CN104282327B - 降低自旋力矩转移磁阻性随机存取存储器(stt‑mram)中的源极负载效应 - Google Patents

降低自旋力矩转移磁阻性随机存取存储器(stt‑mram)中的源极负载效应 Download PDF

Info

Publication number
CN104282327B
CN104282327B CN201410563657.9A CN201410563657A CN104282327B CN 104282327 B CN104282327 B CN 104282327B CN 201410563657 A CN201410563657 A CN 201410563657A CN 104282327 B CN104282327 B CN 104282327B
Authority
CN
China
Prior art keywords
electric current
mtj
state
magnetic field
switching electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410563657.9A
Other languages
English (en)
Other versions
CN104282327A (zh
Inventor
李康浩
升·H·康
朱晓春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN104282327A publication Critical patent/CN104282327A/zh
Application granted granted Critical
Publication of CN104282327B publication Critical patent/CN104282327B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明涉及降低自旋力矩转移磁阻性随机存取存储器(STT‑MRAM)中的源极负载效应。本发明揭示降低STT‑MRAM中的源极负载效应的系统及方法。在特定实施例中,一种方法包括确定磁性隧道结(MTJ)结构的切换电流比率,所述切换电流比率使得存储器单元能够稳定操作。所述存储器单元包括串联耦合到存取晶体管的所述MTJ结构。所述方法还包括修改易发生于所述MTJ结构的自由层的偏移磁场。所述经修改的偏移磁场致使所述MTJ结构展现所述切换电流比率。

Description

降低自旋力矩转移磁阻性随机存取存储器(STT-MRAM)中的源 极负载效应
分案申请的相关信息
本申请是申请号为PCT/US2010/025834,申请日为2010年3月2日,优先权日为2009年3月2日,发明名称为“降低自旋力矩转移磁阻性随机存取存储器(STT-MRAM)中的源极负载效应”的PCT申请进入国家阶段后申请号为201080009766.6的中国发明专利申请的分案申请。
技术领域
本发明大体上是针对降低自旋力矩转移磁阻性随机存取存储器(STT-MRAM)中的源极负载效应。
背景技术
非易失性存储器技术的进步包括基于电阻的存储器技术,例如磁阻性随机存取存储器(MRAM)。MRAM技术是使用基于铁磁的磁性隧道结(MTJ)作为基本存储器元件的新兴非易失性存储器技术。MRAM的常用阵列架构为一个晶体管一个MTJ(1T1MTJ)架构。顾名思义,此架构中的每一位单元(bit cell)是由MTJ与n沟道金属氧化物半导体(NMOS)存取晶体管串联连接而组成。为了充分利用与按比例缩小NMOS技术相关联的密度增大及面积减小的优点,需要将较小晶体管及较低操作电压用于MRAM位单元。然而,尽管按比例缩小NMOS技术已进入深亚微米领域,因此产生面积及密度优势,但在设计具有稳定操作的1T1MTJ架构时仍可能存在困难,尤其是在源极负载效应方面。
发明内容
在特定实施例中,揭示一种方法,其包括确定磁性隧道结(MTJ)结构的切换电流比率,所述切换电流比率使存储器单元能够稳定操作。所述存储器单元包括耦合到存取晶体管的MTJ结构。所述方法还包括修改易发生于MTJ结构的自由层的偏移磁场。所述经修改的偏移磁场致使MTJ结构展现切换电流比率。所述偏移磁场可因自由层与其在MTJ结构中的邻近层之间的静磁耦合而产生。
所述偏移场的极性可视连接类型而定。在特定实施例中,可将存储器单元从使存取晶体管电耦合到MTJ结构的经钉扎层的第一配置调整为使存取晶体管电耦合到MTJ结 构的自由层的第二配置,以降低存储器单元处的源极负载效应。在一个实施例中,揭示一种存储器单元,其具有MTJ结构的经钉扎层的经调整的厚度。在另一实施例中,揭示一种设备,其包括自旋力矩转移磁阻性随机存取存储器(STT-MRAM),所述STT-MRAM包括根据所揭示的方法而设计的存储器单元。
在另一实施例中,揭示一种设备,其包括存储器单元,所述存储器单元包括磁性隧道结(MTJ)结构。所述MTJ结构包括耦合到位线的自由层且还包括经钉扎层。所述自由层的磁矩在第一状态中与所述经钉扎层的磁矩大体上平行,且在第二状态中与所述经钉扎层的所述磁矩大体上反平行。所述经钉扎层具有物理尺寸以产生偏移磁场,所述偏移磁场在第一电压从所述位线施加到耦合到存取晶体管的源极线时对应于所述MTJ结构的使得能够在所述第一状态与所述第二状态之间切换的第一切换电流,且在所述第一电压从所述源极线施加到所述位线时对应于使得能够在所述第二状态与所述第一状态之间切换的第二切换电流。
在另一实施例中,揭示一种存储器单元,其包括磁性隧道结(MTJ)结构。所述MTJ结构包括自由层,且还包括耦合到位线的经钉扎层。所述自由层的磁矩在第一状态中与所述经钉扎层的磁矩大体上平行,且在第二状态中与所述经钉扎层的所述磁矩大体上反平行。所述存储器单元还包括存取晶体管,所述存取晶体管使源极端子耦合到源极线,且使漏极端子经由导电路径耦合到所述MTJ结构的所述自由层。所述自由层与所述存取晶体管的所述漏极端子之间的第一距离大于所述经钉扎层与所述漏极端子之间的第二距离。
在另一实施例中,揭示一种设备,其包括存储器装置,所述存储器装置包括多个存储器单元。所述多个存储器单元中的至少一个存储器单元包括磁性隧道结(MTJ)结构。所述MTJ结构的自由层的磁矩在第一状态中与所述MTJ结构的经钉扎层的磁矩大体上平行,且在第二状态中与所述经钉扎层的所述磁矩大体上反平行。所述存储器单元还包括耦合到所述MTJ结构的存取晶体管。用以将所述MTJ结构从所述第一状态切换到所述第二状态的第一切换电流的量值的比率小于将所述MTJ结构从所述第二状态切换到所述第一状态的第二切换电流的一半。
所揭示的实施例所提供的一个特定优点是供不同位单元类型通过调整装置参数以在特定晶体管电流-电压特性内操作而实现STT-MRAM切换的设计方法。
在审阅整个申请案之后,本发明的其它方面、优点及特征将变得显而易见,整个申请案包括以下部分:附图说明、具体实施方式及权利要求书。
附图说明
图1为包括具有经编程偏移磁场的存储器单元的存储器装置的特定说明性实施例的框图;
图2为具有经编程偏移磁场的存储器单元的特定说明性实施例的图;
图3为具有经编程偏移磁场的磁性隧道结(MTJ)结构的第一说明性实施例的图;
图4为具有经编程偏移磁场的磁性隧道结(MTJ)结构的第二说明性实施例的图;
图5为存储器单元的操作特性的第一实施例的图;
图6为存储器单元的操作特性的第二实施例的图;
图7为说明切换电流比率与磁场比率之间的可用以确定经编程偏移磁场的关系的模型的图;
图8为降低自旋力矩转移磁阻性随机存取存储器(STT-MRAM)的源极负载效应的方法的流程图;
图9为包括具有存储器单元的基于电阻的存储器的无线通信装置的特定说明性实施例的框图,所述存储器单元具有经编程偏移磁场;以及
图10为制造包括具有经编程偏移磁场的存储器单元的成品电子装置的制造过程的特定说明性实施例的数据流程图。
具体实施方式
参看图1,描绘包括具有经编程偏移磁场的存储器单元的存储器装置的特定说明性实施例的图,并大体上将其指定为100。存储器装置100可包括存储器阵列102,例如自旋力矩转移磁阻性随机存取存储器(STT-MRAM)存储器阵列。存储器阵列102包括具有经编程偏移磁场的存储器单元116。存储器阵列102可通过位线104耦合到位线逻辑电路106。存储器阵列102可通过字线108耦合到字线逻辑电路110。存储器阵列102还可耦合到放大器112。
在特定实施例中,具有经编程偏移磁场的存储器单元116包括以1T1MTJ配置耦合到存取晶体管的磁性隧道结(MTJ)结构。如将关于图2到图8论述,存储器单元116可具有经选择以编程MTJ结构的偏移磁场的一个或一个以上物理尺寸。当存取晶体管处于源极负载操作状态中时,偏移磁场经编程以移位MTJ的临界切换点以使得能将数据值写入到存储器单元116。
图2为具有经编程偏移磁场的存储器单元的特定说明性实施例的图。存储器单元200包括衬底202,其使存取晶体管204经由导电路径208(例如,一个或一个以上金属或多晶硅导线、触点或通路)耦合到MTJ结构206。在特定实施例中,存储器单元200为 图1的存储器单元116。
存取晶体管204使源极210耦合到源极触点212(其耦合到源极线),且使漏极216经由导电路径208耦合到MTJ结构206。施加到字线214的电压调制源极210与漏极216之间的沟道。
MTJ结构206包括连接到导电路径208的存取晶体管电极218。MTJ结构206包括存取晶体管电极218上的反铁磁(AF)层220、经钉扎层(pinned layer)222、隧道势垒224及自由层226。位线存取电极228耦合到位线(BL)230。自由层226距漏极216第一距离292,且经钉扎层222距漏极216第二距离294。第二距离294小于第一距离292。
经钉扎层222包括经钉扎磁矩234,其具有由AF层220固定的方向。自由层226包括磁矩236,其可具有相对于经钉扎磁矩234平行或反平行的定向。在第一状态中,自由层226的磁矩236与经钉扎层222的经钉扎磁矩234大体上平行(“P”状态)。在第二状态中,自由层226的磁矩236与经钉扎层222的经钉扎磁矩234大体上反平行(“AP”状态)。称为“临界”电流密度JC(P→AP)的第一电流密度表示致使MTJ结构206从第一状态切换到第二状态(“P→AP”)的最低电流密度。第二“临界”电流密度JC(AP→P)表示致使MTJ结构206从第二状态切换到第一状态(“AP→P”)的最低电流密度。一般来说,P→AP切换需要比AP→P切换大的电流,即JC(AP→P)<JC(P→AP)。另外,临界电流密度的不对称性趋向于随着隧穿磁阻(TMR)增大而增大。
在特定实施例中,经钉扎层222具有例如厚度等物理尺寸232,其经选择以编程自由层226的偏移磁场,如将关于图3到图8而论述。偏移磁场影响第一及第二临界电流密度,使得两个状态之间的切换电流可经设定以确保存储器单元200的稳定操作。
尽管将经钉扎层222说明为单个层,但经钉扎层222可包括具有多个层的合成层。并且,在其它实施例中,MTJ结构206包括图2中未说明的额外层。
图3为具有经编程偏移磁场的磁性隧道结(MTJ)结构的第一说明性实施例的图。MTJ结构300包括经由势垒层306耦合到经钉扎层304的自由层302。在特定实施例中,自由层302、势垒层306及经钉扎层304分别为图2的自由层226、隧道势垒层224及经钉扎层222。
自由层302经由偏移场磁性地耦合到经钉扎层304,所述偏移场包括倪尔(Neel)耦合分量HN 308及静磁耦合HM 310。倪尔耦合分量HN 308是由界面粗糙度引起,且由场线(field line)314说明。静磁耦合HM 310是由结构边缘附近的未补偿极引起,且由场线312说明。所得偏移场HOFF可近似为:
HOFF=HN+HM
HM=B/L,以及
其中B为与经钉扎层304的厚度tP 322成比例的磁通量,且L为经钉扎层304在场方向上的长度。
倪尔耦合场可为可忽略的,且可由隧穿绝缘体沉积工艺的质量预先确定。因此,在此特定结构中,可通过调整经钉扎层304的厚度tP 322来控制偏移场。
图4为具有经编程偏移磁场的磁性隧道结(MTJ)结构的第二说明性实施例400的图。MTJ结构402包括顶部电极404、自由层406、势垒层408、经钉扎层410,及底部电极420上的反铁磁层418。经钉扎层410为合成层,其包括接近自由层406的第一磁性层412、非磁性层414及第二磁性层416。第一磁性层412具有第一磁矩,且第二磁性层416具有与第一磁性层412的第一磁矩反平行的第二磁矩。
将自由层406处的偏移场Hoff的模型422说明为随第二磁性层416的厚度而变。将模型422说明为大体上线性的,且可凭经验产生,凭理论产生,或其任何组合。如所说明,减小第二磁性层416的厚度会将负位移施加到偏移磁场,而增大第二磁性层416的厚度会将正位移施加到偏移磁场。另外,偏移磁场可改变方向,此情况被指示为在增大第二磁性层416的厚度的情况下负偏移场值向正偏移场值的转变。
举例来说,当第二磁性层416足够薄时,第一磁性层412可对自由层406产生偏移场的较大分量。随着第二磁性层416的厚度相对于第一磁性层增大,第二磁性层416在与第一磁性层412的方向相反的方向上贡献偏移场的增加的部分,且最终贡献偏移场的较大分量,从而导致偏移场的方向改变。将此行为说明为在厚度增加的情况下偏移场的量值降低到零,接着改变正负号且量值增加。
尽管MTJ结构402及对应模型422是基于具有两个磁性层412及416的单个经钉扎层410,但在其它实施例中,MTJ结构402可具有任何数目个层,所述层中的任一者的厚度可经调整以设定偏移场。使得能对各种厚度进行此些调整以特定选择或移位偏移场的量值及方向的模型可凭理论或凭经验产生,或其任何组合而产生。
图5为存储器单元502的操作特性500的第一实施例的图。存储器单元502具有如下配置:其中MTJ装置504具有沉积在经钉扎层上方的自由层,且所述经钉扎层电耦合 到晶体管506的漏极端子(“正常”连接)。在特定实施例中,存储器单元502为图1的存储器单元116或图2的存储器单元200,包括图3的MTJ结构300或图4的MTJ结构400,或其任何组合。
MTJ装置504具有电阻(R),电阻(R)展现随磁场(H)而变的磁滞,将此说明为电阻-磁场环(R-H环)514(其为“平衡的”,即定中心于零处)。从H的较大负值开始(例如,由第一方向上的经过MTJ的大电流所引起),电阻具有低值。随着H跨越零(即,改变方向),电阻保持为低。在对应于P到AP切换的热势垒的特定场强度下,电阻增大到高值,其表示自由层的磁矩的改变及数据位到存储器单元502的写入。随着场减小越过零,电阻保持为高,直到当自由层的磁矩返回到其原始定向时(即,当将具有相反值的数据位写入到存储器单元502时)电阻返回到其低值为止。
通过调整邻近层的物理尺寸(例如,经钉扎层的厚度或所述邻近层内的一个或一个以上层的厚度)修改偏移磁场,来将负位移516施加到平衡的R-H环514。所得不平衡的R-H环512说明从低电阻状态(即,AP状态)到高电阻状态(即,P状态)的转变出现在HC+处,且从高电阻状态到低电阻状态(即,AP状态)的转变出现在HC-处。负位移516在负方向上移位HC-及HC+两者,使得HC-的量值大于HC+的量值。
描绘在第一偏压条件530及第二偏压条件550下的负载线特性,负载线特性对应于经配置以具有不平衡的R-H环512的存储器单元502的操作。在第一偏压条件530下,MTJ装置504的特性由MTJ电流-电压(I-V)曲线534说明,此特性随MTJ装置504上的电压而变,其中源极线(SL)接地且位线(BL)被施以正电压(VBL)的偏压。具有正栅极电压VG的晶体管506的特性由晶体管I-V曲线532说明为随施加于MTJ装置504上的电压而变。MTJ I-V曲线534与晶体管I-V曲线532的相交点指示存储器单元的操作点,且操作点处的电压值必须大于稳定写入操作的切换电压。
MTJ I-V曲线534说明:随着MTJ装置504上的电压从零增大,经过MTJ装置504的电流增大。在表示MTJ装置504的较高电阻状态(即,AP状态)的下部线之后,电流随电压而增大,直到转变536指示切换到较低电阻状态(即,P状态)为止。转变536出现在经过MTJ装置504的电流密度等于临界电流密度JC(AP→P)时的临界电流IC+538处。经过MTJ装置504的电流以对应于较低电阻状态的速率随电压增大而继续增大。随着MTJ装置504上的电压减小,经过MTJ装置504的电流在较低电阻状态中大体上线性减小。
在第二偏压条件550下,MTJ装置504的特性由MTJ电流-电压(I-V)曲线556说明,此特性随MTJ装置504上的电压而变,其中源极线(SL)被施以VBL的偏压且位 线(BL)接地。具有负栅极电压-VG的晶体管506的特性由晶体管I-V曲线552说明为随MTJ装置504上的电压而变。MTJ I-V曲线554与晶体管I-V曲线552的相交点指示存储器单元502的稳定操作点。
晶体管I-V曲线552表示由于源极负载效应而与晶体管I-V曲线532相比有所减小的电流。明确地说,当晶体管506为n沟道金属氧化物半导体(NMOS)型场效晶体管时,在第一偏压条件530下,栅极-源极电压差(VGS)为常数VG。对比来说,在第二偏压条件550下,栅极-源极电压差随MTJ装置504上的电压(VMTJ)而变化。
MTJ I-V曲线544说明:随着MTJ装置504上的电压的量值从零增大(即,变得更负),经过MTJ装置504的电流的量值在与操作状态530中的方向相反的方向上增大(即,电流增大)。在表示MTJ装置504的P状态的下部线之后,经过MTJ装置504的电流的量值随电压而增大,直到转变556指示切换到AP状态为止。转变556出现在经过MTJ装置504的电流密度等于临界电流密度JC(P→AP)时的临界电流IC-558处。在转变到减小的电流之后,经过MTJ装置504的电流的量值以对应于较高电阻状态的速率随电压而继续增大。随着MTJ装置504上的电压从负值朝零返回,经过MTJ装置504的电流的量值在较高电阻状态中大体上线性减小。
存储器单元502的负载线分析指示:晶体管506提供足够电流以使MTJ装置能够在第一偏压条件530下从AP状态切换到P状态,且还在第二偏压条件550下从P状态切换到AP状态。然而,如由虚线(此虚线表示对应于平衡的R-H环514的MTJ I-V曲线)所说明的部分指示,在不会产生引起平衡的R-H环514的负位移516的偏移磁场的情况下,P→AP转变562需要比在第二偏压条件550下可由晶体管装置506提供的电流大的电流。因此,存储器单元502在平衡的R-H环514的情况下不稳定,且在不施加产生MTJ I-V曲线中的位移560的负位移516的情况下,无法将数据可靠地写入到存储器单元502。
位移560将P→AP转变562移位到在较小量值的电流密度JC(P→AP)处出现的转变556,且将AP→P转变540移位到在较大量值的电流密度JC(AP→P)处出现的转变536。因此,产生偏移磁场以引起负位移516(例如通过调整MTJ装置504的经钉扎层的厚度),以此引起MTJ I-V响应中的位移560,且导致|JC(P→AP)|/JC(AP→P)的比率减小,这使得存储器单元502能够稳定操作及正确切换。
图6为存储器单元602的操作特性的第二实施例的图。存储器单元602可具有第一配置604,其中MTJ装置具有沉积于经钉扎层上方的自由层,且经“反向连接”以使得所述自由层经由导电路径电耦合到晶体管的漏极端子。举例来说,导电路径可包括将漏 极端子电连接到MTJ装置的顶部电极的导线、通路及触点。存储器单元602可替代地具有第二配置606,其中MTJ装置具有“反向层”结构,在所述结构中,经钉扎层沉积于自由层上方,且所述自由层电耦合到晶体管的漏极端子。在特定实施例中,存储器单元602为图1的存储器单元116。
呈任一配置604或606的MTJ装置602可具有电阻-磁场环(R-H环)614,其为“平衡的”,即定中心于零处。通过调整邻近层的物理尺寸(例如,经钉扎层的厚度或所述经钉扎层内的一个或一个以上层的厚度)修改偏移磁场,来将正位移616施加到平衡的R-H环614。所得不平衡的R-H环612说明从低电阻状态(即,P状态)到高电阻状态(即,AP状态)的转变出现在HC+处,且从高电阻状态到高电阻状态(即,AP状态)的转变出现在HC-处。正位移616在正方向上移位HC-及HC+两者,使得HC+的量值大于HC-的量值。
描绘在第一偏压条件630及第二偏压条件650下的负载线特性,负载线特性对应于经配置以具有不平衡的R-H环612的存储器单元602的操作。在第一偏压条件630下,MTJ装置的特性由MTJ电流-电压(I-V)曲线634说明,此特性随所述MTJ装置上的电压而变,其中源极线(SL)接地且位线(BL)被施以正电压(VBL)的偏压。具有正栅极电压VG的晶体管的特性由晶体管I-V曲线632说明为随MTJ装置上的电压而变。MTJ I-V曲线634与晶体管I-V曲线632的相交点指示存储器单元的稳定操作点。
晶体管I-V曲线632展现与图5中所描述的源极负载效应(在反向偏压条件的情况下)类似的源极负载效应。如先前所论述,MTJ切换的不对称性趋向于针对P→AP切换比针对AP→P切换需要较大的电流,即JC(AP→P)<JC(P→AP)。通过使MTJ装置的连接或层沉积反向,因源极负载效应而减小的晶体管电流可由于第一偏压条件630下所需要的较小切换电流而具有较小影响。然而,如由虚线所指示,在平衡的R-H环614条件下操作,会因为源极负载效应而在AP→P转变640处需要比晶体管可提供的电流大的电流。
在第二偏压条件650下,MTJ装置的特性由MTJ电流-电压(I-V)曲线654说明,此特性随所述MTJ装置上的电压而变,其中源极线(SL)被施以VBL的偏压且位线(BL)接地。具有负栅极电压-VG的晶体管的特性由晶体管I-V曲线652说明为随MTJ装置上的电压而变。MTJ I-V曲线654与晶体管I-V曲线652的相交点指示存储器单元602的稳定操作点。
存储器单元602的负载线分析指示:晶体管提供足够电流以使MTJ装置能够在第一偏压条件630下从AP状态切换到P状态,且还在施加正位移616以产生不平衡的R-H曲线612时在第二区中从P状态切换到AP状态,这导致MTJ转变640及662分别到转 变636及656的位移660。位移660为负位移,其减小第一偏压条件630下的临界电流的量值,且增大第二偏压条件650下的临界电流的量值,使得存储器单元602的晶体管可提供足够电流以使得MTJ装置能够稳定操作及恰当切换。
位移660将P→AP转变662移位到在较大量值的电流密度JC(P→AP)处出现的转变656,且将AP→P转变640移位到在较小量值的电流密度JC(AP→P)处出现的转变636。因此,产生偏移磁场以引起正位移616(例如通过调整MTJ装置的经钉扎层的厚度),以此引起MTJ I-V响应中的位移660且导致|JC(P→AP)|/JC(AP→P)的比率增大,这使得存储器单元602能够稳定操作及正确切换。
尽管图5及图6说明通过施加足够偏移场而产生的从平衡的R-H环条件的位移导致存储器单元变得稳定的实施例,但为了便于阐释且不作为限制,可使用表示平衡的R-H环下的不稳定行为及不平衡的R-H环下的稳定行为的这些实施例。一般来说,存储器单元的恰当操作可能与R-H环是否平衡无关。代替的是,调整存储器单元以实现恰当操作可基于确定移位R-H环的方向及量值,以将切换电流电平调整到在操作偏压条件下可由晶体管实现的电平(即,移位转变点以使其出现在图5到图6中所说明的负载线中的晶体管I-V曲线内)。因此,用以引起稳定操作的切换电流电平的调整可指示使R-H环移位的量,所述量又可指示用以实现R-H环的移位的偏移场的调整,所述偏移场的调整又可指示用以调整偏移场的经钉扎层的一个或一个以上物理尺寸(例如,层厚度)的改变。
图7为说明切换电流比率与磁场比率之间的关系的模型700的图,所述模型700可用以确定经编程偏移磁场。模型700说明在如曲线702、704及706所展示的三个不同热稳定性值EB下,随磁场比率Hoff/Hc(称作β)而变的切换电流比率|JC-|/JC+(例如,关于图5到图6所论述的|JC(P→AP)|/JC(AP→P))。
在特定实施例中,模型700为基于以下等式的理论模型
其中Jc0±为临界电流密度,kB为波兹曼(Boltzmann)常数,T为温度,且τ/τ0表示写入电流持续时间τ与恒定参数τ0的比率。E为由以下等式给出的热稳定性
其中MS为饱和磁化强度(saturation magnetization),V为MTJ的体积,且β为Hoff/Hc
切换电流比率|JC-|/JC+由以下等式给出
其中
模型700可基于基本STT切换理论,或在其它实施例中,模型700可由额外物理模拟或模型化,或经验模型,或其任何组合调整。
模型700提供切换电流比率β、偏移磁场Hoff与切换场强度Hc之间的关系。举例来说,可确定使存储器单元能够稳定操作的切换电流比率,且可存取模型700以确定修改偏移磁场的量,从而调整所述存储器单元的MTJ装置的操作以具有所述切换电流比率。
图8为降低自旋力矩转移磁阻性随机存取存储器(STT-MRAM)的源极负载效应的方法800的特定实施例的流程图。
在802处,可设定RA、MR及Hc的初始目标以满足目标应用的规范。通常,读取电路设定MR的阈值,且通过考虑目标MTJ结构的STT切换特性及隧穿绝缘体的崩溃特性来确定RA。另外,目标Hc值可受所需要的最小热稳定性(EB)限制,且可通过调整MTJ的纵横比来控制。
继续到804,可制造具有不同晶体管宽度的各种位单元,例如包括串联耦合到存取晶体管的MTJ结构的存储器单元。举例来说,存储器单元可为图1的存储器单元116、图2的存储器单元200、图5的存储器单元502或图6的存储器单元602。存储器单元可具有:第一配置,例如图5的存储器单元502的配置(“类型I”);第二配置,例如 图6的存储器单元602的配置604(“类型II”);或第三配置,例如图6的存储器单元602的配置606(“类型III”)。
前进到806,可确定存储器单元的切换特性。举例来说,可测量存储器单元的自旋力矩转移(STT)切换特性。初始临界电流密度Jc不对称性可为已知的。
移动到808,可执行晶体管负载线分析以确定使得存储器单元能够稳定操作的切换电流比率。注意,可通过改变晶体管宽度及字线电压来使负载线变化。可估计晶体管宽度、字线电压与可能的偏移场值的最佳组合。确定磁性隧道结(MTJ)结构的使得存储器单元能够稳定操作的切换电流比率。切换电流比率可基于从第一状态切换到第二状态的第一临界电流密度除以从第二状态切换到第一状态的第二临界电流密度,例如比率|JC(P→AP)|/JC(AP→P),如关于图5到图6所描述,或|JC-|/JC+,如关于图7所描述。
进行到810,可基于切换电流比率|JC-|/JC+的量值确定修改偏移磁场(Hoff)的量。举例来说,可使用切换电流比率|JC-|/JC+、偏移磁场Hoff与切换场强度(Hc)之间的关系的数学模型来确定修改偏移磁场Hoff的量。具体地说,可从例如关于图7所论述的|JC-|/JC+与Hoff/Hc之间的关系来确定Hoff/Hc的值。作为另一实例,可使用切换电流比率|JC-|/JC+、偏移磁场Hoff及切换场强度Hc之间的关系的经验模型来确定修改偏移磁场Hoff的量。
可通过修改MTJ结构的物理尺寸,例如通过修改如关于图4所论述的经钉扎层中的一个或一个以上层厚度来得到偏移磁场Hoff。然而,此经修改的存储器单元可能不具有用于操作的足够热稳定性。
继续到812,可施加外部磁场(Hext)以模拟具有经钉扎层的经调整厚度的MTJ结构的操作。可测试在存在外部磁场的情况下的存储器单元的热稳定性(EB),以在调整之后预测存储器单元的热稳定性以得到偏移磁场Hoff
前进到决策814,作出存储器单元是否满足目标热稳定性的确定。在不满足目标热稳定性的情况下,在816处,可重新设计MTJ堆叠以增大热稳定性。举例来说,当所预测的热稳定性不满足预定阈值时,可重新设计MTJ结构。重新设计MTJ结构的一个实例是将设计改变为“反向”存储器单元配置(例如,图6的存储器单元602的配置604或606),以在导致例如关于图5到图6所描述的源极负载效应的偏压条件下放松切换电流要求。
在满足目标热稳定性的情况下,在818处,可作出外部场是否大体上为零的确定。在确定外部场大体上为零的情况下,在822处,所述方法可结束,因为已在热稳定设计中实现恰当的切换操作。
否则,在确定外部场大体上不为零的情况下,在820处,可针对Hoff调整经钉扎层厚度。经调整的厚度可为合成经钉扎层的一个或一个以上特定层的厚度,且可使用例如图4的模型422等模型来确定。调整MTJ结构的经钉扎层的厚度以修改耦合到所述MTJ结构的自由层的偏移磁场Hoff。经修改的偏移磁场致使MTJ结构展现经确定以使得存储器单元处能够稳定操作的切换电流比率|JC-|/JC+。举例来说,可通过添加减小切换电流比率的正场分量来修改偏移磁场。在特定实施例中,当调整经钉扎层的厚度以增大偏移磁场时,切换电流比率得以减小。
在调整经钉扎层厚度(在820处)之后,或在重新设计MTJ结构(在816处)之后,处理可返回到804,其中可使用经调整或经重新设计的性质来制造位单元。因此可在804处制造具有MTJ结构的经钉扎层的经调整厚度(如由方法800所确定)的存储器单元,且在存储器单元在814及818处满足决策的情况下,可将存储器单元的设计存储到设计库或其它电子设计工具中且用作其它装置的组件。举例来说,可根据方法800设计STT-MRAM存储器。根据方法800或根据本文中所描述的其它实施例而设计的存储器单元可并入多种装置中,例如移动电话、机顶盒装置、计算机、个人数字助理(PDA)、音乐播放器、视频播放器、存储或检索数据或计算机指令的任何其它装置,或其任何组合。
在其它实施例中,方法800可能不包括制造位单元,且可替代地执行物理系统模拟以预测位单元设计的行为作为自动化设计过程或设计工具的一部分。举例来说,在特定实施例中,方法800的全部或部分可由专用电路、现场可编程门阵列、执行有形地包含于计算机可读媒体中的计算机可读指令的处理器(例如,执行存储在计算机存储器中的软件的处理器)、经配置以实施方法800的全部或部分的其它有形物理装置,或其任何组合来执行,以在使用STT-MRAM存储器单元设计来制造存储器之前反复改进所述存储器单元设计。
参看图9,将包括基于电阻的存储器的便携式电子装置的特定说明性实施例的框图描绘并概括指定为900,所述基于电阻的存储器包括具有经编程偏移磁场的存储器单元。装置900包括处理器,例如数字信号处理器(DSP)910,所述处理器耦合到存储器932且还耦合到包括具有经编程偏移磁场的存储器单元的基于电阻的存储器964。在说明性实例中,基于电阻的存储器964包括图1中所描绘的存储器装置100,或包括图2、图5及图6中分别描绘的存储器单元200、502、602或606中的一者或一者以上,或根据图8的方法800而形成,或其任何组合。在特定实施例中,基于电阻的存储器964为自旋力矩转移磁阻性随机存取存储器(STT-MRAM)。
图9还展示显示器控制器926,其耦合到数字信号处理器910且耦合到显示器928。编码器/解码器(CODEC)934也可耦合到数字信号处理器910。扬声器936及麦克风938可耦合到CODEC 934。图9还指示无线收发器940可耦合到数字信号处理器910且耦合到无线天线942。
处理器910经配置以执行基于电阻的存储器964的存储器单元的个别存储器单元或存储器单元群组处的存储器操作。举例来说,处理器910可经配置以将经由天线942及无线收发器940接收的数据(例如,经由无线通信网络接收的音频数据或视频数据)存储在基于电阻的存储器964处。处理器910可经配置以检索基于电阻的存储器964处所存储的数据以起始数据呈现,例如在显示装置928处显示,在扬声器936处产生,或其任何组合。
在特定实施例中,DSP 910、显示器控制器926、存储器932、CODEC 934、无线收发器940及基于电阻的存储器964包括于封装内系统(system-in-package)或芯片上系统(system-on-chip)装置922中。在特定实施例中,输入装置930及电源供应器944耦合到芯片上系统装置922。此外,在特定实施例中,如图9中所说明,显示器928、输入装置930、扬声器936、麦克风938、无线天线942及电源供应器944处于芯片上系统装置922的外部。然而,显示器928、输入装置930、扬声器936、麦克风938、无线天线942及电源供应器944中的每一者可耦合到芯片上系统装置922的组件,例如接口或控制器。
上文揭示的装置及功能性可经设计并配置成存储在计算机可读媒体上的计算机文件(例如,RTL、GDS II、GERBER等)。可将一些或所有此些文件提供到基于此些文件制造装置的制造处置程序(fabrication handler)。所得产品包括半导体晶片,其接着被切割成半导体裸片且封装成半导体芯片。芯片接着用于上文所描述的装置中。图10描绘电子装置制造过程1000的特定说明性实施例。
在制造过程1000中,(例如)在研究计算机1006处接收物理装置信息1002。物理装置信息1002可包括表示半导体装置(例如,图1的存储器装置100、图2的存储器单元200、图5的存储器单元502、具有图6的配置604或606的存储器单元602,或其任何组合)的至少一个物理性质的设计信息。举例来说,物理装置信息1002可包括物理参数、材料特性,及经由耦合到研究计算机1006的用户接口1004输入的结构信息。研究计算机1006包括处理器1008,例如一个或一个以上处理核心,其耦合到例如存储器1010等计算机可读媒体。存储器1010可存储计算机可读指令,所述指令可执行以致使处理器1008变换物理装置信息1002以符合文件格式且产生库文件1012。
在特定实施例中,库文件1012包括至少一个数据文件,所述至少一个数据文件包括经变换的设计信息。举例来说,库文件1012可包括半导体装置(包括图1的存储器装置100、图2的存储器单元200、图5的存储器单元502、具有图6的配置604或606的存储器单元602,或其任何组合)的库,其经提供以与电子设计自动化(EDA)工具1020一起使用。
库文件1012可在包括耦合到存储器1018的处理器1016(例如,一个或一个以上处理核心)的设计计算机1014处结合EDA工具1020使用。EDA工具1020可作为处理器可执行指令而存储在存储器1018处,以使设计计算机1014的用户能够使用库文件1012的图1的存储器装置100、图2的存储器单元200、图2的存储器单元502、具有图6的配置604或606的存储器单元602,或其任何组合来设计电路。举例来说,设计计算机1014的用户可经由耦合到设计计算机1014的用户接口1024输入电路设计信息1022。电路设计信息1022可包括表示半导体装置(例如,图1的存储器装置100、图2的存储器单元200、图5的存储器单元502、具有图6的配置604或606的存储器单元602,或其任何组合)的至少一个物理性质的设计信息。为了说明,电路设计性质可包括特定电路及与电路设计中的其它元件的关系的识别、定位信息、特征大小信息、互连信息,或表示半导体装置的物理性质的其它信息。
设计计算机1014可经配置以变换设计信息,其包括符合文件格式的电路设计信息1022。为了说明,文件形成可包括表示平面几何形状、文本标签,及关于呈例如图形数据系统(GDS II)文件格式等层级格式的电路布局的其它信息的数据库二进制文件格式。设计计算机1014可经配置以产生包括经变换设计信息的数据文件,例如GDS II文件1026,其除其它电路或信息之外,还包括描述图1的存储器装置100、图2的存储器单元200、图5的存储器单元502、具有图6的配置604或606的存储器单元602,或其任何组合的信息。为了说明,数据文件可包括对应于芯片上系统(SOC)的信息,所述SOC包括图1的存储器装置100且还包括所述SOC内的额外电子电路及组件。
GDS II文件1026可在制造过程1028处被接收,以根据GDS II文件1026中的经变换信息制造图1的存储器装置100、图2的存储器单元200、图5的存储器单元502、具有图6的配置604或606的存储器单元602,或其任何组合。举例来说,装置制造过程可包括将GDS II文件1026提供给掩模制造商1030以产生一个或一个以上掩模,例如待用于光刻处理的掩模,将其说明为代表性掩模1032。掩模1032可在制造过程期间使用以产生一个或一个以上晶片1034,其可经测试并分离成裸片,例如代表性裸片1036。裸片1036包括电路,所述电路包括图1的存储器装置100、图2的存储器单元200、图5的存储器单元502、具有图6的配置604或606的存储器单元602,或其任何组合。
可将裸片1036提供给封装过程1038,在所述封装过程1038中,裸片1036并入到代表性封装1040中。举例来说,封装1040可包括单个裸片1036或多个裸片,例如封装中系统(SiP)布置。封装1040可经配置以遵照一个或一个以上标准或规范,例如美国电子工程设计发展联合协会(Joint Electron Device Engineering Council,JEDEC)标准。
关于封装1040的信息可(例如)经由存储在计算机1046处的组件库分配给各种产品设计者。计算机1046可包括处理器1048,例如一个或一个以上处理核心,其耦合到存储器1050。印刷电路板(PCB)工具可作为处理器可执行指令存储在存储器1050处,以处理经由用户接口1044从计算机1046的用户接收的PCB设计信息1042。PCB设计信息1042可包括电路板上的已封装半导体装置的物理定位信息,所述已封装半导体装置对应于包括图1的存储器装置100、图2的存储器单元200、图5的存储器单元502、具有图6的配置604或606的存储器单元602,或其任何组合的封装1040。
计算机1046可经配置以变换PCB设计信息1042以产生数据文件,例如具有包括电路板上的已封装半导体装置以及电连接件(例如,迹线及通路)的布局的物理定位信息的数据的GERBER文件1052,其中所述已封装半导体装置对应于包括图1的存储器装置100、图2的存储器单元200、图5的存储器单元502、具有图6的配置604或606的存储器单元602,或其任何组合的封装1040。在其它实施例中,由经变换的PCB设计信息所产生的数据文件可具有不同于GERBER格式的格式。
GERBER文件1052可在板组装过程1054处被接收,且用以产生根据存储在所述GERBER文件1052内的设计信息而制造的PCB,例如代表性PCB 1056。举例来说,GERBER文件1052可上载到一个或一个以上机器以用于执行PCB生产过程的各种步骤。PCB 1056可填有包括封装1040的电子组件,以形成所表示的印刷电路组合件(PCA)1058。
PCA 1058可在产品制造过程1060处被接收且集成到一个或一个以上电子装置(例如,第一代表性电子装置1062及第二代表性电子装置1064)中。作为说明性、非限制性实例,第一代表性电子装置1062、第二代表性电子装置1064或所述两者可选自机顶盒、音乐播放器、视频播放器、娱乐设备、导航装置、通信装置、个人数字助理(PDA)、固定位置数据单元及计算机的群组。作为另一说明性、非限制性实例,电子装置1062及1064中的一者或一者以上可为例如移动电话等远程单元、手持式个人通信系统(PCS)单元、例如个人数据助理等便携式数据单元、具有全球定位系统(GPS)能力的装置、导航装置、例如仪表读取设备等固定位置数据单元,或存储或检索数据或计算机指令的任何其它装置,或其任何组合。尽管图1到图9中的一者或一者以上可根据本发明的教 示来说明远程单元,但本发明不限于这些示范性所说明单元。本发明的实施例可合适地用于包括有源集成电路(包括存储器)及用于测试及特征化的芯片上电路的任何装置中。
因此,图1的存储器装置100、图2的存储器单元200、图5的存储器单元502、具有图6的配置604或606的存储器单元602,或其任何组合可经制造、处理,且并入到电子装置中,如说明性过程1000中所描述。关于图1到图9所揭示的实施例的一个或一个以上方面可包括于各种处理阶段(例如,库文件1012、GDS II文件1026及GERBER文件1052内),以及存储在研究计算机1006的存储器1010、设计计算机1014的存储器1018、计算机1046的存储器1050、一个或一个以上其它计算机的存储器,或用于各种阶段(例如,用于板组装过程1054)的处理器(未图示)处,且还并入到一个或一个以上其它物理实施例中,例如掩模1032、裸片1036、封装1040、PCA 1058、例如原型电路或装置(未图示)等其它产品,或其任何组合。尽管描绘从物理装置设计到最终产品的生产的各种代表性阶段,但在其它实施例中,可使用较少阶段或可包括额外阶段。类似地,可由单个实体,或由执行过程1000的各种阶段的一个或一个以上实体来执行过程1000。
所属领域的技术人员将进一步了解,可将结合本文中所揭示的实施例而描述的各种说明性逻辑块、配置、模块、电路及算法步骤实施为电子硬件、计算机软件或两者的组合。所属领域的技术人员可针对每一特定应用以不同方式实施所描述的功能性,但此些实施决策不应被解释为会引起脱离本发明的范围。
结合本文中所揭示的实施例而描述的方法或算法的步骤可直接体现于硬件中、由处理器执行的软件模块中,或硬件与软件模块的组合中。软件模块可驻存在随机存取存储器(RAM)、快闪存储器、只读存储器(ROM)、可编程只读存储器(PROM)、可擦除可编程只读存储器(EPROM)、电可擦除可编程只读存储器(EEPROM)、寄存器、硬盘、可装卸盘、压缩光盘只读存储器(CD-ROM),或此项技术中已知的任何其它形式的存储媒体中。示范性存储媒体耦合到处理器,使得处理器可从存储媒体读取信息及将信息写入到存储媒体。在替代方案中,存储媒体可与处理器成一体式。处理器及存储媒体可驻存在专用集成电路(ASIC)中。ASIC可驻存在计算装置或用户终端中。在替代方案中,处理器及存储媒体可作为离散组件驻存在计算装置或用户终端中。
提供所揭示实施例的先前描述是为了使所属领域的技术人员能够制作或使用所揭示实施例。对这些实施例的各种修改对于所属领域的技术人员来说将是显而易见的,且本文中所定义的一般原理可在不脱离本发明的范围的情况下应用于其它实施例。因此,本发明无意限于本文中所展示的实施例,而是将被赋予与如由所附权利要求书界定的原 理及新颖特征一致的最宽可能范围。

Claims (34)

1.一种用于降低存储器中的源极负载效应的设备,其包含:
存储器单元,所述存储器单元包含在位线与源极线之间耦合的磁性隧道结(MTJ)结构,所述MTJ结构包括:
耦合到所述位线的自由层;以及
经钉扎层,其中所述自由层的磁矩在第一状态中与所述经钉扎层的磁矩大体上平行且在第二状态中与所述经钉扎层的磁矩大体上反平行,
其中所述经钉扎层具有物理尺寸以产生不平衡的偏移磁场,其中所述物理尺寸与所述MTJ结构的切换电流比率相关联,其中当第一电压被施加到所述位线时所述不平衡的偏移磁场对应于穿过所述MTJ结构以使得所述第一状态向所述第二状态切换的第一切换电流,且其中当所述第一电压被施加到所述源极线时所述不平衡的偏移磁场对应于穿过所述MTJ结构以使得所述第二状态向所述第一状态切换的第二切换电流。
2.根据权利要求1所述的设备,其中所述MTJ结构的所述切换电流比率使所述存储器单元能够稳定操作,其中所述切换电流比率为所述第一切换电流与所述第二切换电流的比率。
3.根据权利要求1所述的设备,其中所述第一切换电流的量值小于所述第二切换电流的量值。
4.根据权利要求1所述的设备,其中所述第一切换电流的量值大于所述第二切换电流的量值。
5.根据权利要求1所述的设备,其中所述第一切换电流的第一量值与所述第二切换电流的第二量值之差小于零。
6.根据权利要求1所述的设备,其中所述第一切换电流的第一量值与所述第二切换电流的第二量值之差大于零。
7.根据权利要求1所述的设备,其中与所述MTJ结构相关联的第一电阻-磁场环(R-H环)定中心于从零偏移。
8.根据权利要求1所述的设备,其中所述物理尺寸包括所述经钉扎层的厚度,且其中所述物理尺寸基于所述切换电流比率来确定。
9.根据权利要求1所述的设备,其中所述自由层定位在距耦合到所述MTJ结构的存取晶体管的漏极端子第一距离处,其中所述经钉扎层定位在距所述漏极端子第二距离处,其中所述第一距离大于所述第二距离,且其中导电路径将所述漏极端子电耦合到所述自由层。
10.根据权利要求1所述的设备,其中所述自由层定位在距耦合到所述MTJ结构的存取晶体管的漏极端子第一距离处,其中所述经钉扎层定位在距所述漏极端子第二距离处,其中所述第二距离大于所述第一距离,且其中导电路径将所述漏极端子电耦合到所述自由层。
11.根据权利要求1所述的设备,其中所述存储器单元集成到至少一个半导体裸片中。
12.根据权利要求1所述的设备,进一步包含装置,所述装置包括机顶盒、音乐播放器、视频播放器、娱乐单元、导航装置、通信装置、个人数字助理(PDA)、固定位置数据单元、计算机或其结合,所述存储器单元集成到所述装置中。
13.根据权利要求1所述的设备,其中基于所述不平衡的偏移磁场,所述第一切换电流处于所述存储器单元的存取晶体管的操作电流范围之内。
14.根据权利要求1所述的设备,其中所述存储器装置为自旋力矩转移磁阻性随机存取存储器(STT-MRAM)。
15.一种用于降低存储器中的源极负载效应的方法,其包含:
在集成到电子装置的处理器处确定修改入射到磁性隧道结(MTJ)结构的自由层的磁场的量,其中存储器单元包括所述MTJ结构,其中所述量基于所述MTJ结构的切换电流比率;以及
基于用于产生入射到所述自由层的不平衡的偏移磁场的所述量,在所述存储器单元的设计中修改所述MTJ结构的经钉扎层的物理尺寸,其中当第一电压被施加到位线时,所述不平衡的偏移磁场对应于穿过所述MTJ结构以使得第一状态向第二状态切换的第一切换电流,且其中当所述第一电压被施加到源极线时所述不平衡的偏移磁场对应于穿过所述MTJ结构以使得所述第二状态向所述第一状态切换的第二切换电流。
16.根据权利要求15所述的方法,其进一步包含在所述处理器处接收包括所述设计的设计文件,其中用于修改所述磁场的所述量基于所述设计而确定,且其中修改所述物理尺寸包含调整所述设计。
17.根据权利要求15所述的方法,其中修改所述物理尺寸修改与所述MTJ结构相关联的至少一个临界切换点、增加所述磁场的量值或其结合。
18.根据权利要求15所述的方法,其进一步包括确定使得所述存储器单元能够稳定操作的所述MTJ结构的所述切换电流比率,其中所述切换电流比率为所述第一切换电流与所述第二切换电流的比率。
19.根据权利要求18所述的方法,其中修改所述物理尺寸的量是使用所述切换电流比率、所述磁场、切换场强之间的关系的数学模型及经验模型中的至少一者或其结合来确定的。
20.根据权利要求18所述的方法,其中所述切换电流比率为将所述MTJ结构从高阻态切换到低阻态的所述第一切换电流与将所述MTJ结构从所述低阻态切换到所述高阻态的所述第二切换电流的比率。
21.根据权利要求15所述的方法,其进一步包含:
在调整所述经钉扎层的厚度之前,在应用经修改的偏移磁场的情况下,将外部磁场施加到所述MTJ结构以估计所述MTJ结构的热稳定性;以及
调整所述经钉扎层的所述厚度,其中所述物理尺寸为所述经钉扎层的所述厚度。
22.根据权利要求15所述的方法,其进一步包含:
制造所述存储器单元;
测量所述存储器单元的自旋力矩转移(STT)切换特性;
执行晶体管负载线分析以确定切换电流比率;
施加外部磁场以模拟具有所述经钉扎层的所述经调整的物理尺寸的所述MTJ结构的操作;以及
在应用所述外部磁场的情况下测试所述存储器单元的热稳定性。
23.根据权利要求15所述的方法,其中所述经钉扎层为包括以下各层的合成层:
第一磁性层,其接近所述自由层;以及
第二磁性层,其具有与所述第一磁性层的磁矩反平行的磁矩,
其中修改所述经钉扎层的所述物理尺寸包括减小所述第二磁性层的厚度以将负位移施加到所述偏移磁场。
24.根据权利要求23所述的方法,其中当耦合到所述MTJ结构的存取晶体管在源极负载状态下时,所述MTJ结构的切换电流比率使得所述存储器单元能够切换。
25.根据权利要求15所述的方法,其中所述存储器单元并入到包括机顶盒、音乐播放器、视频播放器、娱乐单元、导航装置、通信装置、个人数字助理(PDA)、固定位置数据单元、计算机或其结合的电子装置的存储器中。
26.一种用于降低存储器中的源极负载效应的设备,其包含:
用于存储数据值作为磁矩的定向的装置,所述磁矩可由超出阈值电流密度的自旋极化电流来编程,所述用于存储所述数据值的装置耦合到位线;以及
用于存储具有经钉扎定向的经钉扎磁矩的装置,其中所述磁矩在第一状态中与所述经钉扎磁矩大体上平行,且在第二状态中与所述经钉扎磁矩大体上反平行,
其中所述用于存储所述经钉扎磁矩的装置具有物理尺寸以产生不平衡的偏移磁场,其中所述物理尺寸与所述用于存储所述数据值的装置的切换电流比率相关联,其中当第一电压被施加到所述位线时所述不平衡的偏移磁场对应于穿过所述用于存储所述数据值的装置以使得所述第一状态向所述第二状态切换的第一切换电流,且其中当所述第一电压被施加到耦合到所述用于存储所述数据值的装置的源极线时所述不平衡的偏移磁场对应于穿过所述用于存储所述数据值的装置以使得所述第二状态向所述第一状态切换的第二切换电流。
27.根据权利要求26所述的设备,其中所述用于存储所述数据值的装置及所述用于存储所述经钉扎磁矩的装置集成在至少一个半导体裸片中。
28.根据权利要求26所述的设备,其进一步包含装置,所述装置包括机顶盒、音乐播放器、视频播放器、娱乐单元、导航装置、通信装置、个人数字助理(PDA)、固定位置数据单元、计算机或其结合,所述存储所述数据值的装置及所述存储所述经钉扎磁矩的装置集成到所述装置中。
29.一种用于降低存储器中的源极负载效应的方法,其包含:
接收表示半导体装置的至少一个物理性质的设计信息,所述半导体装置包含耦合到位线与源极线之间的磁性隧道结(MTJ)结构,所述MTJ结构包括:
自由层,其耦合到位线;以及
经钉扎层,其中所述自由层的磁矩在第一状态中与所述经钉扎层的磁矩大体上平行,且在第二状态中与所述经钉扎层的所述磁矩大体上反平行,
其中所述经钉扎层具有物理尺寸以产生不平衡的偏移磁场,其中所述物理尺寸与所述MTJ结构的切换电流比率相关联,其中当第一电压被施加到所述位线时,所述不平衡的偏移磁场对应于穿过所述MTJ结构以使得所述第一状态向所述第二状态切换的第一切换电流,且其中当所述第一电压被施加到所述源极线时,所述不平衡的偏移磁场对应于穿过所述MTJ结构以使得所述第二状态向所述第一状态切换的第二切换电流;
变换所述设计信息以符合文件格式;以及
产生包括经变换的所述设计信息的数据文件。
30.根据权利要求29所述的方法,其中所述数据文件包括GDSII格式。
31.一种用于降低存储器中的源极负载效应的方法,其包含:
接收包括设计信息的数据文件,所述设计信息对应于半导体装置;以及
根据所述设计信息制造所述半导体装置,其中所述半导体装置包含耦合到位线与源极线之间的磁性隧道结(MTJ)结构,所述MTJ结构包括:
自由层,其耦合到位线;以及
经钉扎层,其中所述自由层的磁矩在第一状态中与所述经钉扎层的磁矩大体上平行,且在第二状态中与所述经钉扎层的所述磁矩大体上反平行,
其中所述经钉扎层具有物理尺寸以产生不平衡的偏移磁场,其中所述物理尺寸与所述MTJ结构的切换电流比率相关联,其中当第一电压被施加到所述位线时,所述不平衡的偏移磁场对应于穿过所述MTJ结构以使得所述第一状态向所述第二状态切换的第一切换电流,且其中当所述第一电压被施加到所述源极线时,所述不平衡的偏移磁场对应于穿过所述MTJ结构以使得所述第二状态向所述第一状态切换的第二切换电流。
32.根据权利要求31所述的方法,其中所述数据文件包括GDSII格式。
33.根据权利要求31所述的方法,其中所述数据文件包括GERBER格式。
34.根据权利要求31所述的方法,其进一步包含将所述半导体装置集成到装置中,所述装置包括机顶盒、音乐播放器、视频播放器、娱乐单元、导航装置、通信装置、个人数字助理(PDA)、固定位置数据单元及计算机或其组合。
CN201410563657.9A 2009-03-02 2010-03-02 降低自旋力矩转移磁阻性随机存取存储器(stt‑mram)中的源极负载效应 Expired - Fee Related CN104282327B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/396,295 2009-03-02
US12/396,295 US8587993B2 (en) 2009-03-02 2009-03-02 Reducing source loading effect in spin torque transfer magnetoresisitive random access memory (STT-MRAM)
CN201080009766.6A CN102334166B (zh) 2009-03-02 2010-03-02 降低自旋力矩转移磁阻性随机存取存储器(stt-mram)中的源极负载效应

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201080009766.6A Division CN102334166B (zh) 2009-03-02 2010-03-02 降低自旋力矩转移磁阻性随机存取存储器(stt-mram)中的源极负载效应

Publications (2)

Publication Number Publication Date
CN104282327A CN104282327A (zh) 2015-01-14
CN104282327B true CN104282327B (zh) 2017-06-23

Family

ID=42216683

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201410563657.9A Expired - Fee Related CN104282327B (zh) 2009-03-02 2010-03-02 降低自旋力矩转移磁阻性随机存取存储器(stt‑mram)中的源极负载效应
CN201080009766.6A Expired - Fee Related CN102334166B (zh) 2009-03-02 2010-03-02 降低自旋力矩转移磁阻性随机存取存储器(stt-mram)中的源极负载效应

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201080009766.6A Expired - Fee Related CN102334166B (zh) 2009-03-02 2010-03-02 降低自旋力矩转移磁阻性随机存取存储器(stt-mram)中的源极负载效应

Country Status (10)

Country Link
US (4) US8587993B2 (zh)
EP (1) EP2404298B1 (zh)
JP (4) JP5426694B2 (zh)
KR (1) KR101293610B1 (zh)
CN (2) CN104282327B (zh)
BR (1) BRPI1009229A2 (zh)
HR (1) HRP20161195T1 (zh)
SM (1) SMT201600438B (zh)
TW (1) TW201106353A (zh)
WO (1) WO2010101860A2 (zh)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212661A (ja) * 2009-02-13 2010-09-24 Fujitsu Ltd 磁気ランダムアクセスメモリ
US8587993B2 (en) 2009-03-02 2013-11-19 Qualcomm Incorporated Reducing source loading effect in spin torque transfer magnetoresisitive random access memory (STT-MRAM)
US8416600B2 (en) * 2009-11-25 2013-04-09 Taiwan Semiconductor Manufacturing Company, Ltd. Reverse connection MTJ cell for STT MRAM
US8300454B2 (en) 2010-09-17 2012-10-30 Micron Technology, Inc. Spin torque transfer memory cell structures and methods
US9666639B2 (en) 2010-09-17 2017-05-30 Micron Technology, Inc. Spin torque transfer memory cell structures and methods
US8358534B2 (en) 2010-09-17 2013-01-22 Micron Technology, Inc. Spin torque transfer memory cell structures and methods
US8310868B2 (en) * 2010-09-17 2012-11-13 Micron Technology, Inc. Spin torque transfer memory cell structures and methods
KR101958420B1 (ko) 2012-06-21 2019-03-14 삼성전자 주식회사 자기 메모리소자 및 그 동작방법
US9245610B2 (en) * 2012-09-13 2016-01-26 Qualcomm Incorporated OTP cell with reversed MTJ connection
US8836056B2 (en) * 2012-09-26 2014-09-16 Intel Corporation Perpendicular MTJ stacks with magnetic anisotropy enhancing layer and crystallization barrier layer
KR102011138B1 (ko) 2013-04-25 2019-10-21 삼성전자주식회사 전류 생성기를 포함하는 불휘발성 메모리 장치 및 그것의 동작 전류 보정 방법
US20140327508A1 (en) * 2013-05-06 2014-11-06 Qualcomm Incorporated Inductor tunable by a variable magnetic flux density component
KR102154026B1 (ko) 2013-08-29 2020-09-09 삼성전자주식회사 자기 메모리 장치의 동작 방법
US9461242B2 (en) 2013-09-13 2016-10-04 Micron Technology, Inc. Magnetic memory cells, methods of fabrication, semiconductor devices, memory systems, and electronic systems
US9608197B2 (en) 2013-09-18 2017-03-28 Micron Technology, Inc. Memory cells, methods of fabrication, and semiconductor devices
US20150213867A1 (en) * 2014-01-28 2015-07-30 Qualcomm Incorporated Multi-level cell designs for high density low power gshe-stt mram
US10454024B2 (en) 2014-02-28 2019-10-22 Micron Technology, Inc. Memory cells, methods of fabrication, and memory devices
US9281466B2 (en) 2014-04-09 2016-03-08 Micron Technology, Inc. Memory cells, semiconductor structures, semiconductor devices, and methods of fabrication
US9269888B2 (en) 2014-04-18 2016-02-23 Micron Technology, Inc. Memory cells, methods of fabrication, and semiconductor devices
JP6294971B2 (ja) * 2014-09-03 2018-03-14 株式会社日立製作所 半導体集積回路装置
US9449892B2 (en) * 2014-09-04 2016-09-20 Kabushiki Kaisha Toshiba Manufacturing method of magnetic memory device
US9349945B2 (en) 2014-10-16 2016-05-24 Micron Technology, Inc. Memory cells, semiconductor devices, and methods of fabrication
US9768377B2 (en) 2014-12-02 2017-09-19 Micron Technology, Inc. Magnetic cell structures, and methods of fabrication
US9997225B2 (en) * 2014-12-10 2018-06-12 Globalfoundries Singapore Pte. Ltd. System and method for modular simulation of spin transfer torque magnetic random access memory devices
US10439131B2 (en) 2015-01-15 2019-10-08 Micron Technology, Inc. Methods of forming semiconductor devices including tunnel barrier materials
US9570509B2 (en) * 2015-01-29 2017-02-14 Qualcomm Incorporated Magnetic tunnel junction (MTJ) device array
US9437272B1 (en) * 2015-03-11 2016-09-06 Qualcomm Incorporated Multi-bit spin torque transfer magnetoresistive random access memory with sub-arrays
US9666257B2 (en) 2015-04-24 2017-05-30 Intel Corporation Bitcell state retention
WO2016174509A1 (en) * 2015-04-27 2016-11-03 Kabushiki Kaisha Toshiba Magnetic memory device
US10833253B2 (en) 2016-02-05 2020-11-10 International Business Machines Corporation Low magnetic moment materials for spin transfer torque magnetoresistive random access memory devices
WO2019073333A1 (ja) * 2017-10-13 2019-04-18 株式会社半導体エネルギー研究所 記憶装置、電子部品、及び電子機器
CN109935254A (zh) * 2017-12-15 2019-06-25 中电海康集团有限公司 写操作方法、电存储器件、装置及存储介质
US10693056B2 (en) 2017-12-28 2020-06-23 Spin Memory, Inc. Three-dimensional (3D) magnetic memory device comprising a magnetic tunnel junction (MTJ) having a metallic buffer layer
US10347308B1 (en) 2017-12-29 2019-07-09 Spin Memory, Inc. Systems and methods utilizing parallel configurations of magnetic memory devices
US10424357B2 (en) 2017-12-29 2019-09-24 Spin Memory, Inc. Magnetic tunnel junction (MTJ) memory device having a composite free magnetic layer
US10803916B2 (en) 2017-12-29 2020-10-13 Spin Memory, Inc. Methods and systems for writing to magnetic memory devices utilizing alternating current
US10403343B2 (en) * 2017-12-29 2019-09-03 Spin Memory, Inc. Systems and methods utilizing serial configurations of magnetic memory devices
US10319424B1 (en) 2018-01-08 2019-06-11 Spin Memory, Inc. Adjustable current selectors
US10192789B1 (en) 2018-01-08 2019-01-29 Spin Transfer Technologies Methods of fabricating dual threshold voltage devices
CN110197680B (zh) * 2018-02-24 2021-11-23 上海磁宇信息科技有限公司 一种采用全耗尽绝缘硅fd-soi场效应管的mram存储芯片
US10878870B2 (en) 2018-09-28 2020-12-29 Spin Memory, Inc. Defect propagation structure and mechanism for magnetic memory
US10692556B2 (en) 2018-09-28 2020-06-23 Spin Memory, Inc. Defect injection structure and mechanism for magnetic memory
CN112447250B (zh) * 2019-08-30 2022-09-27 中电海康集团有限公司 测试结构和测试方法
US11910723B2 (en) 2019-10-31 2024-02-20 Taiwan Semiconductor Manufacturing Company, Ltd. Memory device with electrically parallel source lines
US11121174B2 (en) 2019-11-21 2021-09-14 International Business Machines Corporation MRAM integration into the MOL for fast 1T1M cells
CN114627920A (zh) * 2020-12-14 2022-06-14 浙江驰拓科技有限公司 一种磁存储器及其性能调节方法
CN113515913B (zh) * 2021-03-19 2023-10-24 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) 一种stt-mram相关电路的磁性工艺设计方法
CN113630704B (zh) * 2021-07-30 2023-03-28 歌尔微电子股份有限公司 微机电系统麦克风、麦克风单体及电子设备
CN113630705B (zh) * 2021-07-30 2023-03-28 歌尔微电子股份有限公司 微机电系统麦克风、麦克风单体及电子设备
JP2023039160A (ja) * 2021-09-08 2023-03-20 キオクシア株式会社 磁気メモリデバイス

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683815B1 (en) * 2002-06-26 2004-01-27 Silicon Magnetic Systems Magnetic memory cell and method for assigning tunable writing currents
CN101060011A (zh) * 2006-04-20 2007-10-24 台湾积体电路制造股份有限公司 数据写入方法
CN101067967A (zh) * 2006-05-04 2007-11-07 株式会社日立制作所 磁性存储装置

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6145117A (en) 1998-01-30 2000-11-07 Tera Systems Incorporated Creating optimized physical implementations from high-level descriptions of electronic design using placement based information
US20020067364A1 (en) * 2000-06-22 2002-06-06 Lane John F. Method for browsing various intelligent design data abstractions
JP3812498B2 (ja) * 2001-12-28 2006-08-23 日本電気株式会社 トンネル磁気抵抗素子を利用した半導体記憶装置
US6794695B2 (en) 2002-04-29 2004-09-21 Hewlett-Packard Development Company, L.P. Magneto resistive storage device having a magnetic field sink layer
JP2004087870A (ja) 2002-08-28 2004-03-18 Sony Corp 磁気抵抗効果素子および磁気メモリ装置
US6765823B1 (en) 2003-01-29 2004-07-20 Micron Technology Incorporated Magnetic memory cell with shape anisotropy
US20040163072A1 (en) 2003-02-19 2004-08-19 Royal Design Ltd. Electronic design automation with automatic generation of hardware description language (HDL) code
US6900489B2 (en) * 2003-04-29 2005-05-31 Micron Technology, Inc. Reducing the effects of néel coupling in MRAM structures
JP2005109263A (ja) 2003-09-30 2005-04-21 Toshiba Corp 磁性体素子及磁気メモリ
US7068531B2 (en) 2004-01-10 2006-06-27 Honeywell International Inc. Bias-adjusted magnetoresistive devices for magnetic random access memory (MRAM) applications
JP4920881B2 (ja) 2004-09-27 2012-04-18 株式会社日立製作所 低消費電力磁気メモリ及び磁化情報書き込み装置
JP2006190838A (ja) * 2005-01-06 2006-07-20 Sony Corp 記憶素子及びメモリ
KR100601994B1 (ko) * 2005-03-02 2006-07-18 삼성전자주식회사 외부 자기장 발생수단을 구비하는 메모리 장치와 그 동작및 제조 방법
JP2006295000A (ja) 2005-04-13 2006-10-26 Sony Corp 記憶素子及びメモリ
JP2007273495A (ja) * 2006-03-30 2007-10-18 Fujitsu Ltd 磁気メモリ装置及びその駆動方法
JP2007294010A (ja) 2006-04-25 2007-11-08 Sony Corp 記憶素子の記録方法、メモリ
JP5076361B2 (ja) 2006-05-18 2012-11-21 株式会社日立製作所 半導体装置
JP4560025B2 (ja) 2006-09-29 2010-10-13 株式会社東芝 磁気ランダムアクセスメモリ及びその製造方法
JP2008117930A (ja) 2006-11-02 2008-05-22 Sony Corp 記憶素子、メモリ
US8004880B2 (en) 2007-03-06 2011-08-23 Qualcomm Incorporated Read disturb reduction circuit for spin transfer torque magnetoresistive random access memory
JP4682998B2 (ja) 2007-03-15 2011-05-11 ソニー株式会社 記憶素子及びメモリ
JP4384196B2 (ja) * 2007-03-26 2009-12-16 株式会社東芝 スピンfet、磁気抵抗効果素子及びスピンメモリ
US7764537B2 (en) 2007-04-05 2010-07-27 Qualcomm Incorporated Spin transfer torque magnetoresistive random access memory and design methods
US20080251878A1 (en) 2007-04-13 2008-10-16 International Business Machines Corporation Structure incorporating semiconductor device structures for use in sram devices
US20080273375A1 (en) 2007-05-02 2008-11-06 Faiz Dahmani Integrated circuit having a magnetic device
US7800094B2 (en) * 2007-06-11 2010-09-21 Macronix International Co., Ltd. Resistance memory with tungsten compound and manufacturing
JP2008310573A (ja) 2007-06-14 2008-12-25 Denso Wave Inc Cad図面の表示方法
US7750421B2 (en) * 2007-07-23 2010-07-06 Magic Technologies, Inc. High performance MTJ element for STT-RAM and method for making the same
US7961534B2 (en) * 2007-09-10 2011-06-14 Hynix Semiconductor Inc. Semiconductor memory device for writing data to multiple cells simultaneously and refresh method thereof
JP2009081315A (ja) 2007-09-26 2009-04-16 Toshiba Corp 磁気抵抗素子及び磁気メモリ
JP5260041B2 (ja) * 2007-12-19 2013-08-14 株式会社日立製作所 スピントルク磁気メモリ及びそのオフセット磁界補正方法
JP2010177256A (ja) 2009-01-27 2010-08-12 Fujitsu Ltd 磁気メモリ装置
JP2010212661A (ja) * 2009-02-13 2010-09-24 Fujitsu Ltd 磁気ランダムアクセスメモリ
US8587993B2 (en) 2009-03-02 2013-11-19 Qualcomm Incorporated Reducing source loading effect in spin torque transfer magnetoresisitive random access memory (STT-MRAM)

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6683815B1 (en) * 2002-06-26 2004-01-27 Silicon Magnetic Systems Magnetic memory cell and method for assigning tunable writing currents
CN101060011A (zh) * 2006-04-20 2007-10-24 台湾积体电路制造股份有限公司 数据写入方法
CN101067967A (zh) * 2006-05-04 2007-11-07 株式会社日立制作所 磁性存储装置

Also Published As

Publication number Publication date
JP6000908B2 (ja) 2016-10-05
EP2404298A2 (en) 2012-01-11
US20150349244A1 (en) 2015-12-03
KR101293610B1 (ko) 2013-08-13
US8587993B2 (en) 2013-11-19
CN102334166A (zh) 2012-01-25
BRPI1009229A2 (pt) 2016-03-15
JP5752750B2 (ja) 2015-07-22
US20130161771A1 (en) 2013-06-27
JP2013214768A (ja) 2013-10-17
SMT201600438B (it) 2017-01-10
JP6214246B2 (ja) 2017-10-18
US20140015077A1 (en) 2014-01-16
JP2012519348A (ja) 2012-08-23
JP5426694B2 (ja) 2014-02-26
US9368715B2 (en) 2016-06-14
HRP20161195T1 (hr) 2016-11-04
CN104282327A (zh) 2015-01-14
WO2010101860A2 (en) 2010-09-10
EP2404298B1 (en) 2016-08-31
US8913423B2 (en) 2014-12-16
TW201106353A (en) 2011-02-16
WO2010101860A3 (en) 2010-11-11
CN102334166B (zh) 2014-11-26
JP2013214767A (ja) 2013-10-17
JP2013214766A (ja) 2013-10-17
KR20110134447A (ko) 2011-12-14
US20100220516A1 (en) 2010-09-02
US9105340B2 (en) 2015-08-11

Similar Documents

Publication Publication Date Title
CN104282327B (zh) 降低自旋力矩转移磁阻性随机存取存储器(stt‑mram)中的源极负载效应
CN102334207B (zh) 磁性隧道结装置及制造
CN107004763B (zh) 用于自旋转移矩磁阻式随机存取存储器磁性隧道结器件的磁性蚀刻停止层
US8238143B2 (en) Magnetic tunnel junction device and fabrication
CN103124998B (zh) 具有双二极管存取装置的基于电阻的存储器
CN102804438A (zh) 磁性隧道结装置及其制造
CN107771348A (zh) 具有共享位线的位单元
US7969767B2 (en) Spin transfer torque—magnetic tunnel junction device and method of operation
CN106663468B (zh) 包括具有高矫顽力部分的感测层的差分磁性隧道结对
CN105518788B (zh) 用于提供参考单元的系统和方法
CN106104697B (zh) 垂直磁各向异性磁隧道结的基准层

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170623