CN1472135A - 用于燃料电池的碳纳米管及其制备方法以及采用它的燃料电池 - Google Patents

用于燃料电池的碳纳米管及其制备方法以及采用它的燃料电池 Download PDF

Info

Publication number
CN1472135A
CN1472135A CNA031451373A CN03145137A CN1472135A CN 1472135 A CN1472135 A CN 1472135A CN A031451373 A CNA031451373 A CN A031451373A CN 03145137 A CN03145137 A CN 03145137A CN 1472135 A CN1472135 A CN 1472135A
Authority
CN
China
Prior art keywords
carbon
fuel cell
carbon nanotube
electrode
back material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA031451373A
Other languages
English (en)
Other versions
CN1240612C (zh
Inventor
崔原凤
周齐昱
朴灿镐
张
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Publication of CN1472135A publication Critical patent/CN1472135A/zh
Application granted granted Critical
Publication of CN1240612C publication Critical patent/CN1240612C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/701Integrated with dissimilar structures on a common substrate
    • Y10S977/72On an electrically conducting, semi-conducting, or semi-insulating substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/743Carbon nanotubes, CNTs having specified tube end structure, e.g. close-ended shell or open-ended tube
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/843Gas phase catalytic growth, i.e. chemical vapor deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/847Surface modifications, e.g. functionalization, coating

Abstract

本发明提供用于燃料电池的碳纳米管,其制备方法,以及使用碳纳米管作为电极的燃料电池。碳纳米管的内外壁用纳米级金属催化剂颗粒均匀掺杂至0.3~5mg/cm2的程度。碳纳米管是利用化学气相沉积或等离子体增强的化学气相沉积在碳基材上生长的。由于碳纳米管具有较大的比表面积,金属催化剂颗粒均匀地分布于其内外壁上,所以当使用碳纳米管作为燃料电池的电极时,电极中的反应效率达到最大。利用该方法制备的碳纳米管可用于形成较大的电极。生长在碳基材上的碳纳米管可容易地应用于燃料电池的电极,同时带来经济上的利益和整个电极制造工艺的简化。采用碳纳米管作为其电极的燃料电池的性能也得到提高。

Description

用于燃料电池的碳纳米管 及其制备方法以及采用它的燃料电池
                          技术领域
本发明涉及碳纳米管,更具体地,本发明涉及用于燃料电池的碳纳米管,其直接生长在碳基材上,其内外壁均匀地掺杂了金属催化剂颗粒,及制备碳纳米管的方法,以及采用碳纳米管作为电极的燃料电池。
                          背景技术
最近,随着环境和能源枯竭问题,以及燃料电池汽车商业化的发展,急切需要开发能够在环境温度下以较高能量效率工作的可靠的、高性能的燃料电池,并且需要开发能够提高燃料电池效率的聚合物膜。
燃料电池是一种新的产能系统,其通过燃料与氧化性气体的电化学反应将所产生的能量直接转化成电能。这种燃料电池可以分为具有熔融碳酸盐的燃料电池,其可在500~700℃的高温下工作;具有磷酸的燃料电池,其可以在200℃左右工作;碱性电解液燃料电池,其可在室温至100℃工作;及固体聚合物电解液(SPE)燃料电池,其可在环境温度至约100℃工作。
SPE燃料电池包括采用氢气作为燃料的质子交换膜燃料电池(PEMFC),及利用直接施用于阳极的液体甲醇溶液作为燃料的直接甲醇燃料电池(DMFC)。
SPE燃料电池,其作为可代替矿物燃料的下一代的清洁能源,具有高的能量密度和高的能量转化效率。另外,SPE燃料电池可以在环境温度下工作并且容易密封和小型化,所以它们可以广泛地应用于无污染的交通工具、家用发电系统、移动通讯设备、医疗设备、军事设施、空间设备等领域。
作为通过氢与氧的电化学反应产生直流电的发电机,PEMFC的基本结构如图1所示。参照图1,PEMFC具有位于阳极与阴极之间的质子交换膜11。质子交换膜11以50~200μm的厚度构成SPE。阳极和阴极分别包括提供反应气体或液体的阳极和阴极衬里层14和15,以及发生氧化/还原反应的催化剂层12和13,形成催化剂电极(下文中将阳极和阴极称为“催化剂电极”)。在图1中,附图标记16代表具有气体注入孔并充当集电体的碳片。
随着将作为反应气体的氢提供给具有上述结构的PEMFC,氢分子通过阳极的氧化反应分解为质子和电子。这些质子通过质子交换膜11到达阴极。同时在阴极中,氧分子从阳极获得电子并通过反应还原为氧离子。这些氧离子与来自阳极的质子反应产生水。
如图1所示,在PEMFC的气体扩散电极中,催化剂层12和13分别形成在阳极和阴极衬里层14和15上。阳极和阴极衬里层14和15是由碳布(carbon cloth)或复写纸(carbon paper)构成的。阳极和阴极衬里层14和15的表面经过处理,以便反应气体和水容易在反应前后透过质子交换膜11。
DMFC具有类似于上述PEMFC的结构,但却使用液体甲醇溶液代替氢作为燃料。随着将甲醇溶液提供给阳极,在催化剂存在下发生氧化反应,产生质子,电子和二氧化碳。尽管DMFC的能量效率比PEMFC低,但是采用液体燃料的DMFC使其更容易应用于便携式的电子设备中。
有关高能量密度和高功率的燃料电池的电极,燃料,电解液膜的研究一直在积极地进行。另外,已经试图增加电极中所用催化剂的活性。由于催化剂的活性与其反应表面积成正比,所以必须通过减小催化剂颗粒的直径至几个纳米并将这种纳米级催化剂颗粒均匀地分布在电极上来提高反应表面积。
通常,催化剂如铂是以糊状物均匀地施用于多孔碳基材的电极衬里层上。然而,催化剂在电极衬里层中的分散并不均匀,且碳载体的表面积和导电性也不足够大。
日本待审专利公开2000-63112公开了一种制造单壁碳纳米管的方法,其中通过CO2激光器照射含金属的碳源将痕量的金属引入碳纳米管中。在该方法中,激光器的使用限制了生长碳纳米管的面积。为了应用于燃料电池,需要额外的用碳纳米管的糊状物涂布电极的步骤,这使整个燃料电池的制造工艺复杂化。
                          发明内容
本发明提供直接生长在碳基材上的碳纳米管,其内外壁上均匀地掺杂了直径为几个纳米或更小的催化剂颗粒。
本发明还提供制备上述生长在碳基材上的碳纳米管的方法。
本发明还提供效率得到提高的燃料电池,其是由上述生长在用于电极的碳基材上的碳纳米管构成。
一方面,本发明提供生长在碳基材上的碳纳米管,其内外壁均匀掺杂了0.3~5g/cm2程度的纳米级金属催化剂颗粒。
另一方面,本发明提供制备生长在碳基材上的碳纳米管的方法,包括:将金属催化剂颗粒均匀地分布在碳基材上;及在大气压下以恒定的速度提供碳源气体,并使之在400~900℃下与金属催化剂颗粒反应1~120分钟,以在碳基材上生长碳纳米管。
再一方面,本发明提供燃料电池,其采用上述生长在用于电极的碳基材上的碳纳米管。
                          附图说明
通过详细地描述其示例性的实施方案,同时参照附图,本发明的上述及其它特征和优点将是显而易见的。在附图中:
图1是燃料电池的构造;
图2是示出金属催化剂颗粒均匀分布于碳基材上的扫描电子显微镜(SEM)照片;
图3是用于本发明燃料电池的碳纳米管的SEM照片;
图4是用于本发明燃料电池的分叉的碳纳米管的透射电子显微镜(TEM)照片;
图5示出了用于本发明的制造碳纳米管的方法中的反应系统;及
图6逐步地图示了本发明的制备碳纳米管的方法,其中(a)图示了均匀地分布催化剂颗粒于碳基材上,(b)图示了直接在碳基材上生长碳纳米管,用催化剂颗粒充当碳纳米管生长的晶种,(c)图示了调整所生长的碳纳米管的密度,及(d)图示了调整碳纳米管的生长,以形成分叉的碳纳米管。
                        具体实施方式
本发明的特征在于碳纳米管直接生长在碳基材上。因此,其上生长本发明的碳纳米管的碳基材可容易地应用于燃料电池。而且,根据本发明,碳纳米管不是向上生长,而是在碳基材上生长时分叉,因而增加了其反应表面积。碳纳米管的内外壁均匀地掺杂了一元的、二元的、三元的或更多元的直径为几个纳米的催化剂颗粒,其选自Pt,Ru,Fe和Co。因此,当将本发明的这种碳纳米管用于燃料电池时,燃料电池的电极反应效率达到最大。此外,根据本发明,随着碳纳米管的生长,金属催化剂颗粒沿着碳纳米管的内外壁均匀地分布并且稳定地固定在其上,从而不受外力的影响。
图3是根据本发明的碳纳米管的扫描电子显微镜(SEM)照片。从图3可以看出,本发明的碳纳米管是分叉生长的而不是一直朝上生长的,所以其表面积变大。
图4是本发明的分叉碳纳米管的透射电子显微镜(TEM)照片。在图4中,大量的金属催化剂颗粒均匀地分布于碳纳米管的内外壁上,其中吸附在外壁上的金属催化剂颗粒图示成黑点,吸附在内壁上的金属催化剂颗粒图示成灰点。根据本发明,优选金属催化剂颗粒的分散程度为0.3~5mg/cm2。如果金属催化剂颗粒的分散度小于所述的下限,则金属催化剂颗粒的活性不充分。如果金属催化剂颗粒的分散度大于所述的上限,则它们易于结块,抑制碳纳米管的生长。
现将参照图6逐步地解释本发明的制备用作催化剂载体的碳纳米管的方法。在本发明的制备碳纳米管的方法中,在将金属催化剂颗粒均匀分布于碳基材上之后,如图6的(a)所示,在大气压下以恒定的速度提供碳源气体,并使之在400~900℃下反应1~120分钟,以在碳基材上生长碳纳米管,如图6的(b)所示。当碳纳米管生长到一定程度,如图6的(c)所示,可以提供氢气或氨气,以制备分叉的碳纳米管,如图6的(d)所示。在碳纳米管生长时,多数金属催化剂颗粒吸附在碳纳米管的内外壁上。然而,当利用还原性气体如氢气或氨气进行侵蚀时,一些金属催化剂颗粒则可能充当碳纳米管分叉的晶核。因此,可以制备本发明的分叉的碳纳米管。具体地,氢气将氧化态的金属催化剂颗粒转化成还原态,进而增加催化剂颗粒的活性,导致分叉碳纳米管的生长。作为选择,分叉碳纳米管还可以这样生长,即适当地调节碳源气体的流速以及反应温度和时间,使得金属性碳纳米管可以沿着生长着的碳纳米管迁移。
在制备用本发明的燃料电池的碳纳米管的方法中,将金属催化剂颗粒均匀地分散在碳基材上可以通过电泳,热喷射,溅射,化学气相沉积(CVD),以及本领域的技术人员公知的任何其它技术来实现。
图5示出了制备本发明的碳纳米管的方法中使用的反应系统。将裸露的碳基材4插到石英船5的切口中。将其中插有裸露碳基材4的石英船5放置在反应器2的中央。在图5中,附图标记3代表加热单元。在大气压下将氩气或氮气提供到石英管中,之后,在大气压下以恒定的速度提供碳源气体并使之在400~900℃下反应1~120分钟,以在碳基材上生长碳纳米管。适宜的可用于本发明的碳源气体,可以是本领域的技术人员常用的任何气体,其中优选的碳源气体包括乙烯,一氧化碳,二氧化碳和甲烷。如果反应温度低于400℃,则生成碳颗粒而不是纳米管。如果反应温度高于900℃,则金属碳颗粒的活性降低,且碳纳米管颗粒的生长速度大大地降低。优选碳源气体以10~1000sccm的速度提供。如果碳源气体的流速低于10sccm,则碳源气体的量不足以生长碳纳米管。如果碳源气体的流速大于1000sccm,则由于供给过量的碳源气体使不合乎需要的碳颗粒附着在所生长的碳纳米管上。
如上所述,根据本发明的碳纳米管生长在碳基材上。这种碳基材可以是碳布或复写纸。其上已生长了本发明的碳纳米管的碳基材可以很容易地用作燃料电池的电极,从而简化了整个制造燃料电池电极的工艺。在常规的电极制造工艺中,将催化剂糊或者催化剂与碳纳米管的糊涂布在电极衬里层如碳布上。换言之,常规的电极制造工艺是复杂的,因为其包括单独的处理电极基材,用催化剂掺杂电极基材,及形成完整电极的步骤。但是,根据本发明,在碳纳米管直接形成在可用作电极的碳基材上的同时,催化剂颗粒均匀地分布在生长的碳纳米管上。结果,大大地简化了电极制造工艺,进而降低了产品的成本。
在制备用于本发明的燃料电池中的碳纳米管的方法中,可以用等离子体增强的化学气相沉积(PECVD)代替普通的CVD。在PECVD中,当碳源气体提供给事先放置了金属催化剂的反应器的两个电极之间时,将微波或无线电波施加给反应器,以将碳源气体活化成等离子体状态,并借助于活化能在电极上生长碳纳米管。“等离子体”统指气体分子受辉光放电所产生的高能自由电子轰击时所产生的气体离子和自由电子。
燃料电池根据电解液的种类可以分为碱性燃料电池,磷酸燃料电池,熔融碳酸盐燃料电池,固体氧化物燃料电池,及固体聚合物电解液(SPE)燃料电池。碱性燃料电池,磷酸燃料电池,及SPE燃料电池需要铂催化剂。根据本发明的直接生长于碳基材上的碳纳米管可以用作碱性燃料电池,磷酸燃料电池,及SPE燃料电池(PEMFC和DMFC)的电极。
现将参照下列实施例更详尽地描述本发明。下面的实施例仅用于说明目的,而不是对本发明的范围的限制。
实施例1
通过电泳将作为金属催化剂的铂(Pt)在充当碳基材的防水复写纸上分散1分钟,并利用扫描电子显微镜(SEM)-能散光谱(EDS)确认Pt颗粒的均匀分散。结果示于图2中。将其上已经均匀分布了Pt颗粒的碳基材插到石英船中并放置在反应器的中央。在大气压下将反应器用氩气以5000sccm吹扫,同时将反应器的温度升高至500℃。当反应器的温度达到500℃时,在大气压下向反应器中以10sccm的速度提供作为碳源气体的乙炔60分钟,以合成碳纳米管。下一步,在大气压下以300sccm向反应器中提供氩气的同时,将碳纳米管的温度降低至室温,得到均匀掺杂了1mg/cm2的Pt颗粒的碳纳米管。
实施例2
按与实施例1相同的方式合成碳纳米管,只是用Fe2O3代替Pt作为催化剂。结果得到均匀掺杂了2mg/cm2的Fe颗粒的碳纳米管。
实施例3
按与实施例1相同的方式合成分叉的碳纳米管,只是在提供碳源气体以使碳纳米管生长至一定程度之后10分钟,以50sccm向反应器中提供氢气20分钟。结果得到均匀掺杂了2mg/cm2催化剂颗粒的分叉的碳纳米管。
如上所述,本发明的内外壁均匀掺杂了直径几个纳米的金属催化剂颗粒的碳纳米管,直接生长在碳基材上,具有较宽的比表面积,特别是碳纳米管是分叉的时候,因此当本发明的碳纳米管用作燃料电池的电极时,其电极反应效率达到最大。另外,由于碳纳米管直接生长于可以用作电极的碳基材上,所以其上生长了碳纳米管的碳基材可以很容易地以低成本用作燃料电池的电极,无需复杂的电极制造工艺。此外,由于可以使用一元的,二元的,三元或更多元的金属元素作为催化剂,所以根据本发明的生长在碳基材上的碳纳米管除了阳极之外还可以用于阴极。当在本发明的方法中采用CVD或PECVD在碳基材上生长分叉的碳纳米管时,生长于碳基材上的分叉的碳纳米管具有更大的表面积,所以它们可用作更有效的电极。与常规的燃料电池相比,使用其上生长了本发明的碳纳米管的碳基材作为电极的燃料电池的性能可以得到提高。
尽管已经参照其示例性的实施方案对本发明进行了具体的说明,但是本领域的技术人员应当理解,可以在形式和内容上作出各种改变,而不脱离下列权利要求书中所规定的本发明的构思和范围。

Claims (13)

1.一种用于燃料电池的碳纳米管,其直接生长在碳基材上,其内外壁均匀地掺杂了纳米级金属催化剂颗粒至0.3~5mg/cm2的程度。
2.根据权利要求1的碳纳米管,其中所述金属催化剂颗粒源于选自Pt,Ru,Fe,Co,及前述元素的合金或混合物中的至少一种。
3.根据权利要求1的碳纳米管,其中所述碳基材为碳布或复写纸。
4.根据权利要求1的碳纳米管,其中所述碳纳米管是分叉的。
5.一种制备碳纳米管的方法,该方法包括:
(a)将金属催化剂颗粒均匀地分布在碳基材上;及
(b)在大气压下以恒定的速度提供碳源气体,并使碳源气体与金属催化剂颗粒在400~900℃下反应1~120分钟。
6.根据权利要求5的方法,其中所述碳源气体为乙烯,一氧化碳,二氧化碳或甲烷。
7.根据权利要求5的方法,其中所述步骤(a)的将金属催化剂颗粒均匀地分布在碳基材上是通过电泳,热喷射,溅射或者化学气相沉积进行的。
8.根据权利要求5的方法,其中所述步骤(b)还包括施用微波或无线电波,以将碳源气体活化成等离子状态。
9.根据权利要求5的方法,其中所述步骤(b)进一步包括调节反应条件,使所生长的碳纳米管分叉。
10.根据权利要求9的方法,其中所述调节反应条件包括在提供碳源气体约10分钟之后提供还原性气体。
11.根据权利要求10的方法,其中所述还原性气体为氢气或氨气。
12.根据权利要求9的方法,其中调节反应条件包括调节碳源气体的流速以及反应的温度和时间。
13.一种燃料电池,其使用根据权利要求1~4中任一项的生长在碳基材上用于电极的碳纳米管。
CNB031451373A 2002-07-29 2003-06-23 用于燃料电池的碳纳米管及其制备方法以及采用它的燃料电池 Expired - Fee Related CN1240612C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR44631/02 2002-07-29
KR44631/2002 2002-07-29
KR1020020044631A KR100759547B1 (ko) 2002-07-29 2002-07-29 연료전지용 탄소나노튜브, 그 제조방법 및 이를 채용한연료전지

Publications (2)

Publication Number Publication Date
CN1472135A true CN1472135A (zh) 2004-02-04
CN1240612C CN1240612C (zh) 2006-02-08

Family

ID=30439404

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031451373A Expired - Fee Related CN1240612C (zh) 2002-07-29 2003-06-23 用于燃料电池的碳纳米管及其制备方法以及采用它的燃料电池

Country Status (4)

Country Link
US (2) US7585584B2 (zh)
JP (1) JP3705795B2 (zh)
KR (1) KR100759547B1 (zh)
CN (1) CN1240612C (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1954392A (zh) * 2004-03-02 2007-04-25 因特麦崔克斯股份有限公司 低铂燃料电池、催化剂及其制备方法
CN100396603C (zh) * 2004-03-02 2008-06-25 国际商业机器公司 用于对碳纳米管进行溶液处理掺杂的方法和设备
CN100468844C (zh) * 2005-04-08 2009-03-11 鸿富锦精密工业(深圳)有限公司 燃料电池及其导流板结构
CN100484630C (zh) * 2004-11-04 2009-05-06 三星Sdi株式会社 含碳纳米管的中孔性碳复合物
CN101024495B (zh) * 2006-02-23 2010-07-14 三星Sdi株式会社 碳纳米管、含它的担载催化剂及采用该催化剂的燃料电池
CN101107737B (zh) * 2004-12-09 2012-03-21 奈米系统股份有限公司 用于燃料电池的基于纳米线的膜电极组件
CN102534544A (zh) * 2010-12-14 2012-07-04 财团法人工业技术研究院 纳米碳管复合材料及其制作方法
CN101595584B (zh) * 2006-12-01 2012-09-05 通用汽车环球科技运作公司 燃料电池电极用的纳米线负载催化剂
CN1944503B (zh) * 2005-10-07 2012-11-21 三星Sdi株式会社 聚合物电解质膜和包括该聚合物电解质膜的燃料电池
CN103259023A (zh) * 2012-11-13 2013-08-21 山东省科学院新材料研究所 一种氢燃料电池电极材料制备方法
CN103316669A (zh) * 2012-03-20 2013-09-25 上饶师范学院 以苯酚为前驱物构建负载Pt粒子的水分散型碳纳米管
CN103384007A (zh) * 2013-07-23 2013-11-06 深圳清华大学研究院 碳纳米管/石墨烯复合负极材料及其制备方法、锂电池
USRE46921E1 (en) 2004-12-09 2018-06-26 Oned Material Llc Nanostructured catalyst supports
CN108493406A (zh) * 2018-02-28 2018-09-04 中航锂电(洛阳)有限公司 高镍三元正极材料作为催化剂在制备碳纳米管方面的应用、正极材料及其制备方法、锂电池
CN113564559A (zh) * 2021-07-28 2021-10-29 福州大学 一种CNTs@TC4复合粉末的快速原位制备方法
CN115966719A (zh) * 2023-03-16 2023-04-14 国家电投集团氢能科技发展有限公司 一种阳极催化剂及其制备方法和质子交换膜燃料电池
WO2023173395A1 (zh) * 2022-03-18 2023-09-21 宁德时代新能源科技股份有限公司 一种碳纳米管及其制法、用途、二次电池、电池模块、电池包和用电装置

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7531267B2 (en) * 2003-06-02 2009-05-12 Kh Chemicals Co., Ltd. Process for preparing carbon nanotube electrode comprising sulfur or metal nanoparticles as a binder
US8211593B2 (en) * 2003-09-08 2012-07-03 Intematix Corporation Low platinum fuel cells, catalysts, and method for preparing the same
US20050112450A1 (en) * 2003-09-08 2005-05-26 Intematix Corporation Low platinum fuel cell catalysts and method for preparing the same
JP3624196B1 (ja) * 2004-02-20 2005-03-02 株式会社フルヤ金属 粒子分散複合物及びそれを用いた固体電解質型センサー
US7250188B2 (en) * 2004-03-31 2007-07-31 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defense Of Her Majesty's Canadian Government Depositing metal particles on carbon nanotubes
JP2005294109A (ja) * 2004-04-01 2005-10-20 Toyota Motor Corp 燃料電池用基体及び燃料電池
JP4440711B2 (ja) * 2004-06-11 2010-03-24 トヨタ自動車株式会社 燃料電池用セルモジュール及びその製造方法、並びに燃料電池
US9346673B2 (en) * 2004-06-23 2016-05-24 Samsung Sdi Co., Ltd. Electrode for fuel cell, membrane-electrode assembly for fuel cell comprising the same, fuel cell system comprising the same, and method for preparing the electrode
JP4908778B2 (ja) * 2004-06-30 2012-04-04 キヤノン株式会社 固体高分子型燃料電池の触媒層の製造方法および固体高分子型燃料電池の製造方法
US20060008696A1 (en) * 2004-06-30 2006-01-12 Suk-Won Cha Nanotubular solid oxide fuel cell
WO2006085993A2 (en) * 2004-07-16 2006-08-17 The Trustees Of Boston College Device and method for achieving enhanced field emission utilizing nanostructures grown on a conductive substrate
KR100578981B1 (ko) * 2004-09-08 2006-05-12 삼성에스디아이 주식회사 연료전지용 전극, 이를 포함하는 연료전지 시스템
KR101035620B1 (ko) 2004-09-24 2011-05-19 삼성에스디아이 주식회사 연료전지용 전극, 이를 포함하는 연료전지 및 연료전지용전극의 제조방법
US8333948B2 (en) * 2004-10-06 2012-12-18 The Regents Of The University Of California Carbon nanotube for fuel cell, nanocomposite comprising the same, method for making the same, and fuel cell using the same
KR20060032402A (ko) * 2004-10-12 2006-04-17 삼성에스디아이 주식회사 카본나노튜브 에미터 및 그 제조방법과 이를 응용한전계방출소자 및 그 제조방법
KR100730119B1 (ko) 2004-11-02 2007-06-19 삼성에스디아이 주식회사 1 이상의 개방부를 갖는 탄소 나노 구형 입자, 그제조방법, 상기 탄소 나노 구형 입자를 이용한 탄소 나노구형 입자 담지촉매 및 이를 채용한 연료전지
US7897294B2 (en) * 2004-11-08 2011-03-01 Quantumsphere, Inc. Nano-material catalyst device
US7485600B2 (en) * 2004-11-17 2009-02-03 Honda Motor Co., Ltd. Catalyst for synthesis of carbon single-walled nanotubes
KR100658675B1 (ko) * 2004-11-26 2006-12-15 삼성에스디아이 주식회사 연료전지용 전극, 이를 포함하는 연료전지 및 연료전지용전극의 제조방법
KR100669456B1 (ko) * 2004-11-26 2007-01-15 삼성에스디아이 주식회사 연료전지용 전극, 이를 포함하는 연료전지 및 연료전지용전극의 제조방법
US7842432B2 (en) 2004-12-09 2010-11-30 Nanosys, Inc. Nanowire structures comprising carbon
US7939218B2 (en) * 2004-12-09 2011-05-10 Nanosys, Inc. Nanowire structures comprising carbon
KR101001744B1 (ko) * 2004-12-27 2010-12-15 삼성전자주식회사 탄소 나노 튜브를 이용한 광전 변환 전극 및 이를 구비한태양 전지
JP5074662B2 (ja) * 2005-02-14 2012-11-14 勝 堀 燃料電池用触媒層の製造方法及び製造装置
JP5074663B2 (ja) * 2005-02-14 2012-11-14 勝 堀 燃料電池構造の製造方法
US8110248B2 (en) 2005-02-14 2012-02-07 Masaru Hori Fuel cell structure and method of manufacturing same
CN100337909C (zh) * 2005-03-16 2007-09-19 清华大学 一种碳纳米管阵列的生长方法
JP4611080B2 (ja) * 2005-03-31 2011-01-12 富士通株式会社 燃料電池
JP2006294493A (ja) * 2005-04-13 2006-10-26 Dialight Japan Co Ltd 燃料電池
US7767616B2 (en) * 2005-05-26 2010-08-03 Uchicago Argonne, Llc Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction
KR100684797B1 (ko) 2005-07-29 2007-02-20 삼성에스디아이 주식회사 연료 전지용 전극, 이를 포함하는 막-전극 어셈블리 및이를 포함하는 연료 전지 시스템
JP2007118112A (ja) * 2005-10-26 2007-05-17 National Institute For Materials Science ナノ樹木/ナノ微粒子複合構造物の作製方法とナノ樹木/ナノ微粒子複合構造物
KR101102098B1 (ko) * 2005-11-07 2012-01-02 삼성전자주식회사 가지형 나노 와이어의 제조방법
JP4934316B2 (ja) * 2005-11-30 2012-05-16 株式会社ブリヂストン 繊維状炭素材料の製造方法
JP5108240B2 (ja) * 2006-03-20 2012-12-26 トヨタ自動車株式会社 燃料電池及び燃料電池の製造方法
KR100741762B1 (ko) * 2006-03-28 2007-07-24 한국에너지기술연구원 그라파이트 박판 위에 탄소나노튜브를 합성하는 방법
KR100726237B1 (ko) * 2006-03-31 2007-06-08 한국에너지기술연구원 탄소나노튜브를 지지체로 하고 전기화학적 방법을 사용한백금나노촉매의 제조방법
US7638431B2 (en) * 2006-09-29 2009-12-29 Hewlett-Packard Development Company, L.P. Composite nanostructure apparatus and method
KR100790216B1 (ko) * 2006-10-17 2008-01-02 삼성전자주식회사 전도성 분산제를 이용한 cnt 투명전극 및 그의 제조방법
US8951632B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused carbon fiber materials and process therefor
US8951631B2 (en) 2007-01-03 2015-02-10 Applied Nanostructured Solutions, Llc CNT-infused metal fiber materials and process therefor
US9005755B2 (en) 2007-01-03 2015-04-14 Applied Nanostructured Solutions, Llc CNS-infused carbon nanomaterials and process therefor
KR100829555B1 (ko) 2007-01-25 2008-05-14 삼성에스디아이 주식회사 탄소나노튜브, 담지 촉매, 상기 담지 촉매의 제조 방법 및상기 담지 촉매를 포함한 연료 전지
KR100915968B1 (ko) * 2007-01-29 2009-09-10 (주)썬텔 탄소재료-탄소나노섬유 복합 소재를 전극 재료로 사용한전기이중층 캐패시터
KR100801470B1 (ko) 2007-02-15 2008-02-12 한국에너지기술연구원 탄소 종이 표면에 탄소나노튜브를 직접 성장시키고, 그탄소나노튜브 표면에 화학기상증착법을 사용하여 백금을담지시킨 백금 나노촉매의 제조방법과 그 백금 나노촉매
US8093474B2 (en) * 2007-03-23 2012-01-10 Lawrence Livermore National Security, Llc Metallic nanospheres embedded in nanowires initiated on nanostructures and methods for synthesis thereof
CN101314465B (zh) 2007-06-01 2011-03-23 鸿富锦精密工业(深圳)有限公司 分支型碳纳米管的制备方法
KR100901846B1 (ko) * 2007-09-11 2009-06-09 한국에너지기술연구원 탄소나노튜브 직접성장법과 백금 나노촉매의 담지를 위한화학기상증착법을 적용한 연료전지용 셀룰로스 전극의제조방법, 셀룰로스 전극 및 셀룰로스 섬유의 연료전지용전극으로서의 용도
US20090130527A1 (en) * 2007-11-21 2009-05-21 Angstrom Power Incorporated Planar fuel cell having catalyst layer with improved conductivity
CN101450797B (zh) * 2007-11-29 2013-05-08 索尼株式会社 处理碳纳米管的方法、碳纳米管以及碳纳米管元件
US8481214B2 (en) * 2008-02-25 2013-07-09 Catalyst Power Technologies Electrodes including support filament with collar stop
KR100953147B1 (ko) * 2008-02-28 2010-04-16 충남대학교산학협력단 금속 촉매가 균일하게 증착된 수소저장매체용 탄소나노섬유및 그 제조방법
US20100227134A1 (en) 2009-03-03 2010-09-09 Lockheed Martin Corporation Method for the prevention of nanoparticle agglomeration at high temperatures
DK3859830T3 (da) 2009-05-19 2022-04-11 Oned Mat Inc Nanostrukturerede materialer til batterianvendelser
JP5464015B2 (ja) * 2009-05-21 2014-04-09 トヨタ自動車株式会社 電極触媒層の製造方法、膜電極接合体の製造方法、および燃料電池の製造方法
CN102471105B (zh) 2009-07-06 2015-05-27 泽普托公司 碳纳米管复合结构体及其制备方法
BR112012002216A2 (pt) 2009-08-03 2016-05-31 Applied Nanostructured Sols método de incorporação de nanopartículas em fibras compósitas, fibra de vidro e tapete de fibra picada ou compósito
US8409768B2 (en) * 2009-10-12 2013-04-02 Board Of Regents, The University Of Texas Systems Tuning of Fe catalysts for growth of spin-capable carbon nanotubes
WO2011146445A2 (en) * 2010-05-17 2011-11-24 Arthur Boren Carbon nanotube augmented electrodes with silicon
CA2818757C (en) * 2010-11-24 2019-12-03 Echostar Technologies Llc Tracking user interaction from a receiving device
KR101301613B1 (ko) * 2011-08-09 2013-08-29 홍익대학교 산학협력단 스퍼터링을 이용한 고분자 전해질 연료전지용 철 촉매 및 그 제조방법
JP5408209B2 (ja) 2011-08-30 2014-02-05 トヨタ自動車株式会社 触媒製造方法、当該方法により製造される燃料電池用電極触媒、及び、触媒製造装置
US8916067B2 (en) 2011-10-19 2014-12-23 The Aerospace Corporation Carbonaceous nano-scaled materials having highly functionalized surface
US8906576B2 (en) * 2012-01-25 2014-12-09 Varian Semiconductor Equipment Associates, Inc. Material engineering for high performance Li-ion battery electrodes
WO2013148210A1 (en) * 2012-03-26 2013-10-03 The Regents Of The University Of California Aligned nano-scale structured carbon-oxide nanoparticle composites as electrodes in energy storage devices
US9153822B2 (en) * 2012-08-14 2015-10-06 Ford Global Technologies, Llc Nano-structured thin film catalyst
US9506194B2 (en) 2012-09-04 2016-11-29 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media
KR101596088B1 (ko) * 2013-06-05 2016-02-26 주식회사 엘지화학 탄소나노섬유 제조방법 및 이에 따라 제조된 탄소나노섬유
JP2015145317A (ja) * 2014-01-31 2015-08-13 ヤマハ株式会社 カーボンナノチューブの製造装置
CN104030267B (zh) * 2014-05-15 2015-10-28 太原理工大学 一种石墨化荧光碳点的快速制备方法
KR101579809B1 (ko) * 2014-05-26 2015-12-24 신라대학교 산학협력단 파도형 탄소나노코일(wnc)이 부착된 줄기형 탄소소재(scm) 및 이를 제조하는 방법
US9698428B2 (en) * 2015-02-04 2017-07-04 Nissan North America, Inc. Catalyst support particle structures
US9871256B2 (en) 2015-02-04 2018-01-16 Nissan North America, Inc. Fuel cell electrode having non-ionomer proton-conducting material
TWI557070B (zh) * 2015-05-07 2016-11-11 安炬科技股份有限公司 石墨烯/奈米碳管複合結構及其製作方法
CN105126810B (zh) * 2015-07-28 2017-06-13 西安近代化学研究所 一种八面体结构SnO2@C纳米燃烧催化剂的制备方法
CN105664927A (zh) * 2015-12-30 2016-06-15 厦门大学 碳纸负载高指数晶面铂纳米粒子催化剂及制备方法和应用
US11171324B2 (en) 2016-03-15 2021-11-09 Honda Motor Co., Ltd. System and method of producing a composite product
US11383213B2 (en) 2016-03-15 2022-07-12 Honda Motor Co., Ltd. System and method of producing a composite product
EP3463658B1 (en) * 2016-05-25 2020-11-04 Shell International Research Maatschappij B.V. Process for preparing a catalyst and use thereof
ES2859105T3 (es) 2016-05-25 2021-10-01 Shell Int Research Proceso para el tratamiento de aguas residuales
CN106637214B (zh) * 2016-12-29 2019-04-16 天津理工大学 一种用表面负曲率提升物质本征熔点的方法
US11081684B2 (en) 2017-05-24 2021-08-03 Honda Motor Co., Ltd. Production of carbon nanotube modified battery electrode powders via single step dispersion
US10658651B2 (en) 2017-07-31 2020-05-19 Honda Motor Co., Ltd. Self standing electrodes and methods for making thereof
US20190036102A1 (en) 2017-07-31 2019-01-31 Honda Motor Co., Ltd. Continuous production of binder and collector-less self-standing electrodes for li-ion batteries by using carbon nanotubes as an additive
US11121358B2 (en) 2017-09-15 2021-09-14 Honda Motor Co., Ltd. Method for embedding a battery tab attachment in a self-standing electrode without current collector or binder
US11201318B2 (en) 2017-09-15 2021-12-14 Honda Motor Co., Ltd. Method for battery tab attachment to a self-standing electrode
US11535517B2 (en) 2019-01-24 2022-12-27 Honda Motor Co., Ltd. Method of making self-standing electrodes supported by carbon nanostructured filaments
US11352258B2 (en) 2019-03-04 2022-06-07 Honda Motor Co., Ltd. Multifunctional conductive wire and method of making
US11325833B2 (en) 2019-03-04 2022-05-10 Honda Motor Co., Ltd. Composite yarn and method of making a carbon nanotube composite yarn
US11539042B2 (en) * 2019-07-19 2022-12-27 Honda Motor Co., Ltd. Flexible packaging with embedded electrode and method of making

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5277996A (en) * 1992-07-02 1994-01-11 Marchetti George A Fuel cell electrode and method for producing same
JPH10223233A (ja) 1997-02-06 1998-08-21 Japan Storage Battery Co Ltd 燃料電池用電極および電極電解質膜接合体
JP3363759B2 (ja) * 1997-11-07 2003-01-08 キヤノン株式会社 カーボンナノチューブデバイスおよびその製造方法
JP2000063112A (ja) 1998-07-25 2000-02-29 Japan Science & Technology Corp 単層カーボンナノチューブの製造方法
JP2000243411A (ja) 1999-02-16 2000-09-08 Toyota Motor Corp 燃料電池用の電解質膜と電極との接合体およびその製造方法
EP1059266A3 (en) 1999-06-11 2000-12-20 Iljin Nanotech Co., Ltd. Mass synthesis method of high purity carbon nanotubes vertically aligned over large-size substrate using thermal chemical vapor deposition
US6689439B2 (en) 2000-03-08 2004-02-10 Zbigniew S. Sobolewski Micro-stud diffusion substrate for use in fuel cells
WO2001085612A2 (en) 2000-05-11 2001-11-15 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Process for preparing carbon nanotubes
KR100333671B1 (ko) 2000-06-24 2002-04-22 오길록 2단 반사형 광섬유 증폭기
KR100336576B1 (ko) 2000-06-28 2002-05-16 박종섭 웨이퍼 레벨 패키지
JP3765999B2 (ja) * 2000-06-30 2006-04-12 株式会社東芝 燃料電池
JP3484174B2 (ja) * 2000-11-24 2004-01-06 ドン ウン インターナショナル カンパニー リミテッド 多層炭素ナノチューブ及びその製造方法
US20020068213A1 (en) * 2000-12-01 2002-06-06 Honeywell International, Inc. Law Dept. Ab2 Multiple layer electrode for improved performance
KR20020069328A (ko) * 2001-02-24 2002-08-30 홍병선 연료전지용 탄소 나노튜브 제조방법
JP3655208B2 (ja) 2001-03-29 2005-06-02 株式会社東芝 燃料電池、燃料電池用電極およびその製造方法
WO2002095097A1 (en) * 2001-05-21 2002-11-28 Trustees Of Boston College, The Varied morphology carbon nanotubes and methods for their manufacture
US6596187B2 (en) * 2001-08-29 2003-07-22 Motorola, Inc. Method of forming a nano-supported sponge catalyst on a substrate for nanotube growth
US20030072942A1 (en) 2001-10-17 2003-04-17 Industrial Technology Research Institute Combinative carbon material
US6858197B1 (en) * 2002-03-13 2005-02-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Controlled patterning and growth of single wall and multi-wall carbon nanotubes
US6887451B2 (en) * 2002-04-30 2005-05-03 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Process for preparing carbon nanotubes
US20040167014A1 (en) * 2002-11-13 2004-08-26 The Regents Of The Univ. Of California, Office Of Technology Transfer, University Of California Nanostructured proton exchange membrane fuel cells

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100396603C (zh) * 2004-03-02 2008-06-25 国际商业机器公司 用于对碳纳米管进行溶液处理掺杂的方法和设备
CN1954392A (zh) * 2004-03-02 2007-04-25 因特麦崔克斯股份有限公司 低铂燃料电池、催化剂及其制备方法
CN101406851B (zh) * 2004-11-04 2012-11-21 三星Sdi株式会社 含碳纳米管的中孔性碳复合物
CN100484630C (zh) * 2004-11-04 2009-05-06 三星Sdi株式会社 含碳纳米管的中孔性碳复合物
US8557212B2 (en) 2004-11-04 2013-10-15 Samsung Sdi Co., Ltd. Mesoporous carbon composite containing carbon nanotube
CN101707256B (zh) * 2004-12-09 2013-11-06 奈米系统股份有限公司 用于燃料电池的基于纳米线的膜电极组件
CN101107737B (zh) * 2004-12-09 2012-03-21 奈米系统股份有限公司 用于燃料电池的基于纳米线的膜电极组件
USRE46921E1 (en) 2004-12-09 2018-06-26 Oned Material Llc Nanostructured catalyst supports
CN100468844C (zh) * 2005-04-08 2009-03-11 鸿富锦精密工业(深圳)有限公司 燃料电池及其导流板结构
CN1944503B (zh) * 2005-10-07 2012-11-21 三星Sdi株式会社 聚合物电解质膜和包括该聚合物电解质膜的燃料电池
CN101024495B (zh) * 2006-02-23 2010-07-14 三星Sdi株式会社 碳纳米管、含它的担载催化剂及采用该催化剂的燃料电池
US8283275B2 (en) 2006-02-23 2012-10-09 Samsung Sdi Co., Ltd. Carbon nanotubes, supported catalyst including the same, and fuel cell using the supported catalyst
US8409659B2 (en) 2006-12-01 2013-04-02 GM Global Technology Operations LLC Nanowire supported catalysts for fuel cell electrodes
CN101595584B (zh) * 2006-12-01 2012-09-05 通用汽车环球科技运作公司 燃料电池电极用的纳米线负载催化剂
CN102534544A (zh) * 2010-12-14 2012-07-04 财团法人工业技术研究院 纳米碳管复合材料及其制作方法
CN103316669A (zh) * 2012-03-20 2013-09-25 上饶师范学院 以苯酚为前驱物构建负载Pt粒子的水分散型碳纳米管
CN103259023A (zh) * 2012-11-13 2013-08-21 山东省科学院新材料研究所 一种氢燃料电池电极材料制备方法
CN103259023B (zh) * 2012-11-13 2016-09-14 山东省科学院新材料研究所 一种氢燃料电池电极材料制备方法
CN103384007B (zh) * 2013-07-23 2015-11-18 深圳清华大学研究院 碳纳米管/石墨烯复合负极材料及其制备方法、锂电池
CN103384007A (zh) * 2013-07-23 2013-11-06 深圳清华大学研究院 碳纳米管/石墨烯复合负极材料及其制备方法、锂电池
CN108493406A (zh) * 2018-02-28 2018-09-04 中航锂电(洛阳)有限公司 高镍三元正极材料作为催化剂在制备碳纳米管方面的应用、正极材料及其制备方法、锂电池
CN108493406B (zh) * 2018-02-28 2020-09-15 中航锂电(洛阳)有限公司 高镍三元正极材料作为催化剂在制备碳纳米管方面的应用、正极材料及其制备方法、锂电池
CN113564559A (zh) * 2021-07-28 2021-10-29 福州大学 一种CNTs@TC4复合粉末的快速原位制备方法
WO2023173395A1 (zh) * 2022-03-18 2023-09-21 宁德时代新能源科技股份有限公司 一种碳纳米管及其制法、用途、二次电池、电池模块、电池包和用电装置
CN115966719A (zh) * 2023-03-16 2023-04-14 国家电投集团氢能科技发展有限公司 一种阳极催化剂及其制备方法和质子交换膜燃料电池

Also Published As

Publication number Publication date
US7585584B2 (en) 2009-09-08
CN1240612C (zh) 2006-02-08
US8083905B2 (en) 2011-12-27
JP3705795B2 (ja) 2005-10-12
KR100759547B1 (ko) 2007-09-18
US20100018851A1 (en) 2010-01-28
KR20040011181A (ko) 2004-02-05
JP2004059428A (ja) 2004-02-26
US20040018416A1 (en) 2004-01-29

Similar Documents

Publication Publication Date Title
CN1240612C (zh) 用于燃料电池的碳纳米管及其制备方法以及采用它的燃料电池
US7351444B2 (en) Low platinum fuel cell catalysts and method for preparing the same
EP1655266B1 (en) Method of preparing a carbon nanosphere having at least one opening, impregnated catalyst comprising the carbon nanosphere and fuel cell using this catalyst
US6670301B2 (en) Carbon monoxide tolerant electrocatalyst with low platinum loading and a process for its preparation
US6921605B2 (en) Platinum-ruthenium-nickel fuel cell electrocatalyst
EP1952467B1 (en) Nanowire structures comprising carbon
KR101240144B1 (ko) 저농도 백금 연료 전지, 촉매, 및 그의 제조방법
EP1553052A2 (en) Carbon nanotube and fuel cell using the same
KR101287891B1 (ko) 연료전지용 촉매의 제조방법
CN107180970B (zh) 用于燃料电池的负载的催化剂材料、其制造方法以及具有此类催化剂材料的电极结构
JP2009525575A (ja) 電気化学反応器用の電極を形成するためのdli−mocvd法。
EP1344844A1 (en) Apparatus for producing hydrogen, electrochemical device, method for producing hydrogen and method for generating electrochemical energy
Gebru et al. Nonthermal Plasma‐Modified Carbon‐Carrying Sn‐Based Ternary Nanocatalyst for High‐Performance Direct Dimethyl Ether Fuel Cells
JP2005038818A (ja) 炭化モリブデン触媒およびその製造方法、並びに、該触媒を利用した燃料電池用電極および燃料電池
US11489167B2 (en) Method for producing a supported catalyst material for a fuel cell
WO2006085694A1 (ja) 燃料電池用触媒層の製造方法及び製造装置
US20230311098A1 (en) The formation of catalyst pt nanodots by pulsed/sequential cvd or atomic layer deposition
CN117199410A (zh) 铂-导电金刚石复合抗反极催化剂及燃料电池
CN117199409A (zh) 铂-导电金刚石复合抗反极催化剂及制备方法和燃料电池
CN117776120A (zh) 一种六方相碲化钴/碳复合材料的制备、改性和应用
JP2004235080A (ja) 燃料電池用電極及びその製造方法並びに燃料電池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060208

Termination date: 20180623