JP5354580B2 - リチウム−空気電池 - Google Patents
リチウム−空気電池 Download PDFInfo
- Publication number
- JP5354580B2 JP5354580B2 JP2009016366A JP2009016366A JP5354580B2 JP 5354580 B2 JP5354580 B2 JP 5354580B2 JP 2009016366 A JP2009016366 A JP 2009016366A JP 2009016366 A JP2009016366 A JP 2009016366A JP 5354580 B2 JP5354580 B2 JP 5354580B2
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- air
- negative electrode
- air battery
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Hybrid Cells (AREA)
Description
+ e-となる溶解反応が、空気極の触媒担持した多孔質カーボン或いは微細化カーボンの表面に、O2 + 4Li+ + 4e- => 2Li2O (或いは2O2 + 4Li+ + 4e- => 2Li2O2)なる酸化リチウムの生成反応が生じる。一方、充電と共に、負極の金属リチウムの表面には、Li+ + e- => Li なる析出反応が、空気極の触媒担持した多孔質カーボン或いは微細化カーボンの表面に、2Li2O => O2 + 4Li+ + 4e-(或いは2Li2O2 => 2O2 + 4Li+ + 4e-)なる反応が生じる。
また、従来のリチウム−空気電池は、空気中の水分が有機電解液に溶けて、負極のリチウム金属と反応し、大量の水素が発生する場合があり、安全性にも問題があるうえ、空気中の窒素が有機電解液に溶けて、負極のリチウム金属と反応し、リチウム金属の表面に窒化リチウムが生成する恐れもある。
すなわち、この出願は以下の発明を提供するものである。
〈1〉リチウム金属を含む負極、負極用の電解液、セパレータ、空気極用の電解液および空気極がその順に設けられたリチウム−空気電池であって、該セパレータがリチウムイオンのみを通す固体電解質を含み、空気極用の電解液に充電専用の正極を更に配置したことを特徴とするリチウム−空気電池。
〈2〉充電専用の正極が、カーボンまたは金属チタンであることを特徴とする〈1〉に記載の充電可能なリチウム−空気電池。
〈3〉リチウムイオンのみを通す固体電解質が、Li3N、Garnet-Type型リチウムイオン伝導体、NASICON型リチウムイオン伝導体、β-Fe2(SO4)型リチウムイオン伝導体、ペロブスカイト型リチウムイオン伝導体、チオLISICON型リチウムイオン伝導体および高分子型リチウムイオン伝導体から選ばれた少なくとも一種であることを特徴とする〈1〉または〈2〉に記載のリチウム−空気電池。
〈4〉リチウム金属を含む負極が、リチウム金属、リチウムカーボン、リチウムシリコン、リチウム錫および窒化リチウムから選ばれた少なくとも一種であり、負極用電解液が有機電解液であることを特徴とする〈1〉〜〈3〉のいずれかに記載のリチウム−空気電池。
〈5〉空気極が、マンガン酸化物、コバルト酸化物、酸化ニッケル、酸化鉄および酸化銅から選ばれた少なくとも一種の触媒と、該触媒を担持する多孔質カーボンまたは微細化カーボンから形成されていることを特徴とする〈1〉〜〈4〉のいずれかに記載のリチウム−空気電池。
〈6〉空気極用電解液がアルカリ性の水系電解液、水溶性電解液またはそのゲルであることを特徴とする〈1〉〜〈5〉のいずれかに記載のリチウム−空気電池。
〈7〉リチウムイオンのみを通す固体電解質の水溶性電解液側に、耐強アルカリ性高分子イオン交換膜を設けたことを特徴とする〈1〉〜〈6〉のいずれかに記載のリチウム−空気電池。
〈8〉放電と共に、負極の金属リチウムの表面には、Li=>Li++e-となる溶解反応が、空気極の触媒担持した多孔質カーボン或いは微細化カーボンの表面に、O2+2H2O+4e-=>4OH-なる酸素の溶解反応があり、充電と共に、負極の金属リチウムの表面には、Li++e-=>Liなる析出反応が、充電専用の正極に、4OH-=>O2+2H2O+4e-なる反応が生じることを特徴とする〈1〉〜〈7〉のいずれかに記載のリチウム−空気電池。
〈9〉負極材料としてリチウム金属を用い、放電時における該金属の消耗後、新たなリチウム金属を負極側の電極材料とすることを特徴とする〈1〉〜〈8〉のいずれかに記載の連続放電可能なリチウム−空気電池。
〈10〉負極材料としてリチウム金属を用い、放電時における該金属の消耗後、空気極側に生成したLiOHを金属リチウムに変換し、これを負極側の電極材料として再利用することを特徴とする〈1〉〜〈8〉のいずれかに記載のリチウム−空気電池。
また、生成したLiOHが水溶性電解液に溶けやすいため、これまでに有限な放電容量(例えば現在に報告した容量が400-1000mAh/g、重さ=多孔質カーボン或いは微細化カーボンと触媒とバインダーの重さ)から連続放電が可能な燃料電池へ展開することも可能である。また、本発明のリチウム−空気電池は、空気中の水分と負極のリチウム金属と反応による大量の水素の発生や空気中の窒素と負極のリチウム金属と反応による窒化リチウムの生成が極力防止でき、実用性に極めて優れたものである。
図1において、1は負極であるリチウム金属、2は負極側用の有機電解液、3は固体電解質セパレータ(或いは耐強アルカリ性高分子イオン交換膜つけた固体電解質セパレータ)、4は空気極用の水溶液電解液、5は多孔質、触媒およびバインダー、からなる空気極、6は充電専用正極を示す。
電解液に含有させる電解質としては、電解液中でリチウムイオンを形成するものであれば特に限定されない。例えば、LiPF6 、LiClO4 、LiBF4 、LiAsF6 、LiAlCl4 、LiCF3 SO3 、LiSbF6 等が挙げられる。これら電解質は、単独でもよいが、組み合わせて使用してもよい。
また、電解液の溶媒としては、この種の有機溶媒として公知のものがすべて使用できる。例えば、プロピレンカーボネート、テトラヒドロフラン、ジメチルスルホキシド、γ−ブチロラクロン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、1,2−ジメトキシエタン、2−メチルテトラヒドロフラン、スルホラン、ジエチルカーボネート、ジメチルホルムアミド、アセトニトリル、ジメチルカーボネート、エチレンカーボネート等が挙げられる。これら有機溶媒は、単独でもよいが、組み合わせて使用してもよい。
本発明で用いるリチウムイオンのみを透過する固体電解質としては、たとえば、Li3N、Garnet-Type型リチウムイオン伝導体、NASICON型リチウムイオン伝導体、β-Fe2(SO4) 型リチウムイオン伝導体、ペロブスカイト型リチウムイオン伝導体、チオLISICON型リチウムイオン伝導体、高分子型リチウムイオン伝導体が使用できる。現時点では、NASICON型リチウムイオン伝導体を使っているが、将来には、広い電位範囲にも、酸化・還元反応が起こらない固体電解質が特に好ましい。例えば、Garnet-Type型リチウムイオン伝導体が期待されている。
このようなリチウムイオンのみを透過する固体電解質ではなく、通常のセパレータや陽イオンが透過するイオン交換膜を使用した場合には、リチウムイオンだけでなく、水素イオン、窒素イオンなども透過し、負極の金属リチウムと反応し、負極に銅が析出したり、大量の水素を放出することがあるので、本発明のような所望のリチウム−空気電池を得ることはできない。
この場合、新たなリチウム金属を用いる代わりに、空気極側に生成したLiOHの沈殿と水分離し、LiOHを金属リチウムに変換すれば、図7に示したように、充電せず、燃料電池のように連続放電が可能なリチウム−空気電池(或いはリチウム燃料電池)とすることができる。
充電と放電に伴い、リチウムイオンが固体電解質を通して、それぞれ、空気極区域から負極区域へ、と負極区域から空気極区域へ移動している。
放電の時には、負極の金属リチウムの表面に、Li => Li+ + e- 、空気極に、O2 + 2H2O + 4e- => 4OH- なる反応が起こる。
すなわち、負極区域溶液のLi+が固体電解質を通して、空気極区域へ移動する。
充電の時には、負極の金属リチウムの表面に、Li+ + e- => Li 、充電専用の正極に、4OH- => O2 + 2H2O + 4e- なる反応が起こる。
すなわち、空気極区域溶液のLi+が固体電解質を通して、負極区域へ移動する。
すなわち、従来のリチウム−空気電池は、空気極の多孔質の細孔に放電の生成物の詰まりによる放電容量の劣化や、また、空気中の水分と負極のリチウム金属と反応による大量の水素の発生や、空気中の窒素と負極のリチウム金属と反応による窒化リチウムが生成などといった欠点を有する。
このことから、本発明の新規なリチウム−空気電池は、従来のリチウム金属の酸化反応(O2+4Li++4e-=>2Li2O或いは2O2+4Li++4e-=>2Li2O2)を利用したリチウム−空気電池に比べると、革新なコンセプトを利用している。以下のメリットがある。
1)生成物質LiOHが空気極側水溶性電解液に溶けやすいために、連続放電が可能となる。
2)水とリチウム金属の反応を防ぐことができる。
3)溶存の窒素とリチウム金属の反応を防ぐことができる。
4)充電専用の正極を用いた場合には、従来の空気極で行われている充電より、サイクルにより空気極の腐食、劣化が防ぐことができる。
5)負極側のリチウム金属が溶解反応により全部消耗するまでに、充電せず連続放電可能であるため、リチウム燃料電池への展開が可能である。
6)負極材料としてリチウム金属を用い、放電時における該金属の消耗後、新たなリチウム金属を負極側の電極材料とすることにより、充電せず、燃料電池のように連続放電が可能なリチウム−空気電池(或いはリチウム燃料電池)とすることができる。
7)また、新たなリチウム金属を用いる代わりに、空気極側に生成したLiOHの沈殿と水分離し、LiOHを金属リチウムに変換すれば、図7に示したように、充電せず、燃料電池のように連続放電が可能なリチウム−空気電池(或いはリチウム燃料電池)とすることができる。
1の負極として、リチウム金属を、2の有機電解液として、1MのLiClO4を溶解した有機電解液(EC/DEC)1.5mlを、3の電解質として、リチウムイオン固体電解質(NASICON型リチウムイオン伝導体LISICON):0.15mm、イオン伝導率2x10-4 S/cm2)を、4の空気極側電解液として、1MのLiOH水溶液10mlを、5の空気極として、多孔質カーボン或いは微細化カーボンと触媒Mn3O4およびバインダー (PTFE)から作製したものを、6の充電専用の正極として、チタンメッシュを、それぞれ用いて、図2に示されるリチウム−空気電池を作製し、充放電試験を行った。
放電と共に、負極の金属リチウムの表面には、Li => Li+ + e-となる溶解反応が、空気極の触媒担持した多孔質カーボン或いは微細化カーボンの表面に、O2 + 2H2O + 4e- => 4OH- なる酸素の溶解反応があり、充電と共に、負極の金属リチウムの表面には、Li+
+ e- => Li なる析出反応が、充電専用の正極に、4OH- => O2 + 2H2O + 4e- なる反応が生じる。
このリチウム−空気電池を充放電のプロファイルの結果を図3に示す。図3に示されるように、OCV(=開路電圧)が3.4V(vs Li/Li+)となり、0.5mA/cm2で放電すると、多孔質カーボン或いは微細化カーボン、触媒とバインダーの重さの比率で、容量50000mAh/g(=500時間)まで連続放電ができることがわかった。
つぎに、このリチウム−空気電池の各放電密度(=0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20mA/cm2 )での放電プロファイルを図4に示す。放電電流密度の増加と共に、リチウム−空気電池の電圧が下がる。
そのリチウム−空気電池の放電電流密度と電池の電圧の関係、また、放電電流密度と空気極のパワー密度の関係を図5に示す。電流密度と電池の電圧の関係が線形になっており、電圧が線形的に減少していることは固体電解質の抵抗によるものと推定される。
このリチウム−空気電池の3.0V(vs Li/Li+)での放電状況のインピーダンスは図6に示される。高い周波数から低い周波数まで、三つの半円は、それぞれ、界面抵抗、電荷移動抵抗、酸素拡散抵抗を示している。界面抵抗120オームはほぼ固体電解質からの抵抗である。
1の負極としてリチウム金属を、2の有機電解液として、1MのLiClO4を溶解した有機電解液(EC/DEC)1.5mlを、3の電解質として、リチウムイオン固体電解質(NASICON型リチウムイオン伝導体LISICON):0.15mm、イオン伝導率2x10-4 S/cm2)を、4の空気極側電解液として、アルカリ性水溶液性ゲル(ポリアクリル酸とKOHの水溶液を混合し、80Cで作製したもの)を、5の空気極として、多孔質カーボン或いは微細化カーボンと触媒Mn3O4およびバインダー (PTFE)から作製したものを、6の充電専用の正極として、チタンメッシュをそれぞれ用いて、図2に示されるリチウム−空気電池を作製し、充放電試験を行った。
放電と共に、負極の金属リチウムの表面には、Li => Li+ + e-となる溶解反応が、空気極の触媒担持した多孔質カーボン或いは微細化カーボンの表面に、O2 + 2H2O + 4e- => 4OH- なる酸素の溶解反応があり、充電と共に、負極の金属リチウムの表面には、Li+ + e- => Li なる析出反応が、充電専用の正極に、4OH- => O2 + 2H2O + 4e- なる反応が生じる。
このリチウム−空気電池の0.5mA/cm2の電流密度での充放電のプロファイルの結果を図8に示す。約90時間までの放電後に、約90時間の充電ができた、したがって、このリチウム−空気電池は充放電可能な2次電池であることがわかった。
Claims (10)
- リチウム金属を含む負極、負極用の電解液、セパレータ、空気極用の電解液および空気極がその順に設けられたリチウム−空気電池であって、該セパレータがリチウムイオンのみを通す固体電解質を含み、空気極用の電解液に充電専用の正極を更に配置したことを特徴とするリチウム−空気電池。
- 充電専用の正極が、カーボンまたは金属チタンであることを特徴とする請求項1に記載のリチウム−空気電池。
- リチウムイオンのみを通す固体電解質が、Li3N、Garnet-Type型リチウムイオン伝導体、NASICON型リチウムイオン伝導体、β-Fe2(SO4)型リチウムイオン伝導体、ペロブスカイト型リチウムイオン伝導体、チオLISICON型リチウムイオン伝導体および高分子型リチウムイオン伝導体から選ばれた少なくとも一種であることを特徴とする請求項1または2に記載のリチウム−空気電池。
- リチウム金属を含む負極が、リチウム金属、リチウムカーボン、リチウムシリコン、リチウム錫および窒化リチウムから選ばれた少なくとも一種であり、負極用電解液が有機電解液であることを特徴とする請求項1〜3のいずれかに記載のリチウム−空気電池。
- 空気極が、マンガン酸化物、コバルト酸化物、酸化ニッケル、酸化鉄および酸化銅から選ばれた少なくとも一種の触媒と、該触媒を担持する多孔質カーボンまたは微細化カーボンから形成されていることを特徴とする請求項1〜4のいずれかに記載のリチウム−空気電池。
- 空気極用電解液がアルカリ性の水系電解液、水溶性電解液またはそのゲルであることを特徴とする請求項1〜5のいずれかに記載のリチウム−空気電池。
- リチウムイオンのみを通す固体電解質の水溶性電解液側に、耐強アルカリ性高分子イオン交換膜を設けたことを特徴とする請求項1〜6のいずれかに記載のリチウム−空気電池。
- 放電と共に、負極の金属リチウムの表面には、Li=>Li++e-となる溶解反応が、空気極の触媒担持した多孔質カーボン或いは微細化カーボンの表面に、O2+2H2O+4e-=>4OH-なる酸素の溶解反応があり、充電と共に、負極の金属リチウムの表面には、Li++e-=>Liなる析出反応が、充電専用の正極に、4OH-=>O2+2H2O+4e-なる反応が生じることを特徴とする請求項1〜7のいずれかに記載のリチウム−空気電池。
- 負極材料としてリチウム金属を用い、放電時における該金属の消耗後、新たなリチウム金属を負極側の電極材料とすることを特徴とする請求項1〜8のいずれかに記載のリチウム−空気電池。
- 負極材料としてリチウム金属を用い、放電時における該金属の消耗後、空気極側に生成したLiOHを金属リチウムに変換し、これを負極側の電極材料として再利用することを特徴とする請求項1〜8のいずれかに記載のリチウム−空気電池。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009016366A JP5354580B2 (ja) | 2009-01-28 | 2009-01-28 | リチウム−空気電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009016366A JP5354580B2 (ja) | 2009-01-28 | 2009-01-28 | リチウム−空気電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010176941A JP2010176941A (ja) | 2010-08-12 |
JP5354580B2 true JP5354580B2 (ja) | 2013-11-27 |
Family
ID=42707689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009016366A Expired - Fee Related JP5354580B2 (ja) | 2009-01-28 | 2009-01-28 | リチウム−空気電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5354580B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10991951B2 (en) | 2019-09-23 | 2021-04-27 | Samsung Electronics Co., Ltd. | Cathode, metal-air battery including the cathode, and method of manufacturing the cathode |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5310284B2 (ja) * | 2009-06-11 | 2013-10-09 | トヨタ自動車株式会社 | 金属二次電池 |
JP5412977B2 (ja) * | 2009-06-16 | 2014-02-12 | トヨタ自動車株式会社 | 金属気体電池 |
JP5525388B2 (ja) | 2009-09-03 | 2014-06-18 | 日本碍子株式会社 | セラミックス材料及びその製造方法 |
JP5376252B2 (ja) | 2009-09-03 | 2013-12-25 | 日本碍子株式会社 | セラミックス材料及びその利用 |
CA2770733C (en) * | 2009-11-05 | 2018-10-16 | Ceramatec, Inc. | Solid-state sodium-based secondary cell having a sodium ion conductive ceramic separator |
JP5541670B2 (ja) * | 2009-11-18 | 2014-07-09 | 日本電信電話株式会社 | リチウム空気二次電池及びリチウム空気二次電池の製造方法 |
JP5168318B2 (ja) | 2010-05-25 | 2013-03-21 | トヨタ自動車株式会社 | 水系電解液電池及び水系電解液電池の製造方法 |
JP5550073B2 (ja) * | 2010-06-11 | 2014-07-16 | 独立行政法人産業技術総合研究所 | 固体電解質膜・空気極用電解液間に陽イオン交換膜を具備するリチウム−空気電池 |
CN102511107B (zh) | 2010-06-25 | 2015-06-17 | 株式会社东芝 | 空气电池 |
JP5163709B2 (ja) * | 2010-08-17 | 2013-03-13 | トヨタ自動車株式会社 | 金属空気電池用液状空気極、及び当該液状空気極を備える金属空気電池 |
JP2014510361A (ja) * | 2010-11-05 | 2014-04-24 | フロリダ・ステイト・ユニバーシティ・リサーチ・ファウンデイション・インコーポレイテッド | アルカリ金属−空気フロー電池 |
EP2477264B1 (en) * | 2011-01-13 | 2018-12-19 | Samsung Electronics Co., Ltd. | Catalyst including active particles, method of preparing the catalyst, fuel cell including the catalyst, electrode including the active particles for lithium air battery, and lithium air battery including the electrode |
CN103329342A (zh) * | 2011-01-19 | 2013-09-25 | 住友化学株式会社 | 铝空气电池 |
KR20120119228A (ko) * | 2011-04-20 | 2012-10-31 | 삼성전기주식회사 | 금속 공기 전지 및 이의 제조방법 |
US20140045078A1 (en) * | 2011-04-26 | 2014-02-13 | Solvay Sa | Lithium air battery cell |
JP5734793B2 (ja) * | 2011-08-31 | 2015-06-17 | 株式会社半導体エネルギー研究所 | 蓄電装置 |
JP5285134B2 (ja) * | 2011-09-08 | 2013-09-11 | 本田技研工業株式会社 | リチウムイオン酸素電池 |
KR20140084170A (ko) | 2011-10-14 | 2014-07-04 | 닛산 가가쿠 고교 가부시키 가이샤 | 겔상의 고체 전해질을 구비한 금속-공기전지 |
FR2982427B1 (fr) * | 2011-11-09 | 2013-12-20 | Electricite De France | Electrolyte aqueux pour batterie lithium-air |
CA2857758C (en) * | 2011-12-14 | 2023-10-10 | Eos Energy Storage, Llc | Electrically rechargeable, metal anode cell and battery systems and methods |
US10355305B2 (en) | 2012-01-16 | 2019-07-16 | Enlighten Innovations Inc. | Alkali metal intercalation material as an electrode in an electrolytic cell |
KR101309577B1 (ko) * | 2012-04-18 | 2013-09-17 | 연세대학교 산학협력단 | 리튬-공기전지용 공기극 및 이를 포함하는 리튬-공기전지 |
JP6206971B2 (ja) | 2012-04-26 | 2017-10-04 | 日本碍子株式会社 | リチウム空気二次電池 |
US9362546B1 (en) | 2013-01-07 | 2016-06-07 | Quantumscape Corporation | Thin film lithium conducting powder material deposition from flux |
JP6546099B2 (ja) * | 2013-03-04 | 2019-07-17 | フィールド アップグレーディング リミテッド | 電解セルにおける電極としてのアルカリ金属挿入材料 |
EP3055269B1 (en) | 2013-10-07 | 2020-09-09 | QuantumScape Corporation | Garnet materials for li secondary batteries |
JP5951055B2 (ja) * | 2015-02-11 | 2016-07-13 | 株式会社半導体エネルギー研究所 | 蓄電装置 |
KR20240059640A (ko) | 2015-04-16 | 2024-05-07 | 퀀텀스케이프 배터리, 인코포레이티드 | 고체 전해질 제조를 위한 리튬 함유 가넷 세터 플레이트 |
EP3326223A4 (en) | 2015-07-21 | 2018-12-19 | QuantumScape Corporation | Processes and materials for casting and sintering green garnet thin films |
WO2018075809A1 (en) | 2016-10-21 | 2018-04-26 | Quantumscape Corporation | Lithium-stuffed garnet electrolytes with a reduced surface defect density and methods of making and using the same |
JP6688210B2 (ja) * | 2016-12-06 | 2020-04-28 | 日本電信電話株式会社 | セパレータ及びリチウム空気二次電池 |
US10629970B2 (en) * | 2017-06-12 | 2020-04-21 | Panasonic Intellectual Property Management Co., Ltd. | Lithium air battery including negative electrode, positive electrode, nonaqueous lithium ion conductor, and copper ion |
EP3642899B1 (en) | 2017-06-23 | 2024-02-21 | QuantumScape Battery, Inc. | Lithium-stuffed garnet electrolytes with secondary phase inclusions |
EP4305367A1 (en) | 2021-03-09 | 2024-01-17 | QuantumScape Battery, Inc. | Rapid ceramic processing techniques and equipment |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4968393A (en) * | 1988-04-18 | 1990-11-06 | A. L. Sandpiper Corporation | Membrane divided aqueous-nonaqueous system for electrochemical cells |
JPH07138390A (ja) * | 1993-11-19 | 1995-05-30 | Toyota Motor Corp | 高分子イオン交換膜とその製造方法 |
JP3523506B2 (ja) * | 1998-10-23 | 2004-04-26 | 日本電信電話株式会社 | 充電式空気電池 |
US6630262B2 (en) * | 2001-03-09 | 2003-10-07 | De-Qian Yang | Metal-gas cell battery with soft pocket |
US7645543B2 (en) * | 2002-10-15 | 2010-01-12 | Polyplus Battery Company | Active metal/aqueous electrochemical cells and systems |
US7282295B2 (en) * | 2004-02-06 | 2007-10-16 | Polyplus Battery Company | Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture |
-
2009
- 2009-01-28 JP JP2009016366A patent/JP5354580B2/ja not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10991951B2 (en) | 2019-09-23 | 2021-04-27 | Samsung Electronics Co., Ltd. | Cathode, metal-air battery including the cathode, and method of manufacturing the cathode |
Also Published As
Publication number | Publication date |
---|---|
JP2010176941A (ja) | 2010-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5354580B2 (ja) | リチウム−空気電池 | |
Imanishi et al. | Rechargeable lithium–air batteries: characteristics and prospects | |
CN102934279B (zh) | 可再充电的碱金属-空气电池 | |
US9225018B2 (en) | Air cathode for air batteries and air battery | |
EP2008336B1 (en) | Lithium rechargeable electrochemical cell | |
US8889300B2 (en) | Lithium-based high energy density flow batteries | |
WO2010073332A1 (ja) | リチウム空気電池 | |
JP5419084B2 (ja) | ニッケル−リチウム二次電池 | |
US20140076730A1 (en) | Method and apparatus for extracting energy and metal from seawater electrodes | |
WO2013146714A1 (ja) | リチウム二次電池用電解液、及び当該電解液を含む二次電池 | |
CN103069626B (zh) | 用于金属-空气电池的液体空气电极和具有所述液体空气电极的金属-空气电池 | |
JP4625231B2 (ja) | 非水系二次電池 | |
US8557449B2 (en) | Cathode for metal-air rechargeable battery | |
US20210218091A1 (en) | Intermediate temperature alkali metal/oxygen batteries employing molten nitrate electrolytes | |
JP2009283381A (ja) | リチウム空気二次電池およびリチウム空気二次電池製造方法 | |
JP2011228162A (ja) | リチウム−水電池による水素製造と燃料電池の組み合わせ | |
JP2011134628A (ja) | リチウム−空気電池 | |
Lin et al. | O2/O2–Crossover-and Dendrite-Free Hybrid Solid-State Na–O2 Batteries | |
TW201145656A (en) | Electrode for a secondary lithium-ion battery | |
KR20160048078A (ko) | 고체 금속 카보네이트를 포함하는 캐소드를 갖는 금속-공기 배터리 | |
JP5215146B2 (ja) | リチウム空気二次電池及びリチウム空気二次電池の製造方法 | |
KR20140088902A (ko) | 재충전가능한 전기화학 셀 | |
Min et al. | Calcium zincate as an efficient reversible negative electrode material for rechargeable zinc–air batteries | |
WO2017073058A1 (en) | High Energy Density Metal Ion Cathode | |
EP1843426A1 (en) | Lithium rechargeable electrochemical cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130604 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130802 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130820 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130821 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5354580 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |