CN101681813A - 氮化物纳米线及其制造方法 - Google Patents
氮化物纳米线及其制造方法 Download PDFInfo
- Publication number
- CN101681813A CN101681813A CN200880002009A CN200880002009A CN101681813A CN 101681813 A CN101681813 A CN 101681813A CN 200880002009 A CN200880002009 A CN 200880002009A CN 200880002009 A CN200880002009 A CN 200880002009A CN 101681813 A CN101681813 A CN 101681813A
- Authority
- CN
- China
- Prior art keywords
- nano wire
- growth
- nanowire growth
- nanowire
- iii
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002070 nanowire Substances 0.000 title claims abstract description 162
- 238000000034 method Methods 0.000 title claims abstract description 72
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 30
- 230000012010 growth Effects 0.000 claims abstract description 121
- 239000004065 semiconductor Substances 0.000 claims abstract description 50
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract 6
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract 4
- 239000013078 crystal Substances 0.000 claims description 24
- 230000003698 anagen phase Effects 0.000 claims description 22
- 239000000758 substrate Substances 0.000 claims description 18
- 238000005516 engineering process Methods 0.000 claims description 14
- 239000002243 precursor Substances 0.000 claims description 10
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical group C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 claims description 9
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 8
- 239000002086 nanomaterial Substances 0.000 claims description 5
- 238000002203 pretreatment Methods 0.000 claims description 5
- 238000000137 annealing Methods 0.000 claims description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical group N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims 2
- 150000002829 nitrogen Chemical class 0.000 claims 2
- 229910021529 ammonia Inorganic materials 0.000 claims 1
- 230000002950 deficient Effects 0.000 description 12
- 238000001878 scanning electron micrograph Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000000609 electron-beam lithography Methods 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 238000001020 plasma etching Methods 0.000 description 5
- RHUYHJGZWVXEHW-UHFFFAOYSA-N 1,1-Dimethyhydrazine Chemical compound CN(C)N RHUYHJGZWVXEHW-UHFFFAOYSA-N 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000009940 knitting Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- YBRBMKDOPFTVDT-UHFFFAOYSA-N tert-butylamine Chemical compound CC(C)(C)N YBRBMKDOPFTVDT-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000008246 gaseous mixture Substances 0.000 description 1
- 230000007773 growth pattern Effects 0.000 description 1
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 238000001127 nanoimprint lithography Methods 0.000 description 1
- -1 nitride compound Chemical class 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 239000004038 photonic crystal Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- MUQNAPSBHXFMHT-UHFFFAOYSA-N tert-butylhydrazine Chemical compound CC(C)(C)NN MUQNAPSBHXFMHT-UHFFFAOYSA-N 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B1/00—Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
- C30B29/406—Gallium nitride
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02603—Nanowires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02636—Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
- H01L21/02639—Preparation of substrate for selective deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/20—Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0657—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
- H01L29/0665—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0657—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
- H01L29/0665—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
- H01L29/0669—Nanowires or nanotubes
- H01L29/0673—Nanowires or nanotubes oriented parallel to a substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0657—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
- H01L29/0665—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
- H01L29/0669—Nanowires or nanotubes
- H01L29/0676—Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0075—Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0093—Wafer bonding; Removal of the growth substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/04—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
- H01L33/06—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
- H01L33/24—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/005—Processes
- H01L33/0062—Processes for devices with an active region comprising only III-V compounds
- H01L33/0066—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
- H01L33/007—Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/16—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
- H01L33/18—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/902—Specified use of nanostructure
- Y10S977/932—Specified use of nanostructure for electronic or optoelectronic application
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Led Devices (AREA)
Abstract
本发明涉及氮化物半导体的生长,适用于多种半导体器件,例如二极管、LED和晶体管。根据本发明的方法,利用基于CVD的选择性区域生长技术生长氮化物半导体纳米线。在纳米线生长步骤中存在氮源和金属-有机源,并且在纳米线生长步骤中至少该氮源流速是持续的。本发明方法利用的该V/III-比率明显低于与通常氮化物基半导体生长相关的V/III-比率。
Description
技术领域
本发明涉及基于氮化物半导体纳米线的半导体器件及通过生长制造其的方法。氮化物半导体纳米线可被用作例如二极管、LED、LD和晶体管。本发明具体地涉及制造具有有限的横向生长、竖直的GaN纳米线的方法。
背景技术
在半导体器件中,特别是在光电器件中使用氮化物半导体,在相当长的时间里受到重要的关注,这不仅是由于其实现部件在传统半导体材料无法达到的波长区域内起作用的潜在可能性。在1990年,氮化物半导体生长上取得了两项突破:制造高质量的GaN膜和实现p-型GaN。这些之后,蓝和绿LED以及激光二极管实现商品化,并且开始报道基于AlN的UV LED。对于高电压和高温度应用的晶体管和其它电子器件,氮化物基半导体也是被关注的。
GaN膜通常由工业级MOCVD技术生长。为了实现可接受的膜质量,在如NH3与TMG(三甲基镓)的高前体流速、以及因此在高分压下,执行该生长。通常使用的测量称为“V/III比率”,其涉及前体元素的摩尔流,例如NH3与TMG之间的摩尔比率。该用于GaN膜生长的V/III比率在1000-10000范围内。
然而,今天顶级的GaN膜仍具有非常高的缺陷密度。在这样的背景下,1-维结构,即基于氮化物的纳米线,吸引了研究者的大量关注。对于纳米线生长,已经报道了一些方法,如VLS、模板-限制生长以及氧化-辅助生长。
GaN的选择性区域生长自1990年已被广泛研究,以便降低GaN膜中的失配密度。从点-图案化的GaN开口,Akasaka等人证明具有直径5μm的GaN体生长[1]。最近,Hersee等人报道了使用选择性区域生长制造了尺寸为221nm的GaN线阵列[2]。其描述了必须使用脉冲生长来生长GaN纳米线以限制该横向生长。脉冲生长也称作迁移增强生长。该方法可描述为两步方法,包括初始的纳米线生长步骤,称为选择性生长步骤,其中提供两种前体气体。该初始生长步骤之后是第二步骤脉冲生长,其中此时提供一种前体气体。
发明内容
报道的成就说明该技术具有巨大潜力,但需要改进以提供可以制造外延竖直-直立的、而无例如堆叠缺陷和错位的结晶缺陷的GaN纳米线的方法,并且提供的方法非常适于按比例提高到工业生产。
本发明的目标是提供一种方法和半导体器件,其克服了现有技术的缺陷。这通过权利要求1限定的方法以及权利要求15限定的半导体器件来实现。
根据本发明的氮化物基半导体纳米线在其整个长度上具有相同的晶体结构,即所述纳米线不会在靠近基部处表现出堆叠缺陷。优选地,该晶体结构是六方晶系。在其整个长度上具有相同晶体结构的纳米线,可通过下面描述的根据本发明的方法来制造。
根据本发明的半导体器件包括氮化物半导体纳米线,每个在该纳米线的整个长度上具有相同的晶体结构。该多个纳米线中的大部分应该仅有一种晶体结构。甚至更优选地,半导体器件的纳米线的至少90%均具有相同的晶体结构。甚至更优选地,半导体器件的纳米线的99%均具有相同的晶体结构。具有多个纳米线的半导体器件,例如LED器件,可以通过根据本发明的方法制造。
根据本发明生长氮化物基半导体纳米线的方法利用基于CVD的选择性区域生长技术。在纳米线生长步骤中存在氮源和金属-有机源,并且至少该氮源在纳米线生长步骤中流速为持续的。本发明方法利用的V/III比率明显低于通常与氮化物基半导体生长相关的V/III比率。
本发明方法的实施例包括前面描述的纳米线生长阶段之后的平面生长阶段。该平面生长阶段利用的V/III比率明显高于该纳米线生长阶段的V/III比率。该平面生长阶段导致之前生长的纳米线开始横向生长,以便该纳米线至少部分地由新层围住。该平面生长可使用不同材料成分、掺杂等重复进行,得到壳状结构。根据一个实施例,结合了一个或多个壳层的纳米线形成了LED的pn结。同样,以相同方式可以制造其它有源半导体电子和光电器件,例如晶体管。
本发明方法提供的一个优点是该氮化物半导体纳米线不具有结晶缺陷,例如可能长出的位错和堆叠缺陷。因此,可以制造包括很多个纳米线的氮化物半导体器件,其具有非常低量的有缺陷的纳米线。
根据本发明方法的另一优点是,纳米线的总生长速度明显高于现有技术中生长氮化物纳米线的方法。已经证明生长速度为200nm/min。
根据本发明的方法,利用低V/III比率和低源流量,与可比较的现有方法相比,具有更低的材料消耗。另外,持续的V/III比率使得与脉冲生长方法相比,更易于优化生长条件。
根据本发明方法的优点还在于结构包括两种以上的元素,例如三元合成物,如InGaN。在纳米线中使用InGaN将很有利,因为可降低关于壳层的应力。然而,InGaN是热不稳定材料,需要NH3流来防止In-N键分离。因此,利用中断NH3流的现有技术方法不适于制造InGaN纳米线。在本发明的方法中,利用持续的氮源流,例如NH3,这些效应被消除或者至少被降低。
根据本发明的方法基于MOCVD技术。MOCVD在工业上使用,并且该方法非常适于工业级生产。
本发明的实施例在从属权利要求中进行限定。当结合附图与权利要求理解本发明随后的详细描述时,本发明的其它目的、优点和新颖的特征将变得明了。
附图说明
现在将参照附图描述本发明优选实施例,其中:
图1示意地图示了根据本发明的纳米线;
图2a示意地图示了根据本发明的方法,以及图2b是根据本发明方法的流程图;
图3a-b是根据本发明的纳米线结构的SEM图像;
图4a-b示意地图示了根据本发明的包含于纳米结构LED器件中的纳米结构LED的实施例;
图5a-c示意地图示了根据本发明的纳米结构LED器件的实施例;
图6示意地图示了根据本发明的纳米线生长设备。
图7a-b是SEM-图像,图示出未提供纳米线的生长条件的结果;
图8a-b是SEM-图像,图示出生长条件的结果,其中开始形成纳米线;
图9a-b是SEM-图像,图示出提供纳米线的生长条件的结果;
图10a-c是SEM-图像,图示出提供纳米线的生长条件的结果;
图11a-c是SEM-图像,图示出源掺杂的效果。
具体实施方式
根据本发明的半导体器件及其制造方法包括至少一种氮化物半导体纳米线,例如GaN纳米线。
示意地图示于图1中的氮化物半导体纳米线110,在本文中被定义为直径小于500nm并且长度达到几个μm的基本上为柱状的结构。该纳米线110在其基部外延地连接于衬底105,该衬底105可包括外延层,例如紧临于纳米线110的GaN层。纳米线105通过例如SiNx的生长掩模111中的开口而突出。根据本发明的半导体器件通常包括多个纳米线110。如图1中所示,衬底105的表面可表现出一些粗糙度112,其在该图中被夸大,仅用于说明的目的。在下文中,术语纳米线应被理解为参照该结构但不限于表面粗糙度,即该纳米线开始于衬底110上的第一原子层中,或者称为第一“自由”层。然而,该第一层通常位于生长掩模115的开口内。该纳米线的长度表示为L。
现有技术制造的氮化物纳米线通常包括大量的缺陷。前面提到的脉冲选择生长表现出明显的进步,但该方法会在靠近纳米线基部处引起堆叠缺陷。通常用这种方法制造的纳米线在靠近基部处具有从立方晶体结构到六方晶体结构的变化。包括多个这种纳米线的半导体器件将有大部分或全部的纳米线表现这种缺陷。堆叠缺陷对纳米线的物理特性有影响,如关于光学和电学特性。在如LED的应用中,由堆叠缺陷在靠近基部处引起的相对小的畸变也会妨碍其性能,因为该堆叠缺陷增大了电阻。由于该区域非常小,所以增大的电阻会明显影响该LED的性能。
根据本发明的氮化物半导体纳米线在其整个长度上具有相同的晶体结构,即在靠近基部处不会表现出堆叠缺陷。优选地,该晶体结构为六边形。在其整个长度上具有相同晶体结构的纳米线,可利用下面描述的根据本发明的方法而制得。
根据本发明的半导体器件包括每一个在其(该纳米线的)整个长度上具有相同晶体结构的纳米线105。该多个纳米线中的大部分应仅有一种晶体结构。甚至更优选地,半导体器件的至少90%的纳米线每个具有相同的晶体结构。甚至更优选地,半导体器件的99%的纳米线每个具有相同的晶体结构。使用根据本发明的方法可以制造具有多个纳米线的半导体器件,例如LED器件。
根据本发明的生长氮化物半导体纳米线的方法利用基于CVD的选择区域生长技术。在纳米线生长步骤中存在氮源和金属-有机源,并且在纳米线生长步骤中至少该氮源的流动速度为持续的。本发明方法中利用的该V/III比率明显低于通常与氮化物基半导体生长相关的V/III比率。
因此,根据本发明的方法可直接应用到金属有机化学气相沉积(MOCVD)工艺和设备。对于本领域技术人员来说,通过修正,该方法也可应用到其他CVD和混合气相外延(HVPE)基工艺。该方法示意地图示于图2a中,以及图2b的流程图中,并且包括步骤:
a)在衬底110上提供生长掩模115。该衬底例如为GaN,并且该生长掩模是电介质,例如SiNx或SiOx。
b)在生长掩模中制作开口113。所述开口优选地关于它们的直径和它们的相对位置两者均被良好控制。几个本领域中已知的技术可用于该步骤,包括但不限于电子束光刻(EBL)、纳米压印光刻、光学光刻以及反应离子蚀刻(RIE)或湿法化学蚀刻方法。优选地,所述开口直径接近100nm并且间距为0.5-5μm。所述开口限定了将制造的纳米线105的位置和直径。
c)通过基于CVD的工艺生长纳米线,其中前体源流量是持续的。调整该前体源流动速度以在生长区域实现低过饱和。V/III比率应在1-100的范围内,优选地在1-50的范围内,并且更优选地在5-50的范围内。应注意到该V/III比率比用于膜生长的比率明显更低。
图3a-b的SEM图像中图示了根据本发明方法制造的纳米线。在起始的衬底上通过PECVD沉积SiNx层(30nm厚)。在随后的步骤中,通过电子束光刻、EBL以及反应离子蚀刻、RIE制作点状图案化的GaN开口阵列(直径约100nm)。开口之间的间距范围在0.5-3.2μm,给定的生长掩模限定了纳米线的直径和位置两者。之后,经处理的样品被置入水平MOCVD腔内以生长GaN纳米线。图3a进一步图示了可形成具有锥体末端的纳米线,其在特定应用中是有利的。
该方法可包括提高生长条件的不同步骤,图示为预处理步骤c’),例如是在纳米线生长步骤c)之前的退火。该预处理步骤可包括多个子步骤。应该注意到,尽管该预处理,例如退火,会使用一种或多种前体,但根据本发明的预处理步骤不会导致纳米线的生长。同样在纳米线生长步骤c)期间可观察该V/III比率的变化。然而,在纳米线生长步骤期间不应中断前体材料的流动。
根据本发明的纳米线可用到多种不同应用中。特别重要的应用包括电子、光学和光电器件,包括但不限于:二极管、发光二极管(LED)、晶体管、光子晶体和探测器。所述纳米线也可以用作结构化组装模块(structural buildingblock),例如用于形成GaN连续接合层,其可具有非常低的缺陷密度。申请US10/613071中描述了如何由纳米线形成接合层。
一种高商业价值的应用是LED器件,其将作为非限制性实例。如本领域技术人员所意识到的,晶体管和其他电子器件也可以以相同方式制造。
根据本发明的包括半导体纳米线的LED器件示意地图示在图4a-b中,并且包括衬底105,其中纳米线110从该衬底105外延生长。该纳米线110的一部分被体积元件(volume element)115围住。该体积元件115优选外延地连接到该纳米线110。二极管功能性所需的pn结形成在该体积元件115中或可选择地位于纳米线110中。在体积元件115上提供顶部接触,例如在顶部上或在包围结构的周围外表面上。可例如经由该衬底,通过靠近该衬底的专用接触层或通过在纳米线110下端的包围接触,形成的普通底部接触,而在另一端接触该纳米结构LED100。该纳米线110通常具有在50nm至500nm数量级的直径,并且该体积元件直径在500nm至10μm的量级。该体积元件115或球状物可具有不同的形状,以及该体积元件和纳米线的组合设计,以给出有源区的不同位置和形状,给定发光所需的再复合条件。该体积元件115可进一步提供高程度的掺杂,并且电荷载流子被注入到纳米线中。
图4a图示了一种设计,其中该体积元件115包括多层的壳状结构116、117。该体积元件15也可由接触层118部分围住。掺杂层117提供p或n区,并且阱层116包括操作中的有源区120。可选择地,该阱可由多个子层构成。该结构可包括用于增强掺杂特性、改善接触等的其它层(未示出)。这些结构也称作核-壳结构。
另一种设计图示在图4b中,其中该纳米线110由构成体积元件115的过生长锥体包围。与前面类似,该过生长锥体可包括多层166、117、118,提供LED功能性所需的掺杂和量子阱,导致形成有源区120。
根据本发明的方法的一个实施例,进一步生长步骤包括在纳米线上提供过生长、或体积元件。如参照图2b的流程图的描述,该方法包括两个阶段。第一阶段可被认为是纳米线生长阶段,包括步骤a-c),其中提供纳米线生长条件,即提供低的V/III比率。在第二阶段中,在与第一阶段生长工艺类似的基于CVD的工艺和优选地在相同的腔中,但生长参数调整为平面生长,即,V/III比率高于纳米线生长中的V/III比率,通常在1000的数量级,纳米线通过体积元件115过生长,其通常包括多种不同的层。根据该实施例的方法可被看作是纳米线生长阶段,随后是平面生长阶段,或横向生长阶段。该纳米线生长阶段形成具有对于平面生长接近理想的表面的纳米线,由于所述纳米线的侧壁将是非极性的,称作m-平面{1-100}。这样的表面通过传统方法制造是非常困难的。在纳米线生长阶段之后的平面生长阶段或横向生长阶段中,在步骤d),e),f)……中利用所述理想的表面来生长壳层,形成该LED器件的部件。如本领域技术人员所认识到的,以相同方式可制造其它器件,如二极管和晶体管。
根据本发明的方法还可用于包括二种以上元素的结构,例如三元合成物,如InGaN。如图5a所示,对于制造高In含量的InGaN/GaN核壳结构,应力是严重的问题,图5a中GaN纳米线510由InGaN壳层515包围。如图5b所示,在纳米线511中也使用InGaN将降低InGaN壳层中的应力。然而,InGaN是热不稳定材料,并且需要NH3流来防止In-N键分离。因此,利用中断的NH3流的现有技术的方法可能不适于制造InGaN纳米线。在InGaN生长温度下的NH3中断步骤中,其意味着In-N键分离并且In可从晶体中释放。本发明提供的使用持续的纳米线生长,支持更高In含量的InGaN纳米线的生长。
传统的MOCVD或MOVPE设备对于执行根据该实施例的包括纳米线生长阶段和紧接随后的平面生长阶段的方法并不理想。由于气体供应系统的技术限制,相同的气体供应系统不能以所需精度分别提供与纳米线生长阶段和平面生长阶段相关的低V/III比率和高V/III比率两者。根据本发明的生长设备,示意地图示在图6中,包括生长腔610,样品615被置于其中。III-供应系统622包括III-源620以及质量流量控制器(MFC)。该V-供应系统包括V-源630,V-源630连接到包括低流速MFC 633的低源流速V-供应线634,以及包括高流速MFC631的分离的高源流速V-供应线632。该低流速MFC 633适于处理与纳米线生长阶段相关的如NH3的低流速,并且该高流速MFC 631适于处理与该平面生长阶段相关的高流速。通过在两个分离的V-供应线之间进行切换,然后从纳米线生长阶段进行到平面生长阶段,可以在两个不同阶段中以所需的流速精度进行快速改变。如果所需的流速不能由两个MFC获得,那么该装置当然可以被提供更多的分离供应线。
本发明方法的应用由下面的实例说明,其应看作是非限制性实例。
图2a-c通过选择生长区域图示了GaN纳米线的制造顺序。在蓝宝石、SiC、或Si上的GaN外延膜以及甚至自支持的GaN用作开始衬底,在其上通过PECVD沉积SiNx层(30nm厚)(a)。随后,通过EBL和RIE制作点-图案化的GaN开口阵列(直径约100nm)(b)。所述开口间的间距在0.5~3.2μm范围内。之后,该经处理的样品被置于国产的水平MOCVD腔中以生长GaN纳米线(c)。该生长工艺包括初始阶段,其中温度在5分钟内在75sccm的高NH3流速下斜升至生长区间900~1200℃。该衬底在生长温度退火1分钟。在随后的纳米线生长阶段,该NH3流速降低至3.0~0.2sccm并向腔中引入TMG(三甲基镓)以开始生长。该操作中使用0.12至1.2μmol/min之间的低TMG流速。
根据本发明,在实验中验证,该NH3流速是控制从所述开口的生长形式的关键因素。图7a-b示出了NH3流速为3.0sccm时该样品生长的SEM图像。从图7a的顶视图,可以看到从所述开口的选择性生长与报道的一样。这里需要详细说明的一点是,生长之后的横向尺寸大于1.0μm,其远大于约100nm的开口尺寸。因此,GaN从开口长出之后基本上为横向生长。图7b示出了通过以35°倾斜该样品,取得的SEM图像,其清晰地呈现出获得的是锥体,而非线。所述锥体由六个等效(1101)面限定。该(1101)面的悬挂键密度为16.0/nm2,其高于(1100)面的悬挂键密度(12.1/nm2)以及(0001)面的悬挂键密度(11.4/nm2)[3]。根据这一观点,当GaN长出所述开口后,预期会出现(1100)和(0001)面。但是,图2示出了相反的情况。因此,可能的解释是(1101)面具有N-极性,当NH3流速高时,其确保了稳定性。基于此,对于生长由(1100)面分成块面(faceted)的GaN线,NH3的3sccm流速实际仍然很高。图8a-b示出了在NH3流速为1.0sccm时样品生长的SEM特性。图8a的顶视图像与图7a的类似。但是图8b的35°倾斜图像不同,即在锥体帽的下面开始出现(1100)面的垂直刻面(facet)。这预示并说明该N-极化的(1101)面开始不能限定锥体的生长形式。尽管如此,该横向尺寸仍比所述开口的横向尺寸大得多,其与图7中所示的相同。
图9a-b示出了将NH3的流速进一步降低至0.5sccm的生长结果。尽管它们仍大于约100nm的开口尺寸,但该顶视图(a)和35°倾斜图像(b)说明了在横向方向上尺寸的缩减。图9b的倾斜图像也示出了所述垂直刻面。随着NH3的流速降低至0.2sccm,如图10a-c所示,真正的GaN纳米线开始合成,其中(a)是顶视图;(b)和(c)是45°倾斜图。尽管存在一些晶体大于100nm,但大部分开口发展为具有与开口尺寸相同的100nm直径的线。因此,当NH3的流速为0.2sccm时,还可以很好的控制该横向生长。至于气相生长,过饱和的程度决定了占优势的生长形态学,即:纳米线生长需要低的过饱和,而中等过饱和支持体结晶生长。在高的过饱和下,通过气相成核形成粉末[4-5]。根据此,有理由说将NH3的流速降低至0.2sccm,可有效地降低过饱和,其限制了横向生长并且使生长仅在轴向上发生。这里,在整个生长过程中,保持TMG和NH3同时且持续地流入该腔内来执行全部生长。然而,现有技术中报道的工作似乎表明,对于获得纳米线生长,脉冲生长模式是必需的。基于这里呈现的结果,很清楚可以通过持续的源流速实现纳米线生长。为了制造GaN纳米线,应调整NH3流速,以便实现低的过饱和,或可选择地描述为实现迁移增强生长。
已经证明Cp2Mg可提高垂直侧壁面的形成[6]。在图11a-c中,涉及表1,显示出如Cp2Mg的掺杂源可通过这一效应潜在地稳定纳米线的生长条件。同样,其进一步示出通过增加过饱和/NH3流速,可重新建立锥体生长。这可用于在横向生长阶段中提供纳米线的横向生长。
表1
生长nr | NH3流速[sccm] | Cp2Mg流速[sccm] | 备注 |
a | 1 | - | 未掺杂 |
b | 1 | 70 | 良好线 |
c | 10 | 70 | 增加NH3流速来重新建立锥体生长 |
可以在大范围的器件中利用本发明的方法制造纳米线,例如二极管、LED、晶体管,特别是场效应晶体管等。氮化物基电子器件在高电压和高温度下的应用中是特别重要的。
总之,通过降低NH3流速,可由MOCVD、利用从GaN开口的选择性区域生长制造GaN纳米线。生长GaN纳米线的关键点是控制过饱和。这在以前仅能通过使用脉冲生长技术实现[2]。在呈现的结果中,表明脉冲生长不是必需的方法,而充分地降低NH3流速也可以制造纳米线。接下来是在轴向和径向上利用该方法生长氮化物异质结的工作。
已经利用作为非限制性实例的GaN、NH3和TMG描述了本发明的方法。本领域技术人员可明了本方法的原理可应用到其它半导体氮化物基纳米线的生长,所述其它半导体氮化物基纳米线例如包括铟或铝,如AlInGaN。III-NAs、以及III-NP。NH3是方便的并且容易获得的氮源,但可以利用已知的其它源,如叔-丁基胺N(C4H9)H2(Tert butylamine N(C4H9)H2)1,1-二甲基肼(CH3)2NNH2(1,1-Dimethylhydrazine(CH3)2NNH2)以及叔丁基肼(CH3)3CNHNH2(Tert butylhydrazine(CH3)3CNHNH2)。根据选择的III-V半导体,不同的源是可用的。不同的源将导致不同的合适的流速值,以便实现低的过饱和,并因此需要相应的调整该V/III比率。本领域技术人员根据前面的教导将会作出这样的调整。
参考文献:
[1]T.Akasaka,Y.Kobayashi,S.Ando,and N.Kobayashi,Appl.Phys.Lett.71(1997)2196.
[2]S.D.Hersee,X.Sun,and X.Wang,Nano Lett.6(2006)1808.
[3]K.Hiramatsu,K.Nishiyama,A.Motogaito,H.Miyake,Y.Iyecchika,and T.Maeda,Phys.Stat.Sol.(a)176(1999)535.
[4]G.W. Sears,Acta Metallurgica,3(1955)367.
[5]Y.Xia,P.Yang,Y.Sun,Y.Wu,B.Mayers,B.Gates,Y.Yin,F.Kim and H.Yan,Adv.Mater.15(2003)353.
[6]B.Beaumont,S.Haffouz,and P.Gibart,Appl.Phys.Letters 72(1997)922.
Claims (21)
1、一种利用基于CVD的选择区域生长技术来生长氮化物基半导体纳米线的方法,其中在纳米线生长步骤中存在氮源和金属-有机源,该方法特征在于在纳米线生长步骤中,该氮源流速是持续的。
2、根据权利要求1的纳米线生长方法,其中在纳米线生长步骤中该金属-有机源流速是持续的。
3、根据权利要求2的纳米线生长方法,其中该氮源流速与该金属-有机源流速之间的关系,此后称作V/III-比率,在1-100范围内。
4、根据权利要求3的纳米线生长方法,其中所述流速之间的关系是这样的,即该V/III-比率在1-50范围内。
5、根据权利要求4的纳米线生长方法,其中所述流速之间的关系是这样的,即该V/III-比率在5-50范围内。
6、根据权利要求2至5中任一项的纳米线生长方法,其中在纳米线生长步骤中该V/III-比率是恒定的。
7、根据权利要求2至6中任一项的纳米线生长方法,其中该氮化物基半导体是GaN,并且该氮源是氨、NH3,并且该金属-有机源是三甲基镓,TMG。
8、根据权利要求1至7中任一项的纳米线生长方法,包括以下步骤:
-(a)在衬底(110)上提供生长掩模(111);
-(b)在生长掩模(111)中制作开口(113);
-(c)通过基于CVD的工艺生长纳米线,其中前体源流量是持续的。
9、根据权利要求8的纳米线生长方法,进一步包括预处理步骤(c’),其中所述前体源流量中的至少一个是起作用的,但是调整所述条件以至不会发生纳米线生长。
10、根据权利要求8的纳米线生长方法,其中该预处理步骤包括退火步骤。
11、根据权利要求8至10中任一项的纳米线生长方法,进一步包括在纳米线生长步骤(c)之后,进行平面生长阶段,该平面生长阶段包括导致在纳米线上形成壳层的至少一个生长步骤,其中利用的V/III-比率高于纳米线生长步骤的V/III-比率。
12、根据权利要求11的纳米线生长方法,其中该平面生长步骤的V/III-比率比该纳米线生长步骤的V/III-比率高至少10倍。
13、根据权利要求1至12中任一项的纳米线生长方法,其中引入掺杂源以稳定纳米线生长条件。
14、一种氮化物半导体的纳米线(110),该纳米线外延地连接衬底(105)并从衬底(105)直立,其特征在于该纳米线(110)在其整个长度上具有相同的晶体结构。
15、一种半导体器件,包括多个纳米线(105),所述纳米线外延地连接衬底(105)并从衬底(105)直立,其特征在于所述纳米线中的至少大部分均在它们各自的整个长度上具有相同的晶体结构。
16、根据权利要求15的半导体器件,其中所述纳米线的至少90%均在它们各自的整个长度上具有相同的晶体结构。
17、根据权利要求16的半导体器件,其中所述纳米线的至少99%均在它们各自的整个长度上具有相同的晶体结构。
18、根据权利要求15的半导体器件,其中所述纳米线被提供有包括至少一个壳层(116)的体积元件(115)。
19、根据权利要求18的半导体器件,其中该半导体器件为LED,其中该多个纳米线是单独的纳米结构的LED,并且与该LED功能性相关的pn-结由所述纳米线(105)与它们各自的体积元件(115)组合提供。
20、根据权利要求15的半导体器件,其中所述纳米线是GaN。
21、根据权利要求19和20的半导体器件,其中所述体积元件包括多个壳层,并且所述壳层中的至少一个是InGaN。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE07001027 | 2007-01-12 | ||
SE0700102 | 2007-01-12 | ||
SE0700102-7 | 2007-01-16 | ||
PCT/SE2008/050036 WO2008085129A1 (en) | 2007-01-12 | 2008-01-14 | Nitride nanowires and method of producing such |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101681813A true CN101681813A (zh) | 2010-03-24 |
CN101681813B CN101681813B (zh) | 2012-07-11 |
Family
ID=39608903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008800020099A Expired - Fee Related CN101681813B (zh) | 2007-01-12 | 2008-01-14 | 氮化物纳米线及其制造方法 |
Country Status (9)
Country | Link |
---|---|
US (6) | US7829443B2 (zh) |
EP (1) | EP2102899B1 (zh) |
JP (2) | JP5345552B2 (zh) |
KR (2) | KR101549270B1 (zh) |
CN (1) | CN101681813B (zh) |
AU (1) | AU2008203934C1 (zh) |
CA (1) | CA2674448A1 (zh) |
HK (1) | HK1142717A1 (zh) |
WO (1) | WO2008085129A1 (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102244002A (zh) * | 2011-07-14 | 2011-11-16 | 合肥工业大学 | 金属/半导体纳米线交叉结构异质结的制备方法 |
CN102971452A (zh) * | 2010-05-11 | 2013-03-13 | 昆南诺股份有限公司 | 线的气相合成 |
CN103190005A (zh) * | 2010-11-04 | 2013-07-03 | 皇家飞利浦电子股份有限公司 | 基于结晶弛豫结构的固态发光器件 |
CN103928502A (zh) * | 2014-04-23 | 2014-07-16 | 西安电子科技大学 | 基于m面GaN上的极性GaN纳米线材料及其制作方法 |
CN104205294A (zh) * | 2012-02-14 | 2014-12-10 | 昆南诺股份有限公司 | 基于氮化镓纳米线的电子器件 |
CN104302816A (zh) * | 2012-02-03 | 2015-01-21 | 昆南诺股份有限公司 | 具有可调节属性的纳米线的高吞吐量连续气相合成 |
CN104508190A (zh) * | 2012-05-25 | 2015-04-08 | 索尔伏打电流公司 | 同心流反应器 |
CN108598238A (zh) * | 2018-04-25 | 2018-09-28 | 中原工学院 | 一种形貌可控的GaN纳米线阵列的制备方法 |
Families Citing this family (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8178403B2 (en) | 2006-09-18 | 2012-05-15 | Qunano Ab | Method of producing precision vertical and horizontal layers in a vertical semiconductor structure |
WO2008079078A1 (en) | 2006-12-22 | 2008-07-03 | Qunano Ab | Elevated led and method of producing such |
US8049203B2 (en) | 2006-12-22 | 2011-11-01 | Qunano Ab | Nanoelectronic structure and method of producing such |
KR101549270B1 (ko) | 2007-01-12 | 2015-09-01 | 큐나노 에이비 | 질화물 나노와이어 및 이의 제조 방법 |
WO2009011100A1 (ja) * | 2007-07-19 | 2009-01-22 | Mitsubishi Chemical Corporation | Iii族窒化物半導体基板およびその洗浄方法 |
US8668833B2 (en) * | 2008-05-21 | 2014-03-11 | Globalfoundries Singapore Pte. Ltd. | Method of forming a nanostructure |
EP2284868A1 (en) * | 2009-08-07 | 2011-02-16 | Nxp B.V. | Heterostructure |
KR101178468B1 (ko) * | 2009-10-19 | 2012-09-06 | 샤프 가부시키가이샤 | 봉형상 구조 발광 소자, 봉형상 구조 발광 소자의 제조 방법, 백라이트, 조명 장치 및 표시 장치 |
JP5014477B2 (ja) * | 2009-10-19 | 2012-08-29 | シャープ株式会社 | 棒状構造発光素子の製造方法および表示装置の製造方法 |
JP5094824B2 (ja) * | 2009-10-19 | 2012-12-12 | シャープ株式会社 | 棒状構造発光素子、バックライト、照明装置および表示装置 |
JP5014403B2 (ja) * | 2009-11-19 | 2012-08-29 | シャープ株式会社 | 棒状構造発光素子、発光装置、発光装置の製造方法、バックライト、照明装置および表示装置 |
US8872214B2 (en) | 2009-10-19 | 2014-10-28 | Sharp Kabushiki Kaisha | Rod-like light-emitting device, method of manufacturing rod-like light-emitting device, backlight, illuminating device, and display device |
US9112085B2 (en) * | 2009-11-30 | 2015-08-18 | The Royal Institution For The Advancement Of Learning/Mcgill University | High efficiency broadband semiconductor nanowire devices |
US8563395B2 (en) * | 2009-11-30 | 2013-10-22 | The Royal Institute For The Advancement Of Learning/Mcgill University | Method of growing uniform semiconductor nanowires without foreign metal catalyst and devices thereof |
US8895958B2 (en) * | 2009-12-01 | 2014-11-25 | National University Corporation Hokkaido University | Light emitting element and method for manufacturing same |
US20110140071A1 (en) * | 2009-12-14 | 2011-06-16 | Olga Kryliouk | Nano-spherical group iii-nitride materials |
TWI479688B (zh) * | 2010-01-15 | 2015-04-01 | Epistar Corp | 發光二極體裝置 |
US20110175126A1 (en) * | 2010-01-15 | 2011-07-21 | Hung-Chih Yang | Light-emitting diode structure |
US8986835B2 (en) * | 2010-04-05 | 2015-03-24 | Purdue Research Foundation | Growth process for gallium nitride porous nanorods |
KR20130136906A (ko) | 2010-06-18 | 2013-12-13 | 글로 에이비 | 나노와이어 led 구조와 이를 제조하기 위한 방법 |
CN103098216A (zh) * | 2010-06-24 | 2013-05-08 | Glo公司 | 具有用于定向纳米线生长的缓冲层的衬底 |
KR101636915B1 (ko) * | 2010-09-03 | 2016-07-07 | 삼성전자주식회사 | 그래핀 또는 탄소나노튜브를 이용한 반도체 화합물 구조체 및 그 제조방법과, 반도체 화합물 구조체를 포함하는 반도체 소자 |
JP5932664B2 (ja) | 2010-12-08 | 2016-06-08 | エルシード株式会社 | Iii族窒化物半導体デバイス及びその製造方法 |
US20120217474A1 (en) * | 2011-02-25 | 2012-08-30 | Agency For Science, Technology And Research | Photonic device and method of making the same |
FR2973936B1 (fr) * | 2011-04-05 | 2014-01-31 | Commissariat Energie Atomique | Procede de croissance selective sur une structure semiconductrice |
US8409892B2 (en) * | 2011-04-14 | 2013-04-02 | Opto Tech Corporation | Method of selective photo-enhanced wet oxidation for nitride layer regrowth on substrates |
JP5953683B2 (ja) * | 2011-09-14 | 2016-07-20 | 株式会社リコー | 13族窒化物結晶、及び13族窒化物結晶基板 |
US9035278B2 (en) | 2011-09-26 | 2015-05-19 | Glo Ab | Coalesced nanowire structures with interstitial voids and method for manufacturing the same |
US8350249B1 (en) | 2011-09-26 | 2013-01-08 | Glo Ab | Coalesced nanowire structures with interstitial voids and method for manufacturing the same |
US8350251B1 (en) | 2011-09-26 | 2013-01-08 | Glo Ab | Nanowire sized opto-electronic structure and method for manufacturing the same |
EP2793997B1 (en) | 2011-11-30 | 2017-12-27 | Neuronano AB | Nanowire-based devices for light-induced and electrical stimulation of biological cells |
US8785905B1 (en) * | 2012-01-19 | 2014-07-22 | Sandia Corporation | Amber light-emitting diode comprising a group III-nitride nanowire active region |
US20130313514A1 (en) * | 2012-05-23 | 2013-11-28 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
CN104603952B (zh) | 2012-07-06 | 2017-07-21 | 昆南诺股份有限公司 | 径向纳米线江崎二极管装置和方法 |
US8921141B2 (en) | 2012-09-18 | 2014-12-30 | Glo Ab | Nanopyramid sized opto-electronic structure and method for manufacturing of same |
FR2995729B1 (fr) | 2012-09-18 | 2016-01-01 | Aledia | Dispositif opto-electrique a microfils ou nanofils semiconducteurs et son procede de fabrication |
FR2997557B1 (fr) | 2012-10-26 | 2016-01-01 | Commissariat Energie Atomique | Dispositif electronique a nanofil(s) muni d'une couche tampon en metal de transition, procede de croissance d'au moins un nanofil, et procede de fabrication d'un dispositif |
US9537044B2 (en) | 2012-10-26 | 2017-01-03 | Aledia | Optoelectric device and method for manufacturing the same |
JP6353845B2 (ja) * | 2012-10-26 | 2018-07-04 | グロ アーベーGlo Ab | ナノワイヤled構造の製造方法 |
JP6322197B2 (ja) | 2012-10-26 | 2018-05-09 | グロ アーベーGlo Ab | ナノワイヤサイズの光電構造及びその選択された部分を改質させる方法。 |
FR2997558B1 (fr) | 2012-10-26 | 2015-12-18 | Aledia | Dispositif opto-electrique et son procede de fabrication |
EP2912699B1 (en) | 2012-10-26 | 2019-12-18 | Glo Ab | Method for modifying selected portions of nanowire sized opto-electronic structure |
FR2997420B1 (fr) | 2012-10-26 | 2017-02-24 | Commissariat Energie Atomique | Procede de croissance d'au moins un nanofil a partir d'une couche d'un metal de transition nitrure obtenue en deux etapes |
FR3000612B1 (fr) | 2012-12-28 | 2016-05-06 | Commissariat Energie Atomique | Dispositif optoelectronique a microfils ou nanofils |
FR3000611B1 (fr) * | 2012-12-28 | 2016-05-06 | Aledia | Dispositif optoelectronique a microfils ou nanofils |
EP2939276B1 (fr) | 2012-12-28 | 2019-06-12 | Aledia | Dispositif opto-électronique à microfils ou nanofils |
FR3000613B1 (fr) * | 2012-12-28 | 2016-05-27 | Aledia | Dispositif optoelectronique a microfils ou nanofils |
KR101916274B1 (ko) * | 2013-01-24 | 2018-11-07 | 삼성전자주식회사 | 반도체 발광소자 및 그 제조방법 |
WO2014138904A1 (en) * | 2013-03-14 | 2014-09-18 | The Royal Institution For The Advancement Of Learning/Mcgill University | Methods and devices for solid state nanowire devices |
EP2973752A4 (en) | 2013-03-15 | 2016-11-09 | Glo Ab | DIELECTRIC FILM WITH HIGH BREAKING INDEX TO INCREASE EXTRACTION EFFICIENCY OF NANODRAHT LEADS |
EP2973756B1 (en) | 2013-03-15 | 2018-06-27 | Glo Ab | Nanowire led structure with decreased leakage and method of making same |
US9196787B2 (en) | 2013-06-07 | 2015-11-24 | Glo Ab | Nanowire LED structure with decreased leakage and method of making same |
JP6227128B2 (ja) * | 2013-06-07 | 2017-11-08 | グロ アーベーGlo Ab | マルチカラーled及びその製造方法 |
KR101471608B1 (ko) * | 2013-06-12 | 2014-12-11 | 광주과학기술원 | 나노로드를 포함하는 질화물계 발광다이오드 및 이의 제조방법 |
US9224914B2 (en) | 2013-06-18 | 2015-12-29 | Glo Ab | Insulating layer for planarization and definition of the active region of a nanowire device |
US9142745B2 (en) | 2013-08-27 | 2015-09-22 | Glo Ab | Packaged LED device with castellations |
US8999737B2 (en) | 2013-08-27 | 2015-04-07 | Glo Ab | Method of making molded LED package |
TW201517323A (zh) | 2013-08-27 | 2015-05-01 | Glo Ab | 模製發光二極體封裝及其製造方法 |
US9099573B2 (en) * | 2013-10-31 | 2015-08-04 | Samsung Electronics Co., Ltd. | Nano-structure semiconductor light emitting device |
US9165767B2 (en) * | 2013-11-04 | 2015-10-20 | Globalfoundries Inc. | Semiconductor structure with increased space and volume between shaped epitaxial structures |
WO2015088904A1 (en) | 2013-12-09 | 2015-06-18 | Glo Ab | Optical display system |
US9972750B2 (en) | 2013-12-13 | 2018-05-15 | Glo Ab | Use of dielectric film to reduce resistivity of transparent conductive oxide in nanowire LEDs |
US9281442B2 (en) | 2013-12-17 | 2016-03-08 | Glo Ab | III-nitride nanowire LED with strain modified surface active region and method of making thereof |
FR3016082B1 (fr) | 2013-12-30 | 2017-05-05 | Aledia | Dispositif optoelectronique a elements semiconducteurs et son procede de fabrication |
KR102285786B1 (ko) * | 2014-01-20 | 2021-08-04 | 삼성전자 주식회사 | 반도체 발광 소자 |
US9583533B2 (en) | 2014-03-13 | 2017-02-28 | Apple Inc. | LED device with embedded nanowire LEDs |
KR102198694B1 (ko) * | 2014-07-11 | 2021-01-06 | 삼성전자주식회사 | 반도체 발광소자 및 반도체 발광소자 제조방법 |
KR102188494B1 (ko) * | 2014-07-21 | 2020-12-09 | 삼성전자주식회사 | 반도체 발광소자, 반도체 발광소자 제조방법 및 반도체 발광소자 패키지 제조방법 |
KR20170066319A (ko) | 2014-08-12 | 2017-06-14 | 글로 에이비 | 스트레인 수정된 표면 활성 영역을 가진 iii-질화물 나노와이어 led 및 이의 제조 방법 |
KR102337405B1 (ko) | 2014-09-05 | 2021-12-13 | 삼성전자주식회사 | 나노구조 반도체 발광소자 |
WO2016069831A1 (en) * | 2014-10-30 | 2016-05-06 | President And Fellows Of Harvard College | Nanoscale wires with tip-localized junctions |
FR3029015B1 (fr) * | 2014-11-24 | 2018-03-02 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Dispositif optoelectronique a elements semiconducteurs tridimensionnels et son procede de fabrication |
FR3031242B1 (fr) | 2014-12-29 | 2016-12-30 | Aledia | Procede de fabrication de nanofils ou de microfils semiconducteurs a pieds isoles |
CN104716252B (zh) * | 2015-03-17 | 2017-07-21 | 深圳市华星光电技术有限公司 | 发光装置及背光模组 |
US9558942B1 (en) * | 2015-09-29 | 2017-01-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | High density nanowire array |
DE102015121554B4 (de) * | 2015-12-10 | 2022-01-13 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Verfahren zur Herstellung von optoelektronischen Halbleiterchips und optoelektronischer Halbleiterchip |
JP2019515860A (ja) * | 2016-04-01 | 2019-06-13 | ヘキサジェム アーベー | Iii族窒化物材料の平坦な表面の形成 |
US10600354B2 (en) | 2016-04-22 | 2020-03-24 | Glo Ab | Small pitch direct view display and method of making thereof |
WO2018073013A1 (en) * | 2016-10-19 | 2018-04-26 | Hexagem Ab | Forming a planar surface of a iii-nitride material |
KR102468071B1 (ko) | 2017-01-09 | 2022-11-17 | 글로 에이비 | 다이렉트 뷰 디스플레이를 위한 집적 반사기를 갖는 발광 다이오드 및 이의 제조 방법 |
US10998465B2 (en) | 2017-01-09 | 2021-05-04 | Glo Ab | Light emitting diodes with integrated reflector for a direct view display and method of making thereof |
JP7007547B2 (ja) * | 2017-04-11 | 2022-01-24 | 日亜化学工業株式会社 | 発光素子の製造方法 |
US10418499B2 (en) | 2017-06-01 | 2019-09-17 | Glo Ab | Self-aligned nanowire-based light emitting diode subpixels for a direct view display and method of making thereof |
CN108987423B (zh) | 2017-06-05 | 2023-09-12 | 三星电子株式会社 | 显示装置 |
US11417794B2 (en) * | 2017-08-15 | 2022-08-16 | Nanosys, Inc. | Method of making a semiconductor device using nano-imprint lithography for formation of a selective growth mask |
US10439101B2 (en) * | 2017-08-18 | 2019-10-08 | Intel Corporation | Micro light-emitting diode (LED) elements and display |
WO2019055271A1 (en) | 2017-09-15 | 2019-03-21 | Glo Ab | OPTICAL EXTENSION IMPROVEMENT OF LIGHT-EMITTING DIODE SUB-PIXELS |
WO2019066789A1 (en) * | 2017-09-27 | 2019-04-04 | Intel Corporation | NANORUBAN III-N EPITAXIAL STRUCTURES FOR MANUFACTURING DEVICES |
US11362238B2 (en) | 2017-10-06 | 2022-06-14 | Nanosys, Inc. | Light emitting diode containing oxidized metal contacts |
WO2019071160A1 (en) | 2017-10-06 | 2019-04-11 | Glo Ab | LIGHT-EMITTING DIODE CONTAINING OXIDIZED METAL CONTACTS |
US10627673B2 (en) | 2018-04-06 | 2020-04-21 | Glo Ab | Light emitting diode array containing a multilayer bus electrode and method of making the same |
WO2019206844A1 (en) | 2018-04-22 | 2019-10-31 | Epinovatech Ab | Reinforced thin-film device |
US11239212B2 (en) | 2018-08-24 | 2022-02-01 | Nanosys, Inc. | Light emitting diode array containing a black matrix and an optical bonding layer and method of making the same |
EP3696300A1 (de) | 2019-02-18 | 2020-08-19 | Aixatech GmbH | Verfahren zur herstellung eines verbundmaterialkörpers insbesondere für die verwendung bei der herstellung von elektronischen oder optoelektronischen bauelementen |
FR3096834B1 (fr) * | 2019-05-28 | 2022-11-25 | Aledia | Dispositif optoelectronique comportant une diode electroluminescente ayant une couche limitant les courants de fuite |
EP4046248A4 (en) * | 2019-10-15 | 2023-11-29 | The Regents Of The University Of Michigan | NANOCRYSTAL SURFACE EMITTING LASERS |
EP3836227A1 (en) | 2019-12-11 | 2021-06-16 | Epinovatech AB | Semiconductor layer structure |
US11594663B2 (en) | 2019-12-20 | 2023-02-28 | Nanosys, Inc. | Light emitting diode device containing a micro lens array and method of making the same |
US11695100B2 (en) | 2020-01-21 | 2023-07-04 | Nanosys, Inc. | Light emitting diode containing a grating and methods of making the same |
EP3866189B1 (en) | 2020-02-14 | 2022-09-28 | Epinovatech AB | A mmic front-end module |
EP3879706A1 (en) | 2020-03-13 | 2021-09-15 | Epinovatech AB | Field-programmable gate array device |
EP4101945B1 (en) | 2021-06-09 | 2024-05-15 | Epinovatech AB | A device for performing electrolysis of water, and a system thereof |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6029A (en) * | 1849-01-16 | Method of directing the scoops in dredging machines | ||
US5976957A (en) | 1996-10-28 | 1999-11-02 | Sony Corporation | Method of making silicon quantum wires on a substrate |
EP2200071B1 (en) | 1997-10-30 | 2012-01-18 | Sumitomo Electric Industries, Ltd. | GaN single crystal substrate and method of making the same using homoepitaxy |
US6596377B1 (en) | 2000-03-27 | 2003-07-22 | Science & Technology Corporation @ Unm | Thin film product and method of forming |
US7301199B2 (en) * | 2000-08-22 | 2007-11-27 | President And Fellows Of Harvard College | Nanoscale wires and related devices |
US6692568B2 (en) * | 2000-11-30 | 2004-02-17 | Kyma Technologies, Inc. | Method and apparatus for producing MIIIN columns and MIIIN materials grown thereon |
CA2442985C (en) | 2001-03-30 | 2016-05-31 | The Regents Of The University Of California | Methods of fabricating nanostructures and nanowires and devices fabricated therefrom |
US6709929B2 (en) | 2001-06-25 | 2004-03-23 | North Carolina State University | Methods of forming nano-scale electronic and optoelectronic devices using non-photolithographically defined nano-channel templates |
TWI220319B (en) * | 2002-03-11 | 2004-08-11 | Solidlite Corp | Nano-wire light emitting device |
US7335908B2 (en) | 2002-07-08 | 2008-02-26 | Qunano Ab | Nanostructures and methods for manufacturing the same |
US7355216B2 (en) | 2002-12-09 | 2008-04-08 | The Regents Of The University Of California | Fluidic nanotubes and devices |
JP4428921B2 (ja) | 2002-12-13 | 2010-03-10 | キヤノン株式会社 | ナノ構造体、電子デバイス、及びその製造方法 |
JP2004288799A (ja) | 2003-03-20 | 2004-10-14 | Sony Corp | 半導体発光素子およびその製造方法、集積型半導体発光装置およびその製造方法、画像表示装置およびその製造方法ならびに照明装置およびその製造方法 |
US7608147B2 (en) | 2003-04-04 | 2009-10-27 | Qunano Ab | Precisely positioned nanowhiskers and nanowhisker arrays and method for preparing them |
US7445742B2 (en) | 2003-08-15 | 2008-11-04 | Hewlett-Packard Development Company, L.P. | Imprinting nanoscale patterns for catalysis and fuel cells |
US7122827B2 (en) * | 2003-10-15 | 2006-10-17 | General Electric Company | Monolithic light emitting devices based on wide bandgap semiconductor nanostructures and methods for making same |
US7354850B2 (en) | 2004-02-06 | 2008-04-08 | Qunano Ab | Directionally controlled growth of nanowhiskers |
US7528002B2 (en) | 2004-06-25 | 2009-05-05 | Qunano Ab | Formation of nanowhiskers on a substrate of dissimilar material |
AU2005325265A1 (en) * | 2004-07-07 | 2006-07-27 | Nanosys, Inc. | Systems and methods for harvesting and integrating nanowires |
US7407872B2 (en) * | 2004-08-20 | 2008-08-05 | Yale University | Epitaxial growth of aligned AlGalnN nanowires by metal-organic chemical vapor deposition |
DE102005005635A1 (de) | 2004-08-31 | 2006-03-02 | Osram Opto Semiconductors Gmbh | Strahlungsemittierendes optoelektronisches Bauelement mit einer Quantentopfstruktur und Verfahren zu dessen Herstellung |
JP2008511985A (ja) * | 2004-08-31 | 2008-04-17 | エージェンシー フォー サイエンス,テクノロジー アンド リサーチ | ナノ構造体及びそれを製造する方法 |
US7345296B2 (en) | 2004-09-16 | 2008-03-18 | Atomate Corporation | Nanotube transistor and rectifying devices |
US7303631B2 (en) | 2004-10-29 | 2007-12-04 | Sharp Laboratories Of America, Inc. | Selective growth of ZnO nanostructure using a patterned ALD ZnO seed layer |
US20060223211A1 (en) * | 2004-12-02 | 2006-10-05 | The Regents Of The University Of California | Semiconductor devices based on coalesced nano-rod arrays |
US7309621B2 (en) | 2005-04-26 | 2007-12-18 | Sharp Laboratories Of America, Inc. | Method to fabricate a nanowire CHEMFET sensor device using selective nanowire deposition |
EP1727216B1 (en) | 2005-05-24 | 2019-04-24 | LG Electronics, Inc. | Rod type light emitting diode and method for fabricating the same |
AU2006252815A1 (en) * | 2005-06-02 | 2006-12-07 | Nanosys, Inc. | Light emitting nanowires for macroelectronics |
KR100623271B1 (ko) | 2005-06-24 | 2006-09-12 | 한국과학기술연구원 | 갈륨망간나이트라이드 단결정 나노선의 제조방법 |
KR101106134B1 (ko) * | 2005-07-11 | 2012-01-20 | 서울옵토디바이스주식회사 | 나노와이어 형광체를 채택한 발광소자 |
JP4525500B2 (ja) * | 2005-07-14 | 2010-08-18 | パナソニック電工株式会社 | 半導体発光素子およびそれを用いる照明装置ならびに半導体発光素子の製造方法 |
US20070257264A1 (en) | 2005-11-10 | 2007-11-08 | Hersee Stephen D | CATALYST-FREE GROWTH OF GaN NANOSCALE NEEDLES AND APPLICATION IN InGaN/GaN VISIBLE LEDS |
WO2007062178A2 (en) * | 2005-11-21 | 2007-05-31 | The Regents Of The University Of California | Method for computing patient radiation dose in computed tomoraphy |
KR100668351B1 (ko) * | 2006-01-05 | 2007-01-12 | 삼성코닝 주식회사 | 질화물계 발광소자 및 그 제조방법 |
US7349613B2 (en) | 2006-01-24 | 2008-03-25 | Hewlett-Packard Development Company, L.P. | Photonic crystal devices including gain material and methods for using the same |
CN101443265B (zh) | 2006-03-08 | 2014-03-26 | 昆南诺股份有限公司 | 在硅上无金属合成外延半导体纳米线的方法 |
AU2007313096B2 (en) | 2006-03-10 | 2011-11-10 | Unm Rainforest Innovations | Pulsed growth of GaN nanowires and applications in group III nitride semiconductor substrate materials and devices |
DE102006013245A1 (de) | 2006-03-22 | 2007-10-04 | Infineon Technologies Ag | Verfahren zur Ausbildung von Öffnungen in einer Matrizenschicht und zur Herstellung von Kondensatoren |
JP2008034483A (ja) * | 2006-07-26 | 2008-02-14 | Matsushita Electric Works Ltd | 化合物半導体素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法 |
US20080149946A1 (en) | 2006-12-22 | 2008-06-26 | Philips Lumileds Lighting Company, Llc | Semiconductor Light Emitting Device Configured To Emit Multiple Wavelengths Of Light |
WO2008079078A1 (en) * | 2006-12-22 | 2008-07-03 | Qunano Ab | Elevated led and method of producing such |
KR101549270B1 (ko) | 2007-01-12 | 2015-09-01 | 큐나노 에이비 | 질화물 나노와이어 및 이의 제조 방법 |
-
2008
- 2008-01-14 KR KR1020097016715A patent/KR101549270B1/ko not_active IP Right Cessation
- 2008-01-14 CN CN2008800020099A patent/CN101681813B/zh not_active Expired - Fee Related
- 2008-01-14 CA CA 2674448 patent/CA2674448A1/en not_active Abandoned
- 2008-01-14 AU AU2008203934A patent/AU2008203934C1/en not_active Ceased
- 2008-01-14 JP JP2009545523A patent/JP5345552B2/ja not_active Expired - Fee Related
- 2008-01-14 KR KR1020157010408A patent/KR20150052343A/ko not_active Application Discontinuation
- 2008-01-14 US US12/308,249 patent/US7829443B2/en active Active
- 2008-01-14 EP EP08705308.8A patent/EP2102899B1/en not_active Not-in-force
- 2008-01-14 WO PCT/SE2008/050036 patent/WO2008085129A1/en active Application Filing
-
2010
- 2010-09-21 HK HK10109013.2A patent/HK1142717A1/xx not_active IP Right Cessation
- 2010-11-08 US US12/941,486 patent/US8309439B2/en active Active
-
2012
- 2012-10-18 US US13/654,892 patent/US8664094B2/en active Active
-
2013
- 2013-08-14 JP JP2013168662A patent/JP5807044B2/ja not_active Expired - Fee Related
- 2013-11-07 US US14/074,021 patent/US9024338B2/en active Active
-
2015
- 2015-04-14 US US14/685,849 patent/US9660136B2/en active Active
-
2017
- 2017-04-21 US US15/493,456 patent/US9947831B2/en active Active
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102971452B (zh) * | 2010-05-11 | 2017-03-29 | 昆南诺股份有限公司 | 线的气相合成 |
CN102971452A (zh) * | 2010-05-11 | 2013-03-13 | 昆南诺股份有限公司 | 线的气相合成 |
CN103190005A (zh) * | 2010-11-04 | 2013-07-03 | 皇家飞利浦电子股份有限公司 | 基于结晶弛豫结构的固态发光器件 |
US9478705B2 (en) | 2010-11-04 | 2016-10-25 | Koninklijke Philips N.V. | Solid state light emitting devices based on crystallographically relaxed structures |
CN102244002A (zh) * | 2011-07-14 | 2011-11-16 | 合肥工业大学 | 金属/半导体纳米线交叉结构异质结的制备方法 |
CN104302816A (zh) * | 2012-02-03 | 2015-01-21 | 昆南诺股份有限公司 | 具有可调节属性的纳米线的高吞吐量连续气相合成 |
CN104205294A (zh) * | 2012-02-14 | 2014-12-10 | 昆南诺股份有限公司 | 基于氮化镓纳米线的电子器件 |
CN104205294B (zh) * | 2012-02-14 | 2017-05-10 | 六边钻公司 | 基于氮化镓纳米线的电子器件 |
CN104508190B (zh) * | 2012-05-25 | 2017-12-15 | 索尔伏打电流公司 | 同心流反应器 |
US9574286B2 (en) | 2012-05-25 | 2017-02-21 | Sol Voltaics Ab | Concentric flower reactor |
CN104508190A (zh) * | 2012-05-25 | 2015-04-08 | 索尔伏打电流公司 | 同心流反应器 |
US10196755B2 (en) | 2012-05-25 | 2019-02-05 | Sol Voltaics Ab | Concentric flower reactor |
US10920340B2 (en) | 2012-05-25 | 2021-02-16 | Alignedbio Ab | Concentric flow reactor |
US11702761B2 (en) | 2012-05-25 | 2023-07-18 | Alignedbio Ab | Concentric flow reactor |
CN103928502B (zh) * | 2014-04-23 | 2016-11-09 | 西安电子科技大学 | 基于m面GaN上的极性GaN纳米线材料及其制作方法 |
CN103928502A (zh) * | 2014-04-23 | 2014-07-16 | 西安电子科技大学 | 基于m面GaN上的极性GaN纳米线材料及其制作方法 |
CN108598238A (zh) * | 2018-04-25 | 2018-09-28 | 中原工学院 | 一种形貌可控的GaN纳米线阵列的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20150052343A (ko) | 2015-05-13 |
US20170229613A1 (en) | 2017-08-10 |
WO2008085129A1 (en) | 2008-07-17 |
AU2008203934A2 (en) | 2009-09-03 |
US20110143472A1 (en) | 2011-06-16 |
JP2010515651A (ja) | 2010-05-13 |
US20100163840A1 (en) | 2010-07-01 |
KR20090101960A (ko) | 2009-09-29 |
AU2008203934C1 (en) | 2014-03-13 |
JP2014001135A (ja) | 2014-01-09 |
EP2102899B1 (en) | 2020-11-11 |
CA2674448A1 (en) | 2008-07-17 |
US9947831B2 (en) | 2018-04-17 |
US8664094B2 (en) | 2014-03-04 |
EP2102899A4 (en) | 2015-04-01 |
CN101681813B (zh) | 2012-07-11 |
EP2102899A1 (en) | 2009-09-23 |
US8309439B2 (en) | 2012-11-13 |
JP5807044B2 (ja) | 2015-11-10 |
KR101549270B1 (ko) | 2015-09-01 |
JP5345552B2 (ja) | 2013-11-20 |
AU2008203934A1 (en) | 2008-07-17 |
US20150221817A1 (en) | 2015-08-06 |
US20140061586A1 (en) | 2014-03-06 |
US9660136B2 (en) | 2017-05-23 |
HK1142717A1 (en) | 2010-12-10 |
AU2008203934B2 (en) | 2013-11-07 |
US9024338B2 (en) | 2015-05-05 |
US20130072001A1 (en) | 2013-03-21 |
US7829443B2 (en) | 2010-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101681813B (zh) | 氮化物纳米线及其制造方法 | |
KR102698244B1 (ko) | 그라파이트 기판 상에 나노와이어 또는 나노피라미드를 성장시키는 방법 | |
JP5010908B2 (ja) | Iii−n層の選択的マスキング方法、自立iii−n層もしくはデバイスの製造方法、および当該方法により得られる製品 | |
US8835983B2 (en) | Nitride semiconductor device including a doped nitride semiconductor between upper and lower nitride semiconductor layers | |
US20110003420A1 (en) | Fabrication method of gallium nitride-based compound semiconductor | |
CN108767055B (zh) | 一种p型AlGaN外延薄膜及其制备方法和应用 | |
US20190157069A1 (en) | Semipolar amd nonpolar light-emitting devices | |
US9755111B2 (en) | Active region containing nanodots (also referred to as “quantum dots”) in mother crystal formed of zinc blende-type (also referred to as “cubic crystal-type”) AlyInxGal-y-xN Crystal (y[[□]][≧] 0, x > 0) grown on Si substrate, and light emitting device using the same (LED and LD) | |
JP2007515791A (ja) | 窒化物半導体層を成長させる方法及びこれを利用する窒化物半導体発光素子 | |
JP5460751B2 (ja) | 半導体装置 | |
JP2018022814A (ja) | 窒化物半導体素子及びその製造方法 | |
JP5705179B2 (ja) | 窒化物半導体ウェーハ、窒化物半導体装置及び窒化物半導体結晶の成長方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1142717 Country of ref document: HK |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: GR Ref document number: 1142717 Country of ref document: HK |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120711 Termination date: 20210114 |