JP2008294420A - 磁気抵抗素子及びその製造方法 - Google Patents

磁気抵抗素子及びその製造方法 Download PDF

Info

Publication number
JP2008294420A
JP2008294420A JP2008106058A JP2008106058A JP2008294420A JP 2008294420 A JP2008294420 A JP 2008294420A JP 2008106058 A JP2008106058 A JP 2008106058A JP 2008106058 A JP2008106058 A JP 2008106058A JP 2008294420 A JP2008294420 A JP 2008294420A
Authority
JP
Japan
Prior art keywords
layer
fixed
stacked body
tunnel barrier
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008106058A
Other languages
English (en)
Inventor
Masayoshi Iwayama
昌由 岩山
Takeshi Kajiyama
健 梶山
Yoshiaki Asao
吉昭 浅尾
Keiji Hosoya
啓司 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008106058A priority Critical patent/JP2008294420A/ja
Priority to US12/108,093 priority patent/US7919826B2/en
Publication of JP2008294420A publication Critical patent/JP2008294420A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

【課題】 磁性層同士のショートを防ぐ。
【解決手段】 磁気抵抗素子10は、磁化の方向が固定された第1の固定層14と、第1の非磁性層15とが順に積層された第1の積層体と、第1の積層体上に設けられ、かつ磁化の方向が変化する自由層16と、第2の非磁性層17と、磁化の方向が固定された第2の固定層18とが順に積層された第2の積層体と、第2の積層体の側面に接しかつ第2の積層体を囲むように設けられ、かつ絶縁体からなる側壁20とを具備する。そして、第1の積層体は、その側面がほぼ垂直である。第2の積層体は、上に向かって細くなるテーパー形状を有する。
【選択図】 図2

Description

本発明は、磁気抵抗素子及びその製造方法に係り、例えば双方向に電流を供給することで情報を記録することが可能な磁気抵抗素子及びその製造方法に関する。
強磁性体を用いた磁気ランダムアクセスメモリ(MRAM:Magnetic Random Access Memory)は、不揮発性、高速動作、大容量、低消費電力を備えた不揮発性メモリとして期待されている。MRAMは、トンネル磁気抵抗(TMR:Tunneling Magnetoresistive)効果を利用するMTJ(Magnetic Tunnel Junction)素子を記憶素子として備え、このMTJ素子の磁化状態により情報を記憶する。
従来型の配線電流による磁場でデータの書き込みを行うMRAMにおいては、MTJ素子サイズを縮小すると保持力が大きくなるために、書き込みに必要な電流が大きくなる傾向がある。この従来型MRAMでは、大容量化に向けたセルサイズの微細化と低電流化の両立は困難である。
このような課題を克服する書き込み方式としてスピン角運動量移動(SMT:Spin Momentum Transfer)書き込み方式を用いたスピン注入型MRAMが提案されている。スピン注入型MRAMでは、情報の書き込みは、MTJ素子に直接電流通電して、この電流の向きで自由層の磁化方向を変化させることで行われる。また、自由層を挟むように配置された2つの固定層を具備するMTJ素子では、スピントルクを増大させることができるため、MTJ素子の臨界電流密度を低減することができる。
このようなMTJ素子を形成する場合、エッチング工程により、二重磁気トンネル接合をMTJ素子ごとに分離する。しかし、接合分離の際のエッチングによる反応生成物が素子側面に付着して、自由層と固定層とがショートしてしまう。この自由層と固定層とのショートを回避するために、テーパーエッチングを行うことが考えられる。ところが、加工の断面形状がテーパー形状となり、固定層の2層化によるエッチング膜厚の増大化のためにテーパーエッチングにおける加工変換差が増大して、MTJ素子サイズが大きくなってしまう。
また、この種の関連技術として、側面が傾斜した磁気抵抗効果素子において、素子サイズが縮小しても安定な磁区構造を有する磁気抵抗効果素子の構造が開示されている(特許文献1参照)。
特開2003−298145号公報
本発明は、磁性層同士のショートを防ぐことができ、かつ微細化が可能な磁気抵抗素子及びその製造方法を提供する。
本発明の第1の視点に係る磁気抵抗素子は、磁化の方向が固定された第1の固定層と、第1の非磁性層とが順に積層された第1の積層体と、前記第1の積層体上に設けられ、かつ磁化の方向が変化する自由層と、第2の非磁性層と、磁化の方向が固定された第2の固定層とが順に積層された第2の積層体と、前記第2の積層体の側面に接しかつ前記第2の積層体を囲むように設けられ、かつ絶縁体からなる側壁とを具備する。前記第1の積層体は、その側面がほぼ垂直である。前記第2の積層体は、上に向かって細くなるテーパー形状を有する。
本発明の第2の視点に係る磁気抵抗素子の製造方法は、磁化の方向が固定された第1の固定層と、第1の非磁性層とを順に積層して、第1の積層体を形成する工程と、前記第1の積層体上に、磁化の方向が変化する自由層と、第2の非磁性層と、磁化の方向が固定された第2の固定層とを順に積層して、第2の積層体を形成する工程と、前記第2の積層体上にハードマスクを形成する工程と、前記ハードマスクをマスクとして、前記第2の積層体をテーパーエッチングする工程と、前記第1の積層体上で前記第2の積層体の側面に、絶縁体からなる側壁を形成する工程と、前記側壁をマスクとして、前記第1の積層体を異方性エッチングする工程とを具備する。
本発明によれば、磁性層同士のショートを防ぐことができ、かつ微細化が可能な磁気抵抗素子及びその製造方法を提供することができる。
以下、本発明の実施の形態について図面を参照して説明する。なお、以下の説明において、同一の機能及び構成を有する要素については、同一符号を付し、重複説明は必要な場合にのみ行う。
図1は、本発明の一実施形態に係るMRAMの構成を示す平面図である。図2は、図1に示したII−II線に沿ったMRAMの断面図である。
MRAMは、複数のMTJ素子(磁気抵抗素子)10を備えている。また、MRAMは、それぞれがX方向に延在する複数の配線層11と、それぞれがY方向に延在する複数の配線層22とを備えている。そして、MTJ素子10は、配線層11と配線層22との交差領域に配置されている。配線層11及び配線層22は、MTJ素子10に双方向に電流を供給するために用いられる。
配線層11上には、MTJ素子10に対応する数のコンタクトプラグ12が設けられている。MTJ素子10は、このコンタクトプラグ12上に、下部電極13、第1の固定層(或いは、ピン層ともいう)14、第1のトンネルバリア層(非磁性層)15、自由層(或いは、記録層ともいう)16、第2のトンネルバリア層(非磁性層)17、第2の固定層18、上部電極19が順に積層された積層構造を有する。
すなわち、本実施形態のMTJ素子10は、自由層の両側にそれぞれ非磁性層を介して2つの固定層が配置される、いわゆるデュアルピン層構造(或いは、ダブルジャンクション構造ともいう)を有する磁気抵抗素子の構成例である。MTJ素子10の平面形状については特に限定されず、本実施形態では例えば円形を有している。その他、正方形、長方形、楕円形などであってもよい。
第1の固定層14及び第2の固定層18は、磁化(或いは、スピン)の方向が固定されている。また、第1の固定層14と第2の固定層18との磁化方向は、反平行(反対方向)に設定される。自由層16は、磁化方向が変化(反転)可能である。固定層14、18、及び自由層16の容易磁化方向は膜面に垂直であってもよいし、膜面に平行であってもよい。すなわち、MTJ素子10は、垂直磁化膜を用いて構成してもよいし、面内磁化膜を用いて構成してもよい。
固定層14、18、及び自由層16としては、強磁性体が用いられる。具体的には、固定層14及び18としてはそれぞれ、コバルト(Co)、鉄(Fe)、ニッケル(Ni)、イリジウム(Ir)、白金(Pt)、マンガン(Mn)、ルテニウム(Ru)のうち1つ以上の元素を含む強磁性体が用いられる。自由層16としては、コバルト(Co)、鉄(Fe)、ニッケル(Ni)のうち1つ以上の元素を含む強磁性体が用いられる。また、飽和磁化、或いは結晶磁気異方性などを調整する目的で、ホウ素(B)、C(炭素)、或いはSi(シリコン)などの元素を添加してもよい。下部電極13、上部電極19、及びコンタクトプラグ12としては、タンタル(Ta)などの導電体が用いられる。
なお、固定層14、18には、シンセティックアンチフェロ(SAF:Synthetic Anti-Ferromagnet)構造を用いてもよい。SAF構造とは、非磁性層を介して互いの磁化の方向が反平行である第1の磁性層/非磁性層/第2の磁性層からなる積層構造である。このSAF構造を用いることで、固定層14、18の磁化固着力が増強され、外部磁場に対する耐性及び熱的な安定性を向上させることができる。
第1のトンネルバリア層15としては、酸化マグネシウム、或いは酸化アルミニウムなどの金属酸化物が用いられる。第2のトンネルバリア層17としては、常磁性金属が用いられ、銅(Cu)、金(Au)、或いは銀(Ag)などが用いられる。第1のトンネルバリア層15として金属酸化物を用いた場合には、TMR効果を利用することができる。また、第2のトンネルバリア層17として常磁性金属を用いた場合には、GMR(Giant Magnetoresistive)効果を利用することが可能となる。MR比は、GMRに比べてTMRの方が十分大きい。よって、データの読み出し時には、主にTMRのMR比が利用される。
なお、MTJ素子10を構成する層は、積層順序が逆転していても構わない。この場合、第1のトンネルバリア層15としては常磁性金属が用いられ、第2のトンネルバリア層17としては金属酸化物が用いられる。また、トンネルバリア層15及びトンネルバリア層17それぞれに、金属酸化物を用いるようにしてもよい。この場合は、トンネルバリア層15とトンネルバリア層17とは、異なる膜厚に設定される。これは、データ読み出し時に、MR比に差を持たせるためである。
MTJ素子10は、スピン注入型の磁気抵抗素子である。従って、MTJ素子10にデータを書き込む、或いはMTJ素子10からデータを読み出す場合、MTJ素子10は、膜面(或いは、積層面)に垂直な方向において、双方向に電流通電される。MTJ素子10へのデータの書き込みは、以下のように行われる。
固定層14側から電子(すなわち、固定層14から自由層16へ向かう電子)を供給した場合、固定層14の磁化方向と同じ方向にスピン偏極された電子と、固定層18により反射されることで固定層18の磁化方向と反対方向にスピン偏極された電子とが自由層16に注入される。この場合、自由層16の磁化方向は、固定層14の磁化方向と同じ方向に揃えられる。これにより、固定層14と自由層16との磁化方向が平行配列となる。この平行配列のときはMTJ素子10の抵抗値は最も小さくなり、この場合を例えばデータ“0”と規定する。
一方、固定層18側から電子(すなわち、固定層18から自由層16へ向かう電子)を供給した場合、固定層18の磁化方向と同じ方向にスピン偏極された電子と、固定層14により反射されることで固定層14の磁化方向と反対方向にスピン偏極された電子とが自由層16に注入される。この場合、自由層16の磁化方向は、固定層14の磁化方向と反対方向に揃えられる。これにより、固定層14と自由層16との磁化方向が反平行配列となる。この反平行配列のときはMTJ素子10の抵抗値は最も大きくなり、この場合を例えばデータ“1”と規定する。
次に、データの読み出しは、以下のように行われる。MTJ素子10に読み出し電流を供給する。この読み出し電流は、自由層16の磁化方向が反転しない値(書き込み電流よりも小さい値)に設定される。この時のMTJ素子10の抵抗値の変化をセンスアンプなどを用いて検出する。
ところで、図2に示すように、下部電極13、固定層14、及びトンネルバリア層15からなる第1の積層体は、テーパー形状ではなく、その側面が膜面に対してほぼ垂直である。なお、プロセスの制約上、実際には、完全な垂直にはなりえないため、第1の積層体は、多少テーパー形状を有している。一方、自由層16、トンネルバリア層17、及び固定層18からなる第2の積層体は、上に向かって細くなるテーパー形状を有している。すなわち、第2の積層体の側面は、垂直方向に対して斜めに傾いている。
また、自由層16の底面の面積は、トンネルバリア層15の面積より小さい。すなわち、自由層16とトンネルバリア層15とは階段状になっている。換言すると、断面形状において、自由層16の底面の直径は、トンネルバリア層15の直径(或いは、固定層14の直径)よりも小さい。
さらに、自由層16、トンネルバリア層17、固定層18、及びハードマスク19からなる積層体は、その側面が側壁20で包囲されている。また、側壁20は、トンネルバリア層15上に設けられている。側壁20としては、絶縁体が用いられ、例えばシリコン窒化膜が用いられる。
上部電極19は、その側面が膜面に対してほぼ垂直である。この“ほぼ垂直”は、多少のテーパー形状を含む意味である。また、上部電極19の底面の面積は、固定層18の上面の面積と同じである。
図3(平面図)及び図4(II−II線に沿った断面図)には、1つのMTJ素子10を抜き出して示している。ここで、自由層16、トンネルバリア層17、及び固定層18からなる第2の積層体の側面の角度(テーパー角)をθ1、この第2の積層体の膜厚をt1とすると、側壁20の膜厚t2は、以下の条件を満たすように設定される。
t2>t1/tanθ1
この条件を満たすことで、自由層16の底面の面積は、トンネルバリア層15の面積より小さくなる。すなわち、自由層16の側面は、必ず側壁20で包囲される。これにより、自由層16と固定層14とがショートするのを防ぐことができる。
例えば、MTJ素子10が磁性層間のショートを抑制するために、全体がテーパー形状であると、最下層の下部電極13のサイズが大きくなり、ひいてはMTJ素子10のサイズが大きくなってしまう。しかし、本実施形態では、自由層16、トンネルバリア層17、及び固定層18からなる第2の積層体は、テーパー形状を有することで、自由層16と固定層18とのショートを抑制している。一方、下部電極13、固定層14、及びトンネルバリア層15からなる第1の積層体は、その側面が膜面に対してほぼ垂直であるため、結果としてMTJ素子10を微細化することができる。さらに、自由層16の側面には側壁20が設けられているため、自由層16と固定層14とのショートを防ぐことができる。
次に、第2の積層体を側壁20で包囲するための他の条件について説明する。図4に示すように、側壁20の上部のテーパー角をθ2、側壁20の下部のテーパー角をθ3、トンネルバリア層15の上面からθ2<θ3となる変曲点までの距離をt3とすると、t3>t1の関係を満たすように設定される。
例えば、距離t3がt1より低いと、第2の積層体を側壁20で包囲できない可能性がある。しかし、上記関係を満たすように側壁20を形成することで、自由層16の側面は、必ず側壁20で包囲される。これにより、自由層16と固定層14とがショートするのを防ぐことができる。
次に、第2の積層体を側壁20で包囲するための他の条件について説明する。上部電極19のテーパー角をθ4とすると、θ4>θ1の関係を満たすように設定される。さらに、側壁20の下部のテーパー角θ3は、θ3>θ1の関係を満たすように設定される。
上部電極19のテーパー角θ4が垂直に近ければ、側壁20を形成する際に、第2の積層体をこの側壁20で包囲しやすくなる。一方、上部電極19のテーパー角θ4がθ1より小さいと、上部電極19の上面の面積が小さくなる、或いは上部電極19の高さが低くなってしまうため、第2の積層体を側壁20で包囲できない可能性がある。また、側壁20の下部のテーパー角θ3が第2の積層体のテーパー角θ1より小さいと、第2の積層体を側壁20で包囲できない可能性がある。しかし、上記関係を満たすように上部電極19及び側壁20を形成することで、自由層16の側面は、必ず側壁20で包囲される。これにより、自由層16と固定層14とがショートするのを防ぐことができる。
なお、本実施形態では、第2の積層体がテーパー形状を有しているため、固定層18の体積が減少してしまう。この結果、固定層18が所望の磁気異方性エネルギーを得られない可能性がある。このため、固定層18の単位体積あたりの磁気異方性エネルギーは、固定層14のそれよりも高いことが好ましい。これにより、固定層18の体積が固定層14より小さくなった場合でも、固定層18は所望の磁気異方性エネルギーを有することが可能となる。
次に、MTJ素子10の製造方法の一例について図面を参照しながら説明する。例えば半導体基板(図示せず)の上方には、層間絶縁層を介して、それぞれがX方向に延在する複数の配線層11が形成されている。これら配線層11上には、MTJ素子10の数に対応する複数のコンタクトプラグ12が形成されている。配線層11間、及びコンタクトプラグ12間は、層間絶縁層21で満たされている。層間絶縁層21としては、例えば酸化シリコンが用いられる。配線層11としては、アルミニウム(Al)などの金属が用いられる。
続いて、図5に示すように、複数のコンタクトプラグ12上に、下部電極13、第1の固定層14、第1のトンネルバリア層15、自由層16、第2のトンネルバリア層17、第2の固定層18を順に堆積する。固定層14、18、及び自由層16としては、例えばCo−Fe−B合金が用いられる。第1のトンネルバリア層15としては例えば酸化マグネシウム、第2のトンネルバリア層17としては例えば銅(Cu)が用いられる。
続いて、図6及び図7に示すように、リソグラフィ法及びreactive ion etching(RIE)法を用いて、固定層18上に、MTJ素子10の数に対応する複数のハードマスク19を形成する。ハードマスク19は、その平面形状が、所望の固定層18の上面の形状と同じになるように形成される。本実施形態では、ハードマスク19の平面形状は、例えば円形である。ハードマスク19としては、導電体(例えば、タンタル)が用いられる。ハードマスク19は、上部電極として使用される。
続いて、図8及び図9に示すように、例えばイオンミリング法を用いて、ハードマスク19をマスクとして固定層18、トンネルバリア層17、及び自由層16をテーパーエッチングし、トンネルバリア層15の上面を露出させる。この工程により、固定層18、トンネルバリア層17、及び自由層16からなる第2の積層体は、上に向かって細くなるテーパー形状を有する。これにより、固定層18と自由層16とがショートするのを抑制することができる。
トンネルバリア層15の硬度は、トンネルバリア層17のそれより高く設定することが好ましい。このような条件を満たす材料を選択することで、上記イオンミリング工程において、トンネルバリア層15のエッチングストッパーとして機能がより向上するため、第2の積層体の加工がしやすくなる。
また、トンネルバリア層17の抵抗は、トンネルバリア層15のそれより低く設定することが好ましい。テーパーエッチングを行うと、第2の積層体の側面にエッチングによる反応生成物(エッチング生成物)が付着しやすくなる。しかし、トンネルバリア層17として、抵抗の低い(導電性の高い)材料を用いることで、仮に第2の積層体の側面に反応生成物が付着して固定層18と自由層16とが短絡された場合でも、スピン注入電流は、トンネルバリア層17を介して流れるようになる。これにより、第2の積層体の側面に反応生成物が付着した場合でも、その影響を最小限に抑えることが可能となる。
続いて、図10に示すように、装置全面に、シリコン窒化膜からなる絶縁層20を堆積する。この工程の際、ハードマスク19、固定層18、トンネルバリア層17、及び自由層16の側面に、絶縁層20が形成されるようにする。さらに、絶縁層20の膜厚は、前述した関係式を満たすように設定される。
続いて、図11及び図12に示すように、異方性の強い条件のRIE法により、絶縁層20を異方性エッチングし、トンネルバリア層15の上面を露出させる。これにより、ハードマスク19、固定層18、トンネルバリア層17、及び自由層16の側面に、側壁20が形成される。また、前述した関係式を満たすように絶縁層20の膜厚を設定することで、トンネルバリア層15上にも部分的に絶縁層20が残っている状態となる。
続いて、図13及び図14に示すように、異方性の強い条件のRIE法などにより、側壁20をマスクとしてトンネルバリア層15、固定層14、及び下部電極13をそれらの側面がほぼ垂直になるようにエッチングし、層間絶縁層21の上面を露出させる。この工程の際、自由層16は側壁20で覆われているため、エッチングによる反応生成物(エッチング生成物)が自由層16に付着するのを防ぐことができる。これにより、自由層16と固定層14とがショートするのを防ぐことができる。
なお、このRIE法としては、具体的には、ハロゲン系RIE法、或いはカルボニル系RIE法があげられる。これらのRIE法を用いることで、第1の積層体の側面を垂直に近づけることが可能となる。一方で、これらのRIE法では、固定層14やトンネルバリア層15の側面に反応生成物が付着しやすくなる。このため、固定層14の反応生成物に対する磁気特性の変化は、固定層18のそれより小さいことが好ましい。これにより、RIE法によるエッチング工程によって固定層14に反応生成物が付着した場合でも、固定層14の磁気特性が所望の特性に比べて変化するのを抑制することができる。なお、本実施形態のエッチング工程によれば、第2の積層体の側面に付着する反応生成物は、第1の積層体の側面に付着する反応生成物より少なくなる。
また、カルボニル系RIE法によるエッチングは酸素雰囲気中で行なわれるため、第1の積層体(下部電極13、固定層14、及びトンネルバリア層15)は酸化されやすい。一方、イオンミリング法によるエッチングは酸素雰囲気中で行なわないため、第2の積層体(固定層18、トンネルバリア層17、及び自由層16)は酸化されにくい。すなわち、本実施形態では、第2の積層体の側面は、第1の積層体の側面より酸化していない。また、カルボニル系RIE法を用いて第1の積層体をエッチングした場合、酸化した反応生成物が側壁20に付着する。図15は、酸化した反応生成物が側壁20に付着した様子を示す断面図である。なお、図15には、図14に示したMTJ素子10の1つを抽出して示している。
また、イオンミリング法とRIE法とを比べると、RIE法の方が試料にダメージを与えてしまう。すなわち、本実施形態では、第1の積層体は、第2の積層体よりもダメージが大きくなる。プロセスに起因するダメージが大きくなると、固定層が所望の磁気特性を得られなくなる。このため、固定層14のダメージに対する磁気特性の変化は、固定層18のそれより小さいことが好ましい。
続いて、図1及び図2に示すように、装置全面に層間絶縁層21を堆積し、この層間絶縁層21をエッチバックすることで、ハードマスク19の上面を露出させる。続いて、ハードマスク19上に導電体(アルミニウムなど)を堆積し、リソグラフィ法及びRIE法を用いてこの導電層をパターニングすることで、それぞれがY方向に延在する複数の配線層22が形成される。このようにして、本実施形態のMRAMが形成される。
以上詳述したように本実施形態では、下部電極13、固定層14、及びトンネルバリア層15からなる第1の積層体は、その側面が膜面に対してほぼ垂直である。一方、自由層16、トンネルバリア層17、及び固定層18からなる第2の積層体は、上に向かって細くなるテーパー形状を有している。従って、MTJ素子の全体がテーパー形状である場合と比べて、微細化が可能である。すなわち、ハードマスク19を用いてMTJ素子10を加工する場合の変換差である加工変換差(ハードマスク19の膜面方向の長さとMTJ素子10の膜面方向の長さとの差)を側壁20の膜厚の2倍値にまで低減することができる。
また、自由層16は側壁20で覆われているため、固定層14をエッチングする際に生成される反応生成物が自由層16に付着するのを防ぐことができる。これにより、自由層16と固定層14とがショートするのを防ぐことができる。
また、自由層16、トンネルバリア層17、及び固定層18からなる第1の積層体は、テーパー形状を有しているため、自由層16と固定層18とのショートを抑制することができる。
なお、前述したように、MTJ素子10の平面形状については特に限定されない。他の一例として、MTJ素子10の平面形状が楕円形である場合について説明する。図16は、MTJ素子10の他の一例を示す平面図である。図17は、図16に示したII−II線に沿ったMTJ素子10の断面図である。
下部電極13、第1の固定層14、第1のトンネルバリア層15、自由層16、第2のトンネルバリア層17、第2の固定層18、及び上部電極19はそれぞれ、平面形状が楕円形である。
また、下部電極13、固定層14、及びトンネルバリア層15からなる第1の積層体は、その側面が膜面に対してほぼ垂直である。一方、自由層16、トンネルバリア層17、及び固定層18からなる第2の積層体は、上に向かって細くなるテーパー形状を有している。そして、自由層16、トンネルバリア層17、固定層18、及びハードマスク19からなる積層体は、その側面が側壁20で包囲されている。また、側壁20は、トンネルバリア層15上に設けられている。
側壁20膜厚t2は、前述した条件を満たすように設定される。この条件を満たすことで、自由層16の底面の面積は、トンネルバリア層15の面積より小さくなる。すなわち、自由層16の側面は、必ず側壁20で包囲される。これにより、自由層16と固定層14とがショートするのを防ぐことができる。
図16及び図17に示すようMTJ素子10を構成した場合でも、平面形状が円形の場合と同様の効果を得ることができる。さらに、平面形状が楕円のMTJ素子10を形成する場合には、ハードマスク19の平面形状を楕円形或いは長方形にすればよい。その他の製造工程は、前述した製造工程と同じである。
本発明は、上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲内で、構成要素を変形して具体化できる。また、実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を構成することができる。例えば、実施形態に開示される全構成要素から幾つかの構成要素を削除してもよいし、異なる実施形態の構成要素を適宜組み合わせてもよい。
本発明の一実施形態に係るMRAMの構成を示す平面図。 図1に示したII−II線に沿ったMRAMの断面図。 本発明の一実施形態に係るMTJ素子10の構成を示す平面図。 図3に示したII−II線に沿ったMTJ素子10の断面図。 本発明の一実施形態に係るMRAMの製造工程を示す断面図。 図5に続くMRAMの製造工程を示す平面図。 図6に示したII−II線に沿ったMRAMの製造工程を示す断面図。 図6に続くMRAMの製造工程を示す平面図。 図8に示したII−II線に沿ったMRAMの製造工程を示す断面図。 図9に続くMRAMの製造工程を示す断面図。 図10に続くMRAMの製造工程を示す平面図。 図11に示したII−II線に沿ったMRAMの製造工程を示す断面図。 図11に続くMRAMの製造工程を示す平面図。 図13に示したII−II線に沿ったMRAMの製造工程を示す断面図。 反応生成物が側壁20に付着した様子を示す断面図。 MTJ素子10の他の一例を示す平面図。 図16に示したII−II線に沿ったMTJ素子10の断面図。
符号の説明
10…MTJ素子、11…配線層、12…コンタクトプラグ、13…下部電極、14…第1の固定層、15…第1のトンネルバリア層、16…自由層、17…第2のトンネルバリア層、18…第2の固定層、19…上部電極(ハードマスク)、20…側壁、21…層間絶縁層、22…配線層。

Claims (5)

  1. 磁化の方向が固定された第1の固定層と、第1の非磁性層とが順に積層された第1の積層体と、
    前記第1の積層体上に設けられ、かつ磁化の方向が変化する自由層と、第2の非磁性層と、磁化の方向が固定された第2の固定層とが順に積層された第2の積層体と、
    前記第2の積層体の側面に接しかつ前記第2の積層体を囲むように設けられ、かつ絶縁体からなる側壁と、
    を具備し、
    前記第1の積層体は、その側面がほぼ垂直であり、
    前記第2の積層体は、上に向かって細くなるテーパー形状を有することを特徴とする磁気抵抗素子。
  2. 前記第2の積層体の底面の面積は、前記第1の積層体の面積より小さいことを特徴とする請求項1に記載の磁気抵抗素子。
  3. 前記第2の積層体の膜厚をt1、前記側壁の膜厚をt2、テーパー角をθとすると、
    t2>t1/tanθ
    の関係を満たすことを特徴とする請求項1又は2に記載の磁気抵抗素子。
  4. 磁化の方向が固定された第1の固定層と、第1の非磁性層とを順に積層して、第1の積層体を形成する工程と、
    前記第1の積層体上に、磁化の方向が変化する自由層と、第2の非磁性層と、磁化の方向が固定された第2の固定層とを順に積層して、第2の積層体を形成する工程と、
    前記第2の積層体上にハードマスクを形成する工程と、
    前記ハードマスクをマスクとして、前記第2の積層体をテーパーエッチングする工程と、
    前記第1の積層体上で前記第2の積層体の側面に、絶縁体からなる側壁を形成する工程と、
    前記側壁をマスクとして、前記第1の積層体を異方性エッチングする工程と、
    を具備することを特徴とする磁気抵抗素子の製造方法。
  5. 前記第2の積層体の膜厚をt1、前記側壁の膜厚をt2、テーパー角をθとすると、
    t2>t1/tanθ
    の関係を満たすことを特徴とする請求項4に記載の磁気抵抗素子の製造方法。
JP2008106058A 2007-04-24 2008-04-15 磁気抵抗素子及びその製造方法 Withdrawn JP2008294420A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008106058A JP2008294420A (ja) 2007-04-24 2008-04-15 磁気抵抗素子及びその製造方法
US12/108,093 US7919826B2 (en) 2007-04-24 2008-04-23 Magnetoresistive element and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007114315 2007-04-24
JP2008106058A JP2008294420A (ja) 2007-04-24 2008-04-15 磁気抵抗素子及びその製造方法

Publications (1)

Publication Number Publication Date
JP2008294420A true JP2008294420A (ja) 2008-12-04

Family

ID=40168783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008106058A Withdrawn JP2008294420A (ja) 2007-04-24 2008-04-15 磁気抵抗素子及びその製造方法

Country Status (1)

Country Link
JP (1) JP2008294420A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012508471A (ja) * 2008-11-11 2012-04-05 シーゲイト テクノロジー エルエルシー 円筒状バリアを有する磁気メモリセル
WO2013027406A1 (ja) * 2011-08-25 2013-02-28 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法及び磁気抵抗効果膜の加工方法
US8586390B2 (en) 2011-03-23 2013-11-19 Kabushiki Kaisha Toshiba Method for manufacturing semiconductor device
US9042166B2 (en) 2013-03-22 2015-05-26 Kabushiki Kaisha Toshiba Magnetoresistive effect element and method of manufacturing magnetoresistive effect element
CN104737317A (zh) * 2012-08-14 2015-06-24 艾沃思宾技术公司 制造基于磁电阻的器件的方法
US10461251B2 (en) 2017-08-23 2019-10-29 Everspin Technologies, Inc. Method of manufacturing integrated circuit using encapsulation during an etch process
JP2019535140A (ja) * 2016-10-01 2019-12-05 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 偏心電流フローを用いたスピン移行トルク磁気トンネル接合
US11682441B2 (en) 2019-03-15 2023-06-20 Kioxia Corporation Magnetoresistive memory device and method of manufacturing magnetoresistive memory device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012508471A (ja) * 2008-11-11 2012-04-05 シーゲイト テクノロジー エルエルシー 円筒状バリアを有する磁気メモリセル
US8586390B2 (en) 2011-03-23 2013-11-19 Kabushiki Kaisha Toshiba Method for manufacturing semiconductor device
KR101566863B1 (ko) 2011-08-25 2015-11-06 캐논 아네르바 가부시키가이샤 자기저항 소자의 제조 방법 및 자기저항 필름의 가공 방법
WO2013027406A1 (ja) * 2011-08-25 2013-02-28 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法及び磁気抵抗効果膜の加工方法
US9601688B2 (en) 2011-08-25 2017-03-21 Canon Anelva Corporation Method of manufacturing magnetoresistive element and method of processing magnetoresistive film
US9865804B2 (en) 2012-08-14 2018-01-09 Everspin Technologies, Inc. Magnetoresistive device and method of manufacturing same
CN104737317A (zh) * 2012-08-14 2015-06-24 艾沃思宾技术公司 制造基于磁电阻的器件的方法
US9698341B2 (en) 2012-08-14 2017-07-04 Everspin Technologies, Inc. Magnetoresistive device and method of manufacturing same
US10062839B2 (en) 2012-08-14 2018-08-28 Everspin Technologies, Inc. Magnetoresistive device and method of manufacturing same
US10396279B2 (en) 2012-08-14 2019-08-27 Everspin Technologies, Inc. Magnetoresistive device and method of manufacturing same
US10847715B2 (en) 2012-08-14 2020-11-24 Everspin Technologies, Inc. Magnetoresistive device and method of manufacturing same
US9042166B2 (en) 2013-03-22 2015-05-26 Kabushiki Kaisha Toshiba Magnetoresistive effect element and method of manufacturing magnetoresistive effect element
JP2019535140A (ja) * 2016-10-01 2019-12-05 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 偏心電流フローを用いたスピン移行トルク磁気トンネル接合
US10461251B2 (en) 2017-08-23 2019-10-29 Everspin Technologies, Inc. Method of manufacturing integrated circuit using encapsulation during an etch process
US10777738B2 (en) 2017-08-23 2020-09-15 Everspin Technologies, Inc. Method of manufacturing integrated circuit using encapsulation during an etch process
US11682441B2 (en) 2019-03-15 2023-06-20 Kioxia Corporation Magnetoresistive memory device and method of manufacturing magnetoresistive memory device

Similar Documents

Publication Publication Date Title
US7919826B2 (en) Magnetoresistive element and manufacturing method thereof
US10418548B2 (en) Magnetic memory device
TWI633542B (zh) Magnetic memory
JP6200471B2 (ja) 磁気メモリ
US7696548B2 (en) MRAM with super-paramagnetic sensing layer
JP5470602B2 (ja) 磁気記憶装置
US8283712B2 (en) Semiconductor memory device and manufacturing method for semiconductor memory device
US9608040B2 (en) Memory device and method of fabricating the same
US7727778B2 (en) Magnetoresistive element and method of manufacturing the same
TWI361432B (en) Magnetic random access memory, manufacturing method and programming method thereof
US9461243B2 (en) STT-MRAM and method of manufacturing the same
JP6182993B2 (ja) 記憶素子、記憶装置、記憶素子の製造方法、磁気ヘッド
JP2008218829A (ja) 磁気抵抗素子及びその製造方法
JP2006005356A (ja) 磁気トンネル接合素子およびその形成方法、磁気メモリ構造ならびにトンネル磁気抵抗効果型再生ヘッド
JP2008294420A (ja) 磁気抵抗素子及びその製造方法
JP2007288196A (ja) 磁気トンネル接合素子およびその形成方法
US9741929B2 (en) Method of making a spin-transfer-torque magnetoresistive random access memory (STT-MRAM)
WO2014050379A1 (ja) 記憶素子、記憶装置、磁気ヘッド
JP2011210830A (ja) 磁気記憶素子および磁気記憶装置
TW200308108A (en) Production method of magnetic memory device
JP2012174897A (ja) 磁気メモリ及びその製造方法
JP2007005664A (ja) スピン注入磁化反転素子
JP2007180487A (ja) 記憶素子及びメモリ
JP2005166896A (ja) 磁気メモリ
JP2008251796A (ja) 磁気記録装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110705