CN113692510A - 容量控制阀 - Google Patents

容量控制阀 Download PDF

Info

Publication number
CN113692510A
CN113692510A CN202080028782.3A CN202080028782A CN113692510A CN 113692510 A CN113692510 A CN 113692510A CN 202080028782 A CN202080028782 A CN 202080028782A CN 113692510 A CN113692510 A CN 113692510A
Authority
CN
China
Prior art keywords
valve
pressure
control
valve body
capacity control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202080028782.3A
Other languages
English (en)
Other versions
CN113692510B (zh
Inventor
叶山真弘
福留康平
神崎敏智
高桥涉
白藤啓吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eagle Industry Co Ltd
Original Assignee
Eagle Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eagle Industry Co Ltd filed Critical Eagle Industry Co Ltd
Publication of CN113692510A publication Critical patent/CN113692510A/zh
Application granted granted Critical
Publication of CN113692510B publication Critical patent/CN113692510B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/12Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by varying the length of stroke of the working members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • F16K27/029Electromagnetically actuated valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1809Controlled pressure
    • F04B2027/1813Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1831Valve-controlled fluid connection between crankcase and suction chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/185Discharge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1854External parameters

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

本发明提供一种能够适当地调整阀开度的容量控制阀。该容量控制阀具备:阀壳体(10),其形成有供吸入压力(Ps)的吸入流体通过的吸入口(11)、以及供控制压力(Pc)的控制流体通过的控制口(12);阀芯(51),其由螺线管(80)驱动;弹簧(85),其对阀芯(51)向与螺线管(80)的驱动方向相反的方向施力;以及CS阀(50),其由CS阀座(10a)和阀芯(51)构成,并且通过阀芯(51)的移动对控制口(12)与吸入口(11)的连通进行开闭,其中,通过CS阀(50)的开闭进行控制压力(Pc)的控制,并且具有受压部(51d),其使与排出压力(Pd)对应的力作用于阀芯(51)的轴向。

Description

容量控制阀
技术领域
本发明涉及一种对工作流体的容量进行可变控制的容量控制阀,例如,涉及一种根据压力对汽车的空调系统中使用的可变容量型压缩机的排出量进行控制的容量控制阀。
背景技术
汽车等的空调系统中使用的可变容量型压缩机具备:由发动机进行旋转驱动的旋转轴、倾斜角度可变地与旋转轴连结的斜板、以及与斜板连结的压缩用活塞等,通过使斜板的倾斜角度变化,来使活塞的行程量变化以控制流体的排出量。使用由电磁力进行开闭驱动的容量控制阀,利用吸入流体的吸入室的吸入压力Ps、排出由活塞加压的流体的排出室的排出压力Pd、以及收纳了斜板的控制室的控制压力Pc,并对控制室内的压力进行适当控制,由此,该斜板的倾斜角度能够连续地变化。
在可变容量型压缩机的连续驱动时,容量控制阀进行了如下正常控制:通过控制计算机进行通电控制,通过由螺线管产生的电磁力使阀芯沿轴向移动,开闭设置于供排出压力Pd的排出流体通过的排出口与供控制压力Pc的控制流体通过的控制口之间的DC阀以调整可变容量型压缩机的控制室的控制压力Pc。
在容量控制阀的正常控制时,适当控制可变容量型压缩机中的控制室的压力,并使斜板相对于旋转轴的倾斜角度连续地变化,从而使活塞的行程量变化来控制流体相对于排出室的排出量,并将空调系统调整至目标制冷能力。
专利文献1的容量控制阀通过开闭DC阀来控制向可变容量型压缩机的控制室供给的排出压力Pd的流体,使分别作用于活塞的行程方向的排出室的排出压力Pd与控制室的控制压力Pc的压力差接近目标值,从而使从排出室排出的流体的排出量变化。另外,DC阀的阀开度会根据对螺线管施加的电流产生的电磁力而变化,且压力差的目标值会相应地改变,使从排出室排出的流体的排出量变化。
另外,在专利文献1中,通过向控制室供给排出压力Pd的流体来进行调整以提高控制压力Pc的Pd-Pc控制,能够迅速地进行压力调整,但是为了进行更精密的压力调整,在容量控制阀的压敏室中设置具有波纹管的压敏体,并使该压敏体根据吸入压力Ps沿阀芯的移动方向伸缩,从而向阀芯的开阀方向施加作用力,调整DC阀的阀开度。这样,相对于与对螺线管施加的电流对应的恒定电磁力,通过感知吸入压力Ps的压敏体来调整DC阀的阀开度,从而考虑到吸入压力Ps而细致地调整控制压力Pc,提高了从排出室排出的流体的排出量的控制精度。
现有技术文献
专利文献
专利文献1:日本特开2017-31834号公报(第6页、图2)
发明内容
发明要解决的课题
专利文献1的容量控制阀除了Pd-Pc控制以外,还使用感知吸入压力Ps的压敏体来校正阀芯的动作,从而能够对DC阀的阀开度进行调整来提高从排出室排出的流体的排出量的控制精度,但是吸入压力Ps较低,对阀芯的动作造成的影响较小,因此存在通过阀开度的调整使空调系统的控制压力达到目标值为止需要耗费时间的问题。
本发明是着眼于这样的问题而完成的,其目的在于提供一种能够适当地调整阀开度的容量控制阀。
用于解决课题的手段
为了解决上述课题,本发明的容量控制阀具备:
阀壳体,其形成有供吸入压力的吸入流体通过的吸入口和供控制压力的控制流体通过的控制口;
阀芯,其由螺线管驱动;
弹簧,其向与所述螺线管的驱动方向相反的方向对所述阀芯施力;以及
CS阀,其由CS阀座和所述阀芯构成,并且通过所述阀芯的移动对所述控制口与所述吸入口的连通进行开闭,
其中,通过所述CS阀的开闭进行控制压力的控制,
并且具有受压部,其使与排出压力对应的力作用于所述阀芯的轴向。
由此,能够通过压力较高的排出压力来校正阀芯的动作。因此,容易进行CS阀的阀开度的调整,并且能够使空调系统的控制压力在更短时间内达到目标值。
也可以是,所述受压部设置于所述阀芯。
由此,能够使与排出压力对应的力作用于通过螺线管的电磁力而动作的阀芯,因此对阀芯的动作的校正的响应性较高。
也可以是,所述受压部设置在与所述阀芯对置并分离的分体的滑动杆上。
由此,通过组合由螺线管驱动的阀芯的动作和与排出压力对应的力作用在轴向上而引起的滑动杆的动作,能够设定对阀芯的动作进行校正的区域和不进行校正的区域,因此容易适当改变由校正带来的控制特性。
也可以是,所述滑动杆以可接触或分离的方式与所述阀芯分离。
由此,能够将直到滑动杆与阀芯接触为止的区域设定为与排出压力对应的力不作用于阀芯的动作的缓冲区域。
也可以是,在所述滑动杆与所述阀芯之间夹设有施力单元。
由此,与作用于滑动杆的排出压力对应的力经由施力单元作用于阀芯,因此能够将直到滑动杆与阀芯接触为止的区域设定为与排出压力对应的力难以作用于阀芯的动作的缓冲区域。
也可以是,在所述滑动杆与所述阀壳体之间夹设有施力单元。
由此,能够将直到滑动杆与阀芯接触为止的区域设定为与排出压力对应的力不作用于阀芯的动作的缓冲区域,并且通过滑动杆与阀芯接触,能够使与作用于滑动杆的排出压力对应的力在通过施力单元的作用力进行了抑制的状态下作用于阀芯。
也可以是,在所述螺线管的轴向相反侧设置有密封部,该密封部将设置于所述阀壳体的引导孔与所述阀芯之间密封。
由此,能够进行密封以使得作用于阀芯的受压部的排出压力的排出流体不会侵入到阀壳体内,因此排出压力不易直接影响控制压力、吸入压力。
也可以是,在所述螺线管的轴向相反侧设置有密封部,该密封部将设置于所述阀壳体的引导孔与所述滑动杆之间密封。
由此,能够进行密封以使得作用于滑动杆的受压部的排出压力的排出流体不会侵入到阀壳体内,因此排出压力不易直接影响控制压力、吸入压力。
也可以是,所述阀芯被所述弹簧向所述CS阀的开阀方向施力。
由此,通过在非通电时使阀芯向开阀方向移动,能够容易地使控制压力与吸入压力一致,且能够瞬间从最大通电状态恢复到正常控制。
附图说明
图1是示出在本发明的实施例1的容量控制阀的非通电状态下CS阀打开的情况的剖视图;
图2是示出在实施例1的容量控制阀的通电状态下(正常控制时)CS阀关闭的情况的剖视图;
图3是示出在实施例1的容量控制阀的通电状态下(正常控制时)、特别是在电流恒定时与排出压力Pd对应的CS阀的开口面积的变化特性的曲线图;
图4是示出实施例1的容量控制阀的变形例的剖视图;
图5是示出在本发明的实施例2的容量控制阀的非通电状态下CS阀打开的情况的剖视图;
图6是示出在实施例2的容量控制阀的通电状态下(正常控制时)CS阀关闭的情况的剖视图;
图7是示出在实施例2的容量控制阀的通电状态下(正常控制时)、特别是在电流恒定时与排出压力Pd对应的CS阀的开口面积的变化特性的曲线图;
图8是示出实施例2的容量控制阀的变形例的剖视图;
图9是示出在本发明的实施例3的容量控制阀的非通电状态下CS阀打开的情况的剖视图;
图10是示出在实施例3的容量控制阀的通电状态下(正常控制时)CS阀关闭的情况的剖视图;
图11是示出在实施例3的容量控制阀的通电状态下(正常控制时)、特别是在电流恒定时与排出压力Pd对应的CS阀的开口面积的变化特性的曲线图;
图12是示出实施例3的容量控制阀的变形例的剖视图;
图13是示出在本发明的实施例4的容量控制阀的非通电状态下CS阀打开的情况的剖视图;
图14是示出在实施例4的容量控制阀的通电状态下(正常控制时)CS阀关闭的情况的剖视图;
图15是示出在实施例4的容量控制阀的通电状态下(正常控制时)、特别是在电流恒定时与排出压力Pd对应的CS阀的开口面积的变化特性的曲线图。
具体实施方式
以下,根据实施例对用于实施本发明的容量控制阀的方式进行说明。
实施例1
参照图1至图3,对实施例1的容量控制阀进行说明。以下,将从图1的正面侧观察时的左右侧作为容量控制阀的左右侧进行说明。
本发明的容量控制阀V1组装在汽车等的空调系统使用的未图示的可变容量型压缩机中,通过对制冷剂即工作流体(以下简称为“流体”)的压力进行可变控制,来控制可变容量型压缩机的排出量,将空调系统调整至目标制冷能力。
首先,对可变容量型压缩机进行说明。可变容量型压缩机具有外壳,该外壳具备排出室、吸入室、控制室和多个缸体。此外,在可变容量型压缩机中设置有将排出室与控制室直接连通的连通路,在该连通路中设置有用于对排出室和控制室的压力进行平衡调整的固定节流孔9(参照图1和图2)。
另外,可变容量型压缩机具备:旋转轴,其由设置在外壳的外部的未图示的发动机进行旋转驱动;斜板,其在控制室内通过铰链机构以偏心状态连结于旋转轴;以及多个活塞,其与斜板连结,且往复移动自如地嵌合在各气缸内,其中,使用由电磁力进行开闭驱动的容量控制阀V1,利用吸入流体的吸入室的吸入压力Ps、排出由活塞加压的流体的排出室的排出压力Pd、以及收纳了斜板的控制室的控制压力Pc,并对控制室内的压力进行适当控制,来使斜板的倾斜角度连续地变化,从而使活塞的行程量变化以控制流体的排出量。
如图1和图2所示,组装在可变容量型压缩机中的容量控制阀V1调整对构成螺线管80的线圈86通电的电流,并进行容量控制阀V1中的CS阀50的开闭控制,从而控制从控制室向吸入室流出的流体以对控制室内的控制压力Pc进行可变控制。此外,排出室的排出压力Pd的排出流体经由固定节流孔9始终供给至控制室,并且通过关闭容量控制阀V1中的CS阀50,来使控制室内的控制压力Pc上升。
在本实施例1中,CS阀50由作为阀芯的CS阀芯51和形成在阀壳体10的内周面上的CS阀座10a构成,并且CS阀50通过在CS阀芯51的大径部51b的轴向左端部上形成的阶梯部51a与CS阀座10a接触或分离而进行开闭。
接着,对容量控制阀V1的结构进行说明。如图1和图2所示,容量控制阀V1主要由以下部分构成:阀壳体10,其由金属材料或树脂材料形成;CS阀芯51,其轴向左端部配置在阀壳体10内;以及螺线管80,其与阀壳体10连接并对CS阀芯51施加驱动力。
如图1和图2所示,螺线管80主要由以下部分构成:外壳81,其具有向轴向左方打开的开口部81a;大致圆筒形状的中心柱82,其从轴向左方插入到外壳81的开口部81a中,且固定在外壳81的内径侧;CS阀芯51,其插通到中心柱82中,沿轴向往复移动自如,且其轴向左端部配置于阀壳体10内;可动铁芯84,其供CS阀芯51的大径部51b的轴向右端部插嵌固定;作为弹簧的螺旋弹簧85,其设置在中心柱82与可动铁芯84之间,且对可动铁芯84向CS阀50的开阀方向即轴向右方施力;以及励磁用线圈86,其经由绕线架卷绕于中心柱82的外侧。
如图1和图2所示,CS阀芯51是由在轴向左端形成有阶梯部51a的大径部51b和与大径部51b的轴向左侧连续设置且形成为直径比大径部51b小的小径部51c一体地构成的阶梯式柱状体,并且兼作贯通配置于螺线管80的线圈86的杆。此外,小径部51c在与大径部51b的阶梯部51a连续设置的部分处具有直径比该小径部51c的轴向左端小的缩颈部51e,因此在CS阀50开阀时确保了恒定截面的流路。
如图1和图2所示,在阀壳体10上形成有:作为吸入口的Ps口11,其与可变容量型压缩机的吸入室连通;以及作为控制口的Pc口12,其与可变容量型压缩机的控制室连通。
在阀壳体10的内部,在轴向右侧即螺线管80侧形成有第一阀室20,其与Ps口11连通且CS阀芯51的大径部51b的轴向左端部沿轴向往复移动自如地配置于其中,并且在轴向左侧形成有第二阀室30,其与Pc口12连通且CS阀芯51的小径部51c沿轴向往复移动自如地配置于其中。
在阀壳体10的内周面上形成有阀孔10b,其将第一阀室20与第二阀室30连通并供CS阀芯51的小径部51c插通。另外,在阀壳体10的内周面上,在阀孔10b的第一阀室20侧的开口端缘处形成有CS阀座10a。
另外,在阀壳体10的内周面上,在第二阀室30的轴向左侧、即螺线管80的轴向相反侧形成有引导孔10c,其能够供CS阀芯51的小径部51c的外周面以大致密封状态滑动。此外,引导孔10c的内周面与CS阀芯51的小径部51c的外周面之间沿径向略微分离而形成有微小的间隙,CS阀芯51能够相对于阀壳体10沿轴向顺利地相对移动。
此外,CS阀芯51的小径部51c从阀壳体10的引导孔10c向轴向左方突出,在CS阀芯51的轴向左端、即小径部51c的轴向左端形成有作为受压部的受压面51d,其承受可变容量型压缩机的排出室的排出压力Pd。
接着,对容量控制阀V1的动作、主要是CS阀50的开闭动作进行说明。
首先,对容量控制阀V1的非通电状态进行说明。如图1所示,容量控制阀V1在非通电状态下,通过螺旋弹簧85的作用力向轴向右方按压可动铁芯84,使得CS阀芯51一起向轴向右方移动,CS阀芯51的阶梯部51a从CS阀座10a分离,CS阀50打开。
此时,在CS阀芯51上,朝向轴向右方作用有螺旋弹簧85的作用力(Fsp)、排出流体的排出压力Pd对具有与CS阀芯51的小径部51c的截面积相等的受压面积B的受压面51d产生的力(FPd)、以及控制流体的控制压力Pc对CS阀芯51产生的力(FPc),朝向轴向左方作用有吸入流体的吸入压力Ps对CS阀芯51产生的力(FPs)。即,以向右为正,在CS阀芯51上作用有力Frod=Fsp+FPd+FPc-FPs。此外,通过使CS阀芯51的阶梯部51a与CS阀座10a接触或分离的阀口部面积A与CS阀芯51的受压面积B大致相同,能够消除作用于CS阀芯51的控制压力Pc的影响。
接着,对容量控制阀V1的通电状态进行说明。如图2所示,容量控制阀V1在通电状态下、即正常控制时、所谓的占空比控制时,当通过对螺线管80施加电流而产生的电磁力(Fsol)超过力Frod(Fsol>Frod)时,可动铁芯84被拉近到轴向左侧、即被拉向中心柱82,固定于可动铁芯84的CS阀芯51一起向轴向左方移动,从而CS阀芯51的阶梯部51a落座于CS阀座10a,CS阀50关闭。
此时,在CS阀芯51上,向轴向左方作用有电磁力(Fsol),向轴向右方作用有力Frod。即,以向右为正,在CS阀芯51上作用有力Frod-Fsol,具体为力Fsp+FPd+FPc-FPs-Fsol
其中,作用在CS阀芯51的受压面51d上的排出压力Pd会根据空调系统所要求的可变容量型压缩机的排出量而随时变化。因此,向轴向右方作用在CS阀芯51上的力FPd会根据排出压力Pd而变化,并且在对螺线管80通电的电流恒定的情况下,如图3中实线的曲线图所示,CS阀50的开口面积会根据排出压力Pd成比例地增加。此外,如图3中虚线的曲线图所示,若不使排出压力Pd作用于CS阀芯51的受压面51d,则在对螺线管80通电的电流I恒定的情况下,CS阀50的开口面积不发生变化(后述的图7、图11、图15中的虚线的曲线图也同样如此)。
由此,容量控制阀V1能够进行对CS阀50进行开闭以将从Pc口12供给的控制压力Pc的控制流体经由Ps口11供给至吸入室从而使控制室的控制压力Pc降低的Pc-Ps控制,并且能够使与控制压力Pc、吸入压力Ps相比压力较高的排出压力Pd向轴向右方、即CS阀50的开阀方向作用于CS阀芯51的受压面51d,以用于校正CS阀芯51的动作。因此,容易进行CS阀50的阀开度的调整,并且能够使空调系统的控制压力Pc在短时间内达到目标值。
另外,通过在CS阀芯51上形成供排出压力Pd作用的受压面51d,能够使与排出压力Pd对应的力(FPd)作用于具有对CS阀50进行开闭的阶梯部51a的CS阀芯51,因此对CS阀芯51的动作的校正的响应性较高。此外,无需如以往那样使用压敏体来调整CS阀芯51的动作,并且在CS阀芯51的动作的校正中使用压力较高的排出压力Pd,从而能够将由柱状体构成的CS阀芯51的轴向的端面用作受压面51d而减小其受压面积,因此能够提供部件数量较少且小型化的容量控制阀V1。
另外,通过在CS阀芯51的动作的校正中使用排出压力Pd,能够跟随与经由设置于可变容量型压缩机的固定节流孔9供给至控制室的排出流体的供给量、由于窜气而从形成于可变容量型压缩机的气缸与活塞之间的间隙泄漏到控制室的排出流体的泄漏量相应的排出压力Pd的变化,来调整CS阀50的阀开度,因此能够使空调系统的控制压力Pc在更短时间内达到目标值。
另外,容量控制阀V1构成为通过螺旋弹簧85对CS阀芯51向CS阀50的开阀方向施力的常开型,因此能够通过对螺线管80施加的电流的电流值的降低使CS阀芯51可靠地向开阀位置移动,能够从最大占空比的最大通电状态瞬时恢复到小于该最大通电状态的通电状态、即所谓的占空比控制。另外,通过在容量控制阀V1的非通电状态下使CS阀芯51向开阀方向移动,能够容易地使控制压力Pc与吸入压力Ps一致。
另外,作为本实施例1的容量控制阀V1的变形例,如图4所示,也可以在螺线管80的轴向相反侧、即阀壳体10的轴向左端部上设置有作为密封部的O形环113,其将引导孔10c与CS阀芯51的小径部51c之间密封。由此,能够防止作用于CS阀芯51的受压面51d的排出压力Pd的排出流体通过引导孔10c侵入到阀壳体10内,因此能够提高控制压力Pc的控制性。此外,O形环113通过设置于阀壳体10的轴向左端的固定部件114而被大致固定,由此能够与CS阀芯51的动作无关地维持密封性。
实施例2
参照图5至图7对实施例2的容量控制阀进行说明。此外,省略了与上述实施例1相同结构且重复的说明。
在本实施例2的容量控制阀V2中,如图5和图6所示,作为阀芯的CS阀芯251是由在轴向左端形成有阶梯部251a的大径部251b和与大径部251b的轴向左侧连续设置且形成为直径比大径部251b小的小径部251c一体地构成的阶梯式柱状体,并且兼作贯通配置于螺线管80的线圈86的杆。此外,小径部251c在与大径部251b的阶梯部251a连续设置的部分处具有直径比该小径部251c的轴向左端小的缩颈部251e,因此在CS阀250开阀时确保了恒定截面的流路。
在本实施例2中,阀壳体主要由第一阀壳体210和插嵌于该第一阀壳体210的第二阀壳体211构成。在第一阀壳体210上形成有与可变容量型压缩机的吸入室连通的作为吸入口的Ps口11。另外,在第二阀壳体211上形成有作为控制口的Pc口12,其与可变容量型压缩机的控制室连通。另外,第一阀壳体210形成有轴向左端的内径侧向轴向右方凹陷的凹部210e,第二阀壳体211的轴向右端部从轴向左方插嵌于其中,从而以大致密封状态一体地连接固定。
在第一阀壳体210的内部形成有第一阀室220,其与Ps口11连通且CS阀芯251的大径部251b的轴向左端部沿轴向往复移动自如地配置于其中。在第二阀壳体211的内部形成有第二阀室230,其与Pc口12连通且CS阀芯251的小径部251c沿轴向往复移动自如地配置于其中。
在第一阀壳体210的内周面上形成有阀孔210b,其将第一阀室220与第二阀室230连通并供CS阀芯251的小径部251c插通。另外,在第一阀壳体210的内周面上,在阀孔210b的第一阀室220侧的开口端缘处形成有CS阀座210a。进一步,在第一阀壳体210的内周面上,在比CS阀座210a和第一阀室220更靠螺线管80侧形成有引导孔210f,其能够供CS阀芯251的大径部251b的外周面以大致密封状态滑动。此外,引导孔210f的内周面与CS阀芯251的大径部251b的外周面之间沿径向略微分离而形成有微小的间隙,CS阀芯251能够相对于第一阀壳体210沿轴向顺利地相对移动。
在第二阀壳体211的内周面上,在第二阀室230的轴向左侧、即螺线管80的轴向相反侧形成有引导孔211a,其能够供在轴向上与CS阀芯251对置并分离的分体的滑动杆252的外周面以大致密封状态滑动。此外,引导孔211a的内周面与滑动杆252的外周面之间沿径向略微分离而形成有微小的间隙,滑动杆252能够相对于第二阀壳体211沿轴向顺利地相对移动。另外,滑动杆252配置在与CS阀芯251同轴的位置上。
滑动杆252的轴向左端部从第二阀壳体211的引导孔211a向轴向左方突出,在其轴向左端形成有作为受压部的受压面252a,其承受可变容量型压缩机的排出室的排出压力Pd。此外,在滑动杆252的配置在第二阀室230内的轴向右端部上,从轴向右方插嵌有支承罩254。
另外,在滑动杆252与CS阀芯251之间夹设有作为施力单元的螺旋弹簧253。具体地,螺旋弹簧253配置在第二阀室230内,并且以螺旋弹簧253的轴向左端与从支承罩254的轴向左端向外径侧延伸的凸缘部254a的轴向右端面抵接、并且螺旋弹簧253的轴向右端与外嵌于CS阀芯251的小径部251c的支承板255的轴向左端面抵接的状态被保持。即,滑动杆252和CS阀芯251处于彼此相对的轴向端部经由螺旋弹簧253以彼此可接触或分离的方式连接的状态。
其中,作用在具有与滑动杆252的截面积相等的受压面积B的受压面252a上的排出流体的排出压力Pd会根据空调系统所要求的可变容量型压缩机的排出量而随时变化。因此,向轴向右方作用在CS阀芯251上的力FPd会根据排出压力Pd而变化,并且在对螺线管80通电的电流I恒定的情况下,如图7中实线的曲线图所示那样,从滑动杆252经由螺旋弹簧253而向轴向右方作用在CS阀芯251上的力FPd会根据排出压力Pd而变化。
具体地,在排出压力Pd较低的状态下,如图5所示,通过螺旋弹簧253的作用力向轴向左方按压滑动杆252,使得插嵌于滑动杆252的支承罩254的凸缘部254a的轴向左端与第二阀壳体211的第二阀室230的内表面抵接。当排出压力Pd从该状态开始上升时,滑动杆252会克服螺旋弹簧253的作用力而开始向轴向右方移动,在达到规定的排出压力Pd时,与滑动杆252一起移动的支承罩254的轴向右端会与CS阀芯251的轴向左端、即小径部251c的轴向左端抵接(参照图6)。由此,在从支承罩254的轴向右端开始移动起到与CS阀芯251的轴向左端抵接为止的区域、即到图7中的拐点C为止的缓冲区域中,螺旋弹簧253的作用力会成为通过排出压力Pd的上升而使滑动杆252向轴向右方移动的力的阻力,因此与排出压力Pd对应的力不易作用于CS阀芯251。另外,在图7中的拐点C之后,通过维持支承罩254的轴向右端与CS阀芯251的轴向左端抵接的状态,螺旋弹簧253的压缩幅度不会变动,相对于与排出压力Pd对应的力的上升,螺旋弹簧253的作用力恒定,因此与排出压力Pd对应的力容易作用于CS阀芯251。
另外,通过组合由螺线管80驱动的CS阀芯251的动作和由与排出压力Pd对应的力引起的滑动杆252的动作,能够校正CS阀芯251的动作,因此容易适当改变由使用了排出压力Pd的校正带来的控制特性。另外,也可以通过改变滑动杆252与CS阀芯251的分离距离、螺旋弹簧253的弹簧常数来适当改变由校正带来的控制特性。
另外,通过使CS阀芯251的阶梯部251a与CS阀座210a接触或分离的阀口部面积A与滑动杆252的受压面积B大致相同,能够消除作用于CS阀芯251的控制压力Pc的影响。此外,通过将CS阀芯251和滑动杆252分体地构成,能够自由地设定阀口部面积A和受压面积B。
另外,作为本实施例2的容量控制阀V2的变形例,如图8所示,也可以在螺线管80的轴向相反侧、即第二阀壳体211的轴向左端部上设置有作为密封部的O形环213,其将引导孔211a与滑动杆252之间密封。由此,能够防止作用于滑动杆252的受压面252a的排出压力Pd的排出流体通过引导孔211a侵入到第一阀壳体210和第二阀壳体211内,因此能够提高控制压力Pc的控制性。此外,O形环213通过设置于第二阀壳体211的轴向左端的固定部件214而被大致固定,由此能够与滑动杆252的动作无关地维持密封性。
实施例3
参照图9至图11对实施例3的容量控制阀进行说明。此外,省略了与上述实施例2相同结构且重复的说明。
在本实施例3的容量控制阀V3中,如图9和图10所示,作为阀芯的CS阀芯351是由在轴向左端形成有阶梯部351a的大径部351b和与大径部351b的轴向左侧连续设置且形成为直径比大径部351b小的小径部351c一体地构成的阶梯式柱状体,并且兼作贯通配置于螺线管80的线圈86的杆。此外,通过在CS阀芯351上形成小径部351c,在CS阀350开阀时确保了恒定截面的流路。
另外,在轴向上与CS阀芯351对置并分离的分体的滑动杆252与第一阀壳体210的轴向左端之间夹设有作为施力单元的螺旋弹簧353。具体地,螺旋弹簧353配置在第二阀室230内,并且以螺旋弹簧353的轴向左端与形成在支承罩254上的凸缘部254a的轴向右端面抵接、并且螺旋弹簧353的轴向右端与第一阀壳体210的轴向左端面抵接的状态被保持。即,滑动杆252和CS阀芯351处于彼此相对的轴向端部以彼此可接触或分离的方式配置的状态。
由此,如图10所示,在从支承罩254的轴向右端开始移动起到与CS阀芯351的轴向左端抵接为止的区域、即到图11中的拐点D为止的缓冲区域中,与排出压力Pd对应的力不作用于CS阀350的阀开度。另外,在图11中的拐点D之后,支承罩254的轴向右端与小径部351c的轴向左端抵接,从而螺旋弹簧353的作用力会成为通过排出压力Pd的上升而使滑动杆252向轴向右方移动的力的阻力,因此与排出压力Pd对应的力不易作用于CS阀芯351。
另外,通过组合由螺线管80驱动的CS阀芯351的动作和由与排出压力Pd对应的力引起的滑动杆252的动作,能够设定对CS阀芯351的动作进行校正的区域和不进行校正的区域,因此容易适当改变由使用了排出压力Pd的校正带来的控制特性。此外,也可以通过改变滑动杆252与CS阀芯351的分离距离、螺旋弹簧353的弹簧常数来适当改变由校正带来的控制特性。
另外,作为本实施例3的容量控制阀V3的变形例,如图12所示,也可以在螺线管80的轴向相反侧设置有作为密封部的O形环313,其将设置于第二阀壳体211的引导孔211a与滑动杆252之间密封。由此,能够防止作用于滑动杆252的受压面252a的排出压力Pd的排出流体通过引导孔211a侵入到第一阀壳体210和第二阀壳体211内,因此能够提高控制压力Pc的控制性。此外,O形环313通过设置于第二阀壳体211的轴向左端的固定部件314而被大致固定,由此能够与滑动杆252的动作无关地维持密封性。
实施例4
参照图13至图15对实施例4的容量控制阀进行说明。此外,省略了与上述实施例1相同结构且重复的说明。
在本实施例4的容量控制阀V4中,如图13和图14所示,作为阀芯的CS阀芯451是截面大致恒定的一体的柱状体,并且兼作贯通配置于螺线管80的线圈86的杆。另外,在CS阀芯451的轴向右端形成有作为受压部的受压面451b,其承受可变容量型压缩机的排出室的排出压力Pd。
在阀壳体410上形成有:作为吸入口的Ps口11,其与可变容量型压缩机的吸入室连通;作为控制口的Pc口12,其与可变容量型压缩机的控制室连通;以及Pd口13,其与可变容量型压缩机的排出室连通。
在阀壳体410的内部,在轴向左侧形成有第一阀室420,CS阀芯451的轴向左端部沿轴向往复移动自如地配置于其中,Ps口11从阀壳体410的外周面向内径方向延伸而与第一阀室420连通,Pc口12从阀壳体410的轴向左端的内径侧向轴向右方延伸而与第一阀室420连通。另外,在阀壳体410的内部,在轴向右侧、即螺线管80侧形成有与Pd口13连通的第二阀室430。
在阀壳体410的内周面上形成有引导孔410b,其贯通于第一阀室420与第二阀室430之间且能够供CS阀芯451的轴向左端部的外周面以大致密封状态滑动。另外,在阀壳体410的内周面上,在Pc口12的第一阀室420侧的开口端缘处形成有CS阀座410a。此外,引导孔410b的内周面与CS阀芯451的外周面之间沿径向略微分离而形成有微小的间隙,CS阀芯451能够相对于阀壳体410沿轴向顺利地相对移动。
另外,由于第一阀室420和第二阀室430通过由引导孔410b的内周面和CS阀芯451的外周面形成的作为密封部的间隙密封件而被密封成大致密封状态,因此能够防止从Pd口13向第二阀室430供给的排出压力Pd的排出流体侵入到第一阀室420内。另外,从Pd口13向第二阀室430供给的排出压力Pd的排出流体通过在构成螺线管80的中心柱82中沿轴向延伸的插通孔82a的内周面与插通于该插通孔82a的CS阀芯451的外周面之间的间隙迂回至供可动铁芯84插嵌的CS阀芯451的背面侧、即形成于CS阀芯451的轴向右端的受压面451b。
接着,对容量控制阀V4的动作、主要是CS阀450的开闭动作进行说明。
首先,对容量控制阀V4的非通电状态进行说明。如图13所示,容量控制阀V4在非通电状态下,通过螺旋弹簧85的作用力向轴向右方按压可动铁芯84,使得CS阀芯451一起向轴向右方移动,CS阀芯451的轴向左端451a从CS阀座410a分离,CS阀450打开。
此时,在CS阀芯451上,朝向轴向右方作用有螺旋弹簧85的作用力(Fsp)、以及控制流体的控制压力Pc对CS阀芯451产生的力(FPc),朝向轴向左方作用有排出流体的排出压力Pd对CS阀芯451的受压面451b产生的力(FPd)。即,以向右为正,在CS阀芯451上作用有力Frod=Fsp+FPc-FPd
接着,对容量控制阀V4的通电状态进行说明。如图14所示,容量控制阀V4在通电状态下、即正常控制时、所谓的占空比控制时,当通过对螺线管80施加电流而产生的电磁力(Fsol)超过力Frod(Fsol>Frod)时,可动铁芯84被拉近到轴向左侧、即被拉向中心柱82,固定于可动铁芯84的CS阀芯451一起向轴向左方移动,从而CS阀芯451的轴向左端451a落座于CS阀座410a,CS阀450关闭。
此时,在CS阀芯451上,向轴向左方作用有电磁力(Fsol),向轴向右方作用有力Frod。即,以向右为正,在CS阀芯451上作用有力Frod-Fsol,具体为力Fsp+FPc-FPd-Fsol
其中,作用在CS阀芯451的受压面451b上的排出压力Pd会根据空调系统所要求的可变容量型压缩机的排出量而随时变化。因此,向轴向右方作用在CS阀芯451上的力FPd会根据排出压力Pd而变化,并且在对螺线管80通电的电流I恒定的情况下,如图15中实线的曲线图所示,CS阀450的开口面积会根据排出压力Pd成比例地减少。
由此,容量控制阀V4能够进行对CS阀450进行开闭以将从Pc口12供给的控制压力Pc的控制流体经由Ps口11供给至吸入室从而使控制室的控制压力Pc降低的Pc-Ps控制,并且能够使从Pd口13供给且与控制压力Pc、吸入压力Ps相比压力较高的排出压力Pd向轴向左方、即CS阀450的闭阀方向作用于CS阀芯451的受压面451b,以用于校正CS阀芯451的动作。因此,容易进行CS阀450的阀开度的调整,并且能够使空调系统的控制压力Pc在短时间内达到目标值。
此外,通过在引导孔410b的内周面或CS阀芯451的外周面上形成环状的槽,可以通过由槽带来的迷宫效应来提高间隙密封件的密封性。
以上,根据附图对本发明的实施例进行了说明,但具体的结构不限于这些实施例,即便有在不脱离本发明主旨的范围内的变更、追加,也包含在本发明中。
例如,在上述实施例中,说明了CS阀芯兼作贯通配置在螺线管80的线圈86上的杆的情况,但不限于此,也可以构成为CS阀芯与独立的杆一起沿轴向往复移动自如。
在上述实施例中,对容量控制阀V1~V4构成为通过螺旋弹簧85对CS阀芯向CS阀的开阀方向施力的常开型的情况进行了说明,但不限于此,也可以构成为通过螺旋弹簧85对CS阀芯向CS阀的闭阀方向施力的常闭型。
另外,在上述实施例中,对Pc口12相对于Ps口11形成于轴向左侧的结构进行了说明,但也可以互换配置,使Pc口12相对于Ps口11形成于轴向右侧。在该情况下,可适当改变CS阀芯和CS阀座的形状、配置。
另外,在上述实施例1~3中,对形成受压面的CS阀芯或滑动杆的轴向左端部从引导孔向轴向左方突出的情况进行了说明,但不限于此,CS阀芯或滑动杆的轴向左端即受压面也可以始终配置于引导孔的内部。
另外,在上述实施例1~3中,作为变形例,对设置有对引导孔与CS阀芯或滑动杆之间进行密封的作为密封部的O形环的结构进行了说明,但不限于此,只要能够防止作用于受压面的排出压力Pd的排出流体侵入到阀壳体内,密封部可以自由地构成。
另外,在上述实施例2中,滑动杆252与CS阀芯251也可以不抵接而始终在轴向上分离。
另外,在上述实施例3中,螺旋弹簧353不限于夹设于滑动杆252与第一阀壳体210的轴向左端之间,也可以是螺旋弹簧353的轴向右端与例如形成在第二阀壳体211的内周面上的向内凸缘部抵接。
另外,受压部不限于形成在CS阀芯或滑动杆的轴向端面上。例如,在上述实施例4中,也可以是,CS阀芯的轴向右端被可动铁芯完全覆盖,可动铁芯的轴向右端作为受压部而使与排出压力Pd对应的力作用于CS阀芯。
符号说明
9:固定节流孔;10:阀壳体;10a:CS阀座;10c:引导孔;11:Ps口(吸入口);12:Pc口(控制口);13:Pd口;20:第一阀室;30:第二阀室;50:CS阀;51:CS阀芯(阀芯);51a:阶梯部;51d:受压面(受压部);80:螺线管;85:螺旋弹簧(弹簧);113:O形环(密封部);210:第一阀壳体(阀壳体);210a:CS阀座;211:第二阀壳体(阀壳体);211a:引导孔;213:O形环(密封部);250:CS阀;251:CS阀芯(阀芯);251a:阶梯部;252:滑动杆;252a:受压面(受压部);253:螺旋弹簧(施力单元);254:支承罩;255:支承板;313:O形环(密封部);350:CS阀;351:CS阀芯(阀芯);351a:阶梯部;353:螺旋弹簧(施力单元);410:阀壳体;410a:CS阀座;410b:引导孔;450:CS阀;451:CS阀芯(阀芯);451b:受压面(受压部);Pc:控制压力;Pd:排出压力;Ps:吸入压力;V1~V4:容量控制阀。

Claims (9)

1.一种容量控制阀,其具备:
阀壳体,其形成有供吸入压力的吸入流体通过的吸入口和供控制压力的控制流体通过的控制口;
阀芯,其由螺线管驱动;
弹簧,其向与所述螺线管的驱动方向相反的方向对所述阀芯施力;以及
CS阀,其由CS阀座和所述阀芯构成,并且通过所述阀芯的移动对所述控制口与所述吸入口的连通进行开闭,
其中,通过所述CS阀的开闭进行控制压力的控制,
并且具有受压部,其使与排出压力对应的力作用于所述阀芯的轴向。
2.根据权利要求1所述的容量控制阀,其中,
所述受压部设置于所述阀芯。
3.根据权利要求1所述的容量控制阀,其中,
所述受压部设置在与所述阀芯对置并分离的分体的滑动杆上。
4.根据权利要求3所述的容量控制阀,其中,
所述滑动杆以可接触或分离的方式与所述阀芯分离。
5.根据权利要求3或4所述的容量控制阀,其中,
在所述滑动杆与所述阀芯之间夹设有施力单元。
6.根据权利要求4所述的容量控制阀,其中,
在所述滑动杆与所述阀壳体之间夹设有施力单元。
7.根据权利要求2所述的容量控制阀,其中,
在所述螺线管的轴向相反侧设置有密封部,该密封部将设置于所述阀壳体的引导孔与所述阀芯之间密封。
8.根据权利要求3至6中任一项所述的容量控制阀,其中,
在所述螺线管的轴向相反侧设置有密封部,该密封部将设置于所述阀壳体的引导孔与所述滑动杆之间密封。
9.根据权利要求1至8中任一项所述的容量控制阀,其中,
所述阀芯被所述弹簧向所述CS阀的开阀方向施力。
CN202080028782.3A 2019-04-24 2020-04-21 容量控制阀 Active CN113692510B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019083385 2019-04-24
JP2019-083385 2019-04-24
PCT/JP2020/017169 WO2020218285A1 (ja) 2019-04-24 2020-04-21 容量制御弁

Publications (2)

Publication Number Publication Date
CN113692510A true CN113692510A (zh) 2021-11-23
CN113692510B CN113692510B (zh) 2023-07-04

Family

ID=72941935

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080028782.3A Active CN113692510B (zh) 2019-04-24 2020-04-21 容量控制阀

Country Status (6)

Country Link
US (2) US11988296B2 (zh)
EP (2) EP3961075A4 (zh)
JP (1) JP7451064B2 (zh)
KR (2) KR102634942B1 (zh)
CN (1) CN113692510B (zh)
WO (1) WO2020218285A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115405710A (zh) * 2022-09-01 2022-11-29 唐山传奇科技有限公司 自闭式高速泄压阀

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6038871A (en) * 1998-11-23 2000-03-21 General Motors Corporation Dual mode control of a variable displacement refrigerant compressor
US20030145615A1 (en) * 2002-02-04 2003-08-07 Eagle Industry Co. Ltd. Capacity control valve
CN103547803A (zh) * 2011-06-15 2014-01-29 伊格尔工业股份有限公司 容量控制阀
JP2014080927A (ja) * 2012-10-17 2014-05-08 Tgk Co Ltd 可変容量圧縮機用制御弁
JP2014126025A (ja) * 2012-12-27 2014-07-07 Tgk Co Ltd 可変容量圧縮機用制御弁
CN105229352A (zh) * 2013-03-22 2016-01-06 三电控股株式会社 控制阀及包括该控制阀的可变容量压缩机
CN108691750A (zh) * 2017-04-07 2018-10-23 株式会社Tgk 可变容量压缩机用控制阀

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB787961A (en) 1954-07-14 1957-12-18 William Hector Mashinter Metering pump
US3765644A (en) 1972-01-19 1973-10-16 Control Concepts Controlled air gap in a solenoid operated valve
JPS581598B2 (ja) 1978-05-15 1983-01-12 富士通株式会社 表示像補正方式
ES480613A1 (es) 1978-06-28 1979-11-16 Sibe Perfeccionamientos en las electrovalvulas.
JPS5983539U (ja) 1982-11-30 1984-06-06 カシオ計算機株式会社 インクカ−トリツジ
JPS6316177A (ja) 1986-07-08 1988-01-23 Sanden Corp 容量可変型圧縮機
US5022629A (en) 1988-01-04 1991-06-11 Interface, Inc. Valve construction
DE3934771C1 (zh) 1989-10-18 1991-03-28 Lucas Industries P.L.C., Birmingham, West Midlands, Gb
DE4103365A1 (de) 1991-02-05 1992-08-13 Teves Metallwaren Alfred Drucksteuerventil
JPH04342883A (ja) * 1991-05-17 1992-11-30 Sanden Corp 容量可変型斜板式圧縮機
DE4137123A1 (de) 1991-11-12 1993-05-13 Teves Gmbh Alfred Drucksteuerventil
JP3242496B2 (ja) 1993-07-06 2001-12-25 株式会社豊田自動織機 可変容量圧縮機の外部切換式容量制御弁
JPH10318414A (ja) * 1997-05-20 1998-12-04 Toyota Autom Loom Works Ltd 電磁式制御弁
JPH11280658A (ja) 1998-03-25 1999-10-15 Sanden Corp 可変容量圧縮機の容量制御弁
JP4149558B2 (ja) 1998-03-27 2008-09-10 サンデン株式会社 可変容量圧縮機の容量制御弁
JP3783434B2 (ja) 1998-04-13 2006-06-07 株式会社豊田自動織機 容量可変型斜板式圧縮機、及び空調用冷房回路
JPH11336660A (ja) 1998-05-27 1999-12-07 Toyota Autom Loom Works Ltd 可変容量圧縮機およびその組み付け方法
JP2000064957A (ja) 1998-08-17 2000-03-03 Toyota Autom Loom Works Ltd 容量可変型斜板式圧縮機および抜き側制御弁
JP3984724B2 (ja) 1998-09-10 2007-10-03 株式会社豊田自動織機 容量可変型斜板式圧縮機の制御弁及び斜板式圧縮機
JP3435077B2 (ja) 1998-09-16 2003-08-11 株式会社鷺宮製作所 ベローズ式圧力応動弁
JP2000161234A (ja) 1998-11-27 2000-06-13 Toyota Autom Loom Works Ltd 容量可変型圧縮機及び容量可変型圧縮機の容量制御弁
JP3581598B2 (ja) 1999-04-21 2004-10-27 株式会社テージーケー 容量可変圧縮機の容量制御装置
JP3576866B2 (ja) 1999-05-10 2004-10-13 株式会社テージーケー 車輌用バイパス管路付冷凍サイクル
JP4392631B2 (ja) 1999-06-24 2010-01-06 株式会社ヴァレオサーマルシステムズ 冷凍サイクルの可変容量制御装置
JP3991556B2 (ja) 1999-10-04 2007-10-17 株式会社豊田自動織機 容量可変型圧縮機の制御弁
JP3963619B2 (ja) 1999-11-05 2007-08-22 株式会社テージーケー 冷凍サイクルの圧縮容量制御装置
JP2001153043A (ja) 1999-12-01 2001-06-05 Sanden Corp 容量可変型斜板式圧縮機
JP2001165055A (ja) 1999-12-09 2001-06-19 Toyota Autom Loom Works Ltd 制御弁及び容量可変型圧縮機
JP2002070732A (ja) 2000-09-01 2002-03-08 Zexel Valeo Climate Control Corp 冷凍サイクルの可変容量制御装置
JP2002089442A (ja) * 2000-09-08 2002-03-27 Toyota Industries Corp 容量可変型圧縮機の制御弁
JP2002201913A (ja) 2001-01-09 2002-07-19 Mitsubishi Heavy Ind Ltd ガスタービンの分割壁およびシュラウド
JP2002221153A (ja) 2001-01-23 2002-08-09 Toyota Industries Corp 容量可変型圧縮機の制御弁
JP3943871B2 (ja) 2001-07-25 2007-07-11 株式会社テージーケー 可変容量圧縮機および可変容量圧縮機用容量制御弁
CN100354561C (zh) 2001-12-11 2007-12-12 萱场工业株式会社 电磁比例流量控制阀
KR100466951B1 (ko) 2002-04-01 2005-01-24 현대모비스 주식회사 에이비에스용 솔레노이드 밸브
GB0214467D0 (en) 2002-06-24 2002-08-07 Delphi Tech Inc Control valve for air conditioning compressor
JP4242624B2 (ja) 2002-09-26 2009-03-25 イーグル工業株式会社 容量制御弁及びその制御方法
JP2004162567A (ja) 2002-11-12 2004-06-10 Fuji Koki Corp 可変容量型圧縮機用の制御弁
DE10321413B4 (de) 2003-05-13 2014-06-26 Robert Bosch Gmbh Elektromagnetisch betätigbares Ventil
JP2005098197A (ja) 2003-09-04 2005-04-14 Tgk Co Ltd 可変容量圧縮機用容量制御弁
JP2005291142A (ja) 2004-04-02 2005-10-20 Zexel Valeo Climate Control Corp 可変容量型圧縮機の制御装置及び圧力制御弁
JP2006097665A (ja) * 2004-06-28 2006-04-13 Toyota Industries Corp 可変容量型圧縮機における容量制御弁
JP2006017087A (ja) 2004-07-05 2006-01-19 Calsonic Kansei Corp 電磁式制御弁および該電磁式制御弁を備えた可変容量圧縮機
JP4431462B2 (ja) 2004-08-10 2010-03-17 株式会社鷺宮製作所 斜板式容量可変型圧縮機および電磁制御弁
JP4626808B2 (ja) * 2005-04-26 2011-02-09 株式会社豊田自動織機 可変容量型クラッチレス圧縮機用の容量制御弁
JP2007092829A (ja) 2005-09-28 2007-04-12 Toyota Motor Corp
DE102006002638A1 (de) 2006-01-19 2007-07-26 Robert Bosch Gmbh Magnetventil
CN2869383Y (zh) 2006-02-17 2007-02-14 苏州新智机电工业有限公司 汽车空调变排量压缩机控制阀
JP2008157031A (ja) 2006-12-20 2008-07-10 Toyota Industries Corp クラッチレス可変容量型圧縮機における電磁式容量制御弁
EP2118542B1 (de) 2007-01-10 2018-05-09 Fritz Gyger Ag Mikroventil
JP5222447B2 (ja) 2008-06-11 2013-06-26 サンデン株式会社 可変容量圧縮機
JP5271216B2 (ja) 2009-09-17 2013-08-21 日立オートモティブシステムズ株式会社 ノーマルオープン型電磁弁
JP2011094554A (ja) 2009-10-30 2011-05-12 Tgk Co Ltd 可変容量圧縮機
KR101319566B1 (ko) * 2010-04-29 2013-10-23 이구루코교 가부시기가이샤 용량 제어 밸브
JP5878703B2 (ja) 2010-09-06 2016-03-08 株式会社不二工機 可変容量型圧縮機用制御弁
EP2653723B1 (en) 2010-12-09 2019-01-02 Eagle Industry Co., Ltd. Capacity control valve
DE102011055281B3 (de) 2011-11-11 2013-02-21 Pierburg Gmbh Ventilvorrichtung für einen Hydraulikkreislauf sowie Ölpumpenregelanordnung
JP6281046B2 (ja) * 2012-04-23 2018-02-21 株式会社テージーケー 可変容量圧縮機用制御弁
JP2014055626A (ja) 2012-09-12 2014-03-27 Saginomiya Seisakusho Inc 感圧制御弁
EP2952741B1 (en) 2013-01-31 2019-03-13 Eagle Industry Co., Ltd. Variable capacity compressor
JP5983539B2 (ja) 2013-06-13 2016-08-31 株式会社豊田自動織機 両頭ピストン型斜板式圧縮機
JP2015034510A (ja) 2013-08-08 2015-02-19 株式会社豊田自動織機 可変容量型斜板式圧縮機
JP2015121097A (ja) 2013-12-20 2015-07-02 株式会社ヴァレオジャパン 圧力制御弁およびこれを用いた可変容量圧縮機
JP6127994B2 (ja) 2014-01-30 2017-05-17 株式会社豊田自動織機 可変容量型斜板式圧縮機
DE102014116214B3 (de) * 2014-11-06 2016-02-04 Eto Magnetic Gmbh Proportionalventil, Klimakompressoranordnung sowie Betriebsverfahren
JP2016125376A (ja) 2014-12-26 2016-07-11 株式会社テージーケー 可変容量圧縮機用制御弁
JP2017031834A (ja) 2015-07-29 2017-02-09 株式会社豊田自動織機 容量制御弁
WO2017057160A1 (ja) 2015-09-29 2017-04-06 株式会社ヴァレオジャパン 可変容量型圧縮機の制御弁
JP6626789B2 (ja) 2016-06-28 2019-12-25 株式会社不二工機 可変容量型圧縮機用制御弁
JP6843869B2 (ja) 2016-08-29 2021-03-17 イーグル工業株式会社 容量制御弁
JP6667114B2 (ja) 2017-09-21 2020-03-18 株式会社アドヴィックス 電磁弁
US20190331249A1 (en) 2018-04-25 2019-10-31 Sun Hydraulics, Llc Proportional Normally-Open Valve with a Biasing Spring
CN112424473B (zh) 2018-07-13 2023-02-28 伊格尔工业股份有限公司 容量控制阀
US11231111B2 (en) 2019-05-14 2022-01-25 Halliburton Energy Services, Inc. Pump valve seat with supplemental retention
CN220046247U (zh) 2023-03-31 2023-11-21 日丸物产株式会社 驱蚊相变降温脖圈

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6038871A (en) * 1998-11-23 2000-03-21 General Motors Corporation Dual mode control of a variable displacement refrigerant compressor
US20030145615A1 (en) * 2002-02-04 2003-08-07 Eagle Industry Co. Ltd. Capacity control valve
CN103547803A (zh) * 2011-06-15 2014-01-29 伊格尔工业股份有限公司 容量控制阀
JP2014080927A (ja) * 2012-10-17 2014-05-08 Tgk Co Ltd 可変容量圧縮機用制御弁
JP2014126025A (ja) * 2012-12-27 2014-07-07 Tgk Co Ltd 可変容量圧縮機用制御弁
CN105229352A (zh) * 2013-03-22 2016-01-06 三电控股株式会社 控制阀及包括该控制阀的可变容量压缩机
CN108691750A (zh) * 2017-04-07 2018-10-23 株式会社Tgk 可变容量压缩机用控制阀

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115405710A (zh) * 2022-09-01 2022-11-29 唐山传奇科技有限公司 自闭式高速泄压阀
CN115405710B (zh) * 2022-09-01 2023-06-09 唐山传奇科技有限公司 自闭式高速泄压阀

Also Published As

Publication number Publication date
US20220186853A1 (en) 2022-06-16
KR102568391B1 (ko) 2023-08-21
KR102634942B1 (ko) 2024-02-08
EP4242504A3 (en) 2023-11-15
US20230358331A1 (en) 2023-11-09
KR20210150494A (ko) 2021-12-10
KR20230112738A (ko) 2023-07-27
JP7451064B2 (ja) 2024-03-18
EP3961075A1 (en) 2022-03-02
CN113692510B (zh) 2023-07-04
EP3961075A4 (en) 2023-01-04
EP4242504A2 (en) 2023-09-13
JPWO2020218285A1 (zh) 2020-10-29
WO2020218285A1 (ja) 2020-10-29
US11988296B2 (en) 2024-05-21

Similar Documents

Publication Publication Date Title
CN112534136A (zh) 容量控制阀
CN111480002B (zh) 容量控制阀
CN113692491B (zh) 容量控制阀
US20230358331A1 (en) Capacity control valve
JP7341621B2 (ja) 容量制御弁
EP3892856B1 (en) Capacity control valve
CN114096775B (zh) 容量控制阀
CN113661324B (zh) 容量控制阀
CN113661322B (zh) 容量控制阀
CN112955684A (zh) 容量控制阀
CN113646529A (zh) 容量控制阀
JP7504989B2 (ja) 容量制御弁
CN114051559B (zh) 容量控制阀
EP3892855B1 (en) Capacity control valve
CN112513461B (zh) 容量控制阀

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant