CN1433084A - 用于薄膜晶体管的多晶硅薄膜及使用该多晶硅薄膜的显示器件 - Google Patents

用于薄膜晶体管的多晶硅薄膜及使用该多晶硅薄膜的显示器件 Download PDF

Info

Publication number
CN1433084A
CN1433084A CN03101694A CN03101694A CN1433084A CN 1433084 A CN1433084 A CN 1433084A CN 03101694 A CN03101694 A CN 03101694A CN 03101694 A CN03101694 A CN 03101694A CN 1433084 A CN1433084 A CN 1433084A
Authority
CN
China
Prior art keywords
tft
polysilicon membrane
service aisle
display device
polysilicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN03101694A
Other languages
English (en)
Other versions
CN1310338C (zh
Inventor
李基龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Display Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Publication of CN1433084A publication Critical patent/CN1433084A/zh
Application granted granted Critical
Publication of CN1310338C publication Critical patent/CN1310338C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1296Multistep manufacturing methods adapted to increase the uniformity of device parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Optics & Photonics (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)
  • Recrystallisation Techniques (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

用于TFT(薄膜晶体管)的多晶硅薄膜以及使用TFT的显示装置,其中晶界的数目对载流子的运动施加重大影响,提供工作通道之间的距离“S”满足S=mGs·secθ-L的关系的双通道或多通道TFT,并且提供通过同步化双通道或多通道的每个通道中所包含的晶界数目而提高TFT特征均匀性的显示器件S=mGs·secθ-L在上式中,Gs为多晶硅薄膜的晶粒尺寸,m为1或更大的整数,θ为倾斜角,即主晶界(“初级”晶界)沿垂直于工作通道的方向倾斜的角度,L为每个具有双通道或多通道的TFT的工作通道的长度。

Description

用于薄膜晶体管的多晶硅薄膜 及使用该多晶硅薄膜的显示器件
                    相关申请的交叉引用
本申请要求2002年1月18日提交韩国工业产权局的韩国专利申请2002-3073的优先权,该申请的公开内容引入本文作为参考。
                        技术领域
本发明涉及用于薄膜晶体管的多晶硅薄膜以及使用该多晶硅薄膜的显示器件,更具体地,本发明涉及用于薄膜晶体管的多晶硅薄膜,其具有晶体生长方向恒定且规则化的晶粒,以及采用通过该多晶硅薄膜制成的薄膜晶体管的显示器件。
                        背景技术
众所周知,当利用多晶硅制备薄膜晶体管(TFT)基材时,价键缺陷,如存在于工作通道区中所包含的多晶硅晶界上的原子悬空键,提供了载流子捕集器。
因此,晶粒的尺寸、尺寸均匀性、数目和位置以及取向不仅直接或间接地施加致命影响于TFT特性如阈值电压(Vth)、亚阈值斜率(SubthresholdSlope)、载流子迁移性、漏电流和装置稳定性,而且还在利用TFT制备主动矩阵显示器基材时,对基材位置的均匀性产生重要影响。
具体地,晶界严重地影响TFT间的特性均匀性,因为为了提高TFT特性,晶粒变得更大和更规则。
在使用具有恒定尺寸且生长方向恒定不变地调整为工作通道方向的多晶硅晶粒,于TFT基材或主动矩阵显示器的整个或部分区域中制备TFT的情况下,采用具有同一工作通道长度的双工作通道或多工作通道所制备的TFT可能具有更好的TFT特性,因为与制备只包含单个工作通道的TFT时相比,对载流子的运动产生致命影响的晶界数目减少了。
例如,当使用晶粒大小为Gs且主晶界的倾斜角为θ的多晶硅,制备只包含长度为2L宽度为W的单个工作通道的TFT时,如图1A所示,工作通道区域中所包含的主晶界数为3,且通道的总长度为2L。相反,对于包含多通道的TFT而言,每个通道区域中所包含的主晶界数可以为2或1(图1B)。因此,当担当载流子运动势垒的主晶界减少时,TFT特性将得到整体改善。
然而,在使用双通道或多通道制备的TFT中,每个工作通道中所包含的主晶界数可以根据通道的位置而变化,且TFT的一致性可能因此而恶化。
例如,如图1B所示,在第一工作通道中包括一个主晶界,而在第二工作通道中包括了两个主晶界。
为了修补该问题,国际专利WO97/45827报道,可以利用连续横向固化(SLS,Sequential Lateral Solidification)的结晶技术,在基材上形成多晶或单晶的大硅粒(图3),而且当使用多晶或单晶大晶粒制备TFT时,所获特性仅次于使用单晶硅制备的TFT的特性。
然而,通过形成单晶硅制备TFT的SLS方法的问题在于,需要将TFT精确地排列在工作通道区域中那些在技术上很难制备多个TFT的基材位置上,而且与使用多晶硅制备TFT基材时相比,形成尺寸至少相当于工作通道区域的单晶硅需要更长的时间。
众所周知,使用多晶硅制备TFT的SLS方法优于通过形成单晶硅制备TFT的SLS方法。这就是使用单晶硅制备TFT的SLS较使用多晶硅制备TFT的SLS方法更费时的原因。因此,在商业生产方面,采用单晶硅的SLS方法的产量减少了。
然而,在制备主动矩阵显示器时,需要采用单晶硅的TFT的特殊性能,例如完全内嵌的驱动电路所需的特性以及高性能的TFT所需的电路(如数字模拟转换器(DAC)电路)等。当使用多晶硅制备TFT时,可以根据晶粒的大小和工作通道的尺寸,在工作通道区域内包括几个主晶界,可以预测TFT特性的恶化,因而,完全内嵌的电路可能不充分。
另一方面,如美国专利6,177,301所公开的,当在采用SLS结晶技术通过形成大硅粒来制备TFT(用于包括驱动器和像素阵列的液晶显示器件(LCD)中)的过程中,工作通道的方向与SLS结晶方法的晶粒生长方向平行时,如图4A所示,晶界对载流子的势垒作用最小化。因此,可以获得仅次于单晶硅特性的TFT特性,尽管这些特性大大地恶化,如图4B所示,因为很多担当载流子捕集器的晶界存在于工作通道方向与晶粒生长方向相互垂直的地方。
很多情况下,当实际制备有源矩阵显示时,驱动器电路内的TFT通常具有90°角,其中可以通过以工作通道区域的方向与晶粒生长方向成30°至60°角倾斜(以便在不显著恶化每个TFT的特性的同时,改善TFT之间的一致性)的方式,倾斜地制备有源矩阵显示,从而改善器件的一致性,如图4C所示。
然而,由于该方法也使用SLS结晶技术形成的有限大小晶粒,故工作通道区域内包括了几个主晶界。所以,该方法对于要求等同于单晶硅的TFT特性的内嵌电路是不充分的,而且,不具有等同于能够控制工作通道区域内包括的主晶界数的精确性。因此,依然存在TFT的不一致性。
                          发明内容
因此,本发明的目的是提供一种用于TFT的多晶硅薄膜,其能够确保在使用尺寸恒定且生长方向恒定并沿工作通道方向调节的多晶硅晶粒于TFT基材或主动矩阵显示器的全部或部分区域上制备TFT时,用具有相等工作通道长度的双工作通道或多工作通道制备的TFT的特性,从而减少对载流子运动施加致命影响的晶界数目,进而同时改善TFT特性,并且使双通道或多通道的各个通道中所包含的晶界数目同步,本发明的目的还在于提供一种采用该TFT多晶硅薄膜的显示器件。
本发明附加的目的和优点将在下文的描述中阐明,部分将通过描述变得明显,或者可以通过对本发明的实践了解。
本发明的上述及其它目的通过提供用于TFT的多晶硅薄膜实现,其中包含双通道或多通道的TFT的每个工作通道之间的距离“S”具有如下述公式的关系:
     [公式1]            S=mGs·secθ-L式中,Gs为多晶硅薄膜的晶粒尺寸,m为1或更大的整数,θ为倾斜角,即主晶界(“初级”晶界)沿垂直于工作通道的方向倾斜的角度,L为每个具有双通道或多通道的TFT的工作通道的长度。
                          附图说明
通过结合附图对本发明的实施例进行详细描述,本发明的上述和其它目的、优点将会变得更加清晰并被理解,其中:
图1A是图解由单个工作通道组成的TFT的横截面示意图,其中工作通道长2L,晶粒大小为Gs;
图1B是图解由两个工作通道组成的TFT的横截面示意图;
图2A是图解单个TFT的传统电路构造图;
图2B是图解由两个TFT组成的TFT的传统电路构造图,所述两个TFT在共用电极连接;
图3A和图3B是图解包括通过序贯横向凝固(SLS)结晶形成的大硅粒的传统工作通道的横截面示意图;
图4A至图4C是图解包括通过SLS结晶形成的大硅粒的传统工作通道的更多横截面示意图;
图5A至图5C是图解使用根据本发明的实施例,当θ=0°时给定的晶粒大小和工作通道尺寸的单通道TFT和双通道TFT的横截面示意图;
图6A是图解单栅的横截面示意图,其中根据本发明的实施例,工作通道长为2L;
图6B是图解根据本发明的实施例的双栅的横截面示意图;
图7是图解被用于计算本发明中定义的表达式1的双栅TFT的横截面示意图;
图8是图解根据本发明的实施例的双栅TFT的同步条件的横截面示意图;
图9A是图解θ=0°的情形下的单栅TFT的横截面示意图;以及
图9B是图解根据本发明的实施例的双栅TFT的横截面示意图。
                       具体实施方式
下面将详细地阐述本发明的实施方式,其实例图解于附图中,其中在全文中,同样的标号代表同样的元件。下面将参考附图说明本发明的实施方式。
由于晶粒的尺寸有限,所以晶界形成于相邻的晶粒之间。如果多晶硅的晶粒在制备用于主动矩阵显示器的TFT时直接或间接对TFT特性施加重要的影响,则可以扩大和调整多晶硅晶粒,以改善TFT特性。
存在于工作通道区域中对TFT特性施加重要影响的晶界,特别是沿垂直于工作通道方向的倾斜角为-45°≤θ≤45°的“初级”晶界,如图1A和图1B所示,因形成多晶硅薄膜时的处理精度的限制而包含不可避免的缺陷。此外,制备于基材或显示器上的TFT工作通道区域中所包括的“初级”晶界数目可以依据晶粒的大小和方向,以及工作通道的尺寸而变化,如图4A至图4C所示。
可以在多晶硅形成器件生长的晶粒的尺寸不仅受到限制,这取决于根据等离子体增强的化学气相淀积(PECVD)、低压化学气相淀积(LPCVD)和溅射(sputtering)等方法所形成的无定形硅薄膜的特性或薄膜厚度,而且直接受到将无定形硅转化成结晶硅相的结晶技术的影响。
例如,利用激光能量如准分子激光器退火(excimer laser anneling)进行硅结晶时可以生长的最大晶粒尺寸取决于能量密度、脉冲持续时间、基材电导率和基材温度。
此外,在主动矩阵显示器中使用的TFT的工作通道尺寸常常大于晶粒的尺寸。因此,在工作通道区域内经常存在对TFT特性施加影响的主晶界,与使用单晶硅的TFT特性相比,使用多晶硅的TFT特性可以显著恶化,如图5A所示。
然而,如图5B所示,由于可以通过采用双栅极或多栅极形成具有2L长度的双通道或多通道来制备,从而减少每个通道中所包含的主晶界数,所以可以改善TFT特性。
然而,在使用双栅极或多栅极制备TFT的情形下,每个工作通道中所包含的主晶界数可以根据晶粒的大小以及工作通道的尺寸而变化,如图5B所示,从而导致TFT特性的不一致性。
为解决这些问题,本发明提出,当双栅极或多栅极之间的距离是特别距离“S”的整数倍,更优选当双栅极或多栅极之间的距离与特别距离“S”相同时,可以使相邻工作通道中所包含的主晶界数相等,从而获得相同的特性,如图5C所示。
在本发明中,“晶粒的大小”特指晶界之间的距离,并规定为在一般误差范围内的晶界间的距离。
在本发明中,如果源极/漏极(source/drain)方向的法线是NN′,那么与NN′形成-45°≤θ≤45°角θ的晶界可以对载流子的运动施加重大影响,并将这样的晶界定义为“主”晶界,如图6A和图6B所示。
对于长为L宽为W的工作通道区域,垂直于“主”晶界方向上的距离,即工作通道区域中的最大距离D可以通过简单的三角函数表示如下,如图7所示:
             D=(L+x)×cosθ,其中x=W tanθ。
因此,D=(L+Wtanθ)×cosθ=L cosθ+W tanθ×cosθ,从而D=L cosθ+W sinθ,因为tanθ×cosθ=sinθ。即D可以表示为工作通道区域的长度L和宽度W以及“主”晶界关于法线NN′的倾斜角θ的函数。
当θ=0°时,D不再是工作通道区域宽度W和“主”晶界关于法线NN′的倾斜角θ的函数,因为D=L。
从图8可以容易看出,制备TFT以使两个工作通道内的“主”晶界数相等的同步条件为D=a+b。
在图8中,如果从第一工作通道区域上部的第一个“主”晶界到第二工作通道区域上部的第一个“主”晶界间的距离为T,那么其可以表示为T=a+y+b=D+y,并且如果晶粒的大小为Gs,那么晶粒的长度T可以表示为T=m Gs,其中m是整数1或更大的整数。因此,如果通过取T相等,而求解y,那么下述公式y=m Gs-D适用,其中如果用于同步的双通道间的距离“S”表示为S=s1+s2,如图8所示,则从简单的三角函数中可以看出s1=y secθ,且s2=W tanθ。因此,由于S=s1+s2=y secθ+W tanθ=(m Gs-D)secθ+W tanθ=m Gs secθ-D secθ+W tan,  而D=L cosθ+W sinθ,所以S可以表示为S=m Gs secθ-L-W tanθ+W tanθ。
因此,在采用双栅极或多栅极的TFT中,使每个工作通道中所包含的“主”晶界同步的通道之间的距离S可以用下式表示:
             [公式1]         S=mGs·secθ-L式中,Gs是晶粒大小,m是1或更大的整数,θ是主晶界即“初级”晶界沿垂直于工作通道方向的倾斜角,而L则是各包含双通道或多通道TFT的工作通道的长度。
此外,距离S总是应该为S>0,所以距离S被定义为具有物理距离的双栅极或多栅极,因此,可以确定同步所需的m值。
对于θ=0°的情形,可以容易确定,当对TFT特性具有致命影响的“主”晶界垂直于载流子方向(即θ=0°)时,如图9A和图9B所示,比θ≠0°时的TFT特性更优越,因为垂直于“主”晶界的“次”晶界对TFT特性施加的影响减少了。此外,对于包括相等通道长度的双栅极或多栅极的TFT而言,可以通过使每一个通道区域所包含的“主”晶界数同步,获得一致性。
因此,在θ=0°的情形下,可以理解S=m Gs-L。
另一方面,当使用总通道长度为2L且给定倾斜角θ和晶粒大小Gs的单栅极TFT制备双栅TFT时,可以得到使两个长均为L的工作通道区域内所包含的“主”晶界数同步所需的通道间的距离S,如下面表1所示。
每两个同步m值和S值是根据m值从小到大提供的。从表达式1和表1中可以看出,可以通过增加晶粒尺寸Gs至S值大小,以获得较大的S值。
表1
几率P是工作通道区域内包括的取决于通道长度L的晶界最大数Nmax,其中晶粒大小为Gs,角度为θ,而W=10μm。
   Θ  Gs(μm)   L(μm)     m     S   Gs(μm) L(μm)     m      S  Gs(μm)  L(μm)     m      S
0.4 1     3     0.2 1.5 1     1     0.5 2.5 1     1     1.5
    4     0.6     2      2     2      4
2     6     0.4 2     2      1 2     1     0.5
    7     0.8     3     2.5     2      3
3     8     0.2 3     3     1.5 3     2      2
    9     0.6     4      3     3     4.5
4     11     0.4 4     3     0.5 4     2      1
    12     0.8     4      2     3     3.5
5     13     0.2 5     4      1 5     3     2.5
    14     0.6     5     2.5     4      5
0.4 1     3    0.089 1.5 1     1    0.389 2.5 1     1    1.389
    4    0.489     2    1.889     2    3.889
2     6    0.289 2     2    0.889 2     1    0.389
    7    0.689     3    2.389     2    2.889
3     8    0.089 3     3    1.389 3     2    1.889
    9    0.489     4    2.889     3     4.39
4     11    0.289 4     3    0.389 4     2    0.889
    12    0.689     4    1.87     3     3.39
5     13    0.09 5     4    0.89 5     3     2.39
    14    0.49     5    2.39     4     4.89
0.4 1     3    0.323 1.5 1     1    0.223 2.5 1     1    1.224
    4    0.723     2    1.724     2    3.725
2     6    0.124 2     2    0.724 2     1    0.224
    7    0.524     3    2.225     2    2.725
3     8    0.325 3     3    1.225 3     2    1.725
    9    0.725     4    2.726     3    4.226
4     11    0.125 4     3    0.226 4     2    0.726
    12    0.525     4    1.726     3    3.227
5     13    0.326 5     4    0.727 5     3    2.227
    14    0.727     5    2.227     4    4.728
在本发明中,在晶界的倾斜角为-5°≤θ≤5°的情况下,TFT特性更优越。
当使用两个或多个工作通道长度相等的工作通道制备TFT时,因为减少了对载流子施加致命影响的晶界数,所以,与使用多晶硅晶粒制备由一个工作通道组成的TFT时相比,TFT特性可以变得更优越,其中所述多晶硅晶粒具有在TFT基材和有源矩阵显示的整体区域或部分区域不变的大小,和不变而且被调整到工作通道方向的生长方向。此外可以在使用本发明中定义的数字公式设计TFT时,通过使两个或多个工作通道的中的每个通道区域中包括的主晶界数同步,改善TFT的一致性。
尽管描述了本发明的几个实施例,但是本领域的技术人员应该理解,在不脱离本发明的原理和精神,及权利要求所限定的范围的情况下,可以对其进行各种修改。

Claims (14)

1.一种用于TFT的多晶硅薄膜,所述TFT工作通道之间的距离为“S”,其包括:
满足下式关系的双通道或多通道:
                  S=mGs·secθ-L,式中Gs为多晶硅薄膜的晶粒尺寸,m为1或更大的整数,θ为主晶界沿垂直于工作通道的方向倾斜的角度,L为每个具有双通道或多通道的TFT的工作通道的长度。
2.权利要求1的用于TFT的多晶硅薄膜,其中当θ为0°时,双通道或多通道之间的距离为“S”的整数倍。
3.权利要求2的用于TFT的多晶硅薄膜,其中当θ为0°时,双通道或多通道之间的距离与“S”相同。
4.权利要求1的用于TFT的多晶硅薄膜,其中该多晶硅薄膜形成于显示器件基材的整个区域上或者显示器件基材的部分区域上。
5.权利要求1的用于TFT的多晶硅薄膜,其中所述晶粒尺寸为0.2μm或更大。
6.权利要求1的用于TFT的多晶硅薄膜,其中两个或多个晶粒排列在TFT的基材上。
7.权利要求1的用于TFT的多晶硅薄膜,其中所述主晶界的倾斜角为-45°≤θ≤45°。
8.权利要求7的用于TFT的多晶硅薄膜,其中所述主晶界的倾斜角为-5°≤θ≤5°。
9.权利要求1的用于TFT的多晶硅薄膜,其中所述工作通道的长度为晶粒尺寸的整数倍。
10.权利要求1的用于TFT的多晶硅薄膜,其中显示器内的晶粒数目为两个或多个。
11.权利要求1的用于TFT的多晶硅薄膜,其中所述晶粒定向生长。
12.权利要求1的用于TFT的多晶硅薄膜,其中所述多晶硅薄膜是利用选自等离子体增强的化学气相沉积(PECVD),低压化学气相沉积(LPCVD)以及准分子激光器退火溅射中的方法,通过结晶生长无定形硅而形成的。
13.一种具有TFT的显示器件,所述TFT是利用权利要求1的多晶薄膜制备的。
14.权利要求13的显示器件,其中该显示器件为液晶显示器件或有机电致发光装置。
CNB031016944A 2002-01-18 2003-01-14 用于薄膜晶体管的多晶硅薄膜及使用该多晶硅薄膜的显示器件 Expired - Lifetime CN1310338C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR3073/02 2002-01-18
KR3073/2002 2002-01-18
KR10-2002-0003073A KR100462862B1 (ko) 2002-01-18 2002-01-18 티에프티용 다결정 실리콘 박막 및 이를 이용한디스플레이 디바이스

Publications (2)

Publication Number Publication Date
CN1433084A true CN1433084A (zh) 2003-07-30
CN1310338C CN1310338C (zh) 2007-04-11

Family

ID=19718620

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031016944A Expired - Lifetime CN1310338C (zh) 2002-01-18 2003-01-14 用于薄膜晶体管的多晶硅薄膜及使用该多晶硅薄膜的显示器件

Country Status (5)

Country Link
US (1) US6720578B2 (zh)
EP (1) EP1331660A3 (zh)
JP (1) JP4361740B2 (zh)
KR (1) KR100462862B1 (zh)
CN (1) CN1310338C (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103325688A (zh) * 2013-06-17 2013-09-25 深圳市华星光电技术有限公司 薄膜晶体管的沟道形成方法及补偿电路
CN104538402A (zh) * 2014-12-30 2015-04-22 京东方科技集团股份有限公司 阵列基板及其制作方法、和显示装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100483987B1 (ko) * 2002-07-08 2005-04-15 삼성에스디아이 주식회사 티에프티용 다결정 실리콘 박막 및 이를 사용한 디바이스
TW200414280A (en) * 2002-09-25 2004-08-01 Adv Lcd Tech Dev Ct Co Ltd Semiconductor device, annealing method, annealing apparatus and display apparatus
KR100454751B1 (ko) * 2002-10-21 2004-11-03 삼성에스디아이 주식회사 듀얼 또는 멀티플 게이트를 사용하는 티에프티의 제조 방법
AU2003274671A1 (en) * 2002-10-28 2004-05-13 Orbotech Ltd. Selectable area laser assisted processing of substrates
KR100501700B1 (ko) * 2002-12-16 2005-07-18 삼성에스디아이 주식회사 엘디디/오프셋 구조를 구비하고 있는 박막 트랜지스터
TW200428497A (en) * 2003-06-02 2004-12-16 Orbotech Ltd Inducing semiconductor crystallization using a capillary structure
KR100623686B1 (ko) * 2004-05-12 2006-09-19 삼성에스디아이 주식회사 박막 트랜지스터의 제조방법
KR100675637B1 (ko) * 2004-06-29 2007-02-02 엘지.필립스 엘시디 주식회사 모아레 현상을 제거하는 결정화 방법 및 이를 이용한영상표시장치 제조방법
KR100622227B1 (ko) * 2004-10-13 2006-09-19 삼성에스디아이 주식회사 다중 전류 이동경로를 갖는 트랜지스터와 그것을 이용한화소 및 발광 표시 장치
US20070290205A1 (en) * 2006-06-14 2007-12-20 Chin-Sheng Chen Dual-channel thin film transistor
KR101483629B1 (ko) 2008-11-17 2015-01-19 삼성디스플레이 주식회사 박막 트랜지스터 및 그 제조방법
US8766348B2 (en) * 2011-12-21 2014-07-01 Samsung Electronics Co., Ltd. Semiconductor device with selectively located air gaps and method of fabrication
JP6086394B2 (ja) * 2015-03-11 2017-03-01 株式会社ブイ・テクノロジー 薄膜トランジスタ基板、表示パネル、レーザーアニール方法
CN106684092A (zh) * 2015-11-09 2017-05-17 上海和辉光电有限公司 一种阵列基板及其制造方法、显示面板
CN113130635B (zh) * 2021-04-22 2022-09-20 厦门芯一代集成电路有限公司 一种i型栅的mos器件及其制备方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US627488A (en) * 1899-06-27 Frame or yoke for dynamo-electric machines
JPH03292972A (ja) * 1990-04-10 1991-12-24 Yasuaki Okonogi テニスボール
JP3302187B2 (ja) * 1994-08-18 2002-07-15 キヤノン株式会社 薄膜トランジスタ、これを用いた半導体装置、液晶表示装置
JP3292972B2 (ja) 1996-03-29 2002-06-17 株式会社マキタ 打撃工具
US6555449B1 (en) * 1996-05-28 2003-04-29 Trustees Of Columbia University In The City Of New York Methods for producing uniform large-grained and grain boundary location manipulated polycrystalline thin film semiconductors using sequential lateral solidfication
WO1997045827A1 (en) 1996-05-28 1997-12-04 The Trustees Of Columbia University In The City Of New York Crystallization processing of semiconductor film regions on a substrate, and devices made therewith
US5981974A (en) * 1996-09-30 1999-11-09 Sharp Kabushiki Kaisha Semiconductor device and method for fabricating the same
US6590230B1 (en) * 1996-10-15 2003-07-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP3274081B2 (ja) * 1997-04-08 2002-04-15 松下電器産業株式会社 薄膜トランジスタの製造方法および液晶表示装置の製造方法
KR100269312B1 (ko) * 1997-10-14 2000-10-16 윤종용 실리콘막의결정화방법및이를이용한박막트랜지스터-액정표시장치(tft-lcd)의제조방법
KR100292048B1 (ko) 1998-06-09 2001-07-12 구본준, 론 위라하디락사 박막트랜지스터액정표시장치의제조방법
KR100296110B1 (ko) * 1998-06-09 2001-08-07 구본준, 론 위라하디락사 박막트랜지스터 제조방법
JP2000243968A (ja) * 1999-02-24 2000-09-08 Matsushita Electric Ind Co Ltd 薄膜トランジスタとその製造方法及びそれを用いた液晶表示装置とその製造方法
JP2000243969A (ja) * 1999-02-24 2000-09-08 Matsushita Electric Ind Co Ltd 薄膜トランジスタとその製造方法及びそれを用いた液晶表示装置とその製造方法
JP2000133807A (ja) * 1998-10-22 2000-05-12 Seiko Epson Corp 多結晶シリコン薄膜トランジスタ
JP2000208771A (ja) 1999-01-11 2000-07-28 Hitachi Ltd 半導体装置、液晶表示装置およびこれらの製造方法
JP4307635B2 (ja) * 1999-06-22 2009-08-05 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2001210825A (ja) * 2000-01-28 2001-08-03 Seiko Epson Corp 多結晶薄膜トランジスタ
JP2001345451A (ja) * 2000-05-30 2001-12-14 Hitachi Ltd 薄膜半導体集積回路装置、それを用いた画像表示装置、及びその製造方法
US6602765B2 (en) * 2000-06-12 2003-08-05 Seiko Epson Corporation Fabrication method of thin-film semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103325688A (zh) * 2013-06-17 2013-09-25 深圳市华星光电技术有限公司 薄膜晶体管的沟道形成方法及补偿电路
CN104538402A (zh) * 2014-12-30 2015-04-22 京东方科技集团股份有限公司 阵列基板及其制作方法、和显示装置
CN104538402B (zh) * 2014-12-30 2018-01-23 京东方科技集团股份有限公司 阵列基板及其制作方法、和显示装置

Also Published As

Publication number Publication date
US6720578B2 (en) 2004-04-13
US20030141503A1 (en) 2003-07-31
EP1331660A3 (en) 2008-04-09
JP4361740B2 (ja) 2009-11-11
EP1331660A2 (en) 2003-07-30
KR100462862B1 (ko) 2004-12-17
JP2003264197A (ja) 2003-09-19
CN1310338C (zh) 2007-04-11
KR20030062723A (ko) 2003-07-28

Similar Documents

Publication Publication Date Title
CN1310338C (zh) 用于薄膜晶体管的多晶硅薄膜及使用该多晶硅薄膜的显示器件
CN1157759C (zh) 制造半导体器件的方法
CN1126374A (zh) 半导体器件及其制造方法
CN1458698A (zh) 薄膜半导体器件
KR100483985B1 (ko) 박막 트랜지스터용 다결정 실리콘 박막 및 이를 사용한디바이스
CN1719583A (zh) 半导体膜的结晶方法和显示设备的制造方法
CN1738061A (zh) 金属诱导单一方向横向晶化薄膜晶体管器件及其制备方法
CN1722385A (zh) 半导体器件的制造方法及通过该方法制造的半导体器件
CN100350553C (zh) 多晶硅膜的形成方法
CN1897223A (zh) 多晶薄膜的制造方法和掩模图案及显示装置的制造方法
CN1638022A (zh) 多晶硅膜的形成方法
CN1527405A (zh) 多晶硅薄膜、其制法以及用该膜制造的薄膜晶体管
CN1324696C (zh) 包括多晶硅薄膜晶体管的平板显示装置及其制造方法
CN100421263C (zh) 用于薄膜晶体管的多晶硅薄膜和使用该多晶硅薄膜的器件
CN1497685A (zh) 制造使用双重或多重栅极的薄膜晶体管的方法
CN1822334A (zh) 多晶硅薄膜晶体管的制作方法
CN1921124A (zh) 平板显示装置和互补金属氧化物半导体
CN1851926A (zh) 具有平坦表面的多晶硅薄膜及其制造方法
CN1503376A (zh) 薄膜晶体管和使用该薄膜晶体管的有机电致发光设备
CN100474627C (zh) 具有轻掺杂漏区/偏移区(ldd/offset)结构的薄膜晶体管
CN1295751C (zh) 多晶硅薄膜的制造方法
US20040163585A1 (en) Method for manufacturing polycrystalline silicon thin film and thin film transistor fabricated using polycrystalline silicon thin film manufactured by the manufacturing
CN1638044A (zh) 多晶硅薄膜晶体管的多晶硅膜的形成方法
KR20040039971A (ko) 특성이 우수한 디스플레이 디바이스
CN1811592A (zh) 激光结晶用的光掩模图案结构与阵列

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20090109

Address after: Gyeonggi Do, South Korea

Patentee after: Samsung Mobile Display Co.,Ltd.

Address before: Gyeonggi Do, South Korea

Patentee before: Samsung SDI Co.,Ltd.

ASS Succession or assignment of patent right

Owner name: SAMSUNG MOBILE DISPLAY CO., LTD.

Free format text: FORMER OWNER: SAMSUNG SDI CO., LTD.

Effective date: 20090109

ASS Succession or assignment of patent right

Owner name: SAMSUNG DISPLAY CO., LTD.

Free format text: FORMER OWNER: SAMSUNG MOBILE DISPLAY CO., LTD.

Effective date: 20121101

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20121101

Address after: Gyeonggi Do, South Korea

Patentee after: SAMSUNG DISPLAY Co.,Ltd.

Address before: Gyeonggi Do, South Korea

Patentee before: Samsung Mobile Display Co.,Ltd.

CX01 Expiry of patent term

Granted publication date: 20070411

CX01 Expiry of patent term