CN103633077A - 功率模块 - Google Patents

功率模块 Download PDF

Info

Publication number
CN103633077A
CN103633077A CN201310124301.0A CN201310124301A CN103633077A CN 103633077 A CN103633077 A CN 103633077A CN 201310124301 A CN201310124301 A CN 201310124301A CN 103633077 A CN103633077 A CN 103633077A
Authority
CN
China
Prior art keywords
frame portion
mosfet3
mosfet
igbt
power model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310124301.0A
Other languages
English (en)
Other versions
CN103633077B (zh
Inventor
白石卓也
田中智典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN103633077A publication Critical patent/CN103633077A/zh
Application granted granted Critical
Publication of CN103633077B publication Critical patent/CN103633077B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

本发明涉及功率模块。功率模块(1)具备:IGBT(2);MOSFET(3),与IGBT(2)并联连接;引线框(10),具有搭载有IGBT(2)的第一框部(11)和搭载有MOSFET(3)的第二框部(12),并且形成有第一框部(11)位于第一高度、第二框部(12)位于比第一高度高的第二高度的阶梯差(13);以及散热体的绝缘片(30),在引线框(10)中仅配置于第一框部(11)的背面。从而能够调整IGBT与MOSFET的损耗负担并提高成本效率。

Description

功率模块
技术领域
本发明涉及传递模塑类型的IPM(Intelligent Power Module:智能功率模块)等功率模块。
背景技术
在逆变器用途的功率模块中,在并联连接现有的IGBT(Insulated Gate Bipolar Transistor:绝缘栅双极型晶体管)与FWD(Free Wheeling Diode:续流二极管)的结构中,在IGBT的特性上难以降低低电流区的损耗。
为了改善低电流区的损耗,考虑使用MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor:金属氧化物半导体场效应晶体管)代替IGBT,但是在MOSFET中存在如下问题:因为高温、高电流范围的导通电压变高,所以容许电流变低。
为了解决此种问题,正在探讨将大电流区域中的饱和电压低的IGBT与小电流区域中的饱和电压低的MOSFET并联连接的结构(例如参照专利文献1)。
现有技术文献
专利文献
专利文献1:日本特开平4-354156号公报。
发明内容
然而,在专利文献1所记载的结构中,欠缺调整IGBT与MOSFET的损耗负担的观点。因此,存在不能够通过所述调整而最优化功率模块的成本效率的问题。
因此,本发明的目的在于提供一种能够调整IGBT与MOSFET的损耗负担以提高成本效率的功率模块。
本发明的功率模块具备:IGBT;MOSFET,与所述IGBT并联连接;引线框,具有搭载有所述IGBT的第一框部和搭载有所述MOSFET的第二框部,并且形成有所述第一框部位于第一高度、所述第二框部位于比所述第一高度高的第二高度的阶梯差;以及散热体的绝缘片,在所述引线框中仅配置于所述第一框部背面。
根据本发明,由于高电流通电时MOSFET的通电能力比IGBT的通电能力小,故能够增大IGBT侧的损耗负担,减小MOSFET侧的损耗负担,从而MOSFET不需要高散热性。因而,仅在需要高散热性的IGBT的搭载位置即第一框部背面配置绝缘片,在引线框中的MOSFET的搭载位置不需要配置绝缘片,因而能够减小绝缘片的片尺寸。根据上述内容,能够降低功率模块的制造成本。
在引线框中,形成有第一框部位于第一高度、第二框部位于比第一高度高的第二高度的阶梯差,所以能够加长从载置IGBT一侧即散热面到MOSFET的距离,能够确保MOSFET的既定的绝缘性能。另外,因为高电流通电时MOSFET的通电能力比IGBT的通电能力小,所以能够缩小MOSFET的芯片尺寸。由此,能够进一步降低功率模块的制造成本。
附图说明
图1是实施方式1所涉及的功率模块的剖视图;
图2是功率模块的电路图;
图3是实施方式2所涉及的功率模块的剖视图;
图4是实施方式3所涉及的功率模块的剖视图;
图5是比较例所涉及的功率模块的剖视图。
具体实施方式
<实施方式1>
以下使用附图说明本发明的实施方式1。图1是本发明的实施方式1所涉及的功率模块1的剖视图,图2是功率模块1的电路图。如图1所示,功率模块1具备IGBT2、MOSFET3、驱动电路5、引线框10、20、对散热体的绝缘片30、以及模塑树脂6。
引线框10具有与IGBT2以及MOSFET3电连接的内引线15和与内引线15相连的外引线16。内引线15具有位于既定的高度位置(第一高度)的第一框部11和位于比第一框部11的高度位置高的高度位置(第二高度)的第二框部12,从外引线16侧开始以第二框部12、第一框部11的顺序形成。在第一框部11与第二框部12之间形成有阶梯差13。IGBT2搭载于第一框部11,MOSFET3搭载于第二框部12。
另外,绝缘片30仅配置于第一框部11的背面。在此,因为功率模块1在设置于导电性的降温装置(heat sink)(省略图10)上的状态下使用,所以出于将引线框10与降温装置绝缘的目的而配置绝缘片30。
通过加长从功率模块1的散热面即接触并载置于所述降温装置的面到MOSFET3的距离,在MOSFET3中,能够确保对散热面的既定的绝缘性能。因此,能够省略对第二框部12的背面的绝缘片30的配置。
驱动电路5是用于驱动IGBT2和MOSFET3的电路,驱动电路5搭载于引线框20的第三框部21。引线框20具有与驱动电路5电连接的内引线25和与内引线25相连的外引线26。第三框部21形成于内引线25,第三框部21形成于比第一框部11的高度位置高的高度位置。IGBT2、MOSFET3、驱动电路5、绝缘片30和引线框10、20的内引线15、25被模塑树脂6密封。
如图2所示,IGBT2与MOSFET3并联连接。更具体而言,IGBT2的集电极与MOSFET3的漏极连接,IGBT2的发射极与MOSFET3的源极连接。IGBT2的栅极与MOSFET3的栅极连接于驱动电路5的输出端子。此外,二极管4反并联连接于MOSFET3,它是内部寄生二极管4。
在此,在例如重负载驱动时等模块中的最大额定电流流动时等高电流通电时,MOSFET3的通电能力比IGBT2的通电能力小,所以在MOSFET3侧,高电流通电时流动的电流被抑制,过渡性损耗变小。
另外,采用如下结构:MOSFET3的阈值电压设定得比IGBT2的阈值电压高,在开关时的过渡状态下,全部电流流入IGBT2侧。
在作为开关器件而并联使用IGBT2和MOSFET3的结构中,一般将MOSFET3的阈值电压设定得较低,采用始终使IGBT2先关断,之后MOSFET3关断的顺序。
作为此时的效果,能够抑制拖尾电流以降低关断损耗,但是由于在过渡状态下全部电流(IGBT电流+MOSFET电流)必然流入MOSFET3,所以MOSFET3温度上升。
与此相对,在本实施方式中,通过将MOSFET3的阈值电压设定得比IGBT2的阈值电压高,抑制开关时流入MOSFET3的电流,由此抑制MOSFET3的温度上升。在此,IGBT2以及MOSFET3的阈值电压通过制造时的沟道注入的杂质量而设定。
接下来,说明功率模块1的电路动作。当从驱动电路5的输出端子输出的控制信号从低电位(“L”)变为高电位(“H”)而接通时,若对IGBT2以及MOSFET3供给栅极电压,则由于IGBT2的阈值电压较低,故IGBT2先接通,IGBT电流开始流动。
不久,当栅极电压到达MOSFET3的阈值电压时,MOSFET3接通,MOSFET电流开始流动。在MOSFET3接通时,IGBT2从接通开始经过了既定时间,IGBT2成为稳定状态,因此电流大部分流入IGBT2,几乎不流入MOSFET3。
如此,通过将MOSFET3的阈值电压设定得比IGBT2的阈值电压高,能够抑制在接通时流入MOSFET3的电流。由此,能够抑制MOSFET3的温度上升。
另外,在控制信号从“H”变为“L”而关断的情况下,若对IGBT2以及MOSFET3供给的栅极电压开始下降,则由于MOSFET3的阈值电压较高,故MOSFET3先关断,MOSFET电流开始下降。之后,通过栅极电压降低从而IGBT电流开始下降,由于变得低于IGBT2的阈值电压,所以IGBT2关断,IGBT电流停止流动。
如此,通过将MOSFET3的阈值电压设定得比IGBT2的阈值电压高,在关断时MOSFET3先关断,所以全部电流流入此时处于导通状态的IGBT2,电流不流入MOSFET3。由此,能够抑制MOSFET3的温度上升。
接下来,与比较例所涉及的功率模块100对比说明实施方式1所涉及的功率模块1的效果。图5是比较例所涉及的功率模块100的剖视图。此外,在比较例中,对与功率模块1同样的结构要素附以相同附图标记,省略说明。
在比较例所涉及的功率模块100中,引线框10具有第一框部11和第二框部12,IGBT2以及MOSFET3搭载于第一框部11。而且,由于将IGBT2与MOSFET3搭载于第一框部11,故从散热面到IGBT2以及MOSFET3的距离变短。因此,在MOSFET3中为了确保对散热面的既定的绝缘性能,不仅在IGBT2的下侧需要配置绝缘片30,而且在MOSFET3的下侧也需要配置绝缘片30。
与此相对,在实施方式1所涉及的功率模块1中,第二框部12形成于比第一框部11高的高度位置,IGBT2搭载于第一框部11,MOSFET3搭载于第二框部12。因此,由于从散热面到MOSFET3的距离变长,故在MOSFET3中能够确保对散热面的既定的绝缘性能。从而,绝缘片30仅配置于第一框部11的背面即可,不必配置于第二框部12的背面。
如上所述,在实施方式1所涉及的功率模块1中,由于高电流通电时的MOSFET3的通电能力比IGBT2的通电能力小,故能够增大IGBT2侧的损耗负担,减小MOSFET3侧的损耗负担,MOSFET3不需要高散热性。从而,在引线框10中的MOSFET3的搭载位置中不配置绝缘片30,仅在需要高散热的IGBT2的搭载位置即第一框部11的背面配置绝缘片30,所以能够缩小MOSFET3的芯片尺寸。此外,因为还能够减小绝缘片30的片尺寸,所以能够降低功率模块1的制造成本。
另外,在引线框10中,形成有第一框部11位于第一高度、第二框部12位于比第一高度高的第二高度的阶梯差13,所以能够加长从散热面到MOSFET3的距离,能够确保MOSFET3的既定的绝缘性能。
另外,因为高电流通电时的MOSFET3的通电能力比IGBT2的通电能力小,所以能够进一步缩小MOSFET3的芯片尺寸。由此,能够进一步降低功率模块1的制造成本。
另外,由于MOSFET3的导通阈值电压高于IGBT2的导通阈值电压,所以在过负载时的过渡状态下也能够防止大电流流入MOSFET3。由此,降低MOSFET3的开关过渡损耗,并且抑制MOSFET3的温度上升,所以能够提高功率模块1的长期可靠性。通过提高功率模块1的长期可靠性,长期使用成为可能,也关系到能量消耗量的削减。
此外,也可以不将MOSFET3的阈值电压设定得比IGBT2的阈值电压高,作为代替,驱动电路5对IGBT2以及MOSFET3个别地输出控制信号,个别地驱动IGBT2以及MOSFET3。此时,驱动电路5以按IGBT2、MOSFET3的顺序接通,并且按MOSFET3、IGBT2的顺序关断的方式驱动IGBT2和MOSFET3,从而得到与将MOSFET3的阈值电压设定得比IGBT2的阈值电压高时同样的效果。在此,将MOSFET3的阈值电压设定得比IGBT2的阈值电压高的结构和驱动电路5个别地驱动IGBT2以及MOSFET3的结构不是必须的,也能够省略。
另外,作为MOSFET,还可以采用形成于碳化硅(SiC)衬底上的SiC-MOSFET。因为SiC-MOSFET与Si-MOSFET相比导通阈值电压低,所以尤其在关断时,以比采用Si-MOSFET时低的温度关断从而成为低损耗,能够进一步抑制MOSFET的温度上升,能够进一步提高功率模块1的长期可靠性。
<实施方式2>
接下来,说明实施方式2所涉及的功率模块1A。图3是示出本发明的实施方式2所涉及的功率模块1A的剖视图。此外,在实施方式2中,对与在实施方式1中说明的结构要素同样的结构要素附以相同附图标记,省略说明。
在引线框10中从外引线16侧开始以第一框部11、第二框部12的顺序形成,搭载有驱动电路5的第三框部21位于邻接于第二框部12的位置。另外,第三框部21形成于比第一框部11的高度位置高的高度位置(第三高度),例如,第三框部21的高度位置与第二框部12的高度位置为相同高度。因此,与图1所示的实施方式1中的驱动电路5与功率芯片(IGBT2以及MOSFET3)之间的导线31的布线长度相比,实施方式2中的驱动电路5与功率芯片之间的导线31的布线长度较短。
如上所述,在实施方式2所涉及的功率模块1A中,还具备其他引线框20,该其他引线框20具有搭载有驱动电路5的第三框部21,其中,第三框部21形成于比第一高度高的第三高度,并且,在第一框部11以及第二框部12之中,第三框部21邻接于第二框部12,因而能够缩短驱动电路5与功率芯片之间的导线31的布线长度。由此,能够防止模塑树脂6所导致的导线偏移(ワイヤ流れ),能够谋求产品的品质提高。如此,谋求产品的品质提高,也关系到成品率提高。
<实施方式3>
接下来,说明实施方式3所涉及的功率模块1B。图4是本发明的实施方式3所涉及的功率模块1B。此外,在实施方式3中,对与在实施方式1、2中说明的结构要素同样的结构要素附以相同附图标记并省略说明。
在引线框10中,在第一框部11或第二框部12和外引线16之间除了阶梯差13之外还形成有其他阶梯差17。具体而言,在第二框部12与外引线16之间形成阶梯差17,与实施方式1的情况相比,第二框部12的高度位置稍低。因此,与实施方式1的情况相比,从IGBT2到MOSFET3的距离稍微变短,与实施方式1的情况相比热电阻降低。
如上所述,在实施方式3所涉及的功率模块1B中,因为在引线框10中,在第一框部11或第二框部12和外引线16之间除了阶梯差13之外还形成有其他阶梯差17,故能够确保必要的绝缘性,并且由于与不设置阶梯差17的情况相比从IGBT2到MOSFET3的距离稍微变短,能够降低MOSFET3的热电阻。由此,能够抑制MOSFET3的温度上升,进而能够提高功率模块1B的长期可靠性。
此外,本发明在其发明范围内能够自由地组合各实施方式,或者适当地对各实施方式进行变形、省略。

Claims (6)

1. 一种功率模块,其中包括:
IGBT;
MOSFET,与所述IGBT并联连接;
引线框,具有搭载有所述IGBT的第一框部和搭载有所述MOSFET的第二框部,并且形成有所述第一框部位于第一高度、所述第二框部位于比所述第一高度高的第二高度的阶梯差;以及
散热体的绝缘片,在所述引线框中仅配置于所述第一框部背面。
2. 根据权利要求1所述的功率模块,其中还包括:
驱动电路,驱动所述IGBT和所述MOSFET,
所述驱动电路以按所述IGBT、所述MOSFET的顺序接通,并且按所述MOSFET、所述IGBT的顺序关断的方式驱动所述IGBT和所述MOSFET。
3. 根据权利要求1所述的功率模块,其中,所述MOSFET的导通阈电压比所述IGBT的导通阈电压高。
4. 根据权利要求1~3中任一项所述的功率模块,其中,所述MOSFET为SiC-MOSFET。
5. 根据权利要求2所述的功率模块,其中还包括:
其他引线框,具有搭载有所述驱动电路的第三框部,
所述第三框部形成于比所述第一高度高的第三高度,并且,在所述第一、第二框部之中,所述第三框部邻接于所述第二框部。
6. 根据权利要求1所述的功率模块,其中还包括:
模塑树脂,密封所述IGBT、所述MOSFET和所述引线框的内引线,
在所述引线框中,在所述第一、第二框部和外引线之间形成有区别于所述阶梯差的阶梯差。
CN201310124301.0A 2012-08-21 2013-04-11 功率模块 Active CN103633077B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012181982A JP5863599B2 (ja) 2012-08-21 2012-08-21 パワーモジュール
JP2012-181982 2012-08-21

Publications (2)

Publication Number Publication Date
CN103633077A true CN103633077A (zh) 2014-03-12
CN103633077B CN103633077B (zh) 2016-08-03

Family

ID=50147456

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310124301.0A Active CN103633077B (zh) 2012-08-21 2013-04-11 功率模块

Country Status (4)

Country Link
US (1) US8970261B2 (zh)
JP (1) JP5863599B2 (zh)
KR (1) KR101428528B1 (zh)
CN (1) CN103633077B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9603287B1 (en) 2015-10-30 2017-03-21 Industrial Technology Research Institute Integrated power module
CN109637938A (zh) * 2018-11-21 2019-04-16 杰群电子科技(东莞)有限公司 一种功率模组加工方法及功率模组
CN109906510A (zh) * 2016-11-03 2019-06-18 株式会社电装 半导体装置
CN111508953A (zh) * 2019-01-30 2020-08-07 英飞凌科技股份有限公司 晶体管装置以及用于操作晶体管装置的方法
CN111863742A (zh) * 2019-04-26 2020-10-30 三菱电机株式会社 半导体装置
CN111863742B (zh) * 2019-04-26 2024-06-07 三菱电机株式会社 半导体装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4591886B2 (ja) 2004-07-21 2010-12-01 ローム株式会社 半導体装置を用いた電源回路装置
JP2015076442A (ja) * 2013-10-07 2015-04-20 ローム株式会社 パワーモジュールおよびその製造方法
GB201522651D0 (en) * 2015-12-22 2016-02-03 Rolls Royce Controls & Data Services Ltd Solid state power control
JP6634945B2 (ja) 2016-04-19 2020-01-22 株式会社デンソー 半導体モジュール
JP6665655B2 (ja) 2016-04-19 2020-03-13 株式会社デンソー 電力変換装置
JP6862722B2 (ja) * 2016-09-01 2021-04-21 富士電機株式会社 電力変換装置
EP3539215B1 (en) * 2016-11-14 2020-01-22 ABB Schweiz AG Switching of paralleled reverse conducting igbt and wide bandgap switch
JP6840053B2 (ja) * 2017-08-22 2021-03-10 株式会社 日立パワーデバイス 半導体電力変換回路、並びにそれを用いた半導体装置及びモータ駆動装置
US10622274B2 (en) 2017-10-06 2020-04-14 Industrial Technology Research Institute Chip package
JP7180264B2 (ja) * 2018-10-05 2022-11-30 株式会社デンソー 制御装置
DE102019107112B3 (de) * 2019-03-20 2020-07-09 Lisa Dräxlmaier GmbH Schaltvorrichtung, Spannungsversorgungssystem, Verfahren zum Betreiben einer Schaltvorrichtung und Herstellverfahren
DE102021105185A1 (de) * 2021-03-04 2022-09-08 Audi Aktiengesellschaft Umrichter, Kraftfahrzeug und Verfahren zur Steuerung einer Halbbrückenschaltung
DE102021204518A1 (de) 2021-05-05 2022-11-10 Zf Friedrichshafen Ag Schaltungsanordnung für parallel geschaltete Leistungshalbleiter, sowie Elektronikmodul
DE102021208810A1 (de) 2021-08-12 2023-02-16 Zf Friedrichshafen Ag Schaltungsanordnung für parallel geschaltete Leistungshalbleiter, sowie Elektronikmodul

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04354156A (ja) * 1991-05-31 1992-12-08 Fuji Electric Co Ltd 半導体スイッチング装置
US20060113562A1 (en) * 1999-10-01 2006-06-01 Jeun Gi-Young Semiconductor power module having an electrically insulating heat sink and method of manufacturing the same
US20080304300A1 (en) * 2007-06-06 2008-12-11 General Electric Company Power conversion system with galvanically isolated high frequency link
CN102339818A (zh) * 2010-07-15 2012-02-01 台达电子工业股份有限公司 功率模块
CN102569286A (zh) * 2010-12-24 2012-07-11 三星电机株式会社 3d功率模块封装

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3108686B2 (ja) 1999-03-10 2000-11-13 株式会社関西新技術研究所 発電システム
JP3719506B2 (ja) * 2001-12-19 2005-11-24 株式会社デンソー 半導体装置及びその製造方法
KR100369502B1 (ko) 1999-12-14 2003-01-30 앰코 테크놀로지 코리아 주식회사 반도체 패키지용 리드 프레임의 구조
JP4146607B2 (ja) * 2000-07-28 2008-09-10 三菱電機株式会社 パワーモジュール
JP2002199699A (ja) * 2000-12-22 2002-07-12 Fuji Electric Co Ltd 電力変換装置とその駆動方法
JP3979973B2 (ja) * 2003-06-27 2007-09-19 シャープ株式会社 多出力直流安定化電源装置
JP2007305962A (ja) * 2006-05-12 2007-11-22 Honda Motor Co Ltd パワー半導体モジュール
JP4760585B2 (ja) * 2006-07-18 2011-08-31 三菱電機株式会社 電力用半導体装置
KR101418397B1 (ko) * 2007-11-05 2014-07-11 페어차일드코리아반도체 주식회사 반도체 패키지 및 그의 제조방법
KR101448850B1 (ko) * 2008-02-04 2014-10-14 페어차일드코리아반도체 주식회사 반도체 패키지 및 그 제조방법들
JP5062005B2 (ja) 2008-04-03 2012-10-31 三菱電機株式会社 電力半導体装置
JP2009295959A (ja) * 2008-05-09 2009-12-17 Panasonic Corp 半導体装置及びその製造方法
US7741883B2 (en) * 2008-05-21 2010-06-22 Honeywell International Inc. Method of switching and switching device for solid state power controller applications
US8324025B2 (en) * 2010-04-22 2012-12-04 Team Pacific Corporation Power semiconductor device packaging
WO2012011210A1 (ja) * 2010-07-22 2012-01-26 パナソニック株式会社 半導体装置及びその製造方法
US8830711B2 (en) * 2010-08-10 2014-09-09 Virginia Tech Intellectual Properties, Inc. Hybrid switch for resonant power converters
JP5598189B2 (ja) * 2010-09-08 2014-10-01 株式会社デンソー 半導体装置の製造方法
JP5873998B2 (ja) * 2011-02-15 2016-03-01 パナソニックIpマネジメント株式会社 半導体装置及びその製造方法
US20120235710A1 (en) * 2011-03-15 2012-09-20 Infineon Technologies Ag Circuit Arrangement with a MOSFET and an IGBT

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04354156A (ja) * 1991-05-31 1992-12-08 Fuji Electric Co Ltd 半導体スイッチング装置
US20060113562A1 (en) * 1999-10-01 2006-06-01 Jeun Gi-Young Semiconductor power module having an electrically insulating heat sink and method of manufacturing the same
US20080304300A1 (en) * 2007-06-06 2008-12-11 General Electric Company Power conversion system with galvanically isolated high frequency link
CN102339818A (zh) * 2010-07-15 2012-02-01 台达电子工业股份有限公司 功率模块
CN102569286A (zh) * 2010-12-24 2012-07-11 三星电机株式会社 3d功率模块封装

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9603287B1 (en) 2015-10-30 2017-03-21 Industrial Technology Research Institute Integrated power module
CN109906510A (zh) * 2016-11-03 2019-06-18 株式会社电装 半导体装置
CN109637938A (zh) * 2018-11-21 2019-04-16 杰群电子科技(东莞)有限公司 一种功率模组加工方法及功率模组
CN111508953A (zh) * 2019-01-30 2020-08-07 英飞凌科技股份有限公司 晶体管装置以及用于操作晶体管装置的方法
CN111863742A (zh) * 2019-04-26 2020-10-30 三菱电机株式会社 半导体装置
JP2020181917A (ja) * 2019-04-26 2020-11-05 三菱電機株式会社 半導体装置
JP7134131B2 (ja) 2019-04-26 2022-09-09 三菱電機株式会社 半導体装置
CN111863742B (zh) * 2019-04-26 2024-06-07 三菱电机株式会社 半导体装置

Also Published As

Publication number Publication date
JP5863599B2 (ja) 2016-02-16
JP2014041852A (ja) 2014-03-06
US20140055173A1 (en) 2014-02-27
CN103633077B (zh) 2016-08-03
KR101428528B1 (ko) 2014-08-11
KR20140024798A (ko) 2014-03-03
US8970261B2 (en) 2015-03-03

Similar Documents

Publication Publication Date Title
CN103633077A (zh) 功率模块
US8351231B2 (en) Power conversion device
US20170141677A1 (en) Switching Device for Power Conversion and Power Conversion Device
JP6583119B2 (ja) 電力変換装置
KR101428527B1 (ko) 전력용 반도체장치
JP5267616B2 (ja) 駆動制御装置
Treu et al. Strategic considerations for unipolar SiC switch options: JFET vs. MOSFET
US20030107905A1 (en) Load drive circuit using flywheel diode
CN111418071B (zh) 半导体装置以及功率变换装置
KR101613442B1 (ko) 절연 게이트형 바이폴라 트랜지스터
US9252137B2 (en) Semiconductor substrate and semiconductor chip
US9532489B2 (en) Power conversion device
JP5534076B2 (ja) 駆動制御装置
JP7078619B2 (ja) 並列逆導通igbtおよびワイドバンドギャップスイッチのスイッチング
US11515868B2 (en) Electronic circuit and semiconductor module
JP6884186B2 (ja) 双方向スイッチ
WO2016103431A1 (ja) 半導体モジュールおよびそれを搭載した電力変換装置
JP7044049B2 (ja) 半導体装置
EP3012977A1 (en) Method for switching a semiconductor module, semiconductor module and half-bridge
JP6608252B2 (ja) パワー半導体モジュールおよび電力変換装置
KR20230095546A (ko) 전력반도체모듈 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant