CN102597337A - SiC 单晶晶片及其制造方法 - Google Patents

SiC 单晶晶片及其制造方法 Download PDF

Info

Publication number
CN102597337A
CN102597337A CN2010800489427A CN201080048942A CN102597337A CN 102597337 A CN102597337 A CN 102597337A CN 2010800489427 A CN2010800489427 A CN 2010800489427A CN 201080048942 A CN201080048942 A CN 201080048942A CN 102597337 A CN102597337 A CN 102597337A
Authority
CN
China
Prior art keywords
sic
crystal
wafer
sic single
crystal wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN2010800489427A
Other languages
English (en)
Inventor
楠一彦
龟井一人
矢代将齐
小池淳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Publication of CN102597337A publication Critical patent/CN102597337A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • C30B19/04Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux the solvent being a component of the crystal composition
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/06Reaction chambers; Boats for supporting the melt; Substrate holders
    • C30B19/062Vertical dipping system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/21Circular sheet or circular blank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Abstract

本发明涉及能够生长晶片来源的缺陷得以抑制的优质外延膜的SiC单晶晶片,该SiC单晶晶片的表面变质层的厚度为50nm以下,SiC单晶部分中的氧含量为1.0×1017原子/cm3以下。该SiC单晶晶片可由高纯度SiC块状单晶制作,该高纯度SiC块状单晶通过使用氧含量100ppm以下的原料和氧浓度100ppm以下的非氧化性气氛的熔液生长法获得。

Description

SiC 单晶晶片及其制造方法
技术领域
本发明涉及碳化硅(SiC)单晶晶片及其制造方法,该单晶晶片预期可作为高耐压和低损失半导体器件材料或在高温或辐射线环境下等使用的耐环境用半导体器件材料利用。更具体而言,本发明涉及可实现高可靠性和高生产率SiC半导体器件的SiC单晶晶片及其制造方法。
背景技术
碳化硅(SiC)是热和化学稳定的化合物半导体中的一种。SiC与硅(Si)相比具有带隙大大约3倍、绝缘破坏电压大大约10倍、电子饱和速度大大约2倍、热传导率大大约3倍这样的物性特征。由于这种优异的特征,SiC预期可作为打破Si器件的物性极限的功率器件、高温操作的耐环境器件这样的电子器件材料应用。
另一方面,在光器件中进行了以短波长化为目标的氮化物系材料(GaN、AlN)的开发。SiC与其他化合物半导体材料相比,相对于氮化物系材料的晶格失配(lattice mismatching)格外小,因此,也作为氮化物系材料的外延生长用基板材料受到关注。
因此,寻求可在器件、基板中使用的优质SiC单晶晶片及其高效的制造方法。为此,需要制造可用于制作晶片的优质SiC块状单晶(单晶锭,single crystal ingot)。
<SiC块状单晶的制造>
SiC单晶晶片可通过对由SiC块状单晶经过切片(slicing)切出的晶片实施研磨(lapping,研磨成均一厚度)、抛光(polishing,镜面研磨)等加工来制作。这些加工本身可通过与Si单晶晶片的制作同样的工序来实施,这是本领域技术人员所公知的。
作为用于制作SiC单晶晶片的SiC块状单晶的制造方法,已知有升华再结晶法和熔液生长法。
升华再结晶法目前是市售的SiC单晶晶片的主要制造方法。在该方法中,使原料SiC粉末在石墨制坩埚等坩埚内在2200~2500℃的高温下升华,使SiC的单晶在该坩埚内的低温部配置的由SiC单晶构成的晶种(seed)上再结晶。
用升华再结晶法生长的SiC单晶所具有的问题是,其包括许多从晶种继承的位错、微管缺陷,而且存在据认为在晶体生长中产生的许多位错。据认为,在晶体生长中新产生位错的原因有以下几点:(1)升华再结晶法基本上在坩埚内的封闭系统内进行,因此,通过SiC原料升华供给的升华气体的成分在晶体生长中变动。(2)反应在固相和气相下进行,因此在生长环境中存在大的温度梯度,结果,在晶体中产生大的热应力。(3)随着晶体生长,生长界面在坩埚内移动,因此,温度环境、作为原料的升华气体浓度随时间变化。
由于随着生长进行,上述的晶体生长条件的变动导致新产生缺陷,因而升华再结晶法极难获得品质大幅超出晶种的晶体。此外,在升华再结晶法中,作为原料的SiC粉末、坩埚难以实现高纯度化,因此,再结晶得到的SiC单晶中不可避免地混入了硼、氮等杂质元素。这些杂质具有诱发SiC晶体内的位错的产生的可能,而且,在器件制作时难以以良好的控制获得所必需的低掺杂层。
在熔液生长法中,使碳(C)熔融在Si或Si合金的熔体中,制备以该熔体为溶剂的SiC熔液。C的熔解以使得熔液中的SiC与固相SiC能够达到热力学平衡状态(即,熔液中的SiC浓度达到饱和浓度)的方式进行。使SiC晶种与该SiC熔液(液相)接触,通过使熔液至少在晶种附近为过冷却状态,从而产生SiC的过饱和状态,使SiC单晶在晶种上生长。作为产生过饱和状态的方法,设置温度梯度使得晶种附近的熔体温度低于其他部分的熔体温度的所谓温度差法是常用的。
与升华再结晶法相比,属于液相生长的熔液生长法可以使生长温度降低500℃~1000℃,因此温度控制性优异。因此,可以极力地减小晶体中的热应力,可以抑制位错的产生。进而,为接近热力学平衡的状态下的晶体生长,可以实质上消除晶体生长中熔液组成等因素的变动。结果,可以基本上完全消除晶体生长中新产生的位错,与升华再结晶法相比,位错、微管缺陷显著减少,可以制造优质的SiC块状单晶。
<SiC单晶外延晶片的制造>
为了使用由用上述升华再结晶法或熔液生长法制造的SiC块状单晶(单晶锭)制作的Si单晶晶片(也称为块状晶片)来制作SiC器件,必要的是,以该SiC单晶晶片为基板,在其表面上形成杂质浓度和厚度被精密地控制的低掺杂的SiC单晶外延膜或以GaN等氮化物半导体为首的III-V族化合物半导体的单晶外延膜。这样形成了外延膜的晶片被称为外延晶片。
作为用于制作该外延晶片的SiC外延膜的成膜方法,已知有化学气相沉积法(Chemical Vapor Deposition:CVD)法和液相外延法(Liquid Phase Epitaxy:LPE)。CVD法是使作为SiC的原料气体的硅烷系气体与烃系气体在基板上热分解,在基板上沉积SiC的薄膜的方法。LPE法是与上述熔液生长法基本相同的方法。即,使用使C熔解在Si金属或Si与一种以上的金属的合金的熔体中而获得的SiC熔液作为液相,使该熔液与基板接触,使至少基板附近的熔液的SiC浓度达到过饱和状态,在基板上生长SiC的外延膜。LPE法是接近热力学平衡状态的晶体生长,可以减小晶体缺陷密度。
作为外延生长的基板使用的SiC单晶晶片已知在其表层上存在良好的SiC单晶结构发生结构变化而形成的表面变质层。该表面变质层是包含自然氧化膜、加工变质层的层。自然氧化膜是在大气中在SiC单晶表层上形成的氧化膜。另一方面,加工变质层是在由块状单晶制作SiC单晶晶片的加工工序中引入的晶体结构的损伤层。
在存在这种表面变质层的SiC单晶晶片上生长外延膜时,即使外延膜的成膜方法是上述任一方法,也会导致所形成的外延膜的膜质、特性劣化。因此,在外延生长之前去除SiC单晶晶片的表层。作为该去除法,已知有通过去除氧化产生的表面损伤层和此后去除氧化膜来进行的方法。然而,难以在不产生损伤的情况下去除氧化膜。
下述专利文献1(日本特开平6-188163号公报)中公开了一种SiC单晶基板,其利用干式蚀刻法去除了SiC单晶晶片的表面加工变质层。通过蚀刻深度200nm到400nm的反应性离子蚀刻(RIE),可均一地去除在晶片表层上散在的变质部分。另一方面,蚀刻深度超过400nm时,据报告晶片表面变粗糙。
专利文献2(日本特开平9-183700号公报)中公开了一种去除晶片上散在的深的加工变质层的方法,该方法不会使基板的表面粗糙,且能保持蚀刻前的平坦性。该方法包括:利用离子化非活性气体蚀刻晶片的表面,然后利用反应性气体去除由此新引入的离子照射损伤层。然而,在该方法中,需要多次蚀刻工序,效率很差。
非专利文献1[Jpn.J.Appl.Phys.,40,3315(2001)]中披露,在利用CVD法的外延生长之前,原位(in-situ,即在外延生长装置内)利用H2气体进行SiC单晶晶片的蚀刻,由此去除晶片表层。通过CVD法成膜外延膜时,可以在CVD装置内进行H2蚀刻,因此很方便,目前作为去除SiC晶片的表面变质层的方法被广泛采用。然而,H2蚀刻难以转用到CVD法以外的方法(例如LPE法)或装置上。另外,已知的是,进行外延生长时产生的表面缺陷密度根据H2蚀刻条件而变化很大,即使最优化蚀刻条件,在外延膜上也不可避免地会产生表面缺陷。
实际上,即使通过以往的去除处理法去除如上所述的SiC单晶晶片的表面变质层之后进行外延膜的成膜,外延膜质量降低的主要原因仍保留。因此,在由SiC单晶晶片制造半导体器件时导致生产能力(生产率)降低。从提高生产能力的观点考虑,强烈期望确定外延膜质量降低的主要原因并消除它们。
现有技术文献
专利文献
专利文献1:日本特开平6-188163号公报
专利文献2:日本特开平9-183700号公报
非专利文献
非专利文献1:Jpn.J.Appl.Phys.,40,3315(2001)
发明内容
本发明的主要目的是提供可获得高可靠性和高生产率的SiC半导体器件的Si单晶晶片及其制造方法,其通过确定在SiC单晶晶片上进行外延生长时由SiC单晶晶片引起的外延生长膜的质量降低的主要原因并消除它们而获得。
本发明提供一种SiC单晶晶片,其特征在于,其是在表面上具有至少含有Si、C和O(氧)的非单晶结构的变质层的SiC单晶晶片,所述变质层的厚度为50nm以下,且SiC单晶部分中的氧含量为1.0×1017原子/cm3以下。
本发明人等为了改善SiC单晶晶片上的外延膜的质量降低而进行了研究。具体而言,不仅关注到以往研究的作为SiC单晶晶片的前处理的蚀刻方法和蚀刻条件,而且还关注SiC单晶晶片本身,即材料方面,尤其,详细调查了SiC单晶晶片的极表层的微细结构分析和SiC单晶晶片的杂质元素含量、位错密度分布等,并且研究了它们与晶片上成膜的外延膜的特性的关系。
结果查明,用以往的制造方法获得的、作为外延生长膜生长用基板的SiC单晶晶片的表面上,即使在实施了上述蚀刻等表面处理的情况下,也存在至少含有Si、C和O且晶体结构与SiC单晶结构不同的变质层(以下称为表面变质层)。对该表面变质层进一步调查,结果弄清楚了以下(1)和(2)两点。
(1)在通常市售的通过升华再结晶法制作的SiC单晶晶片中,由自然氧化膜和加工变质层构成、至少含有Si、C和O且晶体结构与SiC单晶结构不同的表面变质层的厚度是在60~300nm左右的范围内,且根据晶片而各有不同。而且,不论SiC单晶晶片的表面精加工是利用机械研磨,还是利用CMP(化学机械抛光,Chemical Mechanical Polishing)研磨,该表面变质层的厚度和厚度不均没有大的差异。
照此,由于表面变质层的厚度根据晶片而偏差很大,按一律确定的表层深度实施蚀刻时,表面变质层的残留程度根据晶片而不同。即,表面变质层的厚度较浅时,表面变质层对外延膜质量的劣化影响小,而表面变质层的厚度比蚀刻深度深时,由于表面变质层残留,导致其上生长的外延生长膜的质量降低。
此外,本发明人等通过现有技术文献中公开的干式蚀刻方法等在非原位(ex-situ,外延生长装置的外部)蚀刻去除表面变质层的情况下,蚀刻后的晶片暴露于大气中时,确认表面变质层迅速地再形成。
(2)迄今尝试了在外延膜生长前原位去除表面变质层。在外延膜生长利用CVD法的情况下,该去除如在非专利文献1中所记载的那样可通过原位氢蚀刻来进行,在利用LPE法的情况下,可以通过回熔(back melting;在生长前,使SiC晶片与碳为不饱和状态的液相接触,使晶片表面在液相中熔解)来进行。然而,可以看出,在这些去除方法中,含有Si、C和O的表面变质层的厚度深时,其一部分残留。确认其残留程度的偏差导致了此后晶片上生长的外延膜的特性偏差。据认为,由于表面变质层具有与SiC单晶结构不同的结构,因此,该表面变质层在晶片表面上散在残留时,其上生长的外延膜内产生缺陷,导致外延膜的特性降低。
据认为,在外延生长之前原位彻底地去除表面变质层、使良好的SiC晶体结构在整个晶片表面上露出是用于防止外延膜特性降低的有效手段。然而,这样做的话,考虑到晶片内的表面变质层的厚度的不均,需要进行至少达到数百纳米以上的深度的蚀刻。实施这种深的蚀刻时,诱发了晶片表面的粗糙,以该表面粗糙为起因,反而,外延膜的特性有可能劣化。
根据上述认识,作为本质性解决策略,本发明人研究了在去除表面变质层之前的状态下,一开始就将表面变质层的厚度可靠地控制在较薄的厚度的SiC单晶晶片的制作方法。
结果发现,SiC单晶晶片的表面变质层的厚度与晶片的除表面变质层以外的SiC单晶部分中含有的杂质氧浓度相关,该单晶部分的杂质氧量减低至1.0×1017原子/cm3以下时,上述表面变质层的厚度变成50nm以下,与以往的晶片中存在的表面变质层的厚度相比,可以使表面变质层的厚度显著变薄。
关于表面变质层(如上所述包括加工变质层和自然氧化膜)的厚度由于SiC单晶部分的氧浓度的降低而变薄的机制没有弄清楚,但可推测如下。首先,对于加工变质层(损伤层),由于氧浓度降低,SiC单晶的耐加工性提高,因此,加工变质层的厚度减低。另一方面,自然氧化膜据推测是由于SiC单晶部分的氧的表面偏析和气氛中的氧导致的自然氧化的复合效果而形成的。SiC单晶内部的杂质氧浓度减低时,在表面偏析的氧量减低,因此,自然氧化膜的厚度减低。
SiC单晶晶片的表面变质层的厚度达到50nm以下时,在利用CVD、LPE进行外延成膜之前的表层去除工序中,通过以达到50nm深度的方法进行原位蚀刻,能可靠地抑制表面粗糙的发生和表面变质层的再形成。结果,可以在SiC单晶晶片的表面上生长优质的外延膜,进而实现高可靠性和高生产率的SiC半导体器件。
表面变质层的晶体结构与SiC单晶部分不同。由于该表面变质层含有由于加工而使晶体结构受到损伤的加工变质层和自然氧化膜,因此,可以通过微细晶体结构分析、氧含量的分析(自然氧化膜的氧含量高于单晶部分)来鉴定。表面变质层的厚度例如可以由截面TEM(透射型电子显微镜)获得的表面TEM像来求出。此外,可以并用GDMS(辉光放电质谱分析)、SIMS(二次离子质谱法)等可分析表面或厚度方向的元素分析。根据SIMS,还可求出表面变质层下的SiC单晶部分的氧含量。
在优选实施方式中,上述表面变质层的厚度为30nm以下,且除上述表面变质层以外的单晶部分的氧含量为5×1016原子/cm3以下。晶体内部的氧含量为5×1016原子/cm3以下时,可以实现表面变质层的进一步薄层化,可以将表面变质层的厚度抑制到30nm以下。结果,可以简化利用CVD或LPE的生长的前处理的表层去除工序。
更优选地,上述表面变质层的厚度为10nm以下。由于在目前的SiC晶体中的超微量杂质分析技术中,氧的检测下限为5×1016原子/cm3,因此,关于SiC单晶部分的氧含量下降至什么值,准确数值是不明确的。然而,根据表面变质层的厚度测定可知,可以薄层化至10nm以下的厚度。
本发明的SiC单晶晶片的口径(caliber)优选为2英寸以上。SiC单晶的口径只要是可制作半导体器件的大小即可,对其没有特别限制。然而,为了能够由一件晶片有效地制作器件,期望晶片的口径为2英寸以上,考虑到现有Si、GaAs半导体用的半导体制造装置的转用,更优选为口径4英寸以上。
SiC公知为呈现多晶型(多型,polytype)的物质。多晶型是指,可采取化学计量组成相同而原子堆叠方式仅仅在c轴方向上不同的多种晶体结构的现象。SiC的多晶型已知有几十种,作为代表性多晶型,有6H型(以6个分子为1个周期的六方晶系)、4H型(以4个分子为1个周期的六方晶系)、3C型(以3个分子为1个周期的立方晶系)等。在功率器件中,在大功率和中功率用途中优选为4H-SiC,在中功率和小功率用途中优选为3C-SiC。另外,作为氮化物系材料(GaN、AlN)的外延生长用的晶片材料,6H-SiC受到关注。本发明的SiC单晶的多晶型优选为3C-SiC、4H-SiC或6H-SiC。SiC单晶基本上由单一的多晶型构成,如本领域技术人员所公知的那样,SiC单晶有时包含轻微位错、亚晶界、不同多晶型的混入。
根据本发明的另一个方面,提供了一种SiC单晶晶片,其特征在于,其为作为SiC单晶外延膜生长基板使用的SiC单晶晶片,在用于生长外延膜的面上在表面不具有非单晶结构的变质层,且氧含量为1.0×1017原子/cm3以下。
根据本发明的又一个方面,提供了一种SiC单晶晶片,其特征在于,其为作为SiC单晶外延膜生长基板使用的SiC单晶晶片,其由从上述SiC单晶晶片的用于生长外延膜的面除去了上述变质层的晶片构成。表面变质层优选基本上被完全去除,但允许其一部分(例如厚度在30%以内,优选10%以内)残留。如上所述,本发明的蚀刻单晶晶片的表面变质层的厚度为50nm以内,优选为30nm以内,更优选为10nm以内,因此,比较容易通过蚀刻等完全可靠地去除表面变质层,即使这样做,也很少使表面变粗糙。以下描述表面变质层的去除方法。
本发明还提供了SiC单晶外延晶片以及使用该SiC单晶外延晶片制作的半导体器件,该SiC单晶外延晶片由去除了表面变质层的SiC单晶晶片所形成的基板和在该去除面上生长的外延膜构成。外延膜的生长方法可以是CVD法、LPE法或其他方法,对其没有特别限制。
作为外延膜,可列举出SiC单晶,尤其低掺杂SiC单晶(n型或p型)(即,同质外延膜(homoepitaxial film))和各种III-V族化合物半导体,尤其氮化物半导体的单晶(即,异质外延膜(heteroepitaxial film))。还可以生长互不相同的2层以上的外延膜。
由外延膜为SiC单晶的外延晶片可制作利用SiC自身的半导体特性的半导体器件。或者,还可以以该外延晶片为基板异质外延生长例如下述那样的不同种的化合物半导体膜。外延膜由低掺杂SiC单晶构成时,作为掺杂剂,在n型的情况下,可以使用N,在p型的情况下,可以使用B、Al、Ga等。
III-V族氮化物半导体典型地是含有B、Al、Ga或In作为III族元素、含有N作为V族元素的化合物半导体的一种,有氮化硼(BN)、氮化铝(AlN)、氮化镓(GaN)、氮化铟(InN)。在这些当中,除BN以外的AlN、GaN、InN在室温和大气压下的稳定晶体结构为六方晶纤锌矿型,其能带结构为直接跃迁型(directenergy-gap type)。此外,室温下的带隙能量分别为6.2eV、3.4eV、~0.8eV。另外,还可以制作它们的混晶(通式:AlxGayIn1-x-yN),其带隙能量从~0.8eV到6.2eV。因此,该混晶预期可应用于涵盖从近红外到远紫外的广泛范围的发光器件等,一部分已经被广泛利用。
由本发明的SiC单晶外延晶片制作半导体器件的方法是本领域技术人员公知的,在本发明中不是特别限制的。如上所述,外延膜为SiC时,预期可应用于功率器件、电子器件,另外,为III-V族氮化物半导体时,预期可应用于光器件。
构成本发明的SiC单晶晶片的原材料的SiC块状单晶可通过熔液生长法即包括以下工序的方法来制造:将由“Si”或“Si和M(M为除Si以外的一种以上的金属)”构成的原料熔融,使C熔融在所得熔体中,制备可与SiC化合物达成热力学平衡状态的液相的工序,使晶种与上述液相接触,使上述液相的至少上述晶种周边部分达到过饱和状态,在上述晶种上生长SiC单晶的工序。此时,通过(1)将熔融前的上述原料中的氧含量设定为100ppm以下,且(2)将晶体生长中的上述液相的周围气氛中的氧浓度设定为100ppm以下,可以获得表面变质层的厚度和除该变质层以外的SiC单晶部分的氧含量均在本发明规定的范围内的SiC单晶晶片。
原料由Si和至少一种金属M构成时,将各原料的氧含量乘以混合比例得到的平均值作为原料的氧含量。周围气氛的氧浓度可以通过将装置内的气体引出到炉外、用分析装置测定气体中的氧浓度来求出。还可以将气体分析装置引入到装置的气体排出管线内,进行管线内测定。由于有由装置内的材料产生氧的可能性,因此,用流入到装置内的气体中的氧浓度不能准确测定装置内的气氛气体中的氧浓度。在氧浓度经时变化时,可以采取单晶生长中的气氛气体中的氧浓度的平均值,允许瞬间氧浓度超过100ppm。
根据对SiC单晶中含有的杂质氧的混入源详细研究的结果,作为氧混入源,原料的Si或Si与一种以上的金属元素M中的杂质氧以及上述原料熔融形成液相时的周围气氛中存在的杂质氧为支配性的。因此判明,将这些杂质氧量分别限定在100ppm以下时,能够将所得SiC单晶(不包括表面变质层在内)的杂质氧含量抑制在1.0×1017原子/cm3以下。由此,可以制造表面变质层的厚度为50nm以下的SiC单晶晶片。
优选的是,用于熔融的原料通过化学蚀刻或在晶体生长炉内在低于熔点的温度下(即,不使原料熔融)在高真空下(<1×10-2Pa)进行热处理,去除原料表面存在的氧化膜之后熔融。熔融原料时的气氛优选是氩气、氦气等惰性气体。用于熔融原料的温度在Si的情况下可以为熔点1414℃以上,如果是Si-M的合金体系,根据所选择的金属M及其组成,可以变动很大,为900℃~2000℃以上,为了在有实效的成长速度下稳定地生长SiC单晶,更优选为1600~1900℃的温度范围。
原料的杂质氧含量或气氛内的任何杂质氧浓度为1ppm以下时,可以将SiC单晶的杂质氧含量减低至5×1016原子/cm3以下,从而可获得表面变质层的厚度为30nm以下的SiC单晶晶片。另外,将原料与气氛二者的氧量设定为1ppm以下时,可以进一步减低杂质氧量,可以制造表面变质层非常薄为10nm以下的SiC单晶晶片。
以这样获得的表面变质层的厚度较薄的SiC单晶晶片为基板,在其表面上成膜外延膜时,首先,从用于生长外延膜的基板的表面上去除表面变质层。由于表面变质层薄,因此,如果去除最大50nm的厚度,可获得完全去除了表面变质层的表面,因此,通过在其上进行外延生长,可以稳定地成膜良好质量的外延膜。
这样,通过使用本发明的SiC单晶晶片,能够进行优质的外延生长,因此,可实现高可靠性和高生产率的SiC半导体器件。此外还可看出,本发明的SiC单晶晶片具有下述的当初没有想到的意料之外的效果。
承担连接半导体器件主体与晶片上形成的各种布线的作用的是欧姆接触(Ohmic Contact)。通常,欧姆接触是半导体器件中不可或缺的存在。在立式功率器件中的肖特基势垒二极管(Schottky Barrier diode,SBD)等中,用于欧姆接触的阴极接触区域、漏极接触(drain contact)区域在晶片的背面形成。
在欧姆接触中产生的电阻增大了半导体器件的热损失,使器件特性劣化,因此,要求将该电阻减低至对于器件的固有电阻而言能忽视的水平。接触电阻产生的主要原因是在电极/SiC半导体界面上存在的肖特基势垒。这是本质性要因,在SiC之类的宽带隙半导体中形成低电阻的接触的难度很高。
迄今提出的与SiC半导体形成欧姆接触的形成法是如下方法:在SiC单晶的高浓度掺杂区域上,在n型的情况下蒸镀Ni、Ti、Co等,在p型的情况下蒸镀Al、B等金属材料,然后进行1000℃左右的热处理,从而降低所生成的反应层与SiC之间的电阻。以往,在接触形成之前有必要使优质半导体结构在表面上露出,因此,在SiC半导体表面上实施各种前处理(参照SiliconCarbide Recent Major Advances,W.J.Choyke et.al Eds.第653页)。这是因为,万一在表层上存在绝缘性的异物时,其成为接触电阻,不能形成良好的欧姆接触。即,在没有通过前处理去除表面变质层的面上(也没有形成外延膜)直接形成欧姆接触的情况下(例如在立式功率器件的SBD的背面上形成欧姆接触之类的情况下),迄今难以形成良好的欧姆接触。
对此,本发明的SiC单晶晶片的表面变质层的厚度低于50nm,除表面变质层以外的单晶区域的氧含量为1.0×1017原子/cm3以下。可以看出,在以该SiC单晶晶片为基板的外延生长晶片中,即使是例如如晶片背面那样的没有实施过特殊前处理、没有去除表面变质层的面,也能形成良好的欧姆接触。
通过截面TEM详细研究获得了良好欧姆接触特性的SiC晶片与作为接触材料的金属的界面时,在晶片表层部上没有见到表面变质层,另外,用TEM-EDX也没有检测到氧。考虑这是因为,表面氧化膜被作为接触材料的金属有效地还原,氧以原子态扩散到接触材料中。
另一方面,在以往的具有超过50nm的厚表面变质层的晶片中,如上所述,如果不进行晶片的前处理就不能获得良好的欧姆特性。通过使用本发明的SiC晶片,可以简化在背面上形成欧姆接触时的表面前处理工序,可以有效地制作SiC半导体器件,导致本领域技术人员所意想不到的显著效果。
以本发明的SiC单晶晶片为基板,在其表面上生长外延膜时,不容易发生以作为基板的SiC单晶晶片为起因的外延生长膜的质量劣化。结果,可以制作高可靠性和高生产率的SiC半导体器件或III-V族化合物半导体器件。总之,在晶片背面上形成欧姆接触时,不需要特别的表面前处理,可以简化欧姆接触形成工序。
附图说明
图1为可用于制造SiC单晶的单晶制造装置的示意性截面图。
图2(a)所示为在实施例1中制作的SiC单晶晶片的GDMS深度分布图,图2(b)所示为实施例1中制作的SiC单晶晶片的截面TEM像。
图3所示为比较例2中制作的SiC单晶晶片表层的截面TEM像。
附图标记说明
1:熔体,2:坩埚,3:晶种轴,4:晶种,5:坩埚盖,6:绝热材料,7:高频线圈,8:水冷室,9:气体导入口,10:气体排气口,11:闸阀,12:预备室,13:气体导入口,14:气体排气口。
具体实施方式
首先说明通过熔液生长法制造构成本发明的SiC单晶晶片的原材料的SiC单晶(块状单晶)的情况的一个例子,该SiC单晶的特征在于,含有Si、C和O的非单晶结构的表面变质层的厚度为50nm以下,且除表面变质层以外的单晶区域的氧含量为1.0×1017原子/cm3以下。
图1中示意性地示出了用于制造该SiC单晶的制造装置。图1的单晶制造装置具有收容熔体1的坩埚2,在可升降的晶种轴(seed shaft)3的前端保持的SiC单晶4与熔体1接触。坩埚2与晶种轴3可以互相独立地旋转。
坩埚2通过晶种轴3所贯通的坩埚盖5封闭。为了保温,坩埚2的外周用绝热材料6包围。绝热材料6的外周配置有用于感应加热坩埚和熔体的高频线圈7。为了利用温度差法进行晶体生长,通过调整高频线圈7的卷绕数、间隔、与坩埚2的相对位置关系,在熔体1上设置上下方向的温度差,可以将与晶种4接触的熔体的液面附近的温度设定为比下部更低。
由于这些坩埚2、绝热材料6、高频线圈7变为高温,因此配置在水冷室8的内部。为了调整制造装置内的气氛而在水冷室8设有气体导入口9和气体排气口10。虽然未图示,可以穿过高频线圈的间隙,设置贯通绝热材料6的多个高温计(pyrometer),测定坩埚2的多个高度地点的侧面温度。
在水冷室9的上部配置有能够用闸阀11隔开的预备室12。该预备室也进行水冷。该预备室具有与水冷室9独立的气体导入口13和气体排气口14。利用该预备室12,可以将捕获杂质气体的吸收剂(getter,未图示)或收容含有Si的原料的坩埚2导入水冷室9中,而不会使室9内的气氛暴露于大气气氛。
熔体1可通过将由仅仅Si构成或由Si和其他一种以上的金属M的混合物构成的原料熔融,使C熔解在所得熔体中来制备。因此,该熔体含有Si、根据情况的金属M,还含有C。该熔体是以熔融的Si或Si和M为溶剂的SiC的熔液。熔体中的C的含量使得熔体的SiC浓度与固相SiC达到热力学平衡状态(换而言之,饱和浓度)附近。
如上所述,作为熔体原料的Si和根据情况使用的金属M使用氧含量为100ppm以下的原料。即使使用高纯度的原料,在Si或金属M的原料表面上也存在自然氧化产生的氧化膜,如果不去除该氧化膜,原料的氧浓度有时超过100ppm。
因此,优选的是,将原料装入到单晶制造装置内之后,首先通过预先在高真空下(<1×10-2Pa)且低于原料熔点的温度下进行热处理,去除原料表面的自然氧化膜之后进行熔融。取而代之,还可以事先通过化学蚀刻去除原料的表面氧化膜,之后立即将原料熔融,但在坩埚内去除氧化膜的方法简便,因此优选。利用化学蚀刻去除表面氧化膜的方法根据表面上形成的金属氧化膜的种类使用适于其的蚀刻液来实施。例如,如果是Si氧化膜,可以使用氢氟酸来实施。
金属M的种类只要能形成与SiC(固相)达到热力学平衡状态的液相(SiC熔液)就没有特别限制。优选的是与熔体为单独的Si的情况相比能增高SiC单晶生长速度的金属。作为适当的金属M的例子,可列举出Ti、Mn、Cr、Co、V、Fe等。优选的金属M是Ti和Mn,特别优选Ti。用Si1-xMx表示Si-M合金的组成,优选的合金元素M的原子比在M为Ti的情况下为0.1≤x≤0.25,在M为Mn的情况下为0.1≤x≤0.7。在金属M为其他金属的情况下,考虑C的熔解量、熔融温度,可以设定适当的M的比例。
将C供给到熔体的方法可以有几种方法。最常用的是用超高纯度的石墨或SiC制作坩埚2整体,或者通过至少用该石墨或SiC包覆坩埚的内表层,通过坩埚的熔解将C供给到熔体中。在该方法中,可以避免未熔解的C存在于熔体中。或者,可以将C单独或C与Si一起以固体的形式从外部添加,另外,可以使甲烷、丙烷等烃气体在炉内通过,使在熔体表层由于气体的热分解产生的C熔融在Si或含有Si与金属M的熔体中。还可以将两种以上的这些C供给方法组合使用。
作为绝热材料6,例如,可以使用纤维系(石墨质碳纤维制)或非纤维系的成型绝热材料。为了防止熔体因来自这些绝热材料的颗粒等飞散而被污染,例如,优选使用在石墨制或表层用SiC、TaC等涂层的石墨制容器中收容的绝热材料。使用绝热材料在进行口径2英寸以上的尺寸的晶体生长时由于维持了高加热效率因而是非常理想的。
优选的是,为了使构成本发明的晶片的原材料的SiC单晶进行熔液生长,在将原料装入坩埚中之前,预先在抽真空下进行仅仅绝热材料、坩埚等部件的加热(以下称为预备加热),并且尽可能将升温时从装置部件放出的气体排出到装置外。该预备加热温度优选比晶体生长时的温度高50℃以上。另一方面,即使将预备加热温度设定为相比于生长温度极高的温度,事先的气体排出效果也达到了饱和,因此,预备加热温度只要是比生长温度高50℃~150℃的温度即可。例如,晶体生长温度为1750℃时,预备加热温度的优选范围为1800℃~1900℃。
此后,导入原料。在原料导入前,炉内的温度预先降低到低于原料熔点的温度,原料导入后,优选如上所述在高真空下在低于熔融温度的温度下实施热处理,从原料去除表面氧化膜,使得原料氧浓度为100ppm以下,优选为10ppm以下,更优选为1ppm以下。用于去除该氧化膜的加热温度优选为1200℃~1400℃左右。这样做之后,将如下所述的高纯度的惰性气体导入到装置内(水冷室内),加热至比原料的熔融温度更高的温度,形成熔体1,进一步使C在该熔体中熔融,达到与固相SiC接近热力学平衡的浓度时,SiC单晶的生长的准备完成。作为惰性气体,优选使用稀有气体,一般使用氩气、氦气。
此后,按照常法,使在晶种轴3的前端保持的SiC晶种4与熔体1接触,在熔体1中形成晶种附近为低温的温度梯度(例如,越是上方温度越低的上下方向的温度梯度),使得晶种附近由于过冷却而达到过饱和状态,从而在晶种上生长SiC单晶。代替温度差法,还可以采用使熔体整体的温度降低形成过饱和状态、并根据需要反复升温和降温的方法。为了晶体生长均一化和促进晶体生长,可以使坩埚和晶种轴的一者或二者以固定速度旋转或周期性加减速地旋转。在坩埚和晶种轴二者旋转时,旋转方向优选为彼此逆向。
为了将装置内的气氛中的氧浓度设为100ppm以下从而将熔体的周围气氛的氧浓度设为100ppm以下,也考虑到由装置内的原料或材料产生的氧,引入到装置内的惰性气体优选使用杂质氧气含量为100ppb以下的气体。该氧气含量优选为10ppb以下。这种气体可以通过将市售的惰性气体通过气体精制器后导入到装置内来实现。另外,导入到装置内的惰性气体被升温时从制造装置内的部件放出的杂质气体污染,因此,需要在制造装置的气体排出管线中设置超高精度气体分析器来调查实际的晶体生长中的气氛中的杂质氧浓度。
照此,通过将原料和周围气氛气体的氧量限制在100ppm以下的熔液生长法,可以制造氧含量为1.0×1017原子/cm3以下、优选为5×1016原子/cm3以下的加工性高的SiC块状单晶。通过按照常法由该低氧的SiC块状单晶制作晶片,表面氧化和加工变质被抑制,结果,表面变质层的厚度为50nm以下,优选为30nm以下,更优选为10nm以下。获得了本发明的SiC单晶晶片。
制作以该SiC单晶晶片为基板的外延晶片时,首先,对基板SiC单晶晶片的用于生长外延膜的面进行去除其表面变质层的处理。该表面变质层的去除优选原位实施,即,优选在外延膜生长装置内实施。这如上所述在外延膜生长为CVD法的情况下通过原位氢蚀刻来进行,在外延膜生长为LPE法的情况下通过回熔来进行。由于表面变质层的厚度非常薄,为50nm以下,且容易预测,因此,可容易确定所需的去除厚度,可以完全去除表面变质层。另外,由于去除的厚度较浅即可,可抑制因去除导致的表面粗糙。结果,可以实现优质的外延膜的成膜,因此,可制作可靠性高的半导体器件。
实施例
在以下所示实施例中,使用图1所示的单晶制造装置,利用熔液生长法进行SiC块状单晶的生长。该单晶制造装置具有石墨坩埚2(内径130mm),该石墨坩埚的外周被纤维系成型绝热材料6包围。此外,在绝热材料的外周设置感应加热用的高频线圈7。单晶制造装置内的气氛可利用气体导入口9和排气口10来调整。
在实施例中,原料的表面氧化膜的去除通过化学蚀刻来实施,这是因为,在将原料投入到坩埚中之前已知所使用的原料中的杂质氧浓度。化学蚀刻具体地对于Si氧化膜使用氢氟酸作为蚀刻剂来进行,对于Ti氧化膜使用热硝酸作为蚀刻剂来进行。
实施例1
本例中,在石墨坩埚2中以Si∶Ti=80∶20(原子比,即,at%)的比例投入作为熔融原料的Si和Ti,通过高频感应加热来熔融,制备作为溶剂的熔体。作为原料使用的Si与Ti的块体(粒状物)中的杂质氧浓度包括表面氧化膜部分在内平均为60ppm。该原料是对市售的Si和Ti进行化学蚀刻完全去除了表面氧化膜而获得的。在使Si与Ti在坩埚内熔融之前,在抽高度真空下进行将坩埚和绝热材料在1880℃下加热5小时的烘焙,尽可能排出升温时从装置部件放出的气体。此时达到的真空度为1×10-2Pa。
碳向熔体中的供给利用石墨坩埚的熔解。在进行单晶生长之前,为了使碳熔融在作为溶剂的Si-Ti熔体中,用大气压的惰性气体密封单晶制造装置内部,将石墨坩埚与熔体在1800℃下加热约2小时,使充分量的碳熔解,直至熔体中的SiC浓度与固相SiC接近热力学平衡状态。作为惰性气体,使用市售的氧含量100ppb的氦气。通过设置于惰性气体排出管线内的超高精度气体分析器(等离子气体分析装置),测定气体中的氧浓度,监测装置内的氧浓度。
在熔体中熔解充分量的C之后,保持于晶种轴3的前端的直径51mm的由4H-SiC单晶构成的晶种浸渍于熔体1的表层附近,与熔体接触。通过预先改变高频线圈与石墨坩埚的相对位置和配置于石墨坩埚外周的绝热材料的结构,调整温度,使得在熔体中形成熔体表层的温度低于熔体内部的温度梯度,利用温度差法进行50小时SiC单晶生长。晶体生长位置的熔体温度为1800℃,熔体内部的温度为1830℃(温度梯度:15℃/cm,ΔT:30℃/2cm)。使坩埚2与晶种轴3彼此沿相反方向以20rpm的速度旋转。根据气体排出管线中的测定,晶体生长中的周围气氛中的杂质氧浓度平均为80ppm。
生长实验结束后,使晶种轴3上升,将SiC单晶从熔体1中分离出,并回收。将坩埚内的熔体冷却到室温,凝固。由于SiC单晶上附着有熔体的凝固物,因此,用氢氟酸+硝酸(HF+HNO3)去除。根据常法由所得SiC块状晶体(厚度5mm)制作2英寸口径(口径50.8mm)的4H-SiC同轴(on-axis)的单晶晶片。晶片表面通过CMP研磨进行精加工。
使用晶片的一部分用截面TEM进行表层的微细结构分析,通过GDMS和SIMS进行杂质分析。晶片内部的杂质分析通过SIMS进行。结果,本例中制造的SiC晶片的表层存在厚度44nm的以Si、C、O为主要构成元素的表面变质层。图2(a)中示出了GDMS深度分布图,在图2(b)中示出了截面TEM像。根据SIMS分析的结果,除表面变质层以外的SiC单晶部分的杂质氧浓度为9.5×1016原子/cm3
使用其余的SiC单晶晶片作为基板,通过如下简述的以Si为溶剂的液相外延法,在基板上成膜SiC外延膜。
首先,将SiC片屑填充到由高纯度石墨形成的坩埚内,在高频感应加热炉内加热,形成Si熔体。将该熔体保持2小时,从石墨坩埚熔解充分量的碳。此后,使本例中制作的4H-SiC同轴单晶晶片浸渍在熔体中。熔体设置有在高度方向上约10℃/cm的温度梯度。作为基板的4H-SiC同轴单晶晶片在刚浸渍之后在熔体内部的高温区域保持5分钟,使晶片的表面变质层在液相中回熔。此后,使该晶片移动到熔体表层,开始液相外延生长。外延生长温度为1700℃,生长时间为1小时。通过该外延生长,获得了约10μm厚度的SiC液相外延膜。
通过共焦显微镜观察SiC外延膜的表面缺陷的发生状况,如下所述进行评价。与以往在晶片(市售的用升华再结晶法制作的SiC晶片)上进行外延生长的情况相比将表面缺陷的发生状况没有变化的表示为“不良”,表面缺陷的频率减少至1/10以下的表示为“良”,没有观察到表面缺陷的表示为“优”。
关于欧姆接触,在所要试验的晶片的背面上蒸镀Ni/Ti金属,之后在1000℃下退火,通过TLM(Transfer Length Method,转换长度模型)法调查接触特性。获得欧姆特性者表示为“是”,肖特基特性者表示为“否”。试验结果在表1中总结。
实施例2
除了投入到石墨坩埚中的原料仅仅为Si(原料Si中的残留氧浓度为1ppm,预先通过化学蚀刻部分去除表面氧化膜)以外,与实施例1同样地,制作SiC单晶晶片(厚度350μm)。在所得SiC晶片的表层存在厚度38nm的以Si、C、O为主要构成元素的表面变质层。根据SIMS分析的结果,除表面变质层以外的SiC单晶部分的杂质氧浓度为7.8×1016原子/cm3。在该SiC单晶晶片上,与实施例1同样地,通过液相外延生长法,形成SiC外延膜,对其进行评价。结果一并记载于表1中。
实施例3
除了投入到石墨坩埚中的原料仅仅为Si(原料Si中的残留氧浓度为100ppb,预先通过化学蚀刻完全去除表面氧化膜)以外,与实施例1同样地,制作SiC单晶晶片。在所得SiC晶片的表层存在厚度28nm的以Si、C、O为主要构成元素的表面变质层。根据SIMS分析的结果,除表面变质层以外的SiC单晶部分的杂质氧浓度为5.0×1016原子/cm3。在该SiC单晶晶片上,与实施例1同样地,通过液相外延法,形成SiC外延膜,对其进行评价。结果一并记载于表1中。
实施例4
投入到石墨坩埚中的原料为Si和Ti(原料Si、Ti中的残留氧浓度平均为80ppm,预先通过化学蚀刻部分去除表面氧化膜),使Si与Ti在坩埚内熔融之前,进行在抽高度真空下将坩埚和绝热材料在1880℃下加热10小时的烘焙,尽可能排出升温时从装置部件放出的气体。此时达到的真空度为4×10-3Pa。此后,让氧浓度为100ppb的高纯度的氦气通过气体精制器,之后导入到晶体制造装置内。根据气体排出管线中的测定,晶体生长中的周围气氛中的杂质氧浓度平均为200ppb。除此以外,与实施例1同样地,制作SiC单晶晶片。在所得SiC单晶晶片的表层存在厚度29nm的以Si、C、O为主要构成元素的表面变质层。根据SIMS分析的结果,除表面变质层以外的SiC单晶部分的杂质氧浓度为5.0×1016原子/cm3。在该SiC单晶晶片上,与实施例1同样地,通过液相外延法,形成SiC外延膜,对其进行评价,结果一并记载于表1中。
实施例5
除了投入到石墨坩埚中的原料仅仅为Si(原料Si中的残留氧浓度为100ppb,预先通过化学蚀刻完全去除表面氧化膜)且晶体生长中的气氛中的杂质氧浓度平均为200ppb以外,与实施例1同样地,制作SiC单晶晶片。在所得SiC晶片的表层上,存在厚度9nm的以Si、C、O为主要构成元素的表面变质层。根据SIMS分析的结果,除表面变质层以外的SiC单晶部分的杂质氧浓度低于检测下限(<5.0×1016原子/cm3)。在该SiC单晶晶片上,与实施例1同样地,通过液相外延法,形成SiC外延膜,对其进行评价。结果一并记载于表1中。
比较例1
投入到石墨坩埚中的原料为Si和Ti(原料Si、Ti中的残留氧浓度平均为300ppm,市售品原样),晶体生长中的气氛中的杂质氧浓度为150ppm(不进行因原料熔融前的烘焙从装置部件放出的气体的排出),除此以外,与实施例1同样地,制作SiC单晶晶片。在所得SiC晶片的表层存在厚度60nm的以Si、C、O为主要构成元素的表面变质层。根据SIMS分析的结果,除表面变质层以外的SiC单晶部分的杂质氧浓度为1.2×1017原子/cm3
比较例2
对于用升华再结晶法制作的市售SiC单晶晶片,用截面TEM进行表层的微细结构分析,杂质分析通过GDMS和SIM S进行。另外,晶片内部的杂质分析通过SIMS进行。结果,在比较例2的SiC单晶晶片的表层存在厚度233nm的以Si、C、O为主要构成元素的表面变质层(参照图3)。根据SIMS分析的结果,除表面变质层以外的SiC单晶部分的杂质氧浓度为2.0×1017原子/cm3
[表1]
Figure BDA0000158390320000241
从实施例1、2和比较例1、2的结果可以看出,SiC单晶晶片的表面变质层的厚度为50nm以下时,在晶片上成膜的外延膜质量提高,且不实施特殊的前处理就可以形成良好的欧姆接触。从实施例3~5的结果可以看出,晶片表面变质层的厚度为30nm以下时,晶片上成膜的外延膜的质量得到进一步提高。
用熔液生长法制作用于切取晶片的SiC块状单晶时,通过将原料中的杂质氧浓度和晶体生长中的气氛中的杂质氧浓度分别设定为100ppm以下,可以制造本发明的SiC单晶晶片。优选地,将原料或气氛的一者或两者的氧浓度设定为100ppb以下时,可以进一步减低SiC块状单晶内的氧浓度。
通过使用本发明的SiC单晶晶片,可抑制因SiC单晶晶片引起的外延生长膜的质量劣化,可以制作高可靠性和高生产率的SiC半导体器件。总之,在半导体晶片背面上形成欧姆接触时,不需要特殊的表面前处理,可以简化欧姆接触形成工序。

Claims (13)

1.一种SiC单晶晶片,其特征在于,该SiC单晶晶片在表面具有至少含有Si、C和O(氧)的非单晶结构的变质层,
所述变质层的厚度为50nm以下,并且,
SiC单晶部分中的氧含量为1.0×1017原子/cm3以下。
2.根据权利要求1所述的SiC单晶晶片,其中,所述变质层的厚度为30nm以下,且SiC单晶部分中的氧含量为5×1016原子/cm3以下。
3.根据权利要求1或2所述的SiC单晶晶片,其中,所述变质层的厚度为10nm以下。
4.根据权利要求1~3的任一项所述的SiC单晶晶片,其口径为50.8mm以上即2英寸以上。
5.根据权利要求1~4的任一项所述的SiC单晶晶片,其中,SiC单晶部分中的多晶型为3C-SiC、4H-SiC或6H-SiC中的任一种。
6.一种SiC单晶晶片,其特征在于,其是用作SiC单晶外延膜生长基板的SiC单晶晶片,其在用于生长外延膜的面上在表面不具有非单晶结构的变质层,且氧含量为1.0×1017原子/cm3以下。
7.一种SiC单晶晶片,其特征在于,其是用作SiC单晶外延膜生长基板的SiC单晶晶片,其是通过从权利要求1~5的任一项所述的SiC单晶晶片去除用于生长外延膜的面的所述变质层而获得的。
8.一种SiC单晶外延晶片,其由权利要求6或7所述的SiC单晶晶片所形成的基板和在该晶片的去除了所述变质层的面上生长的外延膜构成。
9.一种半导体器件,其使用权利要求8所述的SiC单晶外延晶片制作。
10.一种SiC块状单晶的制造方法,其特征在于,所述SiC块状单晶是权利要求1~5的任一项所述的SiC单晶晶片的原材料,该方法包括:
通过使用SiC熔液的熔液生长法在晶种上生长SiC晶体,所述SiC熔液是将“Si”或由“SiC和M”构成的原料熔融、使C熔解在所得熔体中而获得的,其中M为除Si以外的一种以上的金属,
熔融前的所述原料中的氧含量为100ppm以下,并且,
晶体生长中的所述液相的周围气氛中的氧浓度为100ppm以下。
11.根据权利要求10所述的方法,其中,熔融前的所述原料中的氧含量为1ppm以下。
12.根据权利要求10或11所述的方法,其中,晶体生长中的所述液相的周围气氛中的氧浓度为1ppm以下。
13.一种SiC单晶外延膜生长基板用SiC单晶晶片的制造方法,其特征在于,通过原位蚀刻法从权利要求1~5的任一项所述的SiC单晶晶片去除所述变质层。
CN2010800489427A 2009-08-27 2010-08-27 SiC 单晶晶片及其制造方法 Withdrawn CN102597337A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009-196845 2009-08-27
JP2009196845 2009-08-27
PCT/JP2010/064549 WO2011024931A1 (ja) 2009-08-27 2010-08-27 SiC単結晶ウエハーとその製造方法

Publications (1)

Publication Number Publication Date
CN102597337A true CN102597337A (zh) 2012-07-18

Family

ID=43628030

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800489427A Withdrawn CN102597337A (zh) 2009-08-27 2010-08-27 SiC 单晶晶片及其制造方法

Country Status (7)

Country Link
US (1) US9222198B2 (zh)
EP (1) EP2471981A4 (zh)
JP (1) JP5706823B2 (zh)
KR (1) KR101454978B1 (zh)
CN (1) CN102597337A (zh)
TW (1) TWI410537B (zh)
WO (1) WO2011024931A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106062929A (zh) * 2014-03-31 2016-10-26 东洋炭素株式会社 SiC基板的表面处理方法、SiC基板和半导体的制造方法
CN107109694A (zh) * 2015-01-21 2017-08-29 住友电气工业株式会社 晶体生长装置、碳化硅单晶的制造方法、碳化硅单晶基板和碳化硅外延基板
CN107849733A (zh) * 2015-08-06 2018-03-27 信越化学工业株式会社 SiC坩埚和SiC烧结体以及SiC单晶的制造方法
CN107849734A (zh) * 2015-08-06 2018-03-27 信越化学工业株式会社 SiC单晶的制造方法
CN110921670A (zh) * 2018-09-19 2020-03-27 比亚迪股份有限公司 碳化硅及其制备方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102197168B (zh) * 2008-08-29 2014-03-12 新日铁住金株式会社 SiC单晶膜的制造方法及装置
EP2471981A4 (en) * 2009-08-27 2013-04-17 Nippon Steel & Sumitomo Metal Corp SIC MONOCRYSTAL WAFER AND METHOD FOR MANUFACTURING THE SAME
JP5630400B2 (ja) * 2011-08-05 2014-11-26 三菱電機株式会社 単結晶の製造装置及び製造方法
KR101926694B1 (ko) * 2012-05-30 2018-12-07 엘지이노텍 주식회사 탄화규소 에피 웨이퍼 및 이의 제조 방법
KR101926678B1 (ko) * 2012-05-31 2018-12-11 엘지이노텍 주식회사 탄화규소 에피 웨이퍼 및 이의 제조 방법
JP6046405B2 (ja) * 2012-07-19 2016-12-14 トヨタ自動車株式会社 SiC単結晶のインゴット、その製造装置及びその製造方法
KR101657018B1 (ko) 2012-07-19 2016-09-12 신닛테츠스미킨 카부시키카이샤 SiC 단결정의 제조 장치 및 SiC 단결정의 제조 방법
JP5219230B1 (ja) * 2012-09-04 2013-06-26 エルシード株式会社 SiC蛍光材料及びその製造方法並びに発光素子
US8860040B2 (en) 2012-09-11 2014-10-14 Dow Corning Corporation High voltage power semiconductor devices on SiC
US9018639B2 (en) 2012-10-26 2015-04-28 Dow Corning Corporation Flat SiC semiconductor substrate
KR101469713B1 (ko) * 2012-12-06 2014-12-05 연세대학교 산학협력단 경사형 C/SiC 코팅막 형성 방법 및 장치
US9738991B2 (en) 2013-02-05 2017-08-22 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a supporting shelf which permits thermal expansion
US9797064B2 (en) 2013-02-05 2017-10-24 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a support shelf which permits thermal expansion
WO2014122768A1 (ja) * 2013-02-08 2014-08-14 日新電機株式会社 単結晶炭化珪素基板およびその製造方法
PL2881499T3 (pl) 2013-12-06 2020-06-29 Shin-Etsu Chemical Co., Ltd. Sposób hodowli kryształu węgliku krzemu
JP6232329B2 (ja) 2014-03-31 2017-11-15 東洋炭素株式会社 SiC種結晶の加工変質層の除去方法、SiC種結晶及びSiC基板の製造方法
JP6282512B2 (ja) 2014-03-31 2018-02-21 東洋炭素株式会社 SiC基板の潜傷深さ推定方法
US9279192B2 (en) 2014-07-29 2016-03-08 Dow Corning Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology
JP6158153B2 (ja) * 2014-09-19 2017-07-05 株式会社東芝 半導体装置及びその製造方法
JP6305294B2 (ja) * 2014-09-19 2018-04-04 株式会社東芝 半導体装置及びその製造方法
JP2016141571A (ja) * 2015-01-29 2016-08-08 京セラ株式会社 結晶の製造方法
CN106012021B (zh) * 2016-06-30 2019-04-12 山东天岳先进材料科技有限公司 一种液相生长碳化硅的籽晶轴及方法
WO2018043169A1 (ja) * 2016-08-31 2018-03-08 昭和電工株式会社 SiCエピタキシャルウェハ及びその製造方法、並びに、ラージピット欠陥検出方法、欠陥識別方法
US11293115B2 (en) 2016-08-31 2022-04-05 Showa Denko K.K. Method for producing a SiC epitaxial wafer containing a total density of large pit defects and triangular defects of 0.01 defects/cm2 or more and 0.6 defects/cm2 or less
JP7085833B2 (ja) * 2017-12-25 2022-06-17 昭和電工株式会社 炭化珪素単結晶の製造方法
WO2023047905A1 (ja) * 2021-09-27 2023-03-30 住友電気工業株式会社 SiC結晶基板、SiC結晶基板の製造方法、SiCエピタキシャル基板およびSiCエピタキシャル基板の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298100A (ja) * 1988-05-25 1989-12-01 Nippon Steel Corp 液相温度差法による炭化珪素単結晶の製造方法
US20020096104A1 (en) * 2001-01-19 2002-07-25 Hoya Corporation Single crystal SiCand method of producing the same as well as SiC semiconductor device and SiC composite material
CN1592949A (zh) * 2001-10-29 2005-03-09 奥克麦蒂克有限公司 高电阻率碳化硅单晶体及制造方法
US20090085044A1 (en) * 2007-09-28 2009-04-02 Toshiyuki Ohno Silicon carbide semiconductor substrate and silicon carbide semiconductor device by using thereof

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167644A (ja) * 1987-12-24 1989-07-03 Nkk Corp 高純度材料中の酸素および窒素微量不純物の放射化分析方法
JP3238957B2 (ja) * 1992-11-27 2001-12-17 東芝セラミックス株式会社 シリコンウェーハ
JPH06188163A (ja) * 1992-12-21 1994-07-08 Toyota Central Res & Dev Lab Inc 半導体装置作製用SiC単結晶基板とその製造方法
JP2922078B2 (ja) * 1993-03-17 1999-07-19 株式会社トクヤマ シリコンロッドの製造方法
JP3628079B2 (ja) * 1995-08-11 2005-03-09 Hoya株式会社 炭化珪素薄膜製造方法並びに炭化珪素薄膜および積層基板
JP3593195B2 (ja) 1995-12-28 2004-11-24 新日本製鐵株式会社 SiC単結晶基板の製造方法
US6273950B1 (en) * 1996-04-18 2001-08-14 Matsushita Electric Industrial Co., Ltd. SiC device and method for manufacturing the same
JP3719341B2 (ja) * 1998-11-12 2005-11-24 住友金属鉱山株式会社 SiC結晶の液相エピタキシャル成長方法
JP4457432B2 (ja) * 1999-06-17 2010-04-28 株式会社デンソー 種結晶とそれを用いた炭化珪素単結晶の製造方法、炭化珪素単結晶体および単結晶製造装置
JP4830073B2 (ja) * 2001-03-27 2011-12-07 独立行政法人産業技術総合研究所 炭化珪素単結晶の成長方法
US6750119B2 (en) * 2001-04-20 2004-06-15 International Business Machines Corporation Epitaxial and polycrystalline growth of Si1-x-yGexCy and Si1-yCy alloy layers on Si by UHV-CVD
EP1403404A4 (en) * 2001-06-04 2007-08-01 New Ind Res Organization SINGLE CRYSTAL SILICON CARBIDE AND PROCESS FOR PRODUCING THE SAME
JP4733882B2 (ja) * 2001-09-28 2011-07-27 新日本製鐵株式会社 炭化珪素単結晶及びその製造方法並びに炭化珪素単結晶育成用炭化珪素結晶原料
EP1306890A2 (en) * 2001-10-25 2003-05-02 Matsushita Electric Industrial Co., Ltd. Semiconductor substrate and device comprising SiC and method for fabricating the same
US20040134418A1 (en) * 2002-11-08 2004-07-15 Taisuke Hirooka SiC substrate and method of manufacturing the same
TWI320948B (en) * 2003-03-19 2010-02-21 Japan Science & Tech Agency Method for growing emiconductor crystal and laminated structure thereof and semiconductor device
JP3764157B2 (ja) * 2003-10-10 2006-04-05 東洋炭素株式会社 高純度炭素系材料及びセラミックス膜被覆高純度炭素系材料
JP4431643B2 (ja) * 2003-10-21 2010-03-17 学校法人関西学院 単結晶炭化ケイ素成長方法
JP4453348B2 (ja) * 2003-11-25 2010-04-21 トヨタ自動車株式会社 炭化珪素単結晶の製造方法
US7935955B2 (en) * 2004-01-26 2011-05-03 Showa Denko K.K. Group III nitride semiconductor multilayer structure
WO2006025420A1 (ja) * 2004-09-03 2006-03-09 Sumitomo Metal Industries, Ltd. 炭化珪素単結晶の製造方法
US7641736B2 (en) * 2005-02-22 2010-01-05 Hitachi Metals, Ltd. Method of manufacturing SiC single crystal wafer
WO2007032051A1 (ja) * 2005-09-12 2007-03-22 Tadahiro Ohmi 重合体の製造方法及び重合体材料
US20100221917A1 (en) * 2006-01-30 2010-09-02 Sumitomo Electric Industries, Ltd. Method of manufacturing silicon carbide semiconductor device
DE102006004870A1 (de) * 2006-02-02 2007-08-16 Siltronic Ag Halbleiterschichtstruktur und Verfahren zur Herstellung einer Halbleiterschichtstruktur
EP2100990A1 (en) * 2006-10-16 2009-09-16 Mitsubishi Chemical Corporation Process for producing nitride semiconductor, crystal growth rate enhancement agent, nitride single crystal, wafer and device
JP2008110907A (ja) * 2006-10-31 2008-05-15 Nippon Steel Corp 炭化珪素単結晶インゴットの製造方法及び炭化珪素単結晶インゴット
DE102006062117A1 (de) * 2006-12-22 2008-06-26 Schott Solar Gmbh Verfahren zum Herstellen kristallisierten Siliciums sowie kristallisiertes Silicium
JP5125095B2 (ja) * 2006-12-22 2013-01-23 パナソニック株式会社 SiCエピタキシャル膜付き基板の製造方法及びSiCエピタキシャル膜付き基板の製造装置
JP2008170744A (ja) * 2007-01-12 2008-07-24 Tohoku Univ 液晶表示装置及びその製造方法
WO2008133077A1 (ja) * 2007-04-18 2008-11-06 Mitsubishi Chemical Corporation 無機化合物の製造方法、蛍光体、蛍光体含有組成物、発光装置、照明装置及び画像表示装置
JP4941088B2 (ja) * 2007-05-14 2012-05-30 住友金属工業株式会社 単結晶の製造方法および製造装置
CN101743346B (zh) * 2007-07-13 2014-11-12 日本碍子株式会社 Iii族氮化物单晶的制造方法
JP4853449B2 (ja) * 2007-10-11 2012-01-11 住友金属工業株式会社 SiC単結晶の製造方法、SiC単結晶ウエハ及びSiC半導体デバイス
JP4450074B2 (ja) * 2008-01-15 2010-04-14 トヨタ自動車株式会社 炭化珪素単結晶の成長方法
JP4450075B2 (ja) * 2008-01-15 2010-04-14 トヨタ自動車株式会社 炭化珪素単結晶の成長方法
CN102197168B (zh) * 2008-08-29 2014-03-12 新日铁住金株式会社 SiC单晶膜的制造方法及装置
CN102203330B (zh) * 2008-08-29 2013-08-21 新日铁住金株式会社 碳化硅单晶的制造方法
JP4333820B1 (ja) * 2009-01-19 2009-09-16 住友電気工業株式会社 化合物半導体基板
US20110156058A1 (en) * 2009-02-04 2011-06-30 Hitachi Metals, Ltd. Silicon carbide monocrystal substrate and manufacturing method therefor
EP2471981A4 (en) * 2009-08-27 2013-04-17 Nippon Steel & Sumitomo Metal Corp SIC MONOCRYSTAL WAFER AND METHOD FOR MANUFACTURING THE SAME
JP4887418B2 (ja) * 2009-12-14 2012-02-29 昭和電工株式会社 SiCエピタキシャルウェハの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01298100A (ja) * 1988-05-25 1989-12-01 Nippon Steel Corp 液相温度差法による炭化珪素単結晶の製造方法
US20020096104A1 (en) * 2001-01-19 2002-07-25 Hoya Corporation Single crystal SiCand method of producing the same as well as SiC semiconductor device and SiC composite material
CN1592949A (zh) * 2001-10-29 2005-03-09 奥克麦蒂克有限公司 高电阻率碳化硅单晶体及制造方法
US20090085044A1 (en) * 2007-09-28 2009-04-02 Toshiyuki Ohno Silicon carbide semiconductor substrate and silicon carbide semiconductor device by using thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106062929A (zh) * 2014-03-31 2016-10-26 东洋炭素株式会社 SiC基板的表面处理方法、SiC基板和半导体的制造方法
CN106062929B (zh) * 2014-03-31 2019-10-08 东洋炭素株式会社 SiC基板的表面处理方法、SiC基板和半导体的制造方法
CN107109694A (zh) * 2015-01-21 2017-08-29 住友电气工业株式会社 晶体生长装置、碳化硅单晶的制造方法、碳化硅单晶基板和碳化硅外延基板
CN109943885A (zh) * 2015-01-21 2019-06-28 住友电气工业株式会社 碳化硅单晶基板和碳化硅外延基板
CN107109694B (zh) * 2015-01-21 2020-10-16 住友电气工业株式会社 晶体生长装置、碳化硅单晶的制造方法、碳化硅单晶基板和碳化硅外延基板
CN109943885B (zh) * 2015-01-21 2020-12-29 住友电气工业株式会社 碳化硅单晶基板和碳化硅外延基板
CN107849733A (zh) * 2015-08-06 2018-03-27 信越化学工业株式会社 SiC坩埚和SiC烧结体以及SiC单晶的制造方法
CN107849734A (zh) * 2015-08-06 2018-03-27 信越化学工业株式会社 SiC单晶的制造方法
US11440849B2 (en) 2015-08-06 2022-09-13 Shin-Etsu Chemical Co., Ltd. SiC crucible, SiC sintered body, and method of producing SiC single crystal
CN107849733B (zh) * 2015-08-06 2023-03-31 信越化学工业株式会社 SiC坩埚和SiC烧结体以及SiC单晶的制造方法
CN110921670A (zh) * 2018-09-19 2020-03-27 比亚迪股份有限公司 碳化硅及其制备方法

Also Published As

Publication number Publication date
US9222198B2 (en) 2015-12-29
KR20120061920A (ko) 2012-06-13
JP5706823B2 (ja) 2015-04-22
EP2471981A4 (en) 2013-04-17
US20120211769A1 (en) 2012-08-23
TW201124567A (en) 2011-07-16
JPWO2011024931A1 (ja) 2013-01-31
WO2011024931A1 (ja) 2011-03-03
EP2471981A1 (en) 2012-07-04
TWI410537B (zh) 2013-10-01
KR101454978B1 (ko) 2014-10-27

Similar Documents

Publication Publication Date Title
CN102597337A (zh) SiC 单晶晶片及其制造方法
EP2230332B1 (en) Silicon carbide single crystal ingot, and substrate and epitaxial wafer obtained from the silicon carbide single crystal ingot
JP5068423B2 (ja) 炭化珪素単結晶インゴット、炭化珪素単結晶ウェハ及びその製造方法
US9915011B2 (en) Low resistivity single crystal silicon carbide wafer
US9777403B2 (en) Single-crystal silicon carbide and single-crystal silicon carbide wafer
EP1807558B1 (en) Method for producing 100 mm silicon carbide wafer with low micropipe density
EP2484815B1 (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
EP1852527B1 (en) Silicon carbide single crystal and silicon carbide single crystal wafer
US20050183657A1 (en) Silicon carbide single crystal and a method for its production
JP6624868B2 (ja) p型低抵抗率炭化珪素単結晶基板
WO2021025085A1 (ja) SiC基板、SiCエピタキシャル基板、SiCインゴット及びこれらの製造方法
JP4460236B2 (ja) 炭化珪素単結晶ウェハ
JP5131262B2 (ja) 炭化珪素単結晶及びその製造方法
EP1498518B1 (en) Method for the production of silicon carbide single crystal
CN110462112B (zh) 碳化硅基板、碳化硅基板的制造方法及碳化硅半导体装置的制造方法
WO2015012190A1 (ja) SiC基板の製造方法
CN114375351B (zh) SiC衬底、SiC外延衬底、SiC晶锭及它们的制造方法
US20210395919A1 (en) Manufacturing method of semi-insulating single-crystal silicon carbide powder

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: NIPPON STEEL + SUMITOMO METAL CORPORATION

Free format text: FORMER OWNER: CHUGAI SEIYAKU KABUSHIKI KAISHA

Effective date: 20130425

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20130425

Address after: Tokyo, Japan, Japan

Applicant after: Nippon Steel Corporation

Address before: Osaka Japan

Applicant before: Sumitomo Metal Industries Ltd.

WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20120718