at the cathode. There are no secondary products from the addition of reducing agents in the dyeing liquor. Enrichment by the usually necessary addition of reducing agent does not occur either.
- the dye bath After removing the unfixed dye (centrifugation, filtration, ..), the dye bath can be reused, only the liquor volume lost with the goods having to be replaced. Chemical consumption in the usual sense does not occur. Even the dye reoxidation can be carried out in the dye bath, which according to the literature should lead to an improvement in the rub fastness of the dye (doubtful). This procedure is not economically justifiable with the reducing agents currently used, since at the end of the dyeing process large amounts of reducing agent remain in the dye liquor and draining the dye liquor is more cost-effective. A closed recycling of the entire dyeing liquor without time-consuming reprocessing is out of the question, also because of the ongoing enrichment with secondary reducing agent products.
- Various upstream redox systems can be used for indirect electrochemical dye reduction:
- organic compounds with which the redox system can be implemented in particular those with an anthrachinoid basic structure have been investigated.
- Experiments with anthraquinone mono- and disulfonic acids, hydroxyanthraquinones and mixed substituted products enabled the reduction of sulfur dyes and vat dyes with the corresponding potential.
- the quantities of anthrachinoid compound used are between 0.5. 10 ⁇ 3 mol / l and 3. 10 ⁇ 3 mol / l, with concentrations of about 1.5. 10 ⁇ 3 mol / l are cheap.
- the oxygen input from the air must also be taken into account. The amount of catalyst required can be reduced by a closed apparatus.
- Inorganic compounds for the invention Can be used, one has to look above all under the metal complex salts.
- the system Fe (II / III) triethanolamine sodium hydroxide solution is suitable as a reduction mediator.
- the achievable potentials of up to -980 mV enable the reduction of all common vat dyes, indigoid dyes, sulfur dyes, azo dyes without the use of other reducing substances.
- the device shown comprises a container 11, on the bottom of which there is a working cathode 1 made of copper.
- a magnetic stirrer 8 is located above the working cathode 1 to accelerate the removal of the reduction products.
- a reference electrode 4 (Ag / AgCl) is provided for measuring the cathode potential by means of the voltmeter 5.
- the potential in solution is measured using a separate measuring electrode 3 made of copper or platinum, which is connected to the reference electrode. As a result, the potential increase in the solution can be tracked as a result of the reduction system that is building up.
- a container 10 filled with textiles to be dyed is introduced into the electrolysis chamber on the cathode side with respect to the diaphragm 7, through which the solution is sucked by means of the liquor circulation pump 9, whereupon it returns to the container 11.
- the temperatures were between 40 and 50 o C, but in itself the entire temperature range from 20 to 90 o C could be used.
- the potential in the solution rises to -940 mV within 20 minutes and is held there for 1 hour.
- the reduced dye on the goods is oxidized by rinsing.
- the dyeing is completed by boiling soap according to the dye manufacturer's instructions.
- the color depth achieved during coloring corresponds to the guide values of the dye manufacturers.
- the potential in the solution rises to over -800 mV within 20 min and is held there for 40 min.
- the dyeing temperature was increased to approx. 60 ° C
- the working current rises to 60 mA
- the potential in the solution reaches -870 mV.
- the reduced dye on the goods is oxidized by rinsing.
- the dyeing is completed by boiling soap according to the instructions of the dye manufacturer The color depth achieved corresponds to the guide values of the dye manufacturers.
- the potential in the solution rises to over -870 mV within 60 min, especially after the addition of Na2SO4.
- the dyeing temperature is increased to approx. 45 ° C.
- the reduced dye on the goods is oxidized by rinsing.
- the dyeing is completed by boiling soap according to the dye manufacturer's instructions.
- the color depth achieved during coloring corresponds to the guide values of the dye manufacturers.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Coloring (AREA)
Abstract
Description
- Die Erfindung bezieht sich auf ein Verfahren zur Reduktion von Farbstoffen in wäßriger Lösung mit pH >9, unter Verwendung eines Reduktionsmittels mit einem Redoxpotential von über 400 mV, das in reduzierter und oxidierter Form gelöst vorliegt, wobei ein Elektrodenpaar in die Lösung eingebracht wird, dessen Kathodenpotential unterhalb des Wertes gehalten wird, bei dem Wasserstoffentwicklung auftritt.
- In der Textilveredlung besitzen Küpenfarbstoffe zur Färbung von Cellulosefasern einen beachtlichen Marktanteil (ca. 12,5 %, Weltverbrauch ca. 25 000 t/Jahr). Insbesondere aufgrund der hohen Echtheiten zählt diese Farbstoffklasse zu den hochwertigen Farbstoffen. Bei der Anwendung in der Färberei werden die primär nicht faseraffinen, unlöslichen Farbstoffpartikel durch Reduktion in ihre laugenlösliche Leukoform übergeführt. Der reduzierte Farbstoff besitzt hohe Affinität zum Substrat und zieht nun rasch auf das Färbegut auf. Ist die Aufziehphase beendet, erfolgt die Oxidation der Leukoform zur Fixierung des Farbstoffs, wobei sich das wasserunlösliche Pigment bildet. Die Farbstoffe sind in ihrer chemischen Grundstruktur häufig anthrachinoide oder indigoide Typen. Schwefelfarbstoffe sind den Küpenfarbstoffen in qualitativer Sicht unterlegen, preislich aber sehr günstig, sodaß sie einen relativ großen Marktanteil in der Cellulosefärberei besitzen (25 %, 50 000 t/Jahr). Die Anwendung der Schwefelfarbstoffe erfolgt analog den Küpenfarbstoffen, wobei die Reduktion der Schwefelfarbstoffe bereits bei niedrigeren Redoxpotentialen möglich ist.
- Viele Textilfarbstoffe anderer Farbstoffklassen besitzen in ihren farbgebenden Molekülteilen Azo-Gruppen. Diese Azogruppen lassen sich reduktiv irreversibel spalten, was zur Zerstörung von Farbstoffen (Abziehen und Korrektur von Fehlfärbungen) ausgenutzt werden kann.
- Reduktionsmittel werden auch zur Zerstörung überschüssiger Bleichmittel, zur reduktiven Bleiche (Wolle) und reduktiven Abwasserbehandlung (Entfärbung) eingesetzt.
- Das Hauptreduktionsmittel für Küpenfärbungen und zur reduktiven Spaltung von Azofarbstoffen ist Na₂S₂O₄ Natriumdithionit ("Hydro"), das im alkalischen Milieu ein Reduktionspotential von ca. -1000 mV aufweist. Sulfinsäurederivate (Rongalit-Typen BASF) werden für Reduktionen bei höheren Temperaturen (Dämpfprozesse, HT-Verfahren) eingesetzt (Reduktionspotential bei 50oC ca. -1000 mV). Sulfinsäurederivate können durch den Einsatz von Schwermetallverbindungen, wie Ni-Cyanokomplexen, Co-Komplexen etc. aktiviert werden. Der Einsatz von Anthrachinon-Verbindungen als Beschleuniger für die eingesetzten Reduktionsmittel wurde vorgeschlagen, wird aber praktisch wenig durchgeführt.
Andere Reduktionsmittel sind Thioharnstoffdioxid (-1100 mV), Hydroxyaceton (-810 mV) und Natriumborhydrid (-1100 mV). Indigo liegt bezüglich des erforderlichen Reduktionspotentials (ca. -600 mV) zwischen den Küpenfarbstoffen und Schwefelfarbstoffen. Hier können neben "Hydro" auch Hydroxyaceton/Natronlauge als Reduktionsmittel eingesetzt werden. Historisch wurden Eisenvitriol (FeSO₄)-Kalk-Küpen, Zink-Kalk-Küpen und Gärungsküpen eingesetzt.
Für Schwefelfärbungen können aufgrund des niedrigeren erforderlichen Reduktionspotentials auch andere Reduktionsmittel verwendet werden. Hauptreduktionsmittel sind Na₂S und NaHS (Reduktionspotential ca. -500 mV). Auch Glucose/Natronlauge Mischungen wurden eingesetzt. - In verschiedenen indischen Arbeiten (vgl. "Dyeing with less chemicals" E. H. Daruwalla in TEXTILE ASIA, September 1975, Seiten 165-169) wurde bereits ein Verfahren der eingangs charakterisierten Art vorgeschlagen, bei welchem durch das Anlegen einer Gleichspannung der Verbrauch von Natriumdithionit verringert wird. Diese Verringerung ist darauf zurückzuführen, daß das Reduktionsmittel an der Kathode in eine Form übergeführt wird, welche ein erhöhtes Reduktionsvermögen aufweist. Durch die Reaktion mit dem Farbstoff zerfällt dieser Stoff in dieselben Produkte wie das Natriumdithionit selbst. Diese Produkte können bei der angelegten Spannung an der Kathode nicht regeneriert werden. Dabei liegt diese Spannung ohnedies in einer Höhe, die nur bei der verwendeten Quecksilberelektrode brauchbar ist, bei praktisch anwendbaren Elektrodenmaterialien aber bereits zu schädlicher Wasserstoffentwicklung führen würde.
- Aus der DE-A-13 95 67 und im wesentlichen auch aus der inhaltsähnlichen FR-A-319 390 ist ein Verfahren bekannt, bei dem durch die Einwirkung des elektrischen Stromes aus Natriumhydrogensulfit das Reduktionsmittel Natriumdithionit erzeugt wird, welches nun in der Lage ist, Indigo zu reduzieren. Beim bekannten Verfahren wird die Reduktion im sauren pH-Bereich begonnen und der pH-Wert wandert erst im Laufe des Verfahrens in den schwach alkalischen Bereich ab, wodurch eine Küpe entsteht. Entsprechend den Erkenntnissen über die Elektrolyse von Sulfitlösungen kommt dabei die kathodische Reduktion des Sulfits zum Erliegen, sodaß kein reversibles Redoxsystem mehr vorliegt. Die elektrochemische Bildung von Natriumdithionit aus Natriumhydrogensulfit/-sulfit gelingt also nur in sauren Lösungen, in alkalischen Lösungen liegt kein reversibles Redoxsystem im Sinne eines Mediators vor.
- Die derzeit eingesetzten Reduktionsmittel führen zu verschiedenen Nachteilen bei ihrer Anwendung: Na₂S₂O₄ ist eine relativ teure Chemikalie, die von vielen Ländern eingeführt werden muß. Bei den Färbevorgängen muß ein großer Überschuß an Na₂S₂O₄, bezogen auf die theoretisch zur Reduktion benötigte Menge, eingesetzt werden. Im Färbebad muß zuerst der in der Flotte vorhandene Sauerstoff entfernt werden, erst danach kann die Farbstoffreduktion beginnen. Während des Färbevorganges wird durch Luftsauerstoff aus der Umgebung laufend Na₂S₂O₄ verbraucht. Die Einsatzmengen betragen pro kg Farbstoff ca. 1,25 bis 2,5 kg Reduktionsmittel.
- Durch die hohen Einsatzmengen kommt es zu einer Anreicherung von Oxidationsprodukten des Reduktionsmittels in der Färbeflotte. Eine Wiederverwertung der Färbeflotte wird dadurch nur in den wenigsten Fällen möglich. Die Reduktionsmittelmenge muß im Färbebad bis zur Beendigung des Färbevorgangs zur vollständigen Reduktion ausreichen. Das Färbebad wird daher mit einer relativ großen Reduktionsmittelmenge abgelassen. Die Oxidation erfolgt daher in einem neuen Behandlungsbad, da sonst der gesamte noch vorhandene Reduktionsmittelüberschuß im Färbebad mit oxidiert werden muß.
- Das Reduktionsmittelbad führt im Abwasser zu einer beachtlichen Sauerstoffzehrung, was zu Abwasserproblemen führt. Bei der Verwendung von Sulfiden als Reduktionsmittel sind die Beschaffungskosten relativ gering, die Abwasserproblematik gewinnt hier aber laufend an Bedeutung, da hier neben der Sauerstoffzehrung auch beachtliche Toxizität und Geruchsprobleme auftreten.
- Der Erfindung liegt die Aufgabe zugrunde, die dargestellten Nachteile der bisherigen Reduktionsmittel zu vermeiden. Dies wird dadurch erreicht, daß ein Reduktionsmittel verwendet wird, dessen Redoxpotential (Halbstufenpotential),vermehrt um die Ladungstransferüberspannung zur an der Kathode stattfindenden Rückführung der oxidierten Form des Reduktionsmittels in die reduzierte,unterhalb des Kathodenpotentials liegt.
- Gemäß der Erfindung wird somit der Farbstoff nicht direkt an der Elektrode reduziert, was zwar bereits vorgeschlagen worden ist, sich jedoch nicht bewährt hat. Vielmehr wird ein Reduktionsmittel eingesetzt, das in üblicher Weise den Farbstoff reduziert, dabei oxidiert wird und in dieser oxidierten Form an die Kathode gelangt, wo es wieder in seinen ursprünglichen Zustand rückgeführt wird. Redoxsysteme dieser Art bezeichnet man in der Elektrochemie als Mediatoren. Solche Mediatoren zur Reduktion von Farbstoffen anzuwenden, lag aus mehreren Gründen nicht nahe. Es wurden Mediatoren bisher an sich kaum in wäßriger
- Lösung eingesetzt, im alkalischen Bereich nur ganz ausnahmsweise, und über einem pH-Wert 9 überhaupt nicht. Die bisher zur Reduktion von Farbstoffen eingesetzten Substanzen sind andererseits für das erfindungsgemäße Verfahren nicht verwendbar, da ihre Oxidationsprodukte nur bei Kathodenspannungen in den Grundzustand überführbar wären, bei denen längst eine unzumutbare Wasserstoffentwicklung an der Kathode stattfinden würde.
- Die Kathode reduziert also das reversible Redoxsystem, welches nach Erreichen des Reduktionspotentials des Farbstoffs seinerseits in der Lage ist, den Farbstoff zu reduzieren. Durch die Einstellung des optimalen Redoxpotentials in Lösung können Farbtonverschiebungen, wie sie durch überreduktion hervorgerufen werden, vermieden werden. Das vorgelagerte reversible Redoxsystem hat die Aufgabe, in der Färbeflotte ein laufend regenerierbares Reduktionspotential zu erzeugen, wodurch kein weiteres Reduktionsmittel der Färbeflotte zugegeben werden muß. Der durch Luftoxidation verbrauchte Anteil an Reduktionsmittel wird laufend an der Kathode wiedererneuert. In der Färbeflotte entstehen keine Folgeprodukte aus der Reduktionsmittelzugabe. Eine Anreicherung durch den üblicherweise notwendigen Nachsatz an Reduktionsmittel tritt ebenfalls nicht auf. Nach einer Entfernung des nicht fixierten Farbstoffs (Zentrifugation, Filtration,..) kann das Färbebad wiederverwendet werden, wobei nur das mit der Ware verlorene Flottenvolumen ersetzt werden muß. Ein Chemikalienverbrauch im üblichen Sinn tritt nicht auf. Sogar die Farbstoffwiederoxidation kann im Färbebad vorgenommen werden, was laut Literaturangabe zu einer Verbesserung der Reibechtheit des Farbstoffs führen soll (zweifelhaft). Diese Arbeitsweise ist bei den derzeit verwendeten Reduktionsmitteln nicht wirtschaftlich vertretbar, da am Ende des Färbeprozesses zu große Reduktionsmittelmengen in der färbeflotte verbleiben und ein Ablassen der Färbeflotte kostengünstiger ist. Eine geschlossene Wiederverwertung der gesamten Färbeflotte ohne aufwendige Aufarbeitung kommt hier auch aufgrund der laufenden Anreicherung mit Reduktionsmittelfolgeprodukten nicht in Frage.
- Der Einsatz der indirekten elektrochemischen Reduktion senkt daher nicht nur die Kosten an Reduktionschemikalien, sondern ermöglicht erstmalig auch die geschlossene Kreislaufführung der Färbeflotten nach einer Entfernung des Restfarbstoffs. Ein mit Ausnahme der Spülwässer abwasserfreies Färben ist dadurch möglich. Gerade die mit Chemikalien derzeit hoch belasteten Färbeflotten können vollständig im Kreislauf geführt werden.
- Verschiedene vorgelagerte Redoxsysteme können zur indirekten elektrochemischen Farbstoffreduktion eingesetzt werden:
Als organische Verbindungen, mit denen das Redoxsystem realisiert werden kann, wurden insbesondere solche mit anthrachinoider Grundstruktur untersucht. Versuche mit Anthrachinonmono- und disulfonsäuren, Hydroxyanthrachinonen und gemischt substituierten Produkten ermöglichten die Reduktion von Schwefelfarbstoffen und Küpenfarbstoffen mit entsprechenden Potentialen. Die Einsatzmengen an der anthrachinoiden Verbindung liegen zwischen 0,5 . 10⁻³ mol/l und 3 . 10⁻³ mol/l, wobei Konzentrationen von etwa 1,5 . 10⁻³ mol/l günstig sind. Zur Beurteilung der erforderlichen Einsatzmengen an Redoxkatalysator ist aber auch der Sauerstoffeintrag aus der Luft zu berücksichtigen. Durch eine geschlossene Apparatur kann die erforderliche Katalysatormenge reduziert werden. - Anorganische Verbindungen, die für den erfindungsgemäßen Einsatz verwendbar sind, hat man vor allem unter den Metallkomplexsalzen zu suchen. Beispielsweise ist das System Fe(II/III)-Triethanolamin-Natronlauge als Reduktionsmediator geeignet. Die erreichbaren Potentiale von bis zu -980 mV ermöglichen die Reduktion aller gängigen Küpenfarbstoffe, indigoider Farbstoffe, Schwefelfarbstoffe, Azofarbstoffe ohne Einsatz von sonstigen reduzierenden Substanzen.
- Dem Fachmann, dem die Lehre der Erfindung bekannt ist, ist es durchaus zuzumuten,weitere Reduktionsmittel zu finden, welche unter den vorgegebenen Verfahrensbedingungen als Mediatoren einsetzbar sind. Wichtig ist dabei, daß die Aktivität dieser Stoffe während der Nutzungsdauer höchstens geringfügig abnimmt, sodaß eine große Zahl von Reduktionszyklen gewährleistet ist. An der Elektrodenoberfläche soll ein rascher Umsatz erfolgen. Die Katalyse von Nebenreaktionen durch das Reduktionsmittel soll ausgeschlossen sein. Für die technische Anwendung ist natürlich auch noch geringe Toxizität zu fordern.
- Die Reduktionswirkung der verschiedenen Redoxsysteme wird im Rahmen dieser Beschreibung immer durch ihr Halbstufenpotential charakterisiert. An sich stellt sich ja bei jedem Potential ein bestimmtes Verhältnis zwischen der reduzierten und der oxidierten Form des verwendeten Stoffes ein. Für technisch einsetzbare Systeme muß aber eine gewisse Belastbarkeit gegeben sein, das erreichte Reduktionspotential darf nicht sofort zusammenbrechen. Praktisch bedeutet dies, daß man etwa in dem Bereich arbeiten wird, in Welchem reduzierte und oxidierte Spezies in etwa gleicher Menge vorliegen. Um dieses Potential festzustellen, muß nicht die Ausbildung eines Gleichgewichtszustandes abgewartet werden, es ist vielmehr auch möglich, dynamisch die
- Peakpotentiale der Cv-Kurven festzustellen, zwischen denen das Halbstufenpotential liegt.
- Anschließend wird die Erfindung anhand einer Einrichtung zur Durchführung des Verfahrens und mittels einiger Anwendungsbeispiele näher erläutert. Die Einrichtung zur Durchführung des Verfahrens ist in der einzigen Zeichnung schematisch dargestellt. Die in den Anwendungsbeispielen beschriebenen Färbe- und Entfärbeverfahren für Textilien fallen jedoch als solche nicht unter den Gegenstand der Patentansprüche.
- Die dargestellte Einrichtung umfaßt einen Behälter 11, an dessen Boden sich eine Arbeitskathode 1 aus Kupfer befindet. Zur Beschleunigung des Abtransports der Reduktionsprodukte befindet sich über der Arbeitskathode 1 ein Magnetrührer 8. Zur Messung des Kathodenpotentials mittels des Spannungsmessers 5 ist eine Referenzelektrode 4 (Ag/AgCl) vorgesehen. Die Messung des Potentials in Lösung erfolgt über eine eigene Meßelektrode 3 aus Kupfer oder Platin, die mit der Referenzelektrode verbunden wird. Dadurch ist der Potentialanstieg in der Lösung als Folge des sich aufbauenden Reduktionssystems verfolgbar.
- Wesentlich ist, daß die Arbeitsanode 2 durch ein Diaphragma 7 abgeschirmt wird, um in bekannter Weise eine Reoxidation an der Anode zu vermeiden. In den hinsichtlich des Diaphragmas 7 kathodenseitigen Elektrolysenraum wird ein mit zu färbenden Textilien gefüllter Behälter 10 eingebracht, durch den die Lösung mittels der Flottenumwälzpumpe 9 gesaugt wird, woraufhin sie wieder in den Behälter 11 gelangt.
- Durch Verwendung von Kathodenmaterial mit hoher Wasserstoffüberspannung kann je nach Laugengehalt mittels des Netzgerätes 6 ein Arbeitspotential von bis zu -1200 mV an der Kathode realisiert werden, ohne daß es zu Wasserstoffentwicklung kommt.
- Bei den anschließend beschriebenen Versuchen lagen die Temperaturen zwischen 40 und 50oC, an sich wäre jedoch der gesamte Temperaturbereich von 20 bis 90oC verwendbar.
- Verfahrenstechnische Bedingungen:
Ausziehverfahren Flottenverhältnis 1:20
Warengewicht: 6,6 g Bw (100%) Flottenvolumen 130 ml
Farbtiefe: 3% (197 mg Farbstoff)
Färbebad: 4 g/l NaOH, 2 g/l Triethanolamin, 0,5 g/l Fe₂(SO₄)₃ Die Arbeitskathode besteht aus Cu (Fläche 36 cm²), die Arbeitsanode besteht aus Pt (Fläche 10 cm²). Das Arbeitspotential der Cu-Kathode beträgt -1150 mV gegen eine AgCl-Referenzelektrode. Die Ware wird bei 40°C mit der Lauge benetzt. Nach der Zugabe des Redoxsystems und dem Einschalten des Arbeitsstroms (ca. 35 mA) steigt das Potential in der Lösung innnerhalb von 20 min auf -940 mV an und wird dort 1 Stunde gehalten. Der auf der Ware befindliche reduzierte Farbstoff wird durch Spülen oxidiert. Die Fertigstellung der Färbung erfolgt durch kochendes Seifen entsprechend den Angaben der Farbstoffhersteller. - Die bei der Färbung erreichte Farbtiefe entspricht den Richtwerten der Farbstoffhersteller.
- Verfahrenstechnische Bedingungen:
Ausziehverfahren Flottenverhältnis 1:20
Warengewicht: 6,68 g Bw (100%) Flottenvolumen 135 ml
Farbtiefe: 5% (334 mg Farbstoff)
Färbebad: 8 g/l Na₂CO₃, 4 g/l Triethanolamin, 0,5 g/l Fe₂(SO₄)₃ Die Arbeitskathode besteht aus Cu (Fläche 36 cm², die Arbeitsanode besteht aus Pt (Fläche 10 cm²). Das Arbeitspotential der Cu-Kathode beträgt -1150 mV gegen eine AgCl-Referenzelektrode. Die Ware wird bei RT mit der Lauge benetzt. Nach der Zugabe des Redoxsystems und dem Einschalten des Arbeitsstroms (ca. 30 mA) steigt das Potential in der Lösung innerhalb von 20 min auf über -800 mV an und wird dort 40 min gehalten. Während dieser Zeit wurde die Färbetemperatur auf ca. 60°C erhöht, der Arbeitsstrom steigt dabei bis auf 60 mA an, das Potential in der Lösung erreicht -870 mV. Der auf der Ware befindliche reduzierte Farbstoff wird durch Spülen oxidiert. Die Fertigstellung der Färbung erfolgt durch kochendes Seifen entsprechend den Angaben der Farbstoffhersteller. Die bei der Färbung erreichte Farbtiefe entspricht den Richtwerten der Farbstoffhersteller. - Verfahrenstechnische Bedingungen:
Abziehversuch Flottenverhältnis 1:20
Warengewicht: 5,76 g Bw (100%) Flottenvolumen 115 ml
Farbtiefe: Ausgangsfärbung 10 g Farbst/kg Ware (KKV-gefärbt)
Färbebad: 8,8 g/l NaOH, 4 g/l Triethanolamin, 0,5 g/l Fe₂(SO₄)₃
Die Arbeitskathode besteht aus CU (Fläche 36 cm²), die Arbeitsanode besteht aus Pt (Fläche 10 cm²). Das Arbeitspotential der Cu-Kathode beträgt -1150 mV gegen eine AgCl-Referenzelektrode. Die Ware wird bei RT mit der Lauge benetzt. Nach der Zugabe des Redoxsystems und dem Einschalten des Arbeitsstroms (ca. 20 mA) steigt das Potential in der Lösung innerhalb von 20 min auf -450 mV an. Mit der Erhöhung der Temperatur auf 55°C steigt das Potential auf -800 bis -900 mV an und wird dort 1 Stunde gehalten. Der auf der Ware befindliche Azofarbstoff wird praktisch vollständig zerstört, was normalerweise durch eine Behandlung mit NaOH / Na₂S₂O₄ erreicht wird. - Verfahrenstechnische Bedingungen:
Ausziehverfahren Flottenverhältnis 1:20
Warengewicht: 7,0 g Bw (100%) Flottenvolumen 140 ml
Farbtiefe: 4% (280 mg Farbstoff)
Färbebad: 1,4 g/l NaOH, 30 g/l Na₂SO₄, 4 g/l Triethanolamin. 0,5 g/l FeSO₄ . 7H₂O
Die Arbeitskathode besteht aus Cu (Fläche 36 cm²), die Arbeitsanode besteht aus Pt (Fläche 10 cm²). Das Arbeitspotential der Cu-Kathode beträgt -1150 mV gegen eine AgCl-Referenzelektrode. Die Ware wird bei RT mit der Laufe benetzt. Nach der Zugabe des Redoxsystems und dem Einschalten des Arbeitsstroms (ca. 10-20 mA) steigt das Potential in der Lösung insbesondere nach der Zugabe des Na₂SO₄ innerhalb von 60 min auf über -870 mV an. Während dieser Zeit wird die Färbetemperatur auf ca. 45°C erhöht. Der auf der Ware befindliche reduzierte Farbstoff wird durch Spülen oxidiert. Die Fertigstellung der Färbung erfolgt durch kochendes Seifen entsprechend den Angaben der Farbstoffhersteller. - Die bei der Färbung erreichte Farbtiefe entspricht den Richtwerten der Farbstoffhersteller.
- Verfahrenstechnische Bedingungen:
Die Reduktion des Farbstoffs wurde kolorimetrisch erfaßt und ausgewertet.
Färbebad: 4 g/l NaOH, 0,5 g/l Anthrachinon-1,5-disulfonsäure, 10 mg/l Hydronblau 3R
Die Arbeitshathode besteht aus Cu (Fläche 88 cm²), die Arbeitsanode besteht aus Pt (Fläche 6 cm²). Das Arbeitspotential der Cu-Kathode beträgt -850 mV gegen eine AgCl-Referenzelektrode. Nach der Zugabe des Redoxsystems und dem Einschalten des Arbeitsstroms (ca. 10-20 mA) wird die Reduktion des Farbstoffs kolorimetrisch verfolgt. Bereits bei Raumtemperatur wird das vorgelagerte Anthrachinon-System innerhalb von 20 min bis zu ca. 34% reduziert (Erreichung des Halbstufenpotentials), der nun zugegebene Schwefelfarbstoff wird sofort quantitativ reduziert. Nach Abschalten des Arbeitsstromes kann die Rückoxidation des Schwefelfarbstoffs beobachtet werden.
Claims (6)
- Verfahren zur Reduktion von Farbstoffen in wäßriger Lösung mit pH >9, unter Verwendung eines Reduktionsmittels mit einem Redoxpotential von über 400 mV, das in reduzierter und oxidierter Form gelöst vorliegt, wobei ein Elektrodenpaar in die Lösung eingebracht wird, dessen Kathodenpotential unterhalb des Wertes gehalten wird, bei dem Wasserstoffentwicklung auftritt, dadurch gekennzeichnet, daß ein Reduktionsmittel verwendet wird, dessen Redoxpotential (Halbstufenpotential), vermehrt um die Ladungstransferüberspannung zur an der Kathode stattfindenden Rückführung der oxidierten Form des Reduktionsmittels in die reduzierte, unterhalb des Kathodenpotentials liegt.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Kathode aus Cu, Zn, Pb oder Edelstahl verwendet wird.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß ein Reduktionsmittel mit anthrachinoider Grundstruktur verwendet wird.
- Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß 0,5 . 10⁻³ mol/l bis 3 . 10⁻³ mol/l, vorzugsweise etwa 1,5 . 10⁻³ mol/l, der anthrachinoiden Verbindung verwendet wird.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als Reduktionsmittel ein Metallkomplexsalz verwendet wird.
- Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß eine Mischung von 0,5 . 10⁻³ mol/l bis 5 . 10⁻³ mol/l Eisen (II)- oder Eisen(III)-Salz mit Triethanolamin verwendet wird.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT9090908918T ATE105345T1 (de) | 1989-06-01 | 1990-05-31 | Verfahren zur reduktion von farbstoffen. |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT1329/89 | 1989-06-01 | ||
AT0132989A AT398316B (de) | 1989-06-01 | 1989-06-01 | Verfahren zur reduktion von farbstoffen |
PCT/AT1990/000052 WO1990015182A1 (de) | 1989-06-01 | 1990-05-31 | Verfahren zur reduktion von farbstoffen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0426832A1 EP0426832A1 (de) | 1991-05-15 |
EP0426832B1 true EP0426832B1 (de) | 1994-05-04 |
Family
ID=3511548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90908918A Expired - Lifetime EP0426832B1 (de) | 1989-06-01 | 1990-05-31 | Verfahren zur reduktion von farbstoffen |
Country Status (6)
Country | Link |
---|---|
US (1) | US5244549A (de) |
EP (1) | EP0426832B1 (de) |
AT (1) | AT398316B (de) |
DE (1) | DE59005612D1 (de) |
ES (1) | ES2054358T3 (de) |
WO (1) | WO1990015182A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001046497A2 (de) * | 1999-12-22 | 2001-06-28 | Dystar Textilfarben Gmbh & Co. Deutschland Kg | Verfahren zur elektrochemischen reduktion von reduzierbaren farbstoffen |
DE102004040601A1 (de) * | 2004-08-21 | 2006-03-02 | Dystar Textilfarben Gmbh & Co. Deutschland Kg | Neuartige flüssige Chinonimin-Schwefelfarbstoff-Zusammensetzungen sowie Verfahren zu ihrer Herstellung und ihre Verwendung zum Färben von cellulosehaltigem Material |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE135765T1 (de) * | 1990-12-03 | 1996-04-15 | Verein Zur Foerderung Der Fors | Verfahren zur reduktion von textilfarbstoffen |
TW251325B (de) * | 1993-03-30 | 1995-07-11 | Basf Ag | |
DE19513839A1 (de) * | 1995-04-12 | 1996-10-17 | Basf Ag | Verfahren zur elektrochemischen Reduktion von Küpenfarbstoffen |
DE19723889A1 (de) * | 1997-06-06 | 1998-12-10 | Consortium Elektrochem Ind | System zur elektrochemischen Delignifizierung ligninhaltiger Materialien sowie Verfahren zu seiner Anwendung |
AT408455B (de) * | 1997-09-04 | 2001-12-27 | Basf Ag | Verfahren zur reduktion von schwefelfarbstoffen |
ATE304075T1 (de) | 1998-11-24 | 2005-09-15 | Walter Marte | Verfahren und apparatur zur reduktion von küpen- und schwefelfarbstoffen |
DE19919746A1 (de) * | 1999-04-29 | 2000-11-02 | Basf Ag | Verfahren zur Herstellung von wäßrig-alkalischen Lösungen reduzierter indigoider Farbstoffe |
DE10010060A1 (de) | 2000-03-02 | 2001-09-06 | Dystar Textilfarben Gmbh & Co | Mediatorsysteme auf Basis gemischter Metallkomplexe zur Reduktion von Farbstoffen |
DE10010059A1 (de) | 2000-03-02 | 2001-09-06 | Dystar Textilfarben Gmbh & Co | Mediatorsysteme auf Basis gemischter Metallkomplexe zur Reduktion von Farbstoffen |
DE10161265A1 (de) * | 2001-12-13 | 2003-06-26 | Dystar Textilfarben Gmbh & Co | Verfahren zur Farbveränderung von gefärbten textilen Substraten |
DE10234825A1 (de) * | 2002-07-31 | 2004-02-19 | Dystar Textilfarben Gmbh & Co. Deutschland Kg | Verfahren zum Färben mit Schwefel- und Schwefelküpenfarbstoffen |
WO2004042138A1 (de) * | 2002-11-06 | 2004-05-21 | Tex-A-Tec Ag | Verfahren zur elektrochemischen reduktion von küpen- und schwefelfarbstoffen |
ES2222077B1 (es) * | 2002-12-23 | 2006-03-16 | Argelich, Termes Y Cia S.A. | Proceso de tintura con colorantes de tina y similares mediante reduccion electrolitica. |
HK1067926A2 (en) * | 2004-01-20 | 2005-03-24 | Hong Kong Productivity Council | An electrochemical dye reducing method. |
DE102005040469A1 (de) * | 2005-08-26 | 2007-03-01 | Dystar Textilfarben Gmbh & Co. Deutschland Kg | Farbstoffzubereitungen von indigoiden Farbstoffen, von Küpen- und Schwefelfarbstoffen enthaltend anorganische und/oder organische elektrochemisch aktive Mediatorsysteme sowie deren Verwendung |
EP1870494A1 (de) | 2006-06-23 | 2007-12-26 | ETH Zürich, ETH Transfer | Elektrochemischer Reaktor |
US8291683B2 (en) * | 2010-02-13 | 2012-10-23 | Ruetenik Monty L | Equine exercise boot assembly and method |
CN102174731B (zh) * | 2011-03-04 | 2012-11-07 | 东华大学 | 一种电化学还原的染色装置 |
CN102154793A (zh) * | 2011-03-23 | 2011-08-17 | 东华大学 | 一种用于棉纱线电化学还原的染色装置 |
CN102433770A (zh) * | 2011-08-31 | 2012-05-02 | 常州耀春格瑞纺织品有限公司 | 还原染料电化学快速清洁染色工艺 |
BR112015004395A2 (pt) | 2012-08-30 | 2016-02-16 | Cargill Inc | agente redutor para corantes de enxofre, processo para fabricar o agente redutor, uso do agente, método para reduzir os corantes de enxofre e método para tingir tecidos |
CN108691116A (zh) * | 2018-05-24 | 2018-10-23 | 武汉纺织大学 | 一种导电纱线电化学还原染色装置及方法 |
CN113166954B (zh) | 2018-11-30 | 2024-07-26 | 赛杜工程股份有限公司 | 电化学反应器和它的清洁或再生 |
CN113166953A (zh) | 2018-11-30 | 2021-07-23 | 赛杜工程股份有限公司 | 副产物(杂质)的除去 |
US11753730B2 (en) | 2018-11-30 | 2023-09-12 | Sedo Engineering Sa | Leucodye (such as leucoindigo) as dispersing aid |
CN113549938B (zh) * | 2021-06-17 | 2022-06-21 | 武汉纺织大学 | 一种回收废旧牛仔激光废灰中靛蓝的方法 |
CN113416967B (zh) * | 2021-06-17 | 2022-09-06 | 武汉纺织大学 | 一种回收废旧牛仔中靛蓝染料的方法和织物染色方法 |
WO2023161441A2 (en) | 2022-02-25 | 2023-08-31 | Laboratoire Biosthetique Kosmetik Gmbh & Co. Kg | Colorant composition comprising leucoindigo for coloring fibers and fabrics |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE139567C (de) * | ||||
FR319390A (fr) * | 1902-03-07 | 1902-11-11 | Cie Parisienne De Couleurs D A | Procédé pour la réduction de l'indigo |
FR384866A (fr) * | 1907-02-18 | 1908-04-24 | Baudot Et Cie Soc | Procédé de pénétration et d'oxydation électrique des produits tinctoriaux dans la teinture des fibres et des tissus |
DE534464C (de) * | 1928-06-21 | 1931-09-28 | Walter Haendel | Verfahren zum Faerben und Bemustern von Geweben, Wirkwaren, Geflechten, Leder und anderen Stoffen aus pflanzlichen und tierischen Fasern durch elektrolytische Zersetzung einer im Gut befindlichen Loesung |
US2147635A (en) * | 1938-02-08 | 1939-02-21 | Du Pont | Dyestuff pastes and process for applying the same |
US2433632A (en) * | 1942-12-23 | 1947-12-30 | Rca Corp | Fibrous sheet material for the electrolytic formation of azo dye image records thereon |
US2729726A (en) * | 1953-08-31 | 1956-01-03 | Ite Circuit Breaker Ltd | Position indicator for enclosed disconnect switch |
US3518038A (en) * | 1965-10-20 | 1970-06-30 | Allied Chem | Electrographic recording mixture containing a morpholinyl diphenyl methane and 2 triphenyl methane |
BE757171A (fr) * | 1969-10-08 | 1971-04-07 | Basf Ag | Procede pour la teinture et l'impression de matieres textiles |
DE2263138C3 (de) * | 1972-12-22 | 1978-06-29 | The Bombay Textile Research Association, Bombay (Indien) | Verfahren zum Färben von Textilmaterial mit Küpenfarbstoffen und Vorrichtung hierfür |
FR2265901B1 (de) * | 1974-04-02 | 1977-10-14 | Bombay Textile Res Assoc | |
EP0021432B1 (de) * | 1979-07-02 | 1983-10-19 | Hoechst Aktiengesellschaft | Zweiphasendruckverfahren zur Herstellung von Konversions- und Ätzreserveartikeln |
US4394227A (en) * | 1981-03-05 | 1983-07-19 | Ciba-Geigy Ag | Electrochemical process for the preparation of benzanthrones and planar, polycyclic aromatic oxygen-containing compounds |
SU1183585A1 (ru) * | 1982-04-23 | 1985-10-07 | Таджикский государственный университет им.В.И.Ленина | Способ крашени текстильного материала из хлопка,полиамида или из их смеси |
DK153412C (da) * | 1984-11-22 | 1988-12-19 | Ferring A S | Fremgangsmaade til fremstilling af p-aminophenoler ved elektrolyse |
-
1989
- 1989-06-01 AT AT0132989A patent/AT398316B/de not_active IP Right Cessation
-
1990
- 1990-05-31 WO PCT/AT1990/000052 patent/WO1990015182A1/de active IP Right Grant
- 1990-05-31 US US07/613,670 patent/US5244549A/en not_active Expired - Lifetime
- 1990-05-31 EP EP90908918A patent/EP0426832B1/de not_active Expired - Lifetime
- 1990-05-31 DE DE59005612T patent/DE59005612D1/de not_active Expired - Lifetime
- 1990-05-31 ES ES90908918T patent/ES2054358T3/es not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001046497A2 (de) * | 1999-12-22 | 2001-06-28 | Dystar Textilfarben Gmbh & Co. Deutschland Kg | Verfahren zur elektrochemischen reduktion von reduzierbaren farbstoffen |
WO2001046497A3 (de) * | 1999-12-22 | 2001-12-13 | Dystar Textilfarben Gmbh & Co | Verfahren zur elektrochemischen reduktion von reduzierbaren farbstoffen |
DE102004040601A1 (de) * | 2004-08-21 | 2006-03-02 | Dystar Textilfarben Gmbh & Co. Deutschland Kg | Neuartige flüssige Chinonimin-Schwefelfarbstoff-Zusammensetzungen sowie Verfahren zu ihrer Herstellung und ihre Verwendung zum Färben von cellulosehaltigem Material |
Also Published As
Publication number | Publication date |
---|---|
ES2054358T3 (es) | 1994-08-01 |
EP0426832A1 (de) | 1991-05-15 |
AT398316B (de) | 1994-11-25 |
DE59005612D1 (de) | 1994-06-09 |
US5244549A (en) | 1993-09-14 |
ATA132989A (de) | 1994-03-15 |
WO1990015182A1 (de) | 1990-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0426832B1 (de) | Verfahren zur reduktion von farbstoffen | |
EP1056900B1 (de) | Verfahren und apparatur zur reduktion von küpen- und schwefelfarbstoffen | |
DE10161265A1 (de) | Verfahren zur Farbveränderung von gefärbten textilen Substraten | |
EP0513291B1 (de) | Verfahren zur reduktion von textilfarbstoffen | |
DE2803289C2 (de) | ||
DE19513839A1 (de) | Verfahren zur elektrochemischen Reduktion von Küpenfarbstoffen | |
DE3209533A1 (de) | Reaktivfarbstoffmischung und verfahren zum anfaerben von cellulosefasern | |
EP1527228B1 (de) | Verfahren zum färben mit schwefel und schwefelküpenfarbstoffen | |
DE2638236C3 (de) | Verfahren zum Färben von Leder durch gleichzeitige Anwendung saurer und basischer Farbstoffe | |
DE410180C (de) | Verfahren zur Reduktion organischer oder anorganischer Stoffe durch Natriumamalgam | |
DE3721765C2 (de) | ||
DE10010059A1 (de) | Mediatorsysteme auf Basis gemischter Metallkomplexe zur Reduktion von Farbstoffen | |
DE2727112A1 (de) | Verfahren zur vorreinigung und zum faerben von textilen materialien | |
DE4320867A1 (de) | Verfahren zum Färben von cellulosehaltigen Textilmaterialien mit Küpenfarbstoffen oder Schwefelfarbstoffen | |
DE10010060A1 (de) | Mediatorsysteme auf Basis gemischter Metallkomplexe zur Reduktion von Farbstoffen | |
DE2011387A1 (de) | Verbessertes Verfahren zur Küpenfärbung von Textilien | |
DE102005040469A1 (de) | Farbstoffzubereitungen von indigoiden Farbstoffen, von Küpen- und Schwefelfarbstoffen enthaltend anorganische und/oder organische elektrochemisch aktive Mediatorsysteme sowie deren Verwendung | |
DE3437717C2 (de) | ||
DE1912678C3 (de) | Verfahren zum Färben von Cellulosematerlalien mit Schwefelküpenfarbstoffen der Carbazolreihe | |
DE102005006214A1 (de) | Verfahren zur elektrochemischen Entfärbung von Indigo aus wässrigen Dispersionen | |
DE518759C (de) | Verfahren zur Oxydation von Kuepenfarbstoffen der Anthrachinon- bzw. Benzanthronreihe auf der Faser | |
DE208998C (de) | ||
DE294666C (de) | ||
DE2555046A1 (de) | Verfahren zur oxydativen nachbehandlung mit schwefelfarbstoffen gefaerbter oder bedruckter textilmaterialien | |
DE3623299A1 (de) | Mittel zur reoxidation von faerbungen mit kuepen-, schwefelkuepen- oder schwefelfarbstoffen, verfahren zu seiner herstellung und seine verwendung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19910107 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT CH DE ES FR GB IT LI SE |
|
17Q | First examination report despatched |
Effective date: 19920506 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH DE ES FR GB IT LI SE |
|
REF | Corresponds to: |
Ref document number: 105345 Country of ref document: AT Date of ref document: 19940515 Kind code of ref document: T |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 59005612 Country of ref document: DE Date of ref document: 19940609 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19940517 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2054358 Country of ref document: ES Kind code of ref document: T3 |
|
EAL | Se: european patent in force in sweden |
Ref document number: 90908918.7 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19980514 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990531 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: VEREIN ZUR FOERDERUNG DER FORSCHUNG UND ENTWICKLUN |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20050506 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG Ref country code: CH Ref legal event code: PUE Owner name: DYSTAR TEXTILFARBEN GMBH & CO. DEUTSCHLAND KG Free format text: BASF AKTIENGESELLSCHAFT##67056 LUDWIGSHAFEN (DE) -TRANSFER TO- DYSTAR TEXTILFARBEN GMBH & CO. DEUTSCHLAND KG#INDUSTRIEPARK HOECHST#65926 FRANKFURT (DE) |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060601 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
EUG | Se: european patent has lapsed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20090605 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20090521 Year of fee payment: 20 Ref country code: DE Payment date: 20090529 Year of fee payment: 20 Ref country code: FR Payment date: 20090515 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20090513 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090527 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20100601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20100601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20100530 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20100531 |