WO2019073333A1 - 記憶装置、電子部品、及び電子機器 - Google Patents

記憶装置、電子部品、及び電子機器 Download PDF

Info

Publication number
WO2019073333A1
WO2019073333A1 PCT/IB2018/057627 IB2018057627W WO2019073333A1 WO 2019073333 A1 WO2019073333 A1 WO 2019073333A1 IB 2018057627 W IB2018057627 W IB 2018057627W WO 2019073333 A1 WO2019073333 A1 WO 2019073333A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
wiring
oxide
circuit
layer
Prior art date
Application number
PCT/IB2018/057627
Other languages
English (en)
French (fr)
Inventor
及川欣聡
宮口厚
魚地秀貴
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to US16/647,566 priority Critical patent/US11094360B2/en
Priority to JP2019547802A priority patent/JP7258764B2/ja
Publication of WO2019073333A1 publication Critical patent/WO2019073333A1/ja
Priority to US17/326,441 priority patent/US11532340B2/en
Priority to US18/081,109 priority patent/US11922987B2/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1653Address circuits or decoders
    • G11C11/1655Bit-line or column circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • G11C11/417Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction for memory cells of the field-effect type
    • G11C11/419Read-write [R-W] circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/82Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Definitions

  • One embodiment of the present invention relates to a memory device, an electronic component, or an electronic device using them.
  • a measure (power gating) to shut off the power supply to the circuit while the circuit is not operating is effective.
  • a memory using a STT-MRAM (Spin Transfer Torque-Magnetoresistive Random Access Memory), which is a memory using a magnetic tunnel junction (hereinafter, MTJ) element which is a resistance change type memory element is used.
  • MTJ magnetic tunnel junction
  • the current required for rewriting the data of the MTJ element may be insufficient due to the miniaturization of the transistor. It is effective to increase the current flowing through the MTJ element by increasing the channel width (W width) of the transistor for the shortage of the current required for data rewrite. However, when the W width direction is increased, the leak current may be increased.
  • An object of one embodiment of the present invention is to provide a memory device or the like which can increase a current required for rewriting when the MTJ element and the transistor are highly integrated to perform layout. Further, an object of one embodiment of the present invention is to provide a memory device or the like which can reduce leakage current in a structure in which an MTJ element and a transistor are highly integrated to perform layout. Another object of one embodiment of the present invention is to provide a memory device or the like which can suppress variation in electrical characteristics of an element in a configuration in which an MTJ element and a transistor are highly integrated to perform layout. Another object of one embodiment of the present invention is to provide a memory device or the like with low power consumption. Another object of one embodiment of the present invention is to provide a novel memory device or the like.
  • One embodiment of the present invention includes a first wiring, a second wiring, and a first memory cell
  • the first memory cell includes a first transistor and a first magnetic tunnel junction element, and a first transistor.
  • One of the source or the drain of the first transistor is electrically connected to the first wiring, and the other of the source or the drain of the first transistor is electrically connected to one terminal of the first magnetic tunnel junction device;
  • the other terminal of the junction element is electrically connected to the second wiring, and the first transistor is a memory device including an oxide semiconductor in a channel formation region.
  • One embodiment of the present invention includes a first wiring, a second wiring, a first memory cell, and a sense amplifier circuit
  • the first memory cell includes a first transistor and a first magnetic tunnel junction element.
  • one of the source and the drain of the first transistor is electrically connected to the first wiring, and the other of the source and the drain of the first transistor is electrically connected to one terminal of the first magnetic tunnel junction device.
  • the other terminal of the first magnetic tunnel junction element is electrically connected to the second wiring, the first transistor has an oxide semiconductor in the channel formation region, and the sense amplifier circuit is a CMOS type SRAM cell.
  • a memory has a second transistor to be configured, the sense amplifier circuit is electrically connected to the first wiring or the second wiring, and the second transistor is a memory having silicon in a channel formation region It is the location.
  • a memory device including a precharge circuit, the precharge circuit including a third transistor having a function of precharging a first wiring, and the third transistor including silicon in a channel formation region Is preferred.
  • the first magnetic tunnel junction device is preferably a memory device having a stacked structure of a free layer, an insulating layer, and a fixed layer.
  • the first transistor is preferably a memory device having a back gate electrode.
  • a second memory cell in one embodiment, includes a fourth transistor and a second magnetic tunnel junction element, and the fourth transistor is an oxide semiconductor in a channel formation region
  • the first transistor and the fourth transistor are provided in different layers, and the first magnetic tunnel junction element and the second magnetic tunnel junction element are provided in the same layer.
  • a memory device or the like which can increase the current required for rewriting when the MTJ element and the transistor are highly integrated to perform layout.
  • a memory device or the like which can reduce leakage current can be provided in a structure in which an MTJ element and a transistor are highly integrated to perform layout.
  • a memory device or the like which can suppress variation in electrical characteristics of an element can be provided in a structure in which an MTJ element and a transistor are highly integrated to perform layout.
  • a memory device and the like with low power consumption can be provided.
  • a novel storage device or the like can be provided.
  • FIG. 2 is a block diagram for explaining an example of the configuration of a storage device.
  • FIG. 10 is a circuit diagram for describing a configuration example of a memory device.
  • FIG. 2 is a schematic view for explaining the configuration of a storage device.
  • FIG. 2 is a schematic view for explaining an example of the configuration of a storage device.
  • FIG. 2 is a schematic view for explaining an example of the configuration of a storage device.
  • FIG. 2 is a schematic view for explaining an example of the configuration of a storage device.
  • FIG. 2 is a block diagram for explaining an example of the configuration of a storage device.
  • FIG. 10 is a circuit diagram for describing a configuration example of a memory device.
  • FIG. 10 is a circuit diagram for describing a configuration example of a memory device.
  • FIG. 10 is a circuit diagram for describing a configuration example of a memory device.
  • FIG. 10 is a circuit diagram for describing a configuration example of a memory device.
  • FIG. 10 is a circuit diagram for describing a configuration example of a memory device.
  • FIG. 10 is a circuit diagram for describing a configuration example of a memory device.
  • FIG. 7 is a cross-sectional view for illustrating a configuration example of a memory device.
  • 5A and 5B are a top view and a cross-sectional view for illustrating a structural example of a transistor.
  • 5A and 5B are a top view and a cross-sectional view for illustrating a structural example of a transistor.
  • 5A and 5B are a top view and a cross-sectional view for illustrating a structural example of a transistor.
  • FIG. 5A and 5B are a top view and a cross-sectional view for illustrating a structural example of a transistor.
  • the schematic diagram which shows the example of an electronic component.
  • FIG. 5 is a schematic view showing an example of an electronic device.
  • FIG. 5 is a schematic view showing an example of an electronic device.
  • a high power supply voltage may be referred to as an H level (or VDD), and a low power supply voltage may be referred to as an L level (or GND).
  • the memory cell 2a represents one unspecified memory cell among the memory cells 2a [0] to [3].
  • the metal oxide is a metal oxide in a broad sense. Metal oxides are classified into oxide insulators, oxide conductors (including transparent oxide conductors), oxide semiconductors, and the like. For example, in the case where a metal oxide is used for a semiconductor layer of a transistor, the metal oxide may be referred to as an oxide semiconductor. In the case of describing an OS transistor, the transistor can be put in another way as a transistor having a metal oxide or an oxide semiconductor. In the present specification and the like, metal oxides having nitrogen may also be generically referred to as metal oxides.
  • Embodiment 1 In this embodiment, a structure of a memory device using an OS transistor and an MTJ element which is an embodiment of the present invention will be described.
  • a configuration example of a memory device having a memory cell which is a 1T-1MTJ (one transistor and one magnetic tunnel junction element) type cell will be described.
  • an access transistor (a transistor that controls writing or reading of data) included in a memory cell is an OS transistor.
  • FIG. 1 is a block diagram of a storage device having 1T-1MTJ memory cells.
  • a storage device 100A illustrated in FIG. 1 includes a circuit block 101 and power switches (PSWs) 103 and 106.
  • the circuit block 101 includes a control circuit 102, a row circuit 104, a column circuit 105, a memory cell and a sense amplifier array 120 (referred to as an MCSA array 120).
  • the row circuit 104 includes a row decoder 111 and a row driver 113.
  • the column circuit 105 includes a column decoder 114, a column driver 115 and an input / output circuit 116.
  • the voltages VDD, VHM (> VDD), GND, Vbg, the clock signal CLK, the address signal ADDR, the signals CE, GW, BW, and the signal DATA are input to the storage device 100A.
  • circuits, signals, and voltages can be discarded as appropriate. Alternatively, other circuits or other signals may be added.
  • the structure (for example, bit length) of the input signal and the output signal of the storage device 100A is set based on the operation, the circuit configuration, and the like of the storage device 100A.
  • the control circuit 102 is a logic circuit having a function of controlling the overall operation of the storage device 100A.
  • the control circuit 102 has a function of performing a logical operation on the signals CE, GW, and BW to determine the operation of the storage device 100A.
  • the control circuit 102 also has a function of generating control signals for the row circuit 104 and the column circuit 105 so that the determined operation is performed.
  • Signals CE, GW, and BW are a chip enable signal, a global write enable signal, and a byte write enable signal, respectively.
  • the signal DATA is write data or read data.
  • Storage device 100A has a hierarchical bit line structure.
  • the MCSA array 120 has a plurality of blocks 130 and a plurality of interconnects GBL.
  • the block 130 has a plurality of memory cells, a plurality of wirings BL, and a plurality of wirings WL.
  • the number of blocks 130 is N 0 (N 0 is an integer of 1 or more).
  • a code 130 [0] or the like is used, and a code 130 is used to indicate an arbitrary cell block. The same applies to other elements, and a code such as [1] is used to distinguish a plurality of elements.
  • the PSW 103 has a function of controlling the supply of the voltage VDD to the circuit block 101.
  • the PSW 106 has a function of controlling the supply of the voltage VHM to the row circuit 104.
  • the high power supply voltage of the storage device 100A is the voltage VDD, and the low power supply voltage is GND (ground potential).
  • the voltage VHM is a high power supply voltage used to make the wiring WL high, and is a voltage higher than the voltage VDD.
  • the PSW 103 is on / off controlled by the signal PON1.
  • the PSW 106 is on / off controlled by the signal PON2.
  • the number of power switches for controlling the voltages VDD and VHM supplied to the circuit block 101 may be plural. In this case, a power switch may be provided for each circuit block that supplies a voltage.
  • the configurations of the MCSA array 120 and the block 130 will be described with reference to FIG.
  • the MCSA array 120 has a structure in which the memory cell array 125 is stacked on the sense amplifier array 121.
  • the sense amplifier array 121 has N 0 sense amplifier blocks 131.
  • Memory cell array 125 has N 0 local cell arrays 135.
  • the block 130 has a structure in which the local cell array 135 is stacked on the sense amplifier block 131.
  • the local cell array 135 has a plurality of memory cells 129.
  • the memory cell 129 includes a transistor Tr1 and an MTJ element 99.
  • the transistor Tr1 is an OS transistor having a back gate.
  • the MTJ element 99 includes a free layer 136 (also referred to as a recording layer, a free layer, or a movable layer), a fixed layer 137 (also referred to as a magnetization fixed layer, a pinned layer, or a reference layer) formed of a single layer or stacked layers of ferromagnetic films.
  • An insulating layer 138 also referred to as a barrier layer, a tunnel insulating film, or a nonmagnetic layer
  • the free layer 136 of the MTJ element 99 is referred to as one terminal, and the fixed layer 137 is referred to as the other terminal.
  • the sense amplifier block 131 is provided with a plurality of sense amplifiers 132.
  • the sense amplifier 132 has a function of comparing voltages of the wiring BL and the wiring BLB, and a function of amplifying a voltage difference between the wiring BL and the wiring BLB. Note that two wires that are simultaneously compared by the sense amplifier 132 are referred to as a bit line pair.
  • the wiring BL and the wiring BLB form a bit line pair. In this specification, it may be described as a bit line pair (BL, BLB).
  • One of the source and the drain of the transistor Tr1 is connected to the wiring BL (or BLB).
  • the gate of the transistor Tr1 is connected to the wiring WL.
  • the other of the source and the drain of the transistor Tr1 is connected to one terminal of the MTJ element 99.
  • the other terminal of the MTJ element 99 is connected to the wiring SL.
  • the back gate of the transistor Tr1 is connected to the wiring BGL.
  • the threshold voltage of the transistor Tr1 can be changed by the voltage Vbg.
  • FIG. 2B can also be configured as shown in FIG. In the configuration illustrated in FIG. 2C, one of the source and the drain of the transistor Tr1 is connected to the wiring SL.
  • the gate of the transistor Tr1 is connected to the wiring WL.
  • the other of the source and the drain of the transistor Tr1 is connected to one terminal of the MTJ element 99.
  • the other terminal of the MTJ element 99 is connected to the wiring BL (or BLB).
  • the back gate of the transistor Tr1 is connected to the wiring BGL.
  • the MTJ element 99 will be described with reference to FIGS. 3 (A) to 3 (C).
  • FIG. 3A is a schematic view of the cross-sectional structure of the MTJ element 99.
  • the MTJ element 99 is composed of a free layer 136 of ferromagnetic material and a fixed layer 137 of ferromagnetic material separated by an insulating layer 138.
  • the fixed layer 137 is a layer in which the magnetization direction, that is, the spin direction is fixed.
  • the free layer 136 is a layer in which the magnetization direction, that is, the spin direction is not fixed.
  • the insulating layer 138 includes magnesium oxide (MgO) or aluminum oxide (Al 2 O 3 ).
  • the free layer 136 and the fixed layer 137 have a ferromagnetic material such as iron (Fe) or cobalt (Co) or an alloy of these.
  • the free layer 136, the fixed layer 137, and the insulating layer 138 can be formed of a single layer or a plurality of layers.
  • the resistance value of the MTJ element 99 changes according to the relative orientation of the magnetization directions of the free layer 136 and the fixed layer 137 (shown by the arrow symbol 139 in FIG. 3A). That is, the MTJ element 99 can take two states depending on the magnetization direction as illustrated in FIG.
  • the change in resistance depending on the magnetization direction is called Tunnel Magnetoresistance (hereinafter referred to as TMR).
  • TMR Tunnel Magnetoresistance
  • a state in which the magnetization directions of the free layer 136 and the fixed layer 137 are aligned is called a parallel state, and the resistance value of the MTJ element 99 at this time is minimized, and the state can be represented by "P" or data "0". it can.
  • the state in which the magnetization directions of the free layer 136 and the fixed layer 137 are opposite is called an antiparallel state, and the resistance value of the MTJ element 99 at this time is maximum, and the state is referred to as “AP” or data “1”. Can be represented.
  • AP antiparallel state
  • the MTJ element 99 is a resistance change type memory element utilizing the occurrence of resistance change according to the direction of the magnetization direction.
  • the MTJ element 99 is non-volatile and can be rewritten at high speed, and has an infinite number of rewrites in principle.
  • the write current of the MTJ element 99 can be reduced along with the miniaturization of the element.
  • FIG. 3B is a diagram showing the principle of writing by the spin injection method for changing the magnetization directions of the free layer 136 and the fixed layer 137 from the antiparallel state to the parallel state in the MTJ element 99.
  • the current IAP is applied in the direction from the free layer 136 to the fixed layer 137. At this time, electrons flow in the opposite direction to the current I AP (see dotted arrow). This causes injection of spins 133 from the fixed layer 137 to the free layer 136.
  • the spin-polarized current acts on the magnetization of the free layer 136, and the magnetization of the free layer 136 reverses in the same direction as the pinned layer 137 and becomes parallel.
  • the injected spins 133 are illustrated by broken arrows.
  • FIG. 3C is a diagram showing the principle of writing the magnetization directions of the free layer 136 and the fixed layer 137 from the parallel state to the antiparallel state in the MTJ element 99 by the spin injection method.
  • the fixed layer 137 to the free layer 136 direction electric current I P in.
  • the injected spins are canceled by the free layer 136, but the electrons reflected by the insulating layer 138 have magnetization opposite to that of the free layer 136.
  • the spins reflected by the insulating layer 138 invert the magnetization of the free layer 136 and become antiparallel.
  • the reflected spins 133 are illustrated by dotted arrows.
  • the MTJ element 99 reverses the magnetization direction of the free layer 136 with respect to the magnetization direction of the fixed layer 137 depending on the direction of the flowing current, and when the directions of magnetization are parallel to each other, the magnetic resistance decreases. On the other hand, when the magnetization direction of the free layer 136 is antiparallel to the magnetization direction of the fixed layer 137, the magnetic resistance is increased.
  • the free layer 136 and the fixed layer 137 in the MTJ element 99 can be interchanged by switching the direction of the current. In the MTJ element 99, by miniaturizing the element, it is possible to reduce the current required for the magnetization reversal.
  • the OS transistor Since the band gap of the metal oxide is 2.5 eV or more, the OS transistor has a minimal off current. As an example, when the voltage between the source and the drain is 3.5 V at room temperature (25 ° C.), the off current per 1 ⁇ m of the channel width is less than 1 ⁇ 10 ⁇ 20 A, less than 1 ⁇ 10 ⁇ 22 A, or It can be less than 1 ⁇ 10 ⁇ 24 A. Therefore, in the memory cell 129, the amount of charge leaking between the wiring BL and the wiring SL via the transistor Tr1 can be extremely reduced.
  • the metal oxide applied to the OS transistor is Zn oxide, Zn-Sn oxide, Ga-Sn oxide, In-Ga oxide, In-Zn oxide, In-M-Zn oxide (M is Ti, Ga, Y, Zr, La, Ce, Nd, Sn or Hf) and the like.
  • oxides containing indium and zinc include aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten
  • magnesium and the like may be included.
  • the metal oxide applied to the semiconductor layer is preferably a metal oxide having a crystal part such as CAAC-OS, CAC-OS, or nc-OS.
  • CAAC-OS is an abbreviation for c-axis-aligned crystalline oxide semiconductor.
  • CAC-OS is an abbreviation of Cloud-Aligned Composite oxide semiconductor.
  • the nc-OS is an abbreviation of nanocrystalline oxide semiconductor.
  • the CAAC-OS has c-axis orientation, and a plurality of nanocrystals are connected in the a-b plane direction to form a strained crystal structure.
  • distortion shows the location where direction of the lattice arrangement
  • the CAC-OS has a function of flowing electrons (or holes) serving as carriers and a function of not flowing electrons serving as carriers. By separating the function of flowing electrons and the function of not flowing electrons, both functions can be maximized. That is, by using the CAC-OS for the channel formation region of the OS transistor, both high on current and extremely low off current can be realized. Therefore, the OS transistor is very suitable for the access transistor of the memory cell.
  • the OS transistor can be provided on an insulator. Therefore, the OS transistor can be provided on the insulator provided on the Si transistor. In other words, a circuit composed of an OS transistor can be provided on a circuit composed of a Si transistor. It is possible to suppress an increase in circuit area due to the combination of the Si transistor and the OS transistor. Further, in order to suppress an increase in circuit area, it is also effective to provide an MTJ element on the OS transistor.
  • the OS transistor used as the access transistor needs to have a large W width in order to flow a current for writing data to the MTJ element.
  • a Si transistor as the access transistor
  • a layer having the OS transistor can be provided on the layer having the Si transistor, and miniaturization of the Si transistor and increase of the write current in the OS transistor can be performed layer by layer. It is possible to design separately. Therefore, within the limited cell area, miniaturization of the Si transistor, widening of the W width of the OS transistor, and miniaturization of the MTJ element can be realized at one time. Therefore, coexistence of high integration and low power consumption can be achieved. Further, since the current required to rewrite the MTJ element can be increased, data writing and reading of the MTJ element can be more reliably achieved.
  • the OS transistor has a small off current. Therefore, even if the access transistor is designed to have a large current in order to flow a large current, it is possible to suppress an increase in leakage current when the access transistor is off. Therefore, a memory device with low power consumption can be obtained.
  • the OS transistor can suppress variation in electrical characteristics such as a threshold voltage by applying a potential to the back gate electrode.
  • the transistor Tr1 included in the local cell array 135 is an OS transistor
  • the other transistor for example, the transistor included in the sense amplifier block 131 is a Si transistor.
  • the transistors Tr1 of the local cell array 135 can be OS transistors, and the transistors of the sense amplifier block 131 can be Si transistors.
  • the MCSA array 120 can have a device structure in which a circuit composed of an OS transistor is stacked on a circuit composed of a Si transistor. An example of the device structure of the MCSA array 120 is schematically shown in FIG.
  • the local cell array 135 is stacked on the sense amplifier block 131.
  • the sense amplifier block 131 is provided with a plurality of sense amplifiers 132. By stacking the local cell array 135 on the sense amplifier 132, high integration of the memory device 100A, that is, large capacity and miniaturization can be effectively performed.
  • the capacity and size of the storage device 100A can be increased.
  • the area per bit of the memory cell can be made smaller as compared with the memory cell of the CMOS type DRAM.
  • the OS transistor can suppress an increase in leakage current at the time of off (standby). Therefore, the memory device can achieve low power consumption.
  • the state in which the MTJ element 99 is provided on the upper side of the layer having the transistor Tr1, that is, the OS transistor is illustrated. That is, in the configuration of FIG. 4, the layer having the OS transistor is provided on the layer having the Si transistor, and the MTJ element 99 is provided on the layer having the OS transistor. Therefore, the area per bit of the memory cell can be further reduced.
  • the circuit diagram shown in FIG. 5 has a wire for electrically connecting the wires BL and BLB in the upper layer between the local cell array 135 and the sense amplifier block 131. With this structure, parasitic resistance of the wirings BL and BLB functioning as a bit line and an inversion bit line can be reduced.
  • FIG. 6 The circuit diagram illustrated in FIG. 6 is an example in which a layer including an OS transistor is stacked in two layers.
  • FIG. 6 illustrates a configuration in which the local cell array 135A and the local cell array 135B are stacked as a layer having an OS transistor, and the MTJ element 99 is formed thereon. Since the OS transistors can be stacked and provided, the transistor size can be kept as it is while reducing the circuit area.
  • the memory device described in one embodiment of the present invention can be provided with a circuit including an OS transistor over a circuit including an Si transistor. It is possible to suppress an increase in circuit area due to the combination of the Si transistor and the OS transistor. Further, within the limited cell area, miniaturization of the Si transistor, widening of the W width of the OS transistor, and miniaturization of the MTJ element can be realized at one time. Therefore, coexistence of high integration and low power consumption can be achieved. In addition, the OS transistor has a small off current. Therefore, even if the W width is designed to be large in order to flow a large amount of current in the access transistor, it is possible to suppress the increase in the leak current.
  • FIG. 7 is a block diagram showing a configuration example of a storage device.
  • a memory device 100B illustrated in FIG. 7 includes a memory cell array 140, a circuit block 101, and power switches (PSWs) 103 and 106.
  • the circuit block 101 includes a control circuit 112, a row circuit 104, and a column circuit 105.
  • the row circuit 104 includes a row decoder 111 and a row driver 113.
  • the column circuit 105 includes a column decoder 114, a column driver 115 and an input / output circuit 116.
  • each circuit, each signal, and each voltage can be discarded as appropriate. Alternatively, other circuits or other signals may be added.
  • Signals BW, CE, GW, CLK, ADDR, PON1 and PON2 are input signals from the outside, and signal DATA is a data signal to be input / output.
  • the signal CLK is a clock signal.
  • Signals CE, GW, and signal BW are control signals.
  • the signal CE is a chip enable signal
  • the signal GW is a global write enable signal
  • the signal BW is a byte write enable signal.
  • Signal ADDR is an address signal.
  • the signal DATA is write data or read data.
  • Signals PON1 and PON2 are power gating control signals.
  • the signals PON1 and PON2 may be generated by the control circuit 102.
  • the control circuit 112 is a logic circuit having a function of controlling the overall operation of the storage device 100B. For example, the control circuit performs a logic operation on the signal CE, the signal GW, and the signal BW to determine an operation mode (for example, a write operation or a read operation) of the storage device 100B. Alternatively, the control circuit 112 generates a control signal in the circuit block 101 so that this operation mode is performed.
  • the memory cell array 140 includes a plurality of memory cells (MC) 150 and a plurality of wirings WL, NWL, BL, and BLB.
  • the plurality of memory cells 150 are arranged in a matrix.
  • the memory cells 150 in the same row are connected to the wirings WL, NWL in the row.
  • the wirings WL and NWL are respectively word lines, and the wirings BL and BLB are a pair of bit lines for transmitting complementary data.
  • the wiring BLB is a bit line to which data obtained by inverting the logic of the wiring BL is input, and may be referred to as a complementary bit line or a reverse bit line.
  • Memory cell 150 has two types of memory SMC and memory NVM.
  • the memory SMC is a memory circuit capable of storing 1-bit complementary data.
  • the memory NVM is a memory circuit capable of storing complementary data of n bits (n is an integer larger than 1), and can hold data for a long time even in a power-off state.
  • the memory SMC and the memory NVM are connected by a local bit line pair (wiring LBL, LBLB).
  • the wiring LBL is a local bit line for the wiring BL
  • the wiring LBLB is a local bit line for the wiring BLB.
  • the memory SMC and the memory NVM are electrically connected by the lines LBL and LBLB.
  • Memory cell 150 has a circuit LPC.
  • the circuit LPC is a local precharge circuit for precharging the line LBL and the line LBLB. Control signals for the circuit LPC are generated by peripheral circuits such as the row circuit 104 or the column circuit 105.
  • the row circuit 104 and the column circuit 105 are circuits for writing and reading data to and from the memory cell array 140.
  • Row decoder 111 and column decoder 114 have a function of decoding signal ADDR.
  • the row decoder 111 is a circuit for specifying a row to be accessed
  • the column decoder 114 is a circuit for specifying a column to be accessed.
  • the row driver 113 has a function of selecting the wirings WL and NWL of the row designated by the row decoder 111. Specifically, the row driver 113 has a function of generating a signal for selecting the wirings WL and NWL.
  • the column driver 115 has a function of writing data to the memory cell array 140, a function of reading data from the memory cell array 140, a function of holding the read data, a function of precharging the wiring BL and the wiring BLB, and the like.
  • the input / output circuit 116 is a circuit that inputs / outputs data input / output to / from the memory cell array 140 between circuits outside the storage device 100B.
  • the input data and the output data are collectively referred to as data DATA.
  • the power switch 103 has a function of controlling the supply of VDD to circuits (circuit block 101) other than the memory cell array 140.
  • the power switch 106 has a function of controlling the supply of the VHM to the row circuit 104.
  • the high power supply voltage of the storage device 100B is VDD
  • the low power supply voltage is GND (ground potential).
  • VHM is a high power supply voltage used to make the wiring NWL high, and is higher than VDD.
  • the signal PON1 controls the on / off of the power switch 103
  • the signal PON2 controls the on / off of the power switch 106.
  • the number of power supply domains to which VDD is supplied is one, but a plurality of power supply domains may be provided. In this case, a power switch may be provided for each power supply domain.
  • the negative voltage Vbg is externally applied to the transistor used for NVM.
  • FIG. 8 shows a circuit configuration example of the memory cell 150. As shown in FIG.
  • the SMC is connected to the wiring BL, the wiring BLB, the wiring LBL, the wiring LBLB, the wiring VHH, and the wiring VLL.
  • SMC has a circuit configuration similar to that of a CMOS type (6-transistor type) SRAM cell, and has transistors Tld1, Tld2, Tdr1, Tdr2, Tac1, Tac2.
  • the transistors Tld1 and Tld2 are load transistors (pull-up transistors), the transistors Tdr1 and Tdr2 are drive transistors (pull-down transistors), and the transistors Tac1 and Tac2 are access transistors (transfer transistors).
  • the conduction state between the wiring BL and the wiring LBL is controlled by the transistor Tac1.
  • the conduction state between the wiring BLB and the wiring LBLB is controlled by the transistor Tac2.
  • the on / off of the transistors Tac1 and Tac2 is controlled by the potential of the wiring WL.
  • the transistors Tld1 and Tdr1 constitute an inverter, and the transistors Tld2 and Tdr2 constitute an inverter.
  • the input terminals of these two inverters are respectively connected to the other output terminal, and a latch circuit is configured. Power supply voltages are supplied to the two inverters by the wires VHH and VLL.
  • the NVM illustrated in FIG. 8 includes n (n is an even number of 2 or more) memory circuits NMC.
  • the n memory circuits NMC are connected to different wirings NWL. Further, the n memory circuits NMC are connected to one wiring SL.
  • codes such as [0] and [1] are used, and in order to distinguish n wires NWL, codes such as _0 and _1 are used.
  • the memory circuit NMC is a memory circuit (also referred to as a memory cell) which can hold 1-bit data.
  • the memory circuit NMC is a circuit configuration of the 1T-1MTJ type cell described in FIG.
  • the memory circuit NMC has a transistor Tr1 and an MTJ element 99.
  • the MTJ element 99 has a resistance change according to the direction of magnetization as described in FIG. 3, and thus functions as a resistance change type memory element.
  • the wiring SL is a power supply line for supplying a current to the MTJ element 99.
  • One of the source and the drain of the transistor Tr1 is connected to the wiring LBL (or the wiring LBLB).
  • the gate of the transistor Tr1 is connected to the wiring NWL.
  • the other of the source and the drain of the transistor Tr1 is connected to one terminal of the MTJ element 99.
  • the other terminal of the MTJ element 99 is connected to the wiring SL.
  • the back gate of the transistor Tr1 is connected to the wiring BGL.
  • the threshold voltage of the transistor Tr1 can be changed by the voltage Vbg. As a result, the transistor Tr1 can be prevented from being normally on.
  • NVM shown in FIG. 8 is a circuit diagram in the case where a folded type is applied as a memory cell layout method. The folded memory cell will be described again with reference to FIG. 11 described later.
  • the off current of the transistor Tr1 can be extremely reduced.
  • the leakage current flowing between the wiring LBL (or the wiring LBLB) and the wiring SL can be reduced.
  • the extremely low off-state current means, for example, that the off-state current per 1 ⁇ m of the channel width is 100 zA (zepto amps) or less.
  • the smaller the off-state current, the more preferable. Therefore, the standardized off-state current is preferably 10 zA / ⁇ m or less, or 1 zA / ⁇ m or less, and more preferably 10 yA (yoctamps) / ⁇ m or less.
  • 1zA is 1 ⁇ 10 ⁇ 21 A
  • 1yA is 1 ⁇ 10 ⁇ 24 A.
  • the number (n) of memory circuits NMC is preferably a multiple of eight. That is, the number of bits of data that can be held by NVM is preferably a multiple of eight.
  • the memory cell 150 can handle data for each unit, such as 1 byte (8 bits), 1 word (32 bits), half word (16 bits), etc. it can.
  • the circuit LPC is connected to the wiring PCL and the wiring VPC.
  • the line PCL is a signal line for supplying a signal for controlling the precharge operation of the lines LBL and LBLB.
  • the wiring VPC is a power supply line for supplying a precharge voltage.
  • the circuit LPC includes transistors Teq1, Tpc1 and Tpc2. The gates of the transistors Teq1, Tpc1, and Tpc2 are connected to the wiring PCL.
  • the transistor Teq1 controls conduction between the lines LBL and LBLB.
  • the transistor Tpc1 controls a conduction state between the wiring LBL and the wiring VPC.
  • the transistor Tpc2 controls conduction between the wiring LBLB and the wiring VPC.
  • the transistors Teq1, Tpc1, and Tpc2 are n-channel transistors, but they may be p-channel transistors. Alternatively, Teq1 may not be provided in the circuit LPC. In this case, the transistors Tpc1 and Tpc2 may be either n-channel transistors or p-channel transistors. Alternatively, the circuit LPC can be configured with only the transistor Teq1. Also in this case, the transistor Teq1 may be an n-channel transistor or a p-channel transistor. The circuit LPC including the transistor Teq1 performs precharging of the wiring LBL and the wiring LBLB by smoothing the potentials of the wiring LBL and the wiring LBLB.
  • the row circuit 104 has a function of supplying a potential to various power supply lines (interconnects VHH, VLL, VPC) provided in the memory cell array 140. Therefore, when the power switch 103 is turned off and the supply of the VDD to the circuit block 101 is stopped, the supply of the potential to the power supply lines is also stopped.
  • the transistor Tr1 of the memory NVM can be an OS transistor, and the other transistors can be, for example, a Si transistor or the like.
  • the memory cell array 140 can have a device structure in which a circuit composed of an OS transistor is stacked on a circuit composed of a Si transistor. An example of the device structure of the memory cell array 140 is schematically shown in FIG.
  • the memory cell array 140B is stacked on the memory cell array 140A.
  • circuits SMC and circuits LPC are provided in a matrix.
  • circuits NVM are provided in a matrix.
  • the memory cell array 140A is composed of Si transistors, and the memory cell array 140B is composed of OS transistors.
  • the capacity and size of the memory cell array 140 can be increased.
  • the area per bit of the memory cell 150 can be made smaller as compared with the memory cell of the CMOS type SRAM.
  • the circuit configured by the OS transistor can be provided on the memory cell array 140A configured by the Si transistor, and the MTJ element can be provided thereon.
  • the OS transistor used as the access transistor needs to have a large W width direction in order to flow a current for writing data to the MTJ element.
  • Si transistor When a Si transistor is used as the access transistor, it is necessary to advance both the miniaturization and the increase in the write current, but it becomes possible to design the miniaturization and the write current separately for each layer. Therefore, within the limited cell area, it is possible to both increase the W width of the transistor and to miniaturize the MTJ element. Therefore, coexistence of high integration and low power consumption can be achieved.
  • the memory cell array 140B configured by the circuit NVM can secure a layout area that increases the W width direction of the transistor. That is, the current required to rewrite the MTJ element can be increased. Therefore, it is possible to more surely write and read data of the MTJ element. Since the MTJ element can store data even in the power-off state, power gating of the storage device 100B is possible.
  • SRAMs are used for standard processor on-chip cache memories.
  • SRAM has the disadvantages that it consumes power even during standby and that it is difficult to increase the capacity.
  • the standby power consumption of on-chip cache memory reaches 80% of the ratio of the average power consumption of the entire processor.
  • the storage device 100B is a RAM in which the disadvantages of the SRAM are eliminated while making use of the advantage of the SRAM that reading and writing are fast. Therefore, applying the storage device 100B to the on-chip cache memory is useful for reducing the power consumption of the entire processor.
  • the storage device 100B is suitable for a cache memory or the like because the storage device 100B has a small area per bit and can easily be increased in capacity.
  • FIGS. 10 to 12 show an example in which NVM stores 8-bit data (NVM has memory circuits NMC [0] to memory circuits NMC [7]).
  • the circuit diagram shown in FIG. 10 is an example in which a folded type is applied as a layout method of the memory cell 150.
  • Memory circuits NMC [0] to NMC [7] are provided on the region where SMC and LPC are formed.
  • the memory circuit NMC is classified into one connected to the wiring LBL and one connected to the wiring LBLB.
  • the memory cell 150 can reduce noise which is output to the wiring LBL or the wiring LBLB due to a change in the potential of the wiring NWL.
  • the circuit diagram shown in FIG. 11 is an example in which an open type is applied as a layout method of the memory cell 150. Similar to the folded type, the memory circuit NMC is configured of one transistor and one MTJ element. In the open memory cell 150, the memory circuit NMC is classified into one connected to the wiring LBL and one connected to the wiring LBLB. Although two memory circuits NMC appear to be connected to one wiring NWL in FIG. 11, one of the two memory circuits NMC is connected to an adjacent memory cell 150. In the open type, the memory circuit NMC can be highly integrated, and the capacity of data that can be stored in the storage device 100B can be increased as compared with other layout methods.
  • the circuit diagram shown in FIG. 12 is an example in which a twin cell type is applied as a layout method of the memory cell 150.
  • the memory circuit NMC is composed of two transistors and two capacitive elements. That is, memory circuit NMC has two complementary memory cells.
  • Twin cell type memory cell 150 treats complementary data held in two memory cells as one bit.
  • the memory circuit NMC can hold complementary data for a long time by providing a pair of memory cells. Since the memory circuit NMC holds the complementary data, the circuit SMC can function as a differential amplifier circuit when reading the complementary data held in the memory circuit NMC. Therefore, the twin-cell type can perform highly reliable read operation even if the voltage difference between the voltage held by one of the pair of memory cells and the voltage held by the other of the pair of memory cells is small.
  • FIG. 13 shows an example of a cross-sectional view of the storage device 100B.
  • a memory device 100B illustrated in FIG. 13 includes a layer L1, a layer L2, a layer L3, and a layer L4 stacked in order from the bottom.
  • a plurality of layers L2 and L3 may be stacked between the layer L3 and the layer L4 to form a multilayer structure including more layers.
  • the layer L1 includes the transistor M1, the substrate 300, the element isolation layer 301, the insulator 302, the plug 310, and the like.
  • the layer L2 includes an insulator 303, a wiring 320, an insulator 304, a plug 311, and the like.
  • the layer L3 includes an insulator 214, an insulator 216, a transistor Tr1, an insulator 280, a plug 312, an insulator 282, a wiring 321, and the like.
  • the first gate of the transistor Tr1 has a function as a wiring NWL
  • the second gate of the transistor Tr1 has a function as a wiring BGL.
  • FIG. 13 shows an example in which an OS transistor is used as the transistor Tr1.
  • the layer L4 includes an MTJ element 99, a plug 313, a wiring LBL, and the like.
  • the MTJ element 99 is composed of a conductor 322, a conductor 323, a free layer 305, a fixed layer 306, and an insulating layer 307.
  • the transistor M1 is provided over the substrate 300 and is separated from other adjacent transistors by the element separation layer 301.
  • the element isolation layer 301 silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, or the like can be used.
  • oxynitride refers to a compound having a higher content of oxygen than nitrogen
  • nitrided oxide refers to a compound having a higher content of nitrogen than oxygen.
  • a single crystal semiconductor substrate made of silicon or silicon carbide, a polycrystalline semiconductor substrate, a compound semiconductor substrate made of silicon germanium, an SOI (Silicon On Insulator) substrate, or the like can be used as the substrate 300.
  • a glass substrate, a quartz substrate, a plastic substrate, a metal substrate, a bonded film, a paper containing a fibrous material, a base film, or the like may be used as the substrate 300.
  • a semiconductor element may be formed using a certain substrate and then transferred to another substrate.
  • a flexible substrate may be used as the substrate 300.
  • a method for providing a transistor on a flexible substrate there is a method in which the transistor is peeled off after being manufactured on a non-flexible substrate and transposed to the substrate 300 which is a flexible substrate. In that case, a release layer may be provided between the non-flexible substrate and the transistor.
  • the substrate 300 a sheet, a film, a foil or the like in which fibers are woven may be used.
  • the substrate 300 may have stretchability.
  • the substrate 300 may have a property of returning to the original shape when bending or pulling is stopped. Alternatively, it may have the property that it does not return to its original shape.
  • the thickness of the substrate 300 is, for example, 5 ⁇ m to 700 ⁇ m, preferably 10 ⁇ m to 500 ⁇ m, further preferably 15 ⁇ m to 300 ⁇ m.
  • the substrate 300 is thinned, the weight of the semiconductor device can be reduced.
  • the substrate 300 is made thin, it may have elasticity even when glass or the like is used, or may return to its original shape when bending or pulling is stopped. Therefore, an impact or the like applied to the semiconductor device over the substrate 300 due to a drop or the like can be alleviated. That is, a robust semiconductor device can be provided.
  • the substrate 300 which is a flexible substrate, for example, a metal, an alloy, a resin or glass, or a fiber thereof can be used.
  • the substrate 300 which is a flexible substrate has a lower coefficient of linear expansion, deformation due to the environment is preferably suppressed.
  • a material having a linear expansion coefficient of 1 ⁇ 10 ⁇ 3 / K or less, 5 ⁇ 10 ⁇ 5 / K or less, or 1 ⁇ 10 ⁇ 5 / K or less is used.
  • the resin include polyester, polyolefin, polyamide (such as nylon and aramid), polyimide, polycarbonate, acrylic resin, polytetrafluoroethylene (PTFE) and the like.
  • aramid is suitable as the substrate 300 which is a flexible substrate because it has a low coefficient of linear expansion.
  • the transistor M1 is provided on a channel formation region and an impurity region provided in a well, a conductive region provided in contact with the impurity region, a gate insulator provided on the channel formation region, and a gate insulator. And a gate electrode.
  • the transistor M1 can be a FIN type transistor.
  • the transistor M1 may be either an n-channel transistor or a p-channel transistor, and a suitable transistor may be used depending on the circuit.
  • the insulator 302 has a function as an interlayer insulator.
  • the insulator 302 preferably contains hydrogen.
  • the insulator 302 containing hydrogen has an effect of terminating a dangling bond of silicon and improving the reliability of the transistor M1.
  • silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, or the like is preferably used.
  • a barrier film to which hydrogen and impurities do not diffuse is preferably used in the region where the transistor Tr1 is provided from the substrate 300, the transistor M1, or the like.
  • silicon nitride formed by a CVD method can be used.
  • the diffusion of hydrogen into the metal oxide of the transistor Tr1 may reduce the characteristics of the metal oxide. Therefore, it is preferable to use a film which suppresses the diffusion of hydrogen between the transistor M1 and the transistor Tr1.
  • the film that suppresses the diffusion of hydrogen refers to a film with a small amount of desorption of hydrogen.
  • the amount of desorption of hydrogen can be analyzed using, for example, thermal desorption spectroscopy (TDS) or the like.
  • TDS thermal desorption spectroscopy
  • the amount of desorption of hydrogen in the insulator 303 is equivalent to the amount of desorption of hydrogen atoms per area of the insulator 303 in the range of 50 ° C. to 500 ° C. of the film surface temperature. In this case, it is 10 ⁇ 10 15 atoms / cm 2 or less, preferably 5 ⁇ 10 15 atoms / cm 2 or less.
  • insulators 304, 214, and 282 it is preferable to use an insulator that suppresses copper diffusion or has a barrier property to oxygen and hydrogen.
  • silicon nitride can be used as an example of a film which suppresses diffusion of copper.
  • a metal oxide such as aluminum oxide may be used.
  • a silicon oxide film, a silicon oxynitride film, or the like can be used, for example.
  • magnesium oxide (MgO), aluminum oxide (Al 2 O 3 ), or the like may be used.
  • the free layer 305 and the fixed layer 306 may be made of a ferromagnetic material such as iron (Fe) or cobalt (Co), or an alloy of these.
  • the free layer 305, the fixed layer 306, and the insulating layer 307 can be formed of a single layer or a plurality of layers. Note that the free layer 305, the fixed layer 306, and the insulating layer 307 may have a structure in which an insulator or the like is provided on side walls in order to facilitate processing.
  • regions where reference numerals and hatching patterns are not given are made of an insulator.
  • an insulator aluminum oxide, aluminum nitride oxide, magnesium oxide, silicon oxide, silicon oxynitride, silicon oxynitride, silicon nitride oxide, silicon nitride, gallium oxide, germanium oxide, yttrium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide
  • An insulator containing one or more materials selected from tantalum oxide and the like can be used.
  • an organic resin such as a polyimide resin, a polyamide resin, an acrylic resin, a siloxane resin, an epoxy resin, or a phenol resin can also be used.
  • FIG. 14A and 14B are a top view and a cross-sectional view of the transistor 200a.
  • 14A is a top view
  • FIG. 14B is a cross-sectional view corresponding to dashed-dotted line X1-X2 shown in FIG. 14A. Note that in the top view of FIG. 14A, some elements are omitted for clarity of the drawing.
  • FIG. 14B illustrates an example in which the transistor 200 a is provided over the insulator 214 and the insulator 216.
  • the transistor 200a includes the conductor 205 (the conductor 205a and the conductor 205b) and the conductor 260 which function as gate electrodes, and the insulator 220, the insulator 222, the insulator 224, and the insulator 250 which function as gate insulators.
  • a metal oxide 230 metal oxide 230a, metal oxide 230b, and metal oxide 230c
  • a conductor 240a functioning as one of a source or drain
  • a conductor 240b functioning as the other of the source or drain
  • the conductor 260 may be referred to as a top gate, and the conductor 205 may be referred to as a bottom gate.
  • the conductor 260 may be referred to as a first gate, and the conductor 205 may be referred to as a second gate.
  • the metal oxide 230 includes a metal oxide 230a, a metal oxide 230b on the metal oxide 230a, and a metal oxide 230c on the metal oxide 230b.
  • the transistor 200a When the transistor 200a is turned on, current flows mainly to the metal oxide 230b.
  • the metal oxide 230 b functions as a channel formation region.
  • current may flow in the vicinity of the interface with the metal oxide 230b (which may be a mixed region) in the metal oxide 230a and the metal oxide 230c, the other regions function as insulators. There is a case.
  • the energy level at the lower end of the conduction band is closer to the vacuum level than the metal oxide 230b, and typically, the energy level at the lower end of the conduction band of the metal oxide 230b;
  • the difference between the energy level of the lower end of the conduction band of the metal oxide 230a and the metal oxide 230c is preferably 0.15 eV or more, or 0.5 eV or more, and 2 eV or less, or 1 eV or less.
  • the difference between the electron affinity of the metal oxide 230a and the metal oxide 230c and the electron affinity of the metal oxide 230b is 0.15 eV or more, or 0.5 eV or more, and 2 eV or less, or 1 eV or less preferable.
  • the energy gap is preferably 2 eV or more, and more preferably 2.5 eV or more and 3.0 eV or less.
  • the energy gap is preferably 2 eV or more, more preferably 2.5 eV or more, and still more preferably 2.7 eV or more and 3.5 eV or less.
  • the energy gap of the metal oxide 230a and the metal oxide 230c is preferably larger than the energy gap of the metal oxide 230b.
  • the energy gaps of the metal oxide 230a and the metal oxide 230c are 0.15 eV or more, or 0.5 eV or more, or 1.0 eV or more, and 2 eV or less, or 1 eV, as compared to the energy gap of the metal oxide 230b. It is preferable that it is the following.
  • the thicknesses of the metal oxide 230a, the metal oxide 230b, and the metal oxide 230c are 3 nm or more and 200 nm or less, preferably 3 nm or more and 100 nm or less, and more preferably 3 nm or more and 60 nm or less.
  • the carrier density of the metal oxide By reducing the carrier density of the metal oxide, negative shift of the threshold voltage of the transistor can be suppressed or the off-state current of the transistor can be reduced.
  • Factors that affect the carrier density of the metal oxide include oxygen vacancies (Vo) in the metal oxide, impurities in the metal oxide, and the like.
  • oxygen vacancies in the metal oxide increase, when hydrogen bonds to the oxygen vacancies (this state is also referred to as VoH), the density of defect states increases.
  • the carrier density of the metal oxide can be controlled by controlling the density of defect states in the metal oxide.
  • the carrier density of the metal oxide 230a and the metal oxide 230c is, for example, less than 8 ⁇ 10 15 cm ⁇ 3 , preferably less than 1 ⁇ 10 11 cm ⁇ 3 , and more preferably less than 1 ⁇ 10 10 cm ⁇ 3 . It may be 1 ⁇ 10 ⁇ 9 cm ⁇ 3 or more.
  • the carrier density of the metal oxide In order to improve the on current of the transistor or the field effect mobility of the transistor, it is preferable to increase the carrier density of the metal oxide. In order to increase the carrier density of the metal oxide, it is preferable to slightly increase the impurity concentration of the metal oxide or to make the band gap of the metal oxide smaller.
  • the carrier density of the metal oxide 230b is preferably larger than that of the metal oxide 230a and the metal oxide 230c.
  • the metal oxide 230a and the metal oxide 230b, and the metal oxide 230b and the metal oxide 230c have a common element other than oxygen (contains as a main component), so that the defect state density is low. Layers can be formed.
  • the metal oxide 230 b is an In—Ga—Zn oxide
  • an In—Ga—Zn oxide, a Ga—Zn oxide, gallium oxide, or the like may be used as the metal oxide 230 a and the metal oxide 230 c.
  • the main route of the carrier is the metal oxide 230b. Since the density of defect states at the interface between the metal oxide 230a and the metal oxide 230b and the interface between the metal oxide 230b and the metal oxide 230c can be lowered, the effect of interface scattering on carrier conduction is small. A high on current can be obtained.
  • the metal oxide 230a and the metal oxide 230c it is preferable to use a material whose conductivity is sufficiently low compared to the metal oxide 230b.
  • a metal oxide having an atomic ratio which increases the insulating property may be used.
  • the metal oxide 230a and the metal oxide 230c have a metal [M] / [In] of 1 or more, preferably 2 or more. It is preferred to use an oxide. Further, it is preferable to use, as the metal oxide 230c, a metal oxide whose [M] / ([Zn] + [In]) is at least 1 which can obtain sufficiently high insulation.
  • the conductor 205 is a metal film containing an element selected from molybdenum, titanium, tantalum, tungsten, aluminum, copper, chromium, neodymium, scandium, or a metal nitride film (a titanium nitride film or a nitride containing the above-described element as a component) A molybdenum film, a tungsten nitride film or the like.
  • Conductive materials such as indium tin oxide can also be applied.
  • tantalum nitride or the like may be used as the conductor 205a as a conductor having a barrier property to hydrogen, and tungsten having high conductivity may be stacked as the conductor 205b.
  • tungsten having high conductivity may be stacked as the conductor 205b.
  • FIG. 14B illustrates a two-layer structure of the conductor 205a and the conductor 205b, the structure is not limited to this structure, and a single layer or a stacked structure of three or more layers may be used.
  • the insulator 220 and the insulator 224 are preferably insulators containing oxygen, such as a silicon oxide film or a silicon oxynitride film.
  • an insulator containing excess oxygen is preferably used as the insulator 224.
  • the insulator 222 is, for example, silicon nitride oxide, aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ) or (Ba, Sr) TiO 3 (BST). It is preferable to use an insulator containing a so-called high-k material such as a single layer or a laminate. Alternatively, for example, aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, or zirconium oxide may be added to these insulators. Alternatively, these insulators may be nitrided. Alternatively, silicon oxide, silicon oxynitride, or silicon nitride may be stacked over the above insulator.
  • the insulator 222 may have a stacked structure of two or more layers.
  • the invention is not limited to the laminated structure made of the same material, but may be a laminated structure made of different materials.
  • the threshold voltage can be controlled by appropriately adjusting the thicknesses of the insulator 220, the insulator 222, and the insulator 224.
  • a transistor with low leakage current can be provided.
  • the thicknesses of the insulator 220, the insulator 222, and the insulator 224 may each be 50 nm or less, more preferably 30 nm or less, each preferably 10 nm or less, and further preferably 5 nm or less.
  • the insulator 250 is, for example, silicon oxide, silicon oxynitride, silicon nitride oxide, aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ) or (Ba,
  • An insulator such as Sr) TiO 3 (BST) can be used in a single layer or a stack.
  • aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, or zirconium oxide may be added to these insulators.
  • these insulators may be nitrided.
  • silicon oxide, silicon oxynitride, or silicon nitride may be stacked over the above insulator.
  • an oxide insulator which contains oxygen in excess of the stoichiometric composition is preferably used as the insulator 250.
  • oxygen vacancies in the metal oxide 230 can be reduced.
  • an insulating film having a barrier property to oxygen or hydrogen such as aluminum oxide, aluminum oxynitride, hafnium oxide, hafnium oxynitride, or silicon nitride can be used.
  • a barrier property to oxygen or hydrogen such as aluminum oxide, aluminum oxynitride, hafnium oxide, hafnium oxynitride, or silicon nitride.
  • a metal such as aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, tantalum, or tungsten, or an alloy containing any of these as a main component can be used.
  • a metal such as aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, tantalum, or tungsten, or an alloy containing any of these as a main component can be used.
  • a single layer structure is shown in the drawing, a stacked structure of two or more layers may be used.
  • a titanium film and an aluminum film may be stacked.
  • a two-layer structure in which an aluminum film is laminated on a tungsten film a two-layer structure in which a copper film is laminated on a copper-magnesium-aluminum alloy film, a two-layer structure in which a copper film is laminated on a titanium film, a tungsten film A two-layer structure in which a copper film is stacked may be used.
  • a molybdenum nitride film a three-layer structure in which an aluminum film or a copper film is stacked on the molybdenum film or the molybdenum nitride film, and a molybdenum film or a molybdenum nitride film is formed thereon.
  • a transparent conductive material containing indium oxide, tin oxide or zinc oxide may be used.
  • the conductor 260 functioning as a gate electrode is, for example, a metal selected from aluminum, chromium, copper, tantalum, titanium, molybdenum, tungsten, an alloy containing the above-described metal, or an alloy combining the above-described metals Or the like.
  • a metal selected from one or more of manganese and zirconium may be used.
  • a semiconductor typified by polycrystalline silicon doped with an impurity element such as phosphorus or a silicide such as nickel silicide may be used.
  • a two-layer structure in which a titanium film is stacked on aluminum may be used.
  • a two-layer structure in which a titanium film is stacked on a titanium nitride film, a two-layer structure in which a tungsten film is stacked on a titanium nitride film, or a two-layer structure in which a tungsten film is stacked on a tantalum nitride film or a tungsten nitride film may be used.
  • titanium film and a three-layer structure in which an aluminum film is laminated on the titanium film and a titanium film is formed thereon.
  • an alloy film or nitride film in which one or more metals selected from titanium, tantalum, tungsten, molybdenum, chromium, neodymium, and scandium are combined with aluminum may be used.
  • the conductor 260 includes indium tin oxide, indium oxide including tungsten oxide, indium zinc oxide including tungsten oxide, indium oxide including titanium oxide, indium tin oxide including titanium oxide, indium zinc oxide
  • a light-transmitting conductive material such as indium tin oxide to which silicon oxide is added can be used.
  • the light-transmitting conductive material can have a stacked structure of the above-described metal.
  • the conductive material preferably has a work function of 4.8 eV or more, more preferably 5.0 eV or more, still more preferably 5.2 eV or more, still more preferably 5.4 eV or more, still more preferably 5.6 eV or more Should be used.
  • a conductive material with a large work function for example, molybdenum, molybdenum oxide, platinum (Pt), Pt silicide, nickel silicide, indium tin oxide, nitrogen-added In-Ga-Zn oxide, and the like can be given.
  • An insulator 241 is provided to cover the conductor 260.
  • an insulating film having a barrier property to oxygen or hydrogen such as aluminum oxide, aluminum oxynitride, hafnium oxide, hafnium oxynitride, or silicon nitride can be used.
  • the conductor 260 can be prevented from being oxidized by a heat treatment step.
  • the insulator 241 can be omitted by using a material which is not easily oxidized for the conductor 260.
  • An insulator 280 is provided above the transistor 200 a.
  • the insulator 280 has excess oxygen.
  • reliability can be improved by reducing oxygen vacancies in the transistor 200a.
  • an oxide material from which part of oxygen is released by heating is preferably used as the insulator having excess oxygen.
  • the oxide from which oxygen is released by heating means that the amount of released oxygen in terms of oxygen atoms in TDS analysis is 1.0 ⁇ 10 18 atoms / cm 3 or more, preferably 3.0 ⁇ 10 20. It is an oxide film which is atoms / cm 3 or more.
  • the surface temperature of the film at the time of TDS analysis is preferably in the range of 100 ° C. to 700 ° C., or 100 ° C. to 500 ° C.
  • silicon oxide refers to a material having a higher content of oxygen than nitrogen as its composition
  • silicon nitride oxide is a material having a higher content of nitrogen than oxygen as its composition.
  • the insulator 280 covering the transistor 200a may function as a planarization film covering the uneven shape below the transistor 200a.
  • FIG. 15A and 15B are a top view and a cross-sectional view of a transistor 200b which is different in structure from the transistor 200a.
  • FIG. 15A is a top view
  • FIG. 15B is a cross-sectional view corresponding to dashed-dotted line X1-X2 shown in FIG. Note that in the top view of FIG. 15A, some elements are omitted for clarity of the drawing.
  • the transistor 200b in FIGS. 15A and 15B is a modification of the transistor 200a in FIGS. 14A and 14B.
  • the transistor 200 b includes the insulator 250, the metal oxide 230 c, and the insulator 275 which is disposed in contact with the side surface of the conductor 260.
  • FIG. 16A and 16B are a top view and a cross-sectional view of a transistor 200c which is different in structure from the transistors 200a and 200b.
  • FIG. 16A is a top view
  • FIG. 16B is a cross-sectional view corresponding to dashed-dotted line X1-X2 shown in FIG. Note that in the top view of FIG. 16A, some elements are omitted for clarity of the drawing.
  • the transistor 200c of FIGS. 16A and 16B is a modification of the transistor 200a of FIGS. 14A and 14B.
  • an opening is provided in a region where the conductor 260 is provided in the insulator 280, and the insulator 273, the insulator 250, and the conductor 260 are sequentially embedded in the opening.
  • An insulator 274 and an insulator 281 are provided over the insulator 280, the insulator 273, the insulator 250, and the conductor 260.
  • FIG. 17A and 17B are a top view and a cross-sectional view of a transistor 200d which is different in structure from the transistors 200a, 200b, and 200c.
  • FIG. 17A is a top view
  • FIG. 17B is a cross-sectional view corresponding to dashed-dotted line X1-X2 shown in FIG. Note that in the top view of FIG. 17A, some elements are omitted for clarity of the drawing.
  • the transistor 200d of FIGS. 17A and 17B is a modification of the transistor 200a of FIGS. 14A and 14B.
  • a dummy structure is provided in a region where the conductor 260 is provided in the insulator 280, and the metal oxide 230c, the insulator 250, and the conductor 260 are sequentially embedded in an opening provided by removing the structure.
  • the configuration is illustrated.
  • An insulator 274 and an insulator 281 are provided over the insulator 280, the insulator 241, and the conductor 260. With this structure, a transistor which can be finely processed can be obtained.
  • Embodiment 4 shows an example of an electronic component and an electronic device in which the memory device described in the above embodiment is incorporated.
  • An electronic component 7000 shown in FIG. 18 is an IC chip and has leads and a circuit portion.
  • the electronic component 7000 is mounted on, for example, a printed circuit board 7002.
  • a plurality of such IC chips are combined and electrically connected on the printed circuit board 7002 to complete a board (mounting board 7004) on which electronic components are mounted.
  • the circuit portion of the electronic component 7000 is a stack of a substrate 7031 and a layer 7032.
  • the substrate 7031 a material that can be used for the substrate for forming the Si transistor described in the above embodiment may be used.
  • a semiconductor substrate such as silicon
  • an integrated circuit may be formed on the substrate 7031, and a layer 7032 having an OS transistor may be formed thereover.
  • the layer 7032 includes the OS transistor described in the above embodiment.
  • the memory device 100A or 100B described in the above embodiment can be provided over the substrate 7031 and the layer 7032.
  • the OS transistor can be stacked over another semiconductor element, whereby the electronic component 7000 can be miniaturized.
  • an element such as an MTJ element can be provided over the layer 7032 as described in the above embodiment.
  • the QFP Quad Flat Package
  • the aspect of the package is not limited to this.
  • the robot 2100 shown in FIG. 19A includes an arithmetic unit 2110, an illuminance sensor 2101, a microphone 2102, an upper camera 2103, a speaker 2104, a display 2105, a lower camera 2106, an obstacle sensor 2107, and a movement mechanism 2108.
  • the above electronic components can be used for the arithmetic device 2110, the illuminance sensor 2101, the upper camera 2103, the display 2105, the lower camera 2106, the obstacle sensor 2107, and the like.
  • the microphone 2102 has a function of detecting the user's speech and environmental sounds.
  • the speaker 2104 has a function of emitting sound.
  • the robot 2100 can communicate with the user using the microphone 2102 and the speaker 2104.
  • the display 2105 has a function of displaying various information.
  • the robot 2100 can display information desired by the user on the display 2105.
  • the display 2105 may have a touch panel.
  • the upper camera 2103 and the lower camera 2106 have a function of imaging the periphery of the robot 2100. Further, the obstacle sensor 2107 can detect the presence or absence of an obstacle in the traveling direction when the robot 2100 advances using the movement mechanism 2108. The robot 2100 can recognize the surrounding environment and move safely by using the upper camera 2103, the lower camera 2106 and the obstacle sensor 2107.
  • a flying body 2120 illustrated in FIG. 19B includes an arithmetic device 2121, a propeller 2123, and a camera 2122 and has a function of autonomously flying.
  • the above electronic components can be used for the arithmetic device 2121 and the camera 2122.
  • FIG. 19C is an external view showing an example of a car.
  • the automobile 2980 has a camera 2981 and the like.
  • the automobile 2980 includes various sensors such as an infrared radar, a millimeter wave radar, a laser radar, and the like.
  • the automobile 2980 can analyze an image captured by the camera 2981, determine a surrounding traffic condition such as the presence or absence of a pedestrian, and perform automatic driving.
  • the above electronic components can be used for the camera 2981.
  • An information terminal 2910 illustrated in FIG. 19D includes a housing 2911, a display portion 2912, a microphone 2917, a speaker portion 2914, a camera 2913, an external connection portion 2916, an operation switch 2915, and the like.
  • the display portion 2912 includes a display panel and a touch screen in which a flexible substrate is used.
  • the information terminal 2910 includes an antenna, a battery, and the like inside the housing 2911.
  • the information terminal 2910 can be used as, for example, a smartphone, a mobile phone, a tablet information terminal, a tablet personal computer, an electronic book reader, or the like.
  • the information terminal 2910 can use the above electronic components for a storage device and a camera 2913 in the information terminal 2910.
  • FIG. 19E shows an example of a watch-type information terminal.
  • the information terminal 2960 includes a housing 2961, a display portion 2962, a band 2963, a buckle 2964, an operation switch 2965, an input / output terminal 2966, and the like.
  • the information terminal 2960 includes an antenna, a battery, and the like inside the housing 2961.
  • the information terminal 2960 can execute various applications such as mobile phone, electronic mail, text browsing and creation, music reproduction, Internet communication, computer games, and the like.
  • the information terminal 2960 can use the above-described electronic component for a storage device inside.
  • FIG. 20 is a schematic view showing an example of the cleaning robot.
  • the cleaning robot 5100 has a display 5101 disposed on the upper surface, a plurality of cameras 5102 disposed on the side, a brush 5103, and an operation button 5104.
  • the lower surface of the cleaning robot 5100 is provided with a tire, a suction port, and the like.
  • the cleaning robot 5100 further includes various sensors such as an infrared sensor, an ultrasonic sensor, an acceleration sensor, a piezo sensor, an optical sensor, and a gyro sensor.
  • the cleaning robot 5100 is provided with a wireless communication means.
  • the above electronic components can be used for the camera 5102.
  • the cleaning robot 5100 can self-propelled, detect the dust 5120, and can suction the dust from the suction port provided on the lower surface.
  • the cleaning robot 5100 can analyze the image captured by the camera 5102 to determine the presence or absence of an obstacle such as a wall, furniture, or a step. In addition, when an object that is likely to be entangled in the brush 5103 such as wiring is detected by image analysis, the rotation of the brush 5103 can be stopped.
  • the display 5101 can display the remaining amount of the battery, the amount of suctioned dust, and the like.
  • the path traveled by the cleaning robot 5100 may be displayed on the display 5101.
  • the display 5101 may be a touch panel, and the operation button 5104 may be provided on the display 5101.
  • the cleaning robot 5100 can communicate with a portable electronic device 5140 such as a smartphone.
  • the image captured by the camera 5102 can be displayed on the portable electronic device 5140. Therefore, the owner of the cleaning robot 5100 can know the state of the room even from outside.
  • the on current refers to the drain current when the transistor is in the on state.
  • the on state (sometimes abbreviated as on) is a state in which the voltage (V G ) between the gate and the source is equal to or higher than the threshold voltage (V th ) in the n-channel transistor unless otherwise noted. In a channel transistor, V G is lower than or equal to V th .
  • the on current of an n-channel transistor refers to the drain current when V G is greater than or equal to V th .
  • the on current of the transistor may depend on the voltage (V D ) between the drain and the source.
  • the off current refers to the drain current when the transistor is in the off state.
  • the OFF state (sometimes referred to as OFF), unless otherwise specified, the n-channel type transistor, V G is lower than V th state, the p-channel type transistor, V G is higher than V th state
  • the off-state current of an n-channel transistor refers to the drain current when V G is lower than V th .
  • the off current of the transistor may depend on V G. Accordingly, the off current of the transistor is less than 10 -21 A, and may refer to the value of V G to off-current of the transistor is less than 10 -21 A are present.
  • the off current of the transistor may depend on V D.
  • the off-state current unless otherwise specified, has an absolute value of V D of 0.1 V, 0.8 V, 1 V, 1.2 V, 1.8 V, 2.5 V, 3 V, 3.3 V, 10 V. , 12 V, 16 V, or 20 V may represent an off current.
  • the off current in V D used in a semiconductor device or the like including the transistor may be expressed.
  • the voltage and the potential can be rephrased appropriately.
  • the voltage is a potential difference from a reference potential.
  • the reference potential is a ground potential (ground potential)
  • the voltage can be rephrased as a potential.
  • the ground potential does not necessarily mean 0 V. Note that the potential is relative, and the potential given to the wiring or the like may be changed depending on the reference potential.
  • X and Y each denote an object (eg, a device, an element, a circuit, a wiring, an electrode, a terminal, a conductive film, a layer, or the like).
  • an element for example, a switch, a transistor, a capacitor, an inductor, a resistor, a diode, a display, or the like
  • an element capable of electrically connecting X and Y
  • X and Y are connected without an element, a light emitting element, a load, etc.
  • an element for example, a switch, a transistor, a capacitor, an inductor, a resistor, a diode, a display, or the like
  • an element for example, a switch, a transistor, a capacitor, an inductor, a resistor, a diode, a display, or the like
  • the switch is turned on (on) or turned off (off) and has a function of controlling whether current flows or not.
  • the switch has a function of selecting and switching a path through which current flows.
  • X and Y are electrically connected, the case where X and Y are directly connected shall be included.

Abstract

新規な記憶装置を提供する。 第1配線と、第2配線と、第1メモリセルと、を有する。第1メモリセルは、第1トランジスタおよ び第1磁気トンネル接合素子を有する。 第1トランジスタのソースまたはドレインの一方は、 第1配 線に電気的に接続される。 第1トランジスタのソースまたはドレインの他方は、 第1磁気トンネル接 合素子の一方の端子に電気的に接続される。 第1磁気トンネル接合素子の他方の端子は、 第2配線に 電気的に接続される。第1トランジスタは、チャネル形成領域に酸化物半導体を有する。

Description

記憶装置、電子部品、及び電子機器
 本発明の一形態は、記憶装置、電子部品またはこれらを用いた電子機器に関する。
 プロセッサ等の大規模集積回路(LSIともいう)の高性能化には、その構成要素であるトランジスタの高性能化が必須である。トランジスタの素子性能の向上は微細化によって進められてきた。一方で、微細化とともにトランジスタのリーク電流が増大するため、消費電力の増加が問題になってきている。
 この消費電力の増加への対策として、回路が動作していない期間は回路への電源供給を遮断する対策(パワーゲーティング)が有効である。例えば特許文献1では、抵抗変化型の記憶素子である磁気トンネル接合(Magnetic Tunnel Junction:以下、MTJ)素子を使用したメモリであるSTT−MRAM(Spin Transfer Torque−Magnetoresistive Random Access Memory)を用い、メモリセルアレイへの電源供給を制御する構成について開示している。
国際公開第2015/041305号
 トランジスタの微細化によって、MTJ素子のデータの書き換えに要する電流が不足する虞がある。データの書き換えに要する電流の不足に対しては、トランジスタのチャネル幅(W幅)を大きくしてMTJ素子に流す電流を大きくすることが有効である。しかしながら、W幅方向を大きくする場合、リーク電流が増大してしまう虞がある。
 データの書き換えに要する電流量を小さくするためには、MTJ素子の微細化が有効である。しかしながら限られたセル面積の中で、トランジスタのW幅を大きくする一方でMTJ素子の微細化を進める構成では、素子のレイアウト時のバランスが図れずに高集積化が却って難しくなるといった虞がある。
 本発明の一形態は、MTJ素子とトランジスタとを高集積化してレイアウトを行う際、書き換えに要する電流を大きくとることができる記憶装置等を提供することを課題の一とする。また、本発明の一形態は、MTJ素子とトランジスタとを高集積化してレイアウトを行う構成において、リーク電流を小さくできる記憶装置等を提供することを課題の一とする。また、本発明の一形態は、MTJ素子とトランジスタとを高集積化してレイアウトを行う構成において、素子の電気特性の変動を抑制できる記憶装置等を提供することを課題の一とする。また、本発明の一形態は消費電力の小さい記憶装置等を提供することを課題の一とする。また、本発明の一形態は新規な記憶装置等を提供することを課題の一とする。
 本発明の一形態は、第1配線と、第2配線と、第1メモリセルと、を有し、第1メモリセルは、第1トランジスタおよび第1磁気トンネル接合素子を有し、第1トランジスタのソースまたはドレインの一方は、第1配線に電気的に接続され、第1トランジスタのソースまたはドレインの他方は、第1磁気トンネル接合素子の一方の端子に電気的に接続され、第1磁気トンネル接合素子の他方の端子は、第2配線に電気的に接続され、第1トランジスタは、チャネル形成領域に酸化物半導体を有する記憶装置である。
 本発明の一形態は、第1配線と、第2配線と、第1メモリセルと、センスアンプ回路と、を有し、第1メモリセルは、第1トランジスタおよび第1磁気トンネル接合素子を有し、第1トランジスタのソースまたはドレインの一方は、第1配線に電気的に接続され、第1トランジスタのソースまたはドレインの他方は、第1磁気トンネル接合素子の一方の端子に電気的に接続され、第1磁気トンネル接合素子の他方の端子は、第2配線に電気的に接続され、第1トランジスタは、チャネル形成領域に酸化物半導体を有し、センスアンプ回路は、CMOS型のSRAMセルを構成する第2トランジスタを有し、センスアンプ回路は、第1配線または第2配線に電気的に接続され、第2トランジスタは、チャネル形成領域にシリコンを有する記憶装置である。
 本発明の一形態において、プリチャージ回路を有し、プリチャージ回路は、第1配線をプリチャージする機能を有する第3トランジスタを有し、第3トランジスタは、チャネル形成領域にシリコンを有する記憶装置が好ましい。
 本発明の一形態において、第1磁気トンネル接合素子は、自由層と、絶縁層と、固定層と、の積層構造を有する記憶装置が好ましい。
 本発明の一形態において、第1トランジスタは、バックゲート電極を有する記憶装置が好ましい。
 本発明の一形態において、第2メモリセルを有し、第2メモリセルは、第4トランジスタと、第2磁気トンネル接合素子と、を有し、第4トランジスタは、チャネル形成領域に酸化物半導体を有し、第1トランジスタと第4トランジスタとは、異なる層に設けられ、第1磁気トンネル接合素子と第2磁気トンネル接合素子とは、同じ層に設けられる記憶装置が好ましい。
 なおその他の本発明の一態様については、以下で述べる実施の形態における説明、および図面に記載されている。
 本発明の一形態により、MTJ素子とトランジスタとを高集積化してレイアウトを行う際、書き換えに要する電流を大きくとることができる記憶装置等を提供することができる。また、本発明の一形態により、MTJ素子とトランジスタとを高集積化してレイアウトを行う構成において、リーク電流を小さくできる記憶装置等を提供することができる。また、本発明の一形態により、MTJ素子とトランジスタとを高集積化してレイアウトを行う構成において、素子の電気特性の変動を抑制できる記憶装置等を提供することができる。また、本発明の一形態により、消費電力の小さい記憶装置等を提供することができる。また、本発明の一形態により、新規な記憶装置等を提供することができる。
記憶装置の構成例を説明するためのブロック図。 記憶装置の構成例を説明するための回路図。 記憶装置の構成を説明するための模式図。 記憶装置の構成例を説明するための模式図。 記憶装置の構成例を説明するための模式図。 記憶装置の構成例を説明するための模式図。 記憶装置の構成例を説明するためのブロック図。 記憶装置の構成例を説明するための回路図。 記憶装置の構成例を説明するための回路図。 記憶装置の構成例を説明するための回路図。 記憶装置の構成例を説明するための回路図。 記憶装置の構成例を説明するための回路図。 記憶装置の構成例を説明するための断面図。 トランジスタの構成例を説明するための上面図および断面図。 トランジスタの構成例を説明するための上面図および断面図。 トランジスタの構成例を説明するための上面図および断面図。 トランジスタの構成例を説明するための上面図および断面図。 電子部品の例を示す模式図。 電子機器の例を示す模式図。 電子機器の例を示す模式図。
 以下、実施の形態について図面を参照しながら説明する。但し、実施の形態は多くの異なる形態で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
 なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
 また、本明細書は、以下の実施の形態を適宜組み合わせることが可能である。また、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
 なお、本明細書で説明する各図において、各構成の大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。
 なお、本明細書中において、高電源電圧をHレベル(又はVDD)、低電源電圧をLレベル(又はGND)と呼ぶ場合がある。
 また、本明細書において、配列の括弧が省略されて記載されている場合、それは配列要素のうち、不特定の1つを表す。例えば、メモリセル2aは、メモリセル2a[0]乃至[3]のうち、不特定の1つのメモリセルを表す。
 本明細書等において、金属酸化物(metal oxide)とは、広い意味での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む)、酸化物半導体などに分類される。例えば、トランジスタの半導体層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。また、OSトランジスタと記載する場合においては、金属酸化物または酸化物半導体を有するトランジスタと換言することができる。また、本明細書等において、窒素を有する金属酸化物も金属酸化物と総称する場合がある。
(実施の形態1)
 本実施の形態では、本発明の一形態であるOSトランジスタとMTJ素子とを用いた記憶装置の構成について説明を行う。
 本実施の形態では、1T−1MTJ(1トランジスタ1磁気トンネル接合素子)型セルであるメモリセルを有する記憶装置の構成例について説明する。なおメモリセルが有するアクセストランジスタ(データの書き込みまたは読み出しを制御するトランジスタ)は、OSトランジスタである。
 図1は、1T−1MTJのメモリセルを有する記憶装置のブロック図である。図1に示す記憶装置100Aは、回路ブロック101、パワースイッチ(PSW)103、106を有する。回路ブロック101は、コントロール回路102、行回路104、列回路105、メモリセル及びセンスアンプアレイ120(MCSAアレイ120という)を有する。行回路104は行デコーダ111、行ドライバ113を有する。列回路105は列デコーダ114、列ドライバ115および入出力回路116を有する。
 記憶装置100Aには、電圧VDD、VHM(>VDD)、GND、Vbg、クロック信号CLK、アドレス信号ADDR、信号CE、GW、BW、信号DATAが入力される。記憶装置100Aにおいて、回路、信号および電圧は適宜取捨することができる。あるいは、他の回路または他の信号を追加してもよい。また、記憶装置100Aの入力信号および出力信号の構造(例えば、ビット長)は、記憶装置100Aの動作、回路構成等に基づいて設定される。
 コントロール回路102は、記憶装置100Aの動作全般を制御する機能を有するロジック回路である。コントロール回路102は、信号CE、GW、BWを論理演算して、記憶装置100Aの動作を決定する機能を有する。またコントロール回路102は、決定した動作が実行されるように、行回路104、列回路105の制御信号を生成する機能を有する。なお、信号CE、GW、BWはそれぞれ、チップイネーブル信号、グローバル書込みイネーブル信号、バイト書込みイネーブル信号である。信号DATAは書き込みデータまたは読み出しデータである。
 記憶装置100Aは、階層ビット線構造をとる。MCSAアレイ120は複数のブロック130、複数の配線GBLを有する。ブロック130は、複数のメモリセル、複数の配線BL、および複数の配線WLを有する。ここでは、ブロック130の数をN(Nは1以上の整数)としている。なお、ブロック130のうち1つを特定する必要があるときは、符号130[0]等を使用し、任意のセルブロックを指すときには符号130を用いる。他の要素についても同様であり、複数の要素を区別するために、[1]等の符号が用いられる。
 PSW103は回路ブロック101への電圧VDDの供給を制御する機能を有する。PSW106は行回路104への電圧VHMの供給を制御する機能を有する。記憶装置100Aの高電源電圧が電圧VDDであり、低電源電圧はGND(接地電位)である。電圧VHMは、配線WLを高レベルにするために用いられる高電源電圧であり、電圧VDDよりも高い電圧である。PSW103は、信号PON1によってオン・オフが制御される。PSW106は、信号PON2によってオン・オフが制御される。図1では、回路ブロック101に供給する電圧VDD、VHMを制御するパワースイッチをそれぞれ1つとしているが、複数にすることもできる。この場合、電圧を供給する回路ブロック毎にパワースイッチを設ければよい。
 図2(A)を参照して、MCSAアレイ120、ブロック130の構成を説明する。MCSAアレイ120は、センスアンプアレイ121上に、メモリセルアレイ125を積層した構造をもつ。センスアンプアレイ121はN個のセンスアンプブロック131を有する。メモリセルアレイ125はN個のローカルセルアレイ135を有する。ブロック130は、センスアンプブロック131にローカルセルアレイ135を積層した構造である。
 ローカルセルアレイ135は、複数のメモリセル129を有する。図2(B)に示すように、メモリセル129は、トランジスタTr1、MTJ素子99を有する。トランジスタTr1はバックゲートを有するOSトランジスタである。MTJ素子99は、強磁性膜の単層または積層で構成される自由層136(記録層、フリー層、可動層ともいう)、固定層137(磁化固定層、ピン層、参照層ともいう)、絶縁層138(障壁層、トンネル絶縁膜、非磁性層ともいう)を有する。なお本明細書においては、MTJ素子99の自由層136を一方の端子、固定層137を他方の端子という。
 センスアンプブロック131には、複数のセンスアンプ132が設けられている。センスアンプ132は、配線BLと配線BLBとの電圧を比較する機能、配線BLと配線BLBとの電圧差を増幅する機能を有する。なお、センスアンプ132によって、同時に比較される2本の配線をビット線対とよぶ。図2(A)の例では、配線BLと配線BLBとがビット線対をなす。本明細書では、ビット線対(BL、BLB)と記載する場合がある。
 トランジスタTr1のソースまたはドレインの一方は、配線BL(またはBLB)に接続される。トランジスタTr1のゲートは、配線WLに接続される。トランジスタTr1のソースまたはドレインの他方は、MTJ素子99の一方の端子に接続される。MTJ素子99の他方の端子は、配線SLに接続される。トランジスタTr1のバックゲートは、配線BGLに接続される。電圧VbgによってトランジスタTr1のしきい値電圧を変更することができる。
 なお図2(B)は、図2(C)の構成とすることも可能である。図2(C)に図示する構成では、トランジスタTr1のソースまたはドレインの一方は、配線SLに接続される。トランジスタTr1のゲートは、配線WLに接続される。トランジスタTr1のソースまたはドレインの他方は、MTJ素子99の一方の端子に接続される。MTJ素子99の他方の端子は、配線BL(またはBLB)に接続される。トランジスタTr1のバックゲートは、配線BGLに接続される。
 ここでMTJ素子99について図3(A)乃至(C)を参照して説明する。
 図3(A)はMTJ素子99の断面構造の模式図である。MTJ素子99は、絶縁層138で隔てられた強磁性体からなる自由層136及び強磁性体からなる固定層137によって構成されている。
 固定層137は、磁化方向、つまりスピンの向きが固定されている層である。自由層136は磁化方向、つまりスピンの向きが固定されていない層である。絶縁層138は、酸化マグネシウム(MgO)、または酸化アルミニウム(Al)を有する。自由層136及び固定層137は、鉄(Fe)やコバルト(Co)等の強磁性体又はこれらの合金を有する。自由層136、固定層137および絶縁層138は、単層や複数の層で形成することができる。
 MTJ素子99の抵抗値は、自由層136および固定層137の磁化方向(図3(A)中、矢印シンボル139で図示)の相対的向きによって変化する。つまりMTJ素子99は、図3(A)に図示するように磁化方向によって2つの状態を取り得る。磁化方向に依存する抵抗変化は、トンネル磁気抵抗(Tunnel Magnetoresistance、以下、TMRと呼ぶ。)と呼ばれている。自由層136と固定層137の磁化の向きがそろっている状態を平行状態と呼び、このときのMTJ素子99の抵抗値が最小となり、当該状態を“P”またはデータ“0”で表すことができる。自由層136と固定層137の磁化の向きが逆を向いている状態を反平行状態と呼び、このときのMTJ素子99の抵抗値が最大となり、当該状態を“AP”またはデータ“1”で表すことができる。自由層136の磁化の状態を固定層137に対して平行又は反平行に制御することにより“0”または“1”の記録、つまり、データの書き込みができる。MTJ素子99は、磁化方向の向きに応じて抵抗変化が生じることを利用した抵抗変化型のメモリ素子である。
 MTJ素子99は、不揮発性、高速書き換えが可能で、原理的には無限の書き換え回数を有している。MTJ素子99の書き込み電流は素子の微細化と共に縮小可能である。
 次に、MTJ素子99の動作原理について説明する。図3(B)は、MTJ素子99において自由層136と固定層137の磁化方向を反平行状態から平行状態とするための、スピン注入方式で書き込む原理を示す図である。
 図3(B)に示すように、反平行状態(“AP”)から平行状態(“P”)に書き込むためには、自由層136から固定層137の向きで電流IAPを印加する。このとき、電子は電流IAPと逆向きに流れる(点線矢印参照)。これにより、固定層137から自由層136へスピン133の注入が起きる。スピン分極された電流が自由層136の磁化に作用し、自由層136の磁化が固定層137と同じ向きに反転し、平行状態になる。なお注入されるスピン133は、破線矢印で図示している。
 図3(C)は、MTJ素子99において自由層136と固定層137の磁化方向を平行状態から反平行状態にスピン注入方式によって書き込む原理を示す図である。
 図3(C)に示すように、図3(B)とは逆に平行状態(“P”)から反平行状態(“AP”)に書き込むためには、固定層137から自由層136への向きで電流Iを流す。注入されたスピンは、自由層136で相殺されるが、絶縁層138で反射した電子は、自由層136と逆向きの磁化を持つ。絶縁層138で反射したスピンは自由層136の磁化を反転させ、反平行状態になる。なお反射するスピン133は、点線矢印で図示している。
 MTJ素子99は流す電流の向きによって、自由層136の磁化方向を固定層137の磁化方向に対して反転させ、磁化の向きが互いに平行の場合には、磁気抵抗が小さくなる。一方、自由層136の磁化方向が固定層137の磁化方向に対して反平行状態になると、磁気抵抗が大きくなる。なおMTJ素子99における自由層136と固定層137は、電流の向きを切り替えることで入れ替えて用いることも可能である。なおMTJ素子99では、素子を微細化することで磁化の反転に必要な電流を小さくすることができる。
 次いで、金属酸化物を有するOSトランジスタについて、説明する。
 金属酸化物のバンドギャップは2.5eV以上あるため、OSトランジスタは極小のオフ電流をもつ。一例として、室温(25℃)下において、ソースとドレイン間の電圧が3.5Vであるとき、チャネル幅1μm当たりのオフ電流を1×10−20A未満、1×10−22A未満、あるいは1×10−24A未満とすることができる。そのため、メモリセル129は、トランジスタTr1を介して配線BLと配線SLとの間をリークする電荷量が極めて少なくすることができる。
 OSトランジスタに適用される金属酸化物は、Zn酸化物、Zn−Sn酸化物、Ga−Sn酸化物、In−Ga酸化物、In−Zn酸化物、In−M−Zn酸化物(Mは、Ti、Ga、Y、Zr、La、Ce、Nd、SnまたはHf)などがある。また、インジウムおよび亜鉛を含む酸化物に、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。
 OSトランジスタの信頼性、電気特性の向上のため、半導体層に適用される金属酸化物は、CAAC−OS、CAC−OS、nc−OSなどの結晶部を有する金属酸化物であることが好ましい。CAAC−OSとは、c−axis−aligned crystalline oxide semiconductorの略称である。CAC−OSとは、Cloud−Aligned Composite oxide semiconductorの略称である。nc−OSとは、nanocrystalline oxide semiconductorの略称である。
 CAAC−OSは、c軸配向性を有し、かつa−b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域との間で格子配列の向きが変化している箇所を指す。
 CAC−OSは、キャリアとなる電子(または正孔)を流す機能と、キャリアとなる電子を流さない機能とを有する。電子を流す機能と、電子を流さない機能とを分離させることで、双方の機能を最大限に高めることができる。つまり、CAC−OSをOSトランジスタのチャネル形成領域に用いることで、高いオン電流と、極めて低いオフ電流との双方を実現できる。よって、OSトランジスタは、メモリセルのアクセストランジスタに非常に好適である。
 OSトランジスタは、絶縁体上に設けることができる。そのため、Siトランジスタ上に設けられた絶縁体上にOSトランジスタを設ける構成とすることができる。つまり、Siトランジスタで構成される回路上にOSトランジスタで構成される回路を設ける構成とすることができる。SiトランジスタとOSトランジスタとを併せ持つことによる回路面積の増加を抑制することができる。また回路面積の増加を抑制するためには、OSトランジスタ上にMTJ素子を設ける構成とすることも有効である。
 アクセストランジスタとして用いるOSトランジスタは、MTJ素子にデータを書き込むための電流を流すためにW幅を大きくとる必要がある。アクセストランジスタとしてSiトランジスタを用いる場合には、微細化と書き込み電流の増大の双方を進める必要がある。一方でOSトランジスタをアクセストランジスタとする構成の場合、Siトランジスタを有する層上にOSトランジスタを有する層を設けることができ、Siトランジスタでの微細化とOSトランジスタでの書き込み電流の増大とを層ごとに分けて設計することが可能になる。そのため限られたセル面積の中で、Siトランジスタの微細化、OSトランジスタのW幅を大きくすること、およびMTJ素子の微細化、を一度に実現することができる。したがって、高集積化と低消費電力化との両立を図ることができる。またMTJ素子の書き換えに要する電流を大きくとることができることによって、より確実にMTJ素子のデータの書き込み及び読み出しを図ることができる。
 またOSトランジスタは、オフ電流が小さい。そのためアクセストランジスタで電流を多く流すためにW幅方向を大きく設計しても、アクセストランジスタのオフ時のリーク電流の増大を抑制することができる。従って、低消費電力化が図られた記憶装置とすることができる。またOSトランジスタは、バックゲート電極に電位を与えることで閾値電圧等の電気特性の変動を抑制することができる。
 図1乃至図3で説明した記憶装置100Aにおいては、ローカルセルアレイ135が有するトランジスタTr1をOSトランジスタとし、他のトランジスタ、例えばセンスアンプブロック131が有するトランジスタをSiトランジスタとする構成とする。当該構成とすることで、Siトランジスタで構成される回路上にOSトランジスタで構成される回路が積層されているデバイス構造とすることができる。このようなデバイス構造について、図4乃至図6を参照して説明する。
 記憶装置100Aにおいて、ローカルセルアレイ135のトランジスタTr1はOSトランジスタとし、センスアンプブロック131のトランジスタはSiトランジスタとすることができる。この場合、MCSAアレイ120は、Siトランジスタで構成される回路上にOSトランジスタで構成される回路が積層されているデバイス構造とすることができる。図4に、MCSAアレイ120のデバイス構造例を模式的に示す。
 図4の例では、センスアンプブロック131上に、ローカルセルアレイ135が積層されている。センスアンプブロック131にはセンスアンプ132が複数設けられている。ローカルセルアレイ135をセンスアンプ132に積層することで、記憶装置100Aの高集積化、つまり大容量化と小型化を効果的に行える。
 ローカルセルアレイ135をセンスアンプ132に積層することで、記憶装置100Aの大容量化と小型化が可能となる。CMOS型DRAMのメモリセルと比較した場合、メモリセルのビット当たりの面積をより小さくすることができる。
 またOSトランジスタは、オフ時(待機時)のリーク電流の増大を抑制することができる。そのため、低消費電力化が図られた記憶装置とすることができる。
 また図4の例では、トランジスタTr1、つまりOSトランジスタを有する層の上側にMTJ素子99が設けられる様子を図示している。つまり図4の構成は、Siトランジスタを有する層上にOSトランジスタを有する層を設け、さらにOSトランジスタを有する層上にMTJ素子99を設ける構成となる。そのため、メモリセルのビット当たりの面積をより小さくすることができる。
 次に、ローカルセルアレイ135が有するメモリセルの積層構造の変形例について、図5乃至図6を用いて説明を行う。
 図5に示す回路図は、ローカルセルアレイ135とセンスアンプブロック131との間で、上層にある配線BL、BLB同士を電気的に接続するための配線を有する。当該構成とすることで、ビット線、反転ビット線として機能する配線BL、BLBの寄生抵抗を小さくすることができる。
 図6に示す回路図は、OSトランジスタを有する層を2層にして積層した例である。図6では、OSトランジスタを有する層として、ローカルセルアレイ135Aおよびローカルセルアレイ135Bを積層し、その上にMTJ素子99を有する構成を図示している。OSトランジスタは積層して設けることができるため、回路面積の縮小を図りながら、トランジスタサイズをそのままにすることができる。
 以上、説明したように本発明の一態様で説明した記憶装置は、Siトランジスタで構成される回路上にOSトランジスタで構成される回路を設ける構成とすることができる。SiトランジスタとOSトランジスタとを併せ持つことによる回路面積の増加を抑制することができる。また、限られたセル面積の中で、Siトランジスタの微細化、OSトランジスタのW幅を大きくすること、およびMTJ素子の微細化、を一度に実現することができる。したがって、高集積化と低消費電力化との両立を図ることができる。またOSトランジスタは、オフ電流が小さい。そのためアクセストランジスタで電流を多く流すためにW幅を大きく設計しても、リーク電流の増大を抑制することができる。
(実施の形態2)
 本実施の形態では、実施の形態1に記載の記憶装置とは異なる構成の記憶装置について説明する。
 図7は記憶装置の構成例を示すブロック図である。図7に示す記憶装置100Bは、メモリセルアレイ140、回路ブロック101、パワースイッチ(PSW)103、106を有する。回路ブロック101は、コントロール回路112、行回路104、列回路105を有する。行回路104は行デコーダ111、行ドライバ113を有する。列回路105は列デコーダ114、列ドライバ115および入出力回路116を有する。
 記憶装置100Bにおいて、各回路、各信号および各電圧は、必要に応じて、適宜取捨することができる。あるいは、他の回路または他の信号を追加してもよい。信号BW、CE、GW、CLK、ADDR、PON1、PON2は外部からの入力信号であり、信号DATAは入出力されるデータ信号である。信号CLKはクロック信号である。信号CE、GW、および信号BWは制御信号である。信号CEはチップイネーブル信号であり、信号GWはグローバル書き込みイネーブル信号であり、信号BWはバイト書き込みイネーブル信号である。信号ADDRはアドレス信号である。信号DATAは書き込みデータまたは読み出しデータである。信号PON1、PON2は、パワーゲーティング制御用信号である。なお、信号PON1、PON2は、コントロール回路102で生成してもよい。
 コントロール回路112は、記憶装置100Bの動作全般を制御する機能を有するロジック回路である。例えば、コントロール回路は、信号CE、信号GWおよび信号BWを論理演算して、記憶装置100Bの動作モード(例えば、書き込み動作または読み出し動作など)を決定する。または、コントロール回路112は、この動作モードが実行されるように、回路ブロック101内の制御信号を生成する。
 メモリセルアレイ140は、複数のメモリセル(MC)150、および複数の配線WL、NWL、BL、BLBを有する。複数のメモリセル150は行列状に配置されている。
 同じ行のメモリセル150は、その行の配線WL、NWLに接続される。配線WL、NWLはそれぞれワード線であり、配線BL、BLBは相補データを伝送するためのビット線対である。配線BLBは、配線BLの論理を反転したデータが入力されるビット線であり、ビット補線や、反転ビット線と呼ばれる場合がある。メモリセル150は、2種類のメモリSMCおよびメモリNVMを有する。メモリSMCは1ビットの相補データを記憶することができるメモリ回路である。メモリNVMはnビット(nは1よりも大きい整数)の相補データを記憶することができるメモリ回路であり、電源オフ状態でも長期間データを保持することが可能である。
 メモリSMCとメモリNVMとはローカルビット線対(配線LBL、LBLB)により接続されている。配線LBLは、配線BLに対するローカルビット線であり、配線LBLBは、配線BLBに対するローカルビット線である。配線LBL、LBLBによって、メモリSMCとメモリNVMとは電気的に接続されている。メモリセル150は回路LPCを有する。回路LPCは、配線LBLおよび配線LBLBをプリチャージするためのローカルプリチャージ回路である。回路LPCの制御信号は、行回路104あるいは列回路105等の周辺回路で生成される。
 行回路104および列回路105は、メモリセルアレイ140に対するデータの書き込みおよび読み出しをするための回路である。
 行デコーダ111および列デコーダ114は、信号ADDRをデコードする機能を有する。行デコーダ111は、アクセスする行を指定するための回路であり、列デコーダ114は、アクセスする列を指定するための回路である。行ドライバ113は、行デコーダ111が指定する行の配線WL、NWLを選択する機能を有する。具体的には、行ドライバ113は、配線WL、NWLを選択するための信号を生成する機能を有する。列ドライバ115は、データをメモリセルアレイ140に書き込む機能、メモリセルアレイ140からデータを読み出す機能、読み出したデータを保持する機能、配線BLおよび配線BLBをプリチャージする機能等を有する。
 入出力回路116は、メモリセルアレイ140に入出力されるデータについて、記憶装置100B外部の回路の間で入出力する回路である。入力されるデータ、出力されるデータを総称してデータDATAと図示している。
 パワースイッチ103はメモリセルアレイ140以外の回路(回路ブロック101)へのVDDの供給を制御する機能を有する。パワースイッチ106は、行回路104へのVHMの供給を制御する機能を有する。ここでは、記憶装置100Bの高電源電圧がVDDであり、低電源電圧はGND(接地電位)である。また、VHMは、配線NWLを高レベルにするために用いられる高電源電圧であり、VDDよりも高い。信号PON1によってパワースイッチ103のオン・オフが制御され、信号PON2によってパワースイッチ106のオン・オフが制御される。図7では、回路ブロック101において、VDDが供給される電源ドメインの数を1としているが、複数にすることもできる。この場合、各電源ドメインに対してパワースイッチを設ければよい。また負電圧VbgがNVMに用いられるトランジスタに外部より印加される。
 図8に、メモリセル150の回路構成例を示す。
 SMCは、配線BL、配線BLB、配線LBL、配線LBLB、配線VHH、および配線VLLと接続されている。
 SMCは、CMOS型(6トランジスタ型)のSRAMセルと同様の回路構成であり、トランジスタTld1、Tld2、Tdr1、Tdr2、Tac1、Tac2を有する。トランジスタTld1、Tld2はロードトランジスタ(プルアップトランジスタ)であり、トランジスタTdr1、Tdr2は駆動トランジスタ(プルダウントランジスタ)であり、トランジスタTac1、Tac2はアクセストランジスタ(トランスファトランジスタ)である。
 トランジスタTac1により配線BLと配線LBLとの間の導通状態が制御される。トランジスタTac2により配線BLBと配線LBLBとの間の導通状態が制御される。トランジスタTac1、Tac2のオン・オフは配線WLの電位によって制御される。トランジスタTld1、Tdr1によりインバータが構成され、トランジスタTld2、Tdr2によりインバータが構成されている。これら2個のインバータの入力端子は、それぞれ、他方の出力端子に接続されており、ラッチ回路が構成される。2個のインバータには、配線VHH、VLLによって電源電圧が供給される。
 図8に示すNVMは、n個(nは2以上の偶数)のメモリ回路NMCを有する。n個のメモリ回路NMCは互いに異なる配線NWLに接続されている。また、n個のメモリ回路NMCは1本の配線SLと接続されている。n個のメモリ回路NMCを区別するために、[0]、[1]等の符号を用い、n本の配線NWLを区別するために、_0、_1等の符号を用いることとする。
 メモリ回路NMCは1ビットのデータを保持することができるメモリ回路(メモリセルと呼ぶこともできる。)である。メモリ回路NMCは図2で説明した1T−1MTJ型セルの回路構成である。メモリ回路NMCはトランジスタTr1およびMTJ素子99を有する。MTJ素子99は図3で説明したように磁化の向きに応じて抵抗変化が生じるため、抵抗変化型のメモリ素子として機能する。配線SLは、MTJ素子99に電流を流すための電源線である。
 トランジスタTr1のソースまたはドレインの一方は、配線LBL(または配線LBLB)に接続される。トランジスタTr1のゲートは、配線NWLに接続される。トランジスタTr1のソースまたはドレインの他方は、MTJ素子99の一方の端子に接続される。MTJ素子99の他方の端子は、配線SLに接続される。トランジスタTr1のバックゲートは、配線BGLに接続される。電圧VbgによってトランジスタTr1のしきい値電圧を変更することができる。その結果、トランジスタTr1がノーマリーオンになることを防ぐことができる。
 メモリ回路NMC[0]乃至メモリ回路NMC[n−1]のうち半数は配線LBLに接続され、残りの半数は配線LBLBに接続されている。図8に示すNVMは、メモリセルのレイアウト方式として折り返し型を適用した場合の回路図である。なお、折り返し型のメモリセルに関しては、後述の図11で再び説明を行う。
 トランジスタTr1としてOSトランジスタを用いることが好ましい。OSトランジスタを用いることで、トランジスタTr1のオフ電流を極めて小さくできる。トランジスタTr1のオフ電流を小さくすることで、配線LBL(または配線LBLB)と配線SLとの間を流れるリーク電流を小さくすることができる。オフ電流が極めて小さいとは、例えば、チャネル幅1μmあたりのオフ電流が100zA(ゼプトアンペア)以下であることをいう。なお、オフ電流は小さいほど好ましいため、この規格化されたオフ電流が10zA/μm以下、あるいは1zA/μm以下とすることが好ましく、10yA(ヨクトアンペア)/μm以下であることがより好ましい。1zAは1×10−21Aであり、1yAは1×10−24Aである。
 なお、メモリ回路NMCの数(n)は8の倍数であることが好ましい。すなわち、NVMが保持できるデータのビット数は、8の倍数であることが好ましい。メモリ回路NMCを8の倍数とすることで、メモリセル150は、例えば1バイト(8ビット)、1ワード(32ビット)、ハーフワード(16ビット)など、それぞれの単位ごとにデータを扱うことができる。
 回路LPCは、配線PCLおよび配線VPCと接続されている。配線PCLは、配線LBL、LBLBのプリチャージ動作制御用の信号を供給するための信号線である。配線VPCはプリチャージ電圧を供給するための電源線である。回路LPCは、トランジスタTeq1、Tpc1、Tpc2を有する。トランジスタTeq1、Tpc1、Tpc2のゲートは配線PCLに接続されている。トランジスタTeq1は配線LBLとLBLBと間の導通状態を制御する。トランジスタTpc1は配線LBLと配線VPCと間の導通状態を制御する。トランジスタTpc2は配線LBLBと配線VPCと間の導通状態を制御する。
 図8の例では、トランジスタTeq1、Tpc1、Tpc2はnチャネル型トランジスタであるが、これらをpチャネル型トランジスタとしてもよい。あるいは、回路LPCにTeq1を設けなくてもよい。この場合、トランジスタTpc1、Tpc2は、nチャネル型トランジスタ、pチャネル型トランジスタの何れでもよい。あるいは、回路LPCをトランジスタTeq1のみで構成することもできる。この場合もトランジスタTeq1はnチャネル型トランジスタでも、pチャネル型トランジスタでもよい。トランジスタTeq1でなる回路LPCは、配線LBLと配線LBLBとの電位を平滑化することで、配線LBLと配線LBLBのプリチャージを行う。
 行回路104は、メモリセルアレイ140に設けられる各種の電源線(配線VHH、VLL、VPC)への電位を供給する機能を有する。そのため、パワースイッチ103がオフとなって、回路ブロック101へのVDDの供給が停止すると、これら電源線への電位の供給も停止することとなる。
 記憶装置100Bにおいて、メモリNVMのトランジスタTr1はOSトランジスタとし、他のトランジスタは、例えば、Siトランジスタ等とすることができる。この場合、メモリセルアレイ140を、Siトランジスタで構成される回路上に、OSトランジスタで構成される回路が積層されているデバイス構造とすることができる。図9に、メモリセルアレイ140のデバイス構造例を模式的に示す。
 図9の例では、メモリセルアレイ140A上に、メモリセルアレイ140Bが積層されている。メモリセルアレイ140Aには回路SMCおよび回路LPCがマトリクス状に設けられている。メモリセルアレイ140Bには回路NVMがマトリクス状に設けられている。メモリセルアレイ140AはSiトランジスタで構成し、メモリセルアレイ140BはOSトランジスタで構成する。メモリセルアレイ140Bをメモリセルアレイ140Aに積層することで、記憶装置100Bの大容量化と小型化を効果的に行える。
 メモリセルアレイ140Bをメモリセルアレイ140Aに積層することで、メモリセルアレイ140の大容量化と小型化が可能となる。CMOS型SRAMのメモリセルと比較した場合、メモリセル150のビット当たりの面積をより小さくすることができる。
 回路NVMで構成されるメモリセルアレイ140Bは、Siトランジスタで構成されるメモリセルアレイ140A上に、OSトランジスタで構成される回路を設け、その上にMTJ素子を設ける構成とすることができる。アクセストランジスタとして用いるOSトランジスタは、MTJ素子にデータを書き込むための電流を流すためにW幅方向を大きくとる必要がある。アクセストランジスタとしてSiトランジスタを用いる場合には、微細化と書き込み電流の増大の双方を進める必要があるが、微細化と書き込み電流とを層ごとに分けて設計することが可能になる。そのため、限られたセル面積の中で、トランジスタのW幅を大きくすることと、MTJ素子の微細化との両方を図ることができる。したがって、高集積化と低消費電力化との両立を図ることができる。
 回路NVMで構成されるメモリセルアレイ140Bは、トランジスタのW幅方向を大きくするレイアウト面積を確保することができる。つまり、MTJ素子の書き換えに要する電流を大きくとることができる。そのため、より確実にMTJ素子のデータの書き込み及び読み出しを図ることができる。MTJ素子は電源オフ状態でもデータを記憶することが可能であるので、記憶装置100Bのパワーゲーティングが可能である。
 SRAMは高速であるため、標準的なプロセッサのオンチップ・キャッシュメモリに使用されている。SRAMは待機時でも電力を消費してしまうということ、また大容量化が難しいという短所がある。例えば、モバイル機器用のプロセッサでは、オンチップ・キャッシュメモリの待機時の消費電力がプロセッサ全体の平均消費電力に占める割合の80%に達するといわれている。これに対して、記憶装置100Bは、読み出し、書き込みが速いというSRAMの長所を生かしつつ、SRAMの短所が解消されているRAMである。そのため、オンチップ・キャッシュメモリに記憶装置100Bを適用することは、プロセッサ全体の消費電力の低減に有用である。記憶装置100Bはビット当たりの面積が小さいため、大容量化が容易であるので、キャッシュメモリ等に好適である。
 次に、NVMのレイアウト方式(折り返し型、ツインセル型、開放型)について、図10乃至図12を用いて説明を行う。なお、図10乃至図12はNVMが8ビットのデータを記憶する(NVMはメモリ回路NMC[0]乃至メモリ回路NMC[7]を有する)例を示している。
 図10に示す回路図は、メモリセル150のレイアウト方式として折り返し型を適用した例である。SMCおよびLPCが形成されている領域上に、メモリ回路NMC[0]乃至メモリ回路NMC[7]が設けられている。折り返し型のメモリセル150において、メモリ回路NMCは配線LBLに接続されるものと、配線LBLBに接続されるものに分類される。折り返し型を適用することで、メモリセル150は、配線NWLの電位の変化によって、配線LBLまたは配線LBLBに出力されるノイズを低減することができる。
 図11に示す回路図は、メモリセル150のレイアウト方式として開放型を適用した例である。折り返し型と同様に、メモリ回路NMCは1つのトランジスタと1つのMTJ素子で構成されている。開放型のメモリセル150において、メモリ回路NMCは配線LBLに接続されるものと、配線LBLBに接続されるものに分類される。図11において、1つの配線NWLに2つのメモリ回路NMCが接続されているように見えるが、2つのメモリ回路NMCのうち1つは隣り合うメモリセル150に接続されたものである。開放型はメモリ回路NMCを高集積化することが可能で、他のレイアウト方式に比べて、記憶装置100Bが記憶できるデータの容量を大きくすることができる。
 図12に示す回路図は、メモリセル150のレイアウト方式としてツインセル型を適用した例である。図12において、メモリ回路NMCは2つのトランジスタと2つの容量素子で構成されている。すなわち、メモリ回路NMCは相補的な2つのメモリセルを有する。ツインセル型のメモリセル150は、2つのメモリセルに保持された相補データを1ビットとして扱う。
 メモリ回路NMCは、一対のメモリセルを備えることで相補データを長時間保持することができる。メモリ回路NMCが相補データを保持していることで、メモリ回路NMCで保持している相補データを読み出すときには、回路SMCは差動増幅回路として機能することができる。このため、ツインセル型は、一対のメモリセルの一方が保持している電圧と、一対のメモリセルの他方が保持している電圧との電圧差が小さくとも、信頼性の高い読み出し動作ができる。
 また図13は、記憶装置100Bの断面図の一例を示している。図13に示す記憶装置100Bは、下から順に積層された層L1、層L2、層L3、層L4を有する。なお層L3と層L4との間に、層L2および層L3を複数重ねて配置することで、さらに多くの層からなる多層構造とすることができる。
 層L1は、トランジスタM1と、基板300と、素子分離層301と、絶縁体302と、プラグ310などを有する。
 層L2は、絶縁体303と、配線320と、絶縁体304と、プラグ311などを有する。
 層L3は、絶縁体214と、絶縁体216と、トランジスタTr1と、絶縁体280と、プラグ312と、絶縁体282と、配線321などを有する。トランジスタTr1の第1ゲートは配線NWLとしての機能を有し、トランジスタTr1の第2ゲートは配線BGLとしての機能を有する。図13は、トランジスタTr1としてOSトランジスタを用いた例を示している。
 層L4は、MTJ素子99と、プラグ313と、配線LBLなどを有する。MTJ素子99は導電体322と、導電体323と、自由層305と、固定層306と、絶縁層307とで成る。
 トランジスタM1は基板300上に設けられ、素子分離層301によって隣接する他のトランジスタと分離されている。素子分離層301として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン等を用いることができる。なお、本明細書において、酸化窒化物とは、窒素よりも酸素の含有量が多い化合物をいい、窒化酸化物とは、酸素よりも窒素の含有量が多い化合物をいう。
 基板300としては、シリコンや炭化シリコンからなる単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウムからなる化合物半導体基板や、SOI(Silicon On Insulator)基板などを用いることができる。また、基板300として、例えば、ガラス基板、石英基板、プラスチック基板、金属基板、貼り合わせフィルム、繊維状の材料を含む紙、又は基材フィルム、などを用いてもよい。また、ある基板を用いて半導体素子を形成し、その後、別の基板に半導体素子を転置してもよい。
 また、基板300として、可とう性基板を用いてもよい。なお、可とう性基板上にトランジスタを設ける方法としては、非可とう性の基板上にトランジスタを作製した後、トランジスタを剥離し、可とう性基板である基板300に転置する方法もある。その場合には、非可とう性基板とトランジスタとの間に剥離層を設けるとよい。なお、基板300として、繊維を編みこんだシート、フィルムまたは箔などを用いてもよい。また、基板300が伸縮性を有してもよい。また、基板300は、折り曲げや引っ張りをやめた際に、元の形状に戻る性質を有してもよい。または、元の形状に戻らない性質を有してもよい。基板300の厚さは、例えば、5μm以上700μm以下、好ましくは10μm以上500μm以下、さらに好ましくは15μm以上300μm以下とする。基板300を薄くすると、半導体装置を軽量化することができる。また、基板300を薄くすることで、ガラスなどを用いた場合にも伸縮性を有する場合や、折り曲げや引っ張りをやめた際に、元の形状に戻る性質を有する場合がある。そのため、落下などによって基板300上の半導体装置に加わる衝撃などを緩和することができる。即ち、丈夫な半導体装置を提供することができる。可とう性基板である基板300としては、例えば、金属、合金、樹脂もしくはガラス、またはそれらの繊維などを用いることができる。可とう性基板である基板300は、線膨張率が低いほど環境による変形が抑制されて好ましい。可とう性基板である基板300としては、例えば、線膨張率が1×10−3/K以下、5×10−5/K以下、または1×10−5/K以下である材質を用いればよい。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネート、アクリル樹脂、ポリテトラフルオロエチレン(PTFE)などがある。特に、アラミドは、線膨張率が低いため、可とう性基板である基板300として好適である。
 本実施の形態では、一例として、基板300に単結晶シリコンウェハを用いた例を示している。
 トランジスタM1は、ウェルに設けられたチャネル形成領域及び不純物領域と、該不純物領域に接して設けられた導電性領域と、チャネル形成領域上に設けられたゲート絶縁体と、ゲート絶縁体上に設けられたゲート電極とを有する。トランジスタM1はFIN型トランジスタとすることができる。
 本実施の形態では、一例として、トランジスタM1としてSiトランジスタを適用した例を示している。トランジスタM1は、nチャネル型のトランジスタまたはpチャネル型のトランジスタのいずれでもよく、回路によって適切なトランジスタを用いればよい。
 絶縁体302は、層間絶縁体としての機能を有する。トランジスタM1にSiトランジスタを用いた場合、絶縁体302は水素を含むことが好ましい。絶縁体302が水素を含むことで、シリコンのダングリングボンドを終端し、トランジスタM1の信頼性を向上させる効果がある。絶縁体302として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン等を用いることが好ましい。
 絶縁体303には、基板300またはトランジスタM1などから、トランジスタTr1が設けられる領域に、水素や不純物が拡散しないようなバリア膜を用いることが好ましい。例えば、CVD法で形成した窒化シリコンを用いることができる。トランジスタTr1が有する金属酸化物に水素が拡散することで、該金属酸化物の特性が低下する場合がある。従って、トランジスタM1と、トランジスタTr1との間に、水素の拡散を抑制する膜を用いることが好ましい。
 水素の拡散を抑制する膜とは、水素の脱離量が少ない膜のことを言う。水素の脱離量は、例えば、昇温脱離ガス分析法(TDS(Thermal Desorption Spectroscopy))などを用いて分析することができる。例えば、絶縁体303の水素の脱離量は、TDS分析において、膜の表面温度が50℃から500℃の範囲において、水素原子に換算した脱離量が、絶縁体303の面積当たりに換算して、10×1015atoms/cm以下、好ましくは5×1015atoms/cm以下であればよい。
 また、絶縁体304、214、282は、銅の拡散を抑制する、または、酸素、および水素に対するバリア性を有する絶縁体を用いることが好ましい。例えば、銅の拡散を抑制する膜の一例として、窒化シリコンを用いることができる。また、酸化アルミニウムなどの金属酸化物を用いてもよい。
 絶縁体216は、例えば、酸化シリコン膜や酸化窒化シリコン膜などを用いることができる。
 絶縁体280、トランジスタTr1の詳細については後述の実施の形態3で説明を行う。
 絶縁層307は、酸化マグネシウム(MgO)、または酸化アルミニウム(Al)等を用いればよい。自由層305及び固定層306は、鉄(Fe)やコバルト(Co)等の強磁性体又はこれらの合金を用いればよい。自由層305、固定層306および絶縁層307は、単層や複数の層で形成することができる。なお自由層305、固定層306および絶縁層307は、加工を容易にするため、側壁に絶縁物等を有する構成でもよい。
 図13に示す導電体、配線及びプラグとして、銅(Cu)、タングステン(W)、モリブデン(Mo)、金(Au)、アルミニウム(Al)、マンガン(Mn)、チタン(Ti)、タンタル(Ta)、ニッケル(Ni)、クロム(Cr)、鉛(Pb)、錫(Sn)、鉄(Fe)、コバルト(Co)、ルテニウム(Ru)、白金(Pt)、イリジウム(Ir)、ストロンチウム(Sr)の低抵抗材料からなる単体、合金、またはこれらを主成分とする化合物を含む導電体の単層または積層とすることが好ましい。特に、耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材料を用いることが好ましい。また、アルミニウムや銅などの低抵抗導電性材料で形成することが好ましい。
 図13において、符号及びハッチングパターンが与えられていない領域は、絶縁体で構成されている。上記絶縁体には、酸化アルミニウム、窒化酸化アルミニウム、酸化マグネシウム、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウム、酸化タンタルなどから選ばれた一種以上の材料を含む絶縁体を用いることができる。また、当該領域には、ポリイミド樹脂、ポリアミド樹脂、アクリル樹脂、シロキサン樹脂、エポキシ樹脂、フェノール樹脂等の有機樹脂を用いることもできる。
 以上、本実施の形態に示す構成、構造、方法などは、他の実施の形態に示す構成、構造、方法などと適宜組み合わせて用いることができる。
(実施の形態3)
 本実施の形態では、上記実施の形態で用いたOSトランジスタの構造について説明を行う。
 図14(A)および図14(B)は、トランジスタ200aの上面図および断面図である。図14(A)は上面図であり、図14(B)は、図14(A)に示す一点鎖線X1−X2に対応する断面図である。なお、図14(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
 図14(B)は、絶縁体214及び絶縁体216上にトランジスタ200aが設けられた例を示している。
 トランジスタ200aは、ゲート電極として機能する導電体205(導電体205a、および導電体205b)および導電体260と、ゲート絶縁体として機能する絶縁体220、絶縁体222、絶縁体224、および絶縁体250と、金属酸化物230(金属酸化物230a、金属酸化物230b、および金属酸化物230c)と、ソースまたはドレインの一方として機能する導電体240aと、ソースまたはドレインの他方として機能する導電体240bと、導電体260を保護する絶縁体241と、過剰酸素を有する(化学量論的組成よりも過剰に酸素を含む)絶縁体280と、を有する。
 トランジスタ200aにおいて、導電体260をトップゲート、導電体205をボトムゲートと呼ぶ場合がある。あるいは、導電体260を第1ゲート、導電体205を第2ゲートと呼ぶ場合がある。
 また、金属酸化物230は、金属酸化物230aと、金属酸化物230a上の金属酸化物230bと、金属酸化物230b上の金属酸化物230cと、を有する。トランジスタ200aをオンさせると、主として金属酸化物230bに電流が流れる。金属酸化物230bはチャネル形成領域としての機能を有する。一方、金属酸化物230aおよび金属酸化物230cは、金属酸化物230bとの界面近傍(混合領域となっている場合もある)は電流が流れる場合があるものの、そのほかの領域は絶縁体として機能する場合がある。
 金属酸化物230a、金属酸化物230cは、金属酸化物230bよりも伝導帯下端のエネルギー準位が真空準位に近く、代表的には、金属酸化物230bの伝導帯下端のエネルギー準位と、金属酸化物230a、金属酸化物230cの伝導帯下端のエネルギー準位との差が、0.15eV以上、または0.5eV以上、かつ2eV以下、または1eV以下であることが好ましい。すなわち、金属酸化物230a、金属酸化物230cの電子親和力と、金属酸化物230bの電子親和力との差が、0.15eV以上、または0.5eV以上、かつ2eV以下、または1eV以下であることが好ましい。
 金属酸化物230bにおいて、エネルギーギャップは2eV以上が好ましく、2.5eV以上3.0eV以下がより好ましい。また、金属酸化物230aおよび金属酸化物230cにおいて、エネルギーギャップは2eV以上が好ましく、2.5eV以上がより好ましく、2.7eV以上3.5eV以下がさらに好ましい。また、金属酸化物230aおよび金属酸化物230cのエネルギーギャップは、金属酸化物230bのエネルギーギャップよりも大きいことが好ましい。例えば、金属酸化物230aおよび金属酸化物230cのエネルギーギャップは、金属酸化物230bのエネルギーギャップと比べて、0.15eV以上、または0.5eV以上、または1.0eV以上、かつ2eV以下、または1eV以下であることが好ましい。
 また、金属酸化物230a、金属酸化物230bおよび金属酸化物230cの厚さは、3nm以上200nm以下、好ましくは3nm以上100nm以下、さらに好ましくは3nm以上60nm以下である。
 金属酸化物のキャリア密度を小さくすることで、トランジスタのしきい値電圧のマイナスシフトを抑制、またはトランジスタのオフ電流を低くすることができるため好ましい。金属酸化物のキャリア密度に影響を与える因子としては、金属酸化物中の酸素欠損(Vo)、または金属酸化物中の不純物などが挙げられる。金属酸化物中の酸素欠損が多くなると、該酸素欠損に水素が結合(この状態をVoHともいう)した際に、欠陥準位密度が高くなる。または、金属酸化物中の不純物が多くなると、該不純物に起因し欠陥準位密度が高くなる。したがって、金属酸化物中の欠陥準位密度を制御することで、金属酸化物のキャリア密度を制御することができる。
 金属酸化物230aおよび金属酸化物230cのキャリア密度は、例えば、8×1015cm−3未満、好ましくは1×1011cm−3未満、さらに好ましくは1×1010cm−3未満であり、1×10−9cm−3以上とすればよい。
 一方で、トランジスタのオン電流の向上、またはトランジスタの電界効果移動度の向上を目的とする場合、金属酸化物のキャリア密度を大きくする方が好ましい。金属酸化物のキャリア密度を大きくするには、金属酸化物の不純物濃度をわずかに高める、あるいは、金属酸化物のバンドギャップをより小さくするとよい。
 金属酸化物230bのキャリア密度は、金属酸化物230aおよび金属酸化物230cと比較して大きいことが好ましい。
 金属酸化物230aと金属酸化物230bとの界面、または金属酸化物230bと金属酸化物230cとの界面において形成される混合層の欠陥準位密度を低くすることが好ましい。具体的には、金属酸化物230aと金属酸化物230b、金属酸化物230bと金属酸化物230cが、酸素以外に共通の元素を有する(主成分とする)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、金属酸化物230bがIn−Ga−Zn酸化物の場合、金属酸化物230a、金属酸化物230cとして、In−Ga−Zn酸化物、Ga−Zn酸化物、酸化ガリウムなどを用いるとよい。
 このとき、キャリアの主たる経路は金属酸化物230bとなる。金属酸化物230aと金属酸化物230bとの界面、および金属酸化物230bと金属酸化物230cとの界面における欠陥準位密度を低くすることができるため、界面散乱によるキャリア伝導への影響が小さく、高いオン電流が得られる。
 金属酸化物230a、金属酸化物230cは、金属酸化物230bと比較して、導電率が十分に低い材料を用いることが好ましい。例えば、金属酸化物230a、金属酸化物230cには、絶縁性が高くなる原子数比の金属酸化物を用いればよい。なお絶縁性が高くなる原子数比は、[In]:[M]:[Zn]=0:1:0、およびその近傍値、[In]:[M]:[Zn]=1:3:2およびその近傍値、および[In]:[M]:[Zn]=1:3:4、およびその近傍値である。
 特に、金属酸化物230bに前述の原子数比の金属酸化物を用いる場合、金属酸化物230aおよび金属酸化物230cには、[M]/[In]が1以上、好ましくは2以上である金属酸化物を用いることが好ましい。また、金属酸化物230cとして、十分に高い絶縁性を得ることができる[M]/([Zn]+[In])が1以上である金属酸化物を用いることが好適である。
 導電体205は、モリブデン、チタン、タンタル、タングステン、アルミニウム、銅、クロム、ネオジム、スカンジウムから選ばれた元素を含む金属膜、または上述した元素を成分とする金属窒化物膜(窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等である。又は、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの導電性材料を適用することもできる。
 例えば、導電体205aとして、水素に対するバリア性を有する導電体として、窒化タンタル等を用い、導電体205bとして、導電性が高いタングステンを積層するとよい。当該組み合わせを用いることで、配線としての導電性を保持したまま、金属酸化物230への水素の拡散を抑制することができる。なお、図14(B)では、導電体205a、および導電体205bの2層構造を示したが、当該構成に限定されず、単層でも3層以上の積層構造でもよい。
 絶縁体220、および絶縁体224は、酸化シリコン膜や酸化窒化シリコン膜などの、酸素を含む絶縁体であることが好ましい。特に、絶縁体224として過剰酸素を含む絶縁体を用いることが好ましい。このような過剰酸素を含む絶縁体を、トランジスタ200aを構成する金属酸化物に接して設けることにより、金属酸化物中の酸素欠損を補償することができる。なお、絶縁体222と絶縁体224とは、必ずしも同じ材料を用いて形成しなくともよい。
 絶縁体222は、例えば、窒化酸化シリコン、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などのいわゆるhigh−k材料を含む絶縁体を単層または積層で用いることが好ましい。またはこれらの絶縁体に例えば酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理しても良い。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
 なお、絶縁体222が、2層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。
 また、絶縁体220、絶縁体222、絶縁体224の膜厚を適宜調整することで、しきい値電圧を制御することができる。または、非導通時のリーク電流の小さいトランジスタを提供することができる。絶縁体220、絶縁体222、絶縁体224の膜厚をそれぞれ薄くすることで、導電体205によるしきい値電圧制御が容易になり好ましい。例えば、絶縁体220、絶縁体222、絶縁体224の膜厚はそれぞれ50nm以下、さらに好ましくはそれぞれ30nm以下、さらに好ましくはそれぞれ10nm以下、さらに好ましくはそれぞれ5nm以下にすればよい。
 絶縁体250は、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO)または(Ba,Sr)TiO(BST)などの絶縁体を単層または積層で用いることができる。またはこれらの絶縁体に例えば酸化アルミニウム、酸化ビスマス、酸化ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イットリウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理しても良い。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。
 また、絶縁体250として、絶縁体224と同様に、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁体を用いることが好ましい。このような過剰酸素を含む絶縁体を金属酸化物230に接して設けることにより、金属酸化物230中の酸素欠損を低減することができる。
 また、絶縁体250は、酸化アルミニウム、酸化窒化アルミニウム、酸化ハフニウム、酸化窒化ハフニウム、窒化シリコンなどの、酸素や水素に対してバリア性のある絶縁膜を用いることができる。このような材料を用いて形成した場合、金属酸化物230からの酸素の放出や、外部からの水素等の不純物の混入を防ぐ層として機能する。
 導電体240a、240bは、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、またはタングステンなどの金属、またはこれを主成分とする合金を用いることができる。また、図では単層構造を示したが、2層以上の積層構造としてもよい。
 例えば、チタン膜とアルミニウム膜を積層するとよい。また、タングステン膜上にアルミニウム膜を積層する二層構造、銅−マグネシウム−アルミニウム合金膜上に銅膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、タングステン膜上に銅膜を積層する二層構造としてもよい。
 また、チタン膜または窒化チタン膜と、そのチタン膜または窒化チタン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチタン膜または窒化チタン膜を形成する三層構造、モリブデン膜または窒化モリブデン膜と、そのモリブデン膜または窒化モリブデン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構造等がある。なお、酸化インジウム、酸化錫または酸化亜鉛を含む透明導電材料を用いてもよい。
 また、ゲート電極として機能する導電体260は、例えばアルミニウム、クロム、銅、タンタル、チタン、モリブデン、タングステンから選ばれた金属、または上述した金属を成分とする合金か、上述した金属を組み合わせた合金等を用いて形成することができる。また、マンガン、ジルコニウムのいずれか一または複数から選択された金属を用いてもよい。また、リン等の不純物元素をドーピングした多結晶シリコンに代表される半導体、ニッケルシリサイド等のシリサイドを用いてもよい。
 例えば、アルミニウム上にチタン膜を積層する二層構造とするとよい。また、窒化チタン膜上にチタン膜を積層する二層構造、窒化チタン膜上にタングステン膜を積層する二層構造、窒化タンタル膜または窒化タングステン膜上にタングステン膜を積層する二層構造としてもよい。
 また、チタン膜と、そのチタン膜上にアルミニウム膜を積層し、さらにその上にチタン膜を形成する三層構造等がある。また、アルミニウムに、チタン、タンタル、タングステン、モリブデン、クロム、ネオジム、スカンジウムから選ばれた一または複数の金属を組み合わせた合金膜、もしくは窒化膜を用いてもよい。
 また、導電体260は、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化シリコンを添加したインジウム錫酸化物等の透光性を有する導電性材料を適用することもできる。また、上記透光性を有する導電性材料と、上記金属の積層構造とすることもできる。
 導電体260として、仕事関数の高い導電性材料を用いることで、トランジスタ200aのしきい値電圧を大きくし、カットオフ電流を下げることができる。導電体260の仕事関数は好ましくは、4.8eV以上、さらに好ましくは5.0eV以上、さらに好ましくは5.2eV以上、さらに好ましくは5.4eV以上、さらに好ましくは5.6eV以上の導電性材料を用いればよい。仕事関数の大きな導電性材料として、例えば、モリブデン、酸化モリブデン、白金(Pt)、Ptシリサイド、ニッケルシリサイド、インジウム錫酸化物、窒素添加されたIn−Ga−Zn酸化物などが挙げられる。
 導電体260を覆うように絶縁体241を設ける。絶縁体241は、酸化アルミニウム、酸化窒化アルミニウム、酸化ハフニウム、酸化窒化ハフニウム、窒化シリコンなどの、酸素や水素に対してバリア性のある絶縁膜を用いることができる。このような材料を用いて形成した場合、導電体260が熱処理工程によって、酸化することを防ぐことができる。なお、絶縁体241は、導電体260に酸化し難い材料を用いることで、省略することができる。
 トランジスタ200aの上方には、絶縁体280を設ける。絶縁体280は過剰酸素を有することが好ましい。特に、トランジスタ200a近傍の層間膜などに、過剰酸素を有する絶縁体を設けることで、トランジスタ200aの酸素欠損を低減することで、信頼性を向上させることができる。
 過剰酸素を有する絶縁体として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm以上、好ましくは3.0×1020atoms/cm以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上500℃以下の範囲が好ましい。
 例えばこのような材料として、酸化シリコンまたは酸化窒化シリコンを含む材料を用いることが好ましい。または、金属酸化物を用いることもできる。なお、本明細書中において、酸化窒化シリコンとは、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。
 また、トランジスタ200aを覆う絶縁体280は、その下方の凹凸形状を被覆する平坦化膜として機能してもよい。
 また図15(A)および図15(B)は、トランジスタ200aとは異なる構造であるトランジスタ200bの上面図および断面図である。図15(A)は上面図であり、図15(B)は、図15(A)に示す一点鎖線X1−X2に対応する断面図である。なお、図15(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
 図15(A)および図15(B)のトランジスタ200bは、図14(A)、(B)のトランジスタ200aの変形例である。トランジスタ200bは、絶縁体250、金属酸化物230c、および導電体260の側面と接して配置された、絶縁体275を有する。
 また図16(A)および図16(B)は、トランジスタ200a、200bとは異なる構造であるトランジスタ200cの上面図および断面図である。図16(A)は上面図であり、図16(B)は、図16(A)に示す一点鎖線X1−X2に対応する断面図である。なお、図16(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
 図16(A)および図16(B)のトランジスタ200cは、図14(A)、(B)のトランジスタ200aの変形例である。トランジスタ200cは、絶縁体280中の導電体260を設ける領域に開口部を設け、当該開口部に絶縁体273、絶縁体250、導電体260を順に埋め込む構成を図示している。絶縁体280、絶縁体273、絶縁体250、導電体260上には、絶縁体274および絶縁体281が設けられる。当該構成とすることで、微細加工が可能なトランジスタを得ることができる。
 また図17(A)および図17(B)は、トランジスタ200a、200b、200cとは異なる構造であるトランジスタ200dの上面図および断面図である。図17(A)は上面図であり、図17(B)は、図17(A)に示す一点鎖線X1−X2に対応する断面図である。なお、図17(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
 図17(A)および図17(B)のトランジスタ200dは、図14(A)、(B)のトランジスタ200aの変形例である。トランジスタ200dは、絶縁体280中の導電体260を設ける領域にダミーの構造体を設け、当該構造体を除去して設けられる開口部に金属酸化物230c、絶縁体250、導電体260を順に埋め込む構成を図示している。絶縁体280、絶縁体241、導電体260上には、絶縁体274および絶縁体281が設けられる。当該構成とすることで、微細加工が可能なトランジスタを得ることができる。
 以上、本実施の形態に示す構成、構造、方法などは、他の実施の形態に示す構成、構造、方法などと適宜組み合わせて用いることができる。
(実施の形態4)
 本実施の形態は、上記実施の形態に示す記憶装置が組み込まれた電子部品および電子機器の一例を示す。
 まず、記憶装置が組み込まれた電子部品の例を、図18を用いて説明を行う。
 図18に示す電子部品7000はICチップであり、リード及び回路部を有する。電子部品7000は、例えばプリント基板7002に実装される。このようなICチップが複数組み合わされて、それぞれがプリント基板7002上で電気的に接続されることで電子部品が実装された基板(実装基板7004)が完成する。
 電子部品7000の回路部は、基板7031、層7032の積層でなる。
 基板7031として、上記実施の形態に示すSiトランジスタを形成する基板に用いることが可能な材料を適用すればよい。また、基板7031としてシリコンなどの半導体基板を用いた場合、基板7031に集積回路を形成し、その上にOSトランジスタを有する層7032を形成してもよい。
 層7032は、上記実施の形態に示すOSトランジスタを有する。例えば、上記実施の形態に示す記憶装置100Aまたは100Bを基板7031および層7032に設けることができる。
 OSトランジスタは、他の半導体素子に積層させて設けることができるため、電子部品7000を小型化することができる。
 電子部品7000は、上記実施の形態で説明したように、層7032の上層にMTJ素子等の素子を設けることができる。
 図18では、電子部品7000のパッケージにQFP(Quad Flat Package)を適用しているが、パッケージの態様はこれに限定されない。
 次に、上記電子部品を備えた電子機器の例について図19乃至図20を用いて説明を行う。
 図19(A)に示すロボット2100は、演算装置2110、照度センサ2101、マイクロフォン2102、上部カメラ2103、スピーカ2104、ディスプレイ2105、下部カメラ2106および障害物センサ2107、移動機構2108を備える。
 ロボット2100において、演算装置2110、照度センサ2101、上部カメラ2103、ディスプレイ2105、下部カメラ2106および障害物センサ2107等に、上記電子部品を使用することができる。
 マイクロフォン2102は、使用者の話し声及び環境音等を検知する機能を有する。また、スピーカ2104は、音声を発する機能を有する。ロボット2100は、マイクロフォン2102およびスピーカ2104を用いて、使用者とコミュニケーションをとることが可能である。
 ディスプレイ2105は、種々の情報の表示を行う機能を有する。ロボット2100は、使用者の望みの情報をディスプレイ2105に表示することが可能である。ディスプレイ2105は、タッチパネルを搭載していてもよい。
 上部カメラ2103および下部カメラ2106は、ロボット2100の周囲を撮像する機能を有する。また、障害物センサ2107は、移動機構2108を用いてロボット2100が前進する際の進行方向における障害物の有無を察知することができる。ロボット2100は、上部カメラ2103、下部カメラ2106および障害物センサ2107を用いて、周囲の環境を認識し、安全に移動することが可能である。
 図19(B)に示す飛行体2120は、演算装置2121と、プロペラ2123と、カメラ2122と、を有し、自律して飛行する機能を有する。
 飛行体2120において、演算装置2121およびカメラ2122に上記電子部品を用いることができる。
 図19(C)は、自動車の一例を示す外観図である。自動車2980は、カメラ2981等を有する。また、自動車2980は、赤外線レーダー、ミリ波レーダー、レーザーレーダーなど各種センサなどを備える。自動車2980は、カメラ2981が撮影した画像を解析し、歩行者の有無など、周囲の交通状況を判断し、自動運転を行うことができる。
 自動車2980において、カメラ2981に上記電子部品を用いることができる。
 図19(D)に示す情報端末2910は、筐体2911、表示部2912、マイク2917、スピーカ部2914、カメラ2913、外部接続部2916、および操作スイッチ2915等を有する。表示部2912には、可撓性基板が用いられた表示パネルおよびタッチスクリーンを備える。また、情報端末2910は、筐体2911の内側にアンテナ、バッテリーなどを備える。情報端末2910は、例えば、スマートフォン、携帯電話、タブレット型情報端末、タブレット型パーソナルコンピュータ、電子書籍端末等として用いることができる。情報端末2910はその内部の記憶装置とカメラ2913に上記電子部品を用いることができる。
 図19(E)に腕時計型の情報端末の一例を示す。情報端末2960は、筐体2961、表示部2962、バンド2963、バックル2964、操作スイッチ2965、入出力端子2966などを備える。また、情報端末2960は、筐体2961の内側にアンテナ、バッテリーなどを備える。情報端末2960は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。情報端末2960はその内部の記憶装置に上記電子部品を用いることができる。
 図20は、掃除ロボットの一例を示す模式図である。
 掃除ロボット5100は、上面に配置されたディスプレイ5101、側面に配置された複数のカメラ5102、ブラシ5103、操作ボタン5104を有する。また図示されていないが、掃除ロボット5100の下面には、タイヤ、吸い込み口等が備えられている。掃除ロボット5100は、その他に赤外線センサ、超音波センサ、加速度センサ、ピエゾセンサ、光センサ、ジャイロセンサなどの各種センサを備えている。また、掃除ロボット5100は、無線による通信手段を備えている。
 カメラ5102に、上記電子部品を用いることができる。
 掃除ロボット5100は自走し、ゴミ5120を検知し、下面に設けられた吸い込み口からゴミを吸引することができる。
 また、掃除ロボット5100はカメラ5102が撮影した画像を解析し、壁、家具または段差などの障害物の有無を判断することができる。また、画像解析により、配線などブラシ5103に絡まりそうな物体を検知した場合は、ブラシ5103の回転を止めることができる。
 ディスプレイ5101には、バッテリーの残量や、吸引したゴミの量などを表示することができる。また、掃除ロボット5100が走行した経路をディスプレイ5101に表示させてもよい。また、ディスプレイ5101をタッチパネルとし、操作ボタン5104をディスプレイ5101に設けてもよい。
 掃除ロボット5100は、スマートフォンなどの携帯電子機器5140と通信することができる。カメラ5102が撮影した画像は、携帯電子機器5140に表示させることができる。そのため、掃除ロボット5100の持ち主は、外出先からでも、部屋の様子を知ることができる。
 また以下では、各実施の形態で説明した用語等の説明について付記する。
 本明細書において、特に断りがない場合、オン電流とは、トランジスタがオン状態にあるときのドレイン電流をいう。オン状態(オンと略す場合もある)とは、特に断りがない場合、nチャネル型トランジスタでは、ゲートとソースの間の電圧(V)がしきい値電圧(Vth)以上の状態、pチャネル型トランジスタでは、VがVth以下の状態をいう。例えば、nチャネル型のトランジスタのオン電流とは、VがVth以上のときのドレイン電流を言う。また、トランジスタのオン電流は、ドレインとソースの間の電圧(V)に依存する場合がある。
 本明細書において、特に断りがない場合、オフ電流とは、トランジスタがオフ状態にあるときのドレイン電流をいう。オフ状態(オフと略す場合もある)とは、特に断りがない場合、nチャネル型トランジスタでは、VがVthよりも低い状態、pチャネル型トランジスタでは、VがVthよりも高い状態をいう。例えば、nチャネル型のトランジスタのオフ電流とは、VがVthよりも低いときのドレイン電流を言う。トランジスタのオフ電流は、Vに依存する場合がある。従って、トランジスタのオフ電流が10−21A未満である、とは、トランジスタのオフ電流が10−21A未満となるVの値が存在することを言う場合がある。
 トランジスタのオフ電流は、Vに依存する場合がある。本明細書において、オフ電流は、特に記載がない場合、Vの絶対値が0.1V、0.8V、1V、1.2V、1.8V、2.5V、3V、3.3V、10V、12V、16V、または20Vにおけるオフ電流を表す場合がある。または、当該トランジスタが含まれる半導体装置等において使用されるVにおけるオフ電流を表す場合がある。
 本明細書等において、電圧と電位は、適宜言い換えることができる。電圧は、基準となる電位からの電位差のことであり、例えば基準となる電位をグラウンド電位(接地電位)とすると、電圧を電位に言い換えることができる。グラウンド電位は必ずしも0Vを意味するとは限らない。なお電位は相対的なものであり、基準となる電位によっては、配線等に与える電位を変化させる場合がある。
 本明細書等において、XとYとが接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが直接接続されている場合とが、本明細書等に開示されているものとする。
 ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層、など)であるとする。
 XとYとが直接的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)を介さずに、XとYとが、接続されている場合である。
 XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)が、XとYとの間に1個以上接続されることが可能である。なお、スイッチは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか流さないかを制御する機能を有している。または、スイッチは、電流を流す経路を選択して切り替える機能を有している。なお、XとYとが電気的に接続されている場合は、XとYとが直接的に接続されている場合を含むものとする。
100:記憶装置、101:回路ブロック、102:コントロール回路、103:PSW、104:行回路、105:列回路、106:PSW、110:メモリセルアレイ、111:行デコーダ、113:行ドライバ、114:列デコーダ、115:列ドライバ、116:入出力回路、120:MCSAアレイ、130:ブロック、131:センスアンプブロック、132:センスアンプ、135:ローカルセルアレイ

Claims (8)

  1.  第1配線と、
     第2配線と、
     第1メモリセルと、を有し、
     前記第1メモリセルは、第1トランジスタおよび第1磁気トンネル接合素子を有し、
     前記第1トランジスタのソースまたはドレインの一方は、前記第1配線に電気的に接続され、
     前記第1トランジスタのソースまたはドレインの他方は、前記第1磁気トンネル接合素子の一方の端子に電気的に接続され、
     前記第1磁気トンネル接合素子の他方の端子は、前記第2配線に電気的に接続され、
     前記第1トランジスタは、チャネル形成領域に酸化物半導体を有する、記憶装置。
  2.  第1配線と、
     第2配線と、
     第1メモリセルと、
     センスアンプ回路と、を有し、
     前記第1メモリセルは、第1トランジスタおよび第1磁気トンネル接合素子を有し、
     前記第1トランジスタのソースまたはドレインの一方は、前記第1配線に電気的に接続され、
     前記第1トランジスタのソースまたはドレインの他方は、前記第1磁気トンネル接合素子の一方の端子に電気的に接続され、
     前記第1磁気トンネル接合素子の他方の端子は、前記第2配線に電気的に接続され、
     前記第1トランジスタは、チャネル形成領域に酸化物半導体を有し、
     前記センスアンプ回路は、CMOS型のSRAMセルを構成する第2トランジスタを有し、
     前記センスアンプ回路は、前記第1配線または前記第2配線に電気的に接続され、
     前記第2トランジスタは、チャネル形成領域にシリコンを有する、記憶装置。
  3.  請求項2において、
     プリチャージ回路を有し、
     前記プリチャージ回路は、前記第1配線をプリチャージする機能を有する第3トランジスタを有し、
     前記第3トランジスタは、チャネル形成領域にシリコンを有する、記憶装置。
  4.  請求項1乃至請求項3のいずれか一において、
     前記第1磁気トンネル接合素子は、
     自由層と、絶縁層と、固定層と、の積層構造を有する、記憶装置。
  5.  請求項1乃至請求項4のいずれか一において、
     前記第1トランジスタは、バックゲート電極を有する、記憶装置。
  6.  請求項1乃至請求項5のいずれか一において、
     第2メモリセルを有し、
     第2メモリセルは、第4トランジスタと、第2磁気トンネル接合素子と、を有し、
     前記第4トランジスタは、チャネル形成領域に酸化物半導体を有し、
     前記第1トランジスタと前記第4トランジスタとは、異なる層に設けられ、
     前記第1磁気トンネル接合素子と前記第2磁気トンネル接合素子とは、同じ層に設けられる、記憶装置。
  7.  請求項1乃至6の何れか1項に記載の記憶装置が組み込まれている電子部品。
  8.  請求項7に記載の電子部品が組み込まれている電子機器。
PCT/IB2018/057627 2017-10-13 2018-10-02 記憶装置、電子部品、及び電子機器 WO2019073333A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/647,566 US11094360B2 (en) 2017-10-13 2018-10-02 Storage device, electronic component, and electronic device
JP2019547802A JP7258764B2 (ja) 2017-10-13 2018-10-02 記憶装置
US17/326,441 US11532340B2 (en) 2017-10-13 2021-05-21 Storage device, electronic component, and electronic device
US18/081,109 US11922987B2 (en) 2017-10-13 2022-12-14 Storage device, electronic component, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-199164 2017-10-13
JP2017199164 2017-10-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/647,566 A-371-Of-International US11094360B2 (en) 2017-10-13 2018-10-02 Storage device, electronic component, and electronic device
US17/326,441 Continuation US11532340B2 (en) 2017-10-13 2021-05-21 Storage device, electronic component, and electronic device

Publications (1)

Publication Number Publication Date
WO2019073333A1 true WO2019073333A1 (ja) 2019-04-18

Family

ID=66100540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/057627 WO2019073333A1 (ja) 2017-10-13 2018-10-02 記憶装置、電子部品、及び電子機器

Country Status (3)

Country Link
US (3) US11094360B2 (ja)
JP (1) JP7258764B2 (ja)
WO (1) WO2019073333A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021191734A1 (ja) * 2020-03-27 2021-09-30 株式会社半導体エネルギー研究所 記憶装置、及び電子機器
CN113540147A (zh) * 2020-06-29 2021-10-22 台湾积体电路制造股份有限公司 半导体器件及其制造方法、存储器阵列
WO2023047229A1 (ja) * 2021-09-21 2023-03-30 株式会社半導体エネルギー研究所 半導体装置、記憶装置、及び電子機器
WO2024004126A1 (ja) * 2022-06-30 2024-01-04 Tdk株式会社 磁壁移動素子及び磁気アレイ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7258764B2 (ja) 2017-10-13 2023-04-17 株式会社半導体エネルギー研究所 記憶装置
CN115523327A (zh) * 2021-06-25 2022-12-27 浙江三花汽车零部件有限公司 驱动装置和控制阀

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186109A (ja) * 2004-12-27 2006-07-13 Toshiba Corp 半導体メモリ
JP2012123875A (ja) * 2010-12-09 2012-06-28 Hitachi Ltd 半導体記憶装置
JP2013016746A (ja) * 2011-07-06 2013-01-24 Renesas Electronics Corp 半導体装置、電子装置、配線基板、半導体装置の製造方法、及び配線基板の製造方法
JP2013242960A (ja) * 2013-07-01 2013-12-05 Hitachi Ltd 半導体装置
JP2015165388A (ja) * 2014-02-07 2015-09-17 株式会社半導体エネルギー研究所 半導体装置
JP2015228493A (ja) * 2014-05-08 2015-12-17 株式会社半導体エネルギー研究所 半導体装置
JP2016136737A (ja) * 2010-11-30 2016-07-28 株式会社半導体エネルギー研究所 フォトセンサ

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6625057B2 (en) * 2000-11-17 2003-09-23 Kabushiki Kaisha Toshiba Magnetoresistive memory device
US6563743B2 (en) * 2000-11-27 2003-05-13 Hitachi, Ltd. Semiconductor device having dummy cells and semiconductor device having dummy cells for redundancy
KR100413065B1 (ko) 2001-01-04 2003-12-31 삼성전자주식회사 반도체 메모리 장치의 비트 라인 부스팅 커패시터의 배치구조
KR100399436B1 (ko) * 2001-03-28 2003-09-29 주식회사 하이닉스반도체 마그네틱 램 및 그 형성방법
US7205598B2 (en) * 2002-08-29 2007-04-17 Micron Technology, Inc. Random access memory device utilizing a vertically oriented select transistor
US7433253B2 (en) * 2002-12-20 2008-10-07 Qimonda Ag Integrated circuit, method of operating an integrated circuit, method of manufacturing an integrated circuit, memory module, stackable memory module
JP4159095B2 (ja) * 2003-12-03 2008-10-01 インターナショナル・ビジネス・マシーンズ・コーポレーション 磁気記憶装置
JP2006185477A (ja) 2004-12-27 2006-07-13 Fujitsu Ltd 磁気メモリ装置並びにその読み出し方法及び書き込み方法
EP1995787A3 (en) 2005-09-29 2012-01-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method therof
JP4594839B2 (ja) * 2005-09-29 2010-12-08 株式会社東芝 磁気ランダムアクセスメモリ、磁気ランダムアクセスメモリの製造方法、及び、磁気ランダムアクセスメモリのデータ書き込み方法
US7359265B2 (en) 2006-01-04 2008-04-15 Etron Technology, Inc. Data flow scheme for low power DRAM
WO2007110933A1 (ja) 2006-03-28 2007-10-04 Fujitsu Limited 半導体メモリおよびシステム
JP2008065971A (ja) 2006-08-10 2008-03-21 Fujitsu Ltd 半導体メモリおよびメモリシステム
JP2008293605A (ja) 2007-05-25 2008-12-04 Elpida Memory Inc 半導体記憶装置
US7791941B2 (en) * 2007-10-26 2010-09-07 Micron Technology, Inc. Non-volatile SRAM cell
US7738306B2 (en) 2007-12-07 2010-06-15 Etron Technology, Inc. Method to improve the write speed for memory products
JP5331998B2 (ja) 2008-01-04 2013-10-30 ルネサスエレクトロニクス株式会社 不揮発性半導体記憶装置
TWI399754B (zh) 2008-03-17 2013-06-21 Elpida Memory Inc 具有單端感測放大器之半導體裝置
US7974119B2 (en) * 2008-07-10 2011-07-05 Seagate Technology Llc Transmission gate-based spin-transfer torque memory unit
JP2010061734A (ja) 2008-09-03 2010-03-18 Toshiba Corp 半導体記憶装置
JP2010079974A (ja) * 2008-09-25 2010-04-08 Toshiba Corp 半導体記憶装置
JP5412640B2 (ja) 2008-11-13 2014-02-12 ルネサスエレクトロニクス株式会社 磁気メモリ装置
KR101019893B1 (ko) * 2008-12-23 2011-03-04 주식회사 하이닉스반도체 플로팅 바디 효과를 이용한 자기저항 메모리셀, 이를 포함하는 메모리 소자 및 그 동작 방법
US8587993B2 (en) * 2009-03-02 2013-11-19 Qualcomm Incorporated Reducing source loading effect in spin torque transfer magnetoresisitive random access memory (STT-MRAM)
JP5010650B2 (ja) * 2009-08-11 2012-08-29 株式会社東芝 磁気抵抗メモリ
US8625339B2 (en) 2011-04-11 2014-01-07 Grandis, Inc. Multi-cell per memory-bit circuit and method
US9099181B2 (en) * 2009-08-19 2015-08-04 Grandis, Inc. Non-volatile static ram cell circuit and timing method
JP2011248971A (ja) 2010-05-28 2011-12-08 Elpida Memory Inc 半導体装置
TW201201206A (en) 2010-06-10 2012-01-01 Mosaid Technologies Inc Semiconductor memory device with sense amplifier and bitline isolation
EP2405438B1 (en) * 2010-07-07 2016-04-20 Crocus Technology S.A. Method for writing in a MRAM-based memory device with reduced power consumption
US9275721B2 (en) 2010-07-30 2016-03-01 Taiwan Semiconductor Manufacturing Company, Ltd. Split bit line architecture circuits and methods for memory devices
US9395410B2 (en) * 2011-06-06 2016-07-19 Iii Holdings 1, Llc Integrated circuit with sensing unit and method for using the same
JP2013021108A (ja) * 2011-07-11 2013-01-31 Toshiba Corp 半導体記憶装置およびその製造方法
JP5597169B2 (ja) * 2011-07-28 2014-10-01 株式会社東芝 半導体集積回路、プロセッサ
WO2013043738A1 (en) * 2011-09-19 2013-03-28 The Regents Of The University Of California Body voltage sensing based short pulse reading circuit
JP5862242B2 (ja) * 2011-11-30 2016-02-16 ソニー株式会社 記憶素子、記憶装置
US9196335B2 (en) * 2013-03-14 2015-11-24 Kabushiki Kaisha Toshiba Magnetic memory
US8987846B2 (en) * 2013-03-22 2015-03-24 Yoshinori Kumura Magnetic memory and manufacturing method thereof
JP2014229328A (ja) * 2013-05-21 2014-12-08 富士通株式会社 半導体記憶装置
US10262738B2 (en) * 2013-06-26 2019-04-16 Nec Corporation Content addressable memory cell and content addressable memory
US9607991B2 (en) 2013-09-05 2017-03-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9105572B2 (en) * 2013-09-09 2015-08-11 Hiroyuki Kanaya Magnetic memory and manufacturing method thereof
WO2015041305A1 (ja) 2013-09-20 2015-03-26 国立大学法人東北大学 メモリセル及び記憶装置
KR102131746B1 (ko) * 2013-09-27 2020-07-08 인텔 코포레이션 Stt-mram 사이즈와 쓰기 오류율을 최적화하기 위한 장치 및 방법
KR102101954B1 (ko) * 2013-11-05 2020-05-29 삼성전자주식회사 자기터널접합을 포함하는 자기 기억 소자
US9087579B1 (en) * 2014-01-06 2015-07-21 Qualcomm Incorporated Sense amplifiers employing control circuitry for decoupling resistive memory sense inputs during state sensing to prevent current back injection, and related methods and systems
FR3016465B1 (fr) * 2014-01-10 2017-09-08 Commissariat Energie Atomique Memoire munie de cellules de memoire volatile et non volatile associees
US9869716B2 (en) 2014-02-07 2018-01-16 Semiconductor Energy Laboratory Co., Ltd. Device comprising programmable logic element
CN106463611B (zh) * 2014-03-13 2020-03-27 东芝存储器株式会社 磁阻元件
JP6635670B2 (ja) 2014-04-11 2020-01-29 株式会社半導体エネルギー研究所 半導体装置
US9672886B2 (en) 2014-05-05 2017-06-06 The Regents Of The University Of California Fast and low-power sense amplifier and writing circuit for high-speed MRAM
WO2015170220A1 (en) 2014-05-09 2015-11-12 Semiconductor Energy Laboratory Co., Ltd. Memory device and electronic device
KR102235043B1 (ko) * 2014-06-09 2021-04-05 삼성전자주식회사 반도체 메모리 장치
KR102237735B1 (ko) * 2014-06-16 2021-04-08 삼성전자주식회사 저항성 메모리 장치의 메모리 코어, 이를 포함하는 저항성 메모리 장치 및 저항성 메모리 장치의 데이터 감지 방법
US20160093352A1 (en) * 2014-09-27 2016-03-31 Qualcomm Incorporated Reference voltage generation for sensing resistive memory
KR20170069207A (ko) 2014-10-10 2017-06-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 회로 기판, 및 전자 기기
CN107112049A (zh) * 2014-12-23 2017-08-29 3B技术公司 采用薄膜晶体管的三维集成电路
JP6754579B2 (ja) 2015-02-09 2020-09-16 株式会社半導体エネルギー研究所 半導体装置、記憶装置、電子機器
US9875064B2 (en) * 2015-03-11 2018-01-23 Toshiba Memory Corporation Storage system architecture for improved data management
US9378781B1 (en) 2015-04-09 2016-06-28 Qualcomm Incorporated System, apparatus, and method for sense amplifiers
US9627034B2 (en) 2015-05-15 2017-04-18 Semiconductor Energy Laboratory Co., Ltd. Electronic device
JP6802656B2 (ja) 2015-07-30 2020-12-16 株式会社半導体エネルギー研究所 メモリセルの作製方法及び半導体装置の作製方法
KR102358564B1 (ko) * 2015-09-02 2022-02-04 삼성전자주식회사 단락된 메모리 셀의 가변 저항 소자를 갖는 반도체 메모리 장치
JP6089081B1 (ja) * 2015-09-16 2017-03-01 株式会社東芝 磁気メモリ
US9773537B2 (en) * 2015-10-27 2017-09-26 Nxp Usa, Inc. Sense path circuitry suitable for magnetic tunnel junction memories
US9728259B1 (en) * 2016-03-15 2017-08-08 Qualcomm Technologies, Inc. Non-volatile (NV)-content addressable memory (CAM) (NV-CAM) cells employing differential magnetic tunnel junction (MTJ) sensing for increased sense margin
US10032492B2 (en) 2016-03-18 2018-07-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, driver IC, computer and electronic device
US9734880B1 (en) * 2016-04-01 2017-08-15 Intel Corporation Apparatuses, methods, and systems for stochastic memory circuits using magnetic tunnel junctions
US9640256B1 (en) * 2016-05-26 2017-05-02 Nxp Usa, Inc. Nonvolatile static random access memory (NVSRAM) system having a static random access memory (SRAM) array and a resistive memory array
US9870811B2 (en) * 2016-06-17 2018-01-16 Qualcomm Incorporated Physically unclonable function based on comparison of MTJ resistances
US9966124B2 (en) * 2016-09-02 2018-05-08 Toshiba Memory Corporation Memory device
TWI785299B (zh) * 2016-09-09 2022-12-01 日商鎧俠股份有限公司 記憶裝置
US9966125B2 (en) * 2016-09-15 2018-05-08 Toshiba Memory Corporation Memory device
US10192871B2 (en) 2016-09-23 2019-01-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102519458B1 (ko) * 2016-11-01 2023-04-11 삼성전자주식회사 비휘발성 메모리 장치 및 그것의 동작 방법
JP2018147529A (ja) * 2017-03-02 2018-09-20 ソニーセミコンダクタソリューションズ株式会社 磁気メモリ、半導体装置、電子機器及び磁気メモリの読み出し方法
CN108630266B (zh) * 2017-03-24 2022-10-11 铠侠股份有限公司 存储设备及其控制方法
US10276783B2 (en) * 2017-06-09 2019-04-30 Sandisk Technologies Llc Gate voltage controlled perpendicular spin orbit torque MRAM memory cell
US11205461B2 (en) 2017-06-27 2021-12-21 Semiconductor Energy Laboratory Co., Ltd. Memory device comprising first through fourth transistors
US10102895B1 (en) * 2017-08-25 2018-10-16 Qualcomm Incorporated Back gate biasing magneto-resistive random access memory (MRAM) bit cells to reduce or avoid write operation failures caused by source degeneration
JP6686990B2 (ja) * 2017-09-04 2020-04-22 Tdk株式会社 スピン軌道トルク型磁化反転素子及び磁気メモリ
WO2019048967A1 (ja) 2017-09-06 2019-03-14 株式会社半導体エネルギー研究所 半導体装置、記憶装置、及び電子機器
JP7258764B2 (ja) 2017-10-13 2023-04-17 株式会社半導体エネルギー研究所 記憶装置
US10629271B2 (en) * 2017-12-05 2020-04-21 Intel Corporation Method and system for reducing program disturb degradation in flash memory
US10504587B2 (en) * 2017-12-20 2019-12-10 Intel Corporation Method and system for compensating for floating gate-to-floating gate (fg-fg) interference in flash memory cell read operations
US10855287B2 (en) * 2018-02-20 2020-12-01 United States Of America, As Represented By The Secretary Of The Navy Non-volatile multiple time programmable integrated circuit system with selective conversion to one time programmable or permanent configuration bit programming capabilities and related methods
US10852369B2 (en) * 2019-01-09 2020-12-01 Infineon Technologies Ag Stray field robust xMR sensor using perpendicular anisotropy
JP7441483B2 (ja) * 2019-08-23 2024-03-01 国立大学法人東北大学 磁気メモリ素子及びその製造方法、並びに磁気メモリ
JP2021048240A (ja) * 2019-09-18 2021-03-25 キオクシア株式会社 磁気メモリ
US11031061B2 (en) * 2019-09-27 2021-06-08 Western Digital Technologies, Inc. Write efficiency in magneto-resistive random access memories
KR20220021075A (ko) * 2020-08-12 2022-02-22 삼성전자주식회사 메모리 셀의 크기에 따른 최적의 프로그램 전압을 생성하는 메모리 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186109A (ja) * 2004-12-27 2006-07-13 Toshiba Corp 半導体メモリ
JP2016136737A (ja) * 2010-11-30 2016-07-28 株式会社半導体エネルギー研究所 フォトセンサ
JP2012123875A (ja) * 2010-12-09 2012-06-28 Hitachi Ltd 半導体記憶装置
JP2013016746A (ja) * 2011-07-06 2013-01-24 Renesas Electronics Corp 半導体装置、電子装置、配線基板、半導体装置の製造方法、及び配線基板の製造方法
JP2013242960A (ja) * 2013-07-01 2013-12-05 Hitachi Ltd 半導体装置
JP2015165388A (ja) * 2014-02-07 2015-09-17 株式会社半導体エネルギー研究所 半導体装置
JP2015228493A (ja) * 2014-05-08 2015-12-17 株式会社半導体エネルギー研究所 半導体装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021191734A1 (ja) * 2020-03-27 2021-09-30 株式会社半導体エネルギー研究所 記憶装置、及び電子機器
CN113540147A (zh) * 2020-06-29 2021-10-22 台湾积体电路制造股份有限公司 半导体器件及其制造方法、存储器阵列
WO2023047229A1 (ja) * 2021-09-21 2023-03-30 株式会社半導体エネルギー研究所 半導体装置、記憶装置、及び電子機器
WO2024004126A1 (ja) * 2022-06-30 2024-01-04 Tdk株式会社 磁壁移動素子及び磁気アレイ

Also Published As

Publication number Publication date
US11094360B2 (en) 2021-08-17
US20200279595A1 (en) 2020-09-03
US11922987B2 (en) 2024-03-05
US20210272614A1 (en) 2021-09-02
US20230112113A1 (en) 2023-04-13
JPWO2019073333A1 (ja) 2020-11-19
JP7258764B2 (ja) 2023-04-17
US11532340B2 (en) 2022-12-20

Similar Documents

Publication Publication Date Title
JP7258764B2 (ja) 記憶装置
TWI735647B (zh) 半導體裝置
US11062762B2 (en) Storage device applying a cancel circuit
TW201812767A (zh) 記憶體裝置及其驅動方法、半導體裝置、電子構件以及電子裝置
WO2017158465A1 (ja) 記憶装置
JP7153116B2 (ja) 半導体装置
US11366507B2 (en) Storage device, semiconductor device, electronic component, and electronic device
JP7305005B2 (ja) 記憶装置
JP2017130655A (ja) 半導体装置
TWI724231B (zh) 記憶體裝置及其工作方法、半導體裝置、電子構件以及電子裝置
WO2018220471A1 (ja) 記憶装置及びその動作方法
WO2019111104A1 (ja) 半導体装置、記憶装置、及び表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18866408

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019547802

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18866408

Country of ref document: EP

Kind code of ref document: A1