CN102010182A - 陶瓷材料及其利用 - Google Patents

陶瓷材料及其利用 Download PDF

Info

Publication number
CN102010182A
CN102010182A CN2010102774225A CN201010277422A CN102010182A CN 102010182 A CN102010182 A CN 102010182A CN 2010102774225 A CN2010102774225 A CN 2010102774225A CN 201010277422 A CN201010277422 A CN 201010277422A CN 102010182 A CN102010182 A CN 102010182A
Authority
CN
China
Prior art keywords
stupalith
record
heat treatment
treatment step
calcining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010102774225A
Other languages
English (en)
Other versions
CN102010182B (zh
Inventor
金村圣志
归山敦史
吉田俊广
本多昭彦
佐藤洋介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Legal Person Of Tokyo Metropolitan Public University
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43570340&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN102010182(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NGK Insulators Ltd, Tokyo Metropolitan Public University Corp filed Critical NGK Insulators Ltd
Publication of CN102010182A publication Critical patent/CN102010182A/zh
Application granted granted Critical
Publication of CN102010182B publication Critical patent/CN102010182B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/185Cells with non-aqueous electrolyte with solid electrolyte with oxides, hydroxides or oxysalts as solid electrolytes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/322Transition aluminas, e.g. delta or gamma aluminas
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Hybrid Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供可以得到具有更高密度且良好的Li离子电导的颗粒的陶瓷材料。该陶瓷材料含有Li、La、Zr、Al及O,具有石榴石型或类似于石榴石型的结晶结构,Li与La的摩尔数之比为2.0以上、2.5以下。

Description

陶瓷材料及其利用
技术领域
本发明涉及陶瓷材料及其利用,尤其涉及可利用于二次电池的陶瓷材料及其利用。
背景技术
近年来,随着个人电脑、手机等的便携式仪器的开发,对作为其电源的二次电池的需求正大幅扩大。在用于这种用途的二次电池中,作为使离子移动的媒介,通用的有有机溶剂等的液态电解质(电解液)。在采用了这种电解液的电池中,可能会产生电解液的泄露、起火、爆炸等的问题。
所以,出于本质上确保安全性的观点出发,正在开发一种用固体电解质替代液态电解质的同时将其他电池要素全部由固体构成的全固体二次电池。这种全固体二次电池由于电解质为烧结的陶瓷,因此无起火或漏液之忧,而且也具有难以因腐蚀产生电池性能的劣化等问题的优点。尤其,电极中采用了锂金属的全固体锂离子二次电池被认为是能够容易做成高能量密度的二次电池。
要提高二次电池的电池特性,扩大用于正极及负极的材料间的电位差和提高用于正负极的各材料的容量密度为要点。已知,尤其对负极材料而言,采用Li金属或Li合金类对特性的提高帮助很大。然而,由于Li金属随着嵌入反应而产生所谓树枝状结晶的Li金属的析出现象,电解质部分采用电解液的电池,由于析出树枝状结晶的Li金属刺破隔膜或在电池内部引起短路,所以因安全性问题而无法使用。在电解质部分由固体电解质形成的全固体二次电池中,由于析出物无法刺破固体电解质,因此人们期待能够安全地使用。然而,该Li金属电位最低的同时反应性也高,因此没有可适用的由陶瓷材料构成的固体电解质。
近年来,有报告称这样一种可能性,石榴石型的陶瓷材料Li7La3Zr2O12(以下称LLZ)耐锂性优异,可作为全固体Li二次电池的固体电解质利用(非专利文献1)。
已知技术文献
非专利文献
非专利文献1:Ramaswamy Murugan etal.,Angew,Chem.Int.Ed.2007,46,1-5
发明内容
发明所要解决的课题
然而,上述非专利文献1记载的具有LLZ石榴石型的结晶结构的陶瓷材料难以颗粒化,不能说能够置换液态电解质等,可作为固体电解质材料来实用。因此,本发明人通过使具有LLZ的结晶结构的陶瓷材料含有铝(Al)成功进行颗粒化。然而,还需要对该陶瓷材料进行进一步的致密化和低电阻化。
此外,认为:固体电解质材料除了适用于采用了液态电解质的锂二次电池之外,对适用于空气二次电池、LiS电池等的各种二次电池也有用。
因此,本说明书公开的一个目的是,提供能够得到具有更高密度且良好的Li离子电导的颗粒的陶瓷材料的利用。
解决课题的手段
本发明人对LLZ-Al系陶瓷材料的Li量进行各种研究,结果得知,密度及Li电导率根据Li量发生变化,适当调节Li量,可得到良好的密度及Li电导率。根据本说明书的公开,提供以下手段。
根据本说明书的公开,提供一种陶瓷材料,其含有Li、La、Zr、Al及O,具有石榴石型或类似于石榴石型的结晶结构,Li与La的摩尔数之比(Li/La)为2.0以上、2.5以下。
所述陶瓷材料,可以是如下得到的材料:将Li及La以Li与La的摩尔数之比超过2.1、2.6以下混合的煅烧用原料煅烧而得。在所述陶瓷材料中,所述煅烧用原料进一步以La及Zr为Zr与La的摩尔数之比0.67混合。再有,优选所述陶瓷材料中Al含量相对于除Al之外的其他成分的总质量为0.1质量%以上、2质量%以下。此外,所述陶瓷材料优选是烧结体。再有,所述陶瓷材料优选具有锂离子传导性。再有,所述陶瓷材料优选作为固体电解质材料。
根据本说明书的公开,提供一种制造方法,该方法是陶瓷材料的制造方法,具备合成陶瓷材料的工序,该陶瓷材料含有Li、La、Zr、Al及O,具有石榴石型或类似于石榴石型的结晶结构,Li与La的摩尔数之比为2.0以上、2.5以下。
所述合成工序,可以含有准备Li及La以Li与La的摩尔数之比超过2.1、2.6以下混合的煅烧用原料并煅烧的工序。此外,在所述制造方法中,还可以准备La及Zr以Zr与La的摩尔数之比为0.67混合的所述煅烧用原料。此外,所述合成工序可以包含取得至少含有Li、La、Zr及O的一次煅烧粉末的第1热处理工序、和Al成分的存在下将所述一次煅烧粉末进行煅烧得到所述陶瓷材料的第2热处理工序。再有,所述第1热处理工序可作为取得由Li、La、Zr及O构成的一次煅烧粉末的工序,所述第2热处理工序可作为将Al成分和所述一次煅烧粉末进行煅烧的工序。再有,所述第2热处理工序可作为将含有所述一次煅烧粉末的成形体进行煅烧并烧结的工序。再有,所述制造方法优选在惰性气体气氛中实施所述陶瓷材料的合成。
根据本说明书的公开,提供一种二次电池,该电池是全固体锂二次电池,具备正极、负极和含有陶瓷材料的固体电解质,所述陶瓷材料含有Li、La、Zr、Al及O、具有石榴石型或类似于石榴石型的结晶结构,将Li及La以Li与La的摩尔数之比超过2.1、2.6以下混合的煅烧用原料煅烧而得到。
附图说明
图1是显示Li-La-Zr-Al系陶瓷材料中的Li投料量和密度之间的关系的图。
图2是显示Li-La-Zr-Al系陶瓷材料中的Li投料量和Li电导率之间的关系的图。
图3是显示Li-La-Zr-Al系陶瓷材料的X线衍射光谱的一个例子的图。
具体实施方式
本发明涉及陶瓷材料的利用。本发明的陶瓷材料是含有Li、La、Zr、Al及O、具有石榴石型或类似于石榴石型的结晶结构、Li与La的摩尔数之比2.0以上、2.5以下的材料。根据本说明书的公开,可以得到烧结性(烧结体密度)或离子电导率良好的烧结体。因此,根据本说明书的公开,可以得到耐锂性优异、作为全固体锂二次电池等各种二次电池的电解质或隔膜使用的陶瓷材料。
对于本说明书中公开的LLZ-Al系陶瓷材料,虽然具有LLZ所具有的石榴石型或类似于石榴石型的结晶结构,但由于含有Al,用于得到良好的密度以及Li离子电导率的适当的Li投料量不一定很清楚。此外,由于煅烧时Li会挥发,因此,适当的Li投料量也不一定很清楚。本发明人在所涉及的情况下,初次从密度以及Li离子电导率的观点出发,确定适当的Li投料量的范围,成功得到密度以及Li离子电导率良好的陶瓷材料。
此外,根据本说明书中公开的陶瓷材料的制造方法,可以稳定制造密度以及Li离子电导率良好的陶瓷材料。进而,根据本说明书中公开的全固体的锂二次电池,可提供耐锂性优异的全固体锂二次电池。
以下,首先对本说明书中公开的陶瓷材料(以下仅称本陶瓷材料)以及其制造方法说明,并对将本陶瓷材料用作固体电解质材料的全固体锂二次电池说明。
(陶瓷材料)
本陶瓷材料是含有Li、La、Zr、Al以及O的复合氧化物系陶瓷材料。该陶瓷材料除了含有作为构成石榴石型结晶结构的成分的Li、La及Zr之外,还含有Al,并且维持石榴石型或类似于石榴石型的结晶结构(以下,称LLZ结晶结构),通过做成这样的陶瓷材料,可以具备耐锂性以及Li离子传导性。
作为本陶瓷材料所具有的LLZ结晶结构的特征,作为具有同样的石榴石型结晶结构的材料的一个例子,举出具有类似于ICDD(International Centre for Diffraction Data)的粉末衍射文件045-0109(Li5La3Nb2O12)的XRD图形这一点。还有,与045-0109比较,由于构成元素不同,此外陶瓷中的Li浓度等可能会不同,因此有时衍射角度或衍射强度比也会不同。
本陶瓷材料除了作为构成金属元素的Li、La及Zr之外还含有Al。已知,通过含有Al,能够首次将具有LLZ结晶结构的陶瓷材料作为可处理的烧结体颗粒取得,并且,Li电导率也提高。
本陶瓷材料优选Li与La的摩尔数之比2.0以上、2.5以下。若是该范围,则可以得到良好的密度以及Li离子传导性。再有,根据本制造方法,在Li与La的摩尔数之比2.0以上、2.5以下的范围可以得到良好的密度以及Li离子传导性。尤其,在Ar等惰性气体气氛下的合成,所述比在2.2以上、2.5以下,Li离子传导性优异(如Li电导率在4.0×10-5S/cm以上)。更优选的是,所述比在2.2以上、2.3以下,Li电导率在5.0×10-5S/cm以上。此外,大气等气氛下的合成,所述比在2.0以上、2.2以下,Li离子传导性优异。更优选的是,所述比在2.0以上、2.1以下,Li电导率在7.0×10-5S/cm以上。
本陶瓷材料只要作为构成金属元素含有Li、La、Zr及Al,还含有O,能确认单相的LLZ结晶结构,则与Al的存在形态无特别关系。Al可存在于晶格,也可在晶格以外。知道Al至少在烧结体中存在于其晶粒内。本发明的陶瓷材料中的Al可以通过如ICP(高频电感耦合等离子体)发光分光分析或EPMA(电子探针显微分析仪)等进行检测,此外可以确定其含量。
本陶瓷材料中,优选以烧结性(烧结体的密度)及/或Li电导率得以改善的范围含有Al。在本发明的陶瓷材料中,更优选以能够得到LLZ结晶结构的范围含有Al。得到这样的特性改善等的Al含量,只要是本领域技术人员,例如可以对以LLZ的理论量比以及根据该理论量比的适当的摩尔比进行混合的Li成分、La成分、Zr成分以及Nb成分及/或Ta成分在适当量的Al成分的存在下进行煅烧工序取得烧结体,测定其特性和结晶结构,以此容易地确定必要量的铝添加量或含量。作为一个例子,知道:铝含量相对于最终得到的LLZ-Al系陶瓷粉末或烧结体的颗粒的除Al之外的其他成分的总质量为0.1质量%以上时,可以得到改善了的密度及Li电导率。此外,还知道:若大大超过2质量%,则具有Li电导率降低的倾向,优选1.5质量%以下。
本陶瓷材料中的Li、La及Zr的各含量只要能得到LLZ结晶结构,则无特别限定。知道:本陶瓷材料中的Li、La及Zr的各摩尔比不一定与非专利文献1记载的Li7La3Zr2O12中的各元素的摩尔比Li∶La∶Zr=7∶3∶2一致,具有偏离的倾向。
本陶瓷材料中的密度优选4.0以上。密度只要在4.0以上,则处理性良好,且可以得到良好的Li离子电导率。优选4.1以上,进一步优选4.2以上,更优选4.3以上,更进一步优选4.4以上。本陶瓷材料的密度的上限在不超过理论密度的范围内无特别限定。
本陶瓷材料的密度例如测定颗粒的重量和体积来算出。如圆柱状的颗粒时,优选如下方法或能得到与此同等或其以上的精度和正确性的方法测定,该方法是测定重量之后用千分尺测定多处的颗粒直径作为平均值,厚度也同样地用千分尺测定多处作为平均值,从这些数值算出体积,由各自的值测定密度。
本陶瓷材料具有Li离子传导性。本陶瓷材料的Li离子电导率优选在2.0×10-5S/cm以上,更优选3.0×10-5S/cm以上,再优选4.0×10-5S/cm以上。进一步优选6.0×10-5S/cm以上,更进一步优选8.0×10-5S/cm以上。Li离子电导率优选例如用交流阻抗法或得到与此同等的精度和准确性的方法测定。
本陶瓷材料可以是粉末,也可以是烧结体(成形体)。作为锂二次电池等的固体电解质,优选是烧结体。作为用于得到混合了其他物质的固体电解质的陶瓷材料优选是粉末。
本陶瓷材料利用其电导率可以作为各种固体电解质材料使用。如,可以用于锂二次电池或SOx、NOx、碳酸气体及氧等的各种气体传感器材料。
此外,可以从以上说明根据本说明书的公开得到含有本陶瓷材料的固体电解质。含有本陶瓷材料的固体电解质可以作为各种用途的固体电解质使用。尤其优选作为全固体锂二次电池的固体电解质。还有,含有本陶瓷材料的固体电解质例如可以通过将使用电解液的通常的锂离子二次电池的隔膜部分的至少一部分进行置换来完全分离正极侧和负极侧的电解液。
此外,如在正极侧使用硫的电池(如由负极Li组合得到的LiS电池)中,也可以用本陶瓷材料置换隔膜的至少一部分。因为,已知在LiS电池等中电池工作中正极多硫化物溶解析出于电解液中,其达到负极侧时无法有助于充放电容量,完全阻隔正负极的电解液成为解决这样的电池容量低下的原因的手段。
还有,含有本陶瓷材料的固体电解质也可以适用于空气二次电池。即,可以用含有本陶瓷材料的固体电解质置换空气二次电池的液态电解质的至少一部分。根据这样的形态,可以期待实现避免或抑制有机电解液的使用的结构,简化电池结构的同时可以抑制由有机电解液引起的副反应。
(陶瓷材料的制造方法)
本说明书中公开的陶瓷材料的制造方法(以下仅称本制造方法)可以具备合成陶瓷材料的工序,本陶瓷材料含有Li、La、Zr、Al以及O、具有石榴石型或类似于石榴石型的结晶结构、Li与La的摩尔数之比2.0以上、2.5以下。
本制造方法的合成工序可以准备将Li及La混合为Li与La的摩尔数之比超过2.1、2.6以下的煅烧用原料。根据本制造方法,可以得到具备可处理的烧结性(密度)以及良好的Li离子传导性的烧结体。
(煅烧用原料的准备)
本陶瓷材料的煅烧用原料,可以含有Li、La、Zr及Al及O。这些构成金属元素作为如下所示的Li成分、La成分、Zr成分及Al成分包含在煅烧用原料。此外,本陶瓷材料具有O,O可以作为这些构成金属元素的化合物中的构成元素包含。
(Li成分、La成分及Zr成分)
这些各种原料成分无特别限定,可以从含有各种金属成分的金属氧化物、金属氢氧化物、金属碳酸盐等的各种金属盐等适当选择使用。例如,作为Li成分使用Li2CO3或LiOH,作为La成分使用La(OH)3或La2O3,作为Zr成分使用ZrO2
煅烧用原料优选混合Li及La为Li与La的摩尔数之比超过2.1、2.6以下。所述比在2.1以下时,得到的陶瓷材料的密度不充分,且Li离子电导率也低下,即使所述比超过2.6,密度也仍然低,Li离子电导率也低下。所述比在上述范围时,可以得到稳定的密度及Li离子电导率。更优选所述比在2.2以上、2.6以下。更优选2.2以上、2.4以下。进一步优选2.2以上、2.3以下。
此外,煅烧用原料优选混合Zr及La为Zr与La的摩尔数之比0.50以上、0.83以下。在该范围时,剩余的La或Zr引起的异相的形成被抑制,电导率的降低也被抑制。优选混合为0.67。因为所述比为0.67时,剩余的La或Zr引起的异相的形成被最好地抑制。
(Al成分)
Al成分无特别限定,因此可以适当选择含有Al的金属氧化物、金属氢氧化物、金属硝酸盐、金属有机物、金属单体等各种金属盐适用。例如,可以使用Al2O3、Al(NO3)3·9H2O、Al(OH)3、Al、乙酰丙酮铝、三乙氧基铝、丁氧基铝、丙氧基铝、甲氧基铝、氯化铝、氯化铝六水合物、二乙基氯化铝、油酸铝、乙酸铝n水合物、草酸铝、溴化氯六水合物、硬脂酸铝、三乙基铝、三甲基铝、三异丁基铝、硫酸铝、碘化铝等。Al成分在通过含Al而改善烧结性或电导率的范围中,相对于Li成分、La成分及Zr成分而存在。此外,在本陶瓷材料中优选在可以得到LLZ结晶结构的范围调合。
如已说明的那样,如果是本领域技术人员可以通过对本发明的陶瓷材料的构成成分在各种量的Al成分的存在下实施合成工序,得到烧结体,测定电导率等来取得这样的Al成分的量。除了原料中的元素的摩尔比可以在最终得到的陶瓷材料中得到之外,产生合成粉末的粉碎、回收时的损失等情况时,也有可能无法在最终得到的陶瓷材料中维持。此外,对作为煅烧原料的一成分的Al成分及其供给形态在后段详细说明。
这些各个成分只要是工业上生产而能得到的成分则无特别限定地使用。优选纯度在95%以上,更优选在98%以上。此外,优选水分在1%以下,可以根据需要进行干燥。
此外,调制煅烧用原料时,可以适当采用公知的陶瓷粉末的合成中的原料粉末调制方法。如,可以投入到打浆机(ライカイ機)等或适当的球磨机等中均一地混合。
此外,煅烧用原料按照以下说明的合成工序调制。即,可以调制含有本陶瓷材料必需的所有的原料成分的煅烧用原料,也可以先调制含有一部分原料成分(如,Li成分、La成分及Zr成分及Al成分中的部分成分或部分量)的煅烧用原料,在该煅烧用原料的煅烧粉末(暂煅烧粉末)中添加剩余的成分或残余的量(如,Al成分的全部的量或部分量),做成用于合成本陶瓷材料的最终的煅烧用原料。
(合成工序)
本制造方法的合成工序是将煅烧用原料煅烧、合成Li与La的摩尔数之比2.0以上、2.5以下的陶瓷材料的工序。
合成工序中的煅烧气氛无特别限定,可以是含氧气的氧化性的气氛下或由Ar等的惰性气氛。合成本陶瓷材料时,通过在惰性气体气氛中进行热处理,得到更高的密度。此外,若在惰性气体气氛中实施可以伴随烧结等的合成工序,则Li与La的摩尔数之比在合成粉末中也易得到。如,根据这样的合成工序的实施,煅烧用原料中的Li/La的摩尔比在煅烧后也保持在95%以上,优选97%以上。在惰性气体气氛中进行热处理时,优选原料为氧化物等的含有O成分的粉末。如,在后述的第1热处理工序和第2热处理工序中,优选在惰性气体气氛中进行第2热处理工序。作为惰性气体种类,如可以含有选自氦气(He)、氖气(Ne)、氩气(Ar)、氮气(N)、氪气(Kr)、氙气(Xe)及氡(Rn)中的1种或2种以上。优选Ar。
如要等到本陶瓷材料,在Ar等的惰性气体气氛下使用已经说明的理想的煅烧用材料,实施本陶瓷材料的合成工序,本陶瓷材料的所述比为2.2以上、2.5以下,更优选所述比为2.2以上、2.3以下。通过这样,可以得到密度以及Li电导率良好的本陶瓷材料。再有,如此得到的本陶瓷材料的Li电导率优选在4.0×10-5S/cm以上,更优选在5.0×10-5S/cm以上。此外,大气等气氛下的合成中,优选用已经说明的理想的煅烧用材料实施将所述比为2.0以上、2.2以下的本陶瓷材料合成的工序。通过这样,可以得到良好的Li电导率的本陶瓷材料。更优选所述比2.0以上、2.1以下。如此得到的本陶瓷材料的Li离子电导率优选在7.0×10-5S/cm以上。
用于合成的煅烧温度无特别限定,优选为800℃以上,更优选在850℃以上、1250℃以下的温度下进行热处理。
合成工序可以是组合2个以上的热处理工序的工序。即,合成工序可以具备:得到至少含有Li、La、Zr以及O的一次煅烧粉末的第1热处理工序、和在Al成分的存在下将所述一次煅烧粉末进行煅烧而得到所述陶瓷材料的第2热处理工序。通过组合这样的热处理工序,LLZ结晶结构变得容易得到。
(第1热处理工序)
第1热处理工序是通过至少进行Li成分和La成分及Zr成分的热分解、得到用于在第2热处理工序中容易形成LLZ结晶结构的一次煅烧粉末的工序。一次煅烧粉末也有时已经具有LLZ结晶结构。煅烧温度优选的是850℃以上、1150℃以下的温度。第1热处理工序在上述温度范围内可以具备在更低的加热温度下加热步骤和更高的加热温度下加热的步骤。通过具备这样的加热步骤,可以得到更均一的状态的陶瓷粉末,可以由第2热处理工序得到良好质量的烧结体。以这样的多个步骤实施第1热处理工序时,各煅烧步骤结束后,优选用打浆机、球磨机及振动碾磨机等进行混炼·粉碎。此外,粉碎手法优选用干式进行。通过如此进行,由第2热处理工序容易得到进一步均一的LLZ相。
第1热处理工序可以在大气等氧化性的气氛中实施,也可以在惰性气氛中实施。根据原料不同而理想的气氛不同。考虑到热分解,优选氧化性气氛。
构成第1热处理工序的热处理步骤优选实施850℃以上、950℃以下的热处理步骤和1075℃以上、1150℃以下的热处理步骤。进一步优选875℃以上、925℃以下(更优选约900℃)的热处理步骤和1100℃以上、1150℃以下(更优选约1125℃)的热处理步骤。
第1热处理工序,作为整体在加热温度设定的最高温度下的加热时间的合计优选在10小时以上、15小时以下左右。由2个热处理步骤构成第1热处理工序时,优选分别在最高温度下的加热时间为5~6小时左右。
另一方面,可以通过变更原料来缩短第1热处理工序。例如,将LiOH用于起始原料时,要得到LLZ结晶结构,可以将含有Li成分、La成分、Zr成分的LLZ构成成分在850℃以上、950℃以下的热处理步骤中使最高温度下的加热时间设定为10小时以下。这是因为,用于起始原料的LiOH在低温下会形成液相,因此在更低的低温下容易与其他原料进行反应。
在第1热处理工序中使用的煅烧用原料优选含有Li成分、La成分及Zr成分,不含Al成分。此外,关于Li及La,优选Li与La的摩尔数之比超过2.1、在2.6以下,关于Zr及La,优选Zr与La的摩尔比为0.67。使用这样的煅烧用原料时,第2热处理工序中添加Al成分进行煅烧。
另外,在第1热处理工序中使用的煅烧用原料中可以不含Al成分。原料中含有Al成分时,可以得到含有Al的一次煅烧粉末。因此,在后段的第2煅烧工序中,即使在一次煅烧粉末中不另外添加Al成分,Al也会内含在一次煅烧粉末,通过实施对一次煅烧粉末进行热处理的第2煅烧工序,即使不另外添加Al成分,也能在Al的存在下对一次煅烧粉末进行热处理。还有,在第1热处理工序中使用的煅烧用原料中含有一部分Al成分,也可以在第2热处理工序中在一次煅烧粉末追加剩余的Al成分。
(第2热处理工序)
第2热处理工序可以作为在950℃以上、1250℃以下的温度下加热在所述第1热处理工序得到的一次煅烧粉末的工序。根据第2热处理工序,将在第1热处理工序得到的一次煅烧粉末进行煅烧,可以最终得到作为复合氧化物的具有LLZ结晶结构的本陶瓷材料。
要得到LLZ结晶结构,如在1125℃以上、1250℃以下的温度下对含有Li、La及Zr的LLZ构成成分进行热处理。作为Li原料使用LiCO3时,优选在1125℃以上、1250℃以下进行热处置。不到1125℃的话,难以得到LLZ的单相,Li电导率小,超过1250℃的话,可见到异相(La2Zr2O7等)形成,Li电导率小,且结晶成长变显著,因此具有保持作为固体电解质的强度变难的倾向。更优选的是,约1180℃至1230℃。
另一方面,可以通过变更原料成分来使第2热处理工序低温化。例如,将LiOH作为Li成分用于原料成分时,要得到LLZ结晶结构,也可以将含有Li、La及Zr的LLZ构成成分在950℃以上、不到1125℃的温度下进行热处理。这是因为,用于原料成分的LiOH在低温下会形成液相,因此在更低温下容易与其他原料进行反应。
第2热处理工序中,上述加热温度下的加热时间优选在18小时以上、50小时以下左右。因为,时间短于18小时时,LLZ系陶瓷的形成不充分,时间超过50小时时,容易介由埋粉与承烧板反应,此外结晶成长变显著,不能保持作为样品的强度。优选30小时以上。
第2热处理工序可以在大气气氛中实施,考虑到烧结体的密度或Li/La的摩尔比维持等,优选在惰性气氛中实施。
第2热处理工序优选作为含有一次煅烧粉末的成形体实施。如,将一次煅烧粉末或在一次煅烧粉末中追加Al成分等的粉末用众所周知的冲压手法加压成形,做成赋予了所期望的三维形状(如,可以作为二次电池的固体电解质或隔膜使用的形状及尺寸)的成形体之后实施。通过做成成形体,除促进固相反应之外,还容易得到致密的烧结体。还有,第2热处理工序后,也可以将在第2热处理工序中得到的陶瓷粉末做成成形体以在第2煅烧工序中的加热温度相同的温度另外实施煅烧工序。
第2热处理工序中煅烧一次煅烧粉末的成形体使之烧结时,优选实施成使成形体埋没在相同的粉末之内。通过如此,可抑制Li的损失,抑制第2煅烧工序前后的组成变化。此外,通过根据需要将成形体用承烧板从埋粉的上下按压,可以防止烧结体在煅烧时的弯曲。
另一方面,第2热处理工序中,作为Li原料使用LiOH等进行低温化时,可以不将一次煅烧粉末的成形体埋没在相同的粉末之内也能烧结。这是因为,通过第2热处理工序低温化,Li的损失比较受抑制。
在Al成分存在下实施第2热处理工序,如已说明的那样,除了举出用含有Al成分的煅烧用材料(包含Li成分、La成分、Zr成分及Al成分)实施第1热处理工序而得到的一次煅烧粉末原样在第2热处理工序中使用的形态之外,还可以举出在用不含Al成分的煅烧用原料(包含Li成分、La成分、Zr成分)实施第1煅烧工序得到的一次煅烧粉末添加Al成分并混合来实施第2煅烧工序的形态。要在Al成分存在下实施第2煅烧工序,可以是这些形态的任一个,也可以适当组合这些形态。
根据以上的煅烧工序,可以得到本陶瓷材料粉末或其烧结体。通过实施第1热处理工序和第2热处理工序,可以可靠地得到本发明的陶瓷材料。
(全固体锂二次电池)
本说明书中公开的全固体锂二次电池(以下仅称本二次电池)可以具备正极、负极和含有陶瓷材料的固体电解质,所述陶瓷材料含有Li、La、Zr、Al以及O,具有石榴石型或类似于石榴石型的结晶结构,将混合Li及La为Li与La的摩尔数之比超过2.1、2.6以下的煅烧用原料煅烧而得。根据本说明书公开,可以提供耐锂性优异、具有良好的密度及Li离子电导率的固体电解质的全固体锂二次电池。
在本二次电池中,优选将通过本制造方法得到的烧结体原样使用或不进行粉碎而适当加工作为固体电解质使用。还有,也可以用在第2热处理工序中以粉末状态煅烧的粉末得到含有其他成分的成形体,将该成形体作为固体电解质。成形体的制造方法可以适用迄今公知的陶瓷成形体的制造方法。如,冲压法、刮匀涂装法、辊涂法等的成形方法等。
本二次电池的正极及负极可以含有锂二次电池中使用的迄今公知的正极活性物质及负极活性物质,通过常法制造。
(正极活性物质)
正极活性物质无特别限定,可以使用迄今公知的用于全固体二次电池的正极活性物质。尤其使用金属氧化物作为正极活性物质时,可以在氧气氛下进行二次电池的烧结。作为这样的正极活性物质的具体例子,可以举出二氧化锰(MnO2)、氧化铁、氧化铜、氧化镍、锂锰复合氧化物(如LixMn2O4或LixMnO2)、锂镍复合氧化物(如LixNiO2)、锂钴复合氧化物(如LixCoO2)、锂镍钴复合氧化物(如LiNi1-yCoyO2)、锂锰钴复合氧化物(如LiMnyCo1-yO2)、尖晶石型锂锰镍复合氧化物(如LixMn2-yNiyO4)、具有橄榄石结构的锂磷酸氧化物(如LixFePO4、LixFe1-yMnyPO4、LixCoPO4)、具有NASICON结构的锂磷酸化合物(如LixV2(PO4)3、)、硫酸铁(Fe2(SO4)3)、钒氧化物(如V2O5)等。这些可以单独使用1种,也可以并用2种以上来使用。还有,这些化学式中,x、y优选1<x<5、0<y<1的范围。这其中,优选LiCoO2、LixV2(PO4)3、LiNiPO4、LiFePO4、LixNiO2、。此外,作为正极活性物质举例有S(硫)、Li2S(硫化物)或Li2Sn(多硫化锂)。
(负极活性物质)
负极活性物质无特别限定,可以使用迄今公知的用于全固体电池的负极活性物质。如,碳、金属锂(Li)、金锂合金或者铟锂等的锂合金、金属化合物、金属氧化物、Li金属化合物、Li金属氧化物(含有锂-过渡金属复合氧化物)、添加硼的碳、石墨、具有NASICON结构的化合物等。这些可以单独使用1种,也可以并用2种以上来使用。如,使用上述金属锂(Li)时,可以扩大全固体电池的容量。作为上述碳,如可以举出石墨碳、硬碳、软碳等以往公知的碳材料。作为上述金属氧化物,可以举出LiAl、LiZn、Li3Bi、Li3Cd、Li3Sd、Li4Si、Li4.4Pb、Li4.4Sn、Li0.17C(LiC6)等。作为上述金属氧化物,可以举出SnO、SnO2、GeO、GeO2、In2O、In2O3、PbO、PbO2、Pb2O3、Pb3O4、Ag2O、AgO、Ag2O3、Sb2O3、Sb2O4、Sb2O5、SiO、ZnO、CoO、NiO、TiO2、FeO等。作为Li金属化合物,可以举出Li3FeN2、Li2.6Co0.4N、Li2.6Cu0.4N等。Li金属氧化物(锂-过渡金属复合氧化物)可以举出以Li4Ti5O12表示的锂-钛复合氧化物等。上述添加硼的碳,可以举出添加硼的碳、添加硼的石墨等。优选金属锂。
还有,要得到正极及负极,除了上述的各活性物质外,也可以预先调制含有适当的电子电导助剂或胶粘剂的正极材料或负极材料。作为电子电导助剂,举出有乙炔炭黑、炭黑、石墨、各种碳纤维、碳纳米管等。作为胶粘剂,举出有如聚偏氟乙烯(PVDF)、SBR、聚酰亚胺、聚四氟乙烯等。此外,正极中这样的各活性物质可以使用1种或组合2种以上使用。
本二次电池具有的正极及负极只要是作为二次电池发挥功能,则可以是任何形态。可以将上述的正极活性物质或正极材料、或者负极活性物质或负极材料用冲压法、刮匀涂装法、辊涂法等的公知的成形方法做成成形体。冲压法中,将正极活性物质粉末或负极活性物质粉末添加到金属模具等中,通过加压得到成形体。另一方面,刮匀涂装法、辊涂法中,首先将正极活性物质或负极活性物质和聚乙烯基醇等的胶黏剂混合得到混合物。还有,在混合物中,可以根据需要适当量添加固体电解质。然后,在得到的混合物中添加甲苯等的有机溶剂,调制正极浆料。将调制好的正极浆料通过刮匀涂装法、辊涂法等的成形方法成形为规定厚度的薄膜状或片状。干燥后,根据需要实施切断等加工、进行煅烧,由此制作正极及负极。此外,作为正极及负极,也可以做成适当含有上述各种活性物质和本发明的陶瓷材料的粉末的成形体。
本二次电池的电池,通过将固体电解质与如上所述地准备的正极材料或正极、负极材料或负极组合来制作。电池的制作根据最终想要得到的电池形态而不同,如可以对固体电解质的单面赋予正极材料作为正极、在固体电解质的另一面赋予负极材料而作为负极等。还有,本二次电池的电池结构无特别限定。如,纽扣型之外,可以是圆筒型或箱型的各种电池形态。
还有,从以上说明,本发明也可以作为全固体锂二次电池的制造方法实施,该全固体锂二次电池的制造方法具备:将上述煅烧用原料煅烧得到本陶瓷材料的烧结体的工序、和将所述烧结体作为固体电解质与正极及负极组合来制作所述全固体锂二次电池的电池的工序。
实施例
以下,本说明书举实施例进行说明。以下实施例用于说明本发明,而并不限定本发明。
(煅烧用原料的调制)
作为用于调制煅烧用原料的各原料成分,使用了氢氧化锂、氢氧化镧(信越化学工业株式会社)、氧化锆(東ソ一株式会社)。将这些粉末分别称量至成为以下的摩尔比,配合,用打浆机混合作为煅烧用原料1~5。
煅烧用原料的种类         LiOH∶La(OH)3∶ZrO2
1                        7.7∶3∶2
2                        7∶3∶2
3                        6.8∶3∶2
4                        6.6∶3∶2
5                        6.3∶3∶2
(第1热处理工序)
将调制好的煅烧用原料放入铝坩埚中,在大气中以600℃/h升温,在900℃保持6h。
(第2热处理工序)
进一步,第1热处理工序后,对各粉末以1.5质量%的浓度添加γ-Al2O3,将该粉末与玉石混合,用振动研磨机粉碎3小时。粉碎后,使本粉末通过筛子后,将这些粉末用金属模具约100MPa成压成形后,通过将其颗粒放在铝承烧板上,连同承烧板一起放入铝盒(サヤ)内,分别用大气气氛以及Ar气氛以200℃/小时升温,1000℃下保持36h,得到颗粒。还有,作为Ar气氛,将容量约3L的炉内事先真空抽滤后,使纯度99.999%的Ar气体以2L/min流过电炉。
对各个烧结体颗粒,将其上下面研磨之后,如下进行结构评价、化学分析以及电化学测定。
(结构评价)
进行颗粒的X线衍射测定。此外,测定颗粒的重量之后,用千分尺测定颗粒的多处直径算出平均值之后,同样测定颗粒的厚度算出颗粒的体积,算出密度。结果在表1及图1显示。
表1
Figure BSA00000263855400141
(化学分析)
为把握颗粒的Li及La含量进行化学分析。进行了电感耦合等离子体发光分析(ICP分析)。结果在表1显示。
(Li电导率的测定)
对各个颗粒实施Au喷溅,再在110℃以上真空干燥5小时以上,原样导入到Ar气氛的手套箱内,放入CR2032纽扣式电池中。将本纽扣式电池从大气中取出,用ソ一ラトロン公司制造的电化学测定系统(potentio/galvanostat恒电位仪,频率响应分析仪)在频率1MHz~0.1Hz,电压10mV进行交流阻抗测定。结果在表1及图2显示。
关于结晶结构,煅烧用原料1~5的大气及Ar气氛煅烧都得到类似于ICDD粉末衍射文件的045-0109的结晶结构。由此可知得到的所有的颗粒具有LLZ结晶结构的特征。作为代表例,在图3分别显示煅烧用原料2的Ar煅烧颗粒的X线衍射光谱。
从以上结果,可知根据本制造方法,可以得到密度4.0以上的陶瓷材料。此外,可以得到更高密度、即4.1以上、进而4.2以上的陶瓷材料。进而,也知道了可以得到4.3以上、4.4以上的陶瓷材料。
此外,根据本制造方法,可以得到Li离子电导率在2.0×10-5S/cm以上的陶瓷材料。此外,可以得到更高的Li离子电导率、即3.0×10-5S/cm以上、进而4.0×10-5S/cm以上的陶瓷材料。进而6.0×10-5S/cm以上,再进而8.0×10-5S/cm以上的陶瓷材料。
还有,根据本说明书中公开的陶瓷材料的制造方法,关于煅烧用原料中的Li及La,混合为Li与La的摩尔数之比超过2.1、2.6以下对良好的密度和Li离子传导性有效。此外,知道:该比优选2.2以上、2.6以下,进一步优选2.2以上、2.4以下,更优选2.2以上、2.3以下。
从以上结果,可以得到Li/La(摩尔/摩尔)之比为2.0以上、2.5以下、Li离子传导性优异(如Li电导率在4.0×10-5S/cm以上)的陶瓷材料。在Ar等的惰性气氛煅烧中,可以得到Li/La(摩尔/摩尔)之比为2.2以上、2.5以下、Li离子传导性优异(如Li电导率在4.0×10-5S/cm以上)的陶瓷材料。更优选所述比是2.2以上、2.3以下,Li电导率在5.0×10-5S/cm以上。此外,在大气气氛煅烧中,可以得到所述比是2.0以上、2.2以下、Li离子传导性优异(如Li电导率在5.0×10-5S/cm以上)的陶瓷材料。更优选所述比是2.0以上、2.1以下,Li电导率在7.0×10-5S/cm以上。
此外,知道通过在惰性气氛下实施第2热处理工序,可以维持约98%的在第1热处理工序中使用的煅烧用原料中的Li/La的摩尔比。这显示通过惰性气体气氛下的热处理工序,得到良好的烧结性及密度。另一方面,知道通过在氧化性气体气氛下实施第2热处理工序,只能维持89%左右的所述Li/La的摩尔比。

Claims (17)

1.一种陶瓷材料,含有Li、La、Zr、Al及O,具有石榴石型结晶结构,Li与La的摩尔数之比为2.0以上、2.5以下。
2.如权利要求1记载的陶瓷材料,所述陶瓷材料通过对Li与La的摩尔数之比为大于2.1且在2.6以下的煅烧用原料进行煅烧得到。
3.如权利要求2记载的陶瓷材料,所述煅烧用原料中Zr与La的摩尔数之比为0.67。
4.如权利要求1~3的任一项记载的陶瓷材料,所述陶瓷材料中Al含量相对于除Al之外的其他成分的总质量为0.1质量%以上、2质量%以下。
5.如权利要求1~4的任一项记载的陶瓷材料,所述陶瓷材料具有锂离子传导性。
6.如权利要求1~5的任一项记载的陶瓷材料,所述陶瓷材料是固体电解质材料。
7.一种全固体二次电池,使用了权利要求1~6的任一项记载的陶瓷材料。
8.一种空气二次电池,使用了权利要求1~6的任一项记载的陶瓷材料。
9.一种锂离子二次电池,使用了权利要求1~6的任一项记载的陶瓷材料。
10.一种陶瓷材料的制造方法,具有合成如下陶瓷材料的工序,所述陶瓷材料含有Li、La、Zr、Al及O、具有石榴石型结晶结构、Li与La的摩尔数之比为2.0以上、2.5以下。
11.如权利要求10记载的制造方法,所述合成工序包括准备以Li与La的摩尔数之比超过2.1、且在2.6以下混合的煅烧用原料、并煅烧的工序。
12.如权利要求11记载的制造方法,所述煅烧用原料中Zr与La的摩尔数之比为0.67。
13.如权利要求10~12的任一项记载的制造方法,所述合成工序包括:取得至少含有Li、La、Zr及O的一次煅烧粉末的第1热处理工序、和在存在Al成分的条件下将所述一次煅烧粉末进行煅烧得到所述陶瓷材料的第2热处理工序。
14.如权利要求13记载的制造方法,所述第1热处理工序是取得由Li、La、Zr及O构成的一次煅烧粉末的工序,所述第2热处理工序是将Al成分和所述一次煅烧粉末进行煅烧的工序。
15.如权利要求13或14记载的制造方法,所述第2热处理工序是将含有所述一次煅烧粉末的成形体煅烧并烧结的工序。
16.如权利要求10~15的任一项记载的制造方法,在惰性气体气氛中实施所述陶瓷材料的合成。
17.一种二次电池,该电池是全固体锂二次电池,具备:
正极、
负极、和
含有陶瓷材料的固体电解质,所述陶瓷材料含有Li、La、Zr、Al及O、具有石榴石型结晶结构,Li与La的摩尔数之比为2.0以上、2.5以下。
CN201010277422.5A 2009-09-03 2010-09-03 陶瓷材料及其利用 Active CN102010182B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009203898 2009-09-03
JP2009-203898 2009-09-03
JP2010-194671 2010-08-31
JP2010194671A JP5376252B2 (ja) 2009-09-03 2010-08-31 セラミックス材料及びその利用

Publications (2)

Publication Number Publication Date
CN102010182A true CN102010182A (zh) 2011-04-13
CN102010182B CN102010182B (zh) 2014-06-25

Family

ID=43570340

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010277422.5A Active CN102010182B (zh) 2009-09-03 2010-09-03 陶瓷材料及其利用

Country Status (4)

Country Link
US (1) US9260320B2 (zh)
EP (1) EP2302723B1 (zh)
JP (1) JP5376252B2 (zh)
CN (1) CN102010182B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102617140A (zh) * 2012-03-05 2012-08-01 内蒙古工业大学 一种锑掺杂的类石榴石结构的锂离子晶态固体电解质材料及其合成方法
CN102867987A (zh) * 2012-09-04 2013-01-09 宁波大学 一种B3+,Al3+,Mg2+,Y3+,F-共掺杂固体电解质Li7La3Zr2O12
CN103594726A (zh) * 2013-10-15 2014-02-19 中南大学 石榴石结构钽酸镧锂基固体电解质材料及其制备方法
CN104300125A (zh) * 2014-08-15 2015-01-21 中山大学 一种类石榴结构复合材料的制备方法
CN104591231A (zh) * 2013-10-31 2015-05-06 中国科学院上海硅酸盐研究所 含氟石榴石结构锂离子氧化物陶瓷
CN104628381A (zh) * 2013-11-12 2015-05-20 现代自动车株式会社 制备铝替代的石榴石的方法
CN105489927A (zh) * 2015-11-24 2016-04-13 青岛能迅新能源科技有限公司 一种提高全固态锂离子电解质材料Li7La3Zr2O12常温离子电导的方法
CN105489928A (zh) * 2015-11-24 2016-04-13 青岛能迅新能源科技有限公司 一种层状固态锂离子电解质材料的制备方法
CN105489930A (zh) * 2015-11-24 2016-04-13 青岛能迅新能源科技有限公司 熔盐法制备固态锂离子电解质材料Li7La3Zr2O12的方法
CN105977530A (zh) * 2016-07-04 2016-09-28 山东瑞纳森新能源科技有限公司 高离子电导率、强机械性能固体电解质材料及其制备方法
CN106129463A (zh) * 2016-07-04 2016-11-16 山东瑞纳森新能源科技有限公司 固体电解质材料及其制备方法
CN106796825A (zh) * 2014-10-31 2017-05-31 国立研究开发法人产业技术综合研究所 锂离子传导性晶体及全固体锂离子二次电池
CN107848894A (zh) * 2015-07-29 2018-03-27 中央硝子株式会社 石榴石型氧化物烧结体和其制造方法
CN110416601A (zh) * 2019-08-07 2019-11-05 哈尔滨师范大学 一种钠电池电解质表面金属氧化层的制备方法
CN114349507A (zh) * 2021-12-31 2022-04-15 上海纳米技术及应用国家工程研究中心有限公司 一种提高锂镧锆氧陶瓷片烧结相对密度的方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5273732B2 (ja) * 2009-09-03 2013-08-28 日本碍子株式会社 セラミックス材料の製造方法
JP5617417B2 (ja) * 2010-08-02 2014-11-05 株式会社豊田中央研究所 ガーネット型リチウムイオン伝導性酸化物及びその製法
KR101312275B1 (ko) 2011-03-30 2013-09-25 삼성에스디아이 주식회사 복합체, 이를 포함한 리튬 이차 전지용 전극 활물질, 그 제조방법, 이를 이용한 리튬 이차 전지용 전극 및 이를 채용한 리튬 이차 전지
DE102011079401A1 (de) 2011-07-19 2013-01-24 Robert Bosch Gmbh Lithiumionen leitende, granatartige Verbindungen
JP6018947B2 (ja) * 2012-02-21 2016-11-02 日本碍子株式会社 固体電解質セラミックス材料のイオン伝導率を回復させる方法
JP5970060B2 (ja) * 2012-03-02 2016-08-17 日本碍子株式会社 固体電解質セラミックス材料及びその製造方法
CN104221214B (zh) 2012-04-26 2016-12-07 日本碍子株式会社 锂空气二次电池
US10193116B2 (en) * 2012-12-13 2019-01-29 Applied Materials, Inc. Ceramic coating on battery separators
US9362546B1 (en) 2013-01-07 2016-06-07 Quantumscape Corporation Thin film lithium conducting powder material deposition from flux
JP6166584B2 (ja) * 2013-05-10 2017-07-19 日本碍子株式会社 リチウムイオン伝導性固体電解質並びにそれを用いた複合体及び電池
CN105683127B (zh) 2013-10-07 2020-08-28 昆腾斯科普公司 用于锂二次电池的石榴石材料和制造和使用石榴石材料的方法
WO2015111494A1 (ja) 2014-01-24 2015-07-30 日本碍子株式会社 全固体電池の使用
WO2015170545A1 (ja) 2014-05-07 2015-11-12 日本碍子株式会社 全固体電池を用いた揮発性メモリ用バックアップシステム
JP2016027563A (ja) * 2014-07-02 2016-02-18 株式会社デンソー 固体電解質、リチウム電池及びリチウム空気電池
JP6333133B2 (ja) * 2014-09-09 2018-05-30 日本特殊陶業株式会社 リチウムイオン伝導性セラミックス焼結体、リチウム電池、及びリチウムイオン伝導性セラミックス焼結体の製造方法
DE112015005517T5 (de) 2014-12-09 2017-08-24 Ngk Insulators, Ltd. Vorrichtung, die mit einer Batterie ausgestattet ist
JPWO2016152565A1 (ja) * 2015-03-25 2018-02-08 日本碍子株式会社 全固体リチウム電池
KR102609408B1 (ko) 2015-04-16 2023-12-04 퀀텀스케이프 배터리, 인코포레이티드 고체 전해질 제조를 위한 세터 플레이트 및 그를 사용하여 치밀한 고체 전해질을 제조하는 방법
EP3326223A4 (en) * 2015-07-21 2018-12-19 QuantumScape Corporation Processes and materials for casting and sintering green garnet thin films
JP2017081794A (ja) * 2015-10-29 2017-05-18 株式会社豊田自動織機 ガーネット型酸化物の製造方法
US9966630B2 (en) 2016-01-27 2018-05-08 Quantumscape Corporation Annealed garnet electrolyte separators
US20170331092A1 (en) 2016-05-13 2017-11-16 Quantumscape Corporation Solid electrolyte separator bonding agent
WO2018027200A1 (en) 2016-08-05 2018-02-08 Quantumscape Corporation Translucent and transparent separators
CN106129466B (zh) * 2016-08-24 2019-01-18 上海交通大学 降低与金属锂电极界面电阻的固态电解质及其制备方法
WO2018075809A1 (en) 2016-10-21 2018-04-26 Quantumscape Corporation Lithium-stuffed garnet electrolytes with a reduced surface defect density and methods of making and using the same
US11011776B2 (en) 2017-03-15 2021-05-18 Ngk Spark Plug Co., Ltd. Lithium-ion-conductive ceramic material, lithium-ion-conductive ceramic sintered body, and lithium battery
US11457513B2 (en) 2017-04-13 2022-09-27 Bradford White Corporation Ceramic heating element
US10347937B2 (en) 2017-06-23 2019-07-09 Quantumscape Corporation Lithium-stuffed garnet electrolytes with secondary phase inclusions
WO2018236394A1 (en) 2017-06-23 2018-12-27 Quantumscape Corporation LITHIUM-FILLED GRENATE ELECTROLYTES WITH SECONDARY PHASE INCLUSIONS
US20200185699A1 (en) * 2017-08-04 2020-06-11 Toyota Motor Europe Method for producing solid electrolyte and electrode for all-solid state batteries
US11600850B2 (en) 2017-11-06 2023-03-07 Quantumscape Battery, Inc. Lithium-stuffed garnet thin films and pellets having an oxyfluorinated and/or fluorinated surface and methods of making and using the thin films and pellets
US11084734B2 (en) * 2018-05-04 2021-08-10 Arizona Board Of Regents On Behalf Of Arizona State University Synthesis of lithium lanthanum zirconate from nanocrystalline lanthanum zirconate
US11268196B2 (en) 2018-10-31 2022-03-08 Arizona Board Of Regents On Behalf Of Arizona State University Lithium lanthanum zirconate thin films
CN112456971A (zh) * 2020-11-13 2021-03-09 北京航大微纳科技有限公司 一种氧化镍基陶瓷靶材材料的冷等静压成型制备方法
JP6916405B1 (ja) * 2021-03-31 2021-08-11 第一稀元素化学工業株式会社 セラミックス粉末材料、焼結体、及び、電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101014540A (zh) * 2004-03-06 2007-08-08 维尔纳·韦普内 化学稳定固态锂离子导体
WO2009003695A2 (de) * 2007-07-02 2009-01-08 Basf Se Ionenleiter mit granatstruktur
EP2099086A1 (en) * 2008-03-07 2009-09-09 Tokyo Metropolitan University Method for producing solid electrolyte structure, method for producing all-solid-state-cell, solid electrolyte structure, and all-solid-state-cell
EP2159867A1 (en) * 2008-08-21 2010-03-03 Ngk Insulator, Ltd. Aluminium-doped Li7La3Zr2O12 solid electrolyte and process for producing the same
WO2010090301A1 (en) * 2009-02-04 2010-08-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Garnet-type lithium ion-conducting oxide and all-solid-state lithium ion secondary battery containing the same

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250264A (ja) * 1989-03-23 1990-10-08 Japan Synthetic Rubber Co Ltd リチウムイオン導電性固体電解質
JP2870741B2 (ja) * 1997-04-14 1999-03-17 堺化学工業株式会社 マンガン酸リチウム粒子状組成物及びその製造方法並びにリチウムイオン二次電池
SI1723080T1 (sl) 2004-03-06 2014-08-29 Basf Se Kemiäśno stabilni trdni litij ionski prevodniki
US20050252853A1 (en) 2004-05-13 2005-11-17 Berland Brian S Novel proton conducting materials and devices incorporating them
JP4342456B2 (ja) * 2005-02-07 2009-10-14 株式会社東芝 空気リチウム二次電池
EP1862568A1 (en) 2006-05-30 2007-12-05 Siemens Aktiengesellschaft Thermal barrier coating with tungsten-bronze structure
JP5023936B2 (ja) 2006-10-06 2012-09-12 株式会社豊田中央研究所 正極用触媒及びリチウム空気二次電池
CN101239824B (zh) 2007-02-06 2010-08-25 香港理工大学 铌酸钠钾锆钛酸钡系无铅压电陶瓷组合物
JP4266036B2 (ja) 2007-04-26 2009-05-20 富士フイルム株式会社 圧電体、圧電素子、及び液体吐出装置
EP1986245B1 (en) 2007-04-26 2015-08-26 FUJIFILM Corporation Piezoelectric body, piezoelectrc device, and liquid discharge apparatus
JP5151692B2 (ja) 2007-09-11 2013-02-27 住友電気工業株式会社 リチウム電池
JP5627576B2 (ja) 2008-06-16 2014-11-19 ポリプラス バッテリー カンパニーPolyPlus Battery Company 水性リチウム−空気バッテリセル
JP2010045019A (ja) * 2008-07-16 2010-02-25 Tokyo Metropolitan Univ 全固体リチウム二次電池及びその製造方法
JP5354580B2 (ja) 2009-01-28 2013-11-27 独立行政法人産業技術総合研究所 リチウム−空気電池
JP5287499B2 (ja) * 2009-05-21 2013-09-11 株式会社豊田中央研究所 全固体型リチウムイオン二次電池
JP5083336B2 (ja) * 2009-02-04 2012-11-28 株式会社豊田中央研究所 ガーネット型リチウムイオン伝導性酸化物
JP5273732B2 (ja) * 2009-09-03 2013-08-28 日本碍子株式会社 セラミックス材料の製造方法
JP5525388B2 (ja) 2009-09-03 2014-06-18 日本碍子株式会社 セラミックス材料及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101014540A (zh) * 2004-03-06 2007-08-08 维尔纳·韦普内 化学稳定固态锂离子导体
WO2009003695A2 (de) * 2007-07-02 2009-01-08 Basf Se Ionenleiter mit granatstruktur
EP2099086A1 (en) * 2008-03-07 2009-09-09 Tokyo Metropolitan University Method for producing solid electrolyte structure, method for producing all-solid-state-cell, solid electrolyte structure, and all-solid-state-cell
EP2159867A1 (en) * 2008-08-21 2010-03-03 Ngk Insulator, Ltd. Aluminium-doped Li7La3Zr2O12 solid electrolyte and process for producing the same
WO2010090301A1 (en) * 2009-02-04 2010-08-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Garnet-type lithium ion-conducting oxide and all-solid-state lithium ion secondary battery containing the same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102617140A (zh) * 2012-03-05 2012-08-01 内蒙古工业大学 一种锑掺杂的类石榴石结构的锂离子晶态固体电解质材料及其合成方法
CN102617140B (zh) * 2012-03-05 2014-08-06 内蒙古工业大学 一种锑掺杂的类石榴石结构的锂离子晶态固体电解质材料及其合成方法
CN102867987A (zh) * 2012-09-04 2013-01-09 宁波大学 一种B3+,Al3+,Mg2+,Y3+,F-共掺杂固体电解质Li7La3Zr2O12
CN102867987B (zh) * 2012-09-04 2015-11-25 宁波大学 一种B3+,Al3+,Mg2+,Y3+,F-共掺杂固体电解质Li7La3Zr2O12
CN103594726A (zh) * 2013-10-15 2014-02-19 中南大学 石榴石结构钽酸镧锂基固体电解质材料及其制备方法
CN104591231A (zh) * 2013-10-31 2015-05-06 中国科学院上海硅酸盐研究所 含氟石榴石结构锂离子氧化物陶瓷
CN104591231B (zh) * 2013-10-31 2019-04-16 中国科学院上海硅酸盐研究所 含氟石榴石结构锂离子氧化物陶瓷
CN104628381A (zh) * 2013-11-12 2015-05-20 现代自动车株式会社 制备铝替代的石榴石的方法
CN104300125A (zh) * 2014-08-15 2015-01-21 中山大学 一种类石榴结构复合材料的制备方法
CN106796825B (zh) * 2014-10-31 2018-06-29 国立研究开发法人产业技术综合研究所 锂离子传导性晶体及全固体锂离子二次电池
CN106796825A (zh) * 2014-10-31 2017-05-31 国立研究开发法人产业技术综合研究所 锂离子传导性晶体及全固体锂离子二次电池
CN107848894A (zh) * 2015-07-29 2018-03-27 中央硝子株式会社 石榴石型氧化物烧结体和其制造方法
CN105489930A (zh) * 2015-11-24 2016-04-13 青岛能迅新能源科技有限公司 熔盐法制备固态锂离子电解质材料Li7La3Zr2O12的方法
CN105489928A (zh) * 2015-11-24 2016-04-13 青岛能迅新能源科技有限公司 一种层状固态锂离子电解质材料的制备方法
CN105489927A (zh) * 2015-11-24 2016-04-13 青岛能迅新能源科技有限公司 一种提高全固态锂离子电解质材料Li7La3Zr2O12常温离子电导的方法
CN105977530A (zh) * 2016-07-04 2016-09-28 山东瑞纳森新能源科技有限公司 高离子电导率、强机械性能固体电解质材料及其制备方法
CN106129463A (zh) * 2016-07-04 2016-11-16 山东瑞纳森新能源科技有限公司 固体电解质材料及其制备方法
CN106129463B (zh) * 2016-07-04 2019-01-29 山东瑞纳森新能源科技有限公司 固体电解质材料及其制备方法
CN105977530B (zh) * 2016-07-04 2019-03-01 山东瑞纳森新能源科技有限公司 高离子电导率、强机械性能固体电解质材料及其制备方法
CN110416601A (zh) * 2019-08-07 2019-11-05 哈尔滨师范大学 一种钠电池电解质表面金属氧化层的制备方法
CN110416601B (zh) * 2019-08-07 2022-08-02 哈尔滨师范大学 一种钠电池电解质表面金属氧化层的制备方法
CN114349507A (zh) * 2021-12-31 2022-04-15 上海纳米技术及应用国家工程研究中心有限公司 一种提高锂镧锆氧陶瓷片烧结相对密度的方法

Also Published As

Publication number Publication date
JP5376252B2 (ja) 2013-12-25
US20110053000A1 (en) 2011-03-03
CN102010182B (zh) 2014-06-25
EP2302723A1 (en) 2011-03-30
EP2302723B1 (en) 2012-11-28
JP2011073963A (ja) 2011-04-14
US9260320B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
CN102010182B (zh) 陶瓷材料及其利用
CN102010183B (zh) 陶瓷材料及其制造方法
JP5132639B2 (ja) セラミックス材料及びその製造方法
CN111033858B (zh) 共烧成型全固体电池
JP5273732B2 (ja) セラミックス材料の製造方法
CN102859779B (zh) 固体电解质材料、锂电池以及固体电解质材料的制造方法
JP5617417B2 (ja) ガーネット型リチウムイオン伝導性酸化物及びその製法
JP5283188B2 (ja) 全固体二次電池およびその製造方法
CN105680009B (zh) 含m的多功能金属氧化物修饰的高电压钴酸锂正极粉末材料及其制备方法
JP2016171067A (ja) ガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料
Amarilla et al. Electrochemical characteristics of cobalt-doped LiCoyMn2− yO4 (0≤ y≤ 0.66) spinels synthesized at low temperature from CoxMn3− xO4 precursors
CN113594445A (zh) 一种多金属复合氧化物包覆改性锰酸锂正极材料及其制备方法
KR20180033571A (ko) 티탄산 리튬과 티탄산 리튬란탄을 포함하는 소결체, 그 제조 방법 및 리튬 전지
JP7468590B2 (ja) リチウム化合物粉末
KR101537067B1 (ko) 리튬 이차 전지용 고체 전해질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
CN113149610A (zh) 一种基于界面调控的尖晶石型锂电正极陶瓷材料制备方法
JPH10233212A (ja) 非水系電池用電極活物質
KR20230013089A (ko) 고체 전해질 재료, 고체 전해질, 이것들의 제조 방법 및 전고체 전지
WO2022186087A1 (ja) 固体電池
JP7203200B2 (ja) 全固体二次電池
US20230378527A1 (en) Complex oxide, all-solid-state lithium ion secondary battery containing this complex oxide as solid electrolyte and method for producing complex oxide
CN115699216A (zh) 固体电解质材料、固体电解质、固体电解质的制造方法和全固体电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Japan's Mizuho District of Nagoya city to love county magistrate Tamachi 2 No. 56

Patentee after: NGK INSULATORS, Ltd.

Patentee after: Legal person of Tokyo Metropolitan Public University

Address before: Japan's Mizuho District of Nagoya city to love county magistrate Tamachi 2 No. 56

Patentee before: NGK INSULATORS, Ltd.

Patentee before: TOKYO METROPOLITAN University