CN101121414A - 电动转向设备 - Google Patents

电动转向设备 Download PDF

Info

Publication number
CN101121414A
CN101121414A CNA200710135704XA CN200710135704A CN101121414A CN 101121414 A CN101121414 A CN 101121414A CN A200710135704X A CNA200710135704X A CN A200710135704XA CN 200710135704 A CN200710135704 A CN 200710135704A CN 101121414 A CN101121414 A CN 101121414A
Authority
CN
China
Prior art keywords
torque
electrical motor
auxiliary
rotation
torsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200710135704XA
Other languages
English (en)
Other versions
CN100546861C (zh
Inventor
山下正治
河西荣治
山崎一平
藤田修司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN101121414A publication Critical patent/CN101121414A/zh
Application granted granted Critical
Publication of CN100546861C publication Critical patent/CN100546861C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/049Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting sensor failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0484Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures for reaction to failures, e.g. limp home

Abstract

当判定旋转角度传感器(23)已经发生故障时,电子控制单元(30)将控制方式从正常辅助控制改变到无传感器辅助控制。在无传感器辅助控制中,辅助停止指令单元(63)从角速度转换单元(56)接收与电动机旋转角速度ωm有关的信息。然后,电动机旋转角速度ωm与阈值ωm1比较。如果电动机旋转角速度ωm等于或者高于阈值ωm1,则辅助许可信号传递到PWM电压产生单元(47)以继续动力辅助。另一方面,如果电动机旋转角速度ωm低于阈值ωm1,则停止指令信号传递到PWM电压产生单元(47)以停止动力辅助。

Description

电动转向设备
技术领域
本发明涉及电动转向设备,该电动转向设备设置有电动机,并且辅助驾驶员执行的驾驶员方向盘的转向操作。
背景技术
有一种用于车辆的电动转向设备,其检测施加到由驾驶员转动的方向盘(以下,称为“驾驶员方向盘”)的转向扭矩,并且基于所检测的转向扭矩使电动机产生辅助扭矩。例如,在日本专利申请公开No.JP-2003-26020(JP-A-2003-26020)中所描述的电动转向设备中,控制器基于施加到驾驶员方向盘的转向扭矩和车辆速度计算用于电动机的目标电流值,并且控制器基于由电流检测器检测的电动机电流值(实际电流值)与目标电流值的偏差计算向电动机供电的目标电压值。然后,控制器以对应于目标电压值的占空比对逆变器执行切换控制,由此目标三相电源电压从逆变器施加到电动机。结果,产生了所需的辅助扭矩。
例如,三相永磁电动机用作电动转向设备的电动机。当电动机的旋转由三相电源单元控制时,通常执行由两相旋转磁束坐标系统(d-q坐标系统)表示的矢量控制。当执行矢量控制时,检测旋转角度(转子的电气的旋转角度位置),并且基于旋转角度执行两相/三相坐标转换(从两相到三相的坐标转换和从三相到两相的坐标转换)。
因此,如果检测电动机旋转角度的旋转角度传感器发生故障,则难以执行该控制。根据日本专利申请公开No.JP-2003-26020(JP-A-2003-26020),解析传感器用作旋转角度传感器。当由于例如断线使得来自解析传感器的输出(周期波形信号的振幅值)等于或者低于预定值时,判定在解析传感器中已经发生故障。根据JP-A-2003-26020,即使在判定在解析传感器中已经发生了故障之后,在电动机在解析传感器的输出等于或者高于预定水平的旋转角度位置处时,还继续执行辅助控制以产生辅助扭矩。结果,避免了驾驶员突然陷入转向操作困境中的情况。
然而,基于来自这种出现故障的旋转角度传感器的检测信号执行该控制没有其预期中的那样可靠。当凸极型永磁电动机用作产生转向辅助扭矩的电动机时,基于凸极性(由于转子位置变化引起的磁阻变化)估计旋转角度。因此,可以认为不使用传感器就可以估计电动机的旋转角度,通过基于所估计的旋转角度控制向电动机供应的电量而继续执行辅助控制。
然而,在电动转向设备中,电动机在许多情况下以接近0的相当低的速度下旋转。如果电动机以这样低的速度旋转,则电动机旋转角度的估计值的可靠性较低。即,随着电动机的电动机速度(旋转角速度)减小,使用电动机的凸极性获得的旋转角度的估计值的可靠性降低。因此,如果在没有采取措施的情况下电动转向设备的电动机在无传感器控制下驱动,则不能获得目标辅助扭矩。在一些情况下,会产生逆辅助扭矩,即,在与应该施加目标辅助扭矩的方向相反的方向上不期望地施加了辅助扭矩。
发明内容
本发明提供一种高度可靠的电动转向设备,其通过无传感器控制驱动产生转向辅助扭矩的电动机。
本发明的第一方面涉及一种电动转向设备,该电动转向设备包括转向机构,其响应于驾驶员方向盘的转向操作而使转向车轮转向;电动机,其装配到转向机构,并产生用来辅助驾驶员方向盘的转向操作的转向辅助扭矩,并且由凸极型永磁电动机形成;旋转角度信息获取装置,用于获取与电动机的旋转角度有关的信息;电动机控制装置,用于基于由旋转角度信息获取装置获得的与旋转角度有关的信息控制电动机的旋转;和辅助控制装置,用于基于驾驶员方向盘的转向操作计算目标转向辅助扭矩,并且用于基于所计算的目标转向辅助扭矩向电动机控制装置提供向电动机供电的指令,以使电动机产生转向辅助扭矩;该电动转向设备还包括旋转角度传感器,其随着电动机旋转而旋转,以检测电动机的旋转角度;旋转角度估计装置,用于利用电动机的凸极性估计电动机的旋转角度;和传感器故障判定装置,用于判定旋转角度传感器是否已经发生故障。当判定旋转角度传感器没有故障时,旋转角度信息获取装置从旋转角度传感器获取与电动机的旋转角度有关的信息,并且当判定旋转角度传感器已经发生故障时,旋转角度信息获取装置从旋转角度估计装置获取与电动机的旋转角度有关的信息。辅助控制装置在当传感器故障判定装置判定旋转角度传感器已经发生故障时和当传感器故障判定装置判定旋转角度传感器没有故障时两种情况下改变使电动机产生转向辅助扭矩的控制方式。
根据本发明第一方面的电动转向设备包括旋转角度传感器,其实际地检测电动机的旋转角度(旋转角位置);和旋转角估计装置,其用于使用电动机的凸极性估计电动机的旋转角度。当判定旋转角度传感器没有故障时,电动机控制装置基于与来自旋转角度传感器的旋转角度有关的信息控制电动机的旋转。另一方面,当判定旋转角度传感器已经发生故障时,电动机控制装置基于与由旋转角度估计装置估计的旋转角度有关的信息控制电动机的旋转。电动机控制装置通过执行由两相旋转磁束坐标系统表示的矢量控制而控制电动机的旋转,在两相旋转磁束坐标系统中,电动机旋转的方向用作q轴,与电动旋转方向垂直的方向用作d轴。
辅助控制装置在当传感器故障判定装置判定旋转角度传感器已经发生故障时和当传感器故障判定装置判定旋转角度传感器没有故障时两种情况下改变使电动机产生转向辅助扭矩的控制方式。因此,可以通过无传感器控制驱动电动机,并且此外增强电动转向设备的可靠性。
辅助控制装置可以包括辅助停止装置,用于当传感器故障判定装置判定旋转角度传感器已经发生故障时,如果辅助控制装置判定电动机的旋转角速度低于预定值,则辅助停止装置停止转向辅助扭矩的产生。
利用这样构造的电动转向设备,当判定旋转角度传感器已经发生故障时,基于与由旋转角度估计装置估计的旋转角度有关的信息控制电动机的旋转。如果判定电动机的旋转角速度低于预定值,则辅助停止装置停止转向辅助扭矩的产生。当使用电动机的凸极性估计电动机的旋转角度时,如果电动机的旋转角速度较低,所估计的旋转角度与实际旋转角度的偏差较大。因此,根据上述构造,当电动机的旋转角速度低于预定值时,停止转向辅助扭矩的产生,使得不执行基于所估计的旋转角度的电动机控制。这在以相当低的速度驱动电动机的电动转向设备中尤其有效,这是因为所估计的旋转角度和实际旋转角度的偏差在这种电动转向设备中可能较大。结果,增强了电动转向设备的可靠性和安全性。电动机的旋转角速度是否低于预定值是基于例如由电动的旋转产生的反电动势电压的振幅的减小程度判定的。
辅助控制装置可以包括辅助扭矩减小装置,当传感器故障判定装置判定旋转角度传感器已经发生故障时,如果辅助控制装置判定电动机的旋转角速度低于预定值,则辅助扭矩减小装置根据旋转角速度的减小而减小由电动机产生的转向辅助扭矩。
利用这样构造的电动转向设备,当判定旋转角度传感器已经发生故障时,基于与由旋转角度估计装置估计的旋转角度有关的信息控制电动机的旋转。如果电动机的旋转角速度低于预定值,则辅助扭矩减小装置随着旋转角速度的减小而减小由电动机产生的转向辅助扭矩。即,当电动机的旋转角速度较低时(即,当所估计的旋转角度的可靠性较低时),转向辅助扭矩随着旋转角速度的减小而减小。因此,所估计的旋转角度与实际旋转角度的偏差对辅助扭矩的影响得到降低,因此,驾驶员感受到的不舒适感觉得到降低。优选地,随着旋转角速度减小,转向辅助扭矩逐渐减小。
电动转向设备还可以包括用于检测驾驶员方向盘的转向速度的转向速度检测装置。辅助控制装置基于由转向速度检测装置检测的信息判定电动机的旋转角速度是否低于预定值。
利用这样构造的电动转向设备,转向速度检测装置检测驾驶员方向盘的转向速度。因为驾驶员方向盘和电动机由转向机构彼此连接,电动机的转向速度和旋转角速度彼此成比例。因此,电动机的旋转角速度是否低于预定值是基于由转向速度检测装置检测的信息来判定。结果,可以准确地判定电动机的旋转角速度是否低于预定值,这提高了电动转向设备的可靠性和安全性。
例如,转向速度检测装置可以包括检测驾驶员方向盘的转向角的转向角传感器。转向速度检测装置基于由转向角传感器检测的转向角随时间的变化(微分值)而计算驾驶员方向盘的转向速度。例如,可以使用分解器转向扭矩传感器来代替转向角传感器。分解器转向扭矩传感器包括设置在扭杆相应端处的解析传感器,并且基于由相应解析传感器检测的旋转角度之差确定转向扭矩。因此,基于由解析传感器检测的转向角随时间的变化(微分值)计算驾驶员方向盘的转向速度。
辅助控制装置可以包括脉动扭矩加入装置,当传感器故障判定装置判定旋转角度传感器已经发生故障时,脉动扭矩加入装置将脉动扭矩加入到由电动机产生的转向辅助扭矩。
利用这样构造的电动转向设备,当判定旋转角度传感器已经发生故障时,通过基于与由旋转角度估计装置估计的旋转角度有关的信息控制电动机的旋转来产生转向辅助扭矩。此时,脉动扭矩加入装置作用是将脉动扭矩加入转向辅助扭矩。例如,将新的目标转向辅助扭矩设定成通过将脉动扭矩加入到基于转向操作计算的目标转向辅助扭矩而获得的值。
因此,将脉动扭矩加入到转向辅助扭矩抑制了电动机的旋转角速度低于预定值的情况的发生。因此,提高了旋转角度估计装置估计的电动的旋转角度的准确性。优选地,加入到转向辅助扭矩的扭矩是高频脉动扭矩。
脉动扭矩是正弦波扭矩。
利用这样构造的电动转向设备,即使脉动加入到转向辅助扭矩,驾驶员方向盘的旋转角度平顺地改变,因此驾驶员不容易地感受到不舒适的感觉。正弦波扭矩是这样一种扭矩,即其波形(波形表示扭矩值随时间的变化)在横轴表示所经过的时间和纵轴表示扭矩值的曲线图中是正弦波形。
脉动扭矩是矩形波扭矩或者梯形波扭矩。
利用这样构造的电动转向设备,改变电动机旋转方向所需时间降低,并且电动机旋转角速度低于预定值的时段期间降低。此外,可以稳定电动机的旋转角速度。结果,进一步提高了由旋转角度估计装置获得的所估计值的准确性。另外,因为周期性的振动传递到驾驶员方向盘,所以很容易通知驾驶员故障状态正在继续。矩形波扭矩或者梯形波扭矩是这样一种扭矩,即其波形(波形表示扭矩值随时间的变化)在横轴表示所经过的时间和纵轴表示扭矩值的曲线图中是矩形波形或者梯形波形。
脉动扭矩的频率的值设定成使在电动机和驾驶员方向盘之间的传递函数增益等于或者低于预定值。
因脉动扭矩引起的振动到驾驶员方向盘的可传递性取决于脉动扭矩的频率。因此,根据上述构造,脉动扭矩的频率设定成电动机和驾驶员方向盘之间的传递函数增益等于或者低于预定值。因此,可以在将电动机的旋转角速度保持较高的值的同时防止扭矩变化和振动传递到驾驶员方向盘。使用正弦波脉动扭矩作为附加扭矩在降低驾驶员感受到的不舒适感觉方面尤其有效。
辅助控制装置可以包括目标辅助扭矩设定装置,目标辅助扭矩设定装置用于从扭矩传感器获取转向扭矩信息,其中扭矩传感器检测施加到驾驶员方向盘的转向扭矩,并且转向扭矩越高,目标辅助扭矩设定装置就将目标转向辅助扭矩的值设定得越高。当传感器故障判定装置判定旋转角度传感器已经发生故障时,如果由扭矩传感器检测的转向扭矩等于或者低于预定值,则脉动扭矩加入装置可以停止将脉动扭矩加入到转向辅助扭矩。
利用这样构造的电动装置设备,转向扭矩越高,目标辅助扭矩设定装置就将目标转向辅助扭矩的值设定得越高。另外,当扭矩传感器检测的转向扭矩等于或者低于预定值时,脉动扭矩加入装置工作以停止将脉动扭矩加入到转向辅助扭矩。即,当转向扭矩较低,因此目标转向扭矩设定为角度的值时,从人类工程学的角度,驾驶员容易地感受到扭矩波动。因此,在这情况下,停止将脉动扭矩加入到转向辅助扭矩以减小施加给驾驶员的不舒适感觉。例如,当使用在降低驾驶员感受到的不舒适感觉方面有效的正弦波附加扭矩时,当停止将附加扭矩加入到转向辅助扭矩时的施加到驾驶员方向盘的转向扭矩的阈值(预定值)优选是在1Nm至3Nm范围中的值。
当传感器故障判定装置判定旋转角度传感器已经发生故障,并且停止将脉动扭矩加入到转向辅助扭矩时,如果辅助控制装置判定电动机的旋转角速度低于预定值,则辅助控制装置可以停止转向辅助扭矩的产生。
当转向扭矩低于预定值并且停止将脉动扭矩加入到转向辅助扭矩时,电动机的旋转角速度较低的状态会继续。在这情况下,所估计的旋转角度与实际旋转角度的偏差较大。因此,根据上述构造,当电动机的旋转角速度低于预定值时,停止转向辅助扭矩的产生,使得不执行基于所估计的旋转角度的电动机控制。结果,提高了电动转向设备的可靠性和安全性。
目标辅助扭矩设定装置可以存储用来基于所检测的转向扭矩设定目标转向辅助扭矩的关系数据。关系数据可以包括故障时关系数据和正常时关系数据,当传感器故障判定装置判定旋转角度传感器已经发生故障时使用故障时关系数据,当传感器故障判定装置判定旋转角度传感器没有故障时使用正常时关系数据。故障时关系数据的辅助不工作区可以比正常时关系数据的辅助不工作区宽,在辅助不工作区中,目标转向辅助扭矩设定为零。
利用这样构造的电动转向设备,当判定旋转角度传感器已经发生故障时,如果转向扭矩低于预定值,则停止将脉动扭矩加入到转向辅助扭矩。进一步,在此状态下,如果电动机的旋转角速度低于预定值,则停止产生转向辅助扭矩。根据上述构造,目标辅助扭矩设定装置存储使转向扭矩和目标转向辅助扭矩彼此相关联的关系数据。目标辅助扭矩设定装置存储当判定旋转角度传感器已经发生故障时使用的关系数据和当判定旋转角度传感器没有故障时使用的关系数据。当判定旋转角度传感器已经发生故障时使用故障时关系数据。另一方面,当判定旋转角度传感器没有故障时使用正常时关系数据。
故障时关系数据的辅助不工作区比正常时关系数据的辅助不工作区宽,在该辅助不工作区中,目标转向辅助扭矩设定为零。即,在使转向扭矩和目标转向辅助扭矩彼此关联的关系数据中,在其中转向扭矩低于预定值的范围中将目标转向辅助扭矩设定为零。故障时关系数据的辅助不工作区的宽度比正常时关系数据的辅助不工作区的宽度要宽,在该辅助不工作区中,目标转向辅助扭矩设定为零。因此,当电动机的旋转角速度低于预定值,并且停止产生转向辅助扭矩时,不会发生转向扭矩的急剧变化,因此,驾驶员不会感受到不舒适的感觉。即,增大转向扭矩的不工作区的宽度使得可以当停止产生转向辅助扭矩时将目标转向辅助扭矩设定为零或者相当低的值。结果,防止了转向扭矩的急剧变化。
目标辅助扭矩设定装置可以存储用来基于所检测的转向扭矩设定目标转向辅助扭矩的关系数据。关系数据可以包括故障时关系数据和正常时关系数据,当传感器故障判定装置判定旋转角度传感器已经发生故障时使用故障时关系数据,当传感器故障判定装置判定旋转角度传感器没有故障时使用正常时关系数据。使用故障时关系数据设定的目标转向辅助扭矩可以小于使用正常时关系数据设定的目标转向辅助扭矩。
利用这样构造的电动转向设备,对应于给定的转向扭矩的目标转向辅助扭矩在当判定旋转角度传感器没有故障时和当判定旋转角度传感器已经发生故障时两种情况下变化。将当判定旋转角度传感器已经发生故障时使用的目标转向辅助扭矩设定成比当判定旋转角度传感器没有故障时使用的目标转向辅助扭矩低的值。因此,驾驶员能够通过比通常更重地感觉驾驶员方向盘转向操作而安全地识别故障状态在继续。
脉动扭矩加入装置可以随着目标转向辅助扭矩减小而减小脉动扭矩的振幅,并且随着目标转向辅助扭矩增大而增大脉动扭矩的振幅。
在这样构造的电动转向设备中,转向系统的刚度基于转向辅助扭矩而变化。弹性体(例如,扭杆)包括在布置在驾驶员方向盘和转向车轮之间的转向机构中。弹性体的扭转的程度随转向辅助扭矩而变化,因此转向系统的刚度发生了变化。例如,当施加较低转向辅助扭矩时,转向系统的刚度较低。另一方面,当施加较高转向辅助扭矩时,转向系统的刚度较高。因此,当设置将由电动机产生恒定大小的附加扭矩时,如果转向系统的刚度不适合,则不能实现将电动机旋转角速度保持等于或者高于预定值所需的振幅的增大。
利用本发明第一方面的电动转向设备,附加扭矩的振幅随着目标转向辅助扭矩增大而增大。因此,可以恒定地实现所需振幅的增大。结果,电动机的旋转角速度恒定地保持等于或者高于预定值。因此,可以提高由旋转角度估计装置获得的所估计的旋转角度的准确性。结果,提高了电动转向设备的可靠性和安全性。
电动转向设备还可以包括检测驾驶员方向盘的转向状态的转向传感器。辅助控制装置可以包括目标波形确定装置,其用于至少基于由转向传感器检测的转向状态确定加入到转向辅助扭矩的脉动扭矩的目标波形。
利用这样构造的电动转向设备,最佳扭矩加入到转向辅助扭矩,这是因为目标波形确定装置确定脉动扭矩的目标波形。例如,当需要将电动机的旋转角速度保持尽可能高时,使电动机的旋转角速度具有矩形波形。当需要保持电动机的旋转速度较高,同时需要抑制脉动扭矩传递到驾驶员时,使电动机的旋转角速度具有正弦波形。为了实现电动机的旋转角速度的目标波形,确定由电动机产生的脉动扭矩的目标波形(即,目标电流波形)。
例如,在此情况下,目标波形确定装置乐意基于转向系统模型确定目标波形。转向系统模型基于系统的刚度、系统的惯性、系统的质量、转向辅助扭矩等设定。例如,系统的刚度和转向辅助扭矩基于诸如转向角和转向扭矩的转向状态量和车辆速度的参数设定。因此,至少转向状态量用作参数,并且基于这些参数确定脉动扭矩的目标波形。结果,具有所需波形的脉动扭矩加入到转向辅助扭矩。
电动转向设备还可以包括可变刚度体,其设置在电动机的旋转轴和转向机构之间的连接部分处,并且可变刚度体在低扭矩范围中的刚度比在高扭矩范围中的刚度低,在低扭矩范围电动机产生较低的旋转扭矩,在高扭矩范围电动机产生较高的旋转扭矩。
通过将脉动扭矩加入到转向辅助扭矩而使电动机的旋转角速度保持等于或者高于预定值,由此,确保了所估计的旋转角度的准确性。然而,脉动扭矩会传递到驾驶员方向盘,因此驾驶员会感受到不舒适的感觉。因此,根据上述构造,可变刚度体设置在电动机的旋转轴和转向机构之间的连接部分处。可变刚度体在低扭矩范围中的刚度比在高扭矩范围中的刚度低。因此,脉动扭矩不容易传递到驾驶员方向盘。
一般地,当施加到驾驶员方向盘的转向扭矩较低时,驾驶员可能感受到扭矩波动。在这情况下,由电动机产生的转向辅助扭矩也较低。此时,设置在电动机的旋转轴和转向机构之间的连接部分处的可变刚度体的刚度也较低。因此,当脉动附加扭矩由电动机产生时,振动(电动机的脉动旋转)的产生不可能受到干涉,因此确保了电动机预定的旋转角速度。此外,因为振动被可变刚度体吸收,振动不容易向转向机构传递。
当有力地转动驾驶员方向盘时,需要较高的转向辅助扭矩,因此电动机产生较高的扭矩。在这情况下,因为设置在电动机的旋转轴和转向机构之间的连接部分处的可变刚度体的刚度较高,由电动机产生的旋转扭矩可靠地传递到转向机构,因此产生了适合的转向辅助扭矩。当转向扭矩较高时,驾驶员不容易感受到因脉动扭矩引起的扭矩波动。因此,驾驶员不容易感受到不舒适感觉。
电动转向设备还可以包括刚度特性改变装置,其用于选择性地改变电动机的旋转轴和转向机构之间的连接部分的刚度特性。刚度特性改变装置在第一刚度特性和第二刚度特性之间改变刚度特性。基于第一刚度特性,在低扭矩范围中的刚度低于在高扭矩范围中的刚度,在低扭矩范围电动机产生较低的旋转扭矩,在高扭矩范围电动机产生较高的旋转扭矩。基于第二刚度特性,在低扭矩范围和高扭矩范围中达到的刚度都实质上等于基于第一刚度特性的高扭矩范围中的刚度。当传感器故障判定装置判定旋转角度传感器已经发生故障时,刚度特性改变装置可以选择第一刚度特性,并且当传感器故障判定装置判定旋转角度传感器没有故障时,刚度特性改变装置可以选择第二刚度特性。
利用这样构造的电动转向设备,电动机的旋转轴和转向机构之间的连接部分的刚度特性由刚度特性改变装置在当判定旋转角度传感器已经发生故障时和当判定旋转角度传感器没有故障时两种情况下改变。当判定旋转角度传感器已经发生故障时,选择第一刚度特性。当选择第一刚度特性时,电动机的旋转轴和转向机构之间的连接部分的刚度在当转向辅助扭矩较低时和当转向辅助扭矩较高时两种情况下改变。
当转向辅助扭矩较低时,电动机的旋转轴和转向机构之间的连接部分的刚度较低。因此,当电动机产生脉动附加扭矩,振动的产生(电动的脉动旋转)不可能受到妨碍,因此确保电动机的预定的旋转角速度。此外,因为振动被具有低刚度的连接部分吸收,所以振动不容易朝转向机构传递。因此,可以确保电动机预定的旋转角速度,并且抑制振动传递到驾驶员方向盘。
当转向辅助扭矩较高时,因为电动机的旋转轴和转向机构之间的连接部分的刚度较高,由电动机产生的旋转扭矩可靠地传递到转向机构,因此产生了适合的转向辅助扭矩。当转向扭矩较高时,驾驶员不容易感受到由于脉动扭矩引起的扭矩波动。结果,驾驶员不容易感受到不舒适的感觉。
当判定旋转角度传感器没有故障时,选择第二刚度特性。因为电动机的旋转轴和转向机构的连接部分的刚度较高,由电动机产生的旋转扭矩可靠地传递到转向机构,因此产生了适合的转向辅助扭矩。当判定旋转角度传感器没有故障时,电动机不产生脉动附加扭矩。因此,由于附加扭矩引起的振动不传递到驾驶员方向盘。
电动转向设备可以进一步包括传动比改变装置,其改变转向传动比,该转向传动比是驾驶员方向盘的转向角与转向车轮的转向角的比率;和传动比控制装置,其用于控制传动比改变装置,并且使电动机的旋转变化和脉动扭矩的变化彼此同步,使得加入到转向辅助扭矩的脉动扭矩不传递到驾驶员方向盘。
利用这样构造的电动转向设备,传动比控制装置控制传动比改变装置,并使电动机的旋转变化和脉动扭矩的变化彼此同步,使得加入到转向辅助扭矩的脉动扭矩不传递到驾驶员方向盘。因此,可以确保电动机预定的旋转角速度,并且抑制振动传递到驾驶员方向盘。例如,传动比改变装置装配到连接到驾驶员方向盘的转向轴,并且调节转向轴的输出旋转角度和驾驶员方向盘的输入旋转角度之间的比率。
本发明第二方面涉及一种电动转向设备,其包括转向机构,其响应于驾驶员方向盘的转向操作而使转向车轮转向;电动机,其装配到转向机构,并产生用来辅助驾驶员方向盘的转向操作的转向辅助扭矩,并且由凸极型永磁电动机形成;旋转角度信息获取装置,用于获取与电动机的旋转角度有关的信息;电动机控制装置,用于基于由旋转角度信息获取装置获得的与旋转角度有关的信息控制电动机的旋转;辅助控制装置,用于基于驾驶员方向盘的转向操作计算目标转向辅助扭矩,并且用于向电动机控制装置提供向电动机供电的指令,以使电动机基于所计算的目标转向辅助扭矩产生转向辅助扭矩。旋转角度信息获取装置包括旋转角度估计装置,其用于至少利用电动机的凸极性估计电动机的旋转角度。辅助控制装置在当电动机的旋转角速度低于预定值时和当电动机的旋转角速度等于或者高于预定值时两种情况下改变使电动机产生转向辅助扭矩的控制方式。
在这样构造的电动转向设备中,提供一种使用电动机的凸极性估计电动机的旋转角度的旋转角度估计装置。电动机控制装置基于与所估计的旋转角度有关的信息控制电动机的旋转。辅助控制装置基于驾驶员方向盘的转向操作计算目标转向辅助扭矩,并且基于所计算的目标转向辅助扭矩向电动机控制装置提供向电动机供电的指令,以使电动机产生转向辅助扭矩。
当使用电动机的凸极性估计电动机的旋转角度时,如果电动机的旋转角速度较低,所估计的旋转角度与实际旋转角度的偏差较大。因此,根据上述构造,使电动机产生转向辅助扭矩的控制方式在电动机的旋转角速度度于预定值时和电动机的旋转角速度等于或者高于预定值时两种情况下改变。因此,通过无传感器控制驱动电动机,因此提高了电动转向设备的可靠性。
辅助控制装置包括辅助停止装置,其用于当电动机的旋转角速度低于预定值时,辅助停止装置停止转向辅助扭矩的产生。
利用这样构造的电动转向设备,当电动机的旋转角度低于预定值时,辅助停止装置停止产生转向辅助扭矩。当使用电动机的凸极性估计电动机的旋转角度时,如果电动机的旋转角速度较低,所估计的旋转角速度与实际旋转角度的偏差较大。因此,当电动机的旋转角速度低于预定值时,停止产生转向辅助扭矩,使得没有执行基于所估计的旋转角度的电动机控制。这在以相当低的速度驱动电动机的电动转向设备尤其有效,这是因为所估计的旋转角度和实际旋转角度的偏差在这种电动转向设备中可能较大。结果,提高了电动转向设备的可靠性和安全性。基于例如电动机的旋转产生的反电动势电压的振幅的减小的程度判定电动机的旋转角速度是否低于预定值。
辅助控制装置可以包括辅助扭矩减小装置,当判定电动机的旋转角速度低于预定值时,辅助扭矩减小装置根据旋转角速度的减小而减小由电动机产生的转向辅助扭矩。
利用这样构成的电动转向设备,当电动机的旋转角速度低于预定值时,辅助扭矩减小装置随着旋转角速度的减小而减小由电动机产生的转向辅助扭矩。即,当电动机的旋转角速度较低时(即,当所估计的旋转角度的可靠性较低时),转向辅助扭矩随着旋转角速度减小而减小。因此,所估计的旋转角度与实际旋转角度对辅助扭矩的偏差降低,驾驶员感受到的不舒适感觉降低。优选地,转向辅助扭矩随着旋转角速度减小而减小。
附图说明
参照附图,从以下对示例性实施例的描述中本发明的前述和其它目的发、特征和优点将变得明显,其中,相同或者相应的部分将用相同的参考标号表示,其中:
图1是示意性示出根据发明每个实施例的电动转向设备的视图;
图2是示出了根据本发明第一实施例的电动转向设备的功能构造的框图;
图3是示出根据本发明第二实施例的电子控制单元的功能构造的框图;
图4是示出根据本发明第三实施例的电子控制单元的功能构造的框图;
图5是示出根据本发明第四和第十二实施例的每个的电子控制单元的功能构造的框图。
图6是示出根据本发明第五实施例的电子控制单元的功能构造的框图;
图7是示出根据本发明第六实施例的电子控制单元的功能构造的框图;
图8是示出根据本发明第七实施例的电子控制单元的功能构造的框图;
图9是示出根据本发明第八实施例的电子控制单元的功能构造的框图;
图10是示出根据本发明第九实施例的电子控制单元的功能构造的框图;
图11是示出根据本发明第十实施例的电子控制单元的功能构造的框图;
图12是示出根据本发明第一实施例,动力辅助随转向状态的开/关状态的曲线图;
图13是示出根据本发明第一实施例,所估计的旋转角度与实际旋转角度的偏差和电动机旋转角速度之间的关系的曲线图;
图14是示出根据本发明第一实施例,电动机旋转角速度和反电动势电压的振幅之间的关系的曲线图;
图15A至图15D图示的曲线图每个示出了根据本发明第二实施例电动机旋转角速度和校正增益K1x之间的关系;
图16是示出根据本发明第三实施例所估计的旋转角度和实际旋转角度的偏差和电动机旋转角速度之间的关系的曲线图;
图17是示出根据本发明第四实施例正弦波扭矩随时间的变化的曲线图;
图18是示出根据本发明第四实施例正弦波扭矩的频率和传递到驾驶员方向盘的振动的振幅之间的关系的曲线图;
图19A和图19B图示的曲线图的每个示出了根据本发明第五实施例转向扭矩和扭矩加入增益K2x之间的关系;
图20A和20B图示的曲线图的每个示出了根据本发明第六实施例的辅助映射图;
图21图示了示出根据本发明第七实施例矩形波扭矩、电动机旋转角度和电动机旋转角速度随时间变化的曲线图;
图22是示出了根据本发明第七实施例梯形波扭矩随时间变化的曲线图;
图23A至23D图示的曲线图的每个示出了根据本发明第八实施例的辅助扭矩和扭矩加入增益K3x之间的关系;
图24A和图24B图示的曲线图示出了根据本发明第九实施例的目标旋转角速度和电动机扭矩随时间变化;
图25是示意性地示出根据本发明第十实施例的电动转向设备的转向机构的机构的视图;
图26是示出了根据本发明第十实施例的差动角控制例程的流程图;
图27图示了示出根据本发明第十实施例的附加扭矩、电动机旋转角度、目标差动角和施加到驾驶员方向盘的扭矩随时间变化的曲线图;
图28是示意性地示出根据本发明第十一实施例的电动转向设备的转向机构的结构的视图;
图29是根据本发明第十一实施例,沿着轴向延伸的平面所取的连接器的横截面视图;
图30A和图30B图示了根据本发明第十一实施例,沿着图29中的线A-A所取的连接器的横截面视图;
图31是示出根据本发明第十一实施例的刚度特性的曲线图;
图32是示意性示出根据本发明第十二实施例的减速机构的结构的视图;
图33A和图33B图示的视图每个示出了根据本发明第十二实施例的刚度特性;
图34A和图34B图示的曲线图每个示出了根据本发明第十二实施例的刚度特性;
图35是示出了根据本发明每个实施例的辅助映射图的曲线图;
图36是示出了根据本发明的每个实施例,电动机速度和第一参数之间的关系的曲线图;
图37是示出了根据本发明的每个实施例,q轴指令电压和第二参数之间的关系的曲线图;
图38是示出了根据本发明每个实施例,q轴实际电流和第三参数之间关系的曲线图;和
图39是示出了根据本发明每个实施例,d轴电流和校正系数α之间关系的曲线图。
具体实施方式
以下,参照附图,描述本发明每个实施例的用于车辆的电动转向设备。图1是示意性示出根据本发明第一实施例的用于车辆的电动转向设备的视图。
用于车辆的电动转向设备主要包括转向机构10、电动机15和电子控制单元30,其中,转向机构10响应于驾驶员方向盘11的转动操作而使车辆的转向车轮转向,电动机15装配到转向机构10,并且产生转向辅助扭矩,电子控制单元30响应于驾驶员方向盘11的转动操作控制电动机15的操作。
电动转向设备包括转向轴12,该转向轴12的上端连接到驾驶员方向盘11,以与驾驶员方向盘11一起旋转。小齿轮13连接到转向轴12的下端以与转向轴12一起旋转。小齿轮13与形成在齿条14中的齿条齿啮合,由此形成了齿条小齿轮机构。左前轮FW1和右前轮FW2经由拉杆9(未示出)和转向节臂(未示出)连接到齿条14的相应端,使得前轮FW1和FW2能够转向。左前轮FW1和右前轮FW2根据齿条14的轴向运动而顺时针或者逆时针方向转向,齿条14的轴向运动是由转向轴12绕其轴线旋转而引起的。因此,驾驶员方向盘11、转向轴12、齿条小齿轮机构13、14、拉杆、转向节臂等构成转向机构10。
用来辅助驾驶员方向盘11的转动操作的电动机15装配到齿条14。电动机15由作为凸极型三相永磁电动机的无刷电动机形成。电动机15的旋转轴经由滚珠丝杆机构16连接到齿条14,使得动力从电动机15传递到齿条14。电动机15的旋转轴的旋转辅助左前轮FW1和右前轮FW2的转向操作。滚珠丝杆机构16用作减速器和旋转直线运动的转换器。滚珠丝杆机构16降低从电动机15传递的旋转速度,将电动机15的旋转运动转换成直线运动,然后将直线运动传递到齿条14。电动机15可以装配到转向轴12,而不是装配到齿条14。然后,电动机15的旋转可以经由减速器传递到转向轴12以驱动转向轴12,从而使转向轴12绕其轴线旋转。
转向扭矩传感器21装配到转向轴12。转向扭矩传感器21包括扭杆21c和解析传感器21a和21b,扭杆21c的上端连接到转向轴12的上部分,扭杆21c的下端连接到转向轴12的下部分,解析传感器21a和21b分别装配到扭杆21c的上端和下端。解析传感器21a和21b检测扭杆21c的上端和下端的旋转角度,然后输出表示所检测的旋转角度的信号。当驾驶员方向盘11转动时,转向扭矩施加到转向轴12,由此扭杆21c扭转。
转向扭矩传感器21输出表示由两个解析传感器21a和21b检测的对应于扭杆21c的扭转角度的旋转角度的信号。因此,基于从转向扭矩传感器21输出的信号检测对应于扭杆21c的扭转角度的转向扭矩。在本说明书中,从转向扭矩传感器21输出的信号用作表示转向扭矩Th的信号。转向扭矩Th是正值时表示驾驶员方向盘11顺时针转动时产生的转向扭矩的大小。转向扭矩Th是负值时表示驾驶员方向盘11逆时针转动时产生的转向扭矩的大小。转向扭矩传感器21可以装配到齿条14,而不是装配到转向轴12。可以基于齿条14沿着轴向运动的量检测转向扭矩。
电动机15设置有旋转角度传感器23。旋转角度传感器23嵌入电动机15中,并且输出对应于电动机15的转子的旋转角度位置的检测信号。旋转角度传感器23由例如解析传感器形成。来自旋转角度传感器23的检测信号用来计算电动机15的旋转角度θm和旋转角速度ωm。电动机15的旋转角度θm与驾驶员方向盘11的转向角成比例。因此,旋转角度θm在本说明书中也用作驾驶员方向盘11的转向角。另外,电动机15的旋转角速度ωm与驾驶员方向盘11的转向角速度成比例。因此,在本说明书中,电动机15的旋转角速度ωm也用作驾驶员方向盘11的转向角速度。
接着,将描述控制电动机15操作的电子控制单元30。电子控制单元30主要由包括CPU、ROM、RAM等的微计算机形成,并且包括用于电动机15的驱动电路。电子控制单元30从都连接到电子控制单元30的转向扭矩传感器21、旋转角度传感器23和车辆速度传感器22接收检测信号。车辆速度传感器22输出表示车辆运动速度的车辆速度信号V。
接着,将详细地描述本发明第一实施例的电子控制单元30。图2是示出电子控制单元30全部的框图,该电子控制单元30包括通过执行程序来实现的微计算机功能块。电子控制单元30通过执行由两相旋转磁束坐标系统(其中,电动机15旋转的方向用作q轴,而与电动机15旋转方向垂直的方向用作d轴)表示的矢量控制控制电动15的旋转。换言之,d轴表示由电动机15的永久磁体所形成的磁场延伸的方向,而q轴表示与磁场延伸方向垂直的方向(即,施加电动机15产生的扭矩的方向)。
电子控制单元30在两种控制下切换控制模式,这两种控制是当检测到检测电动机15的旋转角度的旋转角度传感器23没有故障时执行的控制和当检测到旋转角度传感器23存在故障时执行的控制。首先,将描述检测到没有故障时执行的功能构造。然后,将描述检测到故障时执行的附加功能构造。
电子控制单元30包括基本辅助扭矩计算单元31和补偿值计算单元32。基本辅助扭矩计算单元31存储基本辅助映射图,如图35所示,该基本辅助映射图用来基于转向扭矩Th和车辆速度V设定基本辅助扭矩Tas。基本辅助扭矩计算单元31从转向扭矩传感器21接收与转向扭矩Th有关的信息,从车辆速度传感器22接收与车辆速度V有关的信息,然后参照基本辅助映射图计算基本辅助扭矩Tas。在此情况下,基本辅助扭矩Tas随着转向扭矩Th增大而增大,并且随着车辆速度V增大而减小。在本发明的第一实施例中,基本辅助扭矩Tas参照基本辅助映射图计算。可选地,可以准备定义基本辅助扭矩Tas随转向扭矩Th和车辆速度V变化的函数,然后使用该函数计算基本辅助扭矩Tas。
补偿值计算单元32接收表示电动机15的旋转角度θm(对应于驾驶员方向盘11的转向角)和电动机15的旋转角速度ωm(对应于驾驶员方向盘11的转向角速度)的信号,以及表示车辆速度V的信号,然后计算对应于基本辅助扭矩Tas的补偿值Trt。即,基本上,补偿值计算单元32通过将使转向轴12回到基准位置的力(其与转向角成比例增大)和对应于抵抗转向轴12旋转的阻力的回位扭矩(其与转向角速度成比例增大)相加来计算补偿值Trt。补偿值Trt随着车辆速度V增大而增大。
表示基本辅助扭矩Tas和补偿值Trt的信号传输到计算单元33。计算单元33将基本辅助扭矩Tas和补偿值Trt相加,然后将表示相加结果的目标指令扭矩T*的信号传输到q轴目标电流计算单元34。因此,在本发明第一实施例中,基本辅助扭矩计算单元31、补偿值计算单元32和计算单元33构成本发明的目标辅助扭矩设定装置。
q轴目标电流计算单元34计算与目标指令扭矩T*成比例的q轴目标电流Iq*。q轴目标电流Iq*是在由两相旋转磁束坐标系统表示的矢量控制中的q轴分量电流,并且用来控制由电动机15产生的旋转扭矩的大小。
电子控制单元30包括磁场减弱控制参数计算单元35,该磁场减弱控制参数计算单元35是与用于实现电动机15更紧凑、更高动力输出和更高性能的磁场减弱控制有关。磁场减弱控制参数计算单元35接收表示电动机15的旋转角速度ωm、用于电动机15的q轴指令电压Vq*’和电动机15的q轴实际电流Iq的信号,然后分别使用第一、第二和第三参数映射图计算对应于旋转角速度ωm、q轴指令电压Vq*’和q轴实际电流Iq计算第一参数Cw、第二参数Cq和第三参数Ci。表示第一到第三参数Cw、Cq和Ci的信号传输到d轴目标电流计算单元36。d轴目标电流计算单元36将第一至第三参数Cw、Cq和Ci乘以正效率k以计算d轴目标电流Id*(=k×Cw×Cq×Ci)。d轴目标电流Id*是在由两相旋转磁束坐标系统表示的矢量控制中的d轴线分量电流,并且用来减弱电动机15的磁场大小。
接着,将描述第一至第三参数Cw、Cq和Ci。如图36中的曲线图所示,第一参数映射图存储第一参数Cw,该第一参数Cw在电动机15的旋转角速度ωm较低时为0,并在电动机的旋转角速度ωm较高时为大致恒定的正值。换言之,第一参数映射图存储的第一参数Cw在电动机旋转角速度ωm达到预定的值之前增大。因此,基于该特性设定的第一参数Cw表示当电动机15的电动机速度较高时磁场减弱电流变高,并且改变电动机15的特性,使得更高的优选级给予电动机速度而没有给予输出扭矩。另外,第一参数Cw设定成当电动机15的电动机速度较低(即,当驾驶员方向盘11逐渐转动时),防止不需要的磁场减弱电流流动。
如图37中的曲线图所示,第二参数映射图存储第二参数Cq,该第二参数Cq在电动机15的q轴指令电压Vq*’较低时为0,并在q轴指令电压Vq*’较高时为大致恒定的正值。换言之,第二参数映射图存储的第二参数Cq在q轴指令电压Vq*’达到预定的值之前增大。较高的q轴指令电压Vq*’表示下文详述的q轴指令电流ΔIq较高(即,电动机15的实际q轴电流Iq与q轴目标电流Iq*’(q轴校正目标电流Iq*’)的偏差较大)。随着偏差增大,电动机15的磁场减弱电流增大。第二参数Cq设定成当在车辆行驶的同时驾驶员方向盘11逐渐和微小地转动时,如果偏差较大则通过执行磁场减弱控制而增大电动机15的电动机速度,并且当偏差较小时,防止不需要的磁场减弱电流流动。
如图38中的曲线图所示,第三参数映射图存储第三参数Ci,该第三参数Ci在q轴实际电流Iq较低时为大致恒定的正值,并在q轴实际电流Iq较高时为0。换言之,第三参数映射图存储的第三参数Ci在q轴实际电流Iq达到预定的值之后随着q轴实际电流Iq增大而减小。第三参数Ci设定成防止这样的情况,即当电动机15的旋转角速度ωm较高时,如果驾驶员方向盘转动更快,则由于电动机15产生的转向辅助扭矩减小,需要更高转向扭矩施加到驾驶员方向盘11。在本发明第一实施例中,使用第一至第三参数映射图分别计算第一至第三参数Cw、Cq和Ci。代替使用这些参数映射图,可以准备分别定义第一至第三参数Cw、Cq和Ci随电动机旋转角速度ωm、q轴指令电压Vq*’和q轴实际电流Iq变化的函数,然后使用这些函数计算第一至第三参数Cw、Cq和Ci。
表示所计算的q轴目标电流Iq*和d轴目标电流Id*的信号传输到q轴目标电流校正计算单元37。q轴目标电流校正计算单元37从q轴目标电流计算单元34接收表示q轴目标电流Iq*的信号,从d轴目标电流计算单元36接收表示d轴目标电流Id*的信号。然后,q轴目标电流校正计算单元37参照图39所示的校正系数映射图计算对应于d轴目标电流Id*的校正系数α,然后通过将q轴目标电流Iq*除以校正系数α(Iq*’=Iq*/α)计算q轴校正目标电流Iq*。然后,q轴目标电流校正计算单元37将表示作为相除结果的q轴校正目标电流Iq*的信号传输到计算单元38。
校正系数映射图存储在q轴目标电流校正计算单元37。校正系数映射图存储的校正系数α是正值,并且随着d轴目标电流Id*增大而减小。因此,随着d轴目标电流Id*增大,通过校正q轴目标电流Iq*获得的q轴校正目标电流Iq*’增大。在本发明第一实施例中,使用校正系数映射图计算校正系数α。代替使用校正系数映射图,可以准备定义为校正系数α随d轴目标电流Id*变化的函数,然后使用该函数计算校正系数α。
计算单元38从q轴校正目标电流Iq*’减去q轴实际电流Iq,然后将表示相减结果(即,q轴指令电流ΔIq)的信号传输到比例积分控制单元(PI控制单元)41。计算单元39从d轴目标电流Id*减去d轴实际电流Id,然后将表示相减结果(即,d轴指令电流ΔId)的信号传输到比例积分控制单元(PI控制单元)42。比例积分控制单元41和42基于q轴指令电流ΔIq和d轴指令电流ΔId计算q轴指令电压Vq*和d轴指令电压Vd*,使得q轴实际电流Iq和d轴实际电流Id分别变得大致等于q轴校正目标电流Iq*’和d轴目标电流Id*’。
由比例积分控制单元41计算的q轴指令电压Vq*和由比例积分控制单元42计算的d轴指令电压Vd*被非干涉校正值计算单元43、计算单元44和计算单元45校正为q轴校正指令电压Vq*’和d轴校正指令电压Vd*’。然后,表示q轴校正指令电压Vq*’和d轴校正指令电压Vd*’的信号传输到两相/三相坐标转换单元46。非干涉校正值计算单元43基于q轴实际电流Iq、d轴实际电流Id和电动机旋转角速度ωm计算用于q轴指令电压Vq*和d轴指令电压Vd*的非干涉校正值-ωm×(φa+La×Id)和非干涉校正值ωm×La×Id。感应系数La和磁束Φa预先设定为常数。
计算单元44和45通过分别从q轴指令电压Vq*和d轴指令电压Vd*减去非干涉校正值-ωm×(φa+La×Id)和非干涉校正值ωm×La×Id计算q轴校正指令电压Vq*’(=Vq*+ωm×(φa+La×Id))和d轴校正指令电压Vd*’(=Vd*-ωm×La×Id)。
两相/三相坐标转换单元46将q轴校正指令电压Vq*’和q轴校正指令电压Vd*’转换成三相指令电压Vu*、Vv*和Vw*,然后将表示三相指令电压Vu*、Vv*和Vw*的信号传输到PWM电压产生单元47。PWM电压产生单元47分别将对应于三相指令电压Vu*、Vv*和Vw*的PWM控制电压信号UU、VU和WV传输到逆变器电路48。逆变器电路48分别产生对应于PWM控制电压信号UU、VU和WV的三相励磁电压Vu、Vv和Vw,然后将励磁电压Vu、Vv和Vw通过三相励磁电流路径施加到电动机15。
电流传感器51和52设置在三相励磁电流路径中的相应两个励磁电流路径上。电流传感器51和52检测用于电动机15的三相励磁电流Iu、Iv和Iw中的相应的两个励磁电流Iu和Iw,然后将表示励磁电流Iu和Iw的信号传输到三相/两相坐标转换单元53。表示由计算单元54基于实际电流Iu和Iw计算的励磁电流Iv的信号也传输到三相/两相坐标转换单元53。三相/两相坐标转换单元53将三相实际电流Iu、Iv和Iw转换成两相实际电流Id和Iq。
来自旋转角度传感器23的信号传输到旋转角度转换单元55和故障判定单元61。用作旋转角度传感器23的解析传感器包括与电动机15的转子一起旋转的分解器转子(未示出)和固定到电动机壳体的分解器转子。初级线圈是装配到分解器转子的励磁线圈,次级线圈由彼此相位相差π/2的成对的检测线圈形成,并且装配到分解器转子。通过使用正弦波信号激发次级线圈使次级线圈输出两个相应类型感应电压。旋转角度转换单元55基于从旋转角度传感器23输出的感应电压信号计算电动机旋转角度(电气角度θ)。旋转角度转换单元55将表示旋转角度θma的信号(即,表示与电动机旋转角度有关的信息信号)传输到旋转角度选择单元60。
在解析传感器中,在线圈中会发生断线或者绝缘不良。因此,故障判定单元61监视从旋转角度传感器23输出的信号的振幅。当振幅在预先设定的允许范围以外时,故障判定单元61判定在旋转角度传感器23中已经发生故障,然后输出传感器故障信号“失效”。另外,故障判定单元61通过将来自解析传感器的成对次级线圈的感应电压信号互相比较来判定在旋转角度传感器23中是否已经发生故障。当从次级线圈输出的两个检测信号相矛盾时(例如,当正弦波信号从其中一个次级线圈输出而表示恒定值的信号从另一次级线圈输出时),故障判定单元61输出传感器故障信号“失效”。
传感器故障信号“失效”传输到旋转角度选择单元60和旋转角度估计单元62。旋转角度选择单元60输出与用来控制电动机15旋转的电动机旋转角度(电气角度)有关的信息。旋转角度选择单元60接收表示从旋转角度转换单元55输出的所检测的电动机旋转角度θma和从旋转角度估计单元62输出的所估计的电动机旋转角度θmb的信号,根据是否存在传感器故障信号“失效”选择电动机旋转角度θma和θmb中一者,然后输出表示所选择的电动机旋转角度θma或者θmb作为电动机旋转角度θm。即,当旋转角度选择单元60还没有从故障判定单元61接收到传感器故障信号“失效”时,旋转角度选择单元60输出表示所检测的电动机旋转角度θma的信号,该所检测的电动机旋转角度θma是从旋转角度转换单元55接收的,并且用作电动机旋转角度θm。另一方面,当旋转角度选择单元60已经收到传感器故障信号“失效”时,旋转角度选择单元60输出表示所估计的电动机旋转角度θmb的信号,该所检测的电动机旋转角度θmb是从旋转角度估计单元62接收的,并且用作电动机旋转角度θm。
当旋转角度估计单元62已经从故障判定单元61接收到传感器故障信号“失效”时,旋转角度估计单元62使用电动机的凸极性而没有使用旋转角度传感器23估计电动机旋转角度。有各种不使用传感器估计电动机旋转角度(电气角度)的方法。不使用传感器计算旋转角度的方法的示例将描述如下。例如,当电动机在等于或者高于预定速度的速度下工作时,由以下电压方程式1和2计算旋转角度。
Vd-R×Id-p(Ld×Id)+ω×Lq×Iq=0方程式1
Vd-R×Iq-p(Lq×Iq)-ω×Ld×Id-E=0方程式2
在以上方程式中,“V”表示施加到电动机的电压值,“I”表示流经电动机线圈的电流值,“L”表示线圈的感应系数。附于“V”、“T”和“L”的下标“d”和“q”表示相应值是沿着电动机所谓的d轴方向和q轴方向的值。关于上述方程式中的其它参数,“R”表示电动机线圈电阻,“ω”表示电动机的电气旋转角速度,并且“E”表示由电动机旋转产生的反电动势电压。电动机的电气角速度ω是通过将电动机的机械角速度乘以极对数(pole logarithm)获得的值。“P”是时间微分运算子(换言之,p(Ld×Id)=d(Ld×Id)/dt)。
电压方程式1和2是关于d轴和q轴恒定成立的。当没有使用传感器控制电动机时,电动机控制单元首先基于所估计的旋转角度θc来解该方程式。此时,在计算结果中产生了对应于估计旋转角度θ和实际旋转角度θ的偏差Δθ的计算误差。即,当使用算出的电流值和电压值来解以上方程式1和2时,以上电压方程式1和2的答案(每个应该为0)变成非0的值。此时的旋转角度通过考虑误差对之前计算时的旋转角度进行校正来计算得到,该误差是此时在使用电压值、电流值等来解电压方程式1和2的过程中产生的。
以下将描述计算旋转角度的方法具体示例。通过在以上电压方程式1和2中用时间微分(d/dt)代替时间差(变化量/时间)来设定以下方程式3至5。
ΔId=Id(n)-Idm=Id(n)-Id(n-1)-t(Vd-R×Id+ω×Lq×Iq)/Ld
方程式3
ΔIq=Iq(n)-Iqm=Iq(n)-Iq(n-1)-t(Vq-R×Iq+ω×Ld×Id-E
(n-1))/Lq                方程式4
E(n)=E(n-1)-k1×ΔIq    方程式5
在以上方程式中,“Id”和“Iq”分别表示在d轴方向和q轴方向流动的电流(即,磁化电流和扭矩电流);“Ld”和“Lq”分别表示d轴方向和q轴方向的感应系数;“Vd”和“Vq”表示施加到线圈的电压值。假定以预定的间隔周期性地执行以上方程式,则下标(n)等附于这些参数。下标(n)表示该值是在此时获得的,下标(n-1)表示该值是在前次计算时获得的。“Idm”和“Iqm”分别表示磁化电流和扭矩电流的标准值(即,假定所估计的旋转角度是正确而根据电压方程式获得的电流理论值)。“k1”是用来使反电动势电压E(n)、E(n-1)和ΔIq彼此相关联并且计算旋转角度的常数。“k1”由实验设定。方程式在方程式中以时间间隔“t”执行。
通过电动机的旋转产生的反电动势电压E(n)(其由方程式5计算)与电动机旋转角速度ω成比例。因此,电动机旋转角速度ω由以下方程式6表示。
ω=k2×E(n)方程式6
电动机旋转角度θ(n)通过使用电动机旋转角速度ω由以下方程式7表示。
θ(n)=k3×θ(n-1)×ω方程式7
因此,电动机旋转角度θ(n)通过使用反电动势电压E(n)由以下方程式8表示。
θ(n)=k×θ(n-1)×E(n)方程式8
由方程式5计算的值可以用作方程式8中的反电动势电压E(n)。“k”(=k2×k3)是由实验获得的比例常数。因为各种不使用传感器检测旋转角度的其它方法,可以采用任何方法。
将再描述图2的功能框图。旋转角度选择单元60将表示旋转角度θm(其是关于所选择的电动机旋转角度的信息)的信号传输到角速度转换单元56、两相/三相坐标转换单元47、三相/两相坐标转换单元53和补偿值计算单元32。角速度转换单元56对旋转角度θm进行微分,以计算转子相对于定子的旋转角速度ωm。如果判定旋转角度传感器23中已经发生故障,则当旋转角度估计单元62估计旋转角度时,角速度转换单元56实际上使用基于反电动势电压E计算的电动机旋转角度速度。表示电动机旋转角速度ωm的信号传输到磁场减弱控制参数计算单元35、补偿值计算单元32和非干涉校正值计算单元43等,然后这些单元使用电动机旋转角速度ωm。
接着,将描述本发明第一实施例的电动转向设备的操作。由驾驶员执行的驾驶员方向盘11的转动操作经由转向轴12和小齿轮13传递到齿条14,然后使齿条14沿着轴向运动,由此左前轮FW1和右前轮FW2转向。此时,转向扭矩传感器21检测施加到转向轴12的转向扭矩Th。电子控制单元30在电动机15上执行伺服控制,由此电动机15使用对应于执行扭矩Th的辅助扭矩驱动齿条14。结果,左前轮FW1和右前轮FW2在电动机15产生的驱动力的辅助下转向。
在由电子控制单元30执行的伺服控制中,基本辅助扭矩计算单元31、补偿值计算单元32和计算单元33基于所检测的转向扭矩Th、车辆速度V、电动机15的旋转角度θm(对应于驾驶员方向盘11的转向角)和电动机15的转向角速度ωm(对应于驾驶员方向盘11的转向角速度)计算目标指令扭矩T*。此外,q轴目标电流计算单元34基于目标指令扭矩T*计算q轴目标电流Iq*。进一步,d轴目标电流计算单元36使用第一至第三参数Cw、Cq和Ci计算d轴目标电流Iq*,该第一至第三参数Cw、Cq和Ci是由磁场减弱控制参数计算单元35基于电动机旋转角速度ωm、q轴指令电压Vq和q轴实际电流Iq计算的。
计算单元38和39、比例积分控制单元41和42、两相/三相坐标转换单元46、PMW电压产生单元47和逆变器电路48使用由电流传感器51和52、三相/两相坐标转换单元53和计算单元54反馈的d轴实际电流Id和q轴实际电流Iq控制电动机15。非干涉校正值计算单元43和计算单元44和45校正来自比例积分控制单元41的q轴指令电压Vq*和来自比例积分控制单元42的d轴指令电压Vd*以使在d轴和q轴之间彼此干涉的速度电动势抵消。此后,控制流经电动机15的电量以产生所需转向辅助扭矩的控制将称为辅助控制。
当执行辅助控制时,如果判定旋转角度传感器23没有故障,则电子控制单元30使用由旋转角度传感器23检测的所检测的旋转角度θma控制电动机15。另一方面,如果判定旋转角度传感器23已经发生故障,则电子控制单元30使用由旋转角度估计单元62估计的所估计的旋转角度θmb控制电动机15。此后,基于由旋转角度估计单元62估计的所估计的旋转角度θmb执行的辅助控制将被称为无传感器辅助控制,并且基于当判定旋转角度传感器23没有故障时由旋转角度传感器23检测的旋转角度θma执行的辅助控制将称为正常辅助控制。
接着,将提供的描述是关于当判定旋转角度传感器23已经发生故障并且基于由旋转角度估计单元62估计的所估计的旋转角度θmb执行的辅助控制时使用的单元。
根据本发明的第一实施例的电子控制单元30除了包括上述单元之外,还包括由图2中的粗实线框表示的辅助停止指令单元63。辅助停止指令单元63从角速度转换单元56接收与电动机旋转角速度ωm有关的信息,并且从故障判定单元61接收故障判定信号。
如图13所示,所估计的旋转角度θmb与实际旋转角度的偏差随着电动机旋转角速度ωm增大而减小,并且随着电动机旋转角速度ωm减小而增大。如图13所示,辅助停止指令单元63存储电动机旋转角速度ωm1作为用来判定辅助控制是否应该停止的阈值,该电动机旋转角速度ωm1对应于电动机旋转角度θm的预设允许偏差范围E1的限值(允许限值)。在本说明书中,电动机旋转角速度ωm、电动机旋转角度θm、转向扭矩Th、转向辅助扭矩Tas、转向角θh等的大小比较是使用其绝对值进行比较的。
当辅助停止指令单元(63)还没有从故障判定单元61接收到传感器故障信号“失效”时(即,当执行正常辅助控制时),辅助停止指令单元63处于非工作状态并且没有运行。另一方面,当辅助停止指令单元63已经从故障判定单元61接收到传感器故障信号“失效”时(即,当执行无传感器辅助控制时),辅助停止指令单元63处于工作状态。
当辅助停止指令单元63在工作状态时,辅助停止指令单元63比较由从角速度转换单元56接收的信号所表示的电动机旋转角速度ωm与阈值ωm1。如果电动机旋转角速度ωm等于或者高于阈值ωm1,辅助停止指令单元63持续辅助控制。另一方面,如果电动机旋转角速度ωm低于阈值ωm1,则辅助停止指令单元63停止产生辅助扭矩(此后,称为“动力辅助停止)”即,当判定旋转角度传感器23已经发生故障时,电子控制单元30将辅助停止指令单元63置于工作状态以比较电动机旋转角速度ωm与阈值ωm1。此外,电子控制单元30改变控制方式,使得根据电动机旋转角速度ωm与阈值ωm1的大小关系停止或者继续动力辅助。
根据本发明第一实施例,为了停止动力辅助,停止指令信号从辅助停止指令单元63传输到PWM电压产生单元47。当从辅助停止指令单元63接收到停止指令信号时,PWM电压产生单元47停止PWM控制电压信号UU、VU和WV传输到逆变器电路48,并且保持逆变器48的开关元件关闭。当电动机旋转角速度ωm等于或者高于阈值ωm1时,辅助停止指令单元63将辅助许可信号传输到PWM电压产生单元47以继续无传感器辅助控制。图12示出从辅助停止指令单元63基于转向状态(转向角θh、转向角速度ωh)输出的信号(停止指令信号:关,许可信号:开)随时间变化。
辅助停止指令单元63可以基于由电动机15产生的反电动势电压E的振幅降低的程度判定电动机旋转角速度ωm是否低于阈值ωm1。即,如图14所示,电动机旋转角速度ωm与反电动势电压E成比例,并且反电动势电压E在使用旋转角度估计单元62估计旋转角度θmb的过程中计算。因此,基于关于反电动势电压E是否低于预定值的判定而停止或者继续动力辅助。以此方式,可以容易地和准确地判定电动机旋转角速度ωm是否低于阈值ωm1。
利用根据本发明第一实施例的电动转向设备,即使旋转角度传感器23已经发生故障,通过基于所估计的旋转角度执行无传感器控制而执行辅助控制。因此,不需要很大的力操作驾驶员方向盘。当电动机旋转角速度ωm变得较低,并且所估计的旋转角度的可靠性降低时,动力辅助停止。因此,可以防止不需要的转向辅助扭矩产生以确保足够的安全水平。即,即使旋转角度传感器23已经发生故障,动力辅助得以安全地执行,这对于驾驶员是有利的。
接着,将描述本发明第二实施例的电动转向设备。图3示出根据本发明第二实施例的电动转动设备的电子控制单元30的功能。根据第二实施例的电子控制单元30设置有由粗实线框表示的辅助增益改变指令单元64,来代替第一实施例的辅助停止指令单元63。因为其它构造与本发明第一实施例相同,所以与第一实施例相同的部分由与第一实施例中相同的参考标号来表示,以下将不提供其描述。
辅助增益改变指令单元64从角速度转换单元56接收关于电动机旋转角速度ωm的信息,并且当判定旋转角度传感器23已经发生故障时从故障判定单元61接收传感器故障信号“失效”。如上所述,所估计的旋转角度θmb与实际旋转角度的偏差随着电动机旋转角速度ωm增大而减小,并且随着电动机旋转角速度ωm减小而增大。因此,根据本发明第二实施例,设定校正增益K1x(利用它,转向辅助扭矩随着电动机旋转角速度ωm减小而减小)以防止所估计的旋转角度θmb与实际旋转角度的偏差对转向辅助扭矩施加很大的影响。
如图15A所示,随着电动机旋转角速度ωm减小而将校正增益K1x设定为较低的值。校正增益K1x(≤1)和电动机旋转角速度ωm之间的关系作为基准映射图存储在辅助增益改变指令单元64中。然而,校正增益K1x和电动机旋转角速度ωm之间的关系不限于图15A所示的。校正增益K1x和电动机旋转角速度ωm之间的任何关系(例如,图5B至图5D所示的关系)都可以采用,只要随着电动机旋转角速度ωm减小将降低率设定成较高的值(即,将校正增益K1x设定为较低的值)就可以了。
辅助增益改变指令单元64在执行无传感器控制的同时参照基准映射图计算对应于电动机旋转角速度ωm的校正增益K1x,然后将关于校正增益K1x的信息传输到PWM电压产生单元47。PWM电压产生单元47计算对应于从两相/三相坐标转换单元46输出的三相指令电压Vu*、Vv*和Vw*的PWM控制电压信号UU、VU和WV。此外,PWM电压产生单元47通过使用校正增益K1x放大PWM控制电压信号UU、VU和WV而将PWM控制电压信号UU、VU和WV校正为电压信号,然后将该电压信号输出到逆变器电路48。
因此,随着电动机旋转角速度ωm减小,将输出到逆变器电路48的PWM控制电压信号UU、VU和WV被校正为较低的值。结果,随着电动机旋转角速度ωm减小,流经电动机15的电量降低,因此转向辅助扭矩也降低。即,当电动机旋转角速度ωm较低时(即,当所估计的旋转角度的可靠性较低时),转向辅助扭矩随着旋转角速度减小而逐渐地降低。因此,所估计的旋转角度和实际旋转角度的偏差对辅助扭矩的影响降低,这降低了驾驶员感受到的不舒适的感觉。此外,因为动力辅助没有突然停止,抑制了转向感受的急剧变化。
接着,将描述本发明第三实施例的电动转向设备。图4示出了根据本发明第三实施例的电动转向设备的电子控制单元30的功能。根据本发明第三实施例的电子控制单元30使用表示驾驶员方向盘11的转向角θh的信号,而不是根据本发明第一实施例使用表示传输到辅助停止指令单元63的电动机旋转角速度ωm的信号。根据本发明第三实施例,检测驾驶员方向盘11的旋转角位置的转向角传感器24(由图1中的虚线表示)用在图1中的电动转向设备的系统构造中。因为其它结构与本发明第一实施例相同,与第一实施例相同的部分将由与第一实施例相同的参考标号表示,并且以下将不提供其描述。
根据本发明第三实施例的电子控制单元30设置有转向速度检测单元65和辅助停止指令单元63’。转向速度检测单元65从转向角传感器24接收表示转向角θh的信号,然后计算转向角θh随时间的变化(微分值)以获得转向速度ωh。转向速度检测单元65将与所计算的转向速度ωh有关的信息传输到辅助停止指令单元63’。因为由转向机构10以机械的方式将驾驶员方向盘11和电动机15彼此连接,转向速度和电动机旋转角速度彼此成比例。因此,辅助停止指令单元63’接收表示转向速度ωh的信号,而不是接收表示电动机旋转角速度ωm的信号,由此判定电动机旋转角速度ωm是否低于阈值ωm1。
图16示出了所估计的旋转角度θmb与实际旋转角度的偏差与电动机旋转角速度ωm之间关系,和由转向角传感器24(外部传感器)检测的旋转角度(换算成电动机旋转角度的值)与实际旋转角度的偏差与电动机旋转角速度ωm之间关系。由转向角传感器24检测的旋转角度与实际旋转角度的偏差独立于电动机旋转角速度ωm在恒定的范围内。同时,由旋转角度估计单元62估计的所估计的旋转角度θmb与实际旋转角度的偏差随着电动机旋转角速度ωm增大而减小,随着电动机旋转角速度ωm减小而增大。
因此,在其中电动机旋转角速度ωm较低并且由转向角传感器24检测的旋转角度θh与实际旋转角度的偏差小于由旋转角度估计单元62估计的所估计的旋转角度θmb与实际旋转角度的偏差的范围A1中,可以使用由转向角传感器24检测的旋转角度θh计算电动机旋转角速度ωm。在其中电动机旋转角速度ωm较高并且由转向角传感器24检测的旋转角度θh与实际旋转角度的偏差大于由旋转角度估计单元62估计的所估计的旋转角度θmb与实际旋转角度的偏差的范围A2中,可以使用由旋转角度估计单元62估计的所估计的旋转角度θmb计算电动机旋转角速度ωm。
阈值ωm1(即,用来判定是否应该停止动力辅助的电动机旋转角速度ωm)在范围A1内。因此,当辅助停止指令单元63’已经从故障判定单元61接收到传感器故障信号“失效”时,辅助停止指令单元63’恒定地判定由从转向速度判定单元65输出的信号所表示的转向速度ωh和预先设定的阈值ωh1之间的大小关系。当转向速度ωh在阈值ωh1以下时,辅助停止指令单元63’将电动机旋转角速度ωm视为在阈值ωm1以下,因此将停止指令信号传输到PWM电压产生单元47以停止动力辅助。另一方面,当转向速度ωh等于或者高于阈值ωh1时,辅助停止指令单元63’将电动机旋转角速度ωm视为等于或者高于阈值ωm1,因此将辅助许可信号传输到PWM电压产生单元47以继续辅助控制。当辅助停止指令单元63’还没有从故障判定单元61接收到传感器故障信号“失效”时,如本发明第一实施例那样,辅助停止指令单元63’a保持在非工作状态。因此,继续辅助控制。
根据本发明第三实施例,不使用旋转角度传感器23的情况下,基于来自转向角传感器24(用作外传感器)的检测信号判定电动机旋转角速度ωm已经在阈值ωm1以下。因此,准确地进行了该判定。结果,电动转向设备的可靠性和安全性得到进一步增强。
转向速度检测单元65可以从设置在转向扭矩传感器21中的解析传感器21a或者解析传感器21b而不是从转向角传感器24接收旋转角度信号。在此情况下,能够获得相同的效果。
在本发明第二实施例中,可以设置转向速度检测单元65,并且由转向速度检测单元65检测的转向角速度ωh可以代替表示传输到辅助增益改变指令单元64的电动机旋转角速度ωm的信号使用。
接着,将描述本发明第四实施例的电动转向设备。图5示出了根据本发明第四实施例的电动转向设备的电子控制单元30的功能。根据第四实施例的电子控制单元30设置有由粗实线框表示的正弦波扭矩加入单元66,来代替本发明第一实施例的辅助停止指令单元63。因为其它结构与本发明第一实施例相同,与第一实施例相同的部分将用与第一实施例相同的参考标号表示,以下将不提供其描述。由图5中的虚线表示的结构应用在本发明第十二实施例中,没有应用在本发明第四实施例中。
正弦波扭矩加入单元66从故障判定单元61接收故障判定信号。当判定旋转传感器23已经发生故障时,故障判定单元61输出传感器故障信号“失效”作为故障判定信号。当接收到传感器故障信号“失效”时,正弦波扭矩加入单元66将例如图17所示的高频正弦波扭矩指令信号传输到计算单元33。在上述发明实施例中,计算单元33将由基本辅助扭矩计算单元31计算的基本辅助扭矩Tas加入到由补偿值计算单元32计算的补偿值Trt,然后使用相加的结果作为目标指令扭矩T*。相反,根据本发明第四实施例,计算单元33将基本辅助扭矩Tas、补偿值Trt、此外还有从正弦波扭矩相加单元66输出的正弦波指令值加在一起,然后使用相加结果作为目标指令扭矩T*
当判定旋转角度传感器23已经发生故障时,基于由旋转角度估计单元62估计的所估计的旋转角度θmb控制电动机15的旋转。在此情况下,如果电动机旋转角速度ωm减小,则所估计的旋转角度θmb的准确性减小。尤其是,在电动转向设备中,难以准确地估计旋转角度,这是因为电动机15在许多情况下以相当低的速度旋转。因此,根据本发明第四实施例,当判定旋转角度传感器23已经发生故障时,改变控制方式,使得正弦波扭矩加入到目标指令扭矩。因此,可以防止电动机旋转角速度ωm保持在预定值以下,由此提高了所估计的旋转角度θmb的准确性。以下,加入到转向辅助扭矩的高频波扭矩将称为附加扭矩。
当正弦波扭矩加入到转向辅助扭矩时,由于这种加入而引起的振动传递到驾驶员方向盘11。然而,附加扭矩的波形是正弦波形式。因此,可以平顺地改变驾驶员方向盘11的旋转角度,由此将驾驶员感受到的不舒适感减至最小。
振动传递到驾驶员方向盘11的传递性(传递函数增益)与附加扭矩的频率有关。图18示出附加扭矩的频率和传递到驾驶员方向盘的振幅之间的关系。在本发明第四实施例中,基于图18所示的关系设定附加扭矩的频率(在该频率下,振动的振幅小于预先设定的阈值“a”)。如果附加扭矩的频率过高,则电动机15不能够以足够高的速度旋转产生具有该高频的附加扭矩。因此,将附加扭矩的频率设定为在预定的范围内的值。电动机15能够以产生具有预定范围内的频率的附加扭矩的速度旋转。在后述的高频扭矩加入到转向辅助扭矩的本发明其它实施例中,可以以如上所述的方式设定频率。
因此,根据本发明第四实施例,可以在将电动机旋转角速度ωm保持为较大的值的同时,防止扭矩变化和振动传递到驾驶员方向盘11。结果,可以将驾驶员感受到的不舒适感觉减至最小。
接着,将描述本发明第五实施例的电动转向设备。图6示出本发明第五实施例的电动转向设备的电子控制单元30的功能。根据本发明第五实施例的电子控制单元大部分结构与本发明第四实施例的电子控制单元30相同,不同之处是还设置了由粗实线框表示的扭矩加入增益相乘单元67。因为其它结构与本发明第四实施例相同,所以与第四实施例相同的部分将用与第四实施例相同的参考标号表示,以下将不提供其描述。
来自正弦波扭矩加入单元66的高频正弦波扭矩指令传输到扭矩加入增益相乘单元67。扭矩加入增益相乘单元67从转向扭矩传感器21接收与转向扭矩Th有关的信息,然后将正弦波扭矩指令值乘以基于转向扭矩Th设定的扭矩加入增益K2x。扭矩加入增益相乘单元67将表示将正弦波扭矩指令值乘以扭矩加入增益K2x获得的值的信号传输到计算单元33。
如图19A所示,当转向扭矩Th等于或者低于预定值Th1时,扭矩加入增益K2x设定为0(K2x=0),当转向扭矩Th高于预定值Th1时,扭矩加入增益K2x设定为1(K2x=1)。转向扭矩Th和扭矩加入增益K2x之间的关系存储在扭矩加入增益相乘单元67中。因此,当转向扭矩Th等于或者低于预定值Th1时,由传输到计算单元33的信号所表示的正弦波扭矩指令值是0,因此没有将正弦波扭矩加入。另一方面,如果转向扭矩Th高于预定值Th1,则从正弦波扭矩加入单元66传输来的表示正弦波扭矩指令值的信号实际上传输到计算单元33。
转向辅助扭矩主要由基本辅助扭矩计算单元31基于转向扭矩Th和车辆速度V计算。如在基本辅助映射图(图35)中所示,转向辅助扭矩和转向辅助扭矩率(转向辅助扭矩/转向扭矩)随着由转向扭矩传感器21检测的转向扭矩Th增大而增大。在其中基于转向扭矩Th设定的转向辅助扭矩的系统中,当转向扭矩较低时,驾驶员更容易地可能感受到由于正弦波扭矩而引起的扭矩波动。因此,根据本发明第五实施例,设置扭矩加入增益相乘单元67。当转向扭矩Th等于或者低于预定的值Th1时,正弦波扭矩指令值设定为0(即,停止将正弦波扭矩加入到转向辅助扭矩),由此驾驶员感受到的不舒适感觉降低了。
阈值Th1(即,用来判定是否应该停止将正弦波扭矩加入到转向辅助扭矩的基准转向扭矩Th)优选为2Nm±1Nm(Th1=2Nm±1Nm)。基于基本辅助映射图的特性设定阈值Th1。
当因为转向扭矩Th变得等于或者低于预定值Th1而停止将正弦波扭矩加入到转向辅助扭矩时,正弦波扭矩的大小可以逐渐降低,直到最终停止将正弦波扭矩加入到转向辅助扭矩,而不是突然停止将正弦波扭矩加入到转向辅助扭矩。例如,如图19B所示,扭矩加入增益K2x可以随着转向扭矩Th减小,而在对应于阈值Th2的扭矩加入增益K2x和对应于阈值Th1的扭矩加入增益K2x之间线性地降低。可选地,扭矩加入增益K2x可以以逐级方式降低。转向扭矩Th和扭矩加入增益K2x之间的这种关系以例如映射图的形式存储在扭矩加入增益相乘单元67中。例如,在后述的将矩形波加入到转向辅助扭矩的本发明第七实施例中,可以提供扭矩加入增益相乘单元67。
接着,将描述本发明第六实施例的电动转向设备。图7示出了本发明第六实施例的电动转向设备的电子控制单元30的功能。本发明第六实施例的电子控制单元30大部分结构与本发明第五实施例的电子控制单元30的结构相同,不同之处在于还设置由粗实线框表示的辅助映射图改变指令单元68和辅助停止指令单元63,并且设置基本辅助扭矩计算单元31’来代替基本辅助扭矩计算单元31。因为其它结构与本发明第五实施例相同,与第五实施例相同的部分将用与第五实施例相同的参考标号表示,并且以下将不提供其描述。
基本辅助扭矩计算单元31’存储彼此不同的基本辅助映射图。其中一个基本辅助映射图用在正常辅助控制(其基于由旋转角度传感器23检测的旋转角度θma控制电动机15的旋转)中,另一个基本辅助映射图用在基于所估计的旋转角度θmb执行的无传感器辅助控制中。图20A示出了用在正常辅助控制中的基本辅助映射图,图20B示出了用在无传感器辅助控制中的基本辅助映射图。用于正常辅助控制的基本辅助映射图对应于根据本发明的正常时关系数据。在本发明第六实施例中,用于正常辅助控制的基本辅助映射图将称为正常辅助映射图。用于无传感器辅助控制的基本辅助映射图对应于本发明的故障时关系数据。在本发明第六实施例中,用于无传感器辅助控制的基本辅助映射图将称为无传感器辅助映射图。图20中的每个映射图示出在给定的车辆速度V下基本辅助扭矩Tas和转向扭矩Th之间的关系。如上所述(参见图35),在给定的转向扭矩Th,随着车辆速度V增大,基本辅助扭矩Tas设定为较低的值。由图20B中的虚线所示的关系表示图20A的正常时辅助映射图中的关系,以便于比较图20A和图20B之间的关系。
在每个辅助映射图,当转向扭矩Th在预定值以下时,基本辅助扭矩Tas设定为0。其中基本辅助扭矩Tas设定为0的转向扭矩Th的范围将称为辅助不工作区。在无传感器辅助映射图的关系中辅助不工作区的宽度比正常时辅助映射图的关系中的辅助不工作区的宽度要宽。在无传感器辅助映射图中的不工作区的值Th0(在转向扭矩Th减小之后基本辅助扭矩Tas变成0的转向扭矩Th的值)可以设定为由以下方程式表示的值。
Th0≥Th1-0.3Nm    方程式10
在该方程式中,Th1是用来判定是否应该停止将扭矩加入转向辅助扭矩的预定值Th1。
在给定的转向扭矩Th,在无传感器辅助映射图中的基本辅助扭矩Tas的大小低于在正常时辅助映射图中的基本辅助扭矩Tas的大小。
电子控制单元30包括将映射图改变指令传输到基本辅助扭矩计算单元31’的辅助映射图改变指令单元68。当判定旋转角度传感器23已经发生故障时,辅助映射图改变指令单元68从故障判定单元61接收传感器故障信号“失效”。当接收传感器故障信号“失效”时,辅助映射图改变指令单元68将映射图改变指令传输到基本辅助扭矩计算单元31’。
当映射图改变指令还没有从辅助映射图改变指令单元68传输过来时(即,判定旋转角度传感器23没有故障时),基本辅助扭矩计算单元31’基于正常辅助映射图计算基本辅助扭矩Tas。当从辅助映射图改变指令单元68接收到映射图改变指令时,基本负值扭矩计算单元31’将用来计算基本辅助扭矩Tas的辅助映射图从正常辅助映射图改变到无传感器辅助映射图。
电子控制单元30还包括辅助停止指令单元63。辅助停止指令单元63于本发明第一实施例中的辅助停止指令单元相同。即,当辅助停止指令单元63还没有从故障判定单元61接收到传感器故障信号“失效”时,辅助停止指令单元63不工作。然而,当传感器故障信号“失效”已经从故障判定单元61传输到辅助停止指令单元63时,辅助停止指令单元63将从角速度转换单元56接收到的电动机旋转角速度ωm与阈值ωm1进行比较。如果从角速度转换单元56接收到的电动机旋转角速度ωm等于或者高于阈值ωm1,则辅助停止指令单元63继续辅助控制。另一方面,如果电动机旋转角速度ωm低于阈值ωm1,则辅助停止指令单元63将停止指令信号传输到PWM电压产生单元47以停止动力辅助。
在本发明第六实施例的电子控制单元30中,当故障判定单元61判定旋转角度传感器23已经发生故障时,正弦波扭矩加入单元66基于传感器故障信号“失效”输出高频正弦波扭矩指令。扭矩加入增益相乘单元67接收正弦波扭矩指令,从转向扭矩传感器21接收与转向扭矩Th有关的信息,将正弦波扭矩指令值乘以扭矩加入基于转向扭矩Th设定的扭矩加入增益K2x,然后将表示通过将正弦波扭矩指令值乘以扭矩加入增益K2x获得的正弦波扭矩指令值的信号传输到计算单元33。如图19A所示,当转向扭矩Th等于或者低于预定值Th1时,扭矩加入增益K2x设定为0,当转向扭矩Th超过预定值Th1时,扭矩加入增益K2x设定为1。因此,当转向扭矩Th等于或者低于预定值Th1时,由传输到计算单元33的信号所表示的正弦波扭矩指令值为0,因此没有将正弦波扭矩加入到基本辅助扭矩Tas。当转向扭矩Th超过预定值Th1时,由从正弦波扭矩加入单元66传输来的信号表示的正弦波扭矩指令值实际上传输到计算单元33。
当故障判定单元61判定旋转角度传感器23已经发生故障时,辅助停止指令单元63和辅助映射图改变指令单元68工作,同时执行将正弦波波扭矩加入基本辅助扭矩Tas的控制。辅助映射图改变指令单元68如上所述将映射图改变指令传输到基本辅助扭矩计算单元31’以将用来计算基本辅助扭矩Tas的辅助映射图从正常辅助映射图改变到无传感器辅助映射图。
当电动机旋转角速度ωm低于阈值ωm1时,辅助停止指令单元63将停止指令信号传输到PWM电压产生单元47以停止动力辅助。然而,当正弦波扭矩加入到基本辅助扭矩Tas时,将电动机旋转角速度ωm保持等于或者高于阈值ωm1以继续动力辅助。即使当正弦波扭矩加入到基本辅助扭矩Tas时,当电动机旋转的方向改变时电动机旋转角速度ωm瞬时地降低到阈值ωm1以下。然而,电动机旋转角速度ωm这样瞬时地降低不会对估计旋转角度的准确性施加太大的影响。因此,辅助停止指令单元63继续动力辅助。
如果转向扭矩Th变得等于或者低于预定值Th1,则停止将正弦波扭矩加入到转向辅助扭矩,因此没有继续动力辅助。即,由于停止将正弦波扭矩加入到转向辅助扭矩使得不能够将电动机旋转角度ωm保持等于或者高于阈值ωm1。当电动机旋转角度ωm降低到阈值ωm1以下时,停止动力辅助。
根据本发明第六实施例,当故障判定单元61判定旋转角度传感器23已经发生故障时,正弦波扭矩加入到根据无传感器辅助映射图设定的基本辅助扭矩Tas中以防止电动机旋转角度ωm减小。在此情况下,因为由于使用无传感器辅助映射图使得转向辅助扭矩整个地降低,驾驶员在操作驾驶员方向盘过程中比通常受到更重的感受。因此,驾驶员安全地认识到故障已经发生。
如果转向扭矩Th变得等于或者低于预定值Th1,则停止将正弦波扭矩加入到转向辅助扭矩。由于停止将正弦波扭矩加入到转向辅助扭矩使得不能够将电动机旋转角度ωm保持较高的值。如果电动机旋转角度ωm降低到阈值ωm1以下,则停止动力辅助。在此情况下,其中辅助不工作区较宽的无传感器辅助映射图用作用于计算辅助扭矩的辅助映射图。因此,基本辅助扭矩Tas(目标转向辅助扭矩)相对于转向扭矩Th减小而减小更快。因此,当停止动力辅助时,基本辅助扭矩Tas大致为0。结果,没有因停止动力辅助而引起急剧的扭矩波动,因此,不舒适感觉没有施加给驾驶员。这样的效果是通过如以上方程式10所表示将辅助不工作区的值Th0设定为0而获得的。
在上述方程式10中,当Th0=Th1-0.3Nm时,如果因转向扭矩Th减小而停止将附加扭矩加入到转向辅助扭矩,则转向扭矩Th超出辅助不工作区达0.3Nm。因此,引起了轻微的扭矩波动。然而,这样的扭矩波动在不舒适的感觉没有施加给驾驶员的允许范围内。如果Th0≥Th1,则在停止动力辅助之前基本辅助扭矩必定变为0。因此,不会引起将不舒适的感觉施加给驾驶员的扭矩波动。
接着,将描述本发明第七实施例的电动转向设备。图8示出了根据本发明第七实施例的电动转向设备的电子控制单元30的功能。本发明第七实施例的电子控制单元30的大部分结构与本发明第四实施例的电子控制单元30的结构相同,不同之处是设置图8中粗实线宽所表示的矩形波扭矩加入单元69来代替本发明第四实施例的正弦波扭矩加入单元66。因为其它结构与第四实施例的相同,与第四实施例相同的部分用与第四实施例相同的参考标号表示,以下将不提供其描述。
矩形波扭矩加入单元69从故障判定单元61接收故障判定信号。当判定旋转角度传感器23已经发生故障时,故障判定单元61输出传感器故障信号“失效”作为故障判定信号。当接收传感器故障信号“失效”时,矩形波扭矩加入单元69将高频矩形波扭矩指令输出到计算单元33。图21中上侧的曲线图示出了扭矩指令值的波形。当根据矩形波扭矩指令驱动电动机15时产生的电流波形与图21中上侧的曲线图所示的波形相同。图21中的中间的曲线图示出了当根据矩形波扭矩指令驱动电动机15时电动机旋转角度随时间的变化。图21中下侧的视图示出了当根据矩形波扭矩指令驱动电动机15时电动机旋转角速度。
如在本发明第四实施例,计算单元33通过将由基本辅助扭矩计算单元31计算的基本辅助扭矩Tas、由补偿值计算单元32计算的补偿值Trt和由从矩形波扭矩加入单元69传输来的信号所表示的矩形波扭矩指令值加在一起而计算目标指令扭矩T*
当判定旋转角度传感器23已经发生故障时,基于由旋转角度估计单元62获得的所估计的旋转角度控制电动机15的旋转。然而,如果此时电动机旋转角速度ωm减小,所估计的旋转角度θmb的准确性降低。尤其是,在电动转向设备中,难以准确地估计旋转角度,这是因为电动机在许多情况下以相当低的速度旋转。因此,根据本发明第七实施例,矩形波扭矩加入到目标指令扭矩。结果,可以防止电动机旋转角速度ωm保持在预定值以下,由此提高所估计的旋转角度θmb的准确性。
尤其是,根据本发明第七实施例,因为矩形波扭矩加入到目标指令扭矩,改变发动机15旋转方向所需的时间降低,电动机旋转角速度在预定值以下的时间段降低。当估计旋转角度时,电动机旋转角速度的瞬时减小不会引起太大的不便。因此,可以准确地稳定电动机旋转角速度。结果,进一步提高了旋转角度估计单元62估计的所估计值的准确性。另外,因为周期性的振动传递到驾驶员方向盘11,容易地通知驾驶员故障状态在继续。
被矩形波扭矩加入单元69加入到目标指令扭矩的高频扭矩不限于波形具有方形或者矩形一部分的扭矩。例如,高频扭矩可以是图22所示的具有大致梯形波形的扭矩。
接着,将描述本发明第八实施例的电动转向设备。图9示出了本发明第八实施例的电动转向设备的电子控制单元的功能。根据第八实施例的电子控制单元30大部分结构与本发明第七实施例的结构相同,不同之处在于还设置了由粗实线框表示的扭矩加入增益相乘单元70。因为其它结构和本发明第七实施例相同,与第七实施例相同的部分将用与第七实施例相同的参考标号表示,以下将不提供其描述。
从矩形波扭矩加入单元69传输来的高频矩形波扭矩指令由扭矩加入增益相乘单元70接收。扭矩加入增益相乘单元70从基本辅助扭矩计算单元31接收与基本辅助扭矩Tas有关的信息,然后将矩形波扭矩指令值乘以基于基本辅助扭矩Tas设定的扭矩加入增益K3x。扭矩加入增益相乘单元70传输表示将矩形波扭矩指令值乘以扭矩加入增益K3x获得的值的信号。
随着基本辅助扭矩Tas增大,将扭矩加入增益K3x设定为较小的值。即,将扭矩加入增益K3x设定成矩形波扭矩的振幅随着基本辅助扭矩Tas减小而减小。图23示出了基本辅助扭矩Tas和扭矩加入增益K3x之间关系的四个示例A至D。基本辅助扭矩Tas和扭矩加入增益K3x之间的关系作为增益映射图存储在扭矩加入增益相乘单元70中。
在电动转向设备中,转向系统的刚度随着转向辅助扭矩而改变。即,弹性体(例如,扭杆)包括在转向机构10中,该转向机构10布置在驾驶员方向盘11和转向车轮FW1和FW2之间。弹簧扭转的程度根据转向辅助扭矩而改变,因此转向系统的刚度发生了变化。例如,当转向辅助扭矩较低时,转向系统的刚度较低。另一方面,当转向辅助扭矩较高时,转向系统的刚度较高。因此,当设置将由电动机15产生恒定大小的附加扭矩时,不能够实现将电动机旋转角速度ωm保持等于或者高于预定值所需的振幅的增大。
因此,根据本发明第八实施例,矩形波扭矩的振幅随着由基本辅助扭矩计算单元31计算的基本辅助扭矩Tas(对应于目标转向辅助扭矩)增大而增大,由此可恒定地获得所需的振幅的增大。结果,可以恒定地将电动机旋转角速度ωm保持等于或者高于预定值。因此,可以提高由旋转角度估计单元62估计的所估计的旋转角度θmb的准确性。结果,进一步增强了可靠性和安全性。
可以基于转向辅助扭矩和附加扭矩之间的兼容性和系统模型准备使基本辅助扭矩Tas与扭矩加入增益K3x相关联的增益映射图。可以这样构造即使用正弦波扭矩加入单元66而不是使用矩形波扭矩加入单元69将正弦波扭矩加入到转向辅助扭矩。
接着,将描述本发明第九实施例的电动转向设备。图10示出了本发明第九实施例的电动转向设备的电子控制单元的功能。根据第九实施例的电子控制单元30大部分结构与本发明第四实施例的结构相同,不同之处在于设置了由粗实线框表示的附加扭矩波形确定单元71和扭矩加入单元72来代替本发明第四实施例的正弦波扭矩加入单元66。因为其它结构和本发明第四实施例相同,与第四实施例相同的部分将用与第四实施例相同的参考标号表示,以下将不提供其描述。
附加扭矩波形确定单元71和扭矩加入单元72从故障判定单元61接收表示旋转角度传感器23已经发生故障的故障判定信号。当由于旋转角度传感器23有故障而已经接收到传感器故障信号“失效”时,附加扭矩波形确定单元71和扭矩加入单元72处于工作状态。另一方面,当还没有接收到传感器故障信号“失效”时,附加扭矩波形确定单元71和扭矩加入单元72处于非工作状态。
附加扭矩波形确定单元71接收由与转向角传感器24检测的转向角θh有关的信息、与由转向扭矩传感器21检测的转向扭矩Th有关的信息和与由车辆速度传感器22检测的车辆速度V有关的信息。附加扭矩波形确定单元71基于三件信息(θh、Th、V)确定附加扭矩的波形。即,在上述的本发明第四到第八实施例中,通过将具有预先设定的波形的高频扭矩(正弦波扭矩或者矩形波扭矩)加入到基本辅助扭矩Tas而将电动机旋转角速度ωm保持较高的值。相反,根据本发明第九实施例,基于转向信息(θh和Th)和与车辆速度V有关的信息确定附加扭矩的波形。
为了提高估计旋转角度的准确性,电动机旋转角速度ωm需要保持等于或者高于预定值。因此,如图24A所示,电动机旋转角速度的目标值设定成具有矩形的波形。在此情况下,改变电动机旋转方向所需的时间变成最小值,并且电动机旋转角速度保持等于或者高于预定值。
附加扭矩波形判定单元71确定用来实现具有矩形波形的电动机旋转角速度的附加扭矩的波形。通过考虑转向系统模型确定附加扭矩的波形。基于系统的刚度、系统的惯性、系统的质量、转向辅助扭矩等设定转向系统的模型。基于例如转向状态量(诸如转向角θh和转向扭矩Th)和车辆速度V的参数来设定系统的刚度和转向辅助扭矩。
因此,根据本发明第九实施例,基于这些参数设定转向系统模型,并且确定对应于系统模型的附加扭矩的目标波形。例如,将电动机旋转角速度ωm保持等于或者高于预定值所需的附加扭矩的振幅根据系统刚度的大小变化。因此,附加扭矩波形确定单元71随着系统刚度增大而增大附加扭矩的振幅。电动机15的旋转的响应性根据系统的惯性和质量而变化。因此,附加扭矩波形确定单元71改变附加扭矩增大速率、附加扭矩减小速率等。
因此,附加扭矩波形确定单元71确定附加扭矩波形的波形,该波形对于基于转向角θh、转向扭矩Th和车辆速度V设定的转向系统模型是最佳的。在此情况下,附加扭矩波形确定单元71存储用来基于三个参数(θh、Th、V)确定附加扭矩波形的波形映射图(未示出),然后参照波形映射图确定附加扭矩的波形。可选地,附加扭矩的波形可以使用函数来确定。例如,为了确定图2A示出的电动机旋转角速度的波形,基于三个参数(θh、Th、V)确定图24B示出的扭矩波形的波形。
表示由附加扭矩波形确定单元71确定的扭矩波形的信号传输到扭矩加入单元72。扭矩加入单元72基于从附加扭矩波形确定单元71传输来表示扭矩波形的信号将高频扭矩指令传输到计算单元33。计算单元33通过将由基本辅助扭矩计算单元31计算的基本辅助扭矩Tas、由补偿值计算单元32计算的补偿值Trt和由从扭矩加入单元72输出的信号表示的扭矩指令值加起来计算目标指令扭矩T*
根据本发明第九实施例,附加扭矩的波形(利用该波形可以获得所需的电动机速度特性)由附加扭矩波形确定单元71基于转向系统模型确定。因此,最佳扭矩加入到转向辅助扭矩。在此示例中,目标电动机旋转角速度具有矩形的波形。然而,如果优先级给了抑制振动传递到驾驶员方向盘11,电动机旋转角速度可以具有正弦波形。
接着,将描述本发明第十实施例的电动转向设备。本发明第十实施例的电动转向设备使用转向传动比改变装置防止振动因附加扭矩传递到驾驶员方向盘11。本发明第十实施例的电动转向设备通过将转向传动比改变装置应用到根据上述的第四实施例至第九实施例中任何一个的电动转向设备来实施。以下将描述转向传动比改变装置应用到根据本发明第四实施例的电动转向设备的示例。
在本发明第十实施例的电动转向设备中,转向轴12具有上轴12a和下轴12b,驾驶员方向盘11固定到上轴12a的上端,小齿轮13设置在下轴12b的下端部分,小齿轮13与形成在齿条14中的齿条齿啮合以形成齿条小齿轮机构。小齿轮13与齿条14啮合的结构与上述本发明第四至第九实施例中的结构相同。因此,相同或者相应部分将由相同的参考标号表示,以下将不提供其描述。下轴12b设置有与本发明第四实施例中的相同的转向扭矩传感器21。
转向传动比改变装置100设置在上轴12a和下轴12b之间。转向传动比改变装置100改变转向传动比(其是驾驶员方向盘11的旋转角度与左右转向车轮FW1和FW2的转向角的比率,即上轴12a的旋转角度与下轴12b的旋转角度的比率)。转向传动比改变装置100包括柱形壳体101,其连接到上轴12a的下端,使得壳体101与上轴12a一起旋转。在壳体101中,固定布置形成转向传动比改变致动器的电动机102。电动机102的输出轴102a可旋转地由壳体101支撑,并且其下端连接到下轴12b,使得输出轴102a与下轴12b一起旋转。
电动机102设置有减速机构103。电动机102的旋转速度由减速机构103降低,并且速度已经降低的旋转输出到输出轴102a。上轴12a和下轴12b分别设置有检测这些轴的旋转角度的旋转角度传感器104a和旋转角度传感器104b。旋转角度传感器104a和104b的每个例如由解析传感器形成。旋转角度传感器104a和104b分别输出对应于上轴12a和下轴12b的旋转角度位置的旋转角度信号。因此,上轴12a和下轴12b之间的旋转角度差θd(以下,称为“差动角θd”)通过计算两个旋转角度位置之间的差而检测出。在本说明书中,两个旋转角度传感器104a和104b将总称为旋转角度传感器104,并且以下描述是在假定表示差动角θd的信号从旋转角度传感器104输出的条件下提供。
下面将参照图11描述本发明第十实施例的电子控制单元30的功能和结构。本发明第十实施例的电子控制单元30大部分结构与第四实施例相同,不同之处在于设置了对应于本发明传动比控制装置的差动角控制单元73和电动机驱动电路74。
如在本发明第四实施例中,电子控制单元30包括正弦波扭矩加入单元66。当从故障判定单元61接收到传感器故障信号“失效”时,正弦波扭矩加入单元66将正弦波扭矩指令传输到计算单元33,然后将正弦波扭矩加入到电动机15的目标指令扭矩。因此,可以防止电动机旋转角速度ωm保持低于预定值。在此情况下,为了保持电动机旋转角速度ωm为预定值或者高于预定值,附加扭矩的振幅增大,因此因附加扭矩引起的振动传递到驾驶员方向盘11。结果,驾驶员会感受到不舒适的感觉。因此,根据本发明第十实施例,差动角控制单元73和电动机驱动电路74控制转向传动比改变装置100的操作以防止振动传递。
差动角控制单元73从正弦波扭矩加入单元66接收高频正弦波扭矩指令,然后将控制指令通过后述的差动角控制传输到电动机驱动电路74,由此驱动电动机102。图26是示出由差动角控制单元73执行的差动角控制例程的流程图。差动角控制例程作为控制程序存储在差动角控制单元73的存储电路中,并且被周期性地执行。
当接收到传感器故障信号“失效”时,差动角控制单元73开始控制例程。首先,在步骤S11,差动角控制单元73接收从正弦波扭矩加入单元66传输来的正弦波扭矩指令(S11)。图27中上方的曲线图中的波形示出了正弦波扭矩的波形。图27中上方倒数第二的曲线图的波形示出了当根据正弦波扭矩指令驱动电动机15时的电动机旋转角度。接着,在步骤S12,差动角控制单元73设定目标差动角θd*,使得目标差动角θd*与正弦波扭矩要求同步。如图27所示,相对于正弦波扭矩要求以预定的相位差设定目标差动角θd*,使得加入到转向辅助扭矩的正弦波扭矩分量被转向传动比改变装置100抵消。
在步骤S13,差动角控制单元73接收与由旋转角度传感器104检测的此时刻的实际差动角θd有关的信息。接着,在步骤S14中,计算实际差动角度θd和目标差动角度θd*的偏差Δθd(=θd*-θd)。在步骤S15,电动机控制指令基于偏差Δθd传输到电动机驱动电路74。即,携带设定成偏差Δθd变成0的控制量的电动机控制指令传输到电动机驱动电路74。电动机驱动电路74由例如逆变器电路形成。电动机驱动电路74根据来自差动角控制单元73的电动机控制指令向转向传动比改变装置100的电动机102供电。
控制例程以预定的短间隔周期性地执行。根据控制例程,转向传动比改变装置100工作以抵消加入到转向辅助扭矩的正弦波扭矩分量。结果,如图27中的底部的曲线图中的波形所示,因正弦波扭矩引起的传递到驾驶员方向盘的振动抑制在允许范围内。因此,驾驶员不会感受到不舒适的感觉。即,可以通过确保预定的电动机旋转角速度提高所估计的旋转角度的准确性,并且抑制振动传递到驾驶员方向盘。当使用转向传动比改变装置100减小因附加扭矩引起的振动时,附加扭矩的频率(与差动角的频率相同)设定成足够高于横向共振频率、垂直共振频率和车辆轮胎周围的共振频率。
接着,将参照图28、图29、图30A和图30B描述本发明第十一实施例的电动转向设备。在本发明第十一实施例的电动转向设备中,将具有可变刚度的可变刚度部分设置在电动机15的输出轴和转向机构10之间的连接部分处。基于来自电动机15的扭矩输出而改变可变刚度部分的刚度。本发明第十一实施例可以应用到高频扭矩加入转向辅助扭矩的本发明第四至第九实施例中任何一个实施例中。具有与图1相同功能的部分由相同的参考标号表示,并且将简要描述如下。
在根据本发明第十一实施例的电动转向设备中,转向辅助扭矩施加到转向轴。根据本发明第十一实施例的电动转向设备的转向机构10’设置有转向轴12,转向轴12的上端连接到驾驶员方向盘11,使得转向轴12与驾驶员方向盘11一起旋转。小齿轮13连接到轴12的下端,以与转向轴12一起旋转。小齿轮13与形成在齿条14中的齿条齿啮合,由此形成齿条小齿轮机构。左前轮FW1和右前轮FW2经由拉杆(未示出)和转向节臂(未示出)连接到齿条14的相应端,使得前轮FW1和FW2能够转向。左前轮FW1和右前轮FW2根据齿条14轴向的运动沿着顺时针方向或者逆时针方向转向,齿条14轴向的运动是由于转向轴12绕其轴线旋转引起的。
与转向轴12一起旋转的减速齿轮17设置在转向轴12的中间部分处。减速齿轮17的输入轴17a通过连接器18连接到电动机15的输出轴15a,电动机15是用来产生转向辅助扭矩的。因此,电动机15产生的扭矩经由连接器18传递到减速齿轮17,由此转向辅助扭矩施加到转向轴12。在本发明第十一实施例中,转向机构10’包括驾驶员方向盘11、转向轴12、减速齿轮17、齿条小齿轮机构、拉杆、转向节臂等。
如在图29所示,连接器18设置有覆盖电动机15的输出轴15a的端部和减速齿轮17的输入轴17a的端部(这两个端部彼此啮合)的柱形连接壳体18a。电动机15的输出轴15a(以下称为“电动机轴15a”)以柱形形状形成,槽15b形成在其端部中。其中形成槽15b的端部的横截面在端部沿着输出轴15a的轴向延伸的平面所取时呈U形。形成槽15b的相应端部并且彼此相对的零件15c和15d用作将旋转力传递到减速齿轮17的输入轴17a(以下称为“减速齿轮轴17a”)的部分,并且形成四角柱状。此后,彼此相对的零件15c和15d将称为连接输出零件15c和15d。
减速齿轮轴17a形成为柱形形状。减速齿轮轴17a的端部的彼此相对的侧部沿着轴向平坦地削去,由此在减速齿轮轴17a的中央部分形成四角柱状17b。此后,四角柱状17b将称为连接输入零件17b。连接输入零件17b布置在电动机轴15a的槽15b中,使得在在槽15b的相应端部处的连接输出零件15c和15d的每个和连接输入零件17b之间保持预定的距离。在此状态下,电动机轴15a的端部和减速齿轮轴17a的端部由连接壳体18a覆盖。弹性部件19(弹性体)布置在连接壳体18a中。因此,电动机轴15a和减速齿轮轴17a在不彼此接触的同时经由弹性部件19彼此连接。
图30A和图30B图示了沿着图29中的线A-A所取的横截面视图。图30A示出了非工作状态(即,当电动机15没有产生旋转扭矩时的连接状态)。在此情况下,连接输入零件17b布置在彼此相对的连接输入零件15c和15d之间的中间位置处,使得连接输入零件17b平行于连接输出零件15c和15d。弹性部件19布置在连接输出零件15c和15d和连接输入部件17b之间。在此状态下,旋转扭矩由电动机15产生。如图30B所示,如果旋转扭矩较低,尽管电动机轴15a旋转,弹性部件19变形。结果,旋转扭矩不容易传递到减速齿轮轴17a。即,减速齿轮轴17a相对于电动机轴15a的旋转角度的旋转角度由于弹性部件19的变形而较小。如果由电动机15产生的旋转扭矩增大,则弹性部件19的进一步的变形受到抑制,因此施加到连接输出零件15c和15d的旋转扭矩在弹性部件19变形的情况下传递到连接输入零件15c和15d,并且减速齿轮轴17a旋转。
如图31所示,在连接器18中,差动角(电动机轴15a和减速齿轮轴17a之间的旋转角度差)相对于扭矩增大的增大率在低扭矩范围(在该范围,从电动机15输出的扭矩较低)中较高。即,连接器18具有低的刚度特性。另一方面,在高扭矩范围(在该范围中,从电动机15输出的扭矩较高)中,差动角相对于扭矩增大的增大率较低。即,连接器18具有较高的刚度特性。连接器18的刚度特性根据从电动机15输出的扭矩而改变,并且低扭矩范围中的刚度低于高扭矩范围中的刚度。其中连接器18的刚度较低的范围优选是在电动机旋转角度沿着顺时针方向和逆时针方向的每个方向的5度和25度之间的范围。
在上述本发明第四至第九实施例的每个中,当判定旋转角度传感器23已经发生故障时,高频扭矩(正弦波扭矩或者矩形波扭矩)加入到转向辅助扭矩,由此电动机旋转角速度ωm保持等于或者高于预定值,以确保所估计的旋转角度的准确性。然而,附加扭矩可以作为振动传递到驾驶员方向盘11,并且驾驶员会感受到不舒适的感觉。因此,根据本发明第十一实施例,具有可变刚度特性的连接器18设置在电动机轴15a和减速齿轮轴17a之间。在低扭矩范围中的连接器18的刚度低于在高扭矩范围中的刚度。因此,由于附加扭矩引起的振动不容易传递到驾驶员方向盘11。
当操作驾驶员方向盘的力(转向扭矩)较小时,驾驶员更可能感受到扭矩波动。在此情况下,由电动机15产生的转向辅助扭矩较低。此时,设置在电动机15和转向机构10’之间的连接部分处的连接器18的刚度较低。因此,当电动机15产生高频扭矩时,获得具有预定振幅的振动,且不与电动机15的转动操作干涉。结果,确保了较高电动机旋转角速度ωm。另外,振动不容易地传递到驾驶员方向盘11,这是因为振动被连接器18的弹性体19吸收。
当有力地转动驾驶员方向盘时,电动机15产生较高的转向辅助扭矩。在此情况下,连接器18的刚度较高。因此,由电动机15产生的旋转扭矩可靠地传递到转向机构10’,因此产生了适合的转向辅助扭矩。当转动驾驶员方向盘11的力较大时,驾驶员不容易感受到因附加扭矩引起的扭矩波动。因此,驾驶员不容易感受到不舒适的感觉。
接着,将参照图32至图34描述本发明第十二实施例的电动转向设备。本发明第十二实施例的电动转向设备与本发明第十一实施例不同在于电动机和减速齿轮之间的连接部分的结构。本发明第十二实施例可以应用到其中高频扭矩加入到转向辅助扭矩的第四至第九实施例的任何一个实施例的电动转向设备中。在以下的描述中,仅仅描述本发明第十二实施例与本发明第十一实施例不同的特征。
在本发明第十二实施例的电动转向设备中,蜗轮齿轮110用作设置到转向轴12的减速齿轮。图32简要地示出了减速齿轮单元的结构,并且是沿着与转向轴12的轴向方向垂直的平面所取的示意视图。蜗轮齿轮110包括固定到转向轴12的蜗轮111、与蜗轮111啮合的柱形蜗杆112。柱形蜗杆112设置有蜗轴112a和112b,蜗轴112a和112b是旋转轴,并且从柱形蜗杆112的相应端部轴向延伸。蜗轴112a连接到电动机15的输出轴15a,并且由第一支撑轴承113可旋转地支撑。另一个蜗轴112b可旋转地由第二支撑轴承114支撑。
第二支撑轴承114连接到推入配合致动器115。推入配合致动器115由电子控制单元30供应的电力操作,由此向前(图32中箭头“a”的方向)推着第二支撑轴承114。因此,如图33A所示,在预定负荷作用下,柱形蜗杆112的齿排(tooth row)112c被推入蜗轮111的齿排111a。以下,图33A所示的其中齿排112c与齿排111a啮合的状态将称为第一啮合状态。例如,电磁线圈或者压电元件用作推入配合致动器115。推入负荷由电子控制单元30供应的电力调节。蜗轮111的齿排111a由树脂制造。
当电子控制单元30的电力供应中断时,推入配合致动器115抵消用于推入第二支撑轴承114的力。在此情况下,例如弹簧(未示出)使第二支撑轴承返回到预定的位置(沿着图32中的箭头“b”的方向)。因此,如图33B所示,在柱形蜗杆112的齿排112c和蜗轮111的齿排111a之间形成预定量的间隙C。此后,图33B所示的其中齿排112c与齿排111a的状态将称为第二啮合状态。
例如,在本发明第四至第九实施例的每个中,当判定旋转角度传感器23已经发生故障时,高频扭矩加入到转向辅助扭矩,由此电动机旋转角速度ωm保持等于或者高于预定值以确保所估计的旋转角度的准确性。然而,附加扭矩可以作为振动传递到驾驶员方向盘,因此驾驶员会感受到不舒适的感觉。因此,在本发明第十二实施例中,当判定旋转角度传感器23已经发生故障时,推入配合致动器115操作地将蜗轮齿轮110的啮合状态从第一啮合状态改变到第二啮合状态。因此,电动机15和转向轴12之间的刚度发生了变化。
图34A和图34B示出了蜗轮齿轮110的刚度特性。图34A示出了第一啮合状态下的刚度特性,图34B示出了第二啮合状态下的刚度特性。在第二啮合状态下,间隙C形成在柱形蜗杆112的齿排112c和蜗轮111的齿排111a之间。因此,在电动机15旋转的早期阶段,蜗轮111相对于柱形蜗杆112的旋转的旋转角度较小。此外,因为蜗轮111的齿排111a由树脂制成,树脂的变形反映在柱形蜗杆112和蜗轮111之间的旋转角度的差异中。
因此,如图34B所示,在其中来自电动机15的扭矩输出较低的低扭矩范围中,差动角(柱形涡杆112和蜗轮111之间的旋转角度差)相对于扭矩增大的增大率较高。即,蜗轮齿轮110具有较低刚度特性。另一方面,在其中来自电动机15的扭矩输出较高的高扭矩范围中,差动角相对于扭矩增大的增大率较低。即,蜗轮齿轮110具有较高的刚度特性。如上所述,当涡轮齿轮110处于第二啮合状态下时,涡轮齿轮110的刚度特性随着从电动机15输出的扭矩而变化。在低扭矩范围中的涡轮齿轮110的刚度低于高扭矩范围中的刚度。
如图34A所示,当涡轮齿轮110处于第一啮合状态下时,涡轮齿轮110具有恒定的高刚度特性。刚度的大小设定成大致等于第二啮合状态下高扭矩范围中的刚度。
电子控制单元30控制推入配合致动器115。例如,如图5中虚线所示,电子控制单元30设置有致动器驱动电路116。在此示例中,刚度特性改变机构设置在本发明第四实施例中。然而,该结构可以应用到其中高频扭矩加入到转向辅助扭矩的其它实施例中。致动器驱动电路116从故障判定单元61接收表示旋转角度传感器23是否已经发生故障的故障判定信号。当致动器驱动电路66还没有接收到传感器故障信号“失效”时,向推入配合致动器115供电以将涡轮齿轮110设置在第一啮合状态。另一方面,当致动器驱动电路66已经接收到传感器故障信号“失效”时,将向推入配合致动器115的供电切断以将涡轮齿轮110设定在第二啮合状态。
利用本发明第十二实施例的电动转向设备,当判定旋转角度传感器已经发生故障并且高频扭矩加入到转向辅助扭矩时,将蜗轮齿轮110的啮合状态改变到第二啮合状态,由此获得了与第十一实施例相同的效果。即,当转动驾驶员方向盘的力较小时,蜗轮齿轮110的刚度较低。因此,电动机旋转角速度ωm保持等于或者高于预定值,以防止所估计的旋转角度准确性降低。此外,因附加扭矩引起的振动传递到驾驶员方向盘11受到抑制以抑制施加给驾驶员的不舒适感觉。当有利转动驾驶员转向盘11时,电动机15产生较高转向辅助扭矩,并且蜗轮齿轮110的刚度增大。因此,由电动机15产生的旋转扭矩可靠地传递到转向轴12,由此产生了适合的转向辅助扭矩。当转动驾驶员方向盘的力较大时,驾驶员不容易感受到因附加扭矩引起的扭矩波动。因此,驾驶员不容易感受到不舒适的感觉。
至此已经描述了根据本发明实施例的电动转向设备。然而,本发明不限于上述的实施例。本发明可以以在本发明的范围内的各种修改来实现。例如,在第十一实施例和第十二实施例的每个中,描述了其中转向辅助扭矩施加到转向轴的柱式电动转向设备。然而,第十一和第十二实施例的每个可以应用到其中转向辅助扭矩施加到齿条的齿条式电动转向设备。在正常辅助控制和无传感器辅助控制两种情况下改变辅助映射图的辅助映射图改变指令单元68不仅可以应用到第六实施例,而且可以应用到其它实施例。
在本发明的实施例中,设置了旋转角度传感器23,并且仅仅当判定旋转角度传感器23已经发生故障时,执行使用所估计的旋转角度的无传感器辅助控制。可选地,可以构造成不设置旋转角度传感器23,并且恒定地执行无传感器辅助控制。
根据本发明的电动机控制装置基于与电动机旋转角度有关的信息控制电动机的旋转。在本发明实施例中,电动机控制装置由电子控制单元30的两相/三相坐标转换单元46、PWM电压产生单元47、逆变器电路48、电流传感器51和52、三相/两相坐标转换单元53、旋转角度转换单元55、角速度转换单元56、计算单元44、45和54、非干涉校正值计算单元43等构成。然而,电动机控制装置的构造不限于此。
根据本发明的辅助控制装置计算目标转向辅助扭矩,并且基于所计算的辅助扭矩提供向电动机供电的指令。在本发明的实施例中,辅助控制装置由电子控制单元30的基本辅助扭矩计算单元31、补偿值计算单元32、计算单元33、q轴目标电流计算单元34、磁场减弱控制参数计算单元35、d轴目标电流计算单元36、q轴目标电流校正计算单元37、计算单元38和39、比例积分控制单元41和42和每个实施例中附加单元(辅助停止指令单元63、辅助增益改变指令单元64、转向速度检测单元65、正弦波扭矩加入单元66、扭矩加入增益相乘单元67、辅助映射图改变指令单元68、矩形波扭矩加入单元69、扭矩加入增益相乘单元70、附加扭矩波形确定单元71、扭矩加入单元72和差动角控制单元73)。然而,辅助控制装置的构造不限于此。
尽管已经参照认为是示例性实施例描述了本发明,但是可以理解到本发明不限于所描述的实施例或者构造。相反,本发明意在覆盖各种修改和等同布置。此外,以作为示例的各种组合和构造示出所描述发明的各种元件,但是包括更多、更少或者仅仅单个元件的其它组合和构造也在本发明的范围内。

Claims (21)

1.一种电动转向设备,其特征在于包括:
转向机构(10),其响应于驾驶员方向盘(11)的转向操作而使转向车轮(FW1、FW2)转向;
电动机(15),其装配到所述转向机构,并产生用来辅助所述驾驶员方向盘的转向操作的转向辅助扭矩,并且由凸极型永磁电动机形成;
旋转角度信息获取装置(55),用于获取与所述电动机的旋转角度有关的信息;
电动机控制装置(30),用于基于由所述旋转角度信息获取装置获得的与所述旋转角度有关的信息控制所述电动机的旋转;
辅助控制装置(30),用于基于所述驾驶员方向盘的所述转向操作计算目标转向辅助扭矩,并且用于基于所计算的目标转向辅助扭矩向所述电动机控制装置提供向所述电动机供电的指令,以使所述电动机产生所述转向辅助扭矩;
旋转角度传感器(23),其随着所述电动机旋转而旋转,以检测所述电动机的所述旋转角度;
旋转角度估计装置(62),用于利用所述电动机的凸极性估计所述电动机的所述旋转角度;和
传感器故障判定装置(61),用于判定所述旋转角度传感器是否已经发生故障,
其中,
当判定所述旋转角度传感器没有故障时,所述旋转角度信息获取装置从所述旋转角度传感器获取与所述电动机的所述旋转角度有关的信息,并且当判定所述旋转角度传感器已经发生故障时,所述旋转角度信息获取装置从所述旋转角度估计装置获取与所述电动机的所述旋转角度有关的信息,并且
所述辅助控制装置在当所述传感器故障判定装置判定所述旋转角度传感器已经发生故障时和当所述传感器故障判定装置判定所述旋转角度传感器没有故障时两种情况下改变使所述电动机产生所述转向辅助扭矩的控制方式。
2.根据权利要求1所述的电动转向设备,其中,
所述辅助控制装置包括辅助停止装置(63),用于当所述传感器故障判定装置判定所述旋转角度传感器已经发生故障时,如果所述辅助控制装置判定所述电动机的旋转角速度低于预定值,则所述辅助停止装置停止所述转向辅助扭矩的产生。
3.根据权利要求1所述的电动转向设备,其中,
所述辅助控制装置包括辅助扭矩减小装置(64),用于当所述传感器故障判定装置判定所述旋转角度传感器已经发生故障时,如果所述辅助控制装置判定所述电动机的旋转角速度低于预定值,则所述辅助扭矩减小装置根据所述旋转角速度的减小而减小由所述电动机产生的所述转向辅助扭矩。
4.根据权利要求2或3所述的电动转向设备,还包括:
转向速度检测装置(65),用于检测所述驾驶员方向盘的转向速度,
其中,
所述辅助控制装置基于由所述转向速度检测装置检测的信息判定所述电动机的所述旋转角速度是否低于所述预定值。
5.根据权利要求4所述的电动转向设备,其中,
所述转向速度检测装置包括检测所述驾驶员方向盘的转向角的转向角传感器(24),并且
所述转向速度检测装置基于由所述转向角传感器检测的所述转向角随时间的变化来计算所述驾驶员方向盘的所述转向速度。
6.根据权利要求1所述的电动转向设备,其中,
所述辅助控制装置包括脉动扭矩加入装置(66),用于当所述传感器故障判定装置判定所述旋转角度传感器已经发生故障时,所述脉动扭矩加入装置将脉动扭矩加入到由所述电动机产生的所述转向辅助扭矩。
7.根据权利要求6所述的电动转向设备,其中,
所述脉动扭矩是正弦波扭矩。
8.根据权利要求6所述的电动转向设备,其中,
所述脉动扭矩是矩形波扭矩或者梯形波扭矩。
9.根据权利要求6至8中任一项所述的电动转向设备,其中,
所述脉动扭矩的频率的值设定成使在所述电动机和所述驾驶员方向盘之间的传递函数增益等于或者低于预定值。
10.根据权利要求6至8中任一项所述的电动转向设备,其中,
所述辅助控制装置包括目标辅助扭矩设定装置,所述目标辅助扭矩设定装置用于从扭矩传感器(21)获取转向扭矩信息,其中所述扭矩传感器检测施加到所述驾驶员方向盘的转向扭矩,并且所述转向扭矩越高,目标辅助扭矩设定装置就将所述目标转向辅助扭矩的值设定得越高,并且
当所述传感器故障判定装置判定所述旋转角度传感器已经发生故障时,如果由所述扭矩传感器检测的所述转向扭矩等于或者低于预定值,则所述脉动扭矩加入装置停止将所述脉动扭矩加入到所述转向辅助扭矩。
11.根据权利要求10所述的电动转向设备,其中,
当所述传感器故障判定装置判定所述旋转角度传感器已经发生故障,并且停止将所述脉动扭矩加入到所述转向辅助扭矩时,如果所述辅助控制装置判定所述电动机的旋转角速度低于预定值,则所述辅助控制装置停止所述转向辅助扭矩的产生。
12.根据权利要求11所述的电动转向设备,其中,
所述目标辅助扭矩设定装置存储用来基于所检测的转向扭矩设定所述目标转向辅助扭矩的关系数据,所述关系数据包括故障时关系数据和正常时关系数据,当所述传感器故障判定装置判定所述旋转角度传感器已经发生故障时使用所述故障时关系数据,当所述传感器故障判定装置判定所述旋转角度传感器没有故障时使用所述正常时关系数据,并且
所述故障时关系数据的辅助不工作区比所述正常时关系数据的辅助不工作区要宽,在所述辅助不工作区中,所述目标转向辅助扭矩设定为零。
13.根据权利要求10所述的电动转向设备,其中,
所述目标辅助扭矩设定装置存储用来基于所检测的转向扭矩设定所述目标转向辅助扭矩的关系数据,所述关系数据包括故障时关系数据和正常时关系数据,当所述传感器故障判定装置判定所述旋转角度传感器已经发生故障时使用所述故障时关系数据,当所述传感器故障判定装置判定所述旋转角度传感器没有故障时使用所述正常时关系数据,并且
使用所述故障时关系数据设定的目标转向辅助扭矩小于使用所述正常时关系数据设定的目标转向辅助扭矩。
14.根据权利要求6所述的电动转向设备,其中,
所述脉动扭矩加入装置随着所述目标转向辅助扭矩减小而减小所述脉动扭矩的振幅,并且随着所述目标转向辅助扭矩增大而增大所述脉动扭矩的振幅。
15.根据权利要求6所述的电动转向设备,还包括:
转向传感器,其检测所述驾驶员方向盘的转向状态,
其中,
所述辅助控制装置包括目标波形确定装置,其用于至少基于由所述转向传感器检测的所述转向状态确定加入到所述转向辅助扭矩的所述脉动扭矩的目标波形。
16.根据权利要求6所述的电动转向设备,还包括:
可变刚度体,其设置在所述电动机的旋转轴和所述转向机构之间的连接部分处,并且所述可变刚度体在低扭矩范围中的刚度比在高扭矩范围中的刚度低,在所述低扭矩范围所述电动机产生较低的旋转扭矩,在所述高扭矩范围所述电动机产生较高的旋转扭矩。
17.根据权利要求6所述的电动转向设备,还包括:
刚度特性改变装置,用于选择性地改变所述电动机的旋转轴和所述转向机构之间的连接部分的刚度特性,
其中,
所述刚度特性改变装置在第一刚度特性和第二刚度特性之间改变所述刚度特性,基于所述第一刚度特性,在低扭矩范围中的刚度低于在高扭矩范围中的刚度,基于所述第二刚度特性,在所述低扭矩范围和所述高扭矩范围中达到的刚度都实质上等于基于所述第一刚度特性时所述高扭矩范围中的刚度,在所述低扭矩范围所述电动机产生较低的旋转扭矩,在所述高扭矩范围所述电动机产生较高的旋转扭矩,并且
当所述传感器故障判定装置判定所述旋转角度传感器已经发生故障时,所述刚度特性改变装置选择所述第一刚度特性,并且当所述传感器故障判定装置判定所述旋转角度传感器没有故障时,所述刚度特性改变装置选择所述第二刚度特性。
18.根据权利要求6所述的电动转向设备,还包括:
传动比改变装置,其改变转向传动比,所述转向传动比是所述驾驶员方向盘的转向角与所述转向车轮的转向角的比率;和
传动比控制装置,用于控制所述传动比改变装置,并且使所述电动机的旋转变化和所述脉动扭矩的变化彼此同步,使得加入到所述转向辅助扭矩的所述脉动扭矩不传递到所述驾驶员方向盘。
19.一种电动转向设备,包括:
转向机构,其响应于驾驶员方向盘的转向操作而使转向车轮转向;
电动机,其装配到所述转向机构,并产生用来辅助所述驾驶员方向盘的所述转向操作的转向辅助扭矩,并且由凸极型永磁电动机形成;
旋转角度信息获取装置,用于获取与所述电动机的旋转角度有关的信息;
电动机控制装置,用于基于由所述旋转角度信息获取装置获得的与所述旋转角度有关的信息控制所述电动机的旋转;
辅助控制装置,用于基于所述驾驶员方向盘的所述转向操作计算目标转向辅助扭矩,并且用于基于所计算的目标转向辅助扭矩向所述电动机控制装置提供向所述电动机供电的指令,以使所述电动机产生所述转向辅助扭矩;
其中,
所述旋转角度信息获取装置包括旋转角度估计装置,用于至少利用所述电动机的凸极性估计所述电动机的所述旋转角度;并且
所述辅助控制装置在当所述电动机的旋转角速度低于预定值时和当所述电动机的所述旋转角速度等于或者高于所述预定值时两种情况下改变使所述电动机产生所述转向辅助扭矩的控制方式。
20.根据权利要求19所述的电动转向设备,其中,
所述辅助控制装置包括辅助停止装置,用于当所述电动机的所述旋转角速度低于所述预定值时,所述辅助停止装置停止所述转向辅助扭矩的产生。
21.根据权利要求19所述的电动转向设备,其中,
所述辅助控制装置包括辅助扭矩减小装置,用于当判定所述电动机的所述旋转角速度低于所述预定值时,所述辅助扭矩减小装置根据所述旋转角速度的减小而减小由所述电动机产生的所述转向辅助扭矩。
CNB200710135704XA 2006-08-10 2007-08-10 电动转向设备 Expired - Fee Related CN100546861C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006218313 2006-08-10
JP2006218313A JP4329792B2 (ja) 2006-08-10 2006-08-10 電動パワーステアリング装置

Publications (2)

Publication Number Publication Date
CN101121414A true CN101121414A (zh) 2008-02-13
CN100546861C CN100546861C (zh) 2009-10-07

Family

ID=39049531

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200710135704XA Expired - Fee Related CN100546861C (zh) 2006-08-10 2007-08-10 电动转向设备

Country Status (4)

Country Link
US (1) US7694777B2 (zh)
JP (1) JP4329792B2 (zh)
CN (1) CN100546861C (zh)
DE (1) DE102007037639B4 (zh)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101895245A (zh) * 2009-05-22 2010-11-24 通用汽车环球科技运作公司 用于检测电流传感器误差的方法和系统
CN101981805A (zh) * 2008-03-31 2011-02-23 株式会社捷太格特 电机控制装置和电动动力转向装置
CN102026862A (zh) * 2008-05-12 2011-04-20 丰田自动车株式会社 用于车辆的转向装置和用于转向装置的控制方法
CN102042906A (zh) * 2009-10-15 2011-05-04 株式会社万都 用于检测减速器故障的方法和系统
CN102215025A (zh) * 2010-04-08 2011-10-12 欧姆龙汽车电子株式会社 电动机驱动装置
CN102232031A (zh) * 2009-01-22 2011-11-02 丰田自动车株式会社 电动动力转向装置
CN102916648A (zh) * 2011-08-02 2013-02-06 富士电机株式会社 逆变器的控制装置
CN103129606A (zh) * 2011-11-30 2013-06-05 株式会社捷太格特 车辆用转向装置
CN103427758A (zh) * 2013-07-26 2013-12-04 江苏科技大学 单相感应电机励磁电流pi控制参数的调整方法
CN104067509A (zh) * 2012-01-27 2014-09-24 三菱电机株式会社 电动机控制装置及电动助力转向装置
CN102687386B (zh) * 2009-12-25 2015-03-18 丰田自动车株式会社 电动助力转向装置
CN104428191A (zh) * 2012-06-14 2015-03-18 雷诺两合公司 保障配备有电动动力转向系统的机动车辆的后车轮控制的安全性的方法
CN104808699A (zh) * 2015-04-13 2015-07-29 武汉华中天勤光电系统有限公司 一种基于齿轮机构的伺服控制方法
CN105301494A (zh) * 2014-06-13 2016-02-03 现代自动车株式会社 用于电动机系统的故障判定方法
CN105292371A (zh) * 2015-10-28 2016-02-03 小米科技有限责任公司 电动助力车的充电装置、电控装置及电控方法
CN105517910A (zh) * 2013-09-04 2016-04-20 丰田自动车株式会社 转向装置和转向控制器
CN106574829A (zh) * 2014-08-25 2017-04-19 株式会社Sg 旋转检测装置
CN106662426A (zh) * 2014-08-25 2017-05-10 株式会社Sg 旋转检测器
CN107003153A (zh) * 2014-12-16 2017-08-01 日立汽车系统株式会社 旋转角检测装置和动力转向装置
CN107031708A (zh) * 2015-10-27 2017-08-11 株式会社捷太格特 转向操纵控制装置
CN107176201A (zh) * 2016-03-10 2017-09-19 株式会社捷太格特 转向操纵控制装置
CN107949985A (zh) * 2015-08-12 2018-04-20 日本精工株式会社 马达控制装置、电动助力转向装置及车辆
CN108290605A (zh) * 2015-12-02 2018-07-17 三菱电机株式会社 电动助力转向装置
CN108292128A (zh) * 2015-10-06 2018-07-17 贝利莫控股公司 致动器和操作致动器的方法
CN109641618A (zh) * 2016-08-26 2019-04-16 日本精工株式会社 电动助力转向装置的控制装置
CN109747703A (zh) * 2017-11-07 2019-05-14 株式会社捷太格特 转向操纵控制装置
CN110134004A (zh) * 2019-04-09 2019-08-16 上海电力学院 一种基于电力弹簧电路结构的pi控制参数整定方法
CN110861704A (zh) * 2018-08-27 2020-03-06 株式会社万都 方向盘减振设备及其方向盘减振方法
CN111278712A (zh) * 2017-11-08 2020-06-12 大众汽车有限公司 用于为转向系统提供转向支持的机电式转向驱动系统
CN111543002A (zh) * 2017-12-20 2020-08-14 美高森美SoC公司 用于步进电动机的负载转矩的无传感器检测以及用于优化驱动电流以进行有效操作的装置和方法
CN111923903A (zh) * 2019-05-13 2020-11-13 大众汽车有限公司 机动车的路肩行驶的结束
CN112014732A (zh) * 2020-08-27 2020-12-01 中科新松有限公司 一种扭矩电流检测装置和方法
CN113135224A (zh) * 2021-05-27 2021-07-20 山东凌畅汽车科技有限公司 一种线控转向路感模拟控制系统
CN113815719A (zh) * 2017-05-26 2021-12-21 株式会社昭和 故障检测装置和电动助力转向装置
CN113928406A (zh) * 2021-11-30 2022-01-14 南京众控电子科技有限公司 一种线控转向系统脉冲辅助转向装置及控制方法
CN113939982A (zh) * 2019-05-21 2022-01-14 法雷奥系统公司 用于检测刮水器马达的旋转部分的旋转角位置的方法、以及刮水器马达

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8091679B2 (en) * 2004-04-28 2012-01-10 Nsk Ltd. Electric power steering device
JP4727410B2 (ja) * 2005-12-16 2011-07-20 トヨタ自動車株式会社 ステアリング制御装置および電動車両
JP4228237B2 (ja) * 2006-06-06 2009-02-25 トヨタ自動車株式会社 電動パワーステアリング装置
JP4419997B2 (ja) * 2006-08-28 2010-02-24 トヨタ自動車株式会社 電動パワーステアリング装置
JP2008120259A (ja) * 2006-11-13 2008-05-29 Jtekt Corp 車両用操舵装置
JP4425297B2 (ja) * 2007-07-25 2010-03-03 株式会社デンソー 操舵補助装置
JP2009096263A (ja) * 2007-10-15 2009-05-07 Denso Corp 車両制御装置
JP4559464B2 (ja) * 2007-11-21 2010-10-06 本田技研工業株式会社 電動ステアリング装置
DE102008062515A1 (de) * 2007-12-21 2009-06-25 Denso Corporation, Kariya Vorrichtung zum Steuern eines Drehmoments einer elektrischen Drehmaschine
JP2009247181A (ja) 2008-03-31 2009-10-22 Jtekt Corp モータ制御装置および電動パワーステアリング装置
JP5062010B2 (ja) * 2008-04-11 2012-10-31 日本精工株式会社 電動パワーステアリング装置
JP4605250B2 (ja) * 2008-05-14 2011-01-05 トヨタ自動車株式会社 車両のステアリング装置
US8744682B2 (en) * 2008-05-30 2014-06-03 GM Global Technology Operations LLC Reducing the effects of vibrations in an electric power steering (EPS) system
JP5534292B2 (ja) * 2008-06-30 2014-06-25 株式会社ジェイテクト 車両用操舵装置
JP4775413B2 (ja) * 2008-07-04 2011-09-21 株式会社デンソー 電動パワーステアリング装置
EP2146426B1 (de) 2008-07-16 2012-06-27 Siemens Aktiengesellschaft Verfahren zum Betrieb einer Antriebseinrichtung und Antriebseinrichtung zur Ausführung des Verfahrens
JP2010095075A (ja) * 2008-10-15 2010-04-30 Jtekt Corp 車両用操舵装置
JP2010161907A (ja) * 2009-01-09 2010-07-22 Toyota Motor Corp モータ駆動制御システムの制御装置
JP5376215B2 (ja) * 2009-01-30 2013-12-25 株式会社ジェイテクト モータ制御装置
EP2409897B1 (en) 2009-02-23 2013-09-04 Showa Corporation Electric Power Steering Apparatus and Control Method thereof
JP5495018B2 (ja) 2009-03-12 2014-05-21 株式会社ジェイテクト モータ制御装置
JP5561516B2 (ja) * 2009-07-06 2014-07-30 株式会社ジェイテクト モータ制御装置および車両用操舵装置
JP5263079B2 (ja) * 2009-08-26 2013-08-14 トヨタ自動車株式会社 電動パワーステアリング装置
JP5402414B2 (ja) * 2009-09-02 2014-01-29 日本精工株式会社 電動パワーステアリング装置
JP5458768B2 (ja) * 2009-09-17 2014-04-02 株式会社デンソーウェーブ ロボット制御装置および制御方法
JP5532295B2 (ja) * 2009-11-12 2014-06-25 株式会社ジェイテクト モータ制御装置および車両用操舵装置
JP5440846B2 (ja) * 2009-11-16 2014-03-12 株式会社ジェイテクト モータ制御装置および車両用操舵装置
JP5614583B2 (ja) * 2009-11-17 2014-10-29 株式会社ジェイテクト モータ制御装置および車両用操舵装置
JP5257374B2 (ja) * 2010-02-02 2013-08-07 トヨタ自動車株式会社 電動パワーステアリング装置
US8831854B2 (en) * 2010-08-16 2014-09-09 Chrysler Group Llc Active shimmy mitigation
US9205869B2 (en) 2010-08-16 2015-12-08 Honda Motor Co., Ltd. System and method for determining a steering angle for a vehicle and system and method for controlling a vehicle based on same
JP5692569B2 (ja) 2010-08-23 2015-04-01 株式会社ジェイテクト 車両用操舵装置
US9440674B2 (en) 2010-09-15 2016-09-13 GM Global Technology Operations LLC Methods, systems and apparatus for steering wheel vibration reduction in electric power steering systems
US9266558B2 (en) 2010-09-15 2016-02-23 GM Global Technology Operations LLC Methods, systems and apparatus for steering wheel vibration reduction in electric power steering systems
JP5570401B2 (ja) * 2010-12-01 2014-08-13 本田技研工業株式会社 電動パワーステアリング装置
US9327762B2 (en) 2010-12-14 2016-05-03 GM Global Technology Operations LLC Electric power steering systems with improved road feel
JP5942337B2 (ja) 2011-04-28 2016-06-29 株式会社ジェイテクト 車両用操舵装置
US9975569B2 (en) * 2011-06-22 2018-05-22 Ford Global Technologies, Llc System and method for controlling electric power steering assist
JP5387630B2 (ja) * 2011-08-01 2014-01-15 株式会社デンソー 多相回転機の制御装置、及びこれを用いた電動パワーステアリング装置
JP5965761B2 (ja) * 2012-07-23 2016-08-10 矢崎総業株式会社 方向指示装置
JP5962312B2 (ja) * 2012-08-03 2016-08-03 株式会社デンソー 電動パワーステアリング制御装置
DE102012021436A1 (de) * 2012-10-30 2014-04-30 Volkswagen Aktiengesellschaft Vorrichtung zum assistierenden oder automatischen Führen eines Kraftfahrzeuges
JP6024969B2 (ja) 2012-12-12 2016-11-16 株式会社ジェイテクト 回転角検出装置およびそれを備えた電動パワーステアリング装置
JP6024970B2 (ja) * 2012-12-12 2016-11-16 株式会社ジェイテクト 回転角検出装置およびそれを備えた電動パワーステアリング装置
JP6024971B2 (ja) 2012-12-12 2016-11-16 株式会社ジェイテクト 回転角検出装置
JP6086205B2 (ja) 2012-12-12 2017-03-01 株式会社ジェイテクト 位相差検出装置およびそれを備えた回転角検出装置
JP6179098B2 (ja) * 2012-12-25 2017-08-16 株式会社ジェイテクト 電動パワーステアリング装置
JP5614598B2 (ja) * 2012-12-26 2014-10-29 株式会社ジェイテクト モータ制御装置
KR101922495B1 (ko) * 2013-04-25 2018-11-27 주식회사 만도 토크 신뢰성 제공 방법 및 제어 장치
WO2015125617A1 (ja) * 2014-02-24 2015-08-27 日立オートモティブシステムズステアリング株式会社 車両搭載機器の制御装置およびパワーステアリング装置
WO2015166546A1 (ja) * 2014-04-29 2015-11-05 三菱電機株式会社 交流回転機の制御装置及びこれを備えた電動パワ-ステアリング装置
EP3196096B1 (en) * 2014-09-17 2019-02-20 NSK Ltd. Electric power steering device
US10309803B2 (en) 2015-02-20 2019-06-04 Analog Devices Global Detecting sensor error
CN105910528B (zh) 2015-02-20 2019-09-20 亚德诺半导体集团 检测传感器误差
KR101684538B1 (ko) * 2015-06-18 2016-12-08 현대자동차 주식회사 하이브리드 차량의 인버터 제어 방법
KR101724473B1 (ko) * 2015-06-18 2017-04-07 현대자동차 주식회사 조향 시스템의 출력 제어 방법
JP6198181B2 (ja) * 2015-11-06 2017-09-20 マツダ株式会社 車両用挙動制御装置
KR102419092B1 (ko) * 2016-01-08 2022-07-11 주식회사 만도 차량제어장치 및 차량제어방법
JP6409821B2 (ja) * 2016-05-02 2018-10-24 マツダ株式会社 電動パワーステアリングの制御装置
JP6409820B2 (ja) * 2016-05-02 2018-10-24 マツダ株式会社 電動パワーステアリングの制御装置
ES2825374T3 (es) * 2016-07-05 2021-05-17 Uisee Tech Beijing Ltd Procedimiento y sistema de control de dirección de vehículo de conducción autónoma
JP6740777B2 (ja) * 2016-07-27 2020-08-19 株式会社デンソー 電動パワーステアリング装置
US10259176B2 (en) * 2016-08-03 2019-04-16 The Boeing Company System and method associated with drape forming
DE102016009684A1 (de) * 2016-08-10 2018-02-15 Thyssenkrupp Ag Regelung eines Steer-by-Wire-Lenksystems
JP2018060289A (ja) * 2016-10-03 2018-04-12 オムロン株式会社 軌跡生成装置、軌跡生成装置の制御方法、制御プログラム、および記録媒体
JP6517259B2 (ja) * 2017-03-08 2019-05-22 本田技研工業株式会社 車両及び車両の制御方法
JP6790991B2 (ja) * 2017-04-24 2020-11-25 株式会社デンソー 車両の操舵支援装置および操舵支援制御方法
KR101950259B1 (ko) * 2017-05-22 2019-02-22 주식회사 만도 전동식 조향장치의 조향정보 검출 장치 및 조향정보 검출방법
US11390317B2 (en) * 2017-09-13 2022-07-19 Thyssenkrupp Presta Ag Electromechanical power steering system control using only measured or estimated steering torque signal
JP6965697B2 (ja) * 2017-11-09 2021-11-10 株式会社ジェイテクト 操舵制御装置
JP6962176B2 (ja) * 2017-12-20 2021-11-05 株式会社デンソー 電力変換装置の制御装置
KR102020752B1 (ko) * 2017-12-22 2019-09-11 현대모비스 주식회사 전동식 파워 스티어링 시스템의 토크 보상 장치 및 방법
US10355631B1 (en) * 2018-02-21 2019-07-16 GM Global Technology Operations LLC Methods, systems and apparatus for controlling current supplied to control a machine
KR102106291B1 (ko) * 2018-09-21 2020-05-04 주식회사 만도 조향 장치 및 그 방법, 그리고 조향 제어 장치
JP6962893B2 (ja) * 2018-10-04 2021-11-05 株式会社神戸製鋼所 振動抑制装置、振動抑制方法及びプログラム
KR102621530B1 (ko) * 2018-11-19 2024-01-04 현대자동차주식회사 전동식 파워 스티어링 제어 시스템 및 방법
WO2020145036A1 (ja) * 2019-01-11 2020-07-16 日本精工株式会社 車両用操向装置
JP7234777B2 (ja) * 2019-04-26 2023-03-08 株式会社ジェイテクト 転舵制御装置
KR20210017700A (ko) * 2019-08-09 2021-02-17 현대자동차주식회사 전동식 파워 조향 제어방법 및 제어시스템
US11511797B2 (en) * 2020-01-06 2022-11-29 Steering Solutions Ip Holding Corporation Dynamic and configurable capturing of diagnostic data of motor control systems
JP7480509B2 (ja) * 2020-01-13 2024-05-10 株式会社デンソー 操舵制御装置、操舵制御方法、操舵制御プログラム
CN114162215B (zh) * 2021-12-30 2023-03-14 联创汽车电子有限公司 Eps死区力矩补偿方法和模块
CN115432060A (zh) * 2022-10-12 2022-12-06 天津德科智控股份有限公司 一种电动助力转向器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06344937A (ja) 1993-06-04 1994-12-20 Toyota Motor Corp 電動式パワーステアリング装置
JP3525969B2 (ja) * 1995-12-01 2004-05-10 本田技研工業株式会社 電動パワーステアリング装置
JP3390333B2 (ja) * 1997-08-27 2003-03-24 本田技研工業株式会社 電動パワーステアリング装置
JP4147706B2 (ja) 1998-12-18 2008-09-10 トヨタ自動車株式会社 電気角検出装置および検出方法並びにモータ制御装置
JP2002104218A (ja) 2000-09-27 2002-04-10 Toyoda Mach Works Ltd 電動パワーステアリング装置の制御装置
JP3781653B2 (ja) 2001-03-12 2006-05-31 株式会社ジェイテクト 電動パワーステアリング装置
JP3982739B2 (ja) 2001-05-08 2007-09-26 本田技研工業株式会社 電動パワーステアリング装置
JP3600805B2 (ja) * 2001-07-11 2004-12-15 三菱電機株式会社 電動パワーステアリング装置およびこれに用いられる異常検出時の制御方法
JP3838101B2 (ja) * 2002-01-09 2006-10-25 日本精工株式会社 電動パワーステアリング装置
WO2004054086A1 (ja) 2002-12-12 2004-06-24 Nsk Ltd. モータ駆動制御装置および電動パワーステアリング装置
DE60213436T2 (de) * 2002-12-20 2007-03-01 Ford Global Technologies, LLC, Dearborn Regelungsstrategie für rechnergeregelte Lenkung
JP4189641B2 (ja) 2002-12-24 2008-12-03 三菱自動車工業株式会社 操舵力制御装置
JP3891288B2 (ja) 2003-03-28 2007-03-14 株式会社ジェイテクト 電気式動力舵取装置
JP4039317B2 (ja) * 2003-06-12 2008-01-30 株式会社ジェイテクト 電動パワーステアリング装置
JP4488708B2 (ja) 2003-09-26 2010-06-23 株式会社東芝 回転機制御装置および洗濯機
JP4103051B2 (ja) 2003-11-28 2008-06-18 富士電機機器制御株式会社 交流電動機用電力変換装置
JP4542797B2 (ja) 2004-02-23 2010-09-15 株式会社東芝 同期機の制御装置
JP4779358B2 (ja) 2004-12-24 2011-09-28 オイレス工業株式会社 電動式パワーステアリング装置用の軸連結機構

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101981805A (zh) * 2008-03-31 2011-02-23 株式会社捷太格特 电机控制装置和电动动力转向装置
US8541965B2 (en) 2008-03-31 2013-09-24 Jtekt Corporation Motor controller and electronic power steering apparatus
CN101981805B (zh) * 2008-03-31 2013-08-07 株式会社捷太格特 电机控制装置和电动动力转向装置
CN102026862B (zh) * 2008-05-12 2013-05-22 丰田自动车株式会社 用于车辆的转向装置和用于转向装置的控制方法
CN102026862A (zh) * 2008-05-12 2011-04-20 丰田自动车株式会社 用于车辆的转向装置和用于转向装置的控制方法
CN102232031A (zh) * 2009-01-22 2011-11-02 丰田自动车株式会社 电动动力转向装置
CN101895245B (zh) * 2009-05-22 2013-11-06 通用汽车环球科技运作公司 用于检测电流传感器误差的方法和系统
CN101895245A (zh) * 2009-05-22 2010-11-24 通用汽车环球科技运作公司 用于检测电流传感器误差的方法和系统
CN102042906B (zh) * 2009-10-15 2012-09-05 株式会社万都 用于检测减速器故障的方法和系统
CN102042906A (zh) * 2009-10-15 2011-05-04 株式会社万都 用于检测减速器故障的方法和系统
CN102687386B (zh) * 2009-12-25 2015-03-18 丰田自动车株式会社 电动助力转向装置
CN102215025B (zh) * 2010-04-08 2014-04-16 欧姆龙汽车电子株式会社 电动机驱动装置
CN102215025A (zh) * 2010-04-08 2011-10-12 欧姆龙汽车电子株式会社 电动机驱动装置
CN102916648A (zh) * 2011-08-02 2013-02-06 富士电机株式会社 逆变器的控制装置
CN103129606B (zh) * 2011-11-30 2015-11-18 株式会社捷太格特 车辆用转向装置
CN103129606A (zh) * 2011-11-30 2013-06-05 株式会社捷太格特 车辆用转向装置
CN104067509A (zh) * 2012-01-27 2014-09-24 三菱电机株式会社 电动机控制装置及电动助力转向装置
CN104428191A (zh) * 2012-06-14 2015-03-18 雷诺两合公司 保障配备有电动动力转向系统的机动车辆的后车轮控制的安全性的方法
CN103427758B (zh) * 2013-07-26 2015-08-19 江苏科技大学 单相感应电机励磁电流pi控制参数的调整方法
CN103427758A (zh) * 2013-07-26 2013-12-04 江苏科技大学 单相感应电机励磁电流pi控制参数的调整方法
CN105517910A (zh) * 2013-09-04 2016-04-20 丰田自动车株式会社 转向装置和转向控制器
CN105517910B (zh) * 2013-09-04 2017-09-29 丰田自动车株式会社 转向装置和转向控制器
CN105301494A (zh) * 2014-06-13 2016-02-03 现代自动车株式会社 用于电动机系统的故障判定方法
CN105301494B (zh) * 2014-06-13 2019-06-04 现代自动车株式会社 用于电动机系统的故障判定方法
US10228233B2 (en) 2014-08-25 2019-03-12 Nsd Corporation Rotation-detecting apparatus
US10203225B2 (en) 2014-08-25 2019-02-12 Nsd Corporation Rotation detector
CN106574829A (zh) * 2014-08-25 2017-04-19 株式会社Sg 旋转检测装置
CN106662426A (zh) * 2014-08-25 2017-05-10 株式会社Sg 旋转检测器
CN106574829B (zh) * 2014-08-25 2020-04-14 Nsd株式会社 旋转检测装置
CN107003153A (zh) * 2014-12-16 2017-08-01 日立汽车系统株式会社 旋转角检测装置和动力转向装置
CN107003153B (zh) * 2014-12-16 2019-08-30 日立汽车系统株式会社 旋转角检测装置和动力转向装置
CN104808699B (zh) * 2015-04-13 2017-06-13 武汉华中天勤光电系统有限公司 一种基于齿轮机构的伺服控制方法
CN104808699A (zh) * 2015-04-13 2015-07-29 武汉华中天勤光电系统有限公司 一种基于齿轮机构的伺服控制方法
CN107949985A (zh) * 2015-08-12 2018-04-20 日本精工株式会社 马达控制装置、电动助力转向装置及车辆
CN108292128A (zh) * 2015-10-06 2018-07-17 贝利莫控股公司 致动器和操作致动器的方法
CN108292128B (zh) * 2015-10-06 2021-01-26 贝利莫控股公司 致动器和操作致动器的方法
CN107031708B (zh) * 2015-10-27 2020-11-20 株式会社捷太格特 转向操纵控制装置
CN107031708A (zh) * 2015-10-27 2017-08-11 株式会社捷太格特 转向操纵控制装置
CN105292371B (zh) * 2015-10-28 2017-11-07 小米科技有限责任公司 电动助力车的充电装置、电控装置及电控方法
CN105292371A (zh) * 2015-10-28 2016-02-03 小米科技有限责任公司 电动助力车的充电装置、电控装置及电控方法
CN108290605B (zh) * 2015-12-02 2020-08-25 三菱电机株式会社 电动助力转向装置
CN108290605A (zh) * 2015-12-02 2018-07-17 三菱电机株式会社 电动助力转向装置
CN107176201A (zh) * 2016-03-10 2017-09-19 株式会社捷太格特 转向操纵控制装置
CN109641618A (zh) * 2016-08-26 2019-04-16 日本精工株式会社 电动助力转向装置的控制装置
CN113815719A (zh) * 2017-05-26 2021-12-21 株式会社昭和 故障检测装置和电动助力转向装置
CN109747703A (zh) * 2017-11-07 2019-05-14 株式会社捷太格特 转向操纵控制装置
CN109747703B (zh) * 2017-11-07 2022-07-19 株式会社捷太格特 转向操纵控制装置
CN111278712A (zh) * 2017-11-08 2020-06-12 大众汽车有限公司 用于为转向系统提供转向支持的机电式转向驱动系统
CN111543002A (zh) * 2017-12-20 2020-08-14 美高森美SoC公司 用于步进电动机的负载转矩的无传感器检测以及用于优化驱动电流以进行有效操作的装置和方法
CN111543002B (zh) * 2017-12-20 2023-11-03 美高森美SoC公司 用于步进电动机的负载转矩的无传感器检测以及用于优化驱动电流以进行有效操作的装置和方法
CN110861704A (zh) * 2018-08-27 2020-03-06 株式会社万都 方向盘减振设备及其方向盘减振方法
CN110134004B (zh) * 2019-04-09 2022-08-23 上海电力学院 一种基于电力弹簧电路结构的pi控制参数整定方法
CN110134004A (zh) * 2019-04-09 2019-08-16 上海电力学院 一种基于电力弹簧电路结构的pi控制参数整定方法
CN111923903A (zh) * 2019-05-13 2020-11-13 大众汽车有限公司 机动车的路肩行驶的结束
CN111923903B (zh) * 2019-05-13 2023-10-13 大众汽车有限公司 机动车的路肩行驶的结束
US11851056B2 (en) 2019-05-13 2023-12-26 Volkswagen Aktiengesellschaft Method for ending a drive of a transportation vehicle
CN113939982A (zh) * 2019-05-21 2022-01-14 法雷奥系统公司 用于检测刮水器马达的旋转部分的旋转角位置的方法、以及刮水器马达
US11962260B2 (en) 2019-05-21 2024-04-16 Valeo Systemes D'essuyage Method for detecting the rotary angle positions of rotating parts of a wiper motor, and wiper motor
CN112014732B (zh) * 2020-08-27 2023-06-02 中科新松有限公司 一种扭矩电流检测装置和方法
CN112014732A (zh) * 2020-08-27 2020-12-01 中科新松有限公司 一种扭矩电流检测装置和方法
CN113135224A (zh) * 2021-05-27 2021-07-20 山东凌畅汽车科技有限公司 一种线控转向路感模拟控制系统
CN113928406B (zh) * 2021-11-30 2022-09-13 南京众控电子科技有限公司 一种线控转向系统脉冲辅助转向装置及控制方法
CN113928406A (zh) * 2021-11-30 2022-01-14 南京众控电子科技有限公司 一种线控转向系统脉冲辅助转向装置及控制方法

Also Published As

Publication number Publication date
DE102007037639A1 (de) 2008-03-27
US20080035411A1 (en) 2008-02-14
JP4329792B2 (ja) 2009-09-09
DE102007037639B4 (de) 2015-11-19
JP2008037399A (ja) 2008-02-21
US7694777B2 (en) 2010-04-13
CN100546861C (zh) 2009-10-07

Similar Documents

Publication Publication Date Title
CN100546861C (zh) 电动转向设备
EP2024220B1 (en) Electric power steering apparatus and method for controlling the electric power steering apparatus
JP4425297B2 (ja) 操舵補助装置
US7222008B2 (en) Vehicle steering control apparatus
US7966114B2 (en) Electric power steering device, and control method thereof
EP1468900B1 (en) Vehicle steering apparatus
US8504242B2 (en) Motor controller and electronic power steering apparatus
US20050159866A1 (en) Steering control device and steering control method of motor vehicle
EP2599687B1 (en) Vehicle steering system
EP1955928B1 (en) Motor controller and electric power steering system
JP6781276B2 (ja) ブラシレスモータ
WO2009087991A1 (ja) モータ制御装置および電動パワーステアリング装置
US11427246B2 (en) Steering system
WO2008015856A1 (fr) Système de direction assistée électrique
EP2621789B1 (en) Electric power steering apparatus
JP5719177B2 (ja) 電動パワーステアリング装置
JP2013005624A (ja) 車両用操舵装置
JP2011250567A (ja) モータ制御装置及び電動パワーステアリング装置
JP6119809B2 (ja) モータ制御装置、電動パワーステアリング装置及び車両
JP2012111396A (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091007

CF01 Termination of patent right due to non-payment of annual fee