JP4228237B2 - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
JP4228237B2
JP4228237B2 JP2006156817A JP2006156817A JP4228237B2 JP 4228237 B2 JP4228237 B2 JP 4228237B2 JP 2006156817 A JP2006156817 A JP 2006156817A JP 2006156817 A JP2006156817 A JP 2006156817A JP 4228237 B2 JP4228237 B2 JP 4228237B2
Authority
JP
Japan
Prior art keywords
power supply
voltage
electric motor
steering
supply unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006156817A
Other languages
English (en)
Other versions
JP2007326379A (ja
Inventor
栄治 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006156817A priority Critical patent/JP4228237B2/ja
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to EP07766517A priority patent/EP2024220B1/en
Priority to PCT/IB2007/001498 priority patent/WO2007141634A1/en
Priority to CN2007800212272A priority patent/CN101472779B/zh
Priority to DE602007003828T priority patent/DE602007003828D1/de
Priority to US12/096,649 priority patent/US7845459B2/en
Priority to KR1020087016164A priority patent/KR100997067B1/ko
Publication of JP2007326379A publication Critical patent/JP2007326379A/ja
Application granted granted Critical
Publication of JP4228237B2 publication Critical patent/JP4228237B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Description

本発明は、運転者による操舵ハンドルの操舵操作をアシストするための電動モータを備えた電動パワーステアリング装置に関する。
従来から、操舵ハンドルに付与される操舵トルクを検出し、検出した操舵トルクに応じたアシストトルクを電動モータに発生させるようにした車両の電動パワーステアリング装置はよく知られている。
こうした電動パワーステアリング装置は、その電源として車載バッテリが使用される。そして、電源装置の異常に対する配慮から複数のバッテリを備えたものも知られている。例えば、特許文献1のものでは、電動パワーステアリング装置の電動モータを駆動する電源として、高圧バッテリと12V系の低圧バッテリとを備え、高圧バッテリからの電源供給が不能になったときに、バックアップ電源として低圧バッテリから電動モータに電源供給するようにしている。
特開2000−236626
しかしながら、低圧バッテリにより電動モータに電源供給する場合、速いモータ回転速度が得られなくなる。電動モータで発生させるべき必要トルク(アシストトルク)は、操舵操作に応じて設定される。この場合、図12に示すように、必要トルクが得られるモータ回転速度は、高圧バッテリを使用した場合の回転速度ω1に比べて、低圧バッテリを使用した場合には回転速度ω2にまで低下してしまう。
運転者がゆっくりハンドル操作した場合には問題ないが、速くハンドル操作した場合には、電動モータの回転が運転者の操舵速度に追従できず、かえって操舵操作の抵抗となってしまう。つまり、電動モータは、転舵輪を転舵する転舵機構に連結されているため、低電圧バッテリの使用により高速回転できない状況においては、速いハンドル操作が行われた場合に、運転者の操舵力で回転することになってしまい適正なアシスト機能が得られない。
そこで、例えば、低圧バッテリの出力側に昇圧回路を設ければ、こうした問題は解決できるものの、今度は、昇圧回路を設けることによるコスト増加、スペース増加といった新たな問題を招いてしまう。
本発明の目的は、上記問題に対処するためになされたもので、バックアップ電源としての低電圧電源を使用した場合においても、コスト増加、スペース増加を伴わずに適正なアシスト機能を得ることができるようにすることにある。
上記目的を達成するために、本発明の特徴は、操舵ハンドルの操舵により転舵輪を転舵する転舵機構と、上記転舵機構に組み付けられ、電源装置から電力供給されて回転し操舵補助力を発生する電動モータと、上記操舵ハンドルの操舵状態に応じて上記電動モータの作動を制御するモータ制御装置とを備えた電動パワーステアリング装置において、上記電源装置は、第1電圧の高圧バッテリとその高圧バッテリの電圧を下げる降圧回路とを備えて上記降圧された電源電圧を出力する主電源部と、上記主電源部の降圧された出力電圧よりも低い第2電圧の低圧バッテリを備えて上記第2電圧の電源電圧を出力する副電源部とを並列に接続して備え、いずれか1つの電源部を択一的に使って上記電動モータに電源供給するように構成され、上記モータ制御装置は、上記電動モータの回転方向をq軸とするとともに上記回転方向と直交する方向をd軸とする2相回転磁束座標系で記述されるベクトル制御によって上記電動モータの回転を制御するベクトル制御手段と、上記電動モータへの電源供給に上記副電源部が使用されている場合には、上記主電源部が使用されている場合に比べて、弱め界磁制御電流としてのd軸電流を増大して、電源電圧の低下によるモータ回転速度の低下を抑制する回転速度補償手段とを備えたことにある。
上記のように構成した本発明によれば、通常時においては主電源部の高圧バッテリから電源供給するが、バッテリ電圧(第1電圧)を降圧回路により電動モータの駆動に適した電圧に降圧して電源供給する。従って、例えば、ハイブリッド車両の主機モータ(車両駆動用モータ)の電源に使われるような高電圧のバッテリを電動パワーステアリング装置の電動モータの電源に利用することができる。しかも、降圧回路により電動モータの駆動に最適な電圧に変換して電源供給できるため、電動パワーステアリング装置の高出力化、高効率化を図ることができる。
一方、副電源部は、主電源部の出力電圧よりも低い第2電圧の低圧バッテリを備えるため、例えば、一般的な12V系の電気負荷に使用するバッテリをそのまま利用することができる。
主電源部が異常等により所定の電源供給できなくなった場合には、主電源部に代わって副電源部から電動モータに電源供給される。モータ制御装置は、ベクトル制御手段と回転速度補償手段とを備え、ベクトル制御手段により2相回転磁束座標系(d−q座標)で記述されるベクトル制御により電動モータの回転を制御する。そして、回転速度補償手段は、電動モータへの電源供給に副電源部が使用されている場合には、主電源部が使用されている場合に比べて、弱め界磁制御電流としてのd軸電流を増大する。
d軸電流は、q軸電流がモータトルクを発生させる方向に作用するのに対し、電動モータの永久磁石の磁界を弱める方向に作用し、電動モータの回転により発生する逆起電力を抑える。
このため、副電源部が使用されるときには主電源部が使用される場合に比べて、回転速度が優先されて電動モータが制御されることになる。
この結果、主電源部よりも電源電圧の低い副電源部を使用してもモータ回転速度の低下を抑制することができる。
本発明の他の特徴は、上記副電源部の副電源出力ラインには、その副電源出力ラインを開閉するスイッチ手段と、上記スイッチ手段より電源側に設けられ副電源出力ラインの電圧上昇を防止する保護回路とを備えたことにある。
この発明によれば、副電源部を使用しない場合には、スイッチ手段を開いておくことで主電源部から副電源部に電流が流れてしまうことがなく、また、スイッチ手段を閉じて副電源部から電動モータに電源供給する場合には、電動モータ側で回生電力が発生しても保護回路により回生電力を吸収することができる。この結果、副電源部および副電源部から電源供給を受ける他の電気負荷を保護することができる。
本発明の他の特徴は、上記主電源部を使用して上記電動モータに電源供給する場合には、上記主電源部の降圧回路を作動させるとともに上記副電源部のスイッチ手段を開き、上記副電源部を使用して上記電動モータに電源供給する場合には、上記主電源部の降圧回路を停止させるとともに上記副電源部のスイッチ手段を閉じる電源切替制御手段を備えたことにある。
この発明によれば、電源切替制御手段が、主電源部により電動モータに電源供給する場合には副電源部のスイッチ手段を開くため、主電源部から副電源部に電流が流れてしまうことを防止する。一方、副電源部により電動モータに電源供給する場合には、主電源部の降圧回路の作動を停止して主電源部からの電源供給を停止するとともにスイッチ手段を閉じて副電源部からの電源供給回路を形成する。この場合、降圧回路の作動が停止されているため主電源部から副電源部に電流が流れてしまうことがなく、また、電動モータで回生電力が発生した場合でも、副電源部の電源出力ラインに設けた保護回路により回生電力を吸収することができる。従って、低圧バッテリおよび低圧バッテリから電源供給を受ける他の電気負荷を保護することができる。
本発明の他の特徴は、上記電源装置の出力電圧を検出する電源電圧検出手段を備え、上記回転速度補償手段は、上記電源電圧検出手段により検出した電圧に応じて上記弱め界磁制御電流としてのd軸電流の通電量を制御することにある。
この発明によれば、電源電圧検出手段により電源装置の出力電圧を検出し、この検出電圧に応じて回転速度補償手段がd軸電流の通電量を制御する。従って、出力電圧の低い副電源部から電動モータに電源供給される場合には、自動的にd軸電流量が増大される。このため、例えば、電源供給に使用される電源部の種類に応じて弱め界磁制御を切り替える必要がなく、制御が容易となる。
本発明の他の特徴は、上記d軸電流の上限値を設定して上記電動モータの永久磁石の減磁を防止する減磁防止手段を備えたことにある。
d軸電流を過剰に流した場合、電動モータの永久磁石の磁力が減少してしまう。そこで、この発明では、d軸電流の上限値を設定することで、こうした不具合を防止できる。
以下、本発明の一実施形態に係る電動パワーステアリング装置について図面を用いて説明する。図1は、同実施形態に係る電動パワーステアリング装置を概略的に示している。
この電動パワーステアリング装置は、大別すると、操舵ハンドルの操舵により転舵輪を転舵する転舵機構10と、転舵機構に組み付けられ操舵補助力を発生する電動モータ20と、操舵ハンドルの操舵状態に応じて電動モータ20の作動を制御するモータ制御装置30と、電動モータ20およびモータ制御装置30に電源供給する電源装置70とから構成される。
転舵機構10は、操舵ハンドル11に上端を一体回転するように接続したステアリングシャフト12を備え、同シャフト12の下端にはピニオンギヤ13が一体回転するように接続されている。ピニオンギヤ13は、ラックバー14に形成されたラック歯と噛み合ってラックアンドピニオン機構を構成する。ラックバー14の両端には、図示しないタイロッドおよびナックルアームを介して左右前輪FW1,FW2が転舵可能に接続されている。左右前輪FW1,FW2は、ステアリングシャフト12の軸線回りの回転に伴うラックバー14の軸線方向の変位に応じて左右に転舵される。
ラックバー14には、操舵アシスト用の電動モータ20が組み付けられている。電動モータ20は、3相同期式永久磁石モータ(ブラシレスモータ)によって構成されている。この電動モータ20は、ハウジング内に固定されたステータを備え、ステータに巻かれたコイルに3相電流(電機子電流)を流すことにより3相回転磁界を形成し、この3相磁界内を永久磁石を固着したロータが3相電流に応じて回転するものである。
電動モータ20の回転軸は、ボールねじ機構16を介してラックバー14に動力伝達可能に接続されていて、その回転により左右前輪FW1,FW2の操舵をアシストする。ボールねじ機構16は、減速器および回転−直線変換器として機能するもので、電動モータ20の回転を減速するとともに直線運動に変換してラックバー14に伝達する。また、電動モータ20をラックバー14に組み付けるのに代えて、電動モータ20をステアリングシャフト12に組み付けて、電動モータ20の回転を減速器を介してステアリングシャフト12に伝達して同シャフト12を軸線周りに駆動するように構成してもよい。
次に、電動モータ20の作動を制御するモータ制御装置30について説明する。モータ制御装置30は、CPU,ROM,RAM等からなるマイクロコンピュータを主要部として構成され操舵アシスト量を演算する電子制御ユニット40(以下、アシストECUと40呼ぶ)と、電動モータ20の駆動回路であるインバータ36と、電動モータ20の通電制御を行うためのセンサとして操舵トルクセンサ31、車速センサ32、回転角センサ33、電圧センサ34、電流センサ37を備えている。
操舵トルクセンサ31は、ステアリングシャフト12に組み付けられていて、操舵ハンドル11の回動操作によってステアリングシャフト12に作用する操舵トルクTを検出する。操舵トルクTは、正負の値により操舵ハンドル11の右方向および左方向の操舵時における操舵トルクの大きさをそれぞれ表す。また、操舵トルクセンサ31をステアリングシャフト12に組み付けるのに代え、ラックバー14に組み付けて、ラックバー14の軸線方向の歪み量から操舵トルクTをそれぞれ検出するようにしてもよい。
車速センサ32は、車速Vxを検出して車速Vxを表す検出信号を出力する。
回転角センサ33は、電動モータ20内に組み込まれたエンコーダにより構成されており、電動モータ20の回転子の回転に応じてπ/2ずつ位相の異なる2相パルス列信号と基準回転位置を表す零相パルス列信号を出力する。この回転角センサ33からの検出信号は、電動モータ20の回転角θおよび角速度ωの計算に利用される。一方、この電動モータ20の回転角θは、操舵ハンドル11の操舵角に比例するものであるので、本明細書では、この回転角θは、操舵ハンドル11の操舵角としても共通に用いられる。
また、電動モータ20の回転速度である角速度ωは、操舵ハンドル11の操舵角速度に比例するものであるので、本明細書では、この角速度ωは、操舵ハンドル11の操舵角速度としても共通に用いられる。尚、この回転角センサ33の検出出力を用いるのに代えて、ステアリングシャフト12の回転角またはラックバー14の軸線方向の位置を検出するセンサを用意し、そのセンサによって検出された回転角および変位量を操舵ハンドル11の操舵角として用いるとともに、それらの微分値を操舵ハンドル11の操舵角速度としてそれぞれ用いるようにしてもよい。このようにして検出された操舵角θおよび操舵角速度ωも、正負の値により、操舵ハンドル11の右方向および左方向の操舵角および操舵角速度を表す。
インバータ36は、例えば、3相電圧型PWMインバータが使用される。このインバータ36は、電源装置70から電動モータ20への電源供給ライン100に設けられ、アシストECU40からのPWM制御信号により図示しない3相ブリッジ回路のスイッチング素子をオン・オフ制御して、電動モータ20のコイルに所定の3相電流を流す。
電流センサ37は、このインバータ36から電動モータ20に流れる電流を検出するもので、3相のうちの2相(例えば、U相とW相)に流れる電流をそれぞれ検出する電流センサ37a、37bを備える。
電圧センサ34は、電源装置70からインバータ36への電源供給ライン100の出力電圧をA/Dコンバータによりデジタル信号に変換して、電源装置70の出力電圧Vout検出値としてアシストECU40に出力する。
アシストECU40は、これらの操舵トルクセンサ31、車速センサ32、回転角センサ33、電圧センサ34、電流センサ37(37a,37b)の検出信号を入力し、この検出結果に基づいて後述する電動モータ20の制御電流値を演算する。
電源装置70は、電動パワーステアリング装置のモータ駆動用主電源となる主電源部80と、主電源部80の異常時に電動パワーステアリング装置のバックアップ電源として使用される副電源部90とから構成される。
主電源部80は、高圧バッテリ81と降圧回路82とからなる。高圧バッテリ81は、本実施形態においては定格電圧288Vのバッテリが使用される。本実施形態の電動パワーステアリング装置が搭載される車両は、ハイブリッド車両であり、車両走行用モータ(主機モータ)を駆動する高圧バッテリを備えるため、その高圧バッテリを電動パワーステアリング装置のモータ駆動用に利用する。
電動パワーステアリング装置の高出力化、高効率化といった最近の要求にこたえるためには、電動モータを高電圧で駆動することが好ましい。そこで、本実施形態の電動パワーステアリング装置においては、この車両走行用モータの電源として搭載されている高電圧バッテリを主電源として使用する。
降圧回路82は、高圧バッテリ81の出力ライン83に設けられ、バッテリ電圧(288V)を電動パワーステアリング装置の電動モータ20の駆動に最適な電圧48Vにまで降圧する。
この降圧回路82の構成については一般的であるため、図面を用いた説明は省略するが、例えば、高圧バッテリ81の直流電圧をトランジスタブリッジ回路によりいったん交流電圧に変換し、トランスにて低電圧に降圧した後、整流、平滑して直流電圧に変換する電気回路と、この降圧電圧が目標電圧(48V)となるようにトランジスタブリッジを制御する降圧制御回路とから構成される。
また、降圧回路82内には、その出力側に、電動モータ20で発生した回生電力を吸収する図示しない吸収回路を備える。例えば、この吸収回路としては、降圧回路82の出力ライン84をスイッチング素子と抵抗との直列回路で接地し、電動モータ20で発生した回生電力により出力ライン84の電圧が上昇したときに、その電圧に応じたデューティ比でスイッチング素子をオンオフするようにして回生電力を吸収するようにする。
副電源部90は、低圧バッテリ91と、低圧バッテリ91の出力ライン92(本発明の副電源出力ラインに相当する)に設けられる保護回路93と、切替スイッチ94とから構成される。低圧バッテリ91は、車両内の各種電気負荷に電源供給する定格電圧12Vの汎用のバッテリであり、モータ制御装置30の制御用電源としても使用される。
切替スイッチ94は、本発明のスイッチ手段に相当するもので、例えば、MOSFETが使用され、アシストECU40からの信号によりオン/オフ状態が切り替えられる。つまり、切替スイッチ94は、電動モータ20への電源供給を副電源部90で行うときにはオン(回路閉)、主電源部80で行うときにはオフ(回路開)に切替制御される。
保護回路93としては、ツェナーダイオードが使用される。本実施形態においては、ツェナー電圧27Vのものが使用される。従って、電動モータ20で発生する回生電力により副電源部90の出力ライン92の電圧が上昇しても、安全レベル(27V)で回生電力を吸収することができる。従って、低圧バッテリ91から電源供給を受ける各種電気負荷を保護することができる。
主電源部80の出力ライン84と副電源部の出力ライン92とは、電源供給ライン100に接続される。従って、電源装置70は、主電源部80と副電源部90と並列に接続し、いずれか一方の電源部の電力を電源供給ライン100から出力するように構成される。
次に、電動パワーステアリング装置の動作の概略について説明する。運転者が操舵ハンドル11を回動操作すると、この回動操作は、ステアリングシャフト12およびピニオンギヤ13を介してラックバー14に伝達されて、ラックバー14の軸線方向の変位により左右前輪FW1,FW2が転舵される。これと同時に、アシストECU40は、操舵トルクセンサ21からの信号に基づいてステアリングシャフト12に付与される操舵トルクTを検出すると共に車速センサ32からの信号に基づいて車速Vxを検出し、この2つの検出値からアシストトルクを算出する。そして、アシストECU40は、算出したアシストトルクに応じた通電量で電動モータ20を駆動制御してラックバー14を駆動することにより、操舵アシスト力を発生させる。
次に、アシストECU40について説明する。
アシストECU40は、操舵トルクセンサ31、車速センサ32、回転角センサ33、電圧センサ34、電流センサ37a,37bの検出信号を入力し、この検出結果に基づいて電動モータ20の制御量を演算するとともに、電源装置70で使用する電源部を切り替える。
図2は、プログラムの実行によって実現されるアシストECU40のマイクロコンピュータの機能を表す機能ブロック図である。
アシストECU40は、電動モータ20の回転方向をq軸とするとともに回転方向と直交する方向をd軸とする2相回転磁束座標系で記述されるベクトル制御によって電動モータ20の回転を制御する。尚、これらのq軸およびd軸について、表現方法を換えると、d軸が電動モータ20の永久磁石による界磁方向であり、q軸がそれに直交する方向である。
アシストECU40は、基本アシスト力演算部41および補償値演算部42を備えている。基本アシスト力演算部41は、操舵トルクTおよび車速Vxに応じて図3の特性グラフに示すように変化する基本アシスト力Tasを記憶した基本アシスト力テーブルを有する。基本アシスト力演算部41は、操舵トルクセンサ31からの操舵トルクT及び車速センサ32からの車速Vxを入力して、基本アシスト力テーブルを参照することにより基本アシスト力Tasを計算する。この場合、基本アシスト力Tasは、操舵トルクTの増加にしたがって増加するとともに車速Vxの増加にしたがって減少する。
尚、図3の特性グラフは、正領域すなわち右方向の操舵トルクTおよび基本アシスト力Tasの関係についてのみ示しているが、負領域すなわち左方向の操舵トルクTおよび基本アシスト力Tasに関しては、前記図3の特性グラフを原点を中心に点対称の位置に移した関係になる。また、本実施形態では、基本アシスト力Tasを基本アシスト力テーブルを用いて計算するようにしたが、基本アシスト力テーブルに代えて操舵トルクTおよび車速Vに応じて変化する基本アシスト力Tasを定義した関数を用意しておき、同関数を用いて基本アシスト力Tasを計算するようにしてもよい。
補償値演算部42は、車速Vxと共に、後述する電動モータ20の回転角θ(操舵ハンドル11の操舵角θに相当)および電動モータ20の角速度ω(操舵ハンドル11の操舵角速度ωに相当)を入力し、基本アシスト力Tasに対する補償値Trtを計算する。すなわち、補償値演算部42は、基本的には、操舵角θに比例して大きくなるステアリングシャフト12の基本位置への復帰力と、操舵角速度ωに比例して大きくなるステアリングシャフト12の回転に対する抵抗力に対応した戻しトルクとの和を補償値Trtとして計算する。また、この補償値Trtは、車速Vxの増加に従って増加する。尚、他の各種センサからの信号も加えて、補償値Trtを計算してもよい。
これらの計算された基本アシスト力Tasおよび補償値Trtは演算部43に入力される。演算部43は、基本アシスト力Tasと補償値Trtを加算し、加算結果を目標指令トルクT*としてq軸目標電流演算部44に供給する。q軸目標電流演算部44は、目標指令トルクT*に比例したq軸目標電流Iq*を計算する。このq軸目標電流Iq*は、2相回転磁束座標系で記述されるベクトル制御におけるq軸成分電流であり、電動モータ20によって発生される回転トルクの大きさを制御するものである。
アシストECU40は、電動モータ20の効率化および小型高出力化のための弱め界磁制御に関係した弱め界磁制御パラメータ演算部45を備えている。弱め界磁制御パラメータ演算部45は、詳しくは後述する電動モータ20の角速度ω、電動モータ20に対するq軸指令電圧Vq*’および電動モータ20のq軸実電流Iqを入力し、第1〜第3パラメータテーブルを参照して、角速度ω、q軸指令電圧Vq*’およびq軸実電流Iqに応じた第1〜第3パラメータCw,Cq,Ciを計算する。これらの第1〜第3パラメータCw,Cq,Ciは、d軸目標電流演算部46に供給される。d軸目標電流演算部46は、第1〜第3パラメータCw,Cq,Ciに正の係数kを乗算して、d軸目標電流Id*(=k・Cw・Cq・Ci)を計算する。このd軸目標電流Id*は、2相回転磁束座標系で記述されるベクトル制御におけるd軸成分電流であり、電動モータ20の界磁を弱めるためのものである。
次に、これらの第1〜第3パラメータCw,Cq,Ciについて説明しておく。第1パラメータテーブルは、図4の特性グラフに示すように、電動モータ20の角速度ωが小さい部分では「0」を示し、角速度ωの大きい部分ではほぼ一定の正の値を示す第1パラメータCwを記憶している。言い換えれば、角速度ωが大きくなるに従って大きくなる値を示す第1パラメータCwを記憶している。したがって、この特性に従って決定される第1パラメータCwは、電動モータ20の回転速度が大きな領域で弱め界磁電流を大きくすることを意味し、電動モータ20を出力トルク重視の特性から回転速度重視の特性に変更する。また、この第1パラメータCwは、電動モータ20の回転速度が遅いとき、すなわち操舵ハンドル11の回動速度が遅いときに、無駄な弱め界磁電流が流れることを防止する。
第2パラメータテーブルは、図5の特性グラフに示すように、電動モータ20のq軸指令電圧Vq*’が小さい部分では「0」を示し、q軸指令電圧Vq*’の大きい部分ではほぼ一定の正の値を示す第2パラメータCqを記憶している。言い換えれば、q軸指令電圧Vq*’が大きくなるに従って大きくなる値を示す第2パラメータCqを記憶している。このq軸指令電圧Vqが大きいことは、詳しくは後述するq軸指令電流ΔIqが大きいこと、すなわちq軸目標電流Iq*(補正q軸目標電流Iq*’)と電動モータ20の実q軸電流Iqとの偏差が大きいことを意味し、その偏差が大きくなるに従って電動モータ20の弱め界磁電流は大きくなる。これにより、第2パラメータCqは、車両走行中に操舵ハンドル11をゆっくりかつ小さく回動操作した場合に、前記偏差が大きなときに弱め界磁制御を行って電動モータ20の回転速度を上昇させ、前記偏差が小さなときには無駄な弱め界磁電流が流れることを防止する。
第3パラメータテーブルは、図6の特性グラフに示すように、q軸実電流Iqの小さい部分ではほぼ一定の正の値を示すとともにq軸実電流Iqの大きい部分では「0」を示す第3パラメータCiを記憶している。言い換えれば、q軸実電流Iqが大きくなるに従って小さくなる値を示す第1パラメータCiを記憶している。この第3パラメータCiは、電動モータ20の角速度ωが大きな状態で、操舵ハンドル11をさらに速く回動操作した場合に、電動モータ20による操舵アシスト力が減少制御されて、操舵ハンドル11の操舵トルクが増加することを回避する。尚、本実施形態では、これらの第1〜第3パラメータCw,Cq,Ciを第1〜第3パラメータテーブルを用いて計算するようにしたが、これらのテーブルに代えて角速度ω、q軸指令電圧Vq*’およびq軸実電流Iqに応じて変化する第1〜第3パラメータCw,Cq,Ciをそれぞれ定義した関数を用意しておき、同関数を用いて第1〜第3パラメータCw,Cq,Ciを計算するようにしてもよい。
アシストECU40は、d軸目標電流演算部46により算出されたd軸目標電流Id*を、電源装置70の出力電圧Voutに応じて補正するための補正係数を算出するd軸電流補正係数演算部47を備える。
このd軸電流補正係数演算部47は、電源装置70の出力電圧を検出する電圧センサ34の検出信号Voutを入力し、補正係数算出テーブルを参照して補正係数Cvを求める。
補正係数算出テーブルは、図7の特性グラフに示すように、出力電圧Voutが基準電圧Vr1以上あれば補正係数Cvを値1(Cv=1)に設定し、出力電圧Voutが基準電圧Vr1未満であれば、補正係数Cvを値1より大きな値に設定する。言い換えれば、d軸電流補正係数演算部47は、出力電圧Voutが低くなる従って大きくなる値を示す補正係数Cvを記憶している。この例では、出力電圧Voutが基準電圧Vr1より低い所定電圧Vr2以下となる範囲においては、補正係数Cvは一定の値(例えば、Cv=2)に設定される。
また、この基準電圧Vr1の値としては、例えば30Vに設定される。
尚、本実施形態では、補正係数Cvを補正係数テーブルを用いて計算するようにしたが、補正係数テーブルに代えて出力電圧Voutに応じて変化する補正係数Cvを定義した関数を用意しておき、同関数を用いて補正係数Cvを計算するようにしてもよい。
d軸目標電流演算部46で算出されたd軸目標電流Id*と、d軸電流補正係数演算部47で算出された補正係数Cvとは、d軸目標電流補正演算部48に入力される。
d軸目標電流補正演算部48では、入力されたd軸目標電流Id*と補正係数Cvとを乗算することにより、補正d軸目標電流Id*’を求める(Id*’=Id*×Cv)。従って、電源電圧Voutが低い場合には、d軸目標電流Id*を増加させるように補正して電動モータ20の界磁を弱める。
また、d軸目標電流補正演算部48で算出される補正d軸目標電流Id*’は、上限値設定部49により予め設定されている上限値Idmax以下に制限される。d軸電流を過剰に流した場合、電動モータ20の永久磁石の保有する磁力が減少してしまう。そこで、こうした減磁を防止するように、d軸電流の上限値Idmaxを設定している。
q軸目標電流演算部44にて計算されたq軸目標電流Iq*、および、d軸目標電流補正演算部48で計算された補正d軸目標電流Id*’は、q軸目標電流補正演算部50に入力される。
q軸目標電流補正演算部50は、図8のq軸電流補正演算プログラムに実行により、補正d軸目標電流Id*’を用いてq軸目標電流Iq*を補正する。すなわち、q軸目標電流補正演算部50は、q軸目標電流演算部44からq軸目標電流Iq*を入力し(S11)、d軸目標電流補正演算部48から補正d軸目標電流Id*’を入力(S12)する。そして、q軸目標電流補正演算部50は、補正係数テーブルを参照して、補正d軸目標電流Id*’に対応した補正係数αを計算する(S13)。補正係数テーブルは、q軸目標電流補正演算部50に内蔵されており、図9の特性グラフに示すように、補正d軸目標電流Id*’の増加に従って減少する正の補正係数αを記憶している。尚、本実施形態では、補正係数αを補正係数テーブルを用いて計算するようにしたが、補正係数テーブルに代えて補正d軸目標電流Id*’に応じて変化する補正係数αを定義した関数を用意しておき、同関数を用いて補正係数αを計算するようにしてもよい。
次に、q軸目標電流補正演算部50は、q軸目標電流Iq*を前記計算した補正係数αで除算することにより、q軸目標電流Iq*を補正した補正q軸目標電流Iq*’を計算して(S14)、同計算した補正q軸目標電流Iq*’を演算部51に出力する(S15)。これにより、補正q軸目標電流Iq*’は、補正d軸目標電流Id*’が大きくなるにしたがってq軸目標電流Iq*を大きくなる側に補正した値を示す。
尚、補正d軸目標電流Id*’は後述するd軸実電流Idとほぼ同じであるので、q軸目標電流補正演算部50は、図2に破線で示すように、補正d軸目標電流Id*’に代えてd軸実電流Idを用いて、q軸目標電流Iq*を補正した補正q軸目標電流Iq*’を計算するようにしてもよい。この場合、補正係数テーブルは、図9の括弧書きで示すように、d軸実電流Idに応じて前記補正d軸目標電流Id*’の場合と同様に変化する補正係数αを記憶している。そして、q軸目標電流補正演算部50は、図8のステップS12にて括弧書きで示すように、d軸実電流Idを入力して、ステップS13にて前記変更した補正係数テーブルを用いて補正係数αを計算する。
演算部51は補正q軸目標電流Iq*’からq軸実電流Iqを減算し、減算結果をq軸指令電流ΔIqとして比例積分制御部(PI制御部)53に供給する。演算部52は補正d軸目標電流Id*’からd軸実電流Idを減算し、減算結果をd軸指令電流ΔIdとして比例積分制御部(PI制御部)54に供給する。比例積分制御部53,54は、q軸指令電流ΔIqおよびd軸指令電流ΔIdに基づいて、比例積分演算により、q軸及びd軸実電流Iq,Idがq軸及びd軸指令電流Iq*’,Id*’にそれぞれ追従するようにq軸及びd軸指令電圧Vq*,Vd*を計算する。
これらのq軸及びd軸指令電圧Vq*,Vd*は、非干渉補正値演算部55及び演算部56,57により補正されてq軸及びd軸補正指令電圧Vq*',Vd*'として2相/3相座標変換部58に供給される。非干渉補正値演算部55は、q軸及びd軸実電流Iq,Id及び回転子の角速度ωに基づいて、q軸及びd軸指令電圧Vq*,Vd*のための非干渉補正値−ω・(φa+La・Id),ω・La・Iqを計算する。尚、前記インダクタンスLa及び磁束φaは、予め決められた定数である。演算部56、57は、q軸及びd軸指令電圧Vq*,Vd*から非干渉補正値−ω・(φa+La・Id),ω・La・Iqをそれぞれ減算して、q軸及びd軸補正指令電圧Vq*'=Vq*+ω・(φa+La・Id),Vd*'=Vd*−ω・La・Iqを算出する。
2相/3相座標変換部58は、q軸及びd軸補正指令電圧Vq*',Vd*'を3相指令電圧Vu*,Vv*,Vw*に変換して、同変換した3相指令電圧Vu*,Vv*,Vw*をPWM電圧発生部59に供給する。PWM電圧発生部59は、3相指令電圧Vu*,Vv*,Vw*に対応したPWM制御電圧信号Uu,Vu,Wuをインバータ36に出力する。インバータ36は、前記PWM制御電圧信号Uu,Vu,Wuに対応した3相の励磁電圧信号Vu,Vv,Vwを発生して、同励磁電圧信号Vu,Vv,Vwを3相の励磁電流路を介して電動モータ20にそれぞれ供給する。3相の励磁電流路のうちの2つには電流センサ37a,37bが設けられ、各電流センサ37a,37bは、電動モータ20に対する3相の励磁電流Iu,Iv,Iwのうちの2つの励磁電流Iu,Iwを検出して3相/2相座標変換部60に出力する。この3相/2相座標変換部60には、演算部61にて前記実電流Iu,Iwに基づいて計算された励磁電流Ivも供給されている。3相/2相座標変換部60は、これらの3相実電流Iu,Iv,Iwを2相実電流Id,Iqに変換する。
また、回転角センサ33からの2相パルス列信号及び零相パルス列信号は、所定のサンプリング周期で電気角変換部62に連続的に供給されている。電気角変換部62は、前記各パルス列信号に基づいて電動モータ20における回転子の固定子に対する電気角を計算して、角速度変換部63に供給する。角速度変換部63は、前記電気角を微分して回転子の固定子に対する角速度を計算する。これらの電気角および角速度が電動モータ20の回転角(操舵ハンドル11の操舵角)θおよび角速度(操舵ハンドル11の操舵角速度)ωに対応するもので、これらの回転角θおよび角速度ωは、前述した補償値演算部42、弱め界磁制御パラメータ演算部45、2相/3相座標変換部58および3相/2相座標変換部60などにも供給されて利用される。
更に、アシストECU40は、電源装置70の出力電圧Voutに応じて電源切替指令を出力する電源切替指令部64を備える。電源装置70は、主電源部80と副電源部90とを備え、何れか一方の電源部から電動モータ20に電源供給するように構成されるが、この電源切替指令部64は、電源装置70の出力電圧Voutに応じて、電源供給に使用する電源部を切り替える。
電源切替指令部64は、主電源部80から電源供給する場合には、降圧回路82に動作指令を出力するとともに、副電源部の切替スイッチ94を開くオフ信号を出力する。また、副電源部90から電源供給する場合には、降圧回路82に作動停止指令を出力するとともに、副電源部の切替スイッチ94を閉じるオン信号を出力する。
電源切替指令部64は、通常は主電源部80から電動モータ20に電源供給するが、主電源部80の異常(高圧バッテリ81の電圧異常、断線異常、降圧回路82の動作異常)、あるいは、図示しないハイブリッド制御部からの高圧電源使用禁止指令等により高圧バッテリ81の出力ライン83が遮断されている場合には、電動モータ20の電源を副電源部90に切り替える。この場合、電動モータ20は、その駆動に適した48Vよりも低い電圧にて電源供給されるため、高速で回転することができなくなる。そこで、d軸電流補正係数演算部47は、電源電圧Voutに応じてd軸目標電流Id*を補正して弱め界磁制御量を増大する。
ここで、電源切替指令部64とd軸電流補正係数演算部47とが協調して行う電源切替・弱め界磁補正制御処理について説明する。
図10は、アシストECU40の主に電源切替指令部64とd軸電流補正係数演算部47とが実施する電源切替・弱め界磁補正制御ルーチンを表す。
この制御ルーチンは、制御プログラムとしてアシストECU40のROM内に記憶され、イグニッションスイッチのオン操作により起動し、短い周期で繰り返し実施される。
尚、本制御ルーチンの起動時においては、主電源部80の降圧回路82は作動状態におかれ、また副電源部90の切替スイッチ94はオフ状態に設定される。
本制御ルーチンが起動すると、アシストECU40は、電圧センサ34の出力信号から電源出力電圧Voutを検出する(S21)。続いて、フラグFが「1」にセットされているか否かを判断する(S22)。このフラグFは、電動モータ20への供給電源が副電源部90に切り替えられているときにF=1に設定されるもので、本制御ルーチンの起動時にはF=0に設定されている。
従って、本制御ルーチンの起動時においては、次のステップS23の判断処理に移行する。ステップS23においては、検出した出力電圧Voutが切替電圧Vs未満か否かを判断する。この切替電圧Vsは、電源装置70の出力電圧低下に基づいて電源切替を行うための判定電圧であり予め設定記憶されている。本実施形態においては、この切替電圧Vsを12Vに設定するが、12V〜48Vの範囲で任意の値に設定することができる。
主電源部80が正常であれば、Vout=48Vの出力電圧が得られる。この場合には、Vout≧Vsであるため、ステップS23の判断は「NO」となり、ステップS24〜S27の処理を飛ばして、ステップS28の処理に進む。
このステップS28は、d軸電流補正係数演算部47が行う処理で、図7に示す補正係数算出テーブルを参照して補正係数Cvを算出する。主電源部80が正常であれば、電源装置70の出力電圧Voutが基準電圧Vr1(例えば30V)以上となるため、補正係数CvはCv=1に設定される。
続いて、ステップS29において、この算出された補正係数Cv(Cv=1)をd軸目標電流補正演算部48に出力して本制御ルーチンを一旦抜ける。従って、弱め界磁制御量は、実質的に補正されない。
本制御ルーチンは、繰り返し実行されるため、電源出力電圧Voutを常時監視していることになる。従って、図7の補正係数算出テーブルから分かるように、出力電圧Voutが基準電圧Vr1以上に維持されているあいだは、補正係数Cvが値1に設定される。そして、電源装置70の出力電圧Voutが切替電圧Vsにまで低下しなくても、基準電圧Vr1を下回った場合には、ステップS28において算出される補正係数Cvが値1よりも大きな値に設定される。従って、弱め界磁制御量が増大補正される。
こうした電源電圧の監視中に、電源装置70(主電源部80)の出力電圧が切替電圧Vsを下回るとステップS23の判断は「YES」となり、その処理をステップS24に進める。
高圧バッテリ81は、ハイブリッドシステムの走行駆動用モータへの電源供給を主目的として搭載されているが、電動パワーステアリング装置の電動モータ20の電源としても利用される。こうした電源供給システムにおいては、ハイブリッドシステムを統括するハイブリッドコントローラ(図示略)が高圧バッテリ81の使用許可を与える。そして、ハイブリッドコントローラから高圧バッテリ81の使用禁止指令が出力されたときには、高圧バッテリの出力ライン83に設けた電源リレー(図示略)がオフされて主電源部80の出力が停止する。
また、高圧バッテリ81の容量不足、電源ラインの断線、降圧回路82の異常等によっても主電源部80の出力電圧が切替電圧Vsを下回ることもある。
こうしたケースにおいては、ステップS23の判断が「YES」となる。この判断がなされると、アシストECU40は、その処理をステップS24に進め、電源出力電圧Voutが切替電圧Vsを下回る状態が所定時間継続したか判断する。継続していないうちは、上述したステップS28に進む。この所定時間は、例えば500ミリ秒程度に設定される。瞬時的な電源電圧低下であれば、出力電圧Voutは切替電圧Vsを下回っても所定時間以内に復帰するが、電源出力電圧Voutの低下が所定時間継続した場合には、以下、ステップS25からの処理を行う。
ステップS25においては、電源切替指令部64から降圧回路82に対して作動停止指令を出力する。従って、降圧回路82の降圧動作が停止され主電源部80から電動モータ20への電源供給が遮断される。
続いて、ステップS26において、電源切替指令部64から副電源部90の切替スイッチ94にオン信号を出力する。従って、副電源部90から電動モータ20への電源供給回路が形成される。この場合、主電源部80の作動が停止しているため、主電源部80から副電源部90に電流が逆流することはない。
続いて、ステップS27において、フラグFを「1」に設定し、上述したステップS28の補正係数Cvの算出処理に移行する。
この場合、電源装置70の出力電圧Voutは、副電源部90の出力電圧である12Vとなる。従って、d軸電流補正係数演算部47にて算出される補正係数Cvは、値1よりも大きな値に設定される。例えば、図7に示す補正係数算出テーブルにおいて、基準電圧Vr2を12Vに設定した場合には(Vr2=12V)、補正係数Cvは最大値(例えばCv=2)に設定される。
このように、電動モータ20への電源として副電源部90が使用される場合には、主電源部80が使用される場合に比べて、大きな補正係数Cvが設定される。
そして、この算出された補正係数Cvは、ステップS29においてd軸目標電流補正演算部48に出力される。従って、副電源部90が使用される場合には、主電源部80が使用される場合に比べて弱め界磁制御量が増大補正される。
アシストECU40は、このステップ29の処理を行うと一旦本制御ルーチンを抜ける。そして、所定周期で本制御ルーチンを繰り返し実行する。この場合、フラグFがF=1に設定されているため、一旦、電動モータ20への供給電源が主電源部80から副電源部90に切り替わった後は、本制御ルーチンが再起動するまで(イグニッションスイッチが再度オンするまで)電源部の切替は行われない。
例えば、高圧バッテリ81の出力電圧が低下したのち復帰するケースがある。こうしたケースでは、高圧バッテリ81から安定した電力供給できないことがあり、高圧バッテリ81の電圧復帰を検出して副電源部90から主電源部80に切り替えてしまうと、その途端に出力電圧の低下を生じるおそれがある。そこで、本実施形態においては、主電源部80から副電源部90に切り替わった後は、その状態を維持する。
図11は、モータ回転速度とモータ出力トルクとの関係を表す。図中において、実線は、弱め界磁制御を行わずに電動モータを12Vと48Vで駆動したときの2通りの特性を表し、破線は、弱め界磁制御を行って電動モータを12Vで駆動したときの特性を表す。この図からわかるように、弱め界磁制御を行わない場合、必要トルクが得られるモータ回転速度は、モータ駆動電圧が低いとかなり低下してしまう。この例では、電動モータを12Vで駆動した場合の回転速度は、48Vで駆動した場合の回転速度ω1に対してω2にまで低下している。
これに対して、弱め界磁制御を行って電動モータを駆動した場合には、駆動電圧が12Vであっても回転速度をω3にまで増加させることができる。
そこで、本実施形態においては、副電源部90を使って電動モータ20に電源供給する場合には、d軸目標電流を補正して弱め界磁制御量を増大することにより、破線にて示すような特性に切り替える。従って、副電源部90にて電源供給する場合でも、モータ回転速度をω3にまで増大させることができる。
以上説明したアシストECU40によれば、電動モータ20の回転方向をq軸とするとともに回転方向と直交する方向をd軸とする2相回転磁束座標系で記述されるベクトル制御によって電動モータ20の回転が制御される。そして、このベクトル制御においては、d軸目標電流演算部46が弱め界磁制御パラメータ演算部45にて計算された第1〜第3パラメータCw,Cq,Ciに基づいてd軸目標電流Id*を計算して、電動モータ20のd軸電流を角速度ω、q軸指令電圧Vqおよびq軸実電流Iqに応じて弱め界磁制御を行っている。したがって、電動モータ20の効率化および小型高出力化が弱め界磁制御によって期待されるとともに、無駄な弱め界磁電流が流れることも回避される。
しかも、このd軸目標電流Id*は、電源装置70の出力電圧Voutに応じて補正される。つまり、d軸電流補正係数演算部47が出力電圧Voutに応じて補正係数Cvを算出し、d軸目標電流補正演算部48がd軸目標電流Id*に補正係数Cvを乗じることにより、最終的な弱め界磁制御量としての補正d軸目標電流Id*’を設定している。
このため、副電源部90をバックアップ電源として使用する場合においても適度なモータ回転速度が得られ、運転者の操舵操作への追従性が向上する。従って、運転者が速いハンドル操作を行っても電動モータ20が抵抗にならず、操舵フィーリングの低下を抑制することができる。
しかも、主電源部80のバックアップ電源として、車両の一般負荷への電源供給に使用される12V汎用バッテリをそのまま使用できるため低コストにて実施できる。
例えば、主電源部80をバックアップする電源として、主電源部80と同程度の出力電圧を有するものを用意すれば、電源バックアップ時においても電動モータ20の追従性を確保することができる。しかし、そのためには、別の高圧バッテリを用意する必要がある。あるいは、低圧バッテリをバックアップ電源とした場合には昇圧回路を設ける必要がある。従って、このようにバックアップ電源の高電圧化を図るとコストが増大してしまう。また、昇圧回路を設けた場合には、その分スペースが増大するとともに、昇圧に伴う発熱を処理する放熱板等が必要となる。
これに対して、本実施形態によれば、弱め界磁制御量を補正することにより低圧バッテリ91をバックアップ電源としてそのまま利用することが可能となり、コスト増大や大型化といった問題を招かない。
また、副電源部90から電源供給しているときに、電動モータ20で回生電力が発生した場合でも、保護回路93により回生電力を吸収することができる。従って、低圧バッテリ91から電源供給を受ける種々の電気負荷を保護することができる。しかも、この保護回路93をツェナーダイオードで構成しているため、制御回路が不要であり低コストで実施できる。尚、副電源部90を使用しているときにも、主電源部80の降圧回路82に設けられる図示しない回生吸収回路を作動させておいて回生電力を吸収するようにしてもよい。
更に、電源装置70の電源部の切替状態にかかわらず電源出力電圧Voutに応じた弱め界磁制御量(d軸目標電流)の補正を行うため、使用する電源部の種類に応じて弱め界磁制御を切り替える必要がなく制御が容易となる。
また、弱め界磁制御量を増大補正するにあたって、d軸電流の上限値を設定しているため、電動モータ20の永久磁石の磁力低下を防止することができる。
更に、ハイブリッドシステムに使用する高圧バッテリ81を電動パワーステアリング装置の駆動電源として利用するため、電動モータ20の駆動に適した電圧電源を得ることができる。このため、電動パワーステアリング装置の高出力化、高効率化を図ることができる。
以上、本実施形態の電動パワーステアリング装置について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。
例えば、本実施形態においては、電源部の切替判断を電源装置70の出力電圧に基づいて行っているが(図10:ステップS23参照)、主電源部80と副電源部90の出力電圧を比較し、主電源部80の出力電圧が副電源部90の出力電圧を下回ったときに、電動モータ20への電源供給を主電源部80から副電源部90に切り替えるようにしてもよい。
また、切替スイッチ94に代えてダイオードを設け、出力電圧が高いほうの電源部が電動モータ20の電源として自動的に選択されるように構成してもよい。この場合、ダイオードは、アノードを低圧バッテリ91側に向けて、負荷側にのみ電流が流れるようにする。
また、降圧回路82の入力電圧が所定電圧以下にまで低下したときに、電動モータ20への電源供給を主電源部80から副電源部90に切り替えるようにしても良い。
尚、本実施形態におけるアシストECU40のd軸補正係数演算部47およびd軸目標電流補正演算部48が本発明の回転速度補償手段に相当し、本実施形態のアシストECU40の上限設定部49が本発明の減磁防止手段に相当し、本実施形態のアシストECU40の電源切替指令部64が本発明の電源切替制御手段に相当し、演算部47,48、上限設定部49、電源切替指令部64を除くアシストECU40の機能部41〜63が本発明のベクトル制御手段に相当する。
本発明の実施形態に係る電動パワーステアリング装置の全体構成図である。 アシストECUの機能を表す機能ブロック図である。 操舵トルクと基本アシスト力との関係を示す特性グラフである。 電動モータの角速度と弱め界磁制御パラメータ中の第1パラメータCwとの関係を示す特性グラフである。 電動モータのq軸指令電圧と弱め界磁制御パラメータ中の第2パラメータCqとの関係を示す特性グラフである。 電動モータのq軸実電流と弱め界磁制御パラメータ中の第3パラメータCiとの関係を示す特性グラフである。 電源出力電圧と補正係数Cvとの関係を示す特性グラフである。 q軸電流補正演算ルーチンを示すフローチャートである。 補正d軸目標電流と補正係数αとの関係を示すグラフである。 電源切替・弱め界磁補正制御ルーチンを示すフローチャートである。 電動モータの回転速度と出力トルクとの関係を示すグラフである。 電動モータの回転速度と出力トルクとの関係を示すグラフである。
符号の説明
10…転舵機構、11…操舵ハンドル、20…電動モータ、30…モータ制御装置、31…操舵トルクセンサ、32…車速センサ、33…回転角センサ、34…電圧センサ、36…インバータ、37…電流センサ、40…アシストECU、47…d軸電流補正係数演算部、48…d軸目標電流補正演算部、49…上限値設定部、64…電源切替指令部、70…電源装置、80…主電源部、81…高圧バッテリ、82…降圧回路、90…副電源部、91…低圧バッテリ、93…保護回路(ツェナーダイオード)、94…切替スイッチ、100…電源供給ライン。

Claims (5)

  1. 操舵ハンドルの操舵により転舵輪を転舵する転舵機構と、
    上記転舵機構に組み付けられ、電源装置から電力供給されて回転し操舵補助力を発生する電動モータと、
    上記操舵ハンドルの操舵状態に応じて上記電動モータの作動を制御するモータ制御装置とを備えた電動パワーステアリング装置において、
    上記電源装置は、第1電圧の高圧バッテリとその高圧バッテリの電圧を下げる降圧回路とを備えて上記降圧された電源電圧を出力する主電源部と、上記主電源部の降圧された出力電圧よりも低い第2電圧の低圧バッテリを備えて上記第2電圧の電源電圧を出力する副電源部とを並列に接続して備え、いずれか1つの電源部を択一的に使って上記電動モータに電源供給するように構成され、
    上記モータ制御装置は、上記電動モータの回転方向をq軸とするとともに上記回転方向と直交する方向をd軸とする2相回転磁束座標系で記述されるベクトル制御によって上記電動モータの回転を制御するベクトル制御手段と、
    上記電動モータへの電源供給に上記副電源部が使用されている場合には、上記主電源部が使用されている場合に比べて、弱め界磁制御電流としてのd軸電流を増大して、電源電圧の低下によるモータ回転速度の低下を抑制する回転速度補償手段と
    を備えたことを特徴とする電動パワーステアリング装置。
  2. 上記副電源部の副電源出力ラインには、その副電源出力ラインを開閉するスイッチ手段と、上記スイッチ手段より電源側に設けられ副電源出力ラインの電圧上昇を防止する保護回路とを備えたことを特徴とする請求項1記載の電動パワーステアリング装置。
  3. 上記主電源部を使用して上記電動モータに電源供給する場合には、上記主電源部の降圧回路を作動させるとともに上記副電源部のスイッチ手段を開き、上記副電源部を使用して上記電動モータに電源供給する場合には、上記主電源部の降圧回路を停止させるとともに上記副電源部のスイッチ手段を閉じる電源切替制御手段を備えたことを特徴とする請求項2記載の電動パワーステアリング装置。
  4. 上記電源装置の出力電圧を検出する電源電圧検出手段を備え、
    上記回転速度補償手段は、上記電源電圧検出手段により検出した電圧に応じて上記弱め界磁制御電流としてのd軸電流の通電量を制御することを特徴とする請求項3記載の電動パワーステアリング装置。
  5. 上記d軸電流の上限値を設定して上記電動モータの永久磁石の減磁を防止する減磁防止手段を備えたことを特徴とする請求項3または4記載の電動パワーステアリング装置。
JP2006156817A 2006-06-06 2006-06-06 電動パワーステアリング装置 Expired - Fee Related JP4228237B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2006156817A JP4228237B2 (ja) 2006-06-06 2006-06-06 電動パワーステアリング装置
PCT/IB2007/001498 WO2007141634A1 (en) 2006-06-06 2007-06-06 Electric power steering apparatus and method for controlling the electric power steering apparatus
CN2007800212272A CN101472779B (zh) 2006-06-06 2007-06-06 电动转向设备和用于控制电动转向设备的方法
DE602007003828T DE602007003828D1 (de) 2006-06-06 2007-06-06 Elektrische servolenkungsvorrichtung und verfahren zur steuerung der elektrischen servolenkungsvorrichtung
EP07766517A EP2024220B1 (en) 2006-06-06 2007-06-06 Electric power steering apparatus and method for controlling the electric power steering apparatus
US12/096,649 US7845459B2 (en) 2006-06-06 2007-06-06 Electric power steering apparatus and method for controlling the electric power steering apparatus
KR1020087016164A KR100997067B1 (ko) 2006-06-06 2007-06-06 전동 스티어링 장치 및 전동 스티어링 장치를 제어하는방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006156817A JP4228237B2 (ja) 2006-06-06 2006-06-06 電動パワーステアリング装置

Publications (2)

Publication Number Publication Date
JP2007326379A JP2007326379A (ja) 2007-12-20
JP4228237B2 true JP4228237B2 (ja) 2009-02-25

Family

ID=38596596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006156817A Expired - Fee Related JP4228237B2 (ja) 2006-06-06 2006-06-06 電動パワーステアリング装置

Country Status (7)

Country Link
US (1) US7845459B2 (ja)
EP (1) EP2024220B1 (ja)
JP (1) JP4228237B2 (ja)
KR (1) KR100997067B1 (ja)
CN (1) CN101472779B (ja)
DE (1) DE602007003828D1 (ja)
WO (1) WO2007141634A1 (ja)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4952931B2 (ja) 2007-08-30 2012-06-13 トヨタ自動車株式会社 ステアリング装置
JP5034824B2 (ja) * 2007-09-25 2012-09-26 株式会社ジェイテクト 電動パワーステアリング装置
EP2080687B1 (en) * 2008-01-16 2011-12-14 Jtekt Corporation Electric power steering device
JP5167915B2 (ja) * 2008-04-10 2013-03-21 株式会社ジェイテクト 電動パワーステアリング装置の補助電源システム
US20100066289A1 (en) * 2008-09-17 2010-03-18 Ford Global Technologies, Llc System and method for controlling an electric motor
DE102008044245A1 (de) * 2008-12-02 2010-06-10 Zf Lenksysteme Gmbh Schaltungsanordnung zum Ansteuern eines Sensors
JP5381117B2 (ja) * 2009-01-21 2014-01-08 株式会社ジェイテクト 電気式動力舵取装置
EP2469060B1 (en) * 2009-08-21 2018-03-21 Toyota Jidosha Kabushiki Kaisha Engine control device
BR112012021742A2 (pt) * 2010-03-03 2016-08-23 Yaskawa Denki Seisakusho Kk dispositivo inversor e seu método de controle
CN101947922B (zh) * 2010-08-12 2012-10-03 上海汽车集团股份有限公司 多动力源汽车电动推进系统及其控制方法
GB201016001D0 (en) * 2010-09-23 2010-11-10 Innospec Ltd Composition and method
JP5548645B2 (ja) * 2011-04-05 2014-07-16 アスモ株式会社 電動パワーステアリング制御装置
CN102285372B (zh) * 2011-06-03 2012-10-24 四川绵阳三力股份有限公司 一种确定电动助力转向系统助力电流的方法及装置
CN103236812A (zh) * 2013-03-21 2013-08-07 北京工业大学 一种同步电机的调速系统及控制方法
JP5908424B2 (ja) * 2013-03-25 2016-04-26 日立オートモティブシステムズステアリング株式会社 モータ制御装置およびパワーステアリング装置
DE102013014427A1 (de) * 2013-08-30 2015-03-05 Liebherr-Elektronik Gmbh Antriebsschaltung für Luftlagermotor
JP6252244B2 (ja) * 2014-02-27 2017-12-27 株式会社デンソー モータ駆動装置
JP2015205605A (ja) * 2014-04-21 2015-11-19 トヨタ自動車株式会社 パワーステアリングシステム
JP6331657B2 (ja) * 2014-04-28 2018-05-30 トヨタ自動車株式会社 パワーステアリングシステム
JP6252362B2 (ja) * 2014-05-30 2017-12-27 株式会社デンソー 駆動システム
JP6248984B2 (ja) 2014-07-31 2017-12-20 株式会社デンソー 駆動装置
JP6500952B2 (ja) * 2014-07-31 2019-04-17 株式会社デンソー 電動パワーステアリング装置
JP5822008B1 (ja) * 2014-08-08 2015-11-24 日本精工株式会社 角度検出装置、この角度検出装置を備えるモータ、トルクセンサ、電動パワーステアリング装置及び自動車
CN105584520B (zh) * 2014-11-17 2018-09-11 比亚迪股份有限公司 电动车辆的转向动力系统及其控制方法
DE102014117718A1 (de) * 2014-12-02 2016-06-02 Trw Automotive Gmbh Lenkvorrichtung sowie Verfahren zur Steuerung einer Lenkvorrichtung
JP6540986B2 (ja) 2015-01-26 2019-07-10 株式会社デンソー 回転電機
CN105109546B (zh) * 2015-08-21 2017-11-14 郑州宇通客车股份有限公司 双能源电动液压助力转向系统、控制方法及电动客车
CN105539153B (zh) * 2015-12-07 2018-07-03 潍柴动力股份有限公司 纯电动汽车的双电源电动助力转向总成及其控制方法
CN105501291B (zh) * 2016-01-04 2018-07-31 深圳市知行智驱技术有限公司 双路电动助力转向控制系统内部通讯方法
CN107284518A (zh) * 2017-04-28 2017-10-24 全兴精工集团有限公司 一种新能源汽车电动助力转向系统
JP6742967B2 (ja) * 2017-08-15 2020-08-19 日立オートモティブシステムズ株式会社 モータ制御装置
JP2019034655A (ja) * 2017-08-16 2019-03-07 株式会社ジェイテクト 電源システム
CN109703615A (zh) * 2017-10-26 2019-05-03 天津市松正电动汽车技术股份有限公司 一种双源电动助力转向系统
US11364811B1 (en) * 2017-11-15 2022-06-21 Motiv Power Systems, Inc. Powering electric vehicle accessory devices from back EMF generated by an electric motor
CN108638983B (zh) * 2018-03-29 2021-11-16 中通客车控股股份有限公司 一种电动客车双源助力转向系统及控制方法
KR102086432B1 (ko) * 2018-08-23 2020-03-09 주식회사 만도 차량의 조향 장치
KR102590733B1 (ko) * 2018-08-27 2023-10-19 에이치엘만도 주식회사 전동식 파워 스티어링 시스템의 전원공급회로
US10972033B2 (en) 2018-10-19 2021-04-06 Nsk Ltd. Motor control device, electrically driven actuator product, and electrically driven power steering device
EP3667900B1 (en) * 2018-10-19 2022-02-16 NSK Ltd. Motor control device, electric actuator product, and electric power steering device
US20210129901A1 (en) * 2019-11-01 2021-05-06 Mahindra N.A. Tech Center Vehicle having power steering system
JP7296586B2 (ja) * 2019-11-15 2023-06-23 パナソニックIpマネジメント株式会社 電動工具、制御方法、及びプログラム
WO2021095470A1 (ja) * 2019-11-15 2021-05-20 パナソニックIpマネジメント株式会社 電動工具、制御方法、及びプログラム
JP7296587B2 (ja) * 2019-11-15 2023-06-23 パナソニックIpマネジメント株式会社 電動工具、制御方法、及びプログラム
CN112406864B (zh) * 2020-10-21 2022-05-03 郑州轻工业大学 电动客车双源智能转向系统及转向协同控制方法
CN112319606B (zh) * 2020-11-06 2021-10-22 厦门金龙汽车新能源科技有限公司 一种电动客车双油泵系统及其控制方法
JP7550098B2 (ja) * 2021-04-06 2024-09-12 株式会社デンソー モータ制御装置、及び、それを備えるステアリングシステム

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3487952B2 (ja) * 1995-04-14 2004-01-19 株式会社日立製作所 電気自動車の駆動装置及び駆動制御方法
JPH0920263A (ja) 1995-07-06 1997-01-21 Jidosha Kiki Co Ltd 電動ポンプ式動力舵取装置
JP3951337B2 (ja) 1997-02-25 2007-08-01 日本精工株式会社 電動パワーステアリング装置の制御装置
JP2000184766A (ja) 1998-12-14 2000-06-30 Toyota Motor Corp モータ制御装置
JP4048633B2 (ja) 1999-02-16 2008-02-20 日産自動車株式会社 車両制御装置の電源構造
JP3433701B2 (ja) 1999-07-08 2003-08-04 トヨタ自動車株式会社 車両の電動パワーステアリング装置
JP3409753B2 (ja) * 1999-10-29 2003-05-26 トヨタ自動車株式会社 車両の電動パワーステアリング装置
JP4042278B2 (ja) 1999-11-30 2008-02-06 株式会社明電舎 同期電動機の制御方式
JP2002218799A (ja) 2001-01-16 2002-08-02 Mitsubishi Electric Corp 電動機駆動制御装置
JP3805657B2 (ja) * 2001-09-18 2006-08-02 株式会社ジェイテクト 電動パワーステアリング装置
JP3918552B2 (ja) * 2001-12-26 2007-05-23 アイシン・エィ・ダブリュ株式会社 電動車両駆動制御装置、電動車両駆動制御方法及びそのプログラム
JP2004166441A (ja) 2002-11-15 2004-06-10 Toyoda Mach Works Ltd 電動パワーステアリング装置
AU2003241184A1 (en) * 2003-02-20 2004-09-09 Nsk Ltd. Electric-powered power steering apparatus
US6864662B2 (en) * 2003-04-30 2005-03-08 Visteon Global Technologies, Inc. Electric power assist steering system and method of operation
US7102305B2 (en) * 2003-05-22 2006-09-05 Toyoda Koki Kabushiki Kaisha Apparatus and method for controlling motor
JP4455075B2 (ja) * 2004-01-28 2010-04-21 三菱電機株式会社 モータ制御装置
JP4379702B2 (ja) * 2004-02-10 2009-12-09 株式会社デンソー ブラシレスモータ制御装置
JP4291235B2 (ja) * 2004-08-20 2009-07-08 株式会社日立製作所 車両用電源装置
JP4432709B2 (ja) * 2004-10-01 2010-03-17 トヨタ自動車株式会社 電動パワーステアリング装置
JP4483522B2 (ja) 2004-10-22 2010-06-16 株式会社ジェイテクト 電動パワーステアリング装置及び電力供給システム
JP4295734B2 (ja) * 2005-02-25 2009-07-15 三菱重工業株式会社 バッテリー駆動車両及びその制御方法
JP4371100B2 (ja) 2005-11-09 2009-11-25 トヨタ自動車株式会社 バッテリ状態診断装置
JP4270196B2 (ja) 2005-11-09 2009-05-27 トヨタ自動車株式会社 バッテリ状態診断装置
JP4329792B2 (ja) * 2006-08-10 2009-09-09 トヨタ自動車株式会社 電動パワーステアリング装置

Also Published As

Publication number Publication date
DE602007003828D1 (de) 2010-01-28
EP2024220A1 (en) 2009-02-18
CN101472779B (zh) 2011-04-20
KR20080077662A (ko) 2008-08-25
KR100997067B1 (ko) 2010-11-29
JP2007326379A (ja) 2007-12-20
EP2024220B1 (en) 2009-12-16
US20080277191A1 (en) 2008-11-13
US7845459B2 (en) 2010-12-07
WO2007141634A1 (en) 2007-12-13
CN101472779A (zh) 2009-07-01

Similar Documents

Publication Publication Date Title
JP4228237B2 (ja) 電動パワーステアリング装置
JP4539218B2 (ja) 電動パワーステアリング装置
JP5316702B2 (ja) 電動パワーステアリング装置
JP5262931B2 (ja) 電動パワーステアリング装置
JP4715919B2 (ja) 電動パワーステアリング装置
JP2010052640A (ja) 電気式動力舵取装置
JP5712098B2 (ja) 電動パワーステアリング装置
JP2010187441A (ja) モータ制御装置及び電動パワーステアリング装置
CN107521554B (zh) 电动助力转向装置
JP2009173179A (ja) 操舵制御装置
JP2008290664A (ja) 電動パワーステアリング装置
JP5310579B2 (ja) 電動パワーステアリング装置
JP2011218878A (ja) 電動パワーステアリング装置
JP2011046251A (ja) 電動パワーステアリング装置
JP2009046005A (ja) 電気式動力舵取装置
JP2005199746A (ja) ステアリングシステム
JP5212082B2 (ja) 電動パワーステアリング装置
JP2010167878A (ja) 電動パワーステアリング装置
JP2008067565A (ja) 電動モータの制御方法、モータ制御装置及びこれを用いた電動パワーステアリング装置
JP2010137627A (ja) 電動パワーステアリング装置
JP2008183987A (ja) 電気式動力舵取装置
JP2010012979A (ja) 電動パワーステアリング装置
JP2014141187A (ja) 車両の操舵制御装置
JP5359687B2 (ja) 電動パワーステアリング装置の制御装置
JP2010167880A (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081118

R151 Written notification of patent or utility model registration

Ref document number: 4228237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees