CN101443265B - 在硅上无金属合成外延半导体纳米线的方法 - Google Patents

在硅上无金属合成外延半导体纳米线的方法 Download PDF

Info

Publication number
CN101443265B
CN101443265B CN200780016774.1A CN200780016774A CN101443265B CN 101443265 B CN101443265 B CN 101443265B CN 200780016774 A CN200780016774 A CN 200780016774A CN 101443265 B CN101443265 B CN 101443265B
Authority
CN
China
Prior art keywords
nucleation
growth
oxide template
substrate
organic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200780016774.1A
Other languages
English (en)
Other versions
CN101443265A (zh
Inventor
B·曼德尔
L·萨繆尔森
T·马滕森
W·塞弗特
A·米克尔森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BTG International Ltd
QuNano AB
Original Assignee
BTG International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE0601142A external-priority patent/SE533341C2/sv
Application filed by BTG International Ltd filed Critical BTG International Ltd
Publication of CN101443265A publication Critical patent/CN101443265A/zh
Application granted granted Critical
Publication of CN101443265B publication Critical patent/CN101443265B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/04Pattern deposit, e.g. by using masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/62Whiskers or needles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • H01L21/02645Seed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02653Vapour-liquid-solid growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及纳米线在衬底上的外延生长。特别地,本发明涉及不使用Au作为催化剂在硅衬底上生长纳米线。在本发明的方法中,在衬底的钝化表面上提供氧化物模板。该氧化物模板为随后的纳米线生长划定多个成核开始位置。根据一个实施方案,使用有机薄膜形成氧化物模板。

Description

在硅上无金属合成外延半导体纳米线的方法
发明领域
本发明涉及在硅衬底上生长III-V半导体纳米线的方法。本发明特别涉及不使用Au或任何其它金属作为催化剂生长纳米线的方法。
发明背景
近年来,对半导体纳米线(NWs)的关注增加。纳米线也称为纳米须、纳米杆和纳米柱等。对于本发明,术语纳米线用于表示包括基本为一维形式的一维纳米元件(其宽度或直径为纳米尺度)的纳米结构。以纳米级控制该一维生长为材料的联合、机械和电磁性能的控制和新型器件的设计提供难得的机会。
为使NW技术大规模应用,与现有硅加工的高兼容度是基本的。先进的III-V异质结构和高迁移率NW部件随之可用作高速电子学和光子学的“扩充(add-on)”技术。但是,迄今,关于NW生长的大部分报道采用气-液-固(VLS)机制,参见例如R.S.Wagner,InWhisker Technology,Levitt,A.P.,Ed.Wiley:New York,1970,且最常采用Au作为催化剂材料。公知的是,Si中的Au杂质产生深能级,从而充当使硅材料的电子性能变差的重组中心。因此,为使化合物纳米线技术与硅技术和加工兼容,需要找出Au的替代物。
III-V半导体在硅上的外延生长存在一些困难,例如晶格失配、晶体结构的差异(III-Vs具有极性闪锌矿或纤锌矿结构,而Si具有共价金刚石结构)、大的热膨胀系数差异和形成所谓的反相畴。已经使用试图生长器件品质结构(device quality structures)的不同方法对Si上III-V材料的平面生长作出大量研究,综述参见例如,S.F.Fang等人,Gallium-Arsenide and Other CompoundSemiconductors on Silicon(硅上的砷化镓和其它化合物半导体),Journal of Applied Physics68,R31-R58.(1990)。
公认的是,由于NW和Si衬底之间的接点的小横截面,从Si衬底上生长出的III-V半导体NW可能克服几个上述问题。但是,制造NWs的已知程序如上所述包括用于催化生长法的Au-粒子。
发明概述
显然,制造III-V半导体的纳米线或纳米结构的现有技术方法需要显著改进以便与半导体工业所用的既定硅基生产法兼容。特别应优选消除对作为生长促进催化剂的金的需要。
本发明的目的在于提供克服现有技术方法缺陷的方法。这通过如权利要求1所述的方法实现。
本发明的方法提供一种纳米结构化器件,其包含从衬底表面外延生长的纳米线。
该方法包括下列步骤:
-衬底表面的氢终结以提供具有临时钝化表面的衬底。
-在衬底的钝化表面上提供氧化物模板。该氧化物模板为随后的纳米线生长划定多个成核开始位置;
-在衬底表面上的由氧化物模板划定的成核开始位置中生长纳米线。
氧化物模板根据一个实施方案是自组装的或通过在氧化物模板形成中使用另一材料的自组装薄层的方法制成。
根据本发明的一个实施方案,提供氧化物模板的步骤包括在生长阶段之前的预处理,包括下列步骤:
-在衬底表面上施加有机薄膜;和
-提供成核开始期,其中控制时间和环境方面的条件以便在衬底表面上发生部分氧化。氧化法至少部分由所施加的有机薄膜或薄膜残留物引导,从而在氧化物模板的结构和有机薄膜或薄膜残留物的结构之间产生关联。
根据另一实施方案,提供氧化物模板的步骤包括:
-在衬底上施加挥发性物类薄层,该挥发性物类薄层形成氧化物模板;和
-在生长阶段中提供确保纳米线的成核受氧化物模板引导的在时间、压力和温度方面的条件。
由于本发明的方法,在纳米线或纳米结构的生长中可以避免使用硅工业公认有害的Au或其它材料作为催化剂材料。可以使用外延生长系统处理Si表面以产生外延取向化合物纳米线。这种外延NW可以例如用于高速电子学和光子学。
由于本发明,可以不使用金属催化剂粒子生长III/V半导体材料的纳米线。为了将纳米结构技术与半导体工业所用的既定硅基生产法结合,这是非常重要的。
本发明的一个优点是该方法的步骤可以容易地适用于工业成批处理。
另一优点在于,根据本发明生长纳米线的方法可以与现代的纳米平版印刷技术结合。
在从属权利要求中定义本发明的实施方案。在与附图和权利要求结合考虑时,从本发明的下列详述中可以明显看出本发明的其它目的、优点和新颖特征。
附图简述
现在参照附图描述本发明的优选实施方案,其中:
图1是本发明的方法的步骤的示意图;
图2显示了使用本发明的方法在Si(100)衬底上生长的所得纳米线;
图3显示了使用本发明的方法的一个实施方案生长的所得纳米线;
图4是在形成氧化物模板时使用有机薄膜的本发明的一个实施方案的流程图;
图5是在形成氧化物模板时使用有机薄膜的本发明的方法的步骤的示意图;
图6a-c显示了成核开始期的影响,在(a)中,旋涂正癸烷,并将样品直接输送到生长装置中,在(b)中,样品用正癸烷旋涂并在湿空气中储存大约10分钟,(c)的图显示了随在湿空气中的暴露时间而变的纳米线密度;
图7a-d显示了使用有机化合物:a)烯丙醇,b)正癸烷,c)丙酮,d)乙醇根据本发明的方法生长的InAs纳米线;
图8a-b显示了根据本发明的一个实施方案预热的作用,(a)不预热和(b)预热。
详述
根据本发明,提供了不使用Au粒子作为催化剂制造III-V材料的外延纳米线的一般方法。以InAs作为纳米线中的主要材料描述该方法。但是,也可以以相同方式使用其它半导体化合物,尤其是III-V化合物。InAs是III-V化合物属中具有最高电子迁移率的材料之一,因此对纳米线的电子用途而言非常有用。已经表明,InAs纳米线可以容易地接通和gated。使用嵌入势垒(例如InP),已经证实这类结构在如C.Thelander等人,Appl Phys.Lett.2003,83,(10),2052所述的单电子晶体管中和在如共振隧穿器件的功能器件中的功能性。此外,InAs具有与Si联合用于高速电子学用途的高潜力。但是,就此而言途,Au辅助生长的纳米线由于在Si中引入深能级而产生严重限制。
由于电子性能和至少由于在大规模生产中使用Si的成熟方法,Si对多数用途而言是衬底材料的优先选择。在所用条件下,纳米线在<111>方向上相对于衬底外延生长。对于Si(111)表面,纳米线与表面垂直取向,对于Si(001)表面,纳米线与表面等形成大约35度角。由于对多数用途而言,与表面垂直的纳米线是优选的,本发明的方法最适于但不限于Si(111)-衬底的使用。但是,本发明的方法也适用于其它衬底,例如III-V化合物的衬底可用于一些用途。修改该方法以适应各种衬底材料是本领域技术人员显而易见的。
根据本发明的方法,通过在生长法之前在预处理中在Si表面上提供的氧化物模板引导Si衬底上的纳米线生长。氧化物模板通过提高衬底某些区域中的成核可能性来引导纳米线成核。具有提高的成核可能性的这些区域被称作成核开始位置。本发明的方法示意性显示在图1中并包括下列基础步骤:
a):例如通过在氢氟酸HF中蚀刻,氢终结衬底100的表面。HF蚀刻从Si(111)衬底100的表面上去除原生氧化物105并为衬底提供临时钝化表面110。
b):在衬底100的钝化表面100上提供氧化物模板115。氧化物模板为随后的纳米线生长划定多个成核开始位置。可以以下述不同方式提供氧化物模板。
c):纳米线的生长,其中在至少一部分成核开始位置上的衬底表面上形成外延生长的直立纳米线125。
氧化物模板可以通过氧化物形成硅氧化物的局部斑块来提供成核开始位置,该硅氧化物随后充当引发纳米线生长的催化剂粒子。局部斑块中的组成优选且通常为SiOx,x≈1。或者,氧化物模板形成生长抑制性掩模,该掩模通常是完全氧化的,SiO2。作为生长抑制性掩模中的不完全氧化或非氧化的斑块提供成核开始位置。在这种情况下,在衬底表面不完全氧化的斑块中发生随后的纳米线生长。根据一个实施方案,氧化物模板是自组装的,即氧化物模板的结构主要自发形成。术语自组装的氧化物模板也应该被理解为包括如下氧化物模板,其中在另一物质,例如有机化合物具有至少部分转移到氧化物模板中的自组装结构的方法中提供自组装特性。自组装法可能受环境、温度、衬底中的材料和衬底表面等影响。此实施方案在衬底表面上的随机位置促进随后的纳米线生长。或者,在本发明的另一实施方案中,可以通过例如使用平版印刷法图案化来赋予氧化物模板一种结构。根据此实施方案,纳米线的生长处于预定位置。
根据本发明的一个实施方案,在钝化衬底表面上直接提供氧化物模板115。该实施方案包括在生长程序之前在衬底上施加挥发性物类,例如且优选为SiOx(x≈1)的薄层的预处理。挥发性物类的薄层形成作为催化剂层或作为生长抑制性掩模的氧化物模板115。氧化物模板的结构可以在施加该薄层时直接形成,或通过薄层的后继处理,例如通过升高温度形成。本发明的方法的基础步骤如下修改:
b’)在衬底上施加挥发性物类薄层的预处理阶段中,该挥发性物类薄层形成氧化物模板115。
c’)在生长阶段中,提供确保纳米线的成核受氧化物模板115引导的在时间、压力和温度方面的条件。
氧化物模板可能在生长阶段中发生变化,例如部分蒸发,或由于提高的温度而重构。此实施方案的方法可以通过确保在氧化物模板115的任何明显重构之前发生纳米线成核来进一步改进。步骤c’)随之包括:
c’:1)提供第一条件,其中在低于与氧化物模板相关的预定温度的衬底温度下接入纳米线生长源。选择该预定温度以便在该步骤的时间范围内不发生氧化物模板的明显重构。该预定温度通常低于最佳纳米线生长温度,但高到足以促进纳米线成核的开始。
c’:2)提供第二条件,其中优化衬底温度以促进纳米线的生长。第二温度通常高于第一温度。由于在前一步骤中已经开始成核,氧化物模板的变化对纳米线的生长具有低的影响。
根据采用氧化物模板直接沉积的实施方案的实施例可以包括下列方法:
对于线生长,在10kPa压力下,以在作为载气的流速6000毫升/分钟的H2中输送的三甲基铟(TMI)、胂(AsH3)和膦作为前体材料,使用低压金属有机气相外延法(LP-MOVPE)。对于前体,使用典型摩尔分数2×10-6的TMI和2×10-4的AsH3。对于TMI,也测试更高的摩尔分数,但对生长速率没有显著影响。在范围(3.5-15)×10-3内改变PH3的摩尔分数。作为衬底,使用epitaxy-ready的III/V晶片和硅片。在硅衬底的情况下,通过与步骤a)对应的HF浸渍去除原生氧化物。在将衬底加载到生长室中之前,使薄SiOx层升华到表面上,这对应于步骤b’)。然后将衬底在H2气氛中加热至520℃至680℃的生长温度。一达到生长温度,就同时接入前体。通过切断TMI源,停止生长,并将样品在AsH3流下冷却,或对于InAsP沉积,在附加PH3流下冷却。在Si(100)上生长的所得纳米线显示在图2中。
根据本发明的另一实施方案,氧化物模板的使用与图案化方法,例如平版印刷法结合以产生规定图案,例如纳米线的阵列或矩阵。可以通过传统平版印刷法,例如电子束平版印刷法制备图案。在第二实施方案的实施例中,通过将PMMA旋涂到InP(111)B衬底上并使用电子束平版印刷法写入规则点阵来制备图案。以相同方式处理Si衬底。在将正性抗蚀剂显影以在衬底上向下开孔后,沉积SiOx层,并在剥离(lift-off)法中去除剩余抗蚀剂。为了在这种图案化SiOx薄膜上生长线,必须在510-520℃的加热期间激活生长源(sources)。稍晚,即在更高生长温度下激活生长源会造成图案的损失。这最可能与SiOx的热稳定性有关,其在高于500℃的温度下显著蒸发。在大约500℃下的扫描隧道显微术研究已经表明,1.3纳米厚的SiOx层在与我们的几分钟生长时间相当的时间量程内蒸发。应该指出,在我们的情况下,线材不是从SiOx-层中的开孔中长出,而是在电子束平版印刷和剥离后留下SiOx岛的位置生长,这些SiOx岛与如T.Martensson等人“Fabrication of individually seeded nanowire arrays byvapour-liquid-solid growth(通过气-液-固生长制造独立接种的纳米线阵列)”,Nanotechnology14,1255-1258.(2003)所述的在InP(Au)/InP(111)B系统中图案化生长的情况下的Au粒子类似地充当“催化剂”。结果显示在图3中。
在本发明的一个实施方案中,通过受控氧化法提供氧化物模板115。在钝化Si衬底的预处理过程中,在钝化表面上施加有机薄膜,例如烯丙醇(2-丙烯-1-醇)。或者,可以使用其它有机材料,如丙酮和正癸烷。有机薄膜应该至少在一部分预处理中对可作用于Si衬底表面的物质是半透性的。合适的薄膜厚度取决于所用有机化合物,取决于预处理的时间量程和进行预处理时的条件,例如湿度方面。典型的薄膜厚度为10-200
Figure G2007800167741D0007140054QIETU
。根据本发明的实施方案的预处理的后继部分能够通过衬底表面中的局部变化或衬底表面上的局部形成物或残留物来形成成核开始位置。
根据图4的流程图和图5的示意图中所示的实施方案在Si衬底上制造外延纳米线的方法包括下列主要步骤:
a”):例如通过在氢氟酸HF中蚀刻,氢终结衬底表面。HF蚀刻从Si(111)衬底500的表面上去除氧化物505并为衬底提供临时钝化表面510。优选地,使用产生具有至少一定粗糙度的Si表面的HF蚀刻程序。控制Si(111)衬底的钝化表面的粗糙度的程序取决于HF溶液的pH值,并且是本领域中公知的,参见例如“Ideal HydrogenTermination of the Si-(II1)Surface(Si-(III)表面的理想氢终结”,Higashi,G.S.等人,Applied Physics Letters56,656-658(1990)。应该指出,在这种情况下的粗糙度是原子级的,用所述方法实现的粗糙度为大约0.3纳米。还应该指出,术语粗糙度也是指衬底表面的较不稳定,较不理想的氢终结,这使其更容易氧化。
b”:1)在衬底表面上施加有机化合物的半透薄膜。该薄膜可以通过例如旋涂、气化和浸渍施加。该薄膜通常通过自组装法或通过图案化法在衬底表面上留下许多残留物514。
b”:2)提供成核开始期。在此期间,在衬底表面上形成多个分立的成核开始位置516。成核开始位置的密度以及各成核开始位置的尺寸取决于有机薄膜特性和成核开始期间的条件的组合。在成核开始期间,发生衬底表面510的氧化。通过有机薄膜或其残留物引导氧化。该程序产生划定多个成核开始位置516的氧化物模板515,氧化物模板的结构与有机薄膜或薄膜的有机残留物的结构有关。
c”):纳米线的生长,其中在至少一部分成核开始位置上在衬底表面上形成外延生长的直立纳米线(125)。
根据本发明的一个实施方案,步骤b”:1中施加的有机薄膜在衬底表面510上形成局部残留物514。这些残留物可以在有机薄膜施加后直接形成或在成核开始期因薄膜变化,如裂化或不均匀蒸发而形成。在成核开始期,步骤b”:2,环境中存在的物质可能渗透薄膜中的弱化点或可直接到达未被局部残留物覆盖的区域中的表面。在氧化环境,例如湿空气中,在薄膜足够薄或不存在薄膜的区域中发生局部氧化。根据该实施方案,衬底和有机薄膜暴露在氧化环境中。可以以许多方式提供氧化环境。简单的方法是利用空气中的湿气,由此预期反应是:
(i)Si+H2O→SiO+H2
(ii)SiO+H2O→SiO2+H2
如果在适当时期后终止,见下文,除了在被有机残留物514覆盖的区域外,SiO2覆盖衬底表面,并形成氧化物模板515。被有机残留物514覆盖的区域是未氧化的或具有较低的氧化态,例如SiO,并形成成核开始位置。在后继步骤中生长的纳米线的密度被发现极大取决于在将有机薄膜施加到衬底上和将衬底加载到反应器(在此进行生长步骤“c”)中之间在环境空气中的暴露时间。根据本发明的一个实施方案,使用这种效应通过进行受控氧化来控制纳米线密度。
较粗糙的衬底表面会强化有机薄膜中局部残留物或局部弱化点的形成。因此,在这种实施方案中,在步骤a’’)中提供相对粗糙的Si(111)表面的方法可能是有利的。
根据该实施方案,在纳米线生长之前采用的另一任选子步骤包括:
b”:3)有机残留物的气化/烘焙。该程序取决于所选有机材料。对于烯丙醇,在625℃下的短加热处理足以去除几乎所有有机残留物。
根据本发明的另一实施方案,设置薄膜以在预热过程中留下残留物。这些残留物在随后的纳米线生长中充当催化剂粒子。这些残留物可以具有各种成分,这取决于有机薄膜。有机薄膜可以在衬底表面上引发碳化物SiC的形成。或者,这些残留物改变表面,这产生局部提高的成核可能性。此外,在这种实施方案中,例如由于有机薄膜的不均匀蒸发或裂化而形成具有提高的渗透性的区域,利用此形成基本无规分布的残留物,它们又提供了成核开始位置。该方法优选与生长阶段在相同的室中进行。
根据另一实施方案,使用该有机薄膜钝化一部分Si表面,并在薄膜开孔中提供成核开始位置。该方法与提供有机化合物的掩模并通过平版印刷在掩模中形成孔的方法相当。但在本发明的此实施方案的方法中,有机薄膜的性质与提供合适的环境相结合,由于有机薄膜的裂化或不均匀蒸发而自发形成“孔”。因此,可以取消平版印刷成孔的方法。
根据再一实施方案,在成核开始位置的形成中使用包含氧化物质或在表面上存在氧化物质的有机薄膜。
对于III-V半导体纳米线的外延生长,生长步骤c,c’和c”,方法是本领域中已知的。对于生长法,低压金属有机气相外延法(LP-MOVPE)是合适的。其它可能的技术包括但不限于,MOVPE、分子束外延法(MBE)和化学束外延法(CBE)。下面以非限制性实施例的形式给出细节。
以InAs例举纳米须。此外,可以有利地用本发明的方法生长其它半导体,特别是III-V半导体,例如InP和GaP。例如LP-MOVPE法中的所需修改是技术人员显而易见的。
除了适用于有机薄膜515的上述有机化合物外,可以使用大量的其它有机化合物。该选择取决于可用的施加薄膜的方法,例如旋涂,和成核开始期的优选时间量程和条件。合适的有机化合物包括,但不限于,烯丙醇、正癸烷和丙酮。
根据本发明的方法的制备实施例:
使用Si(111)衬底。将晶片切块并将样品在超声浴中清洗。为了去除有机残留物,对样品进行UV+臭氧清洗。然后将样品在4%氢氟酸水溶液中蚀刻30秒并在不漂洗的情况下取出。
将来自Sigma-Aldrich的烯丙醇(2-丙烯-1-醇)(纯度99+%)以≈6000rpm旋涂30秒,产生通过椭圆计测得的≈20
Figure 2007800167741100002G2007800167741D0007140054QIETU
厚层。然后将样品在不进一步延迟的情况下转移到惰性气氛中。
在另一方法中,以相同方式使用正癸烷作为有机物质。但是,在旋涂后,使样品在转移到惰性气氛中之前在湿气氛中保持大约10分钟。
以TMI和胂作为前体气体,使用低压100毫巴MOVPE系统。使用6升/分钟的恒定氢气载气流。进行在625℃下的10分钟退火以改进生长的质量。然后使温度逐渐降至550℃的典型生长温度。在将两种前体同时引入生长室时,引发生长。对前体而言,使用典型摩尔分数2×10-6的TMI和2×10-4的AsH3。在通常几分钟的生长时间后,通过切断TMI,停止生长。在保护性胂流下冷却至室温。
图6a-b显示了成核开始期的影响。在(a)中,旋涂正癸烷,并将样品直接输送到生长装置中。在(b)中,样品用正癸烷旋涂并在湿空气中储存大约10分钟。视角与衬底法线呈45度。如上所述,可以使用涂布衬底在氧化环境中的暴露时间控制纳米线密度,这进一步显示在图6c中,其中纳米线密度随暴露时间而变。条件在大约22-24℃和85-90%相对湿度下稳定。而6小时样品仍表现出几乎理想的NW生长,10小时样品表现出提高的非外延线的量和竞争的岛生长。进一步氧化(在上述条件下≥14小时)造成0密度,即0生长。
图7a-d显示了使用有机化合物:a)烯丙醇,b)正癸烷,c)丙酮,d)乙醇根据本发明的方法生长的InAs纳米线。视角与衬底法线呈45度。应该指出,在这些图中,看起来与衬底具有角度的纳米线是成像法的结果。实际上,纳米线在衬底表面上是外延和直立的。
在图8a-b中,显示了任选的预热或退火的作用。在(a)中,在生长阶段之前不进行预热。(b)中所示的衬底在625℃下退火10分钟。退火衬底表现出提高的生长质量。
上示结果证实,不均匀氧化的Si表面的理念,其中通过有机覆盖局部抑制H终结的表面的氧化以形成被生长抑制性SiO2掩模围绕的氧化不完全斑块。有机残留物预计在生长前的退火步骤中所用的高温(625℃)下完全蒸发,仅留下氧化物模板。这种模板非常像选择性区域外延中所用的部分遮蔽的衬底。可以理解长期氧化后纳米线密度的降低:最终,整个表面完全被生长抑制性SiO2掩模覆盖。要指出,实现一定的纳米线密度所必须的空气暴露极大取决于所用有机化合物。与正癸烷相比,烯丙醇所需的较短时间与烯丙醇吸湿(这会提高氧化速率)的事实一致,而正癸烷是疏水的。
在氧化物模板的形成中包括薄有机层的上述程序可以与现代的纳米平版印刷技术,如微接触印刷(其中将有机材料掩模从印模转移到衬底上)结合。使用扫描隧道显微术,如蘸笔光刻的技术也可用于赋予有机薄膜预定图案,并因此赋予氧化物模板相应的预定图案。
本发明的方法的基础步骤可以容易地在工业生产系统中实施。一种方法是在相同室中实施该方法的所有步骤,或至少在相同系统中实施,从而避免不受控地接触空气、湿气等。本发明的步骤在这种情况下可以如下修改:
i:在真空室中引入一个或多个衬底。
ii:通过使用原子氢,例如加热衬底并暴露在氢等离子体中,进行氢终结。可以使用电压和等离子体组成确定表面粗糙度。
ii:在衬底上蒸发或喷涂有机薄膜。
iv:暴露在氧化物质中。可以优选控制温度以产生更好的受控方法。
v:采用相同的真空室,或在转移到相同系统中的生长室中后,进行纳米线生长。
这种修改的方法非常适合与各种图案化技术结合。
尽管已经结合目前被视为最实际和优选的实施方案描述了本发明,但要理解的是,本发明不限于所公开的实施方案,相反,旨在覆盖在所附权利要求内的各种修改和对等布置。

Claims (1)

1.制造包含从硅衬底表面外延生长的纳米线的纳米结构化器件的方法,该方法的特征在于下列步骤:
-(a)硅衬底的表面的氢终结以临时钝化表面;
-(b)在硅衬底的表面上提供氧化物模板,该氧化物模板具有划定多个成核开始位置的结构;
-(c)在硅衬底的表面上的由氧化物模板划定的成核开始位置中生长纳米线;
其中(i)提供氧化物模板的步骤包括在生长纳米线的步骤之前的预处理,包括下列步骤:
-(b’’:1)在衬底表面上施加有机薄膜;和
-(b’’:2)提供成核开始期,其中控制时间和环境方面的条件以便在衬底表面上发生部分氧化,该部分氧化至少部分由所施加的有机薄膜或有机薄膜残留物引导,从而在氧化物模板的结构和有机薄膜或有机薄膜残留物的结构之间产生关联;或者
(ii)提供氧化物模板的步骤包括(b’)在衬底上施加挥发性物类薄层,该挥发性物类薄层形成氧化物模板;且生长纳米线的步骤包括(c’)提供确保纳米线的成核受氧化物模板引导的在时间、压力和温度方面的条件。
2. 根据权利要求1的方法,其中氧化物模板的结构是自组装的。
3. 根据权利要求1或2的方法,进一步包括图案化以形成氧化物模板的结构的步骤。
4. 根据权利要求1或2的方法,其中氧化物模板由硅氧化物形成,其中该硅氧化物包括SiO,所述氧化物模板充当催化剂层,且在生长纳米线的步骤中,纳米线在所述氧化物模板上成核和生长。
5. 根据权利要求1或2的方法,其中氧化物模板形成生长抑制性掩模,在该掩模中具有划定成核开始位置的孔或弱化点,并在生长纳米线的步骤中,纳米线在生长抑制性掩模的孔或弱化点中成核和生长。
6. 根据权利要求1的方法,其中在有机薄膜中形成渗透性提高的多个局部区域或裂纹,且衬底表面上的局部氧化在所述渗透性提高的区域处或在所述裂纹处发生。
7. 根据权利要求1的方法,其中成核开始期包括使衬底暴露在湿气或氧化物质中。
8. 根据权利要求1的方法,其中有机薄膜在衬底表面上形成局部残留物,并控制氧化方法以便除了在不完全氧化或未氧化的被有机残留物覆盖的区域外,实现衬底表面的基本完全氧化,由此在随后的纳米线生长步骤中,纳米线在衬底上的之前被有机残留物覆盖的位置中成核和生长。
9. 根据权利要求1或2的方法,其中提供氧化物模板以划定成核开始位置的步骤包括在衬底表面上形成硅氧化物簇,其中该硅氧化物包括SiO,这些硅氧化物簇在随后的纳米线生长步骤中充当催化剂粒子。
10. 根据权利要求1的方法,其中提供氧化物模板以划定成核开始位置的步骤包括在衬底表面上形成有机薄膜的残留物,这些残留物在随后的纳米线生长步骤中充当催化剂粒子。
11. 根据权利要求1的方法,其中提供氧化物模板以划定成核开始位置的步骤包括在衬底表面上形成有机薄膜的残留物,这些残留物局部改变衬底表面,且这些局部变化在随后的纳米线生长步骤中充当成核开始位置。
12. 根据权利要求1的方法,其中在成核开始期在有机薄膜中自发形成孔,所施加的有机薄膜在随后的纳米线生长步骤中充当掩模且纳米线在掩模中的孔中生长。
CN200780016774.1A 2006-03-08 2007-03-07 在硅上无金属合成外延半导体纳米线的方法 Expired - Fee Related CN101443265B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
SE0600533 2006-03-08
SE0600533-4 2006-03-08
SE06005334 2006-03-08
SE0601142A SE533341C2 (sv) 2006-05-22 2006-05-22 Metod för metallfri syntes av epitaxiella halvledarnanotrådar på kisel
SE06011423 2006-05-22
SE0601142-3 2006-05-22
PCT/SE2007/050131 WO2007102781A1 (en) 2006-03-08 2007-03-07 Method for metal-free synthesis of epitaxial semiconductor nanowires on si

Publications (2)

Publication Number Publication Date
CN101443265A CN101443265A (zh) 2009-05-27
CN101443265B true CN101443265B (zh) 2014-03-26

Family

ID=38475147

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200780016774.1A Expired - Fee Related CN101443265B (zh) 2006-03-08 2007-03-07 在硅上无金属合成外延半导体纳米线的方法

Country Status (7)

Country Link
US (1) US8691011B2 (zh)
EP (1) EP1991499A4 (zh)
JP (1) JP5483887B2 (zh)
KR (1) KR101375435B1 (zh)
CN (1) CN101443265B (zh)
AU (1) AU2007222162B2 (zh)
WO (1) WO2007102781A1 (zh)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8178403B2 (en) 2006-09-18 2012-05-15 Qunano Ab Method of producing precision vertical and horizontal layers in a vertical semiconductor structure
WO2008079078A1 (en) 2006-12-22 2008-07-03 Qunano Ab Elevated led and method of producing such
US8049203B2 (en) 2006-12-22 2011-11-01 Qunano Ab Nanoelectronic structure and method of producing such
KR20090096704A (ko) 2006-12-22 2009-09-14 큐나노 에이비 직립 나노와이어 구조를 갖는 led 및 이를 제조하는 방법
KR20150052343A (ko) 2007-01-12 2015-05-13 큐나노 에이비 질화물 나노와이어 및 이의 제조 방법
EP2168167B1 (en) 2007-06-19 2019-04-10 QuNano AB Nanowire-based solar cell structure
US8084337B2 (en) 2007-10-26 2011-12-27 Qunano Ab Growth of III-V compound semiconductor nanowires on silicon substrates
US8932940B2 (en) * 2008-10-28 2015-01-13 The Regents Of The University Of California Vertical group III-V nanowires on si, heterostructures, flexible arrays and fabrication
KR101538742B1 (ko) 2009-02-25 2015-07-30 삼성전자주식회사 나노와이어의 합성 방법
KR101633953B1 (ko) 2009-04-15 2016-06-27 솔 발테익스 에이비 나노와이어를 가지는 다중-접합 광전지
WO2011040012A1 (ja) * 2009-09-30 2011-04-07 国立大学法人北海道大学 トンネル電界効果トランジスタおよびその製造方法
EP2491595A4 (en) 2009-10-22 2014-03-19 Sol Voltaics Ab NANOCABLE TUNNEL EFFECT DIODE AND MANUFACTURING METHOD THEREOF
US9305766B2 (en) 2009-12-22 2016-04-05 Qunano Ab Method for manufacturing a nanowire structure
CN107090593A (zh) 2010-05-11 2017-08-25 昆南诺股份有限公司 线的气相合成
CN103098237A (zh) 2010-06-18 2013-05-08 Glo公司 纳米线发光二极管结构及其制造方法
EP2586062A4 (en) 2010-06-24 2015-06-03 Glo Ab SUBSTRATE WITH BUFFER LAYER FOR ALIGNED NANODRAHT GROWTH
US9240328B2 (en) * 2010-11-19 2016-01-19 Alphabet Energy, Inc. Arrays of long nanostructures in semiconductor materials and methods thereof
US8350251B1 (en) 2011-09-26 2013-01-08 Glo Ab Nanowire sized opto-electronic structure and method for manufacturing the same
WO2013121289A2 (en) 2012-02-14 2013-08-22 Qunano Ab Gallium nitride nanowire based electronics
EP2859588B1 (en) 2012-06-07 2016-12-21 QuNano AB A method of manufacturing a structure comprising elongate nanostructures adapted to be transferred to a non-crystalline layer
EP2912698B1 (en) 2012-10-26 2018-04-04 Glo Ab Nanowire sized opto-electronic structure and method for modifying selected portions of same
WO2014066379A1 (en) 2012-10-26 2014-05-01 Glo Ab Nanowire sized opto-electronic structure and method for modifying selected portions of same
FR2997557B1 (fr) 2012-10-26 2016-01-01 Commissariat Energie Atomique Dispositif electronique a nanofil(s) muni d'une couche tampon en metal de transition, procede de croissance d'au moins un nanofil, et procede de fabrication d'un dispositif
FR2997420B1 (fr) 2012-10-26 2017-02-24 Commissariat Energie Atomique Procede de croissance d'au moins un nanofil a partir d'une couche d'un metal de transition nitrure obtenue en deux etapes
KR20150103661A (ko) 2012-10-26 2015-09-11 글로 에이비 나노와이어 led 구조 및 이를 제조하는 방법
US10079331B2 (en) 2013-03-15 2018-09-18 Glo Ab High index dielectric film to increase extraction efficiency of nanowire LEDs
WO2014143991A1 (en) 2013-03-15 2014-09-18 Glo Ab Nanowire led structure with decreased leakage and method of making same
US9196787B2 (en) 2013-06-07 2015-11-24 Glo Ab Nanowire LED structure with decreased leakage and method of making same
JP6219506B2 (ja) 2013-06-18 2017-10-25 グロ アーベーGlo Ab ナノワイヤデバイスの活性領域の平坦化および規定のための絶縁層
US8999737B2 (en) 2013-08-27 2015-04-07 Glo Ab Method of making molded LED package
WO2015031179A1 (en) 2013-08-27 2015-03-05 Glo Ab Molded led package and method of making same
US9142745B2 (en) 2013-08-27 2015-09-22 Glo Ab Packaged LED device with castellations
WO2015088904A1 (en) 2013-12-09 2015-06-18 Glo Ab Optical display system
WO2015089123A1 (en) 2013-12-13 2015-06-18 Glo Ab Use of dielectric film to reduce resistivity of transparent conductive oxide in nanowire leds
CN103824566B (zh) * 2014-03-18 2016-08-24 清华大学 读写接触式硬盘的磁头、硬盘设备及转移方法
US10483319B2 (en) 2014-08-08 2019-11-19 Glo Ab Pixilated display device based upon nanowire LEDs and method for making the same
WO2016049507A1 (en) 2014-09-26 2016-03-31 Glo Ab Monolithic image chip for near-to-eye display
US10829605B2 (en) 2015-07-02 2020-11-10 Sabic Global Technologies B.V. Process and material for growth of adsorbed compound via nanoscale-controlled resistive heating and uses thereof
JP2019515489A (ja) 2016-04-22 2019-06-06 グロ アーベーGlo Ab 狭ピッチ直視型ディスプレイおよびその製造方法
US10535518B1 (en) 2017-03-26 2020-01-14 Hrl Laboratories, Llc In situ fabrication of horizontal nanowires and device using same
WO2019145284A1 (en) * 2018-01-23 2019-08-01 Universite D'aix-Marseille Process for forming an organized network of semi-conducting nanoparticles or nanowires onto a silicon substrate
TWI716304B (zh) * 2020-03-30 2021-01-11 環球晶圓股份有限公司 碳化矽晶片的表面加工方法
CN111430221B (zh) * 2020-04-02 2022-08-05 中国科学院半导体研究所 锡自催化生长的锗锡合金硅基材料及定向异质外延方法
US11295983B2 (en) 2020-05-27 2022-04-05 International Business Machines Corporation Transistor having source or drain formation assistance regions with improved bottom isolation
CN112736173B (zh) * 2021-04-06 2021-06-29 至芯半导体(杭州)有限公司 一种复合衬底、其制备方法及半导体器件
CN112802930B (zh) * 2021-04-15 2021-07-06 至芯半导体(杭州)有限公司 Iii族氮化物衬底制备方法和半导体器件

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1422719A (zh) * 2002-12-16 2003-06-11 同济大学 以气凝胶为模板制备银纳米线的方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4341605A (en) * 1981-01-16 1982-07-27 E. I. Du Pont De Nemours And Company Process for cation permeable membrane with reinforcement fabric embedded therein and product thereof
GB2210728B (en) * 1987-10-07 1991-11-13 Stc Plc Isolation trenches for semiconductors
US5976957A (en) * 1996-10-28 1999-11-02 Sony Corporation Method of making silicon quantum wires on a substrate
CN100344004C (zh) * 1997-10-30 2007-10-17 住友电气工业株式会社 GaN单晶衬底及其制造方法
US6596377B1 (en) * 2000-03-27 2003-07-22 Science & Technology Corporation @ Unm Thin film product and method of forming
US6996147B2 (en) * 2001-03-30 2006-02-07 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
US6709929B2 (en) * 2001-06-25 2004-03-23 North Carolina State University Methods of forming nano-scale electronic and optoelectronic devices using non-photolithographically defined nano-channel templates
US7335908B2 (en) * 2002-07-08 2008-02-26 Qunano Ab Nanostructures and methods for manufacturing the same
US7355216B2 (en) * 2002-12-09 2008-04-08 The Regents Of The University Of California Fluidic nanotubes and devices
JP4428921B2 (ja) * 2002-12-13 2010-03-10 キヤノン株式会社 ナノ構造体、電子デバイス、及びその製造方法
CA2522358A1 (en) * 2003-04-04 2004-10-14 Startskottet 22286 Ab Precisely positioned nanowhiskers and nanowhisker arrays and method for preparing them
US7445742B2 (en) * 2003-08-15 2008-11-04 Hewlett-Packard Development Company, L.P. Imprinting nanoscale patterns for catalysis and fuel cells
US7354850B2 (en) * 2004-02-06 2008-04-08 Qunano Ab Directionally controlled growth of nanowhiskers
US7528002B2 (en) * 2004-06-25 2009-05-05 Qunano Ab Formation of nanowhiskers on a substrate of dissimilar material
US7407872B2 (en) * 2004-08-20 2008-08-05 Yale University Epitaxial growth of aligned AlGalnN nanowires by metal-organic chemical vapor deposition
CN101065831B (zh) * 2004-08-31 2011-05-04 新加坡科技研究局 纳米结构及其制造方法
US7345296B2 (en) * 2004-09-16 2008-03-18 Atomate Corporation Nanotube transistor and rectifying devices
US7303631B2 (en) * 2004-10-29 2007-12-04 Sharp Laboratories Of America, Inc. Selective growth of ZnO nanostructure using a patterned ALD ZnO seed layer
US20060223211A1 (en) 2004-12-02 2006-10-05 The Regents Of The University Of California Semiconductor devices based on coalesced nano-rod arrays
US7309621B2 (en) * 2005-04-26 2007-12-18 Sharp Laboratories Of America, Inc. Method to fabricate a nanowire CHEMFET sensor device using selective nanowire deposition
KR101264673B1 (ko) * 2005-06-24 2013-05-20 엘지디스플레이 주식회사 소프트 몰드를 이용한 미세 패턴 형성방법
KR100623271B1 (ko) * 2005-06-24 2006-09-12 한국과학기술연구원 갈륨망간나이트라이드 단결정 나노선의 제조방법
US20070257264A1 (en) * 2005-11-10 2007-11-08 Hersee Stephen D CATALYST-FREE GROWTH OF GaN NANOSCALE NEEDLES AND APPLICATION IN InGaN/GaN VISIBLE LEDS
US7349613B2 (en) * 2006-01-24 2008-03-25 Hewlett-Packard Development Company, L.P. Photonic crystal devices including gain material and methods for using the same
JP5137095B2 (ja) * 2006-02-20 2013-02-06 国立大学法人 筑波大学 シリコンナノ結晶材料の製造方法及び該製造方法で製造されたシリコンナノ結晶材料
SG170094A1 (en) * 2006-03-10 2011-04-29 Stc Unm Pulsed growth of gan nanowires and applications in group iii nitride semiconductor substrate materials and devices
DE102006013245A1 (de) * 2006-03-22 2007-10-04 Infineon Technologies Ag Verfahren zur Ausbildung von Öffnungen in einer Matrizenschicht und zur Herstellung von Kondensatoren
US20080149946A1 (en) * 2006-12-22 2008-06-26 Philips Lumileds Lighting Company, Llc Semiconductor Light Emitting Device Configured To Emit Multiple Wavelengths Of Light

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1422719A (zh) * 2002-12-16 2003-06-11 同济大学 以气凝胶为模板制备银纳米线的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.W.Daily等.Vapor-liquid-solid growth of germanium nanostructures on silicon.《Journal of Applied Physics》.2004,第96卷(第12期),7556-7567. *

Also Published As

Publication number Publication date
EP1991499A1 (en) 2008-11-19
KR101375435B1 (ko) 2014-03-17
WO2007102781A1 (en) 2007-09-13
CN101443265A (zh) 2009-05-27
AU2007222162A1 (en) 2007-09-13
AU2007222162B2 (en) 2013-03-07
JP5483887B2 (ja) 2014-05-07
AU2007222162A2 (en) 2009-02-19
JP2009532309A (ja) 2009-09-10
US8691011B2 (en) 2014-04-08
EP1991499A4 (en) 2013-06-26
US20090301389A1 (en) 2009-12-10
KR20080112277A (ko) 2008-12-24

Similar Documents

Publication Publication Date Title
CN101443265B (zh) 在硅上无金属合成外延半导体纳米线的方法
US7960260B2 (en) Formation of nanowhiskers on a substrate of dissimilar material
KR101169307B1 (ko) 나노구조체 및 그의 제조 방법
US7696105B2 (en) Method for producing catalyst-free single crystal silicon nanowires, nanowires produced by the method and nanodevice comprising the nanowires
KR100301116B1 (ko) 양자점 구조를 갖는 화합물반도체 기판의 제조 방법
CN101910050A (zh) 相异材料上的纳米线生长
EP2175053A2 (en) Branched nanowire and method for fabrication of the same
JP2006239857A (ja) シリコンナノワイヤ、シリコンナノワイヤを含む半導体素子及びシリコンナノワイヤの製造方法
US6033972A (en) Growing method of GaAs quantum dots using chemical beam epitaxy
JP5655228B2 (ja) 半導体構造物の製造方法
KR20090069911A (ko) 성장방향으로 적층된 이종구조 및 이종 도핑 구조의 나노선제조 방법
WO2023037490A1 (ja) ナノワイヤおよびその製造方法
KR100331687B1 (ko) 자발형성 양자점과 전류차단층의 자기정렬 성장을 위한반도체 소자 제조방법
JP2011124583A (ja) ナノ構造体集合体及びナノ構造体の形成方法
Sladek SA-MOVPE in nitrogen ambient for InAs nanowire integration on silicon
SE533341C2 (sv) Metod för metallfri syntes av epitaxiella halvledarnanotrådar på kisel
Boles Structure/processing relationships in vapor-liquid-solid nanowire epitaxy
JP2004281953A (ja) 微細構造の作製方法
JP2006108440A (ja) 半導体装置及びその製造方法
JPH0832047A (ja) 半導体微細構造の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140326

Termination date: 20180307

CF01 Termination of patent right due to non-payment of annual fee