CN102272964A - 具有放射状阻挡体的磁存储器单元 - Google Patents

具有放射状阻挡体的磁存储器单元 Download PDF

Info

Publication number
CN102272964A
CN102272964A CN2009801537529A CN200980153752A CN102272964A CN 102272964 A CN102272964 A CN 102272964A CN 2009801537529 A CN2009801537529 A CN 2009801537529A CN 200980153752 A CN200980153752 A CN 200980153752A CN 102272964 A CN102272964 A CN 102272964A
Authority
CN
China
Prior art keywords
layer
magnetic tunnel
unit
tunnel junctions
free layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009801537529A
Other languages
English (en)
Other versions
CN102272964B (zh
Inventor
P·安德森
S·薛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seagate Technology LLC
Original Assignee
Seagate Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seagate Technology LLC filed Critical Seagate Technology LLC
Publication of CN102272964A publication Critical patent/CN102272964A/zh
Application granted granted Critical
Publication of CN102272964B publication Critical patent/CN102272964B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1107Magnetoresistive
    • Y10T428/1114Magnetoresistive having tunnel junction effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1107Magnetoresistive
    • Y10T428/1143Magnetoresistive with defined structural feature

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

磁性隧穿结单元与制造磁性隧穿结单元的方法,该磁性隧穿结包括至少紧邻单元的铁磁自由层(112)延伸的放射状保护层(120)。可特定地选择该放射状保护层的厚度、沉积方法、材料成分、和/或沿着单元层的程度以便增强自由层的有效磁性质,有效磁性质包括有效矫顽力、有效磁各向异性、有效磁矩散布、或有效自旋极化。

Description

具有放射状阻挡体的磁存储器单元
背景技术
还称作自旋转移或自旋扭矩的自旋扭矩转移技术结合半导体技术与磁学,且是最近发展的。在自旋扭矩转移中,是电子自旋而不是电荷被用来指示数字信息的存在。表示为“0”或“1”的数字信息或数据可存储在磁性元件内的磁矩排列中。磁性元件的阻抗取决于力矩排列或取向。通过检测组件的阻态从元件读出存储的状态。
磁性元件一般包括各自具有磁化方向的铁磁被钉扎层与铁磁自由层,且非磁性阻挡层存在于它们之间。这些层的任何一个可以是多层。自由层与被钉扎层的磁化方向定义整体磁性元件的阻抗。这种元件通常称作“自旋隧穿结”、“磁性隧穿结”、“磁性隧穿结单元”等。当自由层与被钉扎层的磁化方向平行时,元件的阻抗低。当自由层与被钉扎层的磁化方向反平行时,元件的阻抗高。
至少由于尺寸小,将磁性隧穿结单元元件用于诸如磁硬盘驱动读取头、磁传感器、以及非易失性随机存取存储器等许多应用中是合乎要求的。总是期望改进并发展磁性隧穿结单元及其制造。
概述
本公开涉及磁性隧穿结单元以及磁性隧穿结单元的制造方法。本公开的磁性隧穿结单元包括放射状保护层,其至少紧邻单元的铁磁自由层延伸。可特定地选择该放射状保护层的厚度、沉积方法、材料成分、和/或沿着单元层的程度以便增强自由层的有效磁性质,有效磁性质包括有效矫顽力、有效磁各向异性、有效磁矩散布、或有效自旋极化。
在一个特定实施例中,本公开涉及磁性隧穿结单元,该单元具有铁磁自由层、铁磁被钉扎层、以及它们之间的阻挡层。保护层至少放射状地包围自由层,而电绝缘隔离层至少放射状地包围阻挡层。绝缘材料放射状地包围自由层、被钉扎层、阻挡层、保护层、以及隔离层的全部。
在另一特定实施例中,本公开涉及磁性隧穿结单元,该单元具有铁磁自由层、铁磁被钉扎层、以及它们之间的阻挡层。保护层至少放射状地包围自由层,其中保护层抑制从自由层出来或进入自由层的材料的放射状迁移或扩散。绝缘材料放射状地包围自由层、被钉扎层、阻挡层、以及保护层的全部。
在又一特定实施例中,本公开涉及制造磁性隧穿结单元的方法,该方法包括提供起始堆叠物,起始堆叠物按顺序包括铁磁被钉扎层、阻挡层、铁磁自由层、金属层、以及掩模层。该方法包括移除一部分掩模层以便留下图案化的掩模材料,然后移除一部分的金属层与一部分的自由层以便留下图案化的金属层与图案化的自由层。此后,该方法包括至少在自由层周围形成放射状保护层,并移除一部分的阻挡层以留下图案化阻挡层。该方法还包括至少在图案化阻挡层周围形成放射状隔离层。
通过阅读下面的详细描述,这些以及各种其它的特征和优点将会显而易见。
附图简要说明
考虑下面与附图相结合的本公开的各种实施例的详细描述,可以更加全面地理解本发明:
图1A是处于低阻态的示例性磁性隧穿结单元的截面示意图;图1B是处于高阻态的磁性隧穿结单元的截面示意图;
图2是来自磁性隧穿结单元的第一制造步骤的元件的示意性截面图;
图3是来自磁性隧穿结单元的第二制造步骤的元件的示意性截面图;
图4A是来自磁性隧穿结单元的第三制造步骤的元件的示意性截面图;图4B是来自磁性隧穿结单元的第三制造步骤的替代元件的示意性截面图;
图5是来自磁性隧穿结单元的第四制造步骤的元件的示意性截面图;
图6是来自磁性隧穿结单元的第五制造步骤的元件的示意性截面图;
图7是来自磁性隧穿结单元的第六制造步骤的元件的示意性截面图;
图8是来自磁性隧穿结单元的第七制造步骤的元件的示意性截面图;
图9是磁性隧穿结单元的第八制造步骤的示意性截面图;
图10是来自磁性隧穿结单元的第九制造步骤的元件的示意性截面图;
图11是来自磁性隧穿结单元的第十制造步骤的元件的示意性截面图;
图12是来自磁性隧穿结单元的第十一制造步骤的元件的示意性截面图;
图13是来自磁性隧穿结单元的第十二制造步骤的元件的示意性截面图;
图14是来自磁性隧穿结单元的第十三制造步骤的元件的示意性截面图;
图15是通过前面的步骤所得的磁性隧穿结单元的示意性侧视图;以及
图16是沿着图15的线16-16截取的磁性隧穿结的示意性截面图。
各附图不一定按比例绘制。附图中使用的类似附图标记表示类似组件。然而,应该理解,使用附图标记指代给定附图中的某个组件并不对其它附图中用相同附图标记标示的组件构成限制。
发明详述
本公开涉及具有隧穿阻挡层的存储器单元或任何磁传感器以及制造这些单元或传感器的方法。本公开的装置(例如,磁性隧穿结单元)包括放射状保护层,其至少紧邻单元的铁磁自由层延伸。该装置还可包括放射状隔离层,其紧邻单元的阻挡层延伸。保护层与放射状隔离层两者或任一个可抑制自由层成分的变化(例如,进入或出自自由层的化学物种的扩散或迁移)。
在以下说明书中,参照构成说明书一部分并以示例方式示出若干特定实施例的一组附图。应该理解,可以构想出其它实施例,但不脱离本公开的范围或精神。因此,下面的详细说明不应理解为限定。本文提供的定义是为了便于本文频繁使用的某些术语的理解并且不旨在限定本公开的范围。
除非另行指定,在说明书和权利要求书中使用的表示特征尺寸、量和物理特性的全部数字应当理解为在任何情形下可由术语“大约”进行修饰。因此,除非明示相反情形,否则前述说明书和所附权利要求书中阐述的数字参数是近似值,这些近似值能根据由本领域内技术人员尝试利用本文披露的教示获得的所需特性而改变。
如说明书以及所附权利要求书中所使用地,单数形式的“一”、“该”以及“所述”涵盖具有复数对象的实施方式,除非上下文明确地指出其它情形。如说明书和所附权利要求书中使用地,术语“或”通常用于包括“和/或”的语境中,除非内容明确地指出相反情形。
本公开涉及磁性隧穿结单元以及磁性隧穿结单元的制造方法。本公开的磁性隧穿结单元包括放射状保护层,其至少紧邻单元的铁磁自由层延伸。尽管本公开并非局限于此,然而本公开各个方面的理解可通过下面提供的示例阐述而获得。
图1A与1B是一般磁性隧穿结单元10的截面示意图;在图1A中,单元10处于低阻态,其中磁化方向平行,而在图1B中,单元10处于高阻态,其中磁化方向反平行。
磁性隧穿结单元10包括铁磁自由层12和铁磁基准(即,被钉扎(pinned))层14。反铁磁钉扎(pinning)层16紧邻被钉扎层14。铁磁自由层12与铁磁被钉扎层14由氧化物阻挡层13或非磁性隧穿阻挡层分隔开。铁磁层12、14可由例如Fe、Co、或Ni以及诸如NiFe与CoFe的其合金等任何有用铁磁(FM)材料制成。诸如CoFeB的三重合金可能尤其有用,因为它们具有较低力矩与高极化比,这些对于自旋电流切换而言是合乎要求的。自由层12与被钉扎层14的任一个或两者可能是单层或是多层,如合成反铁磁(SAF)耦合结构,即,由诸如Ru或Cu等金属分隔件分隔开的两个铁磁子层,其中子层的磁化方向处于相反方向以便提供平衡或非平衡磁化。钉扎层16可以是诸如PtMn、IrMn等的反铁磁规则材料(AFM)。阻挡层13可由例如氧化物材料(例如,Al2O3、TiOx、MgO、ZnO、HfO、GaO、以及它们的各种组合)的电绝缘材料来制成。也可使用其它适合的材料。可取决于工艺可行性与装置可靠性用自由层12或用被钉扎层14可选地图案化阻挡层13。
第一电极15经由钉扎层16与铁磁被钉扎层14电接触,而第二电极17与铁磁自由层12电接触。可存在诸如籽层的其它层。由导电材料(通常是例如Cu、Ti、TiN、Ta、TaN、W的金属)制成的电极15、17将铁磁层12、14电连接到提供通过层12、14的读写电流的控制电路。磁性隧穿结单元10两端的阻抗由铁磁层12、14的磁化向量的相对方向或磁化方向来确定。铁磁被钉扎层14的磁化方向通过钉扎层16被钉扎在预定方向上,而铁磁自由层12的磁化方向在自旋扭矩效应的影响下自由旋转。图1A示出处于低阻态的磁性隧穿结单元10,其中铁磁自由层12的磁化方向是平行的并处于与铁磁被钉扎层14磁化方向相同的方向中。这通常被称为低阻态或“0”数据状态。图1B示出处于高阻态的磁性隧穿结单元10,其中铁磁自由层12的磁化方向是反平行的并处于与铁磁被钉扎层14磁化方向相反的方向中。这通常被称为高阻态或“1”数据状态。
当流过磁性隧穿结单元10的磁性层的电流变为自旋极化并将自旋扭矩施加在磁性隧穿结单元10的自由层12上时,通过自旋转移发生磁性隧穿结单元10的阻态切换以及因此切换数据状态。当将足够的自旋扭矩施加于自由层12时,自由层12的磁化方向可在两个相反方向之间切换,并因此磁性隧穿结单元10可在平行状态(即,低阻态或“0”数据状态)和反平行状态(即,高阻态或“1”数据状态)之间切换。
示例性自旋转移扭矩磁性隧穿结单元10可用来构造存储器装置,其中通过改变自由层12相对于被钉扎层14的相对磁化状态来将数据位存储在磁性隧道结单元中。可通过测量随自由层12相对于被钉扎层14的磁化方向而改变的单元10的阻抗来读出所存储的数据位。为了使自旋转移扭矩磁性隧穿结单元10具有非易失随机存取存储器的特征,自由层12对于随机波动表现出热稳定性,从而自由层12的方向仅当受到控制以作出这种改变时才会改变。该热稳定性可使用不同方法经由磁各向异性而获得,例如改变位大小、形状和晶体各向异性。可通过要么借助交换要么借助磁场对其它磁性层的磁耦合来获得附加的各向异性。通常来说,各向异性使得软轴和硬轴形成在薄磁性层中。硬轴和软轴是通过在该方向中完全旋转(饱和)磁化方向所需的通常以磁场形式的外部能量的大小定义的,其中硬轴要求较高的饱和磁场。
根据本公开的制造磁性隧穿结单元的方法在图2-12中逐步骤地示出。总体而言,本公开的磁性隧穿结单元可通过诸如化学气相沉积(CVD)、物理气相沉积(PVD)、原子层沉积(ALD)、光刻、或其它薄膜沉积技术等的公知薄膜技术以及通过湿法或干法蚀刻、离子研磨、反应离子蚀刻(干法蚀刻的一种形式)、或其它薄膜移除技术来制成。本公开的方法通过一系列特定步骤与步骤顺序生产具有期望特性与性质的磁性隧穿结单元。
在图2中示出起始堆叠物1000。起始堆叠物1000包括已通过已知薄膜技术在衬底上形成(例如,沉积)的多个层。起始堆叠物1000包括在最终磁性隧穿结单元中将作为电极的金属层105、在最终磁性隧穿结单元中将作为钉扎层的反铁磁(AFM)材料116、在最终磁性隧穿结单元中将作为被钉扎层的铁磁(FM)材料114、以及在最终磁性隧穿结单元中将作为自由层的铁磁(FM)材料112。还可存在籽层和/或覆层。FM材料112与FM材料114的任一个或两者的厚度通常小于6nm,例如,约为2-3nm,虽然它们还可更薄或更厚。AFM材料116通常约为5-20nm厚。阻挡材料113在FM材料112与FM材料114之间,阻挡材料113将在最终磁性隧穿结单元中作为隧穿阻挡层。阻挡材料113的厚度通常小于约10埃,且合适材料的示例包括诸如氧化物等非导电材料。
堆叠物1000还包括硬掩模材料118以及硬掩模118与FM材料112之间的蚀刻停止体115。硬掩模材料的示例包括金属材料(例如,Ta、W、Ti、TaN、TiN)与非金属材料(例如,C)。硬掩模材料118的厚度通常约为40-200nm,这取决于材料;举例而言,金属硬掩模材料(例如,Ta、TaN、Ti、TiN)的厚度约为200nm,而包括C的硬掩模材料的厚度小于约100nm,例如,约为40nm厚。蚀刻停止体115提供防止在移除硬掩模118期间无意中移除FM材料112的阻挡体,如以下讨论。蚀刻停止体115可能是导电的;蚀刻停止体115的材料示例包括Ru、Ti、W与Ta金属以及诸如TiN、TaN等材料。存在于硬掩模材料118上的是光刻胶层119。光刻胶层119的形状与大小(例如,宽度)接近最终磁性隧穿结单元的形状与大小。在本实施例中,金属层105没其它层大(例如,宽)。放置诸如SiO2的绝缘材料102来填充衬底与AFM材料116之间的容积。
在图3中,未被光刻胶119覆盖的硬掩模材料118例如通过蚀刻被移除。蚀刻停止体115提供防止在移除硬掩模118期间无意中移除FM材料112的阻挡体。蚀刻停止体115沉积或以其它方式施用于FM材料112,且特定地选择厚度、沉积方法与材料成分以便在后续步骤中向FM材料112提供机械及化学保护。具体地,蚀刻停止体115针对可改变FM材料112的磁性质与电性质、或造成其化学腐蚀的高能离子、自由基或化学物种提供保护。按期望移除硬掩模118后,可通过常规过程来移除光刻胶119。
在图4A中,例如通过反应离子蚀刻或离子研磨来移除未被图案化的硬掩模118覆盖的FM材料112与蚀刻停止体115。阻挡材料113至少实质上不受影响。在一些实施例中,如图4B中,一些FM材料112可再沉积在FM材料112的边缘上并可选地再沉积在停止蚀刻体115与硬掩模118上,从而形成包围FM材料112、可选地包围蚀刻停止体115、并可选地包围硬掩模材料118的环形层。
另外,在图4A与4B中示出放射状地包围FM材料112、蚀刻停止体115与硬掩模材料118并在FM材料112的环形层(如果存在)外部的保护层120(如图4B)。保护层120至少延伸FM材料112的高度,且可能沿着蚀刻停止体115、硬掩模层118、以及FM材料112上的任何附加层延伸地更高。可通过常规技术施加(例如,沉积)保护层120,或者保护层120可以是来自FM材料移除过程的反应产物。保护层120可具有恒定厚度(如图4B所示)或具有变化的厚度(如图4A所示)。保护层120的合适材料的示例包括Si3N4、SiO2、SiOxNy、AlN、MgO、Al2O3、Ta2O5、Ta、Ru、W、TiW、TaN、TiN、低K材料、以及它们的各种组合。选择保护层120的特定构造(即,厚度、沉积方法、材料成分、以及沿着FM材料112与诸上层的程度或高度等)以便给FM材料112提供针对后续处理的机械及化学保护。具体地,保护层120向FM材料112提供针对可改变自由层的磁性质与电性质、或造成其化学腐蚀的高能离子、自由基或化学物种的保护。例如,保护层120防止进入FM材料112或从FM材料112出来的材料的放射状迁移和/或扩散,如FM材料112的分子、原子或离子的任一个或全部。此外,保护层120可抑制进入到阻挡材料113或从组成材料113出来的材料的放射状迁移和/或扩散。可从FM材料112或阻挡材料113迁移或扩散出来的原子、分子及离子包括Mn、O、B、Mg、N2及H2O的任一个或全部。
另外,选择保护层120的特定构造(即,厚度、沉积方法、材料成分、以及沿着FM材料112与诸上层的程度或高度等)以增强所得磁性隧穿结单元中的所得自由层的有效磁性质,有效磁性质包括自由层的有效矫顽力、有效磁各向异性、有效磁矩散布、或有效自旋极化。磁各向异性可因为材料或应力性质而受到影响。归因于该保护层120所提供的保护,该层允许自对准地移除传感器堆叠体的其余层,这从而允许密集的图案化。此外,通过保护层120的厚度,可相对于FM材料112按照意愿调节FM材料114的大小。
在图5中,例如通过反应离子蚀刻或通过离子研磨来移除阻挡材料113的未被FM材料112所覆盖的部分。FM材料112与诸上层作为图案化掩模。在一些实施例中,阻挡材料113具有底切部分。阻挡材料113下的FM材料114至少实质上未被干扰。
在图6中,在FM材料114、阻挡材料113上,以及至少部分地在保护层120与后续层上施加隔离层122。隔离层122至少延伸穿过隧穿阻挡材料113,且有可能沿着包括FM材料112、硬掩模118与任何附加叠层的图案化特征(图5的示例)延伸更高。隔离层122优选填充可能存在的阻挡层113的任何底切部分。隔离层122具有约为2-30nm的厚度,且由诸如(多个)氧化物、(多个)氮化物等电绝缘材料,和/或FM材料112、114、或AFM材料116的材料的(多个)氧化物或(多个)氮化物形成。隔离层122的适合材料的示例包括Si3N4、SiO2、SiOxNy、SiOCN、Ta2O5、Al2O3、MgO、以及其它低K电介质,其中Ta2O5、Al2O3、MgO是优选材料。
选择隔离层122的特性(即,厚度、沉积方法、材料成分、以及沿着装置边缘的程度等)以便向阻挡材料113提供针对后续处理的机械及化学保护。尤其,隔离层122在所得磁性隧穿结单元中为阻挡层提供针对可造成选择性电击穿或沿着阻挡体边缘的电流分路或化学腐蚀的高能离子或化学物种。由于隔离层122为阻挡材料113提供的保护,该层允许自对准地移除堆叠体的其余层(例如,FM材料114、AFM材料116等),这从而允许对多层叠层进行密集图案化。具体地,在所得磁性隧穿结单元中,隔离层122禁止以及优选地防止从底电极(例如,磁性隧穿结单元10的电极15)到顶电极(例如,磁性隧穿结单元10的电极17)的电流传导。
在图7中,移除一部分的隔离层122;典型地,被移除的是FM材料116与硬掩模材料118上的部分。可通过各向异性蚀刻来移除隔离层122以便移除隔离层122的水平部分(即,与驻有堆叠体的衬底一般垂直的部分)。在图7中,所示隔离层122具有刻面,这是各向异性蚀刻的常见产物。
在图8中,例如通过反应离子蚀刻或通过离子研磨来移除FM材料114与AFM材料116的未被隔离层122所覆盖的部分。在一些实施例中,一些AFM材料116可在FM材料114与隔离层122的边缘上再沉积,且归因于材料移除过程,形成示为放射状层124的环形层。如果存在,该再沉积的AFM材料的厚度通常小于约20nm,在一些实施例中约3-6nm厚。氧化再沉积的放射状层124以便提供非导电材料可能是合乎要求的。替代地,环形层124可能是来自FM材料与AFM材料的移除过程的反应产物,且可包括那些材料的(多种)氧化物、(多种)碳化物、和/或(多种)氮化物。示为堆叠体1001的所得结构包括配置成准备好被用作磁性隧穿结单元的功能层。
在图9中,在堆叠体1001上施加阻挡层125。该分隔件或阻挡层125在堆叠体1001与其各层周围提供非多孔阻挡体。水平布置的阻挡层材料可被移除(例如,被蚀刻);图10。所得结构示为堆叠体1002。
图11与12示出将堆叠体1002装入电绝缘材料102中(图11)以及然后移除一部分该绝缘材料102以使其与硬掩模材料118齐平(图12)。
在图13中,如果硬掩模材料118是非导电材料,去除硬掩模材料118并用导电材料107(例如,诸如Cu、W、Al、Ag与Au等的金属)来替换,这将成为所得磁性隧穿结单元的电极(例如,磁性隧穿结单元10的电极17)。在施加导电材料107的步骤期间,蚀刻停止体115向FM材料112提供机械及化学保护。但是,如果硬掩模材料118是导电的(例如,金属),则保持硬掩模材料118并在材料118上布置导电材料107。在图14中,移除过量导电材料107以便获取期望形状的所得电极。在图15与图16中,所得磁性隧穿结单元被示作单元1100。
磁性隧穿结单元1100包括铁磁(FM)自由层1112和铁磁(FM)基准(即,被钉扎)层1114。反铁磁(AFM)钉扎层1116紧邻FM被钉扎层1114。由阻挡层1113来分隔开FM自由层1112与FM被钉扎层1114。FM层1112、1114可由例如Fe、Co、或Ni以及诸如NiFe、CoFe与CoFeB的其合金等任何有用铁磁(FM)材料制成。第一电极1105经由AFM层1116与FM被钉扎层1114电接触,而第二电极1107经由层1115与FM基准层1112电接触。电极1115、1117将铁磁层1112、1114电连接至提供通过层1112、1114的读写电流的控制电路。
放射状地至少包围阻挡层1113的是隔离层1122。隔离层1122向阻挡层1113提供针对可能造成选择性电击穿或沿着阻挡体边缘的电流分路或化学腐蚀的高能离子或化物物种的保护。放射状地至少包围FM自由层1112,并置于隔离层1122与FM自由层1112之间的是保护层1120。保护层1120增强FM自由层1112的有效磁性质,有效磁性质包括自由层的有效矫顽力、有效磁各向异性、有效磁矩散步、或有效自旋极化。在一些实施例中,保护层1120抑制例如在FM自由层1112与隔离层1122之间的贯穿保护层的原子、离子或分子的迁移和/或扩散。放射状地包围保护层1120与隔离层1122的是环形层1124,环形层1124通常由来自FM被钉扎层1114、AFM钉扎层1116、或其氧化物和/或氮化物的材料制成。通过具有隔离层外部的环形层1124,隔离层1122抑制并优选防止通过环形层1124从第一电极1105到第二电极1107的电流传导,且因此抑制并优选防止FM自由层1112的旁路。在图16中示出这些各种环形层的视图,在其中可观察到FM自由层1112被保护层1120、隔离层1122、以及环形层1124环绕。放射状地包围环形层1124的是非多孔阻挡体或分隔层1125。尽管在图16中示出各环绕层在FM自由层1112周围具有变化的厚度,但是在一些实施例中,当各层环绕FM自由层1112与任何中间层时,各层厚度将是恒定的。
从而公开了具有放射状阻挡体的存储器单元的实施例。上述的实现和其他实现落入所附权利要求的范围内。本领域内技术人员将理解,本公开可通过这里公开以外的其它实施方式来实现。所披露的实施例以阐述而非限定为目的给出,并且本发明仅由所附权利要求书限定。

Claims (20)

1.一种磁性隧穿结单元,包括:
铁磁自由层、铁磁被钉扎层、以及它们之间的阻挡层;
放射状地至少包围所述自由层的保护层;
放射状地至少包围所述阻挡层的电绝缘隔离层;以及
放射状地包围所述自由层、被钉扎层、阻挡层、保护层、以及隔离层的全部的绝缘材料。
2.如权利要求1所述的磁性隧穿结单元,其特征在于,所述保护层包括Si3N4、SiO2、SiOxNy、AlN、MgO、Al2O3、Ta2O5、Ta、Ru、W、TiW、TaN或TiN。
3.如权利要求1所述的磁性隧穿结单元,其特征在于,所述隔离层包括Si3N4、SiO2、SiOxNy、SiOCN、Ta2O5、Al2O3或MgO。
4.如权利要求1所述的磁性隧穿结单元,其特征在于,所述隔离层放射状地包围所述阻挡层与所述自由层。
5.如权利要求4所述的磁性隧穿结单元,其特征在于,所述隔离层放射状地包围所述阻挡层、所述自由层以及至少部分的所述保护层。
6.如权利要求1所述的磁性隧穿结单元,其特征在于,还包括所述隔离层与所述绝缘材料之间的环形层。
7.如权利要求6所述的磁性隧穿结单元,其特征在于,所述环形层包括反铁磁规则材料、其氧化物或其氮化物。
8.如权利要求6所述的磁性隧穿结单元,其特征在于,还包括紧邻所述被钉扎层的钉扎层,所述钉扎层包括反铁磁规则材料,且所述环形层包括反铁磁规则材料、其氧化物或其氮化物。
9.如权利要求1所述的磁性隧穿结单元,其特征在于,还包括与所述阻挡层相对的紧邻所述自由层的金属层。
10.如权利要求1所述的磁性隧穿结单元,其特征在于,所述保护层抑制来自所述自由层的材料的放射状迁移。
11.如权利要求10所述的磁性隧穿结单元,其特征在于,所述保护层抑制进入所述自由层或从所述自由层出来的Mn、O、B、Mg、N2与H2O材料中的任一种的放射状迁移或扩散。
12.一种磁性隧穿结单元,包括:
铁磁自由层、铁磁被钉扎层、以及它们之间的阻挡层;
放射状地至少包围所述自由层的保护层,其中所述保护层抑制进入所述自由层或从所述自由层出来的材料的放射状迁移或扩散;以及
放射状地包围所述自由层、被钉扎层、阻挡层、以及保护层的全部的绝缘材料。
13.如权利要求12所述的磁性隧穿结单元,其特征在于,所述保护层抑制进入所述自由层或从所述自由层出来的Mn、O、B、Mg、N2与H2O材料中的任一种的放射状迁移或扩散。
14.如权利要求12所述的磁性隧穿结单元,其特征在于,所述保护层包括Si3N4、SiO2、SiOxNy、AlN、MgO、Al2O3、Ta2O5、Ta、Ru、W、TiW、TaN或TiN。
15.如权利要求12所述的磁性隧穿结单元,其特征在于,还包括放射状地至少包围所述阻挡层并处于所述阻挡层与所述绝缘材料之间的电绝缘隔离层。
16.一种制造磁性隧穿结单元的方法,包括:
提供起始堆叠体,所述起始堆叠体按顺序包括铁磁被钉扎层、阻挡层、铁磁自由层、金属层、以及掩模层;
移除所述掩模层的一部分并留下图案化的掩模材料;
移除所述金属层的一部分与所述自由层的一部分并留下图案化的金属层与图案化的自由层;
形成至少包围所述自由层的放射状保护层;
移除所述阻挡层的一部分并留下图案化的阻挡层;以及
形成至少包围所述图案化的阻挡层的放射状隔离层。
17.如权利要求16所述的方法,其特征在于,形成至少包围所述图案化的阻挡层的放射状隔离层包括形成至少包围所述图案化的阻挡层与至少一部分的所述放射状保护层的放射状隔离层。
18.如权利要求16所述的方法,其特征在于,形成至少包围所述自由层的放射状保护层包括沉积至少包围所述自由层的保护层。
19.如权利要求16所述的方法,其特征在于,形成至少包围所述自由层的放射状保护层包括形成至少包围所述自由层与所述金属层的放射状保护层。
20.如权利要求16所述的方法,其特征在于,还包括:
移除所述被钉扎层的一部分并留下图案化的被钉扎层;以及
用绝缘材料包住所述图案化的被钉扎层、所述隔离层、所述保护层、所述图案化的阻挡层、所述图案化的自由层。
CN200980153752.9A 2008-11-11 2009-11-11 具有放射状阻挡体的磁存储器单元 Expired - Fee Related CN102272964B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/268,638 2008-11-11
US12/268,638 US8043732B2 (en) 2008-11-11 2008-11-11 Memory cell with radial barrier
PCT/US2009/063992 WO2010056721A1 (en) 2008-11-11 2009-11-11 Magnetic memory cells with radial barrier

Publications (2)

Publication Number Publication Date
CN102272964A true CN102272964A (zh) 2011-12-07
CN102272964B CN102272964B (zh) 2015-06-24

Family

ID=41692954

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980153752.9A Expired - Fee Related CN102272964B (zh) 2008-11-11 2009-11-11 具有放射状阻挡体的磁存储器单元

Country Status (6)

Country Link
US (2) US8043732B2 (zh)
EP (1) EP2366199B1 (zh)
JP (1) JP5425213B2 (zh)
KR (1) KR101348231B1 (zh)
CN (1) CN102272964B (zh)
WO (1) WO2010056721A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105637666A (zh) * 2013-10-15 2016-06-01 艾沃思宾技术公司 进行蚀刻期间在磁阻型器件中的磁性层的隔离
CN106058041A (zh) * 2015-04-16 2016-10-26 台湾积体电路制造股份有限公司 用于工艺损伤最小化的mram结构
CN108987571A (zh) * 2017-05-31 2018-12-11 台湾积体电路制造股份有限公司 半导体装置及其形成方法
CN109473542A (zh) * 2017-09-07 2019-03-15 爱思开海力士有限公司 电子设备及其制造方法
US11195989B2 (en) 2017-03-09 2021-12-07 Sony Semiconductor Solutions Corporation Ferromagnetic tunnel junction element and method of manufacturing the same

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7935435B2 (en) * 2008-08-08 2011-05-03 Seagate Technology Llc Magnetic memory cell construction
US7939188B2 (en) * 2008-10-27 2011-05-10 Seagate Technology Llc Magnetic stack design
US8043732B2 (en) * 2008-11-11 2011-10-25 Seagate Technology Llc Memory cell with radial barrier
US8022547B2 (en) 2008-11-18 2011-09-20 Seagate Technology Llc Non-volatile memory cells including small volume electrical contact regions
KR101255474B1 (ko) * 2008-12-10 2013-04-16 가부시키가이샤 히타치세이사쿠쇼 자기 저항 효과 소자, 그것을 이용한 자기 메모리 셀 및 자기 랜덤 액세스 메모리
US8455117B2 (en) * 2009-03-04 2013-06-04 Seagate Technology Llc Bit-patterned stack with antiferromagnetic shell
US8681536B2 (en) * 2010-01-15 2014-03-25 Qualcomm Incorporated Magnetic tunnel junction (MTJ) on planarized electrode
US8981502B2 (en) 2010-03-29 2015-03-17 Qualcomm Incorporated Fabricating a magnetic tunnel junction storage element
US8379350B2 (en) * 2010-06-30 2013-02-19 Tdk Corporation CPP-type magnetoresistive element including spacer layer
JP5209011B2 (ja) * 2010-09-16 2013-06-12 株式会社東芝 磁気抵抗素子
KR20120058113A (ko) * 2010-11-29 2012-06-07 삼성전자주식회사 자기 터널 접합 구조체의 제조 방법 및 이를 이용하는 자기 메모리 소자의 제조 방법
US8472240B2 (en) * 2011-05-16 2013-06-25 Micron Technology, Inc. Spin torque transfer memory cell structures and methods
JP2013048210A (ja) 2011-07-22 2013-03-07 Toshiba Corp 磁気抵抗素子
KR20130017267A (ko) * 2011-08-10 2013-02-20 에스케이하이닉스 주식회사 반도체 장치 및 그 제조 방법
US8704320B2 (en) * 2011-09-12 2014-04-22 Qualcomm Incorporated Strain induced reduction of switching current in spin-transfer torque switching devices
US9007818B2 (en) 2012-03-22 2015-04-14 Micron Technology, Inc. Memory cells, semiconductor device structures, systems including such cells, and methods of fabrication
US8923038B2 (en) 2012-06-19 2014-12-30 Micron Technology, Inc. Memory cells, semiconductor device structures, memory systems, and methods of fabrication
US9054030B2 (en) 2012-06-19 2015-06-09 Micron Technology, Inc. Memory cells, semiconductor device structures, memory systems, and methods of fabrication
US20140037991A1 (en) 2012-07-31 2014-02-06 International Business Machines Corporation Magnetic random access memory with synthetic antiferromagnetic storage layers
US8852762B2 (en) 2012-07-31 2014-10-07 International Business Machines Corporation Magnetic random access memory with synthetic antiferromagnetic storage layers and non-pinned reference layers
US9379315B2 (en) 2013-03-12 2016-06-28 Micron Technology, Inc. Memory cells, methods of fabrication, semiconductor device structures, and memory systems
US9368714B2 (en) 2013-07-01 2016-06-14 Micron Technology, Inc. Memory cells, methods of operation and fabrication, semiconductor device structures, and memory systems
US9466787B2 (en) 2013-07-23 2016-10-11 Micron Technology, Inc. Memory cells, methods of fabrication, semiconductor device structures, memory systems, and electronic systems
US9203017B2 (en) 2013-08-02 2015-12-01 Samsung Electronics Co., Ltd. Method and system for providing magnetic junctions including a package structure usable in spin transfer torque memories
JP6134611B2 (ja) * 2013-08-29 2017-05-24 株式会社アルバック 磁気抵抗素子の製造方法
US9178134B2 (en) 2013-08-30 2015-11-03 Masahiko Nakayama Magnetoresistive element and method of manufacturing the same
US9257636B2 (en) 2013-09-11 2016-02-09 Taiwan Semiconductor Manufacturing Co., Ltd. Perpendicular magnetic random-access memory (MRAM) formation by direct self-assembly method
US9461242B2 (en) 2013-09-13 2016-10-04 Micron Technology, Inc. Magnetic memory cells, methods of fabrication, semiconductor devices, memory systems, and electronic systems
CN104465984B (zh) * 2013-09-17 2017-08-25 中芯国际集成电路制造(北京)有限公司 磁性隧道结及其形成方法
US9608197B2 (en) 2013-09-18 2017-03-28 Micron Technology, Inc. Memory cells, methods of fabrication, and semiconductor devices
KR20150036987A (ko) 2013-09-30 2015-04-08 에스케이하이닉스 주식회사 전자 장치 및 그 제조 방법
US10454024B2 (en) 2014-02-28 2019-10-22 Micron Technology, Inc. Memory cells, methods of fabrication, and memory devices
US9257638B2 (en) * 2014-03-27 2016-02-09 Lam Research Corporation Method to etch non-volatile metal materials
US9281466B2 (en) 2014-04-09 2016-03-08 Micron Technology, Inc. Memory cells, semiconductor structures, semiconductor devices, and methods of fabrication
US9269888B2 (en) 2014-04-18 2016-02-23 Micron Technology, Inc. Memory cells, methods of fabrication, and semiconductor devices
US9349939B2 (en) * 2014-05-23 2016-05-24 Qualcomm Incorporated Etch-resistant protective coating for a magnetic tunnel junction device
US9349945B2 (en) 2014-10-16 2016-05-24 Micron Technology, Inc. Memory cells, semiconductor devices, and methods of fabrication
US9768377B2 (en) 2014-12-02 2017-09-19 Micron Technology, Inc. Magnetic cell structures, and methods of fabrication
KR102212558B1 (ko) 2014-12-22 2021-02-08 삼성전자주식회사 자기 메모리 소자의 제조 방법
US10439131B2 (en) 2015-01-15 2019-10-08 Micron Technology, Inc. Methods of forming semiconductor devices including tunnel barrier materials
US9559294B2 (en) * 2015-01-29 2017-01-31 Taiwan Semiconductor Manufacturing Co., Ltd. Self-aligned magnetoresistive random-access memory (MRAM) structure for process damage minimization
US10008662B2 (en) 2015-03-12 2018-06-26 Taiwan Semiconductor Manufacturing Co., Ltd. Perpendicular magnetic tunneling junction (MTJ) for improved magnetoresistive random-access memory (MRAM) process
US9972775B2 (en) 2015-03-12 2018-05-15 Globalfoundries Singapore Pte. Ltd. Integrated magnetic random access memory with logic device having low-k interconnects
US20170062520A1 (en) * 2015-09-01 2017-03-02 Kabushiki Kaisha Toshiba Magnetoresistive memory device and manufacturing method of the same
US10128310B2 (en) 2016-03-14 2018-11-13 Toshiba Memory Corporation Magnetoresistive memory device and manufacturing method of the same
US10263179B2 (en) * 2017-07-18 2019-04-16 Nxp B.V. Method of forming tunnel magnetoresistance (TMR) elements and TMR sensor element
US20190392879A1 (en) * 2018-06-26 2019-12-26 Spin Memory, Inc. MAGNETIC MEMORY ELEMENT HAVING MgO ISOLATION LAYER
US10720487B2 (en) * 2018-06-28 2020-07-21 Taiwan Semiconductor Manufacturing Co., Ltd. Structure and formation method of semiconductor device with magnetic element
US10868157B2 (en) * 2018-09-26 2020-12-15 Taiwan Semiconductor Manufacturing Co., Ltd. Gated metal-insulator-semiconductor (MIS) tunnel diode having negative transconductance
JP2021150485A (ja) * 2020-03-19 2021-09-27 キオクシア株式会社 磁気記憶装置及び磁気記憶装置の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050048674A1 (en) * 2003-08-29 2005-03-03 Xizeng Shi Method and system for providing a magnetic element including passivation structures
US20050185459A1 (en) * 2003-03-24 2005-08-25 Yoshiaki Fukuzumi Semiconductor memory device comprising magneto resistive element and its manufacturing method
GB2422735A (en) * 2005-01-31 2006-08-02 Infineon Technologies Ag Magnetoresistive tunnelling junction memory with reference layer sandwiched between two antiferromagnetically coupled ferromagnetic free layers
US20080265347A1 (en) * 2007-04-24 2008-10-30 Iwayama Masayoshi Magnetoresistive element and manufacturing method thereof

Family Cites Families (197)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252797A (ja) 1985-08-30 1987-03-07 Mitsubishi Electric Corp 半導体記憶装置
US5191223A (en) 1991-07-03 1993-03-02 International Business Machines Corporation Device for selective magnetization and method
KR0158485B1 (ko) 1995-03-31 1999-02-01 김광호 본딩옵션용 워드라인전압 승압회로
US5646419A (en) 1995-04-07 1997-07-08 California Institute Of Technology n-type wide bandgap semiconductors grown on a p-type layer to form hole injection pn heterojunctions and methods of fabricating the same
US5761115A (en) 1996-05-30 1998-06-02 Axon Technologies Corporation Programmable metallization cell structure and method of making same
US5920446A (en) 1998-01-06 1999-07-06 International Business Machines Corporation Ultra high density GMR sensor
US6072718A (en) 1998-02-10 2000-06-06 International Business Machines Corporation Magnetic memory devices having multiple magnetic tunnel junctions therein
JP3672435B2 (ja) 1998-04-22 2005-07-20 富士通株式会社 不揮発性メモリ装置
US6252796B1 (en) 1998-08-14 2001-06-26 U.S. Philips Corporation Device comprising a first and a second ferromagnetic layer separated by a non-magnetic spacer layer
US6178136B1 (en) 1998-09-28 2001-01-23 Texas Instruments Incorporated Semiconductor memory device having Y-select gate voltage that varies according to memory cell access operation
JP2000132961A (ja) 1998-10-23 2000-05-12 Canon Inc 磁気薄膜メモリ、磁気薄膜メモリの読出し方法、及び磁気薄膜メモリの書込み方法
US6542000B1 (en) 1999-07-30 2003-04-01 Iowa State University Research Foundation, Inc. Nonvolatile programmable logic devices
GB9925213D0 (en) 1999-10-25 1999-12-22 Univ Cambridge Tech Magnetic logic elements
US6469926B1 (en) 2000-03-22 2002-10-22 Motorola, Inc. Magnetic element with an improved magnetoresistance ratio and fabricating method thereof
US6381106B1 (en) 2000-04-12 2002-04-30 International Business Machines Corporation Top spin valve sensor that has a free layer structure with a cobalt iron boron (cofeb) layer
US6700753B2 (en) 2000-04-12 2004-03-02 Seagate Technology Llc Spin valve structures with specular reflection layers
TW504713B (en) 2000-04-28 2002-10-01 Motorola Inc Magnetic element with insulating veils and fabricating method thereof
US6979586B2 (en) 2000-10-06 2005-12-27 Headway Technologies, Inc. Magnetic random access memory array with coupled soft adjacent magnetic layer
FR2817998B1 (fr) 2000-12-07 2003-01-10 Commissariat Energie Atomique Dispositif magnetique a polarisation de spin et a rotation d'aimantation, memoire et procede d'ecriture utilisant ce dispositif
FR2817999B1 (fr) 2000-12-07 2003-01-10 Commissariat Energie Atomique Dispositif magnetique a polarisation de spin et a empilement(s) tri-couche(s) et memoire utilisant ce dispositif
US6584016B2 (en) 2001-01-08 2003-06-24 Azalea Microelectronics Corporation Non-volatile memory architecture and method of operation
JP3677455B2 (ja) 2001-02-13 2005-08-03 Necエレクトロニクス株式会社 不揮発性磁気記憶装置およびその製造方法
US7189435B2 (en) 2001-03-14 2007-03-13 University Of Massachusetts Nanofabrication
US6744086B2 (en) 2001-05-15 2004-06-01 Nve Corporation Current switched magnetoresistive memory cell
JP3565268B2 (ja) 2001-06-22 2004-09-15 株式会社東芝 磁気抵抗効果素子、磁気ヘッド及び磁気再生装置
US6569745B2 (en) 2001-06-28 2003-05-27 Sharp Laboratories Of America, Inc. Shared bit line cross point memory array
US6888703B2 (en) 2001-09-17 2005-05-03 Headway Technologies, Inc. Multilayered structures comprising magnetic nano-oxide layers for current perpindicular to plane GMR heads
AU2002362662A1 (en) 2001-10-09 2003-04-22 Axon Technologies Corporation Programmable microelectronic device, structure, and system, and method of forming the same
JP3834616B2 (ja) 2001-11-13 2006-10-18 国立大学法人東北大学 スピンフィルタ
FR2832542B1 (fr) 2001-11-16 2005-05-06 Commissariat Energie Atomique Dispositif magnetique a jonction tunnel magnetique, memoire et procedes d'ecriture et de lecture utilisant ce dispositif
KR100450794B1 (ko) 2001-12-13 2004-10-01 삼성전자주식회사 마그네틱 랜덤 엑세스 메모리 및 그 작동 방법
JP3888168B2 (ja) 2002-01-21 2007-02-28 ヤマハ株式会社 磁気トンネル接合素子の製法
US6650562B2 (en) 2002-01-23 2003-11-18 Hewlett-Packard Development Company, L.P. System and method for determining the logic state of a memory cell in a magnetic tunnel junction memory device
US6778421B2 (en) 2002-03-14 2004-08-17 Hewlett-Packard Development Company, Lp. Memory device array having a pair of magnetic bits sharing a common conductor line
JP4073691B2 (ja) 2002-03-19 2008-04-09 株式会社ルネサステクノロジ 半導体記憶装置
TWI222763B (en) 2002-03-29 2004-10-21 Toshiba Corp Magnetic logic element and magnetic logic element array
KR100476889B1 (ko) 2002-04-04 2005-03-17 삼성전자주식회사 플래쉬메모리의 워드라인디코더
US6897532B1 (en) * 2002-04-15 2005-05-24 Cypress Semiconductor Corp. Magnetic tunneling junction configuration and a method for making the same
US6711067B1 (en) 2002-05-08 2004-03-23 Virage Logic Corporation System and method for bit line sharing
KR20030089078A (ko) 2002-05-16 2003-11-21 주식회사 하이닉스반도체 자기터널접합소자를 갖는 자기메모리셀
US6633498B1 (en) 2002-06-18 2003-10-14 Motorola, Inc. Magnetoresistive random access memory with reduced switching field
US6781867B2 (en) 2002-07-11 2004-08-24 Micron Technology, Inc. Embedded ROM device using substrate leakage
US6850433B2 (en) 2002-07-15 2005-02-01 Hewlett-Packard Development Company, Lp. Magnetic memory device and method
US7196882B2 (en) 2002-07-23 2007-03-27 Micron Technology, Inc. Magnetic tunnel junction device and its method of fabrication
US6765819B1 (en) 2002-07-25 2004-07-20 Hewlett-Packard Development Company, Lp. Magnetic memory device having improved switching characteristics
US6714444B2 (en) 2002-08-06 2004-03-30 Grandis, Inc. Magnetic element utilizing spin transfer and an MRAM device using the magnetic element
US6888742B1 (en) 2002-08-28 2005-05-03 Grandis, Inc. Off-axis pinned layer magnetic element utilizing spin transfer and an MRAM device using the magnetic element
US6781173B2 (en) * 2002-08-29 2004-08-24 Micron Technology, Inc. MRAM sense layer area control
US6759263B2 (en) * 2002-08-29 2004-07-06 Chentsau Ying Method of patterning a layer of magnetic material
US6831312B2 (en) 2002-08-30 2004-12-14 Freescale Semiconductor, Inc. Amorphous alloys for magnetic devices
US6801415B2 (en) 2002-08-30 2004-10-05 Freescale Semiconductor, Inc. Nanocrystalline layers for improved MRAM tunnel junctions
US6711051B1 (en) 2002-09-05 2004-03-23 National Semiconductor Corporation Static RAM architecture with bit line partitioning
US6838740B2 (en) 2002-09-27 2005-01-04 Grandis, Inc. Thermally stable magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
US6958927B1 (en) 2002-10-09 2005-10-25 Grandis Inc. Magnetic element utilizing spin-transfer and half-metals and an MRAM device using the magnetic element
US6639830B1 (en) 2002-10-22 2003-10-28 Btg International Ltd. Magnetic memory device
KR100536592B1 (ko) 2002-11-01 2005-12-14 삼성전자주식회사 자기 메모리 및 그 제조 방법
CN100533589C (zh) * 2002-11-26 2009-08-26 株式会社东芝 磁单元和磁存储器
JP2004179483A (ja) 2002-11-28 2004-06-24 Hitachi Ltd 不揮発性磁気メモリ
US6909633B2 (en) 2002-12-09 2005-06-21 Applied Spintronics Technology, Inc. MRAM architecture with a flux closed data storage layer
US7190611B2 (en) 2003-01-07 2007-03-13 Grandis, Inc. Spin-transfer multilayer stack containing magnetic layers with resettable magnetization
US6829161B2 (en) 2003-01-10 2004-12-07 Grandis, Inc. Magnetostatically coupled magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
US6845038B1 (en) 2003-02-01 2005-01-18 Alla Mikhailovna Shukh Magnetic tunnel junction memory device
US6864551B2 (en) 2003-02-05 2005-03-08 Applied Spintronics Technology, Inc. High density and high programming efficiency MRAM design
US7126200B2 (en) 2003-02-18 2006-10-24 Micron Technology, Inc. Integrated circuits with contemporaneously formed array electrodes and logic interconnects
US6847547B2 (en) 2003-02-28 2005-01-25 Grandis, Inc. Magnetostatically coupled magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
JP3906212B2 (ja) 2003-03-11 2007-04-18 株式会社東芝 磁気ランダムアクセスメモリ
US6998150B2 (en) 2003-03-12 2006-02-14 Headway Technologies, Inc. Method of adjusting CoFe free layer magnetostriction
US6963500B2 (en) 2003-03-14 2005-11-08 Applied Spintronics Technology, Inc. Magnetic tunneling junction cell array with shared reference layer for MRAM applications
US7092279B1 (en) 2003-03-24 2006-08-15 Sheppard Douglas P Shared bit line memory device and method
US7067866B2 (en) 2003-03-31 2006-06-27 Applied Spintronics Technology, Inc. MRAM architecture and a method and system for fabricating MRAM memories utilizing the architecture
US6933155B2 (en) 2003-05-21 2005-08-23 Grandis, Inc. Methods for providing a sub .15 micron magnetic memory structure
US6834005B1 (en) 2003-06-10 2004-12-21 International Business Machines Corporation Shiftable magnetic shift register and method of using the same
US6885582B2 (en) 2003-06-12 2005-04-26 Hewlett-Packard Development Company, L.P. Magnetic memory storage device
US6818961B1 (en) 2003-06-30 2004-11-16 Freescale Semiconductor, Inc. Oblique deposition to induce magnetic anisotropy for MRAM cells
US7088624B2 (en) 2003-07-18 2006-08-08 Infineon Technologies, A.G. System of multiplexed data lines in a dynamic random access memory
US7245462B2 (en) 2003-08-21 2007-07-17 Grandis, Inc. Magnetoresistive element having reduced spin transfer induced noise
US6985385B2 (en) 2003-08-26 2006-01-10 Grandis, Inc. Magnetic memory element utilizing spin transfer switching and storing multiple bits
US6943040B2 (en) 2003-08-28 2005-09-13 Headway Technologes, Inc. Magnetic random access memory designs with controlled magnetic switching mechanism by magnetostatic coupling
US7161829B2 (en) 2003-09-19 2007-01-09 Grandis, Inc. Current confined pass layer for magnetic elements utilizing spin-transfer and an MRAM device using such magnetic elements
US7116530B2 (en) 2003-09-30 2006-10-03 Hitachi Global Storage Technologies Netherlands B.V. Thin differential spin valve sensor having both pinned and self pinned structures for reduced difficulty in AFM layer polarity setting
JP2005116923A (ja) 2003-10-10 2005-04-28 Hitachi Ltd スピントルクを用いた不揮発性磁気メモリセルおよびこれを用いた磁気ランダムアクセスメモリ
US7112454B2 (en) * 2003-10-14 2006-09-26 Micron Technology, Inc. System and method for reducing shorting in memory cells
US7282755B2 (en) 2003-11-14 2007-10-16 Grandis, Inc. Stress assisted current driven switching for magnetic memory applications
US7009877B1 (en) 2003-11-14 2006-03-07 Grandis, Inc. Three-terminal magnetostatically coupled spin transfer-based MRAM cell
US7093347B2 (en) 2003-12-05 2006-08-22 Seagate Technology Llc Method of making a current-perpendicular to the plane (CPP) magnetoresistive (MR) sensor
US6949435B2 (en) * 2003-12-08 2005-09-27 Sharp Laboratories Of America, Inc. Asymmetric-area memory cell
US7138648B2 (en) 2003-12-17 2006-11-21 Palo Alto Research Center Incorporated Ultraviolet group III-nitride-based quantum well laser diodes
US20050136600A1 (en) 2003-12-22 2005-06-23 Yiming Huai Magnetic elements with ballistic magnetoresistance utilizing spin-transfer and an MRAM device using such magnetic elements
US7072209B2 (en) 2003-12-29 2006-07-04 Micron Technology, Inc. Magnetic memory having synthetic antiferromagnetic pinned layer
US20050150537A1 (en) 2004-01-13 2005-07-14 Nanocoolers Inc. Thermoelectric devices
US20050150535A1 (en) 2004-01-13 2005-07-14 Nanocoolers, Inc. Method for forming a thin-film thermoelectric device including a phonon-blocking thermal conductor
US7105372B2 (en) 2004-01-20 2006-09-12 Headway Technologies, Inc. Magnetic tunneling junction film structure with process determined in-plane magnetic anisotropy
US7110287B2 (en) 2004-02-13 2006-09-19 Grandis, Inc. Method and system for providing heat assisted switching of a magnetic element utilizing spin transfer
US7242045B2 (en) 2004-02-19 2007-07-10 Grandis, Inc. Spin transfer magnetic element having low saturation magnetization free layers
US6967863B2 (en) 2004-02-25 2005-11-22 Grandis, Inc. Perpendicular magnetization magnetic element utilizing spin transfer
US6992359B2 (en) 2004-02-26 2006-01-31 Grandis, Inc. Spin transfer magnetic element with free layers having high perpendicular anisotropy and in-plane equilibrium magnetization
US6965522B2 (en) 2004-03-17 2005-11-15 Macronix International Co., Ltd. Tunneling diode magnetic junction memory
JP2007531177A (ja) 2004-04-02 2007-11-01 Tdk株式会社 磁気抵抗ヘッドを安定化させる合成フリー層
US20070035890A1 (en) 2004-04-02 2007-02-15 Tdk Corporation Composed free layer for stabilizing magnetoresistive head having low magnetostriction
US7233039B2 (en) 2004-04-21 2007-06-19 Grandis, Inc. Spin transfer magnetic elements with spin depolarization layers
US7274057B2 (en) 2004-04-26 2007-09-25 International Business Machines Corporation Techniques for spin-flop switching with offset field
US20050269612A1 (en) 2004-05-11 2005-12-08 Integrated Magnetoelectronics Solid-state component based on current-induced magnetization reversal
US7057921B2 (en) 2004-05-11 2006-06-06 Grandis, Inc. Spin barrier enhanced dual magnetoresistance effect element and magnetic memory using the same
US7088609B2 (en) 2004-05-11 2006-08-08 Grandis, Inc. Spin barrier enhanced magnetoresistance effect element and magnetic memory using the same
JP4377751B2 (ja) 2004-06-10 2009-12-02 シャープ株式会社 クロスポイント構造の半導体記憶装置及びその製造方法
US7098494B2 (en) 2004-06-16 2006-08-29 Grandis, Inc. Re-configurable logic elements using heat assisted magnetic tunneling elements
US7411235B2 (en) 2004-06-16 2008-08-12 Kabushiki Kaisha Toshiba Spin transistor, programmable logic circuit, and magnetic memory
US7067330B2 (en) 2004-07-16 2006-06-27 Headway Technologies, Inc. Magnetic random access memory array with thin conduction electrical read and write lines
US7576956B2 (en) * 2004-07-26 2009-08-18 Grandis Inc. Magnetic tunnel junction having diffusion stop layer
US7098495B2 (en) 2004-07-26 2006-08-29 Freescale Semiconducor, Inc. Magnetic tunnel junction element structures and methods for fabricating the same
DE102004041894B3 (de) 2004-08-30 2006-03-09 Infineon Technologies Ag Speicherbauelement (CBRAM) mit Speicherzellen auf der Basis eines in seinem Widerstandswert änderbaren aktiven Festkörper-Elektrolytmaterials und Herstellungsverfahren dafür
US7369427B2 (en) 2004-09-09 2008-05-06 Grandis, Inc. Magnetic elements with spin engineered insertion layers and MRAM devices using the magnetic elements
US7336525B2 (en) 2004-10-18 2008-02-26 Kabushiki Kaisha Toshiba Nonvolatile memory for logic circuits
US7126202B2 (en) 2004-11-16 2006-10-24 Grandis, Inc. Spin scattering and heat assisted switching of a magnetic element
JP2006179701A (ja) 2004-12-22 2006-07-06 Toshiba Corp 磁気ランダムアクセスメモリ
JPWO2006070803A1 (ja) * 2004-12-28 2008-06-12 日本電気株式会社 磁気ランダムアクセスメモリ及びその製造方法
US7241631B2 (en) 2004-12-29 2007-07-10 Grandis, Inc. MTJ elements with high spin polarization layers configured for spin-transfer switching and spintronics devices using the magnetic elements
US7173848B2 (en) 2005-02-01 2007-02-06 Meglabs, Inc. Magnetic random access memory with memory cell stacks having more than two magnetic states
US7099186B1 (en) 2005-02-10 2006-08-29 Infineon Technologies Ag Double-decker MRAM cells with scissor-state angled reference layer magnetic anisotropy and method for fabricating
KR100632953B1 (ko) 2005-03-07 2006-10-12 삼성전자주식회사 메모리 소자, 상기 메모리 소자를 위한 메모리 배열 및 상기 메모리 배열의 구동 방법
US7285836B2 (en) 2005-03-09 2007-10-23 Maglabs, Inc. Magnetic random access memory with stacked memory cells having oppositely-directed hard-axis biasing
US7241632B2 (en) * 2005-04-14 2007-07-10 Headway Technologies, Inc. MTJ read head with sidewall spacers
JP2006294191A (ja) 2005-04-14 2006-10-26 Toshiba Corp 磁気ランダムアクセスメモリのデータ読み出し方法
US7602032B2 (en) * 2005-04-29 2009-10-13 Altis Semiconductor Snc Memory having cap structure for magnetoresistive junction and method for structuring the same
US7230265B2 (en) 2005-05-16 2007-06-12 International Business Machines Corporation Spin-polarization devices using rare earth-transition metal alloys
US7289356B2 (en) 2005-06-08 2007-10-30 Grandis, Inc. Fast magnetic memory devices utilizing spin transfer and magnetic elements used therein
US7518835B2 (en) * 2005-07-01 2009-04-14 Grandis, Inc. Magnetic elements having a bias field and magnetic memory devices using the magnetic elements
JP4504273B2 (ja) 2005-07-06 2010-07-14 株式会社東芝 磁気抵抗効果素子および磁気メモリ
US7411765B2 (en) 2005-07-18 2008-08-12 Hitachi Global Storage Technologies Netherlands B.V. CPP-GMR sensor with non-orthogonal free and reference layer magnetization orientation
KR100725380B1 (ko) 2005-07-28 2007-06-07 삼성전자주식회사 반도체 메모리 장치의 전압 발생 회로, 이를 포함하는반도체 메모리 장치 및 반도체 메모리 장치의 전압 발생방법
US7230845B1 (en) 2005-07-29 2007-06-12 Grandis, Inc. Magnetic devices having a hard bias field and magnetic memory devices using the magnetic devices
US7489541B2 (en) 2005-08-23 2009-02-10 Grandis, Inc. Spin-transfer switching magnetic elements using ferrimagnets and magnetic memories using the magnetic elements
US7224601B2 (en) 2005-08-25 2007-05-29 Grandis Inc. Oscillating-field assisted spin torque switching of a magnetic tunnel junction memory element
US7272035B1 (en) 2005-08-31 2007-09-18 Grandis, Inc. Current driven switching of magnetic storage cells utilizing spin transfer and magnetic memories using such cells
US7272034B1 (en) 2005-08-31 2007-09-18 Grandis, Inc. Current driven switching of magnetic storage cells utilizing spin transfer and magnetic memories using such cells
US20070054450A1 (en) * 2005-09-07 2007-03-08 Magic Technologies, Inc. Structure and fabrication of an MRAM cell
US7532442B2 (en) * 2005-09-19 2009-05-12 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive (MR) elements having pinning layers formed from permanent magnetic material
US7973349B2 (en) 2005-09-20 2011-07-05 Grandis Inc. Magnetic device having multilayered free ferromagnetic layer
US7807492B2 (en) 2005-09-28 2010-10-05 Northern Lights Semiconductor Corp. Magnetoresistive random access memory with improved layout design and process thereof
US7403418B2 (en) 2005-09-30 2008-07-22 Silicon Storage Technology, Inc. Word line voltage boosting circuit and a memory array incorporating same
US20070085068A1 (en) 2005-10-14 2007-04-19 Dmytro Apalkov Spin transfer based magnetic storage cells utilizing granular free layers and magnetic memories using such cells
JP4444241B2 (ja) 2005-10-19 2010-03-31 株式会社東芝 磁気抵抗効果素子、磁気ランダムアクセスメモリ、電子カード及び電子装置
US7286395B2 (en) 2005-10-27 2007-10-23 Grandis, Inc. Current driven switched magnetic storage cells having improved read and write margins and magnetic memories using such cells
US20070096229A1 (en) 2005-10-28 2007-05-03 Masatoshi Yoshikawa Magnetoresistive element and magnetic memory device
US7411815B2 (en) 2005-11-14 2008-08-12 Infineon Technologies Ag Memory write circuit
US7187577B1 (en) 2005-11-23 2007-03-06 Grandis, Inc. Method and system for providing current balanced writing for memory cells and magnetic devices
US7880249B2 (en) * 2005-11-30 2011-02-01 Magic Technologies, Inc. Spacer structure in MRAM cell and method of its fabrication
US7485503B2 (en) 2005-11-30 2009-02-03 Intel Corporation Dielectric interface for group III-V semiconductor device
US20070132049A1 (en) 2005-12-12 2007-06-14 Stipe Barry C Unipolar resistance random access memory (RRAM) device and vertically stacked architecture
US7430135B2 (en) * 2005-12-23 2008-09-30 Grandis Inc. Current-switched spin-transfer magnetic devices with reduced spin-transfer switching current density
US7466583B2 (en) 2006-01-13 2008-12-16 Magic Technologies, Inc. MRAM with split read-write cell structures
US7630177B2 (en) * 2006-02-14 2009-12-08 Hitachi Global Storage Technologies Netherlands B.V. Tunnel MR head with closed-edge laminated free layer
US7515457B2 (en) 2006-02-24 2009-04-07 Grandis, Inc. Current driven memory cells having enhanced current and enhanced current symmetry
US7732881B2 (en) 2006-11-01 2010-06-08 Avalanche Technology, Inc. Current-confined effect of magnetic nano-current-channel (NCC) for magnetic random access memory (MRAM)
US8183652B2 (en) 2007-02-12 2012-05-22 Avalanche Technology, Inc. Non-volatile magnetic memory with low switching current and high thermal stability
US8084835B2 (en) 2006-10-20 2011-12-27 Avalanche Technology, Inc. Non-uniform switching based non-volatile magnetic based memory
US20070246787A1 (en) 2006-03-29 2007-10-25 Lien-Chang Wang On-plug magnetic tunnel junction devices based on spin torque transfer switching
US7826174B2 (en) 2006-03-31 2010-11-02 Ricoh Company, Ltd. Information recording method and apparatus using plasmonic transmission along line of ferromagnetic nano-particles with reproducing method using fade-in memory
US20070241392A1 (en) 2006-04-14 2007-10-18 Hsin-Chang Lin Non-volatile flash memory structure and method for operating the same
US7345912B2 (en) 2006-06-01 2008-03-18 Grandis, Inc. Method and system for providing a magnetic memory structure utilizing spin transfer
US20070297220A1 (en) 2006-06-22 2007-12-27 Masatoshi Yoshikawa Magnetoresistive element and magnetic memory
US7379327B2 (en) 2006-06-26 2008-05-27 Grandis, Inc. Current driven switching of magnetic storage cells utilizing spin transfer and magnetic memories using such cells having enhanced read and write margins
US7502249B1 (en) 2006-07-17 2009-03-10 Grandis, Inc. Method and system for using a pulsed field to assist spin transfer induced switching of magnetic memory elements
JP4385156B2 (ja) 2006-07-27 2009-12-16 独立行政法人産業技術総合研究所 Ccp−cpp型巨大磁気抵抗素子
US7851840B2 (en) 2006-09-13 2010-12-14 Grandis Inc. Devices and circuits based on magnetic tunnel junctions utilizing a multilayer barrier
JP5206414B2 (ja) 2006-10-16 2013-06-12 日本電気株式会社 磁気メモリセルおよび磁気ランダムアクセスメモリ
US7572645B2 (en) 2006-11-15 2009-08-11 Everspin Technologies, Inc. Magnetic tunnel junction structure and method
US7864569B2 (en) 2006-12-01 2011-01-04 Macronix International Co., Ltd. Structure of magnetic random access memory using spin-torque transfer writing
US7598579B2 (en) 2007-01-30 2009-10-06 Magic Technologies, Inc. Magnetic tunnel junction (MTJ) to reduce spin transfer magnetization switching current
US20090218645A1 (en) 2007-02-12 2009-09-03 Yadav Technology Inc. multi-state spin-torque transfer magnetic random access memory
US7480173B2 (en) 2007-03-13 2009-01-20 Magic Technologies, Inc. Spin transfer MRAM device with novel magnetic free layer
US7738287B2 (en) 2007-03-27 2010-06-15 Grandis, Inc. Method and system for providing field biased magnetic memory devices
US7728622B2 (en) 2007-03-29 2010-06-01 Qualcomm Incorporated Software programmable logic using spin transfer torque magnetoresistive random access memory
US7486551B1 (en) 2007-04-03 2009-02-03 Grandis, Inc. Method and system for providing domain wall assisted switching of magnetic elements and magnetic memories using such magnetic elements
US7605437B2 (en) 2007-04-18 2009-10-20 Everspin Technologies, Inc. Spin-transfer MRAM structure and methods
US7782661B2 (en) 2007-04-24 2010-08-24 Magic Technologies, Inc. Boosted gate voltage programming for spin-torque MRAM array
JP2008294420A (ja) * 2007-04-24 2008-12-04 Toshiba Corp 磁気抵抗素子及びその製造方法
JP2008277542A (ja) 2007-04-27 2008-11-13 Toshiba Corp 磁気ランダムアクセスメモリ及びその製造方法
US7539047B2 (en) 2007-05-08 2009-05-26 Honeywell International, Inc. MRAM cell with multiple storage elements
US7486552B2 (en) 2007-05-21 2009-02-03 Grandis, Inc. Method and system for providing a spin transfer device with improved switching characteristics
US7573736B2 (en) 2007-05-22 2009-08-11 Taiwan Semiconductor Manufacturing Company Spin torque transfer MRAM device
WO2008154519A1 (en) 2007-06-12 2008-12-18 Grandis, Inc. Method and system for providing a magnetic element and magnetic memory being unidirectional writing enabled
US7742328B2 (en) 2007-06-15 2010-06-22 Grandis, Inc. Method and system for providing spin transfer tunneling magnetic memories utilizing non-planar transistors
US7750421B2 (en) 2007-07-23 2010-07-06 Magic Technologies, Inc. High performance MTJ element for STT-RAM and method for making the same
US7764536B2 (en) 2007-08-07 2010-07-27 Grandis, Inc. Method and system for providing a sense amplifier and drive circuit for spin transfer torque magnetic random access memory
US7982275B2 (en) 2007-08-22 2011-07-19 Grandis Inc. Magnetic element having low saturation magnetization
US7898849B2 (en) * 2007-12-05 2011-03-01 Seagate Technology, Llc Compound cell spin-torque magnetic random access memory
US20090185410A1 (en) 2008-01-22 2009-07-23 Grandis, Inc. Method and system for providing spin transfer tunneling magnetic memories utilizing unidirectional polarity selection devices
US8233247B2 (en) * 2008-04-11 2012-07-31 Hitachi Global Storage Technologies Netherlands B.V. Scissoring-type current-perpendicular-to-the-plane giant magnetoresistance (CPP-GMR) sensors with damped free layer structures
US20090302403A1 (en) 2008-06-05 2009-12-10 Nguyen Paul P Spin torque transfer magnetic memory cell
US7881095B2 (en) 2008-08-08 2011-02-01 Seagate Technology Llc Asymmetric write current compensation using gate overdrive for resistive sense memory cells
US7935435B2 (en) * 2008-08-08 2011-05-03 Seagate Technology Llc Magnetic memory cell construction
US20100053822A1 (en) * 2008-08-28 2010-03-04 Seagate Technology Llc Stram cells with ampere field assisted switching
US7939188B2 (en) * 2008-10-27 2011-05-10 Seagate Technology Llc Magnetic stack design
US8043732B2 (en) * 2008-11-11 2011-10-25 Seagate Technology Llc Memory cell with radial barrier
US8536669B2 (en) 2009-01-13 2013-09-17 Qualcomm Incorporated Magnetic element with storage layer materials
US7826259B2 (en) 2009-01-29 2010-11-02 Seagate Technology Llc Staggered STRAM cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050185459A1 (en) * 2003-03-24 2005-08-25 Yoshiaki Fukuzumi Semiconductor memory device comprising magneto resistive element and its manufacturing method
US20050048674A1 (en) * 2003-08-29 2005-03-03 Xizeng Shi Method and system for providing a magnetic element including passivation structures
GB2422735A (en) * 2005-01-31 2006-08-02 Infineon Technologies Ag Magnetoresistive tunnelling junction memory with reference layer sandwiched between two antiferromagnetically coupled ferromagnetic free layers
US20080265347A1 (en) * 2007-04-24 2008-10-30 Iwayama Masayoshi Magnetoresistive element and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105637666A (zh) * 2013-10-15 2016-06-01 艾沃思宾技术公司 进行蚀刻期间在磁阻型器件中的磁性层的隔离
CN105637666B (zh) * 2013-10-15 2018-12-18 艾沃思宾技术公司 进行蚀刻期间在磁阻型器件中的磁性层的隔离
CN106058041A (zh) * 2015-04-16 2016-10-26 台湾积体电路制造股份有限公司 用于工艺损伤最小化的mram结构
CN106058041B (zh) * 2015-04-16 2020-07-31 台湾积体电路制造股份有限公司 用于工艺损伤最小化的mram结构
US11195989B2 (en) 2017-03-09 2021-12-07 Sony Semiconductor Solutions Corporation Ferromagnetic tunnel junction element and method of manufacturing the same
CN108987571A (zh) * 2017-05-31 2018-12-11 台湾积体电路制造股份有限公司 半导体装置及其形成方法
CN108987571B (zh) * 2017-05-31 2021-11-02 台湾积体电路制造股份有限公司 半导体装置及其形成方法
CN109473542A (zh) * 2017-09-07 2019-03-15 爱思开海力士有限公司 电子设备及其制造方法

Also Published As

Publication number Publication date
KR20110097830A (ko) 2011-08-31
JP5425213B2 (ja) 2014-02-26
JP2012508471A (ja) 2012-04-05
CN102272964B (zh) 2015-06-24
US20100117169A1 (en) 2010-05-13
US8440330B2 (en) 2013-05-14
EP2366199A1 (en) 2011-09-21
EP2366199B1 (en) 2014-08-13
US8043732B2 (en) 2011-10-25
KR101348231B1 (ko) 2014-01-07
WO2010056721A1 (en) 2010-05-20
US20120061783A1 (en) 2012-03-15

Similar Documents

Publication Publication Date Title
CN102272964B (zh) 具有放射状阻挡体的磁存储器单元
US11189785B2 (en) Magnetoresistive stack/structure and method of manufacturing same
US7528457B2 (en) Method to form a nonmagnetic cap for the NiFe(free) MTJ stack to enhance dR/R
US7855085B2 (en) System and method for reducing shorting in memory cells
JP3906139B2 (ja) 磁気ランダムアクセスメモリ
US8456903B2 (en) Magnetic memory with porous non-conductive current confinement layer
KR20170023355A (ko) 메모리 장치 및 그 제조 방법
CN110246962A (zh) 磁存储装置及其制造方法
CN101304038B (zh) 磁性存储器、其存储单元及其存储单元的制造方法
CN117413627A (zh) 具有低电阻率自旋霍尔效应(she)写入线的自旋轨道扭矩(sot)磁阻随机存取存储器(mram)
US9166149B2 (en) Magnetic device with a substrate, a sensing block and a repair layer
US8629518B2 (en) Sacrifice layer structure and method for magnetic tunnel junction (MTJ) etching process
CN107968150A (zh) 制造磁存储器件的方法
US20130075841A1 (en) Semiconductor device and method for fabricating the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150624

Termination date: 20181111

CF01 Termination of patent right due to non-payment of annual fee