CN1661387A - 检测系统、检测方法和制造半导体器件的方法 - Google Patents

检测系统、检测方法和制造半导体器件的方法 Download PDF

Info

Publication number
CN1661387A
CN1661387A CN2005100068109A CN200510006810A CN1661387A CN 1661387 A CN1661387 A CN 1661387A CN 2005100068109 A CN2005100068109 A CN 2005100068109A CN 200510006810 A CN200510006810 A CN 200510006810A CN 1661387 A CN1661387 A CN 1661387A
Authority
CN
China
Prior art keywords
chips
antenna
chip
substrate
detecting electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2005100068109A
Other languages
English (en)
Other versions
CN1661387B (zh
Inventor
荒井康行
馆村祐子
秋叶麻衣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of CN1661387A publication Critical patent/CN1661387A/zh
Application granted granted Critical
Publication of CN1661387B publication Critical patent/CN1661387B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2889Interfaces, e.g. between probe and tester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/3025Wireless interface with the DUT
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/0095Testing the sensing arrangement, e.g. testing if a magnetic card reader, bar code reader, RFID interrogator or smart card reader functions properly
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/303Contactless testing of integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

本发明提供一种可以无接触地供应信号或电源电压至ID芯片并可提高检测程序的处理量的ID芯片的检测系统,和使用该检测系统的检测方法。如本发明的检测系统包括多个检测电极、多个检测天线、位置控制单元、用于施加电压至各检测天线的单元、和测量检测电极的电位的单元。该检测系统的一个特征是多个ID芯片与多个检测电极以一定间距重叠,多个ID芯片与多个检测天线以一定间距重叠,和多个ID芯片通过位置控制单元被插入多个检测电极与多个检测天线之间。

Description

检测系统、检测方法和 制造半导体器件的方法
技术领域
本发明涉及一种可以执行无线通讯的ID芯片的检测系统(设备),和检测方法,以及利用所述检测方法制造半导体器件的方法。
背景技术
一种以ID芯片为代表的可以无线传输和接收诸如识别信息之类的数据的半导体器件已经被在许多领域实施,并且其市场的扩展被进一步期望作为一种新型通讯信息终端。ID芯片也被称为无线标签、RFID(射频识别)标签或IC标签,并且目前具有通过使用天线和半导体衬底形成的集成电路(IC芯片)的ID芯片被投入实际应用。
ID芯片被经过多个制造步骤形成,在该制造步骤的结束阶段执行检测步骤。在被作为产品完成之前,如果可在制造步骤的初期发现识别缺陷,可以省略该缺陷ID芯片的后面步骤。检测步骤对降低成本而言非常有效。
检测步骤包括通过外观发现缺陷的检测步骤和通过它的电操作发现缺陷的检测步骤(电操作检测步骤)。如果在互相隔离ID芯片之前天线已经被连接至集成电路,电操作检测步骤主要被在通过切片(dicing)等隔离多个ID芯片之前和在封装被隔离ID芯片之后执行。如果天线已经被连接至集成半导体,在不与用于检测的读写器接触的情况下执行信号或电源电压至ID芯片的供应,可以用它确定作为检测目标的ID芯片的集成电路在上述电操作检测步骤中是否操作正常。
如上所述,在隔离ID芯片之前的电操作检测步骤对降低量产ID芯片的成本而言很有效。但是,量产ID芯片的一个重要目标是缩短电操作检测步骤的时间。随着ID芯片的面积更小和每衬底的ID芯片数目更大,缩短电操作检测步骤所需时间的要求更加强烈,更需要具有较高处理量的一种检测系统(设备)。
当检测系统(设备)具有可以从多个ID芯片读取信号的抗冲突功能时,认为检测的效率可被提高至一定程度。但是,可通过抗冲突功能的信号读取而检测的ID芯片数目约为每秒几十个。因此,举例说来,如果在一衬底上形成约六十万个ID芯片,并且每秒可通过抗冲突功能读取其信号的ID芯片的数目为30,检测形成在衬底上的所有ID芯片需花费约五个半小时。因而,即使使用具有抗冲突功能的检测系统(设备),也难以缩短电检测步骤的时间,这导致TAT(周转时间)不能被缩短。
发明内容
根据上述问题做出本发明。本发明的目标是提供一种可以无接触供应信号或电源电压至ID芯片并可增加检测步骤的处理量的ID芯片的检测系统(设备),和使用该检测系统(设备)的检测方法。
按照本发明,形成在衬底上的多个芯片(以下也称为ID芯片或半导体器件)各被通过天线供应信号或电压,从而操作各芯片。通过使用静电感应读取多个ID芯片的各输出,从而检测多个ID芯片的各操作状态。
具体说来,按照本发明的检测方法,多个用于检测的电极(检测电极)被排列与各多个ID芯片的天线以一定间距重叠(叠加)。具有天线的ID芯片也被称为无线芯片。然后,通过使用用于检测的天线(检测天线),信号或电源电压被供应至被包括在多个ID芯片中的各天线以操作各ID芯片。当信号被从各多ID芯片输出时,多ID芯片的各自天线被施加电压并充电。因此,多个检测电极中被与各多ID芯片的天线重叠的检测电极通过静电感应被充电。
各检测电极中的存储电荷量通过被与检测电极重叠的ID芯片的操作状态和总面积控制。因此,与检测电极重叠的ID芯片的操作状态可通过获得(grasp)与检测电极重叠的ID芯片的总面积和检测电极的电位获得。
按照本发明,多个检测电极的方向被多次转动,同时保持ID芯片的天线与检测电极之间的间距。具体说来,可通过转动检测电极同时保持天线与检测电极之间的间距改变检测电极与ID芯片重叠的区域。每次多个检测电极的方向被改变时测量检测电极的电位。通过测量多次获得检测电极的电位,测量中一个或多个ID芯片与检测电极重叠的位置和与检测电极重叠的ID芯片的总面积被作为数据存储。注意与检测电极重叠的ID芯片的总面积可利用检测电极和ID芯片的位置间接被获得。
施加至各ID芯片的天线的电压的相对值可根据所存储数据通过重构算法(例如Fourier变换法)以从计算机断层(ComputedTomography)(CT)中所使用的一维数据再现二维分布被获得。换句话说,可以说因而施加至各ID芯片的天线的电压值可被无接触读取。根据施加至各ID芯片的天线的电压相对值,可获得各ID芯片的操作状态。
作为重构算法,逐次近似法、使用幻灯片定理的Fourier变换法、卷积定理法等被典型引用。本发明可以采用除这些方法之外的其它重构算法。
使用该检测方法的检测系统(设备)包括多个检测电极、多个检测天线、位置控制单元(用以控制位置的装置,校正设备)、用于施加电压至各多个检测天线的单元(装置)(电压供给单元,用于供给电压的装置,电压供给设备)、和测量多个检测电极的电位的单元(装置)(电位测量单元,用于测量电位的装置,电位测量设备)。此外,该检测系统(设备)也可以包含用于分析具有多个检测电极的被测量电位作为信息的数据,和具有多个ID芯片和多个检测电极的位置作为信息的数据,并获得具有ID芯片的操作状态作为信息的数据的单元(装置)(分析单元,用于分析的装置)。
位置控制单元具有多个检测电极、多个检测天线和控制与作为检测目标的多个ID芯片的定位关系的功能。具体说来,位置控制单元可控制多个检测电极、多个检测天线和多个ID芯片的位置以使多个检测电极面向多个检测天线,检测目标的多个ID芯片被插入多个检测电极和多个检测天线之间。上述位置控制单元还具有控制多个检测电极的方向同时保持多个检测电极和多个ID芯片之间的间距的功能。
注意可提供一个位置控制单元或多个位置控制单元。例如,如本发明的检测系统(设备)可以包含多个检测电极、多个检测天线、具有控制与多个ID芯片的定位关系的功能的第一位置控制单元和具有转变多个检测电极的方向的功能的第二位置控制单元。此外,例如,检测系统(设备)可以包含具有控制多个检测电极与多个ID芯片的定位关系的功能的第一位置控制单元、具有控制多个天线和多个ID芯片的定位关系的功能的第二位置控制单元、和具有控制多个检测电极的方向的功能的第三位置控制单元。由此,位置控制单元的数目可根据待共享的功能被确定。
如本发明的上述结构,信号或电源电压可无接触地被施加至ID芯片。此外,由于ID芯片的数目变得更大,与常规方法相比测量电位的数目被急剧减少,并且检测步骤的处理量可提高。
在通过使用半导体衬底形成ID芯片的情况下,由于半导体衬底起到导体的作用,无线电波被阻挡并且信号容易被衰减,因此难以均匀地传送无线电波至ID芯片的所有天线。但是,在通过如玻璃衬底或塑料衬底之类的比半导体衬底更难以阻挡无线电波的绝缘衬底形成ID芯片的情况下,与使用半导体衬底的ID芯片情况相比,无线电波可以被更均匀地传送至ID芯片的所有天线。
附图说明
在附图中:
图1A和1B分别为如本发明一方面的检测系统(设备)的剖面图;
图2A和2B分别为衬底101的透视图和ID芯片102的放大图;
图3A和3B分别为检测电极103和检测天线104的透视图;
图4A和4B分别表示衬底101、支撑介质301和支撑介质303重叠的方式,和图4A中所示支撑介质301被旋转的方式;
图5A和5B分别为ID芯片102和检测天线104重叠的方式的放大图;
图6A和6B分别表示多个检测电极103和多个ID芯片102重叠的方式;
图7表示图6B中所示检测电极103的一个检测电极与一个ID芯片102重叠的方式;
图8为如本发明一方面的检测系统(设备)的更具体配置的框图。
图9的框图为ID芯片的功能配置;
图10A-10D各表示ID芯片的一个制造步骤;
图11A-11C各表示ID芯片的一个制造步骤;
图12表示ID芯片的一个制造步骤;
图13A-13C各表示IC芯片的制造步骤的流程;
图14A-14C各为ID芯片1401的顶视图;和
图15A-15D各表示在分离形成在衬底上的多个集成电路时形成的槽的形状。
具体实施方式
以下将参照附图说明本发明的具体实施方式。本发明可以多种方式被实施。本领域的技术人员应该理解多种改变或修改将是显然的,除非这种改变和修改偏离以下限定的本发明的精神和领域。因此,本发明并不限于具体实施方式。
参照图1A和1B说明本发明的检测系统(设备)的配置。图1A的剖面图表示如本发明的检测系统(设备)的一种方式。在图1A中,标号101指示为检测目标的衬底,并且多个ID芯片102被形成在衬底101上。如图1A所示,本发明的检测系统(设备)包括多个检测电极103、多个检测天线104、位置控制单元(用以控制位置的装置,校正设备)105-107、电位测量单元(用于测量电位的装置,电位测量设备)108、和电压供给单元(用于供给电压的装置,电压供给设备)109。
在图1A所示的本发明的检测系统(设备)中,通过使用位置控制单元105-107,检测电极103和检测天线104与它们之间的作为检测目标的衬底101重叠。具体说来,相同平面内的检测天线104的位置和方向可以通过位置控制单元105控制。此外,衬底101与相同平面内的检测天线104的相对位置和方向,以及检测天线104与衬底101之间的间距可以通过位置控制单元106控制。检测电极103与衬底101之间的间距可通过位置控制单元107控制。
具体地,位置控制单元105具有控制检测天线104在X轴方向和与X轴正交并在相同平面内的Y轴方向的运动的功能,和控制在相同平面内的检测天线104X轴方向和Y轴方向的方向的功能。
具体地,位置控制单元106具有控制衬底101在X轴方向、在Y轴方向、和在与X轴方向与Y轴方向相同平面内的相对运动的功能,和控制检测天线104与衬底101之间的间距的功能。
图1A表示象气垫飞行器那样通过喷射高压气体至衬底101一侧而控制衬底101与检测电极103之间的间距的位置控制单元107的实施例。注意间距控制可以通过一定量的流体流速或流体压力被执行,并不限于高压气体。注意液体作为流体可与气体一样被采用。此外,可以采用具有粘性的例如凝胶之类的流体。
图1A表示使用三个位置控制单元105-107以及控制检测电极103、检测天线104和衬底101的定位关系的实施例。但是,本发明的检测系统(设备)中所用的位置控制单元的数目并不限于此。本发明的检测系统(设备)中所用的位置控制单元可以具有控制多个检测电极103、多个检测天线104和均为检测目标的多个ID芯片102的定位关系的功能,因此,其数目和方式并不限于图1A所示的那样。
注意相同平面内的检测天线104与衬底101的定位关系控制可以利用形成在衬底101上作为参考的标记而执行。在这种情况下,可使用相机110获得标记的位置,如图1B所示。
电压供给单元109控制交流电压至各检测天线104的施加。信号或电压可通过施加交流电压至各检测天线104而施加至ID芯片102。
电位测量单元108等于测量多个检测电极103的电位的单元(装置)。由电位测量单元108测得的电位可以是特定时间内的电位变化或可以是通过电位随时间的变化获得的波形。ID芯片102的操作状态作为信息包括在检测电极103所产生的电位中。
注意除上述结构之外,本发明的该检测系统(设备)可以具有用于分析以多个检测电极的测量电位作为信息的数据,和以多个ID芯片和多个检测电极的位置作为信息的数据的单元(装置),和以具有ID芯片的操作状态作为信息的数据的单元(装置)。
接下来,说明图1A所示的ID芯片102的配置。图2A为衬底101的透视图。多个ID芯片102被形成在衬底101上。图2B为ID芯片102的放大图。每个ID芯片102具有集成电路201和天线202。
与例如半导体衬底或不锈钢衬底之类的起到导体作用并容易阻挡无线电波的衬底相比,包含绝缘体的衬底,例如象硼硅酸钡玻璃或硼硅酸铝玻璃之类的玻璃衬底,或塑料衬底,更适合于作为检测目标的衬底101,因为这种包含绝缘体的衬底可以更多地抑制无线电报的阻挡。在使用具有绝缘体的衬底101的情况下,集成电路201最好由具有绝缘和隔离半导体薄膜的半导体元件,例如薄膜晶体管形成。
集成电路201通过整流或形成被施加至天线202的交流电压的波形而产生信号或电压。通过使用所产生的信号或电压,集成电路201可以执行多种算术处理,读写数据等,并作为结果应用所获得信号的电压至天线202。
接下来,说明图1A所示的检测电极103的配置。图3A表示检测电极103的透视图。图3A所示的多个检测电极103均为矩形并被在相同平面内平行排列。注意在图3A中,表示多个检测电极103被形成在平面支撑介质301上的一种方式。如图1A所示,在通过位置控制单元107控制衬底101与检测电极103之间的间距的情况下,在其中形成检测电极103的支撑介质301的表面中提供用于排放高压气体至衬底101一侧的孔302。顺便提及,如果检测电极103与衬底101之间的间距不通过排放高压气体控制,多个检测电极103不一定要提供在平面支撑介质301上,并且多个检测电极103之间的定位关系可固定。
接下来,说明图1A所示的检测天线104的结构。图3B为检测天线104的透视图。图3B表示多个检测天线104被形成在支撑介质303上的实施例。图3B所示的多个检测天线104排列成对应于作为检测目标的多个ID芯片的每一个。通过电压供给单元109对各天线104施加交流电压。
注意图3B表示多个检测天线104一对一地对应于多个ID芯片102的实施例,但是本发明并不限于此。一个检测天线104可对应于两个或更多ID芯片102,或两个或更多检测天线104可对应于一个ID芯片102。当在形成天线202的区域内的磁通量在各ID芯片102中均匀时,可以准确获得ID芯片102的操作状态。因此,多个检测天线104最好一对一地对应于多个ID芯片102。
在图4A中,其上形成ID芯片102的衬底101、其上形成检测电极103的支撑介质301、和其上形成检测天线104的支撑介质303被叠加(重叠)。随着ID芯片102的天线与检测电极103之间的间距优选地越来越小,ID芯片102的操作状态可使用较小的间距被准确获得。因此,最好ID芯片102的天线与检测电极103之间的间距尽可能地小,只要可控的话。因此,在图4A中衬底101与支撑介质301被叠加以在它们之间插入ID芯片102和检测电极103。注意在图4A中检测电极103被允许通过支撑介质303可见,以阐明检测电极103与ID芯片102的定位关系。
衬底101被夹在支撑介质301与支撑介质303之间;因此,ID芯片102被夹在检测电极103和检测天线104之间。如上述结构,利用电磁感应,信号或电压从检测天线104供应至ID芯片102,因此,可以形成通过静电感应从ID芯片102供给电压至检测电极103的一串信号流。
从检测天线104至ID芯片102的信号或电压传输系统并不限于电磁耦合系统或电磁感应系统,可以是微波系统或其它传输系统。
图5A为如图4A所示ID芯片102与检测天线104叠加(重叠)的方式的放大图。在图5A中,衬底101未被显示,以阐明ID芯片与检测天线104叠加的方式。如图2B所示,ID芯片102包括集成电路201和天线202,并且各天线202被与相应的检测天线104重叠。
图5B为图5A所示的ID芯片102和检测天线104的更大的放大图。检测天线104和天线202以足够的间距排列,以利用电磁感应从检测天线104至天线202供给信号或电压。
实际上,衬底101被放置在检测天线104与天线202之间。但是,玻璃衬底、塑料衬底等被用作衬底101,而不使用容易阻止无线电波的半导体衬底,从而均匀地传输无线电波至ID芯片102的所有天线202。玻璃衬底或塑料衬底难以阻挡无线电波,而允许无线电波通过。
图4B表示图4A所示的支撑介质301转动的一种方式。执行支撑介质301的转动而保持检测电极103与ID芯片102之间的间距。检测电极103与支撑介质301一同转动,并且与相应的检测电极103重叠的ID芯片102的位置改变。
参照图6A和6B说明由于检测电极103的转动而产生的与检测电极103重叠的ID芯片102的位置改变。图6A和6B均表示25(5×5)个ID芯片102和9个检测电极103的实施例。
图6A表示多个检测电极103和多个ID芯片102叠加的一种方式。在图6A中,5个ID芯片102与1个检测电极103叠加。此外,所有检测电极103不与该ID芯片102叠加,并且也存在不与该ID芯片102叠加的检测电极103。
图6B表示在图6A所示的多个检测电极103转动的情况下多个检测电极103与多个ID芯片102叠加的方式。通过转动多个检测电极103改变与检测电极103叠加的ID芯片102的位置。换句话说,不同于图6A,检测电极103均与ID芯片102叠加。
对于在各检测电极103中产生的交流电压而言,依据与检测电极103叠加的ID芯片102的数目、检测电极103与ID芯片102叠加的区域、和施加至各ID芯片102的天线202的交流电压值,各检测电极103中所产生的交流电压的振幅和波形是不同的。因此,图6A中各检测电极103中所产生的交流电压值并不总是等于图6B中的值。
预先根据计算有可能估算与检测电极103叠加的ID芯片102的数目和ID芯片102与检测电极103叠加的区域。施加至ID芯片102的各天线202的交流电压的振幅和波形可根据计算而算出,或者也可预先在ID芯片102正常操作的情况下通过实际测量而获得。因此,有可能在某种程度上预计在ID芯片102正常操作的情况下检测电极103中通过静电感应所产生的交流电压的振幅和波形。
在操作缺陷被包括在与检测电极103叠加的ID芯片102中的情况下,检测电极103中所产生的交流电压的振幅和波形不同于所有ID芯片102正常操作的情况下的值。因此,在检测电极103中所产生的交流电压的振幅和波形不同于预期的振幅和波形时,可以预计在与检测电极103叠加的ID芯片102中产生操作缺陷。
图7表示ID芯片102与图6B所示的一个检测电极103叠加的方式。假设在与检测电极103叠加的ID芯片102中的一个ID芯片102a中导致操作缺陷。随着操作有缺陷的ID芯片102a与检测电极103叠加的区域的面积越来越大,检测电极103中所产生的交流电压的振幅和波形更不同于正常的振幅和波形。因此,有可能计算除ID芯片102a之外正常操作的ID芯片102在与一个检测电极103叠加的所有ID芯片102中的百分比。
检测电极103相对于ID芯片102的位置被多次改变,从而获得各位置正常操作的ID芯片102在与一个检测电极103叠加的所有ID芯片102中的百分比。因此,通过正常操作的ID芯片102的百分比可以获得各ID芯片102的操作状态。
可由设计者任意确定改变检测电极103与ID芯片102的定位关系的次数。此外,在测量中检测电极103与ID芯片102的定位关系可由设计者任意设定。在每次测量中非常重要的是确定检测电极103与ID芯片102的定位关系和设定改变此定位关系的次数,以使可根据在所有测量中所获得的各检测电极103的交流电压值获得各ID芯片102的操作状态。
通过考虑天线202在各ID芯片102中的布局可以更准确地获得ID芯片102的各操作状态。
在这种实施方式中,通过转动检测电极103改变与各检测电极103叠加的ID芯片102的位置,但本发明并不限于此。只要可以改变检测电极103与ID芯片102的定位关系,ID芯片102可以取代检测电极103而转动。注意即使在转动ID芯片102的情况下,检测天线104与ID芯片102的天线202的定位关系也是固定的。
在检测中不要求所有ID芯片102同时操作。例如,ID芯片102可逐一被操作或可被分为一些组被操作。
在不根据操作状态分为两组,一组良好操作状态和另一组缺陷操作状态的情况下,ID芯片102可根据操作状态被划分为多级的组。有可能通过由设计者设定标准根据ID芯片102的操作状态不同于ID芯片102的正常操作状态的程度确定ID芯片102是否操作正常。
作为比较标准的交流电压不一定是确认为正常的ID芯片的交流电压。通过对比在多个检测电极中所产生的交流电压,可以确认ID芯片的操作状态,可确定ID芯片的正常性/异常性。在这种情况下,非常重要的是对比各交流电压,同时考虑ID芯片与各检测电极叠加的区域。此外,通过与经模拟计算的交流电压值比较,可以确认ID芯片的操作状态,可确定ID芯片的正常性/异常性。
实施例1
实施例1参照图8更具体地说明本发明的一种检测系统(设备)的配置。
图8所示的本实施方式的检测系统(设备)包括多个检测电极801、多个检测天线802、位置控制单元(用以控制位置的装置,校正设备)803、用于施加电压至多个检测天线802中的每一个的电压供给单元(用于供给电压的装置,电压供给设备)804、和测量多个检测电极801的电位的电位测量单元(用于测量电位的装置,电位测量设备)805。本实施方式的检测系统(设备)也包含用于分析以由电位测量单元805测量的多个检测电极801的电位作为信息的数据,和以多个ID芯片和多个检测电极801的位置作为信息的数据,并获得包含ID芯片的操作状态作为信息的数据的单元(分析单元,装置)806。标号807指示作为检测目标的ID芯片。
在本实施方式中,分析单元(用于分析的装置)806包括人机(manmachine)I/F808、测量控制器809、测量定序器(sequencer)810和选择电路816与信号分析器817。电压供给单元804包括振荡器811、信号源812、调制电路813和天线控制器814。在本实施方式中信号处理电路815用作电位测量单元805。
接下来,说明本实施方式中检测系统(设备)的操作。
测量开始指令被输入人机I/F808,并随后被作为信息输入测量控制器809。测量控制器809将控制作为检测目标的ID芯片807、检测天线802和检测电极801的位置的指令作为信息输入至位置控制单元803。
通过位置控制单元803,ID芯片807的天线与检测天线802以一定间距重叠。此外,ID芯片807的天线与检测天线801通过位置控制单元803以一定间距重叠。
测量控制器809输入测量开始指令,作为信息,至测量定序器810。于是,测量定序器810控制电压供给单元804以施加交流电压至检测天线802。具体地,振荡器811中所产生的交流电压的频率在信号源812转换,并且供给至调制电路813。另一方面,天线控制器814产生控制ID芯片807的操作的信号并输入该信号至调制电路813。在调制电路813中,所施加的交流电压根据从天线控制器814输入的信号被调制并被供给检测天线802。
通过施加交流电压至检测天线802,信号或电源电压经电磁感应被供给ID芯片807,从而操作ID芯片807。当ID芯片807操作时,交流电压从ID芯片807的天线通过电磁感应施加至检测电极801。施加至检测电极801的交流电压包含作为信息的ID芯片807的操作状态。
检测电极801所产生的交流电压被供给信号处理电路815。信号处理电路815算术处理各检测电极801所产生的交流电压值。具体说来,各检测电极上的交流电压之间的计算不同。在某些情况下检测电极801所产生的交流电压常包含各种噪声。由检测电极801导致的噪声,具有相对接近的频率和电压,通过计算由检测电极801所产生的交流电压之间的数值差异可以在一定程度上去除。噪声的频率和电压与检测电极801越接近,在位置上互相越靠近。因此,最好计算位置互相更靠近的检测电极801之间的交流电压的差异。
根据ID芯片807的操作状态,检测电极801所产生的交流电压在波形和振幅方面存在差异。因此,所计算的交流电压差异包含作为信息的ID芯片807的操作状态。于是,具有作为信息的计算交流电压差异的信号(操作信息信号)包括作为信息的ID芯片807的操作状态。该操作信息信号被输入至选择电路816。
选择电路816随后选择多个被输入操作信息信号并将所选择信号输入信号分析器817。在信号分析器817中,输入的操作信息信号被放大,通过A/D转换转换为数字信号,并被算术处理。A/D转换不一定执行,而算术处理可以按模拟方式执行。在测量中执行算术处理以分析与检测电极801叠加的ID芯片807的操作状态。因此,算术处理的内容可由设计者任意选择。
已经被算术处理的操作信息信号被输入至测量控制器809。
通过采用位置控制单元803,改变检测电极801与ID芯片807的定位关系。通过多次重复上述操作,多个已被算术处理的操作信息信号被输入测量控制器809。测量控制器809根据ID芯片807与各检测电极801叠加的位置和面积百分比和所输入的已被在每次测量中算术处理的操作信息信号指定象素状态,并进一步确定ID芯片807的正常性/异常性。
顺便提及,本发明的检测系统(设备)并不限于图8所示的配置。
实施例2
实施例2参照图9说明如本发明的ID芯片的功能配置/结构的一种方式。
在图9中,标号900指示天线,901指示集成电路。天线900包含天线线圈902和形成在天线线圈902内的电容器元件903。集成电路901包含解调电路909、调制电路904、整流电路905、微处理器906、存储器907和用于提供负载调制(load modulation)至天线900的开关908。此外,存储器907的数目并不限于1;可以提供多个存储器907。作为存储器907,可以使用SRAM、闪存、ROM、FRAM(注册商标)等。
从读写器发出的作为无线电波的信号在天线线圈902中通过电磁感应转换为交流电信号。该交流电信号在解调电路909中解调以在随后的阶段发送至微处理器906。通过在整流电路905中使用交流电信号产生电源电压,以在随后阶段被提供给微处理器906。
在微处理器906中按照所输入信号执行算术处理。存储器907存储微处理器906中所使用的程序、数据等,并可被用作算术处理的工作场所。由微处理器906发送至调制电路904的信号被调制为交流电信号。开关908可根据调制电路904的交流电信号提供负载调制至天线线圈902。读写器可通过接收作为无线电波被提供至天线线圈902的负载调制最终从微处理器906读取信号。
图9所示的ID芯片仅为在如本发明的检测系统(设备)中被作为检测目标使用的ID芯片的一种实施方式示例。本发明并不限于此。传输信号的方法并不限于图9所示的电磁耦合型,也可以使用电磁感应型、微波型、或其它传输型。
本实施方式可与实施例1自由组合。
实施例3
接下来,说明在ID芯片的制造过程中按照本发明执行的检测计时(timing)。注意在本实施方式中作为半导体元件绝缘的TFT作为示例而说明,但是集成电路中所包含的半导体元件并不限于此,可以使用多种类型的电路元件。除TFT之外,存储器元件、二极管、光电转换元件、电阻元件、线圈、电容器元件、电感器等可作为示例给出。
如图10A所示,通过溅射方法在衬底500上形成分离层501。诸如硼硅酸钡玻璃或硼硅酸铝玻璃之类的可以在后面的加工步骤耐处理温度,并且在检测步骤中比半导体衬底阻挡无线电波差的玻璃衬底用作衬底500。
主要包含如非晶硅、多晶硅、单晶硅或微晶硅(包括半非晶硅)之类的硅的层可被用作分离层501。分离层501可通过溅射方法、等离子体CVD方法等被形成。在这种实施方式中,通过溅射方法形成约500nm厚的非晶硅薄膜,并被用作分离层501。
分离层501并不限于硅,并且可由可以通过蚀刻选择性去除的材料形成。
基底薄膜502被形成在分离层501上。形成基底薄膜502的目的是防止在通过粘结剂固定半导体元件至支撑介质上时,包含在支撑介质中的如Na之类的碱金属或碱土金属或粘结剂在被用作半导体元件的半导体薄膜中扩散和对半导体元件特性发挥不利影响。基底薄膜502还具有在蚀刻分离层501中保护半导体元件不受蚀刻剂影响的功能。基底薄膜502最好由如氧化硅、氮化硅或氮氧化硅(silicon nitrideoxide)之类的绝缘膜形成,这种绝缘膜能够抑制碱金属或碱土金属在半导体薄膜中的扩散并且可保护半导体元件不受蚀刻硅中所用的蚀刻剂的影响。在这种实施方式中,通过等离子体CVD方法氮氧化硅薄膜被形成达10nm至400nm厚(优选50nm至300nm)。基底薄膜502可以是单层或绝缘膜的叠层。
半导体薄膜被形成在基底薄膜502上。半导体薄膜最好在形成基底薄膜502之后不暴露至空气的情况下而形成。形成厚度为20至200nm(优选地,40nm至170nm)的半导体薄膜。半导体薄膜可以是非晶半导体、半非晶半导体或多晶半导体。硅锗以及硅可以被用作该半导体。在使用硅锗的情况下,其浓度最好约为0.01-4.5原子百分数。
可以通过已知方法结晶半导体薄膜。作为已知的结晶方法,引用使用电热炉的热结晶法、使用激光的激光结晶法、使用红外线的灯加热退火结晶法。此外,在示例的情况下,激光结晶,在激光结晶之前,在半导体薄膜上执行500℃热退火1小时以增强半导体薄膜对激光的承受力。通过使用能够连续振荡的固态激光器发射基波的二次至四次谐波的激光,有可能获得大晶粒尺寸的晶体。典型地,最好使用Nd:YVO4激光器(基波:1064nm)的二次谐波(532nm)或三次谐波(355nm)。具体说来,由连续波型YVO4激光器发射的激光采用非线性光学元件转换为谐波以获得具有输出功率为10W的激光。优选地,通过使用一种光学系统在照射表面形成矩形或椭圆形的激光以使用该激光照射半导体薄膜。在这种情况下,需要约0.01MW/cm2至100MW/cm2(优选0.1MW/cm2至10MW/cm2)的能量密度。设定扫描速度为约10cm/秒至2000cm/秒以发射激光。
脉冲激光器具有10MHz或更多的重复频率。该重复频率可以比通常所用的脉冲激光器的重复频率高得多,从几十到几百Hz,以执行激光结晶。就是说在使用脉冲激光照射半导体薄膜之后需要几十到几百纳秒完全固化半导体薄膜。因此,有可能在半导体薄膜已经被激光融化之后在半导体薄膜被固化之前以重复频率波段(band)照射下一脉冲激光。因此,由于固相与液相之间的界面可在半导体薄膜中连续移动,在扫描方向形成具有连续生长晶粒的半导体薄膜。具体说来,有可能形成分别在扫描方向的宽度为10-30微米和在垂直于扫描方向的方向的宽度为约1-5微米的晶粒的集合体。通过形成在扫描方向延伸的单晶体晶粒,也可能形成至少在TFT的通道方向几乎没有晶粒边界的半导体薄膜。
对于激光结晶而言,连续波激光器的基波的激光和连续波激光器的谐波的激光可被平行照射,或者连续波激光器的基波的激光和脉冲激光器的谐波的激光可被平行照射。
激光可在例如稀有气体或氮之类的惰性气体气氛中被发射。因此,由激光照射造成的半导体表面的不均匀可被抑制,由界面状态密度的波动导致的阀值的波动可被抑制。
通过使用如上所述的激光照射半导体薄膜形成具有更增强的结晶度的半导体薄膜。注意可以预先通过溅射方法、等离子体CVD方法、热CVD方法等形成多晶半导体。
在本实施方式中半导体薄膜结晶,但是在接下来的步骤中可使用非晶硅薄膜或微晶半导体薄膜,而不执行结晶。与使用多晶半导体的TFT相比,使用非晶半导体或微晶半导体的TFT需要更少的制造步骤,从而具有降低成本和提高产量的有利作用。
半非晶半导体具有非晶结构与晶体结构(包括单晶结构和多晶结构)之间的中间结构,和相对于自由能稳定的第三态。这种半非晶半导体包括短程有序和晶格畸变,并且是结晶态。0.5nm-20nm大小的晶粒可被包含并分散在非单晶半导体中。对于半非晶半导体而言,Raman光谱转移至520cm-1的波数低端,并且在x射线衍射中观测到由硅晶格衍生的(111)和(220)衍射峰。此外,半非晶半导体包含原子百分数1或更大的氢和卤素用以终止不饱和键。这里,简便起见半非晶半导体被称为SAS。当稀有气体元素,例如氦、氩、氪、或氖被混合入SAS(半非晶半导体)时,晶格畸变被增大从而稳定性增强,从而获得一种优秀的半非晶半导体(SAS)。
如图10A所示,半导体薄膜被图案化以形成岛状半导体薄膜503。以TFT为代表的多种半导体元件可利用图10B所示的岛状半导体薄膜503形成。在图10B中,岛状半导体薄膜503与基底薄膜502接触,但在某些半导体元件中电极、绝缘膜等可在基底薄膜502与岛状半导体薄膜503之间被形成。例如,在底栅(bottom gate)TFT为一半导体元件的情况下,栅电极和栅绝缘膜被形成在基底薄膜502与岛状半导体薄膜503之间。
在图10B中,顶栅(top gate)TFT504被使用岛状半导体薄膜503形成。具体说来,形成栅绝缘膜507以覆盖岛状半导体薄膜503。接着,导电膜被形成在栅绝缘膜507上并形成图案以形成栅电极508。接下来,通过使用栅电极508或形成和图案化的抗蚀剂作为掩模,赋予n型导电性的杂质被添加至岛状半导体薄膜503,以形成源极区、漏极区、LDD(轻掺杂漏极)区等。这里,TFT504为n型,但是在使用p型TFT的情况下,添加赋予p型导电性的杂质。如上述方法,可形成TFT504。
此外,在形成栅绝缘膜507之后,可在包含3-100%氢的气氛中300-450℃下执行1-12小时的热处理,以氢化岛状半导体薄膜503。作为另一氢化方法,等离子体氢化(使用由等离子体激活的氢)可被采用。在这种氢化方法中,不饱和键可被热激活氢终止。即使当在后面步骤中半导体元件被固定至柔性支撑介质后通过弯曲支撑介质在半导体薄膜中形成缺陷时,通过氢化将半导体薄膜中的氢浓度设定为1×1019-1×1022原子/立方厘米,优选地1×1019-5×1020原子/立方厘米,缺陷也可以被半导体薄膜中包含的氢终止。卤素可被包含在半导体薄膜中以终止缺陷。
注意制造TFT的方法并不限于上述结构。
形成钝化膜505以覆盖TFT504。钝化膜505可阻止碱金属或碱土金属进入TFT504。氮化硅膜或氮氧化硅膜被优选用作钝化膜505。按照此结构,有可能更好地防止如Na之类的碱金属或碱土金属在被用作半导体元件的半导体薄膜中扩散和对半导体元件特性发挥不利影响,因为TFT504由基底薄膜502和钝化膜505覆盖。
形成第一层间绝缘膜510以覆盖钝化膜505。在栅绝缘膜507、钝化层505和第一层间绝缘膜510中形成接触孔之后,通过接触孔形成连接至TFT504的线路513和514以与第一层间绝缘膜510接触。
如图10C所示,第二层间绝缘膜515被形成在第一层间绝缘膜510上。形成第二层间绝缘膜515以使在暴露一部分线路514的位置形成开口部分。第一层间绝缘膜510和第二层间绝缘膜515可由有机树脂薄膜、无机绝缘膜、由硅氧烷基材料作为起始材料形成并包含Si-O-Si键的绝缘膜(下文称硅氧烷基绝缘膜)等形成。除氢成分之外,硅氧烷基绝缘膜可包含选自由氟、烷基、芳香烃构成的组中的至少一种元素作为成分。
接下来,如图10D所示,天线519被形成在第二层间绝缘膜515之上。可通过使用包含一种或多种例如Ag、Au、Cu、Pd、Cr、Mo、Ti、Ta、W和Al的金属和金属合金的导电材料形成天线519。天线519连接至线路514。注意在图10D中天线519直接连接至线路514,但是,本发明的ID芯片并不限于此结构。例如,可通过使用单独形成的线路连接天线519和线路514。
可通过使用印刷方法、光刻法、沉积法、液滴排放(dropletdischarging)法等形成天线519。在本实施方式中,天线519被由单层导电膜形成,但是,天线519可以由多个导电膜的叠层形成。
液滴排放法是一种通过从微孔排放包含预定化合物的液滴形成预定图案的方法,该方法包括喷墨法。印刷方法包括丝网印刷法、胶印法等。通过使用印刷方法或液滴排放方法,可在不使用曝光掩模的情况下形成天线519。此外,液滴排放法和印刷方法不浪费在光刻法中通过蚀刻被去除的材料。由于不需要使用昂贵的用于曝光的掩模,制造ID芯片所花费的成本可被压缩。
在使用液滴排放法或印刷法的情况下,举例来说,也可以使用通过由对Cu镀Ag获得的导电颗粒。在利用液滴排放法形成天线519的情况下,最好执行第二层间绝缘膜515的表面处理以增强天线519的粘结。
作为增强粘结的方法,可引用例如一种固定通过催化活性可增强导电膜或绝缘膜的粘结的金属或金属化合物至第二层间绝缘膜520表面上的方法,一种固定具有对待形成的导电膜或绝缘膜的高粘结特性的有机绝缘膜至第二层间绝缘膜515表面上的方法,一种通过在大气压或低压下执行等离子体处理调制第二层间绝缘膜515表面上的表面特性的方法。举例说来,作为对导电膜或绝缘膜具有高粘性的金属包括钛、氧化钛、或例如Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu和Zn等3d还原元素。作为金属化合物,使用上述金属的氧化物、氮化物、氮氧化物等。作为有机绝缘膜,举例说来,使用聚酰亚胺、硅氧烷基绝缘膜等。
在固定至第二层间绝缘膜515上的金属或金属化合物导电的情况下,控制它的表面电阻以使天线可正常操作。具体说来,例如,导电金属或金属化合物的平均厚度可控制为1-10nm,或者金属或金属化合物通过氧化可被部分或全部绝缘。或者,除需要高粘结特性的区域之外,被固定的金属或金属化合物可通过蚀刻被选择性去除。此外,通过使用液滴排放法、印刷法、溶胶-凝胶法等,金属或金属化合物可选择仅被固定至特定区域而不是预先固定至衬底的整个表面上。金属或金属化合物不一定在第二层间绝缘膜515表面中为一种完全连续薄膜的状态,而可以在某种程度上被分散。
在形成天线519之后,保护层521被形成在第二层间绝缘膜515上以覆盖天线519。保护层521通过使用当通过蚀刻去除分离层501时可保护天线519的材料被形成。举例说来,可通过使用例如溶于水或酒精的环氧树脂、丙烯酸脂之类的树脂和硅被形成。
在本实施方式中,使用水性树脂(TOA GOSEICO.,LTD.:VL-WSH L10),旋涂至30微米厚,曝光2分钟以暂时硬化(curing),然后,其背部被暴露至UV射线2.5分钟,它的表面被曝光10分钟以被完全硬化,即执行12.5分钟的曝光。从而形成保护层521。在叠置多种有机树脂的情况下,可能有叠置的有机树脂在涂敷或烘焙的过程中根据溶剂而熔化,或者粘结特性太高的情况。因此,在由溶于某些溶剂的有机树脂同时形成第二层间绝缘膜515和保护层521的情况下,最好形成覆盖第二层间绝缘膜515的无机绝缘层(SiNx膜、SiNxOy膜、AlNx膜或AlNxOy膜)以在随后的步骤中顺利地去除保护膜521。
如图11A所示,形成槽522以隔离ID芯片。仅要求形成槽522以使分离层501被暴露。可以通过切片、划片等形成槽522。在形成在衬底500的ID芯片不需要隔离的情况下,不必要形成槽522。
如图11B所示,检测ID芯片是否操作正常。标号523指示检测电极,524指示检测天线。ID芯片525被夹在检测电极523和检测天线524之间,而天线529被夹在衬底500和检测电极523之间。
如图11C所示,当检测完成时,通过蚀刻去除分离层501。在本实施方式中,卤代氟化物被用作蚀刻气,它被从槽522引入。在本实施方式中,使用例如ClF3(三氟化氯)在350℃下以300sccm的流速和6Torr的气压执行3小时的蚀刻。也可以使用通过将氮气混入ClF3气中获得的气体。通过使用例如ClF3的卤代氟化物,分离层501被选择性蚀刻并且衬底500可从TFT504分离。注意卤代氟化物可以是气体或流体。
如图12所示,分离的TFT504和天线519通过使用粘结剂530被固定至支撑介质531。可以固定支撑介质531和基底薄膜502的材料被用作粘结剂530。此外,对粘结剂530而言,举例说来,可以使用多种可固化粘结剂,例如反应固化粘结剂、热固化粘结剂、例如紫外线固化粘结剂之类的光固化粘结剂、和厌氧粘结剂。
对支撑介质531而言,可使用例如纸和塑料之类的柔性有机材料。此外,柔性无机材料也可被用于支撑介质531。由聚降冰片烯形成的具有极性基团的ARTON(JSR制造)可被用作塑料衬底。可以使用以聚乙烯对苯二甲酸酯(PET)、聚醚砜(PES)、聚对萘二甲酸乙二酯(polyethylene naphthalate)(PEN)、聚碳酸脂(PC)、尼龙、聚醚酮醚(polyether etherketone)(PEEK)、聚砜(PSF)、聚醚酰亚胺(PEI)、多芳基化合物(PAR)、聚对苯二甲酸丁二酯(PBT)、聚酰亚胺、丙烯腈丁二烯苯乙烯树脂、聚氯乙烯、聚丙烯、多乙酸乙烯酯、丙稀树脂等为代表的聚酯。优选地支撑介质531具有约2-30W/mK的高热导率,以扩散薄膜集成电路中所产生的热。
此外,如图12所示,在去除保护层521之后,粘结剂532被应用至第二层间绝缘膜515之上以覆盖天线519,然后覆盖材料533被固定在粘结剂532上。覆盖材料533可通过使用与支撑介质531类似的例如纸和塑料之类的柔性有机材料被形成。粘结剂532是可以粘结覆盖材料533、第二层间绝缘膜520和天线519的材料。例如,粘结剂532可使用多种可固化粘结剂,比如光固化粘结剂、反应固化粘结剂、热固粘结剂或紫外线固化粘结剂和厌氧粘结剂。
通过各上述步骤,完成ID芯片。如上述制造方法,可在支撑介质531与覆盖材料533之间形成总厚度为0.3-3微米,典型地约2微米的相当薄的薄膜集成电路。集成电路的厚度包括在粘结剂530和532之间形成的各绝缘膜和层间绝缘膜的厚度,以及半导体元件自身的厚度。此外,可以形成在一侧占据5毫米或更小、或者在一侧最好0.3-4毫米的区域的ID芯片的集成电路。
通过在靠近支撑介质531和覆盖材料533之间的中心的位置提供集成电路,可增强ID芯片的机械强度。具体说来,假定支撑介质531与覆盖材料533之间的距离为d,最好控制粘结剂530和532的厚度以使支撑介质531与在集成电路的厚度方向的中心之间的距离满足以下公式1。
1 2 d - 30 &mu;m < x < 1 2 d + 30 &mu;m [公式1]
ID芯片中所使用的半导体薄膜、绝缘膜等被印有序列号。如果第三人非法获得被盗的未在ROM中存储数据的ID芯片,就有可能通过序列号在某种程度上追踪途径。在这种情况下,在仅当半导体器件被不可修复地破坏并不可修复时才可删除序列号的部分压印序列号更有效。
从衬底500分离集成电路的方法并不限于如本实施方式所示的蚀刻硅薄膜的方法,可以采用多种方法。举例说来,在高热阻衬底与集成电路之间提供金属氧化物薄膜,而金属氧化物薄膜被结晶变弱从而分离集成电路。例如,可通过激光照射断裂分离层以从衬底分离集成电路。例如,集成电路形成其上的衬底可以被机械去除或通过使用溶液或气体蚀刻去除,以从衬底分离集成电路。
当使用有机树脂作为与基底薄膜502接触的粘结剂530以保证ID芯片的柔性时,通过使用氮化硅薄膜或氮氧化硅薄膜作为基底薄膜502,有可能防止如Na之类的碱金属或碱土金属从有机树脂中扩散入半导体薄膜中。
当由于目标表面弯曲被固定至目标表面的ID芯片的支撑介质被弯曲以具有通过运动圆锥面、圆柱面等的母线表示的弯曲表面时,最好母线的方向与TFT载体的运动方向相同。如此结构,由于支撑介质的弯曲引起的对TFT特性的不利影响可被防止。集成电路中被岛状半导体薄膜占据的面积百分比被设定为1-30%,从而即使当支撑介质被弯曲时也可以抑制对TFT特性的不利影响。
注意本发明的检测程序并不一定在本实施方式所述的计时点执行。检测程序可在任何时间执行,只要天线和集成电路完成。
本实施方式说明天线和集成电路被形成在相同衬底上的实施例。但是,本发明并不限于这种结构。形成在衬底上的天线可被固定至形成在另一衬底上的集成电路。
通常地,许多ID芯片使用频率为13.56MHz或2.45GHz的无线电波。因此,要求所形成的ID芯片检测具有这些频率的无线电波以扩展其通用性。
与通过使用半导体衬底形成的ID芯片相比本实施方式的ID芯片具有无线电波被屏蔽较少的优点,因此可以防止由于被屏蔽的无线电波导致的信号衰减。
不需要半导体衬底,ID芯片的成本可急剧减少。例如,使用直径为12英寸的硅衬底的情况与使用尺寸为730×920mm2的玻璃衬底的情况相对比。硅衬底的面积约为73000mm2而玻璃衬底的面积约为672000mm2,也就是说,玻璃衬底大约比硅衬底大9.2倍。在面积约为672000mm2的玻璃衬底上,当不考虑切割衬底的边缘时约可形成672000个面积为1mm2的ID芯片,约是硅衬底上形成ID芯片的9.2倍。在使用尺寸为730×920mm2的玻璃衬底的情况下,需要较少的制造步骤,量产ID芯片的设备投资成本可减少至使用直径12英寸的硅衬底的情况下的三分之一。此外,按照本发明,在集成电路被从玻璃衬底分离之后,玻璃衬底可被复用。因此,与使用硅衬底的情况相比,使用玻璃衬底的情况下成本可显著降低,即使当考虑补偿破坏的玻璃衬底或清洗玻璃衬底表面的成本时。即使玻璃衬底不被复用而被报废,尺寸为730×920mm2的玻璃衬底的成本约为直径为12英寸的硅衬底的一半。因此,很明显ID芯片的成本可被急剧减少。
因而,使用尺寸为730×920mm2的玻璃衬底的ID芯片成本仅为使用直径为12英寸的硅衬底的ID芯片的约三十分之一。由于期望ID芯片用作可任意使用的元件,因此成本少得多的本发明的ID芯片对这种应用很有效。
本实施方式可以与实施例1和实施例2自由组合。
实施例4
实施例4说明检测程序的计时的实施例。
检测ID芯片的电操作的检测程序可在任何时间执行,只要天线和集成电路分别完成并且天线和集成电路电连接。因此,该检测程序可在隔离ID芯片之前和/或之后、和/或从衬底分离ID芯片之后被执行。
图13A表示在隔离ID芯片之前执行检测程序的情况下的ID芯片制造步骤流程。图13A中,通过使用检测电极1302和检测天线线圈1303在隔离ID芯片1301之前检测ID芯片1301的操作状态。当检测结束时,ID芯片1301被通过使用刀片1304隔离,然后通过蚀刻从衬底1300分离ID芯片1301。
图13B表示在隔离ID芯片之后执行检测程序的情况下的ID芯片制造步骤流程。图13B中,通过使用检测电极1312和检测天线线圈1313在使用刀片1314隔离ID芯片1311之后检测ID芯片1311的操作状态。当检测结束时,通过蚀刻从衬底1310分离ID芯片1311。
图13C表示在分离ID芯片之后执行检测程序的情况下的ID芯片制造步骤流程。图13C中,被隔离的ID芯片1321通过蚀刻从衬底1320而分离,并被固定至带1324。ID芯片1321可在分离之前被固定至带1324。通过使用检测电极1322和带有固定带1324的检测天线线圈1323检测ID芯片1321的操作状态。当检测结束时,ID芯片1321被从带1324分离。通过紫外线照射降低粘性的材料被用作带1324,从而防止ID芯片1321在分离中被施加过大的力。
如图13C所示,在分离ID芯片1321之后执行检测的情况下,即使当半导体衬底被用作衬底1320时,在检测过程中无线电波也可均匀发送至ID芯片的所有天线。
本实施方式说明在隔离ID芯片之后分离衬底的步骤,但是本发明并不限于这种结构。例如,在分离衬底之后ID芯片被固定至带的情况下可执行切片以隔离ID芯片。在这种情况下,可在隔离被固定至带的ID芯片之前或之后执行检测程序。
本实施方式可与实施例1-3自由组合。
实施例5
实施例5说明在检测程序之后确定缺陷ID芯片的方法。
图14A为检测程序之前的ID芯片1401的顶视图。ID芯片1401形成在衬底1400上,标记1402也形成在相同衬底1400上。ID芯片1401可与检测中作为参考的标记1402对准。
例如,如图14B所示,ID芯片1401中的ID芯片1401a和1401b检测后被认为有缺陷。在这种情况下,通过墨水或激光做出标记以把ID芯片1401a和1401b从其它ID芯片中可视区分出来。
如图14C所示,ID芯片1401被隔离并从衬底1400分离。之后,缺陷ID芯片1401a和1401b被从这批ID芯片中去除。
本实施方式可与实施例1-4自由组合。
实施例6
实施例6说明当分离被形成在一个衬底上的多个集成电路时所形成的槽的形状。图15A为其上形成槽701的衬底703的顶视图。图15B为沿图15A的A-A’所取的剖面图。
集成电路702形成在形成于衬底703上的分离层704上。槽701在薄膜集成电路702之间形成,并形成足够深以暴露分离层704。在这种实施方式中,多个薄膜集成电路702未被槽701完全隔离,而是部分隔离。
接着,图15C和15D表示在将蚀刻气流入图15A和15B所示的槽以通过蚀刻去除分离层704之后的衬底。图15C对应于其上形成槽701的衬底703的顶视图。图15D对应于沿图15C的A-A’所取的剖面图。假定分离层704从槽701蚀刻至以虚线705指示的区域。多个薄膜集成电路702未被槽701完全隔离,而是部分隔离,并且部分互相连接,如图15C和15D所示。因此,有可能防止各薄膜集成电路702在蚀刻分离层104后由于缺少支撑而移动。
在形成图15C和15D所示的状态之后,通过使用单独制备的附着粘结剂的带、衬底,集成电路702从衬底703分离。已经分离的多个薄膜集成电路702在互相隔离之前或之后被固定至支撑介质上。
本实施方式说明ID芯片的制造方法的实施例。如本发明的ID芯片的制造方法并不限于本实施方式所说明的结构。
本实施方式可以与实施例1-5自由组合。

Claims (40)

1.一种检测设备,它包含:
多个检测电极;
多个检测天线;
位置控制装置;
施加电压至多个检测天线中的每一个检测天线的装置;和
测量多个检测电极的电位的装置;
其中多个芯片与多个检测电极以一定的间距被重叠;多个芯片与多个检测天线以一定间距被重叠;并且多个芯片通过所述位置控制装置被插入多个检测电极与多个检测天线之间。
2.一种检测设备,它包含:
多个检测电极;
多个检测天线;
位置控制装置;
施加电压至多个检测天线中的每一个检测天线的装置;
测量多个检测电极的电位的装置;和
分析以多个检测电极的测量电位作为信息的数据,和以多个芯片和多个检测电极的位置作为信息的数据,并获得以芯片的操作状态作为信息的数据的装置;
其中多个芯片与多个检测电极以一定的间距重叠;多个芯片与多个检测天线以一定间距重叠;并且多个芯片通过所述位置控制装置被插入多个检测电极与多个检测天线之间。
3.一种检测设备,它包含:
多个检测电极;
多个检测天线;
位置控制装置;
施加电压至各多个检测天线的装置;和
测量多个检测电极的电位的装置;
其中形成在衬底上的多个芯片与多个检测电极以一定的间距重叠,多个芯片与多个检测天线以一定间距重叠,并且多个芯片通过所述位置控制装置被插入多个检测电极与多个检测天线之间,并且
其中衬底通过所述位置控制装置被插入多个芯片与多个检测天线之间。
4.一种检测设备,它包含:
多个检测电极;
多个检测天线;
位置控制装置;
施加电压至多个检测天线的每一个检测天线的装置;和
测量多个检测电极的电位的装置;
分析以多个检测电极的测量电位作为信息的数据,和以多个芯片和多个检测电极的位置作为信息的数据,并获得以芯片的操作状态作为信息的数据的装置,
其中形成在衬底上的多个芯片与多个检测电极以一定的间距被重叠,多个芯片与多个检测天线以一定间距重叠,并且多个芯片通过所述位置控制装置被插入多个检测电极与多个检测天线之间,并且
其中衬底通过所述位置控制装置被插入多个芯片与多个检测天线之间。
5.如权利要求3的检测设备,其中衬底为绝缘体。
6.如权利要求4的检测设备,其中衬底为绝缘体。
7.如权利要求3的检测设备,其中衬底为玻璃衬底或塑料衬底。
8.如权利要求4的检测设备,其中衬底为玻璃衬底或塑料衬底。
9.如权利要求1的检测设备,其中所述位置控制装置流动流体以控制多个芯片与多个检测电极之间的间距。
10.如权利要求2的检测设备,其中所述位置控制装置流动流体以控制多个芯片与多个检测电极之间的间距。
11.如权利要求3的检测设备,其中所述位置控制装置流动流体以控制多个芯片与多个检测电极之间的间距。
12.如权利要求4的检测设备,其中所述位置控制装置流动流体以控制多个芯片与多个检测电极之间的间距。
13.一种检测方法,该方法包括:
使用多个芯片中的各个芯片各自的天线在无接触的情况下供给信号或电源电压至多个芯片中的各个芯片;
移动检测电极,多个芯片中的各个芯片的天线的任意部分或整个天线以一定间距与检测电极重叠;和
根据检测电极的电压和检测电极的位置获得多个芯片中的各个芯片的操作状态。
14.一种检测方法,该方法包括:
以一定间距重叠多个芯片的各天线与检测电极,以在无接触的情况下供给信号或电源电压至多个芯片中的各个芯片;
移动检测电极,多个芯片中的各个芯片的天线的任意部分或整个天线以一定间距与检测电极重叠;和
根据检测电极的电压和检测电极相对于多个芯片的位置获得多个芯片中的各个芯片的操作状态。
15.如权利要求13的检测方法,其中芯片包括衬底、和衬底之上的天线与集成电路,并且衬底为绝缘体。
16.如权利要求14的检测方法,其中芯片包括衬底、和衬底之上的天线与集成电路,并且衬底为绝缘体。
17.如权利要求15的检测方法,其中衬底为玻璃衬底或塑料衬底。
18.如权利要求16的检测方法,其中衬底为玻璃衬底或塑料衬底。
19.如权利要求13的检测方法,其中多个芯片的各天线与多个检测电极之间的间距通过向其中流动流体来控制。
20.如权利要求14的检测方法,其中多个芯片的各天线与多个检测电极之间的间距通过向其中流动流体来控制。
21.如权利要求13的检测方法,其中施加至多个芯片的各天线的电压被通过逐次近似法、使用幻灯片定理的Fourier变换法、或卷积定理法被计算,以获得多个芯片中的各个芯片的操作状态。
22.如权利要求14的检测方法,其中施加至多个芯片的各天线的电压被通过逐次近似法、使用幻灯片定理的Fourier变换法、或卷积定理法被计算,以获得多个芯片中的各个芯片的操作状态。
23.如权利要求13的检测方法,其中检测电极被转动。
24.如权利要求14的检测方法,其中检测电极被转动。
25.一种制造半导体器件的方法,该方法包括:
在衬底上形成多个TFT;
在TFT的上部形成天线;
在天线上形成层间绝缘膜;
通过层间绝缘膜上形成保护层以覆盖天线而形成多个芯片;
在不与多个芯片的各天线接触的情况下,供给信号或电源电压至多个芯片中的各个芯片;
移动检测电极,多个芯片中的各个芯片的天线的任意部分或整个天线以一定间距与检测电极重叠;
执行根据检测电极的电压和检测电极相对于多个芯片的位置获得多个芯片中的各个芯片的操作状态的检测;
从TFT和天线分离已经检测的衬底的芯片;和
将已经分离的TFT和天线固定至支撑介质。
26.一种制造半导体器件的方法,该方法包括:
在衬底上形成多个TFT;
在TFT的上部形成天线;
在天线上形成层间绝缘膜;
通过在层间绝缘膜上形成保护层以覆盖天线而形成多个芯片;
通过以一定间距重叠多个芯片的各天线与检测电极,在不接触的情况下供给信号或电源电压至多个芯片中的各个芯片;
移动检测电极,多个芯片中的各个芯片的天线的任意部分或整个天线以一定间距与检测电极重叠;
执行根据检测电极的电压和检测电极相对于多个芯片的位置获得多个芯片中的各个芯片的操作状态的检测;
从TFT和天线分离已经检测的衬底的芯片;和
将已经分离的TFT和天线固定至支撑介质。
27.如权利要求25的制造半导体器件的方法,其中用于芯片的衬底为绝缘体。
28.如权利要求26的制造半导体器件的方法,其中用于芯片的衬底为绝缘体。
29.如权利要求25的制造半导体器件的方法,其中衬底为玻璃衬底或塑料衬底。
30.如权利要求26的制造半导体器件的方法,其中衬底为玻璃衬底或塑料衬底。
31.如权利要求25的制造半导体器件的方法,其中多个芯片的各天线与多个检测电极之间的间距通过向其中流动流体来控制。
32.如权利要求26的制造半导体器件的方法,其中多个芯片的各天线与多个检测电极之间的间距通过向其中流动流体来控制。
33.如权利要求25的制造半导体器件的方法,其中采用如下检测方法:通过该检测方法,施加至多个芯片的各天线的电压通过逐次近似法、使用幻灯片定理的Fourier变换法、或卷积定理法被计算以获得多个芯片中的各个芯片的操作状态。
34.如权利要求26的制造半导体器件的方法,其中采用如下检测方法:通过该检测方法,施加至多个芯片的各天线的电压通过逐次近似法、使用幻灯片定理的Fourier变换法、或卷积定理法被计算以获得多个芯片中的各个芯片的操作状态。
35.如权利要求25的检测方法,其中检测电极被转动。
36.如权利要求26的检测方法,其中检测电极被转动。
37.如权利要求1的检测设备,其中所述位置控制装置为校正装置,所述施加电压的装置为电压施加设备;所述测量电位的装置为电位测量设备。
38.如权利要求2的检测设备,其中所述位置控制装置为校正装置,所述施加电压的装置为电压施加设备;所述测量电位的装置为电位测量设备。
39.如权利要求3的检测设备,其中所述位置控制装置为校正装置,所述施加电压的装置为电压施加设备;所述测量电位的装置为电位测量设备。
40.如权利要求4的检测设备,其中所述位置控制装置为校正装置,所述施加电压的装置为电压施加设备;所述测量电位的装置为电位测量设备。
CN2005100068109A 2004-01-30 2005-01-28 检测方法和制造半导体器件的方法 Expired - Fee Related CN1661387B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004-022394 2004-01-30
JP2004022394 2004-01-30
JP2004022394 2004-01-30

Publications (2)

Publication Number Publication Date
CN1661387A true CN1661387A (zh) 2005-08-31
CN1661387B CN1661387B (zh) 2011-07-06

Family

ID=34805653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005100068109A Expired - Fee Related CN1661387B (zh) 2004-01-30 2005-01-28 检测方法和制造半导体器件的方法

Country Status (4)

Country Link
US (4) US7112952B2 (zh)
KR (3) KR101270180B1 (zh)
CN (1) CN1661387B (zh)
TW (3) TWI376518B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113608037A (zh) * 2021-08-09 2021-11-05 西安电子科技大学 一种基于非对称直波导干涉仪的脉冲电场传感器

Families Citing this family (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8076216B2 (en) 2008-11-11 2011-12-13 Advanced Inquiry Systems, Inc. Methods and apparatus for thinning, testing and singulating a semiconductor wafer
SG142160A1 (en) * 2001-03-19 2008-05-28 Semiconductor Energy Lab Method of manufacturing a semiconductor device
US6850080B2 (en) * 2001-03-19 2005-02-01 Semiconductor Energy Laboratory Co., Ltd. Inspection method and inspection apparatus
DE10245152B4 (de) * 2002-09-27 2013-10-10 Infineon Technologies Ag Integrierte Testschaltungsanordnung und Testverfahren
US7472296B2 (en) * 2004-02-20 2008-12-30 Semiconductor Energy Laboratory Co., Ltd. Integrated circuit, semiconductor device and ID chip
KR101139713B1 (ko) * 2004-06-24 2012-04-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 박막 집적 회로를 제조하는 방법
CN101088158B (zh) * 2004-12-24 2010-06-23 株式会社半导体能源研究所 半导体装置
CN101111938B (zh) 2005-01-28 2010-08-11 株式会社半导体能源研究所 半导体器件和制造它的方法
WO2006129578A1 (en) 2005-05-30 2006-12-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
JP4914589B2 (ja) 2005-08-26 2012-04-11 三菱電機株式会社 半導体製造装置、半導体製造方法および半導体装置
JP4761952B2 (ja) * 2005-12-14 2011-08-31 富士通株式会社 Rfidタグ
US7519328B2 (en) 2006-01-19 2009-04-14 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
DE112007000799B4 (de) 2006-04-10 2013-10-10 Murata Mfg. Co., Ltd. Drahtlose IC-Vorrichtung
CN101331651B (zh) * 2006-04-14 2013-01-30 株式会社村田制作所 天线
EP2009736B1 (en) 2006-04-14 2016-01-13 Murata Manufacturing Co. Ltd. Wireless ic device
US9064198B2 (en) 2006-04-26 2015-06-23 Murata Manufacturing Co., Ltd. Electromagnetic-coupling-module-attached article
WO2007125752A1 (ja) * 2006-04-26 2007-11-08 Murata Manufacturing Co., Ltd. 給電回路基板付き物品
JP4325744B2 (ja) 2006-05-26 2009-09-02 株式会社村田製作所 データ結合器
EP2023499A4 (en) * 2006-05-30 2011-04-20 Murata Manufacturing Co INFORMATION TERMINAL
ATE507538T1 (de) 2006-06-01 2011-05-15 Murata Manufacturing Co Hochfrequenz-ic-anordnung und zusammengesetzte komponente für eine hochfrequenz-ic-anordnung
DE102006026175B4 (de) * 2006-06-06 2009-04-16 Texas Instruments Deutschland Gmbh RFID-Tag-Prüfvorrichtung
JP4983794B2 (ja) * 2006-06-12 2012-07-25 株式会社村田製作所 電磁結合モジュール、無線icデバイスの検査システム及びそれを用いた電磁結合モジュール、無線icデバイスの製造方法
CN101467209B (zh) 2006-06-30 2012-03-21 株式会社村田制作所 光盘
WO2008007606A1 (fr) * 2006-07-11 2008-01-17 Murata Manufacturing Co., Ltd. Dispositif à antenne et circuit résonnant
WO2008023636A1 (fr) 2006-08-24 2008-02-28 Murata Manufacturing Co., Ltd. Système d'inspection de circuits intégrés sans fil et procédé de fabrication de circuits intégrés sans fil l'utilisant
WO2008050535A1 (fr) 2006-09-26 2008-05-02 Murata Manufacturing Co., Ltd. Module couplé électromagnétiquement et article muni de celui-ci
CN101523750B (zh) * 2006-10-27 2016-08-31 株式会社村田制作所 带电磁耦合模块的物品
JP4835696B2 (ja) 2007-01-26 2011-12-14 株式会社村田製作所 電磁結合モジュール付き容器
JPWO2008096574A1 (ja) * 2007-02-06 2010-05-20 株式会社村田製作所 電磁結合モジュール付き包装材
WO2008096576A1 (ja) 2007-02-06 2008-08-14 Murata Manufacturing Co., Ltd. 電磁結合モジュール付き包装材
EP2133827B1 (en) 2007-04-06 2012-04-25 Murata Manufacturing Co. Ltd. Radio ic device
US8009101B2 (en) 2007-04-06 2011-08-30 Murata Manufacturing Co., Ltd. Wireless IC device
WO2008126649A1 (ja) * 2007-04-09 2008-10-23 Murata Manufacturing Co., Ltd. 無線icデバイス
US7762472B2 (en) 2007-07-04 2010-07-27 Murata Manufacturing Co., Ltd Wireless IC device
US8235299B2 (en) 2007-07-04 2012-08-07 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
WO2008136226A1 (ja) * 2007-04-26 2008-11-13 Murata Manufacturing Co., Ltd. 無線icデバイス
EP2141636B1 (en) 2007-04-27 2012-02-01 Murata Manufacturing Co. Ltd. Wireless ic device
JP4666101B2 (ja) 2007-04-27 2011-04-06 株式会社村田製作所 無線icデバイス
DE112008000065B4 (de) 2007-05-10 2011-07-07 Murata Manufacturing Co., Ltd., Kyoto-fu Drahtloses IC-Bauelement
JP4666102B2 (ja) 2007-05-11 2011-04-06 株式会社村田製作所 無線icデバイス
JP4396785B2 (ja) * 2007-06-27 2010-01-13 株式会社村田製作所 無線icデバイス
EP2166617B1 (en) 2007-07-09 2015-09-30 Murata Manufacturing Co. Ltd. Wireless ic device
US20090017741A1 (en) * 2007-07-13 2009-01-15 John G. Arnold, Jr. Chimney cap with replaceable or recyclable ceramic catalytic filter insert
KR101037035B1 (ko) 2007-07-17 2011-05-25 가부시키가이샤 무라타 세이사쿠쇼 무선 ic 디바이스 및 전자기기
EP2568419B1 (en) * 2007-07-18 2015-02-25 Murata Manufacturing Co., Ltd. Apparatus comprising an RFID device
US20090021352A1 (en) * 2007-07-18 2009-01-22 Murata Manufacturing Co., Ltd. Radio frequency ic device and electronic apparatus
US7830311B2 (en) 2007-07-18 2010-11-09 Murata Manufacturing Co., Ltd. Wireless IC device and electronic device
JP4434311B2 (ja) 2007-07-18 2010-03-17 株式会社村田製作所 無線icデバイスおよびその製造方法
WO2009011376A1 (ja) * 2007-07-18 2009-01-22 Murata Manufacturing Co., Ltd. 無線icデバイス
US8083574B2 (en) * 2007-09-27 2011-12-27 John G. Arnold, Jr. Exhaust flue cap and filter device for a gas fired appliance
US7915909B2 (en) * 2007-12-18 2011-03-29 Sibeam, Inc. RF integrated circuit test methodology and system
JP4462388B2 (ja) 2007-12-20 2010-05-12 株式会社村田製作所 無線icデバイス
CN103401063B (zh) * 2007-12-26 2018-03-02 株式会社村田制作所 天线装置及无线ic器件
US7724012B2 (en) * 2007-12-31 2010-05-25 Texas Instruments Incorporated Contactless testing of wafer characteristics
EP2251934B1 (en) 2008-03-03 2018-05-02 Murata Manufacturing Co. Ltd. Wireless ic device and wireless communication system
EP2251933A4 (en) * 2008-03-03 2012-09-12 Murata Manufacturing Co COMPOSITE ANTENNA
WO2009119548A1 (ja) * 2008-03-26 2009-10-01 株式会社村田製作所 無線icデバイス
EP2264831B1 (en) * 2008-04-14 2020-05-27 Murata Manufacturing Co. Ltd. Radio ic device, electronic device, and method for adjusting resonance frequency of radio ic device
CN102037605B (zh) 2008-05-21 2014-01-22 株式会社村田制作所 无线ic器件
WO2009142068A1 (ja) * 2008-05-22 2009-11-26 株式会社村田製作所 無線icデバイス及びその製造方法
CN102047271B (zh) 2008-05-26 2014-12-17 株式会社村田制作所 无线ic器件系统及无线ic器件的真伪判定方法
JP4535210B2 (ja) * 2008-05-28 2010-09-01 株式会社村田製作所 無線icデバイス用部品および無線icデバイス
US7813193B2 (en) * 2008-06-19 2010-10-12 Texas Instruments Incorporated Ferroelectric memory brake for screening and repairing bits
JP4557186B2 (ja) 2008-06-25 2010-10-06 株式会社村田製作所 無線icデバイスとその製造方法
EP2306586B1 (en) * 2008-07-04 2014-04-02 Murata Manufacturing Co. Ltd. Wireless ic device
EP2320519B1 (en) * 2008-08-19 2017-04-12 Murata Manufacturing Co., Ltd. Wireless ic device and method for manufacturing same
WO2010047214A1 (ja) * 2008-10-24 2010-04-29 株式会社村田製作所 無線icデバイス
WO2010050361A1 (ja) * 2008-10-29 2010-05-06 株式会社村田製作所 無線icデバイス
CN102187518B (zh) 2008-11-17 2014-12-10 株式会社村田制作所 天线及无线ic器件
JP5041075B2 (ja) 2009-01-09 2012-10-03 株式会社村田製作所 無線icデバイスおよび無線icモジュール
WO2010082413A1 (ja) * 2009-01-16 2010-07-22 株式会社村田製作所 高周波デバイス及び無線icデバイス
CN102301528B (zh) 2009-01-30 2015-01-28 株式会社村田制作所 天线及无线ic器件
WO2010119854A1 (ja) 2009-04-14 2010-10-21 株式会社村田製作所 無線icデバイス用部品及び無線icデバイス
JP4687832B2 (ja) 2009-04-21 2011-05-25 株式会社村田製作所 アンテナ装置
JP5447515B2 (ja) 2009-06-03 2014-03-19 株式会社村田製作所 無線icデバイス及びその製造方法
WO2010146944A1 (ja) 2009-06-19 2010-12-23 株式会社村田製作所 無線icデバイス及び給電回路と放射板との結合方法
JP4788850B2 (ja) 2009-07-03 2011-10-05 株式会社村田製作所 アンテナモジュール
US9176186B2 (en) 2009-08-25 2015-11-03 Translarity, Inc. Maintaining a wafer/wafer translator pair in an attached state free of a gasket disposed
US8362797B2 (en) * 2009-08-25 2013-01-29 Advanced Inquiry Systems, Inc. Maintaining a wafer/wafer translator pair in an attached state free of a gasket disposed therebetween
JP5182431B2 (ja) 2009-09-28 2013-04-17 株式会社村田製作所 無線icデバイスおよびそれを用いた環境状態検出方法
JP5201270B2 (ja) 2009-09-30 2013-06-05 株式会社村田製作所 回路基板及びその製造方法
US9112357B2 (en) * 2009-10-02 2015-08-18 Lenovo Innovations Limited (Hong Kong) Mobile terminal device, charger, and charging system
JP5304580B2 (ja) * 2009-10-02 2013-10-02 株式会社村田製作所 無線icデバイス
JP5522177B2 (ja) 2009-10-16 2014-06-18 株式会社村田製作所 アンテナ及び無線icデバイス
JP5418600B2 (ja) 2009-10-27 2014-02-19 株式会社村田製作所 送受信装置及び無線タグ読み取り装置
CN102549838B (zh) 2009-11-04 2015-02-04 株式会社村田制作所 通信终端及信息处理系统
CN102473244B (zh) 2009-11-04 2014-10-08 株式会社村田制作所 无线ic标签、读写器及信息处理系统
CN108063314A (zh) 2009-11-04 2018-05-22 株式会社村田制作所 通信终端及信息处理系统
CN104617374B (zh) 2009-11-20 2018-04-06 株式会社村田制作所 移动通信终端
CN102687338B (zh) 2009-12-24 2015-05-27 株式会社村田制作所 天线及便携终端
JP5652470B2 (ja) 2010-03-03 2015-01-14 株式会社村田製作所 無線通信モジュール及び無線通信デバイス
WO2011108341A1 (ja) 2010-03-03 2011-09-09 株式会社村田製作所 無線通信デバイス及び無線通信端末
JP5477459B2 (ja) 2010-03-12 2014-04-23 株式会社村田製作所 無線通信デバイス及び金属製物品
CN102668241B (zh) 2010-03-24 2015-01-28 株式会社村田制作所 Rfid系统
WO2011122514A1 (en) 2010-03-31 2011-10-06 Semiconductor Energy Laboratory Co., Ltd. Power supply device and driving method thereof
JP5630499B2 (ja) 2010-03-31 2014-11-26 株式会社村田製作所 アンテナ装置及び無線通信デバイス
JP5170156B2 (ja) 2010-05-14 2013-03-27 株式会社村田製作所 無線icデバイス
JP5299351B2 (ja) 2010-05-14 2013-09-25 株式会社村田製作所 無線icデバイス
WO2012005278A1 (ja) 2010-07-08 2012-01-12 株式会社村田製作所 アンテナ及びrfidデバイス
WO2012014939A1 (ja) 2010-07-28 2012-02-02 株式会社村田製作所 アンテナ装置および通信端末機器
JP5423897B2 (ja) 2010-08-10 2014-02-19 株式会社村田製作所 プリント配線板及び無線通信システム
JP5234071B2 (ja) 2010-09-03 2013-07-10 株式会社村田製作所 Rficモジュール
CN103229066A (zh) 2010-09-28 2013-07-31 高级查询系统公司 晶片测试系统以及相关的使用和制造方法
JP5630506B2 (ja) 2010-09-30 2014-11-26 株式会社村田製作所 無線icデバイス
CN105226382B (zh) 2010-10-12 2019-06-11 株式会社村田制作所 天线装置及终端装置
WO2012053412A1 (ja) 2010-10-21 2012-04-26 株式会社村田製作所 通信端末装置
CN105048058B (zh) 2011-01-05 2017-10-27 株式会社村田制作所 无线通信器件
CN103299325B (zh) 2011-01-14 2016-03-02 株式会社村田制作所 Rfid芯片封装以及rfid标签
CN103119786B (zh) 2011-02-28 2015-07-22 株式会社村田制作所 无线通信器件
WO2012121185A1 (ja) 2011-03-08 2012-09-13 株式会社村田製作所 アンテナ装置及び通信端末機器
CN103081221B (zh) 2011-04-05 2016-06-08 株式会社村田制作所 无线通信器件
WO2012141070A1 (ja) 2011-04-13 2012-10-18 株式会社村田製作所 無線icデバイス及び無線通信端末
JP5569648B2 (ja) 2011-05-16 2014-08-13 株式会社村田製作所 無線icデバイス
WO2013008874A1 (ja) 2011-07-14 2013-01-17 株式会社村田製作所 無線通信デバイス
JP5333707B2 (ja) 2011-07-15 2013-11-06 株式会社村田製作所 無線通信デバイス
CN203850432U (zh) 2011-07-19 2014-09-24 株式会社村田制作所 天线装置以及通信终端装置
WO2013035821A1 (ja) 2011-09-09 2013-03-14 株式会社村田製作所 アンテナ装置および無線デバイス
KR20130059003A (ko) * 2011-11-28 2013-06-05 삼성전자주식회사 반도체 테스트 보드 및 반도체 보드
JP5344108B1 (ja) 2011-12-01 2013-11-20 株式会社村田製作所 無線icデバイス及びその製造方法
JP5354137B1 (ja) 2012-01-30 2013-11-27 株式会社村田製作所 無線icデバイス
JP5464307B2 (ja) 2012-02-24 2014-04-09 株式会社村田製作所 アンテナ装置および無線通信装置
JP5304975B1 (ja) 2012-04-13 2013-10-02 株式会社村田製作所 Rfidタグの検査方法及び検査装置
DE102013003693A1 (de) * 2013-03-04 2014-09-04 Giesecke & Devrient Gmbh Verfahren und Vorrichtung zum Prüfen einer Mehrzahl von Antennen
DE102014222203B3 (de) * 2014-10-30 2016-03-10 Infineon Technologies Ag Überprüfung von Randschäden
JP6611251B2 (ja) * 2016-03-22 2019-11-27 ヤマハファインテック株式会社 検査治具、検査装置及び検査方法
KR101806019B1 (ko) * 2016-04-19 2017-12-07 재단법인대구경북과학기술원 박막트랜지스터 소자
TWI805043B (zh) * 2021-01-21 2023-06-11 住華科技股份有限公司 表面保護膜的評估方法
KR102410310B1 (ko) * 2021-05-03 2022-06-22 (주) 엔지온 검출 유니트 및 이를 구비하는 반도체 필름층 검사 장치 및 이를 이용한 검사 방법
US12000866B2 (en) 2022-04-20 2024-06-04 Envigth Co., Ltd. Detection unit, semiconductor film layer inspection apparatus including the same, and semiconductor film layer inspection method using the same

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2803943B2 (ja) * 1992-10-21 1998-09-24 アルプス電気株式会社 非接触電力供給装置
US5983363A (en) * 1992-11-20 1999-11-09 Micron Communications, Inc. In-sheet transceiver testing
US5631572A (en) * 1993-09-17 1997-05-20 Teradyne, Inc. Printed circuit board tester using magnetic induction
JP2909807B2 (ja) * 1995-11-22 1999-06-23 セイコーインスツルメンツ株式会社 超伝導量子干渉素子磁束計および非破壊検査装置
US6218219B1 (en) * 1997-09-29 2001-04-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US6104291A (en) * 1998-01-09 2000-08-15 Intermec Ip Corp. Method and apparatus for testing RFID tags
IL124961A (en) * 1998-06-16 2006-10-05 Orbotech Ltd Contactless test method and system
US6236223B1 (en) * 1998-11-09 2001-05-22 Intermec Ip Corp. Method and apparatus for wireless radio frequency testing of RFID integrated circuits
JP2000251046A (ja) * 1999-03-01 2000-09-14 Hitachi Maxell Ltd 非接触icタグ
US6509217B1 (en) * 1999-10-22 2003-01-21 Damoder Reddy Inexpensive, reliable, planar RFID tag structure and method for making same
DE10016996C1 (de) * 2000-04-05 2002-02-07 Infineon Technologies Ag Testanordnung zur Funktionsprüfung eines Halbleiterchips
US6466007B1 (en) * 2000-08-14 2002-10-15 Teradyne, Inc. Test system for smart card and indentification devices and the like
US6850080B2 (en) * 2001-03-19 2005-02-01 Semiconductor Energy Laboratory Co., Ltd. Inspection method and inspection apparatus
SG142160A1 (en) * 2001-03-19 2008-05-28 Semiconductor Energy Lab Method of manufacturing a semiconductor device
JP4067867B2 (ja) * 2001-05-15 2008-03-26 株式会社半導体エネルギー研究所 電圧測定方法及び電気的検査方法
JP2002340989A (ja) * 2001-05-15 2002-11-27 Semiconductor Energy Lab Co Ltd 測定方法、検査方法及び検査装置
TW573128B (en) 2001-05-15 2004-01-21 Semiconductor Energy Lab Voltage measuring method, electrical test method and apparatus, semiconductor device manufacturing method and device substrate manufacturing method
US6867841B2 (en) * 2001-10-31 2005-03-15 Hitachi, Ltd. Method for manufacturing liquid crystal display panels
WO2004034746A1 (ja) * 2002-10-09 2004-04-22 Semiconductor Energy Laboratory Co., Ltd. 発光装置の製造方法
US6854492B2 (en) * 2002-12-03 2005-02-15 Eaton Corporation Electrically controlled refueling vapor vent shutoff
US7395474B2 (en) * 2003-08-01 2008-07-01 Intermec Ip Corp. Lab-on-chip system and method and apparatus for manufacturing and operating same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113608037A (zh) * 2021-08-09 2021-11-05 西安电子科技大学 一种基于非对称直波导干涉仪的脉冲电场传感器

Also Published As

Publication number Publication date
KR20110103909A (ko) 2011-09-21
US20070013397A1 (en) 2007-01-18
CN1661387B (zh) 2011-07-06
KR101270180B1 (ko) 2013-05-31
TWI376518B (en) 2012-11-11
KR20050077745A (ko) 2005-08-03
US20080024156A1 (en) 2008-01-31
TW201245743A (en) 2012-11-16
US20050168235A1 (en) 2005-08-04
US7276929B2 (en) 2007-10-02
US20090087930A1 (en) 2009-04-02
KR101163199B1 (ko) 2012-07-05
KR20110104459A (ko) 2011-09-22
TWI548884B (zh) 2016-09-11
TW201441640A (zh) 2014-11-01
US7112952B2 (en) 2006-09-26
KR101163201B1 (ko) 2012-07-05
TW200533938A (en) 2005-10-16
US7463049B2 (en) 2008-12-09
US7667454B2 (en) 2010-02-23
TWI474020B (zh) 2015-02-21

Similar Documents

Publication Publication Date Title
CN1661387A (zh) 检测系统、检测方法和制造半导体器件的方法
US9607897B2 (en) Semiconductor device and method for manufacturing the same
JP4405246B2 (ja) 半導体チップの製造方法
CN1627518A (zh) 半导体器件及其制造方法
US11302879B2 (en) Flexible display substrate and manufacturing method therefor, and display apparatus
US20120214278A1 (en) Method of manufacturing semiconductor device
US11289428B2 (en) Element chip manufacturing method
CN107492566B (zh) 柔性显示装置及其制造方法
CN1976005A (zh) 半导体器件的制造方法
US8338193B2 (en) Semiconductor device
US8471585B2 (en) Method for evaluating semiconductor device
US20180174908A1 (en) Manufacturing process of element chip
CN112255532A (zh) 一种芯片失效定位方法及夹具
CN1989901A (zh) 磁共振成像系统中用于局部拉长视场的系统、方法和设备
CN1643699A (zh) 薄膜晶体管、电路装置及液晶显示器
JP2022175498A (ja) 素子チップの製造方法および基板処理方法
US20220384177A1 (en) Element chip manufacturing method and substrate processing method
WO2024204563A1 (ja) 半導体装置の製造方法およびウエハ支持構造
WO2024204564A1 (ja) 半導体装置の製造方法およびウエハ支持構造
US11519865B2 (en) Crack detection method
US20240250064A1 (en) Substrate processing method
JP2003142715A (ja) 光起電力素子の製造方法及び光起電力素子の製造装置
JPH09266236A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110706

Termination date: 20180128

CF01 Termination of patent right due to non-payment of annual fee