CN1275809C - 在主缸和制动缸之间带有高压源的制动系统 - Google Patents

在主缸和制动缸之间带有高压源的制动系统 Download PDF

Info

Publication number
CN1275809C
CN1275809C CNB01145914XA CN01145914A CN1275809C CN 1275809 C CN1275809 C CN 1275809C CN B01145914X A CNB01145914X A CN B01145914XA CN 01145914 A CN01145914 A CN 01145914A CN 1275809 C CN1275809 C CN 1275809C
Authority
CN
China
Prior art keywords
brake
pressure
control
fluid
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB01145914XA
Other languages
English (en)
Other versions
CN1374218A (zh
Inventor
矶野宏
山本贵之
水谷恭司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000402219A external-priority patent/JP4449212B2/ja
Priority claimed from JP2001246366A external-priority patent/JP4774651B2/ja
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN1374218A publication Critical patent/CN1374218A/zh
Application granted granted Critical
Publication of CN1275809C publication Critical patent/CN1275809C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4018Pump units characterised by their drive mechanisms

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)

Abstract

一种制动系统,其包括:(a)一个液压作用的制动缸(14、16),用于对制动件(22、24)产生作用;(b)一个主缸(10;340),其根据一个人工制动操纵元件(34)的动作而工作,以对一种工作流体进行加压;(c)一个与主缸连接的主缸截止阀(90、94);以及(d)一个高压源(12、100;270、100;328、100),其包括布置在主缸截止阀和制动缸之间的一个动力压力控制缸(12;270;328),其根据制动操纵元件的动作而进行工作,以对流体进行加压;所说高压源包括一个动力驱动装置(100、220);以及一个压力控制缸(12;270;328),其具有一个控制活塞(106;272;332),其由动力驱动装置驱动,且在其前后两侧分别部分地形成了一个前控制压力室(120)和一个后压力室(128),前控制压力室被连接到制动缸,而后压力室则与主缸是相通的;以及(e)一个制动压力控制装置(200),其用于控制动力驱动装置,并由此来控制制动缸中的流体压力。

Description

在主缸和制动缸之间带有高压源的制动系统
本申请是以如下的专利申请为基础的:在2000年12月28日提交的第2000-402219号日本专利申请;在2000年12月28日提交的第2000-402220号日本专利申请;在2001年8月15日提交的第2001-246366号日本专利申请,这些申请的内容都结合到本文作为参考资料。
技术领域
本发明涉及一种制动系统。
背景技术
日本专利JP-A-9-511967公开了一种制动系统,其包括(a)一个制动缸,其布置成用来在液压压力作用下产生制动;(b)一个主缸,其包括一个加压活塞,其根据一个人工制动操纵元件的工作而动作,来将工作流体压入到一个形成在加压活塞前方的加压室中;(c)一个高压源,其形式为一个压力控制缸,其包括一个控制活塞,其根据一个电动机的工作而动作,并具有一个控制压力室,其形成在控制活塞的前方,该控制压力室与制动缸相通;以及(d)一个制动压力控制装置,其用于控制输送到电动机的电流,以控制压力控制缸的控制压力室内的流体压力,并由此来控制制动缸中的流体压力。
发明内容
因而,本发明的目的是设计一种制动系统,其对上述公开文献所披露的现有制动系统进行改进,例如以多种方式提高了电能的利用效率和/或减小了所需的电能的消耗量。
上述目的可通过根据本发明如下实施模式中任一个而设计的制动系统得以实现,这些实施模式与所附的权利要求一样也同样进行了编号,且这些权利要求是有对其它的某个或多个权利要求引用而得出的,以指代或阐明各个技术特征或元素的可能组合形式。可以理解,本发明并不仅限于这些技术特征或它们的任何组合,这些技术特征以及组合只是为了例示而进行描述。进一步可以理解,在本发明如下的任一实施模式中所包括的多个元素或特征都不是必须要同时全部具有的,且相对于同样的实施模式,本发明可在缺乏所述某些元素或特征的条件下进行实施。
(1)一种制动系统,其包括:(a)一个液压作用的制动缸,用来对制动件进行作用;(b)一个主缸,其根据一个人工制动操纵元件的动作而工作,以对一种工作流体进行加压;(c)一个与主缸连接的主缸截止阀;(d)一个设置在主缸截止阀和制动缸之间的高压源,其按照制动操纵元件的动作而进行工作,以对该流体进行加压,该高压源包括一个动力驱动装置以及一个压力控制缸,压力控制缸具有一个控制活塞,其由动力驱动装置驱动,且在其前后两侧部分形成了一个前控制压力室和一个后压力室,前控制压力室被连接到制动缸,而后压力室则与主缸是相通的;以及(e)一个制动压力控制装置,该装置可控制动力驱动装置,并由此来控制制动缸中流体的压力。
在根据本发明上述模式(1)的制动系统中,制动系统不仅可由高压源加压的流体压力来驱动,而且可在主缸加压的流体压力作用下动作。换言之,除了从高压源输出的压力流体之外,还可利用从主缸输出的压力流体对制动缸进行作用。相应地,高压源就可以消耗相对较少的电能来经济地工作,且制动缸的工作能产生相对较高的制动效果。制动缸中的流体压力是由压力控制缸控制的,而压力控制缸是由受制动压力控制装置控制的动力驱动装置驱动的。此外,后压力室是与主缸连通的,使得后压力室与主缸是常态相通的,从而就可利用由主缸加压的流体来控制制动缸中的流体压力。在制动缸中的流体压力由压力控制缸控制的普通制动系统中,主缸与一个行程模拟器相通,但并不用该装置来控制制动缸中的流体压力。在另一方面,在根据上述模式(1)的制动系统中,从主缸输出的压力流体被用来控制制动缸压力,从而就相应地减小了要由动力驱动装置产生的驱动力,该驱动力用来驱动压力控制缸中的控制活塞。
(2)一种制动系统,其包括:(a)一个液压作用的制动缸,用来对制动件进行作用;(b)一个主缸,其根据一个人工制动操纵元件的动作而工作,以对一种工作流体进行加压;(c)一个与主缸连接的主缸截止阀;(d)一个设置在主缸截止阀和制动缸之间的高压源,其按照制动操纵元件的动作而进行工作,以对该流体进行加压,该高压源包括一个动力驱动装置以及一个压力控制缸,压力控制缸具有一个控制活塞,其由动力驱动装置驱动,且在其前后两侧部分形成了一个前控制压力室和一个后压力室,前控制压力室被连接到制动缸,而后压力室则与主缸是常态相通的;以及(e)一个制动压力控制装置,该装置可控制动力驱动装置,并由此来控制制动缸中流体的压力。
根据上述第(2)模式的制动系统与根据上述第(1)模式的制动系统基本上具有相同的优点。
(3)一种根据上述模式(2)的制动系统,其还包括一条连接主缸和控制压力室的流路,且主缸截止阀就设置在该流路中,且截止阀具有一个通流状态,在此状态下,主缸和控制压力室相互接通,以及一个断流状态,在此状态下,主缸和控制压力室相互隔断。
在根据上述第(3)模式的制动系统中,主缸截止阀设置在连接主缸和压力控制缸的控制压力室的流路中。当主缸截止阀处于通流状态时,主缸经截止阀与制动缸相通,这样从主缸输出的压力流体就压力流体就被输送到制动缸,而产生制动作用。当主缸截止阀被置于断流状态时,控制压力室与主缸隔断,且在控制压力室中的加压后的流体被输送到制动缸以产生制动。
(4)一种根据上述第(2)或第(3)模式的制动系统,其中制动压力控制装置包括一个动作检测部分,该部分能检测制动操纵元件的工作状态,制动压力控制装置在由动作检测部分检测到的工作状态的基础上,对动力驱动装置进行控制。
在根据上述第(4)模式设计的制动系统中,用来操作压力控制缸的动力驱动装置是在检测到的人工制动操作元件工作状态的基础上进行控制的。
该动作检测部分可检测制动操纵元件的工作状态,在一个动作检测器或传感器输出信号的基础上,该动作检测部分可检测制动操纵元件的工作状态,其中的检测器或传感器例如是一个可检测制动操纵元件动作量的传感器,其中的动作量例如是作用力或行程,传感器也可以是用来检测与制动操纵元件的动作量相对应的一物理量,例如是检测主缸中的流体压力。该物理量可以是装备了该制动系统的汽车车辆的减速值。在检测出的制动操纵元件工作状态的基础上进行控制的动力驱动装置可根据制动操纵元件的检出工作状态来进行控制,或者是根据检测出的工作状态的状态改变来进行控制。
(5)一种根据上述第(2)到第(4)模式中任一个的制动系统,其中制动压力控制装置对动力驱动装置的控制是这样的:使得在控制压力室中的流体压力被控制在一个由制动操纵元件的检测出的工作状态确定的水平上。
在根据上述模式(5)的制动系统中,控制压力室中的流体压力被控制在一个水平上,该水平是与对制动操纵元件检测出的工作状态相对应的,这样,在制动缸中的流体压力就被控制在该数值水平上。
(6)一种根据上述第(2)到第(5)模式中任一个的制动系统,其布置成后压力室的容积能随着人工制动操纵元件的动作而改变,而动力驱动装置被控制成对压力控制缸中的控制活塞进行作用。
(7)一种根据上述第(2)到第(6)模式中任一个的制动系统,其布置成:在后压力室中的流体压力被控制在人工制动操纵元件的作用力相对应的水平上,而动力驱动装置被控制成对压力控制缸中的控制活塞进行作用。
由于后压力室是与主缸相通的,所以流体可在后压力缸和主缸之间流动。在制动系统被布置成后压力室的容积可随制动操纵元件的动作而改变的条件下,后压力室中的流体压力就被控制在与制动操纵元件的作用力相对应的水平上,使得制动操纵元件受到一个与其操作力相对应的反作用力。在此情况下,就可以认为该压力控制缸就起到了一个行程模拟器的作用,因而,该制动系统就不再需要一个专门的行程模拟器。
(8)一种根据上述第(3)到第(7)模式中任一个的制动系统,其中,主缸截止阀是一个电磁断流阀,其至少能转换到通流状态和断流状态,这取决于输送给断流阀的电流量,且当电磁断流阀处于断流状态时,制动压力控制装置对动力驱动装置进行控制,以控制制动缸中的流体压力。
再根据上述第(8)模式的制动系统,当压力控制缸的控制压力室中与主缸隔断或断开时,对控制压力室中的流体压力进行控制。
(9)根据上述第(2)到第(9)模式中任一个的制动系统,其中压力控制缸中的控制活塞具有一个后承压面,该后承受面部分地形成了后压力室,还具有一个前承压面,该承受面部分地形成了控制压力室,后承压面的面积小于前承压面的面积。
在根据上述第(9)模式的制动系统中,部分形成压力控制缸的后压力室的后承压面的面积布置成小于部分形成控制压力室的前承压面的面积,从主缸输送到后压力室的流体量布置成小于从控制压力室输向制动缸的流体量。这样的布置能有效地减小需要输送到压力控制缸的后压力室的压力流体的增加量,从而就能减小用来产生给定制动效果所需的制动操纵元件的工作行程。由于所需工作行程可被减小,而主缸是与制动缸隔绝的,所以主缸不需要连接到一个行程模拟器上,这是因为压力控制缸基本上实现了与连接到主缸上的行程模拟器相同的功能。
(10)一种根据上述第(2)到第(9)模式中任一个的制动系统,其中的主缸包括一个加压活塞,其连接到人工制动操纵元件上,且在制动操纵元件的那一侧,其包括一个后大径部分,并包括一个前小径部分,在该小径部分的前方部分地形成了一个加压室,该前小径部分的直径要小于后大径部分的直径,且主缸的加压室与压力控制缸的后压力室相通。
在根据上述第(10)模式的制动系统的主缸中,加压室是由加压活塞的前小径部分部分地形成的,其中的前小径部分的直径要小于在制动操纵元件的一侧的后大径部分的直径。相应地,当以给定的操作力对制动操纵元件进行作用时,在加压室中的流体压力要高于在主缸中的压力,其中在主缸中加压活塞不具有大径部分和小径部分。这样,该布置对于制动操纵元件的给定作用力,能在加压室中产生相对更高的流体压力一也就是说,制动操作力具有更高的增力比。
在制动缸与主缸相通的条件下,对于给定的制动操纵元件作用力,制动缸中的流体压力能更高,这样就减小了当压力控制缸不工作时制动缸中的流体压力的降低。
(11)一种制动系统,其特征在于,其包括:
一个用来产生制动效果的液压作用的制动缸;
一个主缸,其按照一个人工制动操纵元件的动作而工作,以对一种工作流体进行加压;
一个动力驱动装置;
一个压力控制缸,其具有一个控制活塞,其由动力驱动装置操作,且该控制缸在其前端和后端分别部分地形成了一个前控制压力室和一个后压力室,前控制压力室与制动缸相连通,而后压力室则通过一条流路与主缸直接相通;以及
一个制动压力控制装置,其可对动力驱动装置进行控制,从而实现对制动缸中的流体压力的控制。
在根据上述第(11)模式的制动系统中,主缸与压力控制缸的后压力室通过一条未设置任何阀件或行程模拟器的流路直接连通。
上述模式(1)到模式(10)中任一个模式的技术特征都适用于上述的第(11)模式的制动系统。
(12)根据上述第(1)模式的制动系统,其中,主缸具有一个加压活塞,该活塞部分地形成了一个加压室,且该活塞由人工制动操纵元件驱动,以对加压室中的流体进行加压,且高压源包括一个动力驱动装置以及一个压力控制缸,其中具有一个控制活塞,该活塞由动力驱动装置驱动,且该活塞在压力控制缸的前方和后方分别形成了一个前控制压力室和一个后压力室,前控制压力室与制动缸连接,而后压力室则与加压室相连接,从而使得在加压室中加压后的流体的压力作用到压力室中,该制动系统还包括一个制动压力控制装置,该装置可对输送到动力驱动装置的电能进行控制,由此来控制控制压力室中的流体压力,从而控制制动缸中的流体压力。
在根据本发明上述第(12)模式的制动系统中,对动力驱动装置供应电能或能量进行控制是为了对作用在压力控制缸中的控制活塞的驱动力进行控制。结果是,对形成在控制活塞前部的控制压力室中的流体压力进行控制能控制制动缸中的流体压力。在对动力驱动装置的控制过程中,主缸加压室中加压后的流体被输送到压力控制缸的后压力室中。因而,从主缸的加压室输送来的压力流体被压力控制缸利用、来对制动缸中的流体压力进行控制。相应地,就能减少动力驱动装置所需的电能。
在装备有压力控制缸的制动系统中,通常是在制动缸与主缸断开的条件下对制动缸中的流体压力进行控制,其中的压力控制缸随动力驱动装置的工作而动作。在这种类型的普通制动系统中,并不利用由主缸加压的流体来控制制动缸中的流体压力。而在上述第(12)模式的制动系统中,主缸泵送出的压力流体则被用来控制制动缸中的流体压力。
例如,主缸加压后的流体被输送到压力控制缸的后压力室,以此来提高后压力室的流体压力,从而对驱动控制活塞的动力驱动装置进行助力。如果由于动力驱动装置的失效或故障,制动缸中的流体压力不能再由压力控制缸进行控制,则压力流体就会从主缸输送到压力控制缸的后压力室中,这样控制活塞就在由后压力室中的流体压力所产生的力作用下而前进,从而增加了控制压力室中的流体压力。通常的情况是:当主缸与制动缸断开连接时,从主缸排出的压力流体就会被吸收或容留在行程模拟器中,而没有用来增加制动缸中的流体压力。但根据上述本发明的第(12)模式,主缸中的压力流体被有效地用来控制制动缸压力。另外,通过设置适当的装置来限制或抑制流体从后压力室排出,可将由于压力流体从后压力室排出而导致的制动缸压力降低减小。
从主缸的加压室输出的压力流体可直接或间接地输送到压力控制缸的后压力室中。例如如下文所要描述的那样,可通过设置在连接加压室与后压力室的流路中的一个行徎模拟器来实现间接的输送。在此情况下,压力流体被输送到行程模拟器的两个容积可变腔室中的一个腔室中,这样,另一个变容腔的容积就会减小,从而向后压力室泵送流体。同样,在此情况中,尽管输送到后压力室的压力流体的压力以及进入后压力室的流量没有必要精确地等于加压室中的流体压力和从加压室输出的压力流体的流量,但在主缸加压室中加压的流体的压力通过行程模拟器基本上作用到后压力室。
动力取得装置可包括一个例如电动机等动作部分和一个诸如电池等能源部分。
(13)一种根据上述第(12)模式的制动系统,其还包括一个行程模拟器,该模拟器包括:
一个壳体;
一个模拟器活塞,其可滑动地安装在壳体中,并与壳体相配合而形成一第一变容腔和一第二变容腔,第一变容腔与主缸的加压室相连接,而第二变容腔则与压力控制缸的后压力室相连接;以及
偏置装置,用于将模拟器活塞偏置到使第一变容腔容积减小的方向。
在上述第(13)模式的制动系统中,压力流体从主缸的加压室通过行程模拟器间接输出到压力控制缸的后压力室中。当压力流体从主缸输送到第一变容腔时,流体从第二变容腔输送到压力控制缸的后压力室中。
当主缸与制动缸断开连接时,如果制动缸中的流体压力要进行控制,则主缸通常与行程模拟器进行连接。在此情况下,压力控制缸可利用在第二变容腔中加压后的流体。
当制动操纵元件松开时,压力流体可从后压力室排放到第二变容腔中,这样,流体就可从第一变容腔返回到主缸中。
(14)一种根据上述第(13)模式的制动系统,其布置成后压力室的容积增加量要大于行程模拟器的第二变容腔的容积减小量。
在根据上述第(14)模式的制动系统中,从行程模拟器的第二变容腔排出的总的流体量被容留在压力控制缸的后压力室中。因而,第二变容腔中的流体可被有效地用于驱动控制活塞。另外,从第二变容腔向后压力室中输送流体能防止第二变容腔中的流体压力极度地升高,由此来避免作用在由驾驶员下压的人力制动操作件上的反作用力过度加大。
(15)一种根据上述第(12)到第(14)模式中任一个的制动系统,其还包括:
一个低压源,该低压源中存有压力基本等于大气压力的工作流体;以及
一个设置在连接低压源和压力控制缸的后压力室的流路中的阀装置,该装置可对低压源和后压力室之间的流体流动进行控制。
在根据上述第(15)模式的制动系统中,阀装置设置在低压源和压力控制缸的后压力室之间。
阀装置布置成当低压源中的流体压力高于后压力室中的流体压力时,能允许流体从低压源流向后压力室。这样的布置防止了后压力室中的流体压力降低到大气压以下,且最好在根据上述第(14)模式的制动系统中采用这样的布置。作为备选方案,阀装置也可以布置成当后压力室的容积增加量大于行程模拟器的第二变容腔的容积减小量时,能允许流体从低压源流到后压力室中。这样的布置也能防止后压力室中的降低到大气压以下。在此情况下,设置有阀装置的流路可被看作是向后压力室另外输送一定量流体的流路,这部分流量用于补充从第二变容腔排出的流体量。
该阀装置可布置成用来防止当后压力室中的流体压力高于低压源中压力时流体从后压力室流向低压源。防止流体从后压力室流向低压源的该布置可避免后压力室中的流体压力下降。作为另外的备选方案,阀装置可在通流状态和断流状态之间转换,通流状态用于使流体在后压力室和低压源之间连通,而断流状态则可使后压力室和低压源相互隔绝。在此情况下,阀装置允许流体从后压力室流回到低压源中,并从低压源向后压力室输送流体。
该阀装置可以是电磁线圈驱动或电磁控制阀,通过向螺线圈供电来使该阀动作,或者是一个机械操作的控制阀。在该阀装置是电磁控制阀的条件下,其是一个电磁截止阀,可通过对电磁螺线圈通电或断电来降该截止阀转向通流和断流状态。作为备选方案,该阀装置也可以是一个电磁流量控制阀,该阀的通流状态是可控的,开度取决于作用在电磁线圈上的电流量。该电磁控制阀可以是一个常态通流的阀,即当螺线管断电时阀处于通流状态,或者是一个常态关闭的阀,当螺线管断电时该阀处于断流状态。机械操作阀可以是单向阀、卸压阀、液压控制截止阀、调压阀或流量控制阀。
(16)一种根据上述第(15)模式的制动系统,其中阀装置包括一个单向阀,该单向阀能允许流体在从低压源向后压力室的第一方向上流动,但抑制在与第一方向相反的第二方向上流动。
该单向阀允许流体从低压源流向后压力室,但抑制流体从后压力室流向低压源,从而防止了后压力室中的流体压力降低到大气压以下。另外,该单向阀不像电磁控制阀那样需要电能,下面将参照第(17)模式来对电磁阀进行描述。
(17)一种根据上述第(15)或第(16)模式的制动系统,其中,阀装置包括一个电磁控制阀,当控制活塞前进时,该电磁控制阀处于通流状态。
在控制活塞的前进过程中,流体经处于通流状态的该电磁控制阀而从低压源输送到后压力室中,这样就可以防止后压力室中的流体压力降低到大气压以下。
如果在控制活塞的回缩过程中电磁控制阀也处于通流状态,也就是说,在后压力室的容积变小的过程中,当制动缸中的流体压力降低,或当制动操纵元件松开时,流体可从后压力室返回到低压源中。在此情况下,后压力室中流体压力的降低率或降低量可通过控制电磁控制阀来进行控制。相应地,也就可以控制压力控制缸的控制压力室中的流体压力的降低率或降低量,也就是说,可控制制动缸流体压力的降低率或降低量。
如果在需要保持制动缸中的流体压力时,使电磁控制阀处于断流状态,则就可限制或防止控制活塞的回缩运动,这将在下文进行叙述,从而无需向动力驱动装置供应电能就能将控制压力室中的流体压力保持在当前的水平上。
阀装置可以既包括上述第(16)模式中的单向阀,也包括上述第(17)模式的电磁控制阀。在这样的情况下,单向阀和电磁控制阀最好是并联地进行布置。
(18)一种根据上述第(12)-(17)模式中任一个模式的制动系统,其还包括一个限流装置,当需要保持制动缸的流体压力在当前水平时,用其来对从后压力室排出的流体进行限流。
尽管限流装置最好是用来抑制流体从后压力室流出的抑流装置,但该限流装置也可布置成能减缓后压力室的流体压力降低,或者是防止流体压力快速地降低到大气压以下。
(19)一种制动系统,其特征在于,其包括:
一个用于驱动制动件的液压动作制动缸;
一个主缸,其按照一个人工制动操作件的动作而工作,以对工作流体进行加压;
一个动力驱动装置;
一个压力控制缸,其具有一个控制活塞,该活塞由动力驱动装置的驱动,并在其前侧和后侧分别部分地形成一个前控制压力室和一个后压力室,前侧的控制压力室与制动缸相连接;
一个制动压力控制装置,该装置用于控制输送到动力驱动装置的电能,以便于对前控制压力室中的流体压力进行控制,由此来控制制动缸的压力,而制动缸则与主缸隔绝;以及
一个限流装置,当需要将制动缸中的流体压力保持在当前水平上时,该装置用于限制流体从后压力室中排出。
在根据上述第(19)模式的制动系统中,当制动缸与主缸隔绝时,要对输送或供应向动力驱动装置的电能进行控制。相应地,由动力驱动装置产生、并作用到控制活塞上的驱动力就受到了控制,从而控制前控制压力室中的流体压力。如果需要将制动缸中的流体压力保持在当前的水平上,则对从后压力室排出的流体进行限流,以防止后压力室中的流体压力急速地降低到大气压以下,由此来限制控制活塞的回缩运动,从而限制前控制压力室中的流体压力下降。由于前控制压力室中流体压力被保持在当前水平,因而不再需要动力驱动装置产生驱动力、或者减小了所需要的驱动力,这样,动力驱动装置为保持制动缸中的流体压力而消耗的电能就能得以降低。
例如,如果动力驱动装置包括电动机、且电动机的转动运动被一个运动转换装置转变为滚珠丝杠的线性运动来驱动控制活塞,则当由控制压力室内的流体压力所产生的作用力大于电动机在转动过程中作用在控制活塞上的驱动力时,控制活塞就会发生回缩。结果是,控制压力室中的流体压力随着控制活塞的回缩而降低。因而在此情况下,为避免控制活塞发生回缩,也就是说为保持控制压力室中的流体压力,就需要向电动机持续地供电。
但在本发明上述的第(19)模式中,从后压力室排出的流体至少由限流装置进行限流,从而后压力室中的流体压力就可以增加到某个数值,该数值是由控制压力室中的流体压力、控制活塞的构造等确定的。相应地,限制控制活塞的回缩运动就能防止控制压力室中的流体压力出现降低。由于在动力驱动装置不产生任何驱动力的条件下,后压力室的流体压力被必要地增加到能抵消控制压力室中压力的程度,所以基本上不需要动力驱动装置产生任何的驱动力来维持控制压力室中的流体压力,这样就可以减小动力驱动装置的电能消耗。因而,为了保持控制压力室中的流体压力,并没有必要向动力驱动装置供电,也就是说,除非是出于其它目的才需要向驱动装置供电,例如,在滚珠丝杠和控制活塞是非固接的条件下,为防止滚珠丝杠远离控制活塞的非受控运动而供电,由此来防止控制活塞发生回缩运动。为防止滚珠丝杠的这种运动,需要向动力驱动装置供应相对较小的电流。当制动系统处于保压模式下较长时间,例如当装备了该制动系统的车辆在很长的时间内保持静止时,限流装置在降低驱动装置电能消耗方面具有特别好的效果。该限流装置还具有降低制动系统工作噪音和振动的效果,其中的噪音和振动是由于电动机的工作而产生的。
在流体从后压力室排出的流动不是完全受抑制、而是受到限流的条件下,就可以避免后压力室中的流体压力急速降低到大气压以下,从而限制了控制活塞的回缩运动,以此来减小控制压力室流体压力的减小量。在此情况下,可能需要动力驱动装置工作来产生相对较小的驱动力,来保持控制压力室中的流体压力,这样,就能使驱动装置所消耗的电能要小于后压力室的流体压力快速降低到大气压力的情况。
如上所述,通过至少是对后压力室排出的流体进行限流,设置限流装置能防止后压力室中流体压力快速地降低到大气压。该限流装置可以是一个用来完全抑制流体从后压力室排出的抑流装置。通常的情况是,压力控制缸的后压力室与蓄液器、主缸、制动系统的制动缸部分这三者的至少一个相连接,其中的制动缸部分包括控制压力室和制动缸。如下文参照本发明第(20)-(24)模式所描述的那样,限流装置可包括至少一个用于限制流体从后压力室排向蓄液器和主缸的阀件。可将压力控制缸布置成从后压力室向制动系统的制动缸输送流体,或者是不这样布置。在压力控制缸不这样布置的情况下,限流装置不需要布置成限制流体从后压力室排流向制动缸部分。甚至在压力控制缸布置成从后压力室向制动缸部分输送流体的情况下,也不需要将限流装置布置成要防止这样的流动,由于在压力控制缸的工作过程中,控制压力室中的流体压力高于后压力室中的压力,从而在压力控制缸作的情况下,流体不能自由地从后压力室排向制动缸部分中。尽管在某些情况中后压力室中的流体压力也可能高于控制压力室的压力,但由于流体从后压力室中排出,后压力室中流体压力不会被降低到控制压力室中压力以下。在此意义上,就没有必要用限流装置来防止流体从后压力室流向制动缸部分。但是,最好在连接后压力室和制动缸部分的一条流路中设置一个单向阀,该单向阀能抑制流体从制动缸部分流向后压力室,但却允许在反方向上的流动。
上述本发明的第(19)模式适合于上文中本第(12)-(18)模式中任一的制动系统,且本发明如下的模式也适于上述第(12)-(18)的制动系统。
(20)一种根据上述第(19)模式的制动系统,其还包括一个蓄液器系统,其包括一个蓄液器,该蓄液器中存放了压力基本为大气压的流体,且该制动系统的限流装置设置在连接蓄液器系统和后压力室的流路中,限流装置至少是在需要将制动缸中的流体压力保持在当前水平时,对从后压力室流向蓄液器系统的流体进行限流。
限流装置可以是一个电磁控制阀或机械控制阀,就如同上述参照第(15)模式所描述的阀装置那样。如果该限流装置是一个电磁控制阀,由于常闭阀比常开阀消耗的电能较少,所以该控制阀最好是常闭阀,以维持制动缸中的流体压力。该按照限流装置来设置的电磁控制阀可作为上文第(15)模式中的阀装置的部件。
(21)一种根据上述第(19)或(20)模式的制动系统,其还包括一个主缸系统,该主缸系统包括主缸,且在该制动系统中,限流装置至少当需要将制动缸中的流体压力保持在当前水平时,限制流体从后压力室流向主缸系统。
通过限制流体从后压力室流向主缸系统,可使后压力室中的流体压力高于主缸中的压力。
(22)一种根据上述第(21)模式的制动系统,其中,主缸包括一个加压活塞,其部分地形成一个加压室,该主缸在人工制动操纵元件的作用下前进,以对加压室中的流体进行加压,且该主缸还包括一个行程模拟器,其包括(a)一个壳体,(b)一个模拟器活塞,其可滑动地容纳在壳体中,并与该壳体配合而形成一第一变容腔和一第二变容腔,第一变容腔与主缸的加压室相连,而第二变容腔则与压力控制缸的后压力室相连通,以及(c)用于将模拟器活塞在减小第一变容腔容积的方向上偏压的偏置装置。
(23)一种根据上述第(22)模式的制动系统,其中,至少在行程模拟器上游端或下游端的其中之一处设置限流装置,这两个位置对应于分别与加压室和后压力室连接的第一和第二变容腔。
在根据上述第(23)模式的制动系统中,从后压力室排出流向主缸系统的流体被限流装置进行限流。
(24)一种根据上述第(19)模式的制动系统,其中的限流装置对从后压力室流向制动系统中的某一部分的流体进行限流,这一部分非制动缸部分,制动缸部分包括制动缸。
在根据上述第(24)模式的制动系统中,限流装置对流向蓄液器系统和/或主缸系统的流体进行限流,这些部分都不是制动系统中的制动缸部分。
制动缸部分是制动系统中的一个部分,其位于后压力室和制动缸之间,制动缸部分包括制动缸、连通压力控制缸和制动缸的流路、以及压力控制缸的某一部分,压力控制缸位于后压力室和制动缸之间。
(25)一种根据上述第(19)-(24)模式中任一的制动系统,其中的制动压力控制装置包括一个保压请求检测部分,其用于在人工制动操纵元件工作状态的基础上来检测是否需要保持制动缸中的压力。
尽管将在下文对制动系统的多种压力控制模式进行描述,但在此处先对将制动系统控制在保压模式下的保压请求进行介绍,在保压模式下,制动缸中的压力被保持在当前的水平上。保压请求至少可在驾驶员操纵的制动操纵元件的工作状态基础上检测出或确定出。例如,当制动操纵元件的工作状态基本上保持恒定或稳定时就可判断出需要进行保压。
作为备选方案,可以在制动操纵元件的工作状态,或者也可以在装备有该制动系统的机动车自身状态的基础上检测到保压请求。车辆的状态包括行驶状态、以及由该制动系统所产生的制动效果。例如,当预期制动效果(由制动操纵元件的工作状态确定)和实际制动效果(制动力或车辆的减速度)之差的绝对值小于一个设定的阈值时,就可判断需要执行保压模式。
在确定当前是否存在保压请求时,可考虑进车辆的行驶状态。例如,上述阈值的绝对值可根据车辆是在行驶还是静止而改变。当车辆静止时,保压请求可按照长时保压请求来进行处理,以将制动缸的压力保持相对较长的一段时间,由此来与车辆行驶时的短时保压请求区别开。
(26)根据上述第(19)-(25)模式中任一的制动系统,其中,制动压力控制装置包括电能消耗减少部分,用来在限流工作开始之后,对比限流工作开始之前向动力装置供应的电能,减少向动力驱动装置供应的电能,其中的限流工作是指由限流装置对从后压力室排出的流体进行限流的操作。
在对从后压力室中排出的流体进行限流时,对后压力室中的流体压力进行加压,这样,控制活塞就会受到两个力的作用:与供应给动力驱动装置的电流大小对应的驱动力、以及由后压力室中的流体压力所产生的液压力。相应地,由于存在一个与后压力室中流体压力所产生作用力对应的分量,所以,为保持控制压力室中流体压力在当前水平而需要向驱动装置输送的电流就会减少。
(27)一种根据上述第(25)或第(26)模式的制动系统,其中,制动压力控制装置包括一个基于表面积的电能减少部分,当保压请求检测部分判断出保压请求时,该电能减少部分能将输送给动力驱动装置的电能减少到某个数值上,该数值是由要输送到动力驱动装置的电能和一个比值定出的,该比值是控制活塞前承压面的面积与该控制活塞后承压面面积之比,其中前承压面部分地形成前控制压力室,而后承压面部分地形成后压力室。
(28)一种根据上述第(27)模式的制动系统,其中,控制活塞后承压面的面积要小于前承压面的面积。
如上所述,当对后压力室中的流体加压时,为保持控制压力室中的流体压力在当前水平而需要向驱动装置输送的电能小于不向流体加压时的电能。在此情况下,电能的减少到一个数值,该数值与比值S2/S1对应,其中的“S1”与“S2”分别代表前控制压力室和后压力室的面积,这些内容将在对优选实施例的详细描述部分中介绍。
(29)一种根据上述第(19)-(28)中任一模式的制动系统,其中,制动压力控制装置包括一个基于行程的电动控制部分和一个基于控制压力的电能控制部分,基于行程的控制部分在限流装置对从后压力室排出的流体进行限流时,根据控制活塞的工作行程,对输送到动力驱动装置的电流进行控制;基于行程的控制部分是在限流装置不对排出流体进行限流时,在控制压力室中流体压力的基础上对电流进行控制。
在根据上述第(29)模式的制动系统中,当限流装置对从后压力室排出的流体进行限流时,是基于控制活塞的工作行程对输送给动力驱动装置的电流进行控制,而不对流体进行限流时,是基于控制压力室中流体压力对电流进行控制。
例如,如果是根据控制压力室中的流体压力对电流进行控制,当限流装置从非限流状态转换到限流状态时,则控制压力室中流体压力会发生变化,导致输送到驱动装置的电流发生变化。流体压力的变化将会使得对电流的控制摇摆不定。如果是在用作动力驱动装置的电动机的转数的基础上检测得到控制活塞的工作行程,则在限流状态进行状态转换的瞬间控制活塞工作行程的变化量就相对较小,这样就不易发生对电流控制的摇摆不定。
(30)一种根据上述第(25)到第(29)模式中任一的制动系统,其中,当保压请求检测部分检测到存在保压需求时,制动压力控制装置将输送给动力驱动装置的电流减少到一个预定值。
该预定值可以是零,或者是一个大于零的数值。如果限流装置被布置成完全抑制从后压力室向外排流,则即使输送给驱动装置的电流为零,也能保持控制压力室中的流体压力。但是,即使在限流装置并不是完全闭流、而仅是限流的情况下,该电流值也可以为零,这些内容将在详细描述中介绍。如果装备有该制动系统的车辆处于静止状态,则输送给驱动装置的电流可被减小到某一数值,在该电流数值上,可保持控制压力室中的流体压力。在此情况下,由于只是要求保持车辆的静止状态,所以并不需要对控制压力室中的流体压力进行精确的控制。
(31)一种根据上述第(25)到第(30)模式中任一的制动系统,其中,当保压请求检测部分检测到需要执行保压操作时,制动压力控制装置将输送给动力驱动装置的电流控制到某个数值,该数值是由人工制动操纵元件的工作状态来确定的。
由于控制压力室中的流体压力通常要被调节到一个由制动操纵元件的工作状态确定的数值,所以就希望将输送给动力驱动装置的电能控制到一个由制动操纵元件工作状态确定出的数值上。
(32)一种根据上述第(19)到第(31)模式中任一的制动系统,其中,限流装置包括一个电磁控制阀,其响应于一个从制动压力控制装置接收来的信号而工作,且制动压力控制装置包括一个阀与电能的控制部分,当制动缸与主缸隔绝时,该部分根据人工制动操纵元件的工作状态,对电磁控制阀、以及输送给动力驱动装置的电能进行控制。
在根据上述第(32)模式的制动系统中,当主缸与制动缸隔绝开时,根据人工制动操纵元件的工作状态,通过控制输送给动力驱动装置和电磁控制阀(电磁限流阀)的电流,可对控制压力室中的流体压力进行控制,从而可对制动缸中的流体压力进行控制。制动操纵元件的工作状态可通过合适的检测装置进行检测,该检测装置可布置成检测制动操纵元件诸如踩踏力或动作行程等工作量,或者是检测随制动操纵元件的工作量变化的某个物理量。该物理量可以是主缸或制动缸中的流体压力、装备有该制动系统的车辆的减速度、或者是车轮转速的减速度。控制压力室中的流体压力可根据制动操纵元件的工作系统、工作系统的变化状态、或者是工作状态和变化状态这二者来进行控制。
例如,对电流量和电磁限流阀可这样进行控制:使得与制动状态相关的某个物理量的实际值(例如制动缸压力的实际值或车辆/车轮减速度的实际值)与预期值(预期的制动缸压力或预期的减速度)一致,其中的预期值是根据制动操纵元件的工作状态而确定出的。
更具体来讲,可根据制动操纵元件的工作状态来选择制动系统的某种压力控制模式,且在该选定的压力控制模式下对动力驱动装置和电磁限流阀进行控制。对压力控制模式的选择是在上述物理量的实际值和所需值之间差值的基础上进行的,或者是在制动操纵元件工作状态的变化量(制动工作状态预期值的变化量)的基础上进行的。
如果选择了增大制动缸压力的压力控制模式,则通过控制输送给驱动装置的电能,使动力驱动装置就在前向方向上动作,来推动控制活塞。然后,最好将电磁限流阀调到非限流状态,来允许流体从蓄液器系统或主缸系统流到后压力室中。如果在控制活塞开始前进之前就将电磁限流阀调到非限流状态,则后压力室中的流体压力就会急速降低,造成控制压力室中的流体压力急速下降。
如果选择了保持制动缸压力的保压模式,则电磁限流阀就被调到限流状态,以对从后压力室排出的流体进行限流,且减少输送给驱动装置的电流。
如果选择了降低制动缸压力的减压模式,通过控制输送给驱动装置的电能,使动力驱动装置在反向方向上动作,以回缩控制活塞。然后,将电磁限流阀处于非限流状态,来允许流体从后压力室流回到蓄液器系统或主缸系统中。在该减压模式下,由于控制活塞可在由控制压力室中的流体压力所产生的作用力(该作用力大于由驱动装置产生的驱动力)作用下回缩,所以基本上不需要主动地去回缩控制活塞。随着控制活塞的回缩,控制压力室中的流体压力就会降低。如果在保压模式后紧随的是减压模式,可利用限流装置来降低后压力室中的流体压力。通过控制限流装置来降低后压力室中的流体压力,进而降低控制压力室中的流体压力。
由于通过减小驱动装置产生的驱动力就能降低压力室中的流体压力,所以动力驱动装置非必须是双向工作的,也可以是只能在一个方向工作的。
根据上述第(32)模式制动系统的制动压力控制装置最好布置成这样:在制动操纵元件的一般工作过程中,其能对与压力控制缸的控制压力室相连的制动缸中的流体压力进行控制。
尽管上述第(32)模式中的限流装置包括至少一个电磁控制阀,但其也可包括两个或多个电磁控制阀,和/或至少一个诸如单向阀的机械控制阀。
(33)一种根据上述第(32)模式的制动系统,其还包括一个单向阀装置,该装置能允许流体在从后压力室向制动缸的第一方向上流动,但抑制流体在相反的第二方向上流动,且其中阀与电能的控制部分包括一个电能减少部分和电能增加部分,当保压请求检测部分检测到保压请求时,电能增加/减少部分先增加上述的电流,并将电磁控制阀调向限流状态,从而抑制流体从后压力室排出,然后一旦电流已经被增大、且电磁控制阀被调到限流状态之后,该电能增加/减少部分再将电能减少。
在根据上述第(33)模式的制动系统中,单向阀被布置在后压力室和制动缸之间,这样就防止了流体从制动缸流回到后压力室中,从而防止了制动缸中流体压力降低,甚至是在制动缸中的流体压力高于后压力室中压力的情况下。在另一方面,当后压力室中的流体压力高于制动缸中的压力时,流体就从后压力室流向制动缸。
当驱动装置的电流在保压模式中减小到零时,在控制压力室中流体压力的作用下,控制活塞就发生回缩。相应地,控制压力室的容积就增大,导致流体压力的降低,而后压力室中容积减小,从而其流体压力增大。当后压力室中的流体压力小于控制压力室中的压力时,后压力室中的压力流体不会流到制动缸中。当后压力室中的流体压力高于制动缸的流体压力时,压力流体就从后压力室流向制动缸。在控制活塞上部分地形成控制压力室的前承压面面积大于部分地形成后压力室的后承压面面积的条件下,控制活塞运动到其最大回缩位置,在此位置处,后压力室中的流体压力等于制动缸中的压力,并被保持在该水平上。在这样的情况下,由于控制压力室的容积由于控制活塞的回缩运动而增大了,所以控制压力室中的流体压力就低于检测到保压请求时的水平。考虑到这一点,在电流被归零之前,要先将电能加大以提高控制压力室中的流体压力。这样布置的效果是减少了当电流被减为零时、控制压力室中流体压力的降低量。如果在将电能减为零之前先将电流增加到一个较高的数值,则在电流被减为零时控制压力室中的流体压力就高于检测到保压请求时的水平。
输送给驱动装置的电流可被减为零,或者是减小到一个大于零的预定值。尽量希望电能值被减到零,从而降低驱动装置的电能消耗。
(34)一种根据上述第(33)模式的制动系统,其中,电能增加/减少部分包括一个基于行程的电能增加部分,该部分能根据前控制压力室容积由于控制活塞的回缩运动的增大量,而增大输送给驱动装置的电能。
(35)一种根据上述第(33)或(34)模式的制动系统,其中电能增加/减少部分包括一个以控制压力为基础的电能增加部分,该部分能根据前控制压力室中压力由于控制活塞的回缩运动的减小量,而增大输送给驱动装置的电能。(?)
当输送给驱动装置的电流减小时,控制活塞回缩,且控制压力室的容积增大,导致其中的流体压力降低。因而,通过使控制活塞向前前进,可减小控制压力室中流体压力由于电能量减小而降低的量,其中的前进量对应于控制压力室容积的增大量,也就是说,控制活塞的前进量对应于控制压力室中流体压力的降低量。
(36)一种根据上述第(33)-(35)中任一模式的制动系统,其中,电能增加/减少部分包括一个预调量增加部分,该部分用于将电能量增加一个预定的量。
如果输送给驱动装置的电能量在被减小之前先被增加,则控制压力室流体压力的降低量就会比电能量初始时先不增加的情况要小。
(37)一种根据上述第(33)-(36)中任一模式的制动系统,其中,电能增加/减少部分包括一个保持部分,其能在电能量增加之后、在电能量减少之前,将电能量保持一段预定的时间。
当后压力室的容积由于控制活塞的前进而增大时,从蓄液器系统或主缸系统输出的流体就进入到后压力室中。在此情况下,供应给驱动装置的电能最好保持在当前的数值水平上,直到后压力室相对于控制压力室成为液密为止。
而预定时间可适当地定为一个恒定时间,或者是被确定成一个根据控制活塞前进运动距离的变化值,也就是说,定为随后压力室容积增加量变化的数值。
(38)一种根据上述第(19)-(37)中任一模式的制动系统,其中,限流装置是一个抑流装置,其可抑制从后压力室排出的流体。该抑流装置可包括一个限流阀,其可以是一个抑流阀。
(39)一种根据上述第(19)-(37)中任一模式的制动系统,其中,制动压力控制装置包括:
一个泄漏检测部分,用于检测限流装置实际发生的流体泄漏,或者检测泄漏的可能性;以及
一个供电部分,其用于当泄露检测部分检测到存在实际泄漏或泄漏可能性时,向动力驱动装置供电。
泄漏检测部分布置成用来检测流体是否存在实际泄漏,或者是否存在流体泄漏的可能性。例如,当在检测到保压请求之后,如果主缸中的流体压力降低值超过一个预定量时,就可判断出发生了实际泄漏,当保压请求持续时间超过某个预定值时就确定出存在泄漏的可能性。
(40)一种根据上述第(39)模式的制动系统,其中的泄漏检测部分包括一个部分,该部分根据如下的至少一个指标来检测出实际泄漏或泄漏的可能性:制动系统的工作状态、装备有该制动系统的车辆的行驶状态。
就其本身而论,可根据制动系统工作来确定出限流装置的实际泄漏程度或泄漏可能性的大小,且可根据车辆的行驶状态来确定由于流体泄漏而导致的制动压力降低量。
(41)一种根据上述第(39)或(40)模式的制动系统,其中的供电部分在如下至少一个指标的基础上对输送到动力驱动装置的电能进行控制:制动系统的工作状态、装备有该制动系统的车辆的行驶状态。
制动系统的工作状态包括作为动力驱动装置能量源的电池的电压和温度、保压请求的持续时间、以及保压请求的累计时间。用来向动力驱动装置供电的电池可看作时制动系统的一部分,车辆的行驶状态包括减速度和车辆的行驶速度。
在制动系统工作系统和车辆行驶状态中至少一个指标的基础上,向动力驱动装置输送一定量的电能,该电能量对应于流体的实际泄漏程度或流体泄漏可能性的程度。相应地,上述第(41)模式中的该供电部分能有效地减小控制压力室中流体压力由于流体泄漏而产生的降低,将向驱动装置供应的电能减到最少。当车辆处于行驶状态时,该供电部分能有效地减小车辆制动效果的下降,其中车辆的制动效果用减速度或车辆行驶速度的减速率来衡量,其中该制动效果的下降是由于流体的泄漏造成的。
(42)一种根据上述第(39)-(41)模式中任一的制动系统,其中的供电部分根据制动系统工作系统和车辆行驶状态中的至少一个指标,确定出如下的至少一个量:向动力驱动装置输送的供电量、以及向动力驱动装置供电的持续时间。
(43)一种根据上述第(12)-(42)模式中任一的制动系统,其中的制动压力控制装置在如下之一的选择状态中工作:(a)一第一控制状态,在该状态下,在制动缸与主缸隔绝的情况下,通过向动力驱动装置供电来控制制动缸的流体压力;以及(b)一第二控制状态,在该状态中,制动缸与主缸保持相通,以利用从主缸输出的压力流体对制动缸进行作用。
当制动缸与主缸相隔绝时,最好使主缸与行程模拟器相连通。
(44)一种根据上述第(12)-(43)模式中任一的制动系统,其还包括一个行程模拟器和模拟器转换装置,且其中的行程模拟器包括(a)一个壳体,(b)一个模拟器活塞,其可滑动地容纳在壳体中,并与壳体相配合而形成一第一变容腔和一第二变容腔,第一变容腔与主缸的加压室相通,而第二变容腔则与压力控制缸的后压力室相通,以及(c)偏置装置,该装置在使第一变容腔的容积减小的方向对模拟器活塞进行偏置。
且其中,模拟器转换装置用于将行程模拟器在一可活动状态和一不可活动状态之间转换,其中在可活动状态下,第一变容腔的容积可随人工制动操纵元件的动作而变化,而在不可活动状态下,抑制第一变容腔的容积变化。
该模拟器转换装置布置成允许和抑制第一或第二变容腔的容积变化。该模拟器转换装置可被设置在行程模拟器的上游或下游处(即布置在第一变容腔的一侧或第二变容腔的一侧)。模拟器转换装置可以是一个用来隔绝第二变容腔与蓄液器等低压源的装置。在根据上述第(43)模式的制动系统中,当制动压力控制装置处于第一状态时,该行程模拟器最好处于可活动状态,而当制动压力控制装置处于第二状态时,行程模拟器处于不可活动装置。另外,上述的限流装置也可以作为该模拟器转换装置。
(45)一种根据上述第(12)-(44)模式中任一的制动系统,其还包括一个单向阀装置,该装置能允许流体在从后压力室向制动缸的第一方向上流动,但却抑制流体在与第一方向相反的第二方向上流动。
在该制动系统的一般工作中,制动压力控制装置位于第一状态,在该状态下,通过控制压力控制缸来控制制动缸中的压力。在此状态下,制动缸中的流体压力要高于后压力室中的流体压力。但是,单向阀装置抑制了流体从制动缸回流到后压力室中,从而防止制动缸压力的下降。在另一方面,制动系统的限流装置的故障或电气系统的失效可能会阻碍流体从后压力室中排出,造成流体被留在后压力室中。在此情况下,制动缸与主缸相通,当松开制动操纵元件瞬间使制动缸中流体压力降低时,流体从后压力室经单向阀排向制动缸中。这样,流体就可以回流到主缸中,从而主缸就可以回复到其原始位置,在该原始位置时,加压室中充满了流体。
该单向阀装置可设置在不包括限流装置的制动系统中。在此情况下,单向阀装置也允许流体从后压力室流出,并回流到主缸中。
(46)一种制动系统,其特征在于,其包括:
一个液压作用的制动缸,用来对制动件进行作用;
一个主缸,其包括一个加压活塞,该活塞部分地形成一个加压室,且该活塞随人工制动操纵元件的动作而动作,以对加压室中的工作流体进行加压;
一个动力驱动装置;
一个压力控制缸,其具有一个控制活塞,该控制活塞受动力驱动装置的作用,且在其前方和后方分别部分地形成一个前控制压力室和一个后压力室,前控制压力室与制动缸相通;
一个行程模拟器,其包括(a)一个壳体,(b)一个模拟器活塞,其可滑动地容纳在壳体中,并与壳体相配合而形成一第一变容腔和一第二变容腔,第一变容腔与主缸的加压室相通,而第二变容腔则与压力控制缸的后压力室相通,以及(c)偏置装置,该装置在使第一变容腔的容积减小的方向对模拟器活塞进行偏置;以及
一个制动压力控制装置,其在如下之一的选择状态中工作:(i)一第一控制状态,在该状态下,在制动缸与主缸隔绝,且行程模拟器处于可活动状态的情况下,通过向动力驱动装置供电来控制制动缸的流体压力,其中行程模拟器处于可活动状态能使得第一变容腔的容积随人工制动操纵元件的动作而变化;以及(ii)一第二控制状态,在该状态中,在允许流体从从后压力室流向第二变容腔的情况下,制动缸与主缸保持相通。
在根据上述第(46)模式的制动系统中,一旦制动操纵元件被释放,制动压力控制装置就转为第二控制状态。在该第二控制状态下,制动缸与主缸相通,且允许流体从后压力室排放到行程模拟器的第二变容腔中,这样,随着流体从后压力室回流到第二变容腔中,第一变容腔中的流体就可以回流到主缸中。
根据上述第(12)-(45)中任一模式的技术特征都适用于根据上述第(46)模式的制动系统。
(47)一种制动系统,其包括:
一个液压作用的制动缸,用来对制动件进行作用;
一个动力驱动装置;
一个压力控制缸,其具有一个控制活塞,该控制活塞受动力驱动装置的作用,且在其前方和后方分别部分地形成一个前控制压力室和一个后压力室,前控制压力室与制动缸相通;
一个制动压力控制装置,其可对输送给动力驱动装置的电能进行控制,从而控制制动缸中工作流体的压力;以及
一个限流装置,其用于当预定的条件满足时,对从后压力室排出的流体进行限流。
其中,当制动缸压力需要保持在当前水平、当制动系统出现故障、或者当装备有该制动系统的车辆处于静止状态时,就满足该预定条件。
该限流装置最好是包括至少一个电磁控制阀。当预定条件满足时,该电磁控制阀被转换到限流工作状态。
根据上述第(12)-(46)中任一模式的技术特征都适用于根据上述第(47)模式的制动系统。
(48)一种制动系统,其包括:
一个液压作用的制动缸,用来对制动件进行作用;
一个动力驱动装置;
一个压力控制缸,其具有一个控制活塞,该控制活塞受动力驱动装置的作用,且在其前方和后方分别部分地形成一个前控制压力室和一个后压力室,前控制压力室与制动缸相通;
一个制动压力控制装置,其可对输送给动力驱动装置的电能进行控制,从而控制制动缸中工作流体的压力;以及
一个限流装置,其用于当需要将制动缸中的流体压力保持在当前水平时,对从后压力室排出的流体进行限流。
根据上述第(12)-(47)中任一模式的技术特征都适用于根据上述第(48)模式的制动系统。
(49)一种制动系统,其特征在于,其包括:
一个液压作用的制动缸,用来对制动件进行作用;
一个主缸,其包括一个加压活塞,该活塞部分地形成一个加压室,且该活塞随人工制动操纵元件(34)的动作而动作,以对加压室中的工作流体进行加压;
一个动力驱动装置;
一个压力控制缸,其具有一个控制活塞,该控制活塞受动力驱动装置的作用,且在其前方和后方分别部分地形成一个前控制压力室和一个后压力室,前控制压力室与制动缸相通;
一条连通后压力室与主缸加压室的流路;
一个设置在流路中的行程模拟器,其包括(a)一个壳体,(b)一个模拟器活塞,其可滑动地容纳在壳体中,并与壳体相配合而形成一第一变容腔和一第二变容腔,第一变容腔与主缸的加压室相通,而第二变容腔则与压力控制缸的后压力室相通,以及(c)偏置装置,该装置在使第一变容腔容积减小的方向上对模拟器活塞进行偏置;以及
一个制动压力控制装置,其可对输送给动力驱动装置的电能进行控制,来控制前控制压力室中的流体压力,进而控制制动缸中的工作流体的压力。
根据上述第(12)-(48)中任一模式的技术特征都适用于根据上述第(49)模式的制动系统。
(50)一种制动系统,其包括:
一个液压作用的制动缸,用来对制动件进行作用;
一个主缸,其包括一个加压活塞,该活塞部分地形成一个加压室,且该活塞随人工制动操纵元件的动作而动作,以对加压室中的工作流体进行加压;
一个动力驱动装置;
一个压力控制缸,其具有一个控制活塞,该控制活塞受动力驱动装置的作用,且在其前方和后方分别部分地形成一个前控制压力室和一个后压力室,前控制压力室与制动缸相通;
一主缸流路,其连接后压力室与主缸的加压室;
一个蓄液器,其中存储压力基本等于大气压的工作流体;
一蓄液器流路,其连接后压力室与蓄液器;以及
一个制动压力控制装置,其可对输送给动力驱动装置的电能进行控制,从而控制制动缸中工作流体的压力。
根据上述第(12)-(49)中任一模式的技术特征都适用于根据上述第(50)模式的制动系统。
(51)一种根据上述第(50)模式的制动系统,其中,在主缸流路中设置一个行程模拟器和一个行程模拟器控制阀,这两个装置相互串联。
该模拟器控制阀可以是一个电磁截止阀,其通流和关闭是通过向其线圈供电和断电来实现的,或者可以是一个线性控制阀,其开度随向其线圈供电的大小而变化。该模拟器控制阀可设置在行程模拟器和主缸之间,或者是设置在行程模拟器和压力控制缸的后压力室之间。
可设置一个与行程模拟器并联的单向阀,这样,该单向阀就可以允许流体在从后压力室向主缸的方向上流动,但却抑制其在相反方向上流动。该单向阀使得流体可从后压力室快速回流到主缸中。
(52)一种根据上述第(50)模式的制动系统,其中,在主缸流路中设置一个行程模拟器和一个单向阀,这两个装置相互串连,这样,单向阀就设置在行程模拟器和后压力室之间。
在上述第(52)模式中的单向阀布置成允许流体从行程模拟器流向后压力室,但抑制流体在反方向上的流动。
(53)一种根据上述第(50)或(52)模式的制动系统,其中,在蓄液器流路中设置如下的至少一个:(a)一个蓄液器连通阀,其至少可在一个通流状态和一个断流状态之间转换,以及(b)一个单向阀,其允许流体在从蓄液器向后压力室的第一方向上流动,但抑制流体在反向的第二方向上流动。
由于在上述第(53)模式中的单向阀允许流体随着后压力室容积的增大从蓄液器流到后压力室中,从而就允许控制活塞在前进方向上运动,这样就可防止后压力室中的流体压力降低到大气压以下。
如果蓄液器连通阀和单向阀是相互并联的,则即使在蓄液器连通阀处于断流状态下,控制活塞也能前进运动。该蓄液器连通阀和单向阀可作为上述第(15)模式中的阀装置。
(54)一种根据上述第(51)或(52)模式的制动系统,其中的蓄液器流路连接到主缸流路中位于模拟器控制阀和行程模拟器之间的部分处。
在根据上述第(54)模式的制动系统中,模拟器控制阀位于行程模拟器和后压力室之间,且蓄液器流路连接到主缸流路中位于模拟器控制阀和行程模拟器之间的一个部位处。当模拟器控制阀处于断流状态时,该模拟器控制阀抑制流体从后压力室流向行程模拟器和蓄液器。在此情况下,当蓄液器连通阀保持在通流状态和当后压力室与行程模拟器隔绝时,行程模拟器处于其可活动状态。这样,在行程模拟器处于可活动状态的同时,用模拟器控制阀抑制了流体从后压力室中排出。
(55)一种根据上述第(54)模式的制动系统,其中主缸流路中的部分通过一条连接流路连接到前控制压力室上,且该连接流路中设置一个单向阀,其允许流体在从该部分向后压力室的第一方向上流动,但却抑制流体在与第一方向相反的第二方向上流动。
在根据上述第(55)模式的制动系统中,当同时也作为抑流阀的模拟器控制阀处于通流状态时,流体可从后压力室流向控制压力室。另外,当制动操纵元件被松开时,流体可通过处于通流状态的模拟器控制阀从后压力室回流到主缸中。连接流路、单向阀和抑流阀(即模拟器控制阀)可被看作是构成一个单向阀装置。抑流阀最好是一个常开阀。
(56)一种根据上述第(52)模式的制动系统,其中,蓄液器流路中设置一个蓄液器连通阀,且该蓄液器流路中位于蓄液器连通阀和蓄液器之间的那一部分通过一连接流路被连接到主缸流路中的某一部分上,该部分位于行程模拟器和单向阀之间,连接流路中设置一个单向阀。
设置在上述第(56)模式中的连接流路中的单向阀可布置成能允许流体在从蓄液器流路向主缸流路的方向上流动,但抑制流体在反方向上的流动。在根据上述第(56)模式的制动系统中,甚至在蓄液器连通阀处于断流状态的情况下,行程模拟器也能处于可活动状态,这些内容在如下文的详细描述中有论述。当蓄液器连通阀处于断流状态时,该阀与设置在主缸流路中的单向阀分别抑制了流体从后压力室流向蓄液器和行程模拟器。
附图说明
结合附图,通过阅读下文中对本发明优选实施例的详细描述,可对本发明上述的以及其它的目的、特征、优点、技术上和实际应用中的重要意义有更好的理解,在附图中:
图1是根据本发明的一种实施方式的制动系统的液压回路示意图(图中局部为剖面图);
图2是一框图,表示了图1所示制动系统所具有的制动压力控制装置;
图3是一流程图,表示了根据图2所示的制动压力控制装置的ROM中所存储的控制程序而执行的制动控制逻辑;
图4是一流程图,表示了图3所示的制动控制逻辑的一部分;
图5是制动压力控制装置的控制工作的一个示例的视图;
图6是根据本发明另一种实施方式的制动系统的液压回路的示意图(局部为剖面图);
图7是局部剖开的视图,表示了根据本发明的又一种实施方式的制动系统中所用的压力控制缸;
图8是根据本发明的又一个实施例的制动系统的液压回路的示意图(局部为剖面图);
图9和图10是表示当图8所示的制动系统选定在长时压力保持模式时,对输送到一台控制压力电动机的电流执行控制的示例的视图;
图11是一流程图,表示了根据图8所示的制动系统中的电气控制单元中的ROM存储的控制程序执行的长时压力保持控制逻辑;
图12是表示当图8所示的制动系统处于长时压力保持模式时,向控制压力电动机输送的电流进行控制的另一个示例的视图;
图13是表示图8所示制动系统处于长时压力保持模式时,对电流的又一种控制形式示例的视图;
图14是一部分液压回路示意图(局部为剖面)表示了根据本发明的又一种实施方式的制动系统;
图15是一部分液压回路示意图(局部为剖面)表示了根据本发明的又一种实施方式的制动系统;
图16是一液压回路示意图(局部为剖面),表示了根据本发明的又一种实施方式的制动系统;
图17是一框图,表示了图6所示制动系统中所用的制动控制压力装置;
图18是一流程图,表示了按照图17所示控制压力装置的ROM所存储的控制程序所执行的制动控制逻辑;
图19是一图表,表示了由控制压力电机所产生的驱动力与所希望的制动压力之间的关系,该关系被制动压力控制装置所利用;以及
图20是根据本发明的又一种实施方式的制动系统中的液压回路示意图(局部为剖面)。
具体实施方式
首先参见图1,图中表示了一种用于汽车的制动系统,该制动系统是按照本发明的第一种实施方式设计的。在图1中,附图标记10指示一个主缸,而附图标记12指示一个压力控制缸。附图标记14和16分别指代前轮制动件22和后轮制动件24的前后轮制动缸,前后轮制动件22、24布置成分别对前后车轮18、20进行制动。车轮制动缸14、16通过压力控制缸12与主缸10相连通。
主缸10包括一个壳体28和两个加压活塞30、32,加压活塞30、32可滑动地容纳在壳体28中,并为密封不透流的。加压活塞30被连接到一个制动踏板34形式的人工制动操纵元件上。加压活塞32在其前方部分地形成了一个加压室36,而加压活塞30在其前方则部分地围成了一个加压室38。用于制动前轮18的前轮制动缸14被连接加压室36上,而用于制动后轮20的后轮制动缸16则被连接到加压室38上。在主缸10动作的作用下,进入到两个加压室36、38中的工作流体量被加压到相同的水平。
加压活塞30是一个阶梯形的圆筒件,其包括前方的一个小径部分42和后方的一个大径部分44,大径部分的直径要大于小径部分42的直径。小径部分42部分地围成了加压室38,同时小径部分42、大径部分44与壳体28相结合而形成了一个环形的腔室46。小径部分42具有从中穿过形成的一条通路48,用于使流体在加压室38和环形室46之间流通。通流路48中设置有一个单向阀50,该单向阀可允许流体从环形室46向加压室38流动,但却禁止流体反方向的流动。
环形室46通过一限流装置60连接到一个蓄液器62上。该蓄液器62储存着工作流体,其中的工作流体的压力几乎等于大气环境压力。该限流装置60包括一个单向阀66、一个卸压阀68和一个小孔70,所有这些装置彼此都是并联的。单向阀66允许流体从蓄液器62流向环形室46,但抑制流体的反向流动。当环形室46中的流体压力比蓄液器62中的压力高出一个预定量,也就是说,高于预定的卸压压力时,卸压阀68使得流体从环形室46流回蓄液器62。
随着加压活塞30的向前(在图1中向左运动),在环形室46和加压室38中的压力就会增加。在环形室46中的流体压力会增加到卸压阀60的卸压值。当环形室46中的流体压力高于加压室38中压力时,压力流体就从环形室46经单向阀50输送到加压室38中,并最终供给到后轮制动缸16。在本实施例中,卸压阀68的卸压值被确定为这样的压力,在该压力值时,后轮制动缸16中用压力流体进行快速充液,也就是说,在该压力时,完成后轮制动缸16的快速充液。换言之,压力流体既从环形室46、也从加压室38供给到后轮制动缸16,直到制动缸16的快速充液完成为止。相应地,完成快速充液的过程时间相对较短。
当环形室46中的流体压力达到卸压值时,压力流体就从环形室46经卸压阀68排向蓄液器46。在此状态下,在加压室38中的流体压力要高于环形室46中的压力,但单向阀50抑制压力流体从加压室38流到环形室46中。这样,本制动系统就布置成,在车辆制动缸14、16的快速充液完成之后,车辆制动缸14、16是由加压室36、38来输送压力流体,而不是由环形室36来输送压力流体。限流装置60与环形室46相结合而起到对车辆制动缸14、14进行快速充液的作用。
在快速充液完成之后,随着加压活塞30的进一步前进,加压室38中的流体压力就会进一步地升高。由于加压室38部分地是由加压活塞30的小径部分42形成的,所以当制动踏板34被以一定的压力操作时,在加压室38中的流体压力就高于部分地用大径部分44确定的加压室中所产生的压力。相应地,在车辆制动缸14、16的快速充液完成之后,由主缸10对作用在制动踏板34上的操作力的比率增加。由于环形室46和蓄液器62通过小孔70相互联通,所以当制动踏板34以恒定的作用力压下,而使加压活塞30保持在一个给定位置时,环形室46中的流体压力就保持在大致等于环境压力的水平上。
当加压活塞30回缩向制动踏板34时,随着环形室46的容积增加,流体通过单向阀66从蓄液器62供给到环形室46中。相应地,就防止了环形室46中的流体压力在加压活塞30的回缩过程中降低到低于大气压力的程度。
在快速充液完成之前,由加压室38泵送的流体量q等于(Am1·ΔL),而在快速充液完成之后等于(Am3·ΔL),其中的“Am1”和“Am3”分别代表大径部分44和小径部分42的横截面积,而“ΔL”代表在车辆制动缸16与主缸10相通时,加压活塞30的工作行程。
在当制动踏板34的作用力增加时加压室38中的流体压力的增加量为ΔPE的情况下,在快速充液完成之前,加压室38中的流体压力的比率增加量ΔPM等于ΔPF,而在快速充液完成之后,等于(ΔPE·Am1/Am3)。
如上所述,在快速充液完成之前,压力流体以相对较高的速率从主缸10泵送向车轮制动缸14、16,而在快速充液完成之后,车轮制动缸14、16中的流体压力以相对较高的比率升高。
主缸10上设置了一对杯形密封件,通过这些密封件,从蓄液器62延伸出的流路能液密地联接到主缸10上,且主缸10上还设置了两个复位弹簧72、74,其中的一个弹簧间置在壳体28的底壁和加压活塞32之间,而另一弹簧则间置在两个加压活塞30、32之间。
加压室36通过流路90连通用于前轮18的制动缸14,而加压室38则通过流路92连通用于后轮20的制动缸16。流路90、92都设置有各自的主缸截止阀94、96,它们属于电磁关断阀。通过选择性地开启或关断各个主缸截止阀94、96,能将车轮制动缸14、16选择性地与主缸10连通或断开。这些截止阀94、96是常开阀,当电磁线圈未给电时,它们处于通流状态。
在本实施例中,当车轮制动缸14、16的快速充液完成之后,主缸截止阀94、96从通流状态转换到断流状态。也就是说,在制动踏板34的操作的初始阶段,由主缸10输送的压力流体被供给到车轮制动缸14、16,且在制动踏板34的操作的随后阶段中,压力流体从压力控制缸12输送到车轮制动缸14、16。当制动系统中的电气系统出现故障时,主缸截止阀94、96就被转向它们的通流状态,这样,车轮制动缸14、16就在从主缸10输出的压力流体的作用下驱动前后轮的制动件22、24。
分别与两个主缸截止阀94、96并联地设置了两个单向阀98。单向阀98允许流体从主缸10流向车轮制动缸14、16,但抑制流体反向流动。即使在主缸截止阀94、96处于断流状态时,只要主缸10中的流体压力高于车轮制动缸14、16中的压力,压力流体能经单向阀98从主缸10输送到车轮制动缸14、16。
流路90、92连接到布置在主缸截止阀94、96下游位置的压力控制缸12。该压力控制缸12是由一台电动压力控制马达100驱动而工作的,马达可正反两方向转动。马达100是由从一个电池220(见图2)输出的电能驱动的,该电机与电池一起组成了一个动力驱动装置,该动力驱动装置与压力控制缸12一起构成了一个高压源,该高压源能将流体加压到高于由主缸10加压的压力水平上,这一点在下文将详细进行描述。压力控制马达100的转动运动通过一个运动转换装置102转换成线性运动。压力控制缸12包括一个壳体104和两个控制活塞106、108,控制活塞可滑动地安装在壳体104中,并实现流体密封。在控制活塞106的外周表面上安装一个O型密封圈,以在控制活塞106和壳体104之间保持流体的密封性。控制活塞106通过一根驱动轴110实现轴向运动,其中的驱动轴110是运动转换装置102的输出轴。更具体地描述,控制活塞106的前进和回缩取决于压力控制马达100是在前向方向上转动、还是在反方向上转动。
如图1所示,压力控制马达100的输出轴111的转动运动通过一对齿轮112、114被传递到一根转动轴116。该转动轴116的转动运动通过运动转换装置102被转换成驱动轴110的线性运动,驱动轴110与控制活塞106相连接。
控制活塞106、108在它们的前方(图1中的右侧)分别确定相应的控制压力室120和122。这两个控制压力室120、122分别连接到用来制动前后车轮18、20的制动缸14、16和对应的加压室36、38上。这样,主缸10和车轮制动缸14、16是通过控制压力室120、122相互连接在一起。
两个控制活塞106、108是同轴布置的,并相互串联。在两个控制活塞106、108之间设置了一个复位弹簧124,而在控制活塞108和壳体104之间间置了一个复位弹簧126。控制活塞108是在控制压力室120、122中的流体压力的基础上运动的。在此情况下,控制活塞108可被看作是一个“浮动活塞”。控制活塞108具有一对相反的承压面,它们分别确定相应的控制压力室120、122,并具有相同的面积,且两个复位弹簧124、126具有基本相同的偏置力,这样就使得两个控制压力室120、122中的流体压力被控制成大致上相互相等。相应地,用来对前后车轮18、20进行制动的制动缸14、16中的流体压力通过压力控制缸12以相同的方式进行控制,这样就使得两个流体压力大致相同。控制活塞108通过一个密封件或O型圈127液密地并可滑动地容纳在壳体104中,密封件保持了两个控制压力室120、122的相互独立,这样就使得前轮制动缸14和后轮制动缸16是被独立地保持的。尽管可将密封件127安装到壳体104上制出的沟槽中,但密封件127也可被装到控制活塞108上制出的沟槽中。
控制活塞106在其远离控制活塞108的后侧(图1中的左侧)部分地形成了一个后压力室128,该压力室128通过一条蓄液器流路130连通到蓄液器62。该蓄液器流路130中设置了一个单向阀132,该单向阀能允许流体从蓄液器62流向后压力室128,但禁止反方向的流动。
在该实施例中,单向阀132起到了一个限流装置的作用,其形式为一个止流阀装置,用来抑制压力流体从后压力室128排流到蓄液器62中。
后压力室128还通过一条弯路流体通道134连通到主缸10的加压室36,其中的旁路流体通道中设置了一模拟器控制阀135和一个行程模拟器136。模拟器控制阀135是一个常开阀,当阀135的电磁线圈处于未给电状态时,阀被保持在通流状态。
行程模拟器136包括一个壳体、一个模拟器活塞137、和一个弹簧138,其中的模拟器活塞上相对的两个表面与壳体结合而形成了一第一变容腔139和一第二变容腔140,弹簧138将模拟器活塞137偏置在使第一容积室139的容积减小的方向。第一变容腔139通过模拟器控制阀135连接到加压室36,而第二变容腔140被连接到压力控制缸12的后压力室128。上述指明的弹簧138被设置在第二变容腔140中,以将模拟器活塞137偏置在使第一变容腔139的容积减小的方向上。
在模拟器控制阀135被保持在通流状态的条件下,行程模拟器136处于可操作状态,在此状态下加压室36与第一变容腔139保持流体连通,这样,第一变容腔139的容积就随着制动踏板34的工作行程的变化而变化。随着第一变容腔139的容积增加,弹簧138就被压缩,且弹簧138的偏置力也增加,这样,随着制动踏板34的作用行程增加,作用在制动踏板34上反作用力增加。当模拟器控制阀135处于断流状态时,加压室36就与第一变容腔139断开,从而防止了流体从加压室36流入到第一变容腔139中,这样行程模拟器136就被调到其不能操作的状态。
因而,行程模拟器136中的流体压力随制动踏板34的工作行程加大而增加。在本实施例中,行程模拟器136和模拟器控制阀135与主缸10一起而构成了主缸系统143。
在流路134上还连接了一条旁路通路141,由此来旁路行程模拟器136,该旁路通路中设置一个单向阀142,其能允许流体从后压力室流向主缸10,但禁止反方向的流动。如图1所示,单向阀142和行程模拟器136是相互平行并联的。
如图1所示,模拟器控制阀135被设置在流路134中行程模拟器136和主缸10之间的部分,更确切来讲,是设置在流路134中位于主缸10与旁路通路141连接到流路134的接点之间的部分内。
由于位于断流状态中的模拟器控制阀135抑制流体从后压力室128流到主缸143,模拟器控制阀135还起到一个限流装置的功用,其形式为一个抑流装置,用来禁止流体从后压力室128流到主缸系统143中。
只有当模拟器控制阀135被关闭后,行程模拟器136才处于其不可活动状态,但是当压力控制缸12处于非工作态时,即当压力控制缸12的后压力室128的容积保持恒定时,也能防止第二变容腔140的容积变化,由此来抑制模拟器活塞137的运动。在此意义上,模拟器控制阀135和压力控制缸12都可被看作时一个开关装置,它们能使行程模拟器136在可活动状态和不可活动状态之间转换。
如上所述,控制活塞106是通过压力控制马达100的转动运动而前进的,且后压力室128的容积随着控制活塞106的前进而增大。本制动系统布置成这样:当车轮制动缸14、16中的流体压力按照制动踏板34的作用力大小而进行控制时,后压力室128的容积增加量要大于第二变容腔140的容积减小量,流体从其中的第二变容腔140输送到后压力室128。因而,在此情下,后压力室128不仅是从行程模拟器136的第二变容腔140输来流体,而且通过单向阀132从蓄液器62输入流体。
控制活塞106受到一个驱动力的作用,该作用力的大小对应于压力控制马达100的驱动扭距大小,且控制压力室120、122中的流体压力被控制到与作用在控制活塞106上的驱动力相对应的水平上。换言之,控制活塞106的驱动力受到控制,从而,控制室120、122中的流体压力与由制动踏板34的作用力确定的所需水平一致。
当增加制动踏板34的作用力时控制压力室120、122中的流体压力的增加量和从第二变容腔140输送到后压力腔128的流体量(即第二变容腔140的容积的增加量)对应于制动踏板34的作用力的增加量ΔF。另一方面,在压力控制马达100的运转速度和驱动扭距之间的关系是由马达100自身的特性确定的。在马达100工作时,作用在控制活塞106上的驱动力以及控制活塞106的运动速度是由供给马达100的电流、运动转换装置102和压力控制缸12的技术参数、控制压力室120、122中的流体压力等指际确定的。
在根据本实施例的制动系统中,压力控制马达100的特性参数、运动转换装置102和压力控制缸12的技术参数、以及控制增益是这样确定的:使得后压力室128的容积增加量要大于由于制动踏板34的作用力增加而从行徎模拟器136输送到后压力室128中的流体量,当供给马达100的电流被控制成这样:使得控制压力室120、122中的流体压力的增加量对应于制动踏板34上作用力的增量ΔF。
当释放制动踏板34时,如果模拟器控制阀处于通流状态,流体就经过单向阀142和模拟器控制阀135从后压力室128回流向主缸10的加压室36中。
在该实施例中,其中的运动转换装置102包括一个滚珠丝杠-螺母机构,在没有驱动扭距作用在压力控制马达100的条件下,由控制压力室120中作用在控制活塞106上的流体压力所产生的力使得控制活塞106向回缩方向运动。也就是说,滚珠丝杠-螺母机构允许控制活塞106在马达100停机时发生回缩运动。可通过向马达100保持施加一定的驱动扭距来防止这样的回缩运动。但是,这样的布置将会不利地导致电能消耗量的增加。
考虑到上述的缺点,本实施例布置成:当制动系统处于压力保持模式时,关闭模拟器控制阀135,在其中的保压模式时,在车轮制动缸14、16中的流体压力保持恒定。因而,在该保压模式下,后压力室128中的流体不能经单向阀142和模拟器控制阀135返回到主缸中。当选择保压模式时,控制活塞106回缩到一个平衡位置,在该位置处时,后压力室128中的流体压力等于控制压力室120中的压力。在此平衡位置,控制压力室120、122中的流体压力可保持恒定,而无须向压力控制马达100输送电流。对比于模拟器控制阀135处于通流状态、使得流体能从后压力室128排出的保压模式,这种设计所需的电能减少。
需要注意的是,图1中的附图标记144和146分别指示一个推力轴承和一个径向轴承。这些轴承分别承受轴向力和径向力。该运动转换装置102具有一个凸缘148,其承受控制活塞106的轴向力。
在压力控制缸12的下游位置处,流路90、92中分别设置了一对控制压力阀装置160、162,它们分别对应于一对前车轮制动缸14和一对后车轮制动缸16。每个控制压力阀装置160、162包括一个压力保持阀170和一个减压阀172。压力保持阀170设置在压力控制缸12和对应的车轮制动缸14、16之间,而减压阀172设置在对应的车轮制动缸14、16和一个蓄液器174之间。通过控制四组压力保持阀和减压阀170、172,前轮18和后轮20上对应的四个车轮制动缸14、16中流体压力能相互独立地进行调控。通过控制对应的控制压力阀装置160和162,本制动系统能实现对每个车轮18、20的防抱死压力制动,这样,就如本领域所公知的那样,能使得每个车轮18、20在路面上的滑移状态能根据路面的摩擦系数,保持在最佳的范围内。
两条泵流路180中的每一条的一端都连接到两个蓄液器174中对应的一个上,且其另一端被连接到流路90、92中位于压力保持阀170和压力控制缸12之间的部分上。泵流路180中设置了一个液泵182、两个单向阀184、186、和一个阻尼器188。分别被连接到两个蓄液器174上的两个液泵182由同一个泵驱动马达190带动。
本制动系统中设置了一个电子制动控制单元200(ECU),其设计如图2所示。该ECU200包括一个控制部分202,该控制部分主要是由一计算机和多个驱动电路226组成的。控制部分202包括一个中央处理单元(CPU)204、一个只读存储器(ROM)206,一个随机访问存储器(RAM)208、以及一个输入/输出部分210。输入/输出部分210上连接了:一个用来检测制动踏板34动作的制动开关211;一个用来检测作用在制动踏板34上的作用力的踏板力传感器212;一个主缸压力传感器214,用来检测主缸10的加压室38中的流体压力;一个控制压力传感器216,用来检测压力控制缸12的控制压力室120中的流体压力;车辆转速传感器218,用来检测各个车轮18、20的转动速度;一个电压计222,用来检测电池220的电压,电池220用来驱动压力控制马达100;一个档位传感器222,用来检测车辆上当前变速杆(图中未示出)所选定的档位;以及一个纵向加速度传感器225,用来检测车辆的纵向加速度G。主缸压力传感器214被连接到与加压室38相连的流路92处。由控制压力传感器216检测到的流体压力代表当压力控制阀装置160、162处于图1中所示的初始状态时在车轮制动缸14、16中的流体压力。在本实施例中,电池220和压力控制马达100构成了所说动力驱动装置的主要部件,其中的动力驱动装置体现为一个用来操纵压力控制缸12的电动装置。电池220可被看作是本制动系统中的一个部件,其用来向压力控制马达100输送电流。
输入/输出部分210还通过各个驱动电路226与压力保持阀170、减压阀172、主缸截止阀94、96、模拟器控制阀135、液泵马达190、以及压力控制马达100的电磁线圈连接。
ROM206中存储了各种控制程序和数据表,例如用来执行常规制动的控制逻辑,见图3中的流程图和用来执行防抱死制动压力控制的逻辑(图中未示出)。
下面,将介绍该制动系统的工作过程。当制动系统处于正常态时,在车轮制动缸14、16中的流体压力(下文将称为“制动压力”)的控制是通过对压力控制马达100进行控制、进而控制压力控制缸12来实现的,且主缸10与车轮制动缸14、16断开。在常规制动操作中,行程模拟器136处于可活动状态,在该状态下,主缸10经处于通流状态的模拟器控制阀135与行程模拟器136相连通。随着压下制动踏板34,压力流体就从加压室36泵送到行程模拟器136中,且在制动踏板34上作用了与加压室36中的流体压力大小对应的反作用力。随着第一变容腔139的容积增大,第二变容腔140的容积相应地减小,且压力流体从第二变容腔140输送到后压力室128中。
对用来控制压力控制缸12的压力控制马达100的控制是根据制动踏板34的操作状态进行的。详细地讨论:是在制动踏板34的操作状态的基础上确定出预期制动压力值或车辆的减速值的,且压力控制缸12被控制成,使得制动压力和减速度G的实际值与理想值一致。在实际值与理想值之间的差值、以及理想值的变化率的基础上,确定出制动系统的压力控制模式,且通过控制输送到压力控制马达100的电流和模拟器控制阀135将制动压力控制在预期压力控制模式中。
在本实施例中,当车辆处于静态时(此处是指车辆的运行速度不超过一个预定的阈值),制动压力理想值是在制动踏板34的作用力的基础上确定出的。当车辆处于行驶状态时(当车辆的运行速度高于预定阈值),在制动踏板34操作力的基础上确定出车辆减速度的理想值。由于车辆驾驶员通常用操纵制动踏板34来获得预期车辆减速值,因而需要在所希望的减速度值的基础上来控制制动压力。这样设计的控制方式使得车辆的减速是根据制动踏板34的作用力进行的,而不受路面坡度的影响,甚至当车辆行驶在斜坡的条件下。
当车辆处于静态时,如果预期制动压力高于实际值的差值超过一个设定量、且所需制动压力的增加率超过一个设定的正值,制动系统处于压力增加工作模式下。如果预期制动压力值与实际值之间差值的绝对值等于或小于一个设定值,且预期制动压力的变化率的绝对值小于或等于一个设定值,则制动系统处于保压工作模式下。如果实际制动压力高于预期值的数值超过一个设定量、或者是预期制动压力的变化率等于或小于一个设定的负值,则制动系统就处于减压的工作模式下。可在如下的至少一个指标的基础上确定出压力控制模式:压力差值和预期制动压力的变化率。
在车辆行驶过程中,压力控制模式的确定或者选择的方式基本上与如上方式相同,但是在这样的基础上:用车辆的预期减速度代替预期制动压力,且用纵向减速度传感器226测得的车辆实际减速度来代替实际制动压力。也就是说,在车辆行驶过程中的压力控制模式是在如下的基础上确定出的:在实际减速度值和预期值之间的差值、以及预期减速度值的变化率。
在压力增加模式下,由于压力控制马达100的前向动作,压力控制缸12中的控制活塞106向前进动。相应地,在控制压力室120中的流体压力就会增加,且使得控制活塞108也发生前进。控制活塞108会停在一个平衡位置上:在该位置上,两控制压力室120、122中的流体压力基本相等。一定量的压力流体分别从控制压力室120、122泵送到前轮18的制动缸14和后轮20的制动缸16中,且前轮制动缸14和后轮制动缸16是以相同的流体压力推动的。
当压力控制模式从保压模式变换为压力增加模式时,在指令控制压力控制马达100开始运转之后,模拟器控制阀135被指令控制到通流状态。相应地,在控制活塞106、108的前进运动开始后,模拟器控制阀135就被转到通流状态。如果在前进运动开始之前就开启了模拟器控制阀135,后压力室128中的流体压力就会急剧降低,且在控制压力室120、122中的流体压力也会急剧降低。
在压力保持模式下,供给压力控制马达100的电流量为零,且模拟器控制阀135被转向断流状态,下文将对此进行描述。相应地,就防止了后压力室128中的压力流体排到主缸10中,且后压力室128中的流体压力就会增加到控制压力室120、122中流体压力的数值,这样就防止了控制活塞106发生回缩运动。这样,即使在供给向压力控制马达100的电流被归零的条件下,也能保持制动压力。
当选择减压工作模式时,压力控制马达反转,控制活塞106、108回退。相应地,控制压力室120、122的容积就会增加,且这些腔室120、122中的流体压力就会降低。后压力室128中的压力流体经单向阀142流回到主缸10中。另外,由于制动踏板34的作用力降低,第二变容腔140中就容纳了压力流体。当压力控制模式从压力保持模式转到减压模式时,在将模拟器控制阀135调节到通流状态之前,首先要指令控制压力控制马达100在反方向上转动。如果在控制活塞106、108的回退运动开始之前,就开启了模拟器控制阀135,后压力室128中的流体压力就会急剧降低,使得控制压力室120和122中的流体压力也会急剧降低。
当保压模式转向减压模式时,通过控制模拟器控制阀135、并不向压力控制马达100供电来降低制动压力。也就是说,模拟器控制阀135被转向通流状态来允许流体从后压力室128排到主缸10中,这样就降低了控制压力室120、122中的流体压力,以此来降低制动压力。在此情况下,通过对模拟器控制阀135的导通比进行控制,制动压力能以可控的速率减低,也就是说,通过以预期的导通比交替地开启和关闭模拟器控制阀135来实现控制。
当放松制动踏板34时,对主缸截止阀94、96、以及模拟器控制阀135的电磁线圈断电,以将这些阀门94、96、135回位到它们图1所示的原始状态。压力流体从车辆制动缸14、16经处于通流状态的主缸截止阀94、96回流到主缸10中,并部分容留在行程模拟器136中。由于压力流体回流到第二变容腔140中,在第一变容腔139中的流体回流到主缸10中。在本实施例中,模拟器控制阀135是一个常开的阀,即使当该制动系统的电气系统失效时,压力流体也能从后压力室128回流到主缸10中。
在制动踏板34被踩下的压力增加模式中,后压力室128的容积由于控制活塞106前进而增加量要大于第二变容腔140由于制动踏板34的动作而减小的容积。所以,从第二变容腔140泵送出的流体将完全容留在后压力室128中,从而可以防止作用在制动踏板34上的反作用力突然减低。另外,还经单向阀132从蓄液器62向后压力室128输送流体,该流体量对应于后压力室128的容积增加量与第二变容腔140的容积减小量的差值。
下面参见图3所示的流程图,图中表示了制动控制逻辑。该控制逻辑从步骤S1开始,步骤S1用来判断制动踏板34是否被操作,也就是说,制动开关211是否处于“开”的状态。如果在步骤S1得到的结论是肯定的(YES),则控制流程进展到步骤S2,用来判断由控制压力传感器216测得的流体压力P是否增加到一个预定值Pf,在该预定值时,车轮制动缸14、16的快速充液完成。如果在步骤S2得到的结论是否定的(NO),也就是说,此时是在快速充液完成之前,执行步骤S3,以将主缸截止阀94、96和模拟器控制阀135保持在通流状态,这样压力流体就能以相对较高的流量从主缸10输送到车轮制动缸14、16,由此可在相对较短的时间内完成制动缸的快速充液。在另一方面,关闭压力控制马达100,以将压力控制缸12保持在非工作状态,这样就使得行程模拟器136处于不可活动状态,甚至是当模拟器控制阀135处于通流状态。因而,在此状态下,在加压室36中的流体就不能输送到行程模拟器136,这样,从主缸10输送来的压力流体能有效地用来对制动缸14、16进行快速充液。
在车轮制动缸14、16的快速充液完成之后,在步骤S2中就会得到一个肯定的判断(YES),控制流程进入步骤S4,以关闭主缸截止阀94、96,然后到步骤S5,读取制动踏板34的作用力。步骤S5之后为步骤S6,步骤S6中判断换档杆是否处于驻车档P位置上。如果在步骤S6的结论是否定的(NO),则控制流程就进入到步骤S7,以确定车辆行驶速度是否大于等于一个预定的阈值V0,该阈值接近于零,也就是说,该步骤是判断车辆是否在行驶。如果车辆的行驶速度V小于该阈值V0,则意味着车辆处于静态或者是已经停车。在车辆处于静态的条件下(步骤S7的结论为否定),如果换档杆处于驻车档之外的其它档位上,则控制流程转向步骤S8,以在制动踏板34的作用力的基础上确定预期的制动压力,并在确定出的预期制动压力基础上确定或选择出压力控制模式。步骤S8之后是步骤S9,以对应于确定的压力控制模式来控制压力控制马达100和模拟器控制阀135。
当在车辆行驶的条件下换档杆处于除驻车档之外的其它档位,则控制流程转向步骤S10,以确定出预期的车辆减速值,并在确定出的预期车辆减速值基础上确定出或选择出压力控制模式。
在换档杆处于驻车档的条件下,控制流程转向步骤S11,以启动对制动系统的一种控制模式,该控制模式不同于在换档杆处于驻车档之外的其它档位且车辆处于静态时的控制,以及与车辆行驶时的控制模式不同。当换档杆处于驻车档时,对制动压力进行控制的精度要求相对较低。在换档杆的驻车位置上,模拟器控制阀135可处于断流状态,以防止流体从后压力室128排入到主缸10中,由此来保持控制压力室120、122中的流体压力为恒定。这样的布置在减小所需电能消耗的前提下能保持车辆的静态。
在本实施例中,行程模拟器136是被选择处于活动状态还是不可活动状态是取决于在模拟器控制阀135处于通流状态的条件下,压力控制缸12是否处于被操作态还是处于非被操作态。这样的设计使得行程模拟器136能限据需要在可活动状态和不可活动状态之间转换,同时就减小了要在断流状态和通流状态之间换接模拟器控制阀135的频率,这样就延长了模拟器控制阀135预期的工作寿命。
当制动踏板34被松开时,在步骤S1中得到的结论为否定的(NO),控制流程就转向步骤S3,以保持主缸截止阀94、96以及模拟器控制阀135处于图1所示的初始状态,也就是说,处于通流状态。
下面将描述制动系统在处于步骤S9中的各种不同压力控制模式下的工作状况,参见图4所示的流程图。图4中的控制逻辑从步骤S81开始,在该步骤时,读取当前选择或确定的压力控制模式。当所选择的压力控制模式为压力增加模式时,也就是说,当检测到需要执行压力保持操作时,控制流程转向步骤S82,在该步骤中,制动系统如上述那样,被控制处于压力增加模式下。当所选择的压力控制模式为减压模式时,控制流程进入步骤S83,在步骤S83中,制动系统被控制处于上述的减压模式下。也就是说,通过控制输送到压力控制马达100的电流,控制活塞106、108或者在压力增加模式下向前进动,或者是在减压模式下回缩,从而使得在控制压力室102、122中的流体压力增加或减小。在压力增加和压力减小模式中,模拟器控制阀135都保持在通流状态下。
当所选择的压力控制模式为保压模式时,控制流程转向步骤S84,以判断是否存在流体从车轮制动缸14、16中泄漏的可能性。在本实施例中,是在制动系统被保持在保压模式下超过一设定时间段后来判断是否出现流体泄漏的。如果在S84步骤的结论是否定的(NO),则控制流程转向步骤S85,以控制模拟器控制阀135,并将输送到压力控制马达100的电流量置零,也就是关闭马达100。在模拟器控制阀135处于断流状态的条件下,通过不向马达100供电,就防止了控制活塞106的回缩运动,从而可实现控制压力室120、122中的流体压力保持恒定。在此情况下,在后压力室128中的流体压力要高于在主缸10的加压室36中的压力。
如果在步骤S84中,确定出车轮制动缸14、16存在流体泄漏的可能性,则控制流程就转向步骤S86来检测电池220的电压,以及执行步骤S87来在所检测出的电池220电压的基础上确定压力控制马达S87的工作时间。步骤S87之后为步骤S88,步骤S88用来使得压力控制马达100运转确定的工作时间,并关闭模拟器控制阀135。在马达100关断之后,将用来测量马达100的工作时间的一个计时器复位。例如,在电池220电压减小的条件下,增加马达的工作时间。通过执行步骤S86-S88,制动系统被控制得能补偿由于车轮制动缸14、16流体泄漏而导致的制动压力下降。
作为一个基本规则,要控制处于保压模式下的该制动系统能防止从后压力室128排出的流体流到主缸10中,并保持压力控制马达100处于关断状态。因而,在该保压模式下,马达100所需的电能消耗量就能减小,且马达100的工作噪音、或者由于马达的工作而产生的振动也能降低。另外,通过用上述的保压模式来控制制动系统,制动压力可保持在车辆驾驶员所希望的数值水平上。
但是,如果在保压模式下检测到车轮的制动缸14、16发生了流体泄漏,则启动压力控制马达100,来对控制压力室120中的流体压力进行控制,以防止由于流体从车轮制动缸14、16中泄漏而出现制动压力下降。
如果由于压力控制马达100的异常而不能对压力控制缸12进行控制,则关闭模拟器控制阀135来防止流体从后压力室128排流,以便于抑制控制活塞106的回缩运动,这样就防止了车轮制动缸14、16中的制动压力下降。
在车辆处于静态的条件下,制动踏板34的作用力一般保持恒定,通常选择的是保压模式。在此情况下,压力控制马达100保持关断状态,而无需向其输送电流,这样就能减小马达100所需的电能消耗量。下面将参照图5中的时序图对保压模式下的制动系统控制方式作进一步地描述。
当在车辆处于静态的条件下保持制动踏板34的作用力为恒定时,就选择了保压模式。如图5中(A)点处所表示的那样,模拟器控制阀135被关闭,且压力控制马达100的驱动扭矩被置零,这样由马达100所产生的伺服力也为零。如果制动踏板34的作用力增加,则就造择压力增加模式。在该压力增加模式中,由马达100所产生的伺服力增加,且随后开启模拟器控制阀135,着如图5中的(B)点处所示。如果在随后减小作用力,则就转为减压模式。在减压模式下,压力控制马达100先反转,且在随后检测到制动踏板34的释放动作的条件下,关闭马达100,同时将模拟器控制阀135复位成通流状态,这如图中的点(C)处所示。还将主缸截止阀94、96复位到通流状态。
在该实施例中,当车辆停在一个斜坡上时,可在不向压力控制马达100供电的情况下,保持制动压力。另外,还可以防止在释放制动踏板34到压下加速踏板之间的时间内,由于防止了流体从后压力室128排向主缸10,所以就可以避免车辆发生移动。本发明的设计还具有这样的效果:当动力源-例如是车辆的发动机自动关闭以减少排放污染时,车辆驾驶员无需压住制动踏板34,车辆也自动进行了制动,其中的这种自动关闭动力的车辆在设计上是为了改善燃油经济性并保护环境。
在上述实施例中,在保压模式中,无论车辆是处于静态还是正在行驶,模拟器控制阀135都转向断流状态,且关断压力控制马达100。但是,在保压模式下,仅当车辆处于静态时,才能执行对模拟器控制阀135和马达100的控制。在此情况下,在车辆行驶条件下的保压模式中,马达100是被关断的,而模拟器控制阀135则处于通流状态。如考虑到在车辆处于静态条件下保压模式趋于维持较长的一段时间,则采用这样的设计。在这种情况下,车辆静态条件下的保压模式可被称为“长保压模式”,以与在车辆行驶条件下的保压模式“短保压模式”相区别开。
截止阀形式的模拟器控制阀135可用一个线形控制控制阀来取代,其中线形控制阀的开度随向其供应的电流大小而变化。在此情况下,可通过控制线性控制阀的开度来调节制动压力的降低率。在保压模式后紧跟减压模式的情况下,线形控制阀的开度减小,从而以相对较小的速率来降低制动压力,以此来防止制动压力的急剧下降,从而可改善制动踏板34的操作感受。
在所示的实施例中,在步骤S84中,在保压模式可维持的持续时间上来判断存在车辆制动缸14、16泄漏的可能性。但是,也可以直接检测车轮制动缸14、16的泄漏。例如在流体从车轮制动缸14、16经单向阀132泄漏到蓄液器62的情况下,压力流体从主缸10进行输送来补偿经单向阀132泄漏的流体。如果在此情况下,制动踏板34的动作行程保持不变,在主缸10的流体压力就会降低。相应地,通过监测在制动踏板34的工作行程保持不变的条件下、主缸10中的流体压力的降低是否超过一个预定量,就能检测出经单向阀132的流体泄漏。因而,可由制动踏板34工作行程和主缸压力的关系来检测出流体的泄漏。但是,也可以由制动压力和车轮减速度、行驶速度或车辆其它行驶状态参数的关系来检测出流体泄漏,其中的那些行驶状态参数都受制动压力的影响。
在上述实施例中,在检测到车辆制动缸14、16发生流体泄漏的可能性下,在压力控制马达100工作的期间内,其工作时间将会增长,从而电池220的电压就会降低。但电池电压的工作时间就会缩短。另外,可在制动系统工作流体温度、电池220的温度、保压模式的持续时间、主缸压力的降低量或车辆行驶速度的降低率的基础上确定出工作时间。在流体的泄漏可能性或程度相对较高时,马达100的工作时间最好要长一些。可在上述两个参数或多个参数组合的基础上确定出工作时间。
在步骤S87中确定出输送到马达100的电流大小,而不是马达100的工作时间。在此情况下,当流体泄漏的可能性或程度较大时,电流也要较大。在马达100的工作时间保持恒定的情况下,电流的大小取决于流体泄漏的程度或可能性的大小。在任何情况下,马达100的工作都具有这样的效果:减小由于流体泄漏而造成的制动压力下降,并减小在车辆的行驶过程中由于流体泄漏而造成的车辆减速值下降。
参见图6,图中表示了根据本发明第二实施例的制动系统。在该实施例中,在连接后压力室128和蓄液器62的流路130中设置了一个蓄液器连通阀250,该阀是一个电磁动作的截止阀。蓄液器连通阀250处于断流状态时能防止流体从后压力室128排流到蓄液器62中,当选择保压模式时,将该阀250转向断流状态。
第二实施例未采用与行程模拟器136并联的单向阀142、以及在行程模拟器136和主缸之间的模拟器控制阀135。
在该实施例中,当蓄液器连通阀250处于断流状态时,行程模拟器136的第二变容腔140就不与蓄液器62相连通,因而处于不可活动的状态。在此情况下,蓄液器连通阀250起到了与模拟器控制阀136相同的对模拟器进行控制的作用。
另外,设置了一条连接流路260,其一端连接向后压力室128,另一端连接在压力控制缸12和前轮制动缸14之间的一个部分。该连接流路260中设置了一个单向阀262,该单向阀允许流体从后压力室128流向流路90,但却抑制流体反向流动。因而,单向阀262的功能是防止流体从前轮制动缸14流向后压力室128,即使是前轮制动缸14中的流体压力高于后压力室128中的压力的条件下。当制动缸14中的流体压力变得低于后压力室128中的压力时,单向阀262能使得压力流体从后压力室输送到制动缸14中,
在其它的各个方面,第二实施例都与第一实施例相同。
如同第一实施例的情况,当第二实施例的制动系统处于正常状态时,即主缸截止阀94、96保持在断流状态时,制动压力由压力控制缸12控制,压力控制缸12由压力控制马达100控制。在这种正常的制动操作中,蓄液器连通阀250处于通流状态,以使行程模拟器136保持在可活动状态,且后压力室128中的流体是经行程模拟器136从主缸10、以及经处于通流状态的蓄液器连通阀250从主缸输送来的。
在保压模式下,蓄液器连通阀250被转换到断流状态,且向压力控制马达100供应一个电流,该电流的大小是在制动踏板34动作行程的基础上确定出的。处于断流状态的蓄液器连通阀250防止了流体从后压力室128排流到蓄液器62中。由于压力控制马达100的工作,后压力室128中的流体压力升高,但并未超过行程模拟器136的第二变容腔140中的流体压力,这是因为供应给马达100的电流大小是这样确定的:使得后压力室128中的流体压力与制动踏板34的作用力的对应压力相等,也就是说,等于主缸10的加压室36中的流体压力。另外,单向阀262也防止了后压力室128中的流体压力超过车轮制动缸14中的制动压力。在保压模式下,需要启动压力控制马达100来保持控制压力室120、122中的流体压力。在此情况下,由于后压力室128中流体压力所产生的力作用在控制活塞106上,需要由马达100产生的驱动力就降低了。相应地,向马达100供电的电流就减小了。
在制动系统发生某些故障的情况下,如果蓄液器连通阀250在断流状态而不能转向通流状态,后压力室128中的压力流体就不能返回到蓄液器62中。但是,由于在释放制动踏板34时主缸截止阀94、96处于通流状态,流路260和单向阀262能允许压力流体从后压力室128排到流路90中。结果是,甚至在阀门250异常地保持在断流状态的条件下,控制活塞106也能返回到其原始状态。流路260和单向阀262组成了一个单向阀装置264,该装置的作用是防止流体从车轮制动缸14排流到后压力室128中,该单向阀装置264还起到回流装置的作用,以使流体从后压力室128中回流到控制压力室120中。
如果由于某些原因或其它原因,当截止阀94、96处于断流状态时,后压力室128中的流体压力变得高于加压室36中的压力,则后压力室128中的压力流体经处于通流状态的主缸截止阀回流到主缸10中,在此情况下,作用在制动踏板34上的反作用力就会急剧增大。在此方面,从压力室128向主缸10回流流体就不是所希望的。在另一方面,从压力室128向控制压力室120回流流体就不会造成当放松制动踏板34时,作用在制动踏板34上的反作用力增加,因而是很理想的。
单向阀装置264可被设置在后压力室128和流路92之间,而不是设置在压力室128和流路90之间。另外,可在压力室128和两个流路90、92之间分别设置两套单向阀装置。在任何情况下,一套或多套单向阀装置可这样布置:位于制动系统中流体压力基本等于后压力室128压力的一个部分、和制动系统中流体压力基本等于控制压力室120、122或车轮制动缸14、16中压力的另一个部分之间。换言之,一套或多套单向阀装置可被布置在后压力室128或流路134中位于行程模拟器136下游的一个部分、和控制压力室120、122或流路90、92中位于控制压力室120、122和车轮制动缸14、16或主缸截止阀94、96之间的各部分之间。
单向阀装置可设置在压力控制缸中,如同在图7所示的本发明第三实施例中那样。也就是说,在压力控制缸270的控制活塞272上设置一个杯形密封件274,该密封件允许流体从后压力室128流向控制压力室120,但却抑制流体的反向流动。在此情况下,控制压力室270就不需要设置一个O型圈了。
当控制活塞262被压力控制马达100移向控制压力室120时,杯形密封件274能防止流体从控制压力室120流向后压力室218。当控制压力室120中的流体压力由于制动踏板34的释放而降低时,杯形密封件274能允许流体从后压力室128排流到控制压力室120中。因而,杯形密封件274所具有的功能与上述的单向阀装置264相同。另外,所设置的用来取代O型圈127的杯形密封件274对控制活塞272在前进方向上的滑动运动的阻力更小。由于杯形密封件274形式的单向阀装置不是布置在控制压力室270外部的装置,所以这样的单向阀装置并不增加制动系统的部件数目。
模拟器控制阀可设置在第二变容腔140和后压力室128之间。需要注意的是:设置在上述实施例中的限流装置60和行程模拟器136不是必要的。另外,由于控制压力室120、122中的流体压力在减压模式中通过将马达100的扭矩减小到腔室120、122中所需压力的对应值而降低,压力控制马达100也不需要是双向动作的。对压力控制马达100在不同压力控制模式中的进行控制的方式并不限于上述实施例中的这些方式。
参见图8,图中表示了根据本发明第四实施例而设计的制动系统。
在该实施例的主缸10中,加压活塞30的小径部分42没有通流流路48,且环形腔46和加压室38通过各自单独的流路302、304而与流体通道92联通。独立流路302中设置了一个单向阀406,该单向阀允许流体从环形腔46流向加压室28和流路92,但却抑制反向流动。独立流路302和单向阀306所实现的功能与上述实施例中设置的通流流路48和单向阀50的实现的功能相同。
限流装置60包括一个单向阀66、卸压阀68、节流孔70,以及另外并联的由电磁阀动作的截止阀308。在截止阀308处于通流状态下,当加压活塞30前进时,流体就会从环形腔46排流到蓄液器62中,环形腔46中的流体并不加压。也就是说,此时在制动踏板34被操作的条件下,并不能从环形室38向流路92泵送压力流体。在此情况下,在加压室38中的流体由小径部分42加压,并输送到流路92中。当截止阀308处于断流状态时,在环形室46中的流体被大径部分44加压,直到在环形室46中流体压力增加到卸压阀68的预定的卸压压力为止。在环形室46中的流体压力超过该卸压压力之后,加压室38中流体的压力则只是由于小径部分42增加。可根据车轮制动缸14、16的快速充压是否已经完成将电磁阀操作的截止阀308选择在通流状态或断流状态上。如果卸压阀68的卸压压力相对较高,可通过将截止阀308从断流状态转换到通流状态来从大径部分44的流体加压模式转变成小径部分44的流体加压模式。
在流路134位于行程模拟器136和后压力室128之间的部分内设置了一个单向阀310。该单向阀310允许流体从行程模拟器136流向后压力室128,但抑制反向流动。设置了一条连接流路312,其一端连接在蓄液器流路130中位于蓄液器连通阀250和蓄液器62之间的部分上,另一端连接在流路134中位于行程模拟器136和单向阀310之间的部分上。连接流路312中设置了一个单向阀314,其允许流体从蓄液器62流向后压力室128,但抑制反方向的流动。
这样,单向阀310设置在后压力室128和行程模拟器136之间,而蓄液器连通阀250与串联的两个单向阀310、314并联在后压力室128和蓄液器62之间。单向阀310抑制流体从后压力室128排放到行程模拟器136。单向阀310、314以及处于断流状态的蓄液器连通阀250防止流体从腔室128中排流到蓄液器62。这样,单向阀310、314和蓄液器连通阀250就形成了一个断流阀装置形式的限流装置,用于防止流体从后压力室128排流到行程模拟器136和蓄液器62。
图8中所示的制动系统采用了图7所示的压力控制缸270,该压力控制缸中的控制活塞272上设置有杯形密封件274形式的单向阀装置,如上述参照第三实施例所描述的那样,当腔室128中的流体压力高于腔室120中的压力时,该装置能允许压力流体从后压力室128流向控制压力室120。
单向阀314设置在行程模拟器136和蓄液器62之间,而单向阀310则设置在行程模拟器136和后压力室128之间。单向阀314允许流体从蓄液器62流向第二变容腔140,而单向阀310则允许流体从第二变容腔140流向后压力室128。因而,单向阀314、310使得流体可流到第二变容腔140和从第二变容腔流出,由此即使在蓄液器连通阀250处于断流状态时也能使行程模拟器136处于可动作状态。这样,无论阀250处于什么样的工作状态,行程模拟器136都处于可动作的状态。
设置了一个用于检测控制活塞272的工作行程的行程传感器316。该行程传感器316包括一个用于检测压力控制马达100的转数的编码器。该行程传感器316的输出信号被输送到制动电子控制单元(ECU)200中,由该电子单元在所检测出的马达100转数的基础上计算出控制活塞272的工作行程。
控制活塞272的最大回缩位置是由控制活塞272与一个止挡的相抵接触来定出的,其中的止挡是压力控制缸270的壳体上的一个部件。
在其它的方面,根据第四实施例的制动系统与根据前述实施例设计的制动系统都相同。
在本实施例中,与前述的实施例一样,制动压力是通过控制输送到压力控制马达100的电流来进行控制的。
在增压模式和减压模式中,输送到压力控制马达100的电流量IM被控制成这样:当蓄液器连通阀250处于通流状态时,使得控制压力室120中的流体压力与由制动踏板34的动作力所确定的预期值相一致。电流量M的控制应当满足如下的方程(1);
FM=Ac1·PW...............  (1)
其中,“FM”、“PW”和“Ac1”分别代表由马达100产生的驱动力、控制压力室120中的预期流体压力、以及控制活塞272上部分地形成控制压力室120的压力承受表面的面积。下面方程(2)中的“Ac2”代表了活塞272上部分地形成后压力室128的压力承受表面的面积。面积Ac2等于活塞272总的横截面积减去活塞272的活塞杆的横截面积所得的值。
如果选择了长时保压模式,则蓄液器连通阀250就被转换到断流状态,且后压力室128中的流体被加压,这样就使控制活塞272受到压力控制马达100的驱动力与后压力室128中的流体压力产生的作用力的合力作用。相应地,在长时保压模式时,向马达100供应的电流量应被控制成满足如下的方程(2):
FM+Ac2·PH=Ac1·PW................... (2)
式中“PH”代表后压力室128中的流体压力。
如果将蓄液器连通阀250处于关闭和通流状态时马达100的驱动力分别用“FMH”和“FMO”代表,从上述的方程(3)可以理解,下面的方程(3)也是成立的,且后压力室128中流体的压力PH不高于控制压力室120中的压力(PW≥PH):
FMH≥FMO·Ac2/Ac1................. (3)
由于驱动力基本上与电流量IM成比例,因而可以理解有如下的方程(4),式中的常量α大于1:
IM=IMO·Ac2/Ac1·α............(4)
在长时保压模式中,供应给压力控制马达100的电流量IM是在选择了长时保压模式和控制活塞272的表面积之比Ac2/Ac1的基础上由电流量IMO确定的。常量α例如可以是1.1,且表面积之比Ac2/Ac1通常被定为约1/3。在蓄液器连通阀250处于断流状态的长时保压模式中,为能达到与控制压力室120的压力相同的压力水平而输送到马达100的电流量IM可小于在其它压力控制模式下的电流。
如图9中的图表所示,在长时保压模式下为保持控制压力室120中的相同的流体压力而向压力控制马达100输送的电流量要小于在其它压力控制模式下,小于的数量对应于由后压力室128在蓄液器连通阀250处于断流状态时所产生的流体压力。
在增压模式和减压模式下供应给马达100的电流是这样控制的如上所述那样:使得在控制压力室120中的流体压力等于预期值,而在长时保压模式下,电流量则被控制成控制活塞272被保持在选择长时保压模式的位置上。如图10所示,在选择长时保压模式的条件下,控制活塞272的工作行程被进行检测,且对马达100进行控制使得能保持所检测到的控制活塞的工作行程。
如果是在控制压力室120的流体压力的基础上对马达100的电流量进行控制的,该流体压力当蓄液器连通阀250从通流状态转换到断流状态时将会发生变化,这样,当阀250的状态转换时,电流量也会发生很大的变化,导致马达100出现抖跳。但在本实施例中,控制活塞262的工作行程是由行程传感器316在马达100转数的基础上检测出来的,从而即使在控制压力室120中的流体压力变化的情况下,控制活塞272的工作行程也不会发生显著的变化。相应地,如果在控制活塞272工作行程的基础上对电流量进行控制,则马达100也不易于出现抖跳现象。
在控制活塞262由于电流量的增加而前进之后,马达100的电流量可被归零。允许压力流体经杯形密封件274从后压力室128流入到控制压力室120,甚至是在选定了长时保压模式的条件下,将蓄液器连通阀250转换到断流状态的情况下。相应地,在选定了长时保压模式后立即就将马达100的电流置零将会使控制活塞272发生回缩,从而增大控制压力室120的容积,这样就会使得控制压力室120中的流体压力低于电流归零前的水平。为了避免这一现象,在选定了长时保压模式的情况下,首先要增加马达100的电流以使得控制活塞272向前进行一段,然后再使电流归零。这样的布置在选择了长时保压模式的情况下,也能保持控制压力室120中流体压力。
首先,增加电流量来使控制活塞272的工作行程加大到一个数值Spw,该数值由如下的方程得出:
Spw=Spwo·Ac1/Ac2
在上述方程中,“Spwo”代表当选择长时保压模式时的工作行程。从上述方程可以看出,控制活塞272的预期工作行徎Spw是由当前的工作行程Spwo和表面积之比Ac1/Ac2确定出的。换言之,工作行程的预期值Sow是在后压力室128由于控制活塞272的回缩运动而增加的容积基础上确定出的。
在控制活塞272前进之后,控制活塞72被保持在当前位置一段设定的时间t。也就是说,控制活塞272的前进运动造成了后压力室128的容积增加,从而使得流体从蓄液器62输送到后压力室128。然后,控制活塞272被保持在当前位置处预定的一段时间t,在该段时间内,后压力室128相对于控制压力室120变为液密。
在经过预定的时间段t后,蓄液器转换阀250被转到断流状态,且向马达100供应的电流减小到零。结果,控制活塞272发生回缩,且后压力室128的容积减小,控制压力室120的容积同时增大。相应地,在后压力室128中的流体压力就会增加,而在控制压力室120中的流体压力就会降低。当后压力室128中的流体压力增加到不小于控制压力室120中的压力的一个数值水平时,流体是从后压力室128输送到控制压力室120,这样,由于控制活塞272上部分地形成腔室128的表面积小于部分地形成腔室120的表面积,所以控制活塞272就会缩回到最大回缩位置。在该最大回缩位置上,由后压力室128中的流体压力产生的作用力在前进方向上作用在控制活塞272上,而由控制压力室120中的流体压力产生的作用力则在回缩方向上作用在控制活塞272上。这两个作用力相互平衡,且腔室128、120中的流体压力被控制成相互相等,并都等于选择了长时保压模式式的数值。因而,在本实施例中,在将马达100的电流归零之前,首先是将控制压力室120中的流体压力升高,从而在选择了长时保压模式的条件下,控制压力室120中的流体压力可被保持在该数值上。
下面参见图11中的流程图,图中描述了在长时保压模式下所执行的制动压力控制逻辑。该制动控制逻辑从步骤S101开始,在该步骤中判断是否造择了长时保压模式,也就是说检测是否有长时保压请求。如果在步骤S101中得到的判断是肯定的(YES),则控制流程转向步骤S102,以读取控制活塞272的工作行程Spwo,且然后转向步骤S103,来计算工作行徎Spwo的预期值。步骤S103之后是步骤S104和S105,以增加供应给压力控制马达100的电流IM,使控制活塞272前进,直至达到预期的工作行程Spw。例如,马达100的电流量以预定的增量逐渐加大,直至达到预期的工作行程Spw。然后,控制流程转向步骤S106,在该步骤中,控制活塞272被保持在当前位置一段预定的时间段t。在经过预定时间段t后,控制流程转向步骤S107,将电流量IM减小到零,并关闭蓄液器连通阀250。
在本实施例中,如图12所示,甚至在压力控制马达100的电流值归零的条件下,控制压力室120中的流体压力也能保持恒定。从而相应地能减小马达100的电能消耗量。
如果在长时保压模式后紧随减压模式,则通过将蓄液器连通阀250交替地调到通流和断流状态来降低后压力室128中的流体压力,这样就可以降低控制压力室120中的流体压力。阀250的导通比被控制成这样:使得控制压力室120中的流体压力与预期的数值一致。在此情况下,控制活塞272位于完全回缩位置上。
尽管该第四实施例中的制动系统布置成使控制活塞272前进到直到所检测的工作行程增加到所需值为止,从而控制活塞272也可以是前进到直到使所检测的控制压力室120中的流体压力增加到所需值为止。
另外,控制活塞272也可以是前进预定的一段恒定长度,也就是说,获得一个恒定的预定工作行程,直到是控制压力室120中的流体压力增加一个预定量为止。如果在选择了长时保压模式的情况下没有必要保持控制压力室120中的流体压力在该数值上,则控制活塞272还可以在马达100的电流归零之前前进预定的一段合适距离。这样的布置能确保抵消控制压力室120中的流体压力由于控制活塞272的回缩运动而降低的量。
尽管在前叙的实施例中,为选择长时保压模式,当车辆处于静止状态时,保压模式会持续相对较长的一段时间,但也可以在其它任何的预定条件满足时来选择长时保压模式,例如为:不论车辆是处于静止状态还是处于行驶状态,在保压模式的持续时间超过了一个预定的时间时;当所需制动压力的变化在预定的时间内不大于某个预定的阈值时;或者是当预期制动压力变化频率不超过某个预定的阈值。
另外,供应给压力控制马达100的电流可如图13所示那样进行控制。当选择了长时保压模式时,马达100的电流就加大,以使控制活塞272前进,从而使控制压力室120中的流体压力就增加一个预定的量ΔP。然后,马达100的电流量被减为零,且关闭蓄液器连通阀250。
之后,对马达100的电流量进行这样的控制:使得控制压力室120中的流体压力保持在一个预定的范围内(在选择长时保压模式时的数值Pw与数值[Pw+ΔP]之间)。当控制活塞272到达最大回缩位置时,后压力室128中的流体压力和控制压力室120中的流体压力变得相等,且控制压力室120中的流体压力等于选择长时保压模式时的压力值。
在图14所示的改型中,控制活塞272前进运动的距离小于在第四实施例中的距离,从而可使制动踏板34的工作行程相对较小,这样就减小了制动踏板34操作感受的变劣程度。
参见图14和图15,图中表示了根据本发明第五和第六实施例的制动系统。图14中的制动系统是对图1所示系统的改型,其中,图6中制动系统中所设置的蓄液器连通阀250取代了流体流路130中的单向阀132。
后压力室128通过处于通流状态的蓄液器连通阀250与蓄液器62相通,从而腔室128的容积可随控制活塞106的运动而发生变化。由于一旦松开制动踏板34就开启了模拟器控制阀135,所以在后压力室128中的流体就能经模拟器控制阀135返回到主缸10中。
在图15所示的制动系统中,在流路135位于行程模拟器136和后压力室128之间的部分中设置了一个抑流阀320,进而,流路321在其一端连通行程模拟器136和抑流阀320之间的一部分流路134,而在其另一端连通主缸截止阀94和压力控制缸12之间的一部分流路90。流路321设有一单向阀322。流路321和单向阀配合构成一单向阀阀装置324。该抑流阀320是常开阀,因而允许后压力室128内的流体返回到主缸,在此,由于电流失效,抑流阀320不能关闭。其甚至当马达100的电流在长时保压模式中归零的条件下位于断流状态的抑流阀320可防止从后压力室128排放流体。因而,该抑流阀320防止了控制活塞106的回缩运动,在长时保压模式中保持了控制压力室120中的流体压力。
甚至在抑流阀320处于断流状态的条件下,在行程模拟器136的第二变容腔140与蓄液器62之间的流体就可经处于通流状态的蓄液器连通阀250进行流动,从而就将行程模拟器136处于了可动作状态。
在所示实施例的压力控制缸12、270中,控制活塞106、272受压力控制马达100的驱动下发生运动,其中的马达100是一台电动机。但是,该控制活塞也可以由除电动机之外的其它动力驱动装置来驱动。
下面参见图16-图19,图中描述了根据本发明第七实施例的制动系统。该实施例中的制动系统与第一实施例的区别在于:该制动系统不包括第一实施例中在主缸10与控制压力室12的后压力室128之间设置的模拟器控制阀135、行程模拟器136和单向阀142。该制动系统还不包括连接后压力室128和蓄液器62的流路130、以及在流路130中的单向阀132,而流路130和单向阀132在第一实施例中是存在的。
在图16的制动系统中,控制压力缸328的后压力室128是通过一条旁路流路330与主缸10的加压室36直接相连的,以此来实现后压力室128与加压室36的永久地连通。
压力控制活塞328包括一个控制活塞332,其具有一个部分地形成后压力室128的后承压表面334,以及一个部分地形成控制压力室120的前承压表面336。后承压表面的面积要比前承压表面的小,从而使得从控制压力室328输送到车轮制动缸14、16的流体量要比从主缸10输送来的要少。
在该制动系统中,如图17所示,控制装置200的控制部分202的输入/输出部分210被布置成接收制动开关211、踏板力传感器212、主缸压力传感器214、控制压力传感器216以及车轮速度传感器218的信号。如同在第一实施例中那样,控制部分202控制着保压阀170、减压阀172、泵驱动马达190、主缸截止阀94、96、以及压力控制马达100。ROM中存储着控制程序,例如用于执行图18中所示的常规制动控制逻辑的程序,该控制逻辑将在下文进行描述。
供应向压力控制马达100的电流被这些进行控制:使得控制压力室120、122中的流体压力与某个所需值一致,该所需值是由制动踏板34的作用力确定的。控制活塞332受到由马达100产生的驱动力F(I)、由后压力室128中的流体压力产生的作用力、以及由控制压力室120中的流体压力产生的作用力的作用。由于在后压力室128中的流体压力等于加压室36中的流体压力PM,所以控制压力室120中的流体压力PB可由如下的方程(5)得出:
PB=(PM·SM+F(I))/SB ............(5)
在上面方程式中,“SM”和“SB”分别代表控制活塞332上后承压表面132和前承压表面134的各自面积。
主缸10的流体压力PM对应于制动踏板34的作用力,而控制压力室120的流体压力PB所需值等于该作用力乘上一个预定的增力比。因而,流体压力PM和PB满足方程PB=k·PM。从该方程和如上的方程(5),可得到如下的方程(6):
PB=(k·F(I))/(k·SB-SM)............(6)
从上述的方程(6)可知:流体压力PB的所需值(车轮制动缸14、16中的预期制动压力)与驱动力F(I)满足图19所示的关系。输送给压力控制马达100的电流是这样确定的:使得马达100产生的驱动力F(I)与所需制动压力PB相对应。如针对第一实施例所描述的那样,控制活塞332受到与马达100的驱动扭距相对应的驱动力F(I)。
下面将描述图18所示的常规制动控制逻辑。该控制逻辑从步骤S111开始,在该步骤中判断制动踏板34是否有动作,也就是说,制动开关211是否处于ON状态(通流状态)。如果步骤S111的判断结果是肯定的(YES),则控制流程转向步骤S112,以判断由控制压力传感器216所检测到的流体压力是否已经增加到车轮制动缸14、16完成快速充压的水平。如果车轮制动缸14、16的快速充压还没有完成,则步骤S112的结果就是否定的(NO),且控制流程转向步骤S113,在该步骤中,主缸截止阀94、96处于通流状态,从而压力流体就能以相对较大的流量从主缸10输送到车轮制动缸14、16,这样就可以在较短的时间内完成车轮制动缸的快速充压。在此状态下,压力控制缸328被保持在非工作态,且压力流体不从加压室36输送到压力控制缸328的后压力室128中。
一旦车轮制动缸14、16的快速充压完成,则在步骤S112得到的判断就是肯定的(YES),控制流程转向步骤S114,以打开主缸截止阀94、96,然后转向步骤S115,在该步骤中,读取由踏板力传感器212检测到的制动踏板34作用力,并在所检测到的制动踏板34作用力的基础上定出制动压力的所需值。在步骤S115之后是步骤S116,在步骤S116中,对压力控制马达100进行控制,以在控制压力室120、122中压力流体质量的基础上在车轮制度缸14、16中建立起所需的制动压力,从而作用于前轮和后轮制动件22、24。
由于控制活塞332上后承压面334的面积要小于前承压面336的面积,所以从控制压力室120、122泵送向车轮制动缸14、16的压力流体量要多于从主缸10输送出来的流体量。这样的布置能有效地避免制动踏板34的工作行程过长。另外,后压力室128的容积随加压室36的容积的变化而变化,从而制动踏板34上受到的反作用力也是相应地变化的。
当松开制动踏板34时,步骤S111得到的判断是否定的(NO),且控制流程直接进入到步骤S113中,以将主缸截止阀94、96复位到图16所示的常态通流状态。
当电气系统出现故障时,主缸截止阀94、96会保持在原始的通流状态下,这样,压力流体就可以从加压室36、38直接输送到车轮制动缸14、16,从而致动前轮和后轮的制动件22、24。在该条件下,加压室38中的流体是通过加压活塞32的小径部分42而增加的,从而,对于给定的制动踏板34作用力,加压室38中的流体的压力相对较高。
在该第七实施例中,如上述的过程对压力控制缸328进行控制,以产生与连接到主缸10上的行程模拟器大体相同的效果。在制动踏板34的工作过程中,制动踏板34所需的工作行程可被减小,且当主缸10与车轮制动缸14、16相连通时,加压室38中的流体压力可以相对较高的增力比得到增加。
在该实施例中,控制活塞332不但受到压力控制马达100的驱动力作用,同时还受到由后压力室128中的流体压力所产生的力作用。相应地,马达100用来将控制压力室120、122中的流体压力增加到某个给定值而所需的电能就能减少一定的量,该减小量对应于由腔室128中的流体压力所产生的作用力。也就是说,主缸10所产生的流体压力被用来作用控制活塞332,这样,马达100所需的电能消耗就能得到降低。
另外,不带有行程模拟器的该制动系统实现了成本的降低,同时减少了零部件的数目。
参见图20,图中表示了根据本发明第八实施例的制动系统。该制动系统的主缸340中具有一个单端加压活塞342。在该加压活塞342的前方形成了一个加压室344,其通过流路90与压力控制缸328的控制压力室120相连接,并通过流路330与后压力室128相连接。控制压力缸328的控制压力室122通过流路346与蓄液器62相通,以防止控制压力室328中的流体压力降低到大气压力以下。在另一方面,图20中的制动系统都与图16中的制动系统相同。因而,本发明的原理适用于单端活塞主缸的制动系统,也适用于纵列式双端活塞主缸的制动系统。
可以理解:本发明的实施形式可以有多种形式的改动、变型和改进,诸如在本发明的概述中所描述的内容,对于本领域技术人员来讲,这样的变动都不脱离下文权利要求书所限定的本发明设计构思和保护范围。

Claims (29)

1.一种制动系统,其包括:
一个液压作用的制动缸(14、16),用来对制动件(22、24)进行作用;
一个动力驱动装置(100、220);
一个压力控制缸(12;270),其具有一个控制活塞(106;272),该控制活塞受所说动力驱动装置的作用,且在其前方和后方分别部分地形成一个前控制压力室(120)和一个后压力室(128),所说前控制压力室与所说制动缸相通;
一个制动压力控制装置(200),其可对输送给所说动力驱动装置的电能进行控制,从而控制所说制动缸中工作流体的压力;
一个限流装置(132、135;250;250、310、314;135、250;320),其用于对从所说后压力室排出的流体进行限流;
其特征在于,还包括:
一个蓄液器系统,该系统包括一个蓄液器(62),该蓄液器中存放了压力基本等于大气压的流体,
所说限流装置(132、135;250;250、310、314;135、250;320)设置在连接所说蓄液器系统和所说后压力室(128)的流路(130;130、312)中,
在制动系统的正常制动操作下,所述制动压力控制装置控制所述限流装置,以至少当需要将所说制动缸中的流体压力保持在当前水平时对从所说后压力室排出到所说蓄液器系统的流体进行限流;
所述制动缸中的流体压力随着一个人工制动操作件(34)的操作量的变化而变化。
2.根据权利要求1所述的制动系统,其特征在于,其还包括:
一个主缸(10),其按照所述人工制动操作件(34)的动作而工作;
当所说制动缸与所说主缸隔绝时,所述制动压力控制装置(200)用于控制输送到所说动力驱动装置的电能。
3.根据权利要求2所述的制动系统,其特征在于:所说主缸(10)包括一个加压活塞(30),其连接到所说人工制动操纵元件(34)上,且在所说制动操纵元件的那一侧,加压活塞包括一个后大径部分(44),并包括一个前小径部分(42),在该小径部分的前方部分地形成一个加压室(36、38),所说前小径部分的直径要小于所说后大径部分的直径,且其中所说主缸的所说加压室与所说压力控制缸(12;270)的后压力室相通。
4.根据权利要求2或3所述的制动系统,其还包括:一个主缸系统,该主缸系统包括所说主缸(10),且其中所说限流装置(135;250、310、314;320)至少在需要将制动缸中的流体压力保持在当前水平时,限制流体从所说后压力室(128)流向所说主缸系统。
5.根据权利要求4所述的制动系统,其特征在于:所说主缸包括有一个加压活塞(30、32),其部分地形成一个加压室(36、38),且该主缸在人工制动操纵元件(34)的作用下前进,以对所说加压室中的流体进行加压,所说主缸系统还包括一个行程模拟器(136),其包括:
一个壳体;
一个模拟器活塞(137),其可滑动地容纳在所说壳体中,并与该壳体配合而形成一第一变容腔(139)和一第二变容腔(140),所说第一变容腔与所说主缸的所说加压室相连,而所说第二变容腔则与所说压力控制缸(12;270)的所说后压力室(128)相连通,以及
用于将模拟器活塞在减小第一变容腔容积的方向上偏压的偏置装置(138)。
6.根据权利要求5所述的制动系统,其特征在于:至少在所说行程模拟器上游端或下游端的其中之一处设置所说限流装置(135;250、310、314;320),这两个位置分别对应与所说加压室和所说后压力室连接的第一和第二变容腔(139、140)。
7.根据权利要求1所述的制动系统,其特征在于:所说限流装置对从所说后压力室流向制动系统中某一部分的流体进行限流,所说的这一部分非制动缸部分,而所说制动缸部分中包括所说的制动缸。
8.根据权利要求1所述的制动系统,其特征在于:所说制动压力控制装置(200)包括一个保压请求检测部分(S81;S101),其用于在所说人工制动操纵元件(34)的工作状态的基础上来检测是否需要保持制动缸中的压力。
9.根据权利要求1所述的制动系统,其特征在于:所说制动压力控制装置包括一个电能减少部分(200),用来在限流工作开始之后,与限流工作开始之前向所说动力装置供应的电能量对比,减少向动力驱动装置供应的电能,其中的限流工作是指由所说限流装置(250;250、310、314)对从所说后压力室排出的流体进行限流的操作。
10.根据权利要求8所述的制动系统,其特征在于:所说制动压力控制装置包括一个基于面积比的电能减少部分(200),当所说保压请求检测部分判断出保压请求时,该电能减少部分将输送给所说动力驱动装置的电能减少到某个数值上,该数值是由预期要输送到所说动力驱动装置的电能和一个比值确定出的,该比值是所说控制活塞(272)的前承压面的面积与该控制活塞的后承压面面积之比,其中前承压面部分地形成所说前控制压力室,而后承压面部分地形成后压力室。
11.根据权利要求10所述的制动系统,其特征在于:所说控制活塞的所说后承压面的面积要小于所说前承压面的面积。
12根据权利要求1所述的制动系统,其特征在于:所说制动压力控制装置包括一个基于行程的电能控制部分和一个基于控制压力的电能控制部分,基于行程的控制部分在所说限流装置对从后压力室排出的流体进行限流时,根据所说控制活塞的工作行程,对输送到动力驱动装置的电流进行控制;基于行程的控制部分是在所说限流装置不对排出流体进行限流时,在前控制压力室中流体压力的基础上对电流进行控制。
13.根据权利要求8所述的制动系统,其特征在于:当所说保压请求检测部分检测到存在保压需求时,所说制动压力控制装置将输送给所说动力驱动装置的电流量减少到一个设定值。
14.根据权利要求8所述的制动系统,其特征在于:当所说保压请求检测部分检测到需要执行保压操作时,所说制动压力控制装置(200、S101-S104)将输送给动力驱动装置的电流量控制到某个数值,该数值是由人工制动操纵元件的工作状态来确定的。
15.根据权利要求2所述的制动系统,其特征在于:所说限流装置包括一个电磁控制阀(135;250;320),其可响应于一个从所说制动压力控制装置接收来的信号而工作,且制动压力控制装置包括一个阀与电能的控制部分(200),当制动缸与所说主缸隔绝时,该部分根据人工制动操纵元件的工作状态,对电磁控制阀、以及输送给动力驱动装置的电能进行控制。
16.根据权利要求15所述的制动系统,其中所说制动压力控制装置(200)包括一个保压请求检测部分(S81;S101),其用于在所说人工制动操纵元件(34)的工作状态的基础上来检测是否需要保持制动缸中的流体压力,
所说制动系统还包括:一个单向阀装置(264;274),该装置能允许流体在从所说后压力室向所说制动缸的第一方向上流动,但禁止流体在与第一方向相反的第二方向上流动,且其中所说阀与电能的控制部分包括一个电能增加和减少部分,当所说保压请求检测部分检测到保压请求时,所说电能增加和减少部分先增加所说的电能量,并将电磁控制阀调到限流状态,从而禁止流体从后压力室排出,然后一旦电能量已经被增大、且电磁控制阀被调到限流状态之后,该电能增加和减少部分再将电能减少。
17.根据权利要求16所述的制动系统,其特征在于:所说电能增加和减少部分包括一个基于行程的电能增加部分,该部分能根据所说前控制压力室的容积由于所说控制活塞的回缩运动而增大的量,增大所说电能量。
18.根据权利要求16或17所述的制动系统,其特征在于:所说电能增加和减少部分包括一个基于控制压力的电能增加部分,该部分能根据所说前控制压力室的容积由于控制活塞回缩运动而出现减小的量,而增大所说电能量。
19.根据权利要求16或17所述的制动系统,其特征在于:所说电能增加和减少部分包括一个预调量增加部分,该部分用于将电能量增加一个设定的量。
20.根据权利要求16或17所述的制动系统,其特征在于:所说电能增加和减少部分包括一个保持部分,其能在电能量增加之后、在电能量减少之前,将电能量保持一段设定的时间。
21.根据权利要求1所述的制动系统,其特征在于:所说限流装置是一个抑流装置,其可抑制从所说后压力室排出的流体。
22.根据权利要求1所述的制动系统,其中,所说制动压力控制装置包括:
一个泄漏检测部分(200、S84),用于检测限流装置实际发生的流体泄漏,或者检测泄漏的可能性;以及
一个供电部分(200、S87),其用于当泄露检测部分检测到存在实际泄漏或泄漏可能性时,向所说动力驱动装置供电。
23.根据权利要求22所述的制动系统,其特征在于:所说泄漏检测部分包括一个部分,该部分根据如下的至少一个指标来检测出实际泄漏或泄漏的可能性:制动系统的工作状态、装备有该制动系统的车辆的行驶状态。
24.根据权利要求22或23所述的制动系统,其特征在于:所说供电部分在如下至少一个指标的基础上对输送到所说动力驱动装置的电能进行控制:制动系统的工作状态、装备有该制动系统的车辆的行驶状态。
25.根据权利要求22或23所述的制动系统,其特征在于:所说供电部分根据制动系统的工作状态与装备有该制动系统的车辆行驶状态中的至少一个指标,确定出如下的至少一个量:向所说动力驱动装置输送的电能量、以及向所说动力驱动装置供电能的持续时间。
26.根据权利要求2或3所述的制动系统,其特征在于:所说制动压力控制装置在如下之一的选择状态中工作:
一第一控制状态,在该状态下,在所说制动缸与所说主缸隔绝的情况下,通过向所说动力驱动装置供电来控制所说制动缸的流体压力;以及
一第二控制状态,在该状态中,所说制动缸与主缸保持相通,以利用从所说主缸输出的压力流体对所说制动缸进行作用。
27.根据权利要求2或3所述的制动系统,其还包括:一个行程模拟器(136)和一个模拟器转换装置(12、135、250),且其中所说行程模拟器包括:
一个壳体;
一个模拟器活塞(137),其可滑动地容纳在所说壳体中,并与壳体相配合而形成一第一变容腔(139)和一第二变容腔(140),所说第一变容腔与所说主缸的一个加压室(36、38)相通,而所说第二变容腔则与所说压力控制缸(120)的所说后压力室(128)相通;以及
偏置装置(138),该装置在使第一变容腔的容积减小的方向对模拟器活塞进行偏置,
且其中,所说模拟器转换装置用于将所说行程模拟器(136)在一可活动状态和一不可活动状态之间转换,其中在可活动状态下,所说第一变容腔的容积可随所说人工制动操纵元件的动作而变化,而在不可活动状态下,禁止所说第一变容腔的容积的所说变化。
28.根据权利要求1-3任一所述的制动系统,其还包括:一个单向阀装置(264;274),该装置能允许流体在从所说后压力室向所说制动缸的第一方向上流动,但却抑制流体在与第一方向相反的第二方向上流动。
29.根据权利要求5、6、27任一所述的制动系统,其布置成:所说后压力室的容积增加量要大于所说行程模拟器的所说第二变容腔的容积减小量。
CNB01145914XA 2000-12-28 2001-12-28 在主缸和制动缸之间带有高压源的制动系统 Expired - Fee Related CN1275809C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2000402219A JP4449212B2 (ja) 2000-12-28 2000-12-28 ブレーキ装置
JP402220/00 2000-12-28
JP2000402220 2000-12-28
JP402219/00 2000-12-28
JP2001246366A JP4774651B2 (ja) 2000-12-28 2001-08-15 ブレーキ装置
JP246366/01 2001-08-15

Publications (2)

Publication Number Publication Date
CN1374218A CN1374218A (zh) 2002-10-16
CN1275809C true CN1275809C (zh) 2006-09-20

Family

ID=27345628

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB01145914XA Expired - Fee Related CN1275809C (zh) 2000-12-28 2001-12-28 在主缸和制动缸之间带有高压源的制动系统

Country Status (5)

Country Link
US (1) US6604795B2 (zh)
EP (1) EP1219516B1 (zh)
KR (1) KR100486332B1 (zh)
CN (1) CN1275809C (zh)
DE (1) DE60121714T2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102448782A (zh) * 2009-06-12 2012-05-09 本田技研工业株式会社 车辆用制动装置
CN101868387B (zh) * 2007-11-21 2014-02-12 大陆-特韦斯贸易合伙股份公司及两合公司 用于机动车辆的制动系统

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6604795B2 (en) * 2000-12-28 2003-08-12 Toyota Jidosha Kabushiki Kaisha Braking system including high-pressure source between master cylinder and brake cylinder
EP1446312B1 (de) * 2001-02-12 2007-04-18 Continental Teves AG & Co. oHG Elektrohydraulische bremsanlage für kraftfahrzeuge
JP4654547B2 (ja) * 2001-07-24 2011-03-23 トヨタ自動車株式会社 ブレーキ装置
US7063393B2 (en) 2001-08-22 2006-06-20 Advics Co., Ltd. Electronic brake system without pump unit
JP3969169B2 (ja) * 2002-04-24 2007-09-05 株式会社アドヴィックス 車両用電動ブレーキ装置
US7032566B2 (en) 2003-05-30 2006-04-25 Caterpillar Inc. Fuel injector nozzle for an internal combustion engine
EP1795049B1 (en) 2004-09-01 2016-03-09 Hatch Ltd. System and method for minimizing loss of electrical conduction during input of feed material to a furnace
JP4654722B2 (ja) * 2005-03-22 2011-03-23 株式会社アドヴィックス 車両用ブレーキ装置
JP2007038698A (ja) * 2005-07-29 2007-02-15 Toyota Motor Corp 車両用制動装置
DE102005036170A1 (de) * 2005-08-02 2007-02-08 Scheffer, Harald Schienbeinschützer
JP4186991B2 (ja) * 2006-01-31 2008-11-26 トヨタ自動車株式会社 車両用制動装置
JP4711845B2 (ja) * 2006-02-09 2011-06-29 本田技研工業株式会社 ブレーキ装置
US8328297B2 (en) * 2006-06-06 2012-12-11 Honda Motor Co., Ltd. Brake system
JP4999416B2 (ja) 2006-10-02 2012-08-15 本田技研工業株式会社 ブレーキ装置
JP4503007B2 (ja) * 2006-12-12 2010-07-14 本田技研工業株式会社 ブレーキ装置
JP4974685B2 (ja) * 2007-01-16 2012-07-11 本田技研工業株式会社 ブレーキ装置
JP4792416B2 (ja) * 2007-03-12 2011-10-12 本田技研工業株式会社 ブレーキ装置
JP4890378B2 (ja) * 2007-07-31 2012-03-07 日立オートモティブシステムズ株式会社 ブレーキ装置
JP2009090933A (ja) * 2007-10-11 2009-04-30 Honda Motor Co Ltd 制動装置
JP2009090932A (ja) 2007-10-11 2009-04-30 Honda Motor Co Ltd 制動装置
US8231181B2 (en) * 2008-01-10 2012-07-31 Honda Motor Co., Ltd. Brake system
JP2009190425A (ja) * 2008-02-12 2009-08-27 Honda Motor Co Ltd ブレーキ装置および自動ブレーキアクチュエータ
JP2010013069A (ja) * 2008-07-07 2010-01-21 Honda Motor Co Ltd ブレーキ装置
JP5297748B2 (ja) * 2008-10-01 2013-09-25 トヨタ自動車株式会社 ブレーキ制御装置
JP5250379B2 (ja) 2008-10-14 2013-07-31 日立オートモティブシステムズ株式会社 ブレーキ制御装置
US8250861B2 (en) * 2009-11-20 2012-08-28 Robert Bosch Gmbh Energy storage system including pressurized reservoir
JP5123972B2 (ja) * 2010-04-05 2013-01-23 本田技研工業株式会社 車両用ブレーキ装置および車両用ブレーキ装置の制御方法
US8936322B2 (en) * 2010-04-20 2015-01-20 Robert Bosch Gmbh Brake system with selector valve for selecting between two modes of operation
US8523294B2 (en) * 2010-04-20 2013-09-03 Robert Bosch Gmbh Vehicular brake system operable in dual modes
DE102010020002B4 (de) 2010-05-10 2024-03-28 Zf Active Safety Gmbh Hydraulikbaugruppe für eine Fahrzeug-Bremsanlage
DE102010023865B4 (de) * 2010-06-15 2024-03-28 Zf Active Safety Gmbh Hydraulikdruckerzeuger für eine Fahrzeug-Bremsanlage
JP5726895B2 (ja) * 2010-11-17 2015-06-03 本田技研工業株式会社 電動ブレーキアクチュエータ及び車両用ブレーキシステム
JP5320380B2 (ja) * 2010-12-20 2013-10-23 本田技研工業株式会社 車両用ブレーキ装置
JP5379783B2 (ja) * 2010-12-22 2013-12-25 本田技研工業株式会社 車両用ブレーキ装置
JP5411118B2 (ja) 2010-12-23 2014-02-12 本田技研工業株式会社 車両用ブレーキ装置
JP5352602B2 (ja) * 2011-01-31 2013-11-27 本田技研工業株式会社 車両用ブレーキ装置
DE102012205859A1 (de) * 2011-04-19 2012-10-25 Continental Teves Ag & Co. Ohg Bremsanlage für Kraftfahrzeuge sowie Verfahren zum Betrieb einer Bremsanlage
KR101854106B1 (ko) * 2011-06-10 2018-05-03 현대모비스 주식회사 브레이크 장치
KR101338431B1 (ko) * 2011-07-08 2013-12-10 현대자동차주식회사 자동차의 회생제동 시스템
DE102011079860A1 (de) * 2011-07-26 2013-01-31 Robert Bosch Gmbh Bremssystem für ein Fahrzeug und Verfahren zum Betreiben eines Bremssystems eines Fahrzeugs
US8777331B2 (en) 2011-09-23 2014-07-15 Robert Bosch Gmbh Brake booster
US8496302B2 (en) * 2011-09-23 2013-07-30 Robert Bosch Gmbh Brake booster
CN104203670B (zh) * 2012-03-30 2016-12-28 本田技研工业株式会社 制动装置
KR101418329B1 (ko) * 2012-04-30 2014-07-10 주식회사 만도 브레이크 시스템용 마스터실린더
JP5631937B2 (ja) * 2012-07-17 2014-11-26 本田技研工業株式会社 制動力発生装置
KR101392840B1 (ko) * 2012-10-31 2014-05-09 주식회사 만도 차량용 전자식 브레이크 시스템
US20140159473A1 (en) * 2012-12-11 2014-06-12 Robert Bosch Gmbh Brake system pedal simulator connection
US10940843B2 (en) 2013-03-15 2021-03-09 ZF Active Safety US Inc. Vehicle brake system having plunger power source
US9321444B2 (en) * 2013-03-15 2016-04-26 Kelsey-Hayes Company Vehicle brake system with dual acting plunger assembly
DE102013205627A1 (de) * 2013-03-28 2014-10-02 Robert Bosch Gmbh Bremsgerät für ein Bremssystem eines Fahrzeugs und Bremssystem für ein Fahrzeug
KR102033892B1 (ko) * 2013-05-14 2019-10-18 현대모비스 주식회사 전자식 유압 브레이크장치
KR102033893B1 (ko) * 2013-05-15 2019-10-18 현대모비스 주식회사 Esc 통합형 제동 시스템
WO2015040889A1 (ja) * 2013-09-20 2015-03-26 日立オートモティブシステムズ株式会社 ブレーキ装置
JP5864504B2 (ja) * 2013-10-04 2016-02-17 本田技研工業株式会社 車両用制動システム
DE102013018073A1 (de) * 2013-11-28 2015-05-28 Lucas Automotive Gmbh Elektrohydraulische Kraftfahrzeug-Bremsanlage
DE102013225785A1 (de) * 2013-12-12 2015-06-18 Robert Bosch Gmbh Schlupfgeregelte hydraulische Fahrzeugbremsanlage und Kombination eines Druckschwingungsdämpfers und eines Rückschlagventils für eine solche Fahrzeugbremsanlage
JP6341580B2 (ja) * 2014-04-24 2018-06-13 日立オートモティブシステムズ株式会社 ブレーキ制御装置、ブレーキシステム、及びブレーキ液圧発生方法
KR101592166B1 (ko) * 2014-09-02 2016-02-11 현대모비스 주식회사 차량용 제동장치
DE102014220432A1 (de) * 2014-10-09 2016-04-14 Continental Teves Ag & Co. Ohg Hydraulisches Sicherheitssystem, Bremsanlage und Betriebsverfahren
US20160123418A1 (en) * 2014-10-29 2016-05-05 GM Global Technology Operations LLC Brake system with actuation assist
KR102288949B1 (ko) * 2015-01-22 2021-08-12 현대모비스 주식회사 자동차의 브레이크 시스템
JP6413138B2 (ja) * 2015-02-06 2018-10-31 日立オートモティブシステムズ株式会社 液圧制御装置及びブレーキシステム
CN105151030A (zh) * 2015-09-30 2015-12-16 芜湖伯特利汽车安全系统股份有限公司 用于制动踏板的基于abs的能量回收控制装置及其控制方法
KR102475862B1 (ko) * 2015-12-04 2022-12-09 에이치엘만도 주식회사 전자식 브레이크 시스템
JP6528209B2 (ja) * 2015-12-09 2019-06-12 日立オートモティブシステムズ株式会社 ブレーキ装置、ブレーキシステム及びブレーキ装置の制御方法
DE102016202224A1 (de) * 2016-02-15 2017-08-17 Continental Teves Ag & Co. Ohg Verfahren zum Betreiben einer Bremsanlage eines Fahrzeuges und Bremsanlage
KR102590724B1 (ko) * 2016-05-20 2023-10-20 에이치엘만도 주식회사 전자식 브레이크 시스템
DE102016212710A1 (de) * 2016-07-13 2018-01-18 Robert Bosch Gmbh Elektronisch schlupfregelbare Fremdkraftbremsanlage und Verfahren zur Steuerug einer elektronisch schlupfregelbaren Fremdkraftbremsanlage
KR102554822B1 (ko) * 2016-08-24 2023-07-12 에이치엘만도 주식회사 차량 제어 장치 및 그 제어 방법
KR102383331B1 (ko) * 2016-11-22 2022-04-05 현대자동차주식회사 자동차의 avh 해제 방법
US10315640B2 (en) 2016-12-08 2019-06-11 Robert Bosch Gmbh Vehicle having brake system and method of operating
US10144404B2 (en) 2016-12-08 2018-12-04 Robert Bosch Gmbh Vehicle having brake system and method of operating
IT201600130805A1 (it) * 2016-12-23 2018-06-23 Freni Brembo Spa Impianto frenante a controllo automatico di tipo brake-by-wire per veicoli
US20180178773A1 (en) * 2016-12-27 2018-06-28 Robert Bosch Gmbh Vehicle brake system and method of operating
KR102514974B1 (ko) * 2017-05-23 2023-03-28 에이치엘만도 주식회사 전자식 브레이크 시스템
US10583819B2 (en) * 2017-05-23 2020-03-10 Mando Corporation Electronic brake system
DE102017113563A1 (de) * 2017-06-20 2018-12-20 Ipgate Ag Bremssystem
DE102017217413B4 (de) * 2017-09-29 2022-02-10 Continental Teves Ag & Co. Ohg Verfahren zum Ermitteln einer Betriebsgröße einer Trommelbremse, Trommelbremsanordnungen, Auswertevorrichtung und Speichermedium
DE112018006740T5 (de) * 2017-12-31 2020-09-10 ZF Actice Safety U.S. Inc. Fahrzeugbremssystem und Selbstdiagnosetests
DE102018204900B4 (de) * 2018-03-29 2021-02-25 Volkswagen Aktiengesellschaft Bremssystem für ein Fahrzeug mit einer zumindest teilautomatisierten Steuerungsfunktion
JP7021592B2 (ja) * 2018-03-30 2022-02-17 株式会社アドヴィックス 制動制御装置
US10800389B2 (en) * 2018-08-31 2020-10-13 Robert Bosch Gmbh Haptic feedback for decoupled brake system
CN109435924A (zh) * 2018-11-16 2019-03-08 东北林业大学 带液压调节的车辆制动防抱死系统及制动方法
DE202019101596U1 (de) * 2019-02-12 2020-05-13 Ipgate Ag Hydrauliksystem mit mindestens zwei hydraulischen Kreisen und mindestens zwei Druckversorgungseinrichtungen
KR102652162B1 (ko) * 2019-09-11 2024-03-28 현대모비스 주식회사 차량의 제동장치 및 그 제어방법
DE102019220355A1 (de) * 2019-12-20 2021-06-24 Robert Bosch Gesellschaft mit beschränkter Haftung Hydraulische Fremdkraft-Fahrzeugbremsanlage und Verfahren zum Befüllen einer hydraulischen Fremdkraft-Fahrzeugbremsanlage
CN111605526A (zh) * 2020-06-03 2020-09-01 安徽江淮汽车集团股份有限公司 制动压力调节方法、装置、设备及可读存储介质
WO2022000444A1 (zh) * 2020-07-03 2022-01-06 华为技术有限公司 一种踏板感觉调节装置、控制方法
KR20230129136A (ko) 2022-02-28 2023-09-06 주식회사 웰런비앤에프 발효 작두콩 잎 추출물을 유효성분으로 포함하는 항균, 항산화, 또는 항염증용 조성물
CN115384468B (zh) * 2022-09-05 2023-12-12 浙江极氪智能科技有限公司 制动系统及车辆

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3424912A (en) * 1965-07-08 1969-01-28 Moore Business Forms Inc Optical instrument for character print quality analysis
US4208881A (en) * 1978-07-25 1980-06-24 General Motors Corporation Quick take-up master cylinder
DE3424912A1 (de) * 1984-07-06 1986-01-16 Alfred Teves Gmbh, 6000 Frankfurt Elektronisch kontrolliertes bremsbetaetigungssystem
US4755008A (en) * 1985-12-25 1988-07-05 Nippondenso Co., Ltd. Braking system with power brake, braking force proportioning, anti-skid, and traction control functions
JP2762738B2 (ja) 1990-10-26 1998-06-04 トヨタ自動車株式会社 マニュアル・電気二系統ブレーキシステム
US5713640A (en) * 1994-01-20 1998-02-03 Itt Automotive Europe Gmbh Hydraulic braking system with an auxiliary pressure source having a quick fill chamber
DE4413579A1 (de) * 1994-04-19 1995-10-26 Teves Gmbh Alfred Elektronisch regelbares Bremsbetätigungssystem
DE4415438A1 (de) * 1994-05-03 1995-11-09 Teves Gmbh Alfred Elektronisch regelbares Bremsbetätigungssystem
DE4426682A1 (de) 1994-07-28 1996-02-01 Teves Gmbh Alfred Elektronisch regelbares Bremsbetätigungssystem
US5558409A (en) 1994-12-14 1996-09-24 General Motors Corporation Electrohydraulic braking system
GB9425457D0 (en) * 1994-12-16 1995-02-15 Lucas Ind Plc Improvements in hydraulic braking systems for vehicles
DE4445975A1 (de) * 1994-12-22 1996-06-27 Bosch Gmbh Robert Bremsanlage für Kraftfahrzeuge
DE19548248A1 (de) * 1995-12-22 1997-06-26 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Pumpe eines elektrohydraulischen Bremssystems
JPH10167036A (ja) * 1996-12-10 1998-06-23 Unisia Jecs Corp 車両運動制御装置
JP3601261B2 (ja) 1997-07-07 2004-12-15 トヨタ自動車株式会社 ブレーキ液圧制御装置
US6309032B1 (en) * 1997-07-17 2001-10-30 Aisin Seiki Kabushiki Kaisha Brake control apparatus with a stroke simulator
JPH1148955A (ja) * 1997-08-08 1999-02-23 Toyota Motor Corp 液圧ブレーキ装置
JPH11245797A (ja) * 1998-02-27 1999-09-14 Akebono Brake Ind Co Ltd ブレーキ液圧制御装置
JP3496549B2 (ja) * 1998-04-17 2004-02-16 トヨタ自動車株式会社 液圧ブレーキ装置
JP2000335390A (ja) * 1999-05-28 2000-12-05 Aisin Seiki Co Ltd 車両用ブレーキ液圧制御装置
JP2001106052A (ja) * 1999-10-08 2001-04-17 Bosch Braking Systems Co Ltd ブレーキ倍力装置
JP4333000B2 (ja) * 1999-12-10 2009-09-16 トヨタ自動車株式会社 車両用ブレーキシステム
JP4449212B2 (ja) * 2000-12-28 2010-04-14 トヨタ自動車株式会社 ブレーキ装置
JP4774651B2 (ja) * 2000-12-28 2011-09-14 トヨタ自動車株式会社 ブレーキ装置
US6604795B2 (en) * 2000-12-28 2003-08-12 Toyota Jidosha Kabushiki Kaisha Braking system including high-pressure source between master cylinder and brake cylinder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101868387B (zh) * 2007-11-21 2014-02-12 大陆-特韦斯贸易合伙股份公司及两合公司 用于机动车辆的制动系统
CN102448782A (zh) * 2009-06-12 2012-05-09 本田技研工业株式会社 车辆用制动装置

Also Published As

Publication number Publication date
EP1219516A3 (en) 2004-01-14
EP1219516B1 (en) 2006-07-26
DE60121714T2 (de) 2007-07-12
DE60121714D1 (de) 2006-09-07
EP1219516A2 (en) 2002-07-03
KR100486332B1 (ko) 2005-04-29
US6604795B2 (en) 2003-08-12
CN1374218A (zh) 2002-10-16
KR20020055441A (ko) 2002-07-08
US20020084693A1 (en) 2002-07-04

Similar Documents

Publication Publication Date Title
CN1275809C (zh) 在主缸和制动缸之间带有高压源的制动系统
CN1286686C (zh) 液压控制装置
CN1075006C (zh) 具有两种不同的制动力分配方式的车辆制动系统
CN1291857C (zh) 混合动力车辆的控制装置
CN1757551A (zh) 液压制动装置
CN1088665C (zh) 车辆用制动装置
CN1189349C (zh) 制动系统,其中使制动器操作力比增强器输出所对应的值大
CN1241766C (zh) 用于在由电源给负载装置供电时诊断该电源的装置
CN1278882C (zh) 车辆驱动力控制设备
CN1299754A (zh) 具有用于控制流体流量的装置的机动车刹车系统
CN1807161A (zh) 液压控制设备和操作特性获取设备
CN1241767C (zh) 混合式动力车的控制设备
CN1620568A (zh) 油压式变速车辆
CN1141863A (zh) 液压控制装置
CN1677286A (zh) 用于移动体的控制系统
CN1240566C (zh) 混合型动力汽车的助推控制装置
CN1082911C (zh) 行驶稳定控制系统
CN101049813A (zh) 车体前部结构
CN1184047A (zh) 防闭锁制动系统,控制起点确定方法及车轮参数控制器
CN1168768C (zh) 橡胶组合物
CN1743654A (zh) 车载电子控制装置
CN1608011A (zh) 集成式车辆运动控制系统
CN1623818A (zh) 车辆的减速控制装置和方法
CN1675079A (zh) 车轮状态获得装置和车辆状态获得装置
CN1927612A (zh) 用于混合动力车辆的发动机启动控制装置

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20060920

Termination date: 20171228