JP5257374B2 - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
JP5257374B2
JP5257374B2 JP2010021271A JP2010021271A JP5257374B2 JP 5257374 B2 JP5257374 B2 JP 5257374B2 JP 2010021271 A JP2010021271 A JP 2010021271A JP 2010021271 A JP2010021271 A JP 2010021271A JP 5257374 B2 JP5257374 B2 JP 5257374B2
Authority
JP
Japan
Prior art keywords
torque
assist
steering
electrical angle
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010021271A
Other languages
English (en)
Other versions
JP2011157004A (ja
Inventor
康平 梁井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010021271A priority Critical patent/JP5257374B2/ja
Publication of JP2011157004A publication Critical patent/JP2011157004A/ja
Application granted granted Critical
Publication of JP5257374B2 publication Critical patent/JP5257374B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、運転者の操舵操作に基づいて電動モータを駆動制御して操舵アシストトルクを発生する電動パワーステアリング装置に関する。
従来から、電動パワーステアリング装置は、運転者のハンドル操作をアシストする電動モータと、運転者が操舵ハンドルに入力した操舵トルクに応じた目標アシストトルクを設定して電動モータを駆動制御する電子制御ユニット(以下、ECUと呼ぶ)を備えている。電動モータとしてブラシレスDCモータを使用した電動パワーステアリング装置も一般化されている。ブラシレスDCモータは、インバータのスイッチング制御によりU相,V相,W相への通電が行われる。ブラシレスDCモータは、回転子に設けられた永久磁石の磁界が貫く方向となるd軸と、d軸に直交する方向となるq軸とを定めたd−q座標を用いた電流ベクトル制御により駆動される。従って、ブラシレスDCモータを使用する場合には、回転子の電気角を検出するための回転角センサが設けられる。
回転角センサが故障した場合には、モータの制御が不能となる。そこで、回転角センサが故障した場合には、モータで発生する誘起電圧(逆起電力)に基づいて電気角を推定し、この推定した電気角(推定電気角)を使ってモータを駆動制御する電動パワーステアリング装置が知られている。このように推定電気角を使ったモータの制御は、センサレス制御と呼ばれている。
センサレス制御においては、モータで発生する誘起電圧と角速度とが比例関係を有することを利用して、誘起電圧からモータ角速度を算出する。そして、センサレス制御の演算周期とモータ角速度とから、1周期あたりにモータが回転した角度を求め、1周期前の電気角にこの回転角度をモータ回転方向に加算することで現時点の電気角、つまり、推定電気角を算出する。こうしたセンサレス制御については、例えば、特許文献1に提案されている。センサレス制御を行う場合、ECUは、推定電気角に基づいて、d軸とq軸とを推定し、推定したd−q座標を用いて電流ベクトル制御を行う。
また、センサレス制御を行う場合、操舵トルクから目標アシストトルクを設定するアシストトルクマップを変更する電動パワーステアリング装置も特許文献2に知られている。この特許文献2の装置では、センサレス制御を行う場合、目標アシストトルクがゼロに設定されるアシスト不感帯を広く設定している。
特開2008−87756号公報 特開2008−37399号公報
ところが、センサレス制御を行う場合、モータの回転方向の推定を誤るとモータが脱調する。例えば、特許文献1のものにおいては、操舵トルクセンサにより検出した操舵トルクからモータの回転方向を推定しているが、操舵ハンドルの戻し操作を行うときには、操舵ハンドルを握っている力を緩めるようにして操舵ハンドルを中立位置側に戻すため、操舵トルクの方向とモータの回転方向とが互いに反対となる。従って、推定電気角がモータの回転方向と逆方向に進んでしまいモータが脱調する。モータが脱調すると、トルク変動が発生し、これにより操舵ハンドルが振動する。従って、運転者に違和感を与えてしまう。
また、特許文献2のものにおいても、モータ脱調時における操舵ハンドルに発生する振動を低減する技術思想は存在しない。
本発明の目的は、上記問題に対処するためになされたもので、モータが脱調したときに発生する振動により運転者に与える違和感を低減することにある。
上記目的を達成するために、本発明の特徴は、ステアリング機構に設けられて操舵アシストトルクを発生する永久磁石同期モータと、操舵ハンドルからステアリングシャフトに入力された操舵トルクを検出する操舵トルクセンサと、前記操舵トルクセンサで検出される操舵トルクが大きくなるにしたがって目標操舵アシストトルクを大きく設定するように前記操舵トルクと前記目標操舵アシストトルクとを関係付けたアシスト特性を記憶し、前記アシスト特性に基づいて前記操舵トルクから目標操舵アシストトルクを設定する目標操舵アシストトルク設定手段と、前記永久磁石同期モータの電気角を検出するための回転角センサと、前記回転角センサの異常を検出するためのセンサ異常検出手段と、前記永久磁石同期モータの回転方向を推定する回転方向推定手段と、前記センサ異常検出手段により前記回転角センサの異常が検出されているとき、前記永久磁石同期モータで発生する誘起電圧と前記永久磁石同期モータの回転方向とに基づいて前記永久磁石同期モータの推定電気角を算出する電気角推定手段と、前記永久磁石同期モータで前記目標操舵アシストトルクを発生するように、前記回転角センサの異常が検出されていないときには前記回転角センサにより検出された電気角を用いて前記永久磁石同期モータを駆動制御し、前記回転角センサの異常が検出されているときには前記電気角推定手段により算出された推定電気角を用いて前記永久磁石同期モータを駆動制御するモータ制御手段とを備えた電動パワーステアリング装置において、
前記目標操舵アシストトルク設定手段は、前記回転角センサの異常が検出されているときに使用する異常時アシスト特性と、前記回転角センサの異常が検出されていないときに使用する正常時アシスト特性とを記憶し、前記異常時アシスト特性は、前記操舵トルクが予め設定された低トルク域に入る場合には前記正常時アシスト特性に比べて前記目標操舵アシストトルクが小さく、前記操舵トルクが増加して前記低トルク域を越えた場合には前記正常時アシスト特性に比べて前記目標操舵アシストトルクが大きくなるように、前記操舵トルクと前記目標操舵アシストトルクとの関係が設定されていることにある。
本発明の電動パワーステアリング装置においては、ステアリング機構に永久磁石同期モータ(以下、単にモータと呼ぶ)が設けられており、モータ制御手段が、このモータを駆動制御することにより操舵アシストトルクを発生させる。モータ制御手段は、目標操舵アシストトルク設定手段により設定された目標操舵アシストトルクをモータで発生するように、回転角センサにより検出された電気角を用いてモータを駆動制御する。目標操舵アシストトルク設定手段は、アシスト特性を記憶し、このアシスト特性に基づいて、操舵トルクセンサにより検出された操舵トルクが大きくなるにしたがって大きくなる目標操舵アシストトルクを設定する。
モータ制御手段は、例えば、モータの永久磁石の磁界が貫く方向となるd軸と、d軸に直交する方向(d軸からπ/2だけ電気角を進めた方向)となるq軸とを定めたd−q座標を用いた電流ベクトル制御によりモータを駆動制御する。
回転角センサが故障した場合には、こうした電流ベクトル制御を行うことができない。そこで、本発明の電動パワーステアリング装置は、モータの回転方向を推定する回転方向推定手段と、回転角センサの異常を検出するためのセンサ異常検出手段と、センサ異常検出手段により回転角センサの異常が検出されているときモータの推定電気角を算出する電気角推定手段を備えている。電気角推定手段は、モータで発生する誘起電圧とモータの回転方向とに基づいてモータの推定電気角を算出する。例えば、電気角推定手段は、モータで発生する誘起電圧に基づいて電気角加算量を算出し、回転方向推定手段により推定されたモータの回転方向に電気角加算量だけ電気角を進めるようにしてモータの推定電気角を算出する。この場合、所定時間毎に誘起電圧を算出してこの誘起電圧からモータの推定角速度を求め、この推定角速度でモータが所定時間当たりに回転する量を電気角加算量として計算し、所定時間前の推定電気角に電気角加算量をモータ回転方向に加算することで推定電気角を算出するとよい。モータ制御手段は、回転角センサの異常が検出されているときには電気角推定手段により算出された推定電気角を用いてモータを駆動制御する。つまり、センサレス制御を行う。
回転方向推定手段がモータの回転方向を誤って推定、つまり、モータの回転方向を実際の回転方向とは反対方向に推定すると、電気角推定手段は、推定電気角をモータの回転方向とは反対方向に進めて計算してしまう。この結果、モータが脱調する。
モータ制御手段は、モータで操舵アシストトルクを効率良く発生するように、推定電気角に基づいて電流ベクトル制御を行う。つまり、電流ベクトルの向きが回転子に対して一定方向に向くように(例えば、d−q座標におけるq軸方向に向くように)、推定電気角に合わせてモータコイルで発生する磁界を回転させる。従って、モータが同期しているときには、モータトルクはモータ電流に応じた一定の大きさに維持されるが、モータが脱調しているときには、電流ベクトルの向きを回転子に追従させることができなくなり、モータトルクは大きく変動する。このため、平均的なモータトルクが低下してハンドル操作が重くなるとともに、モータトルクの周期的な変動が発生し、そのトルク変動が操舵ハンドルの振動として現れる。これにより、運転者に対して大きな違和感を与えてしまう。
そこで本発明においては、アシスト特性を、回転角センサの異常が検出されているとき(センサレス制御時)と、回転角センサの異常が検出されていないときとで切り替えるようにして操舵操作の違和感を低減する。目標操舵アシストトルク設定手段は、回転角センサの異常が検出されているときに使用する異常時アシスト特性と、回転角センサの異常が検出されていないときに使用する正常時アシスト特性とを記憶している。アシスト特性は、操舵トルクと目標操舵アシストトルクとの関係を設定したデータであって、操舵トルクから目標操舵アシストトルクを導き出せるものであればよく、マップや計算式を用いることができる。
異常時アシスト特性は、操舵トルクが予め設定された低トルク域に入る場合には正常時アシスト特性に比べて目標操舵アシストトルクが小さく、操舵トルクが増加して低トルク域を越えた場合には正常時アシスト特性に比べて目標操舵アシストトルクが大きくなるように、操舵トルクと目標操舵アシストトルクとの関係が設定されている。従って、センサレス制御時においては、センサレス制御を行わない正常時に比べて、通常の操舵操作においてハンドル操作が重くなる。モータが脱調すると、目標操舵アシストトルクをモータで発生できなくなり、運転者が操舵ハンドルを操作する操舵力が増加し操舵トルクが増加する。この場合、操舵トルクが低トルク域を超えると、正常時アシスト特性に比べて大きな目標操舵アシストトルクが設定される。これにより、目標操舵アシストトルクが急激に増加し、モータ電流も増加する。
モータが脱調しているときには、電流ベクトルの方向が回転子に対して相対的に変化していくため、モータは、操舵操作をアシストする方向の力と、その逆方向である逆アシスト方向の力とを交互に発生するようになる。モータが逆アシスト方向の力を発生するように電流ベクトルが向く範囲を逆アシスト領域と呼び、モータがアシスト方向の力を発生するように電流ベクトルが向く範囲を正アシスト領域と呼ぶ。モータが脱調すると、操舵トルクが増加して目標操舵アシストトルクが増加し、モータに流れる電流が増加するため、このとき、電流ベクトルが正アシスト領域に入っている場合には、モータトルクの向きとモータにかかる負荷の向きが異なるため、電流ベクトルが回転子に対して相対的に進む速度が遅くなり、逆に、電流ベクトルが逆アシスト領域に入っている場合には、モータトルクの向きとモータにかかる負荷の向きが同じであるため、電流ベクトルが回転子に対して相対的に進む速度が速くなる。
本発明においては、センサレス制御を行うときには、異常時アシスト特性を使って目標操舵アシストトルクを設定するため、モータの脱調時においては、正常時アシスト特性を使う場合に比べて大きなモータ電流を流すことができ、電流ベクトルが正アシスト領域に入っている期間に比べて、電流ベクトルが逆アシスト領域に入っている期間を一層短くすることができる。このため、正常時アシスト特性を使う場合に比べて、モータトルク変動幅が少なくなる。これにより、ハンドル操作に必要となる操作力の振幅が小さくなり、運転者が感じる操舵ハンドルの振動を低減することができる。また、モータ電流が大きくなるため、逆アシスト領域の電流ベクトルに対する回転子の相対速度が速くなり、振動の周波数が高くなる。このため、操舵ハンドルの振動による違和感が低減される。また、モータが脱調した場合には、ハンドル操作が重くなるが、モータが脱調していない場合においても、異常時アシスト特性によりハンドル操作が重くなるように設定してあるため、脱調時とそうでない時とにおける操舵操作力の変動幅を少なくすることができ、モータが脱調したときの違和感を低減することができる。
尚、本発明における低トルク域とは、モータが脱調していないときの通常の操舵操作時に検出される操舵トルクの範囲に設定されるもので、特に、操舵ハンドルを保舵しているときに検出される操舵トルクが含まれる範囲に設定されるとよい。また、アシスト特性には、目標操舵アシストトルクがゼロに設定される操舵トルクの不感帯が設定されるが、低トルク域は、この不感帯を除く範囲である。不感帯においては、異常時アシスト特性であっても正常時アシスト特性であっても、どちらも目標操舵アシストトルクが同じゼロに設定され、目標操舵アシストトルクの大きさに差を付けることができないからである。また、本発明においては、トルクの大きさについて論じるが、その場合には、トルクの方向を区別するものではない。
本発明の他の特徴は、前記異常時アシスト特性および前記正常時アシスト特性は、前記目標操舵アシストトルクをゼロに設定する前記操舵トルクの不感帯が設けられており、前記異常時アシスト特性における不感帯は、前記正常時アシスト特性における不感帯よりも広いことにある。
本発明においては、センサレス制御を行う時には、正常時に比べて不感帯が広く設定されるため、ハンドル操作を確実に重くすることができる。従って、モータの脱調時とそうでない時とにおける操舵操作力の変動幅を少なくすることができ、モータが脱調したときの違和感を低減することができる。
本発明の他の特徴は、前記異常時アシスト特性は、前記操舵トルクの増加に対して前記目標操舵アシストトルクの増加する増加率が、前記操舵トルクが前記低トルク域に入っているときよりも前記低トルク域を超えているときのほうが大きくなるように、前記操舵トルクと前記目標操舵アシストトルクとの関係が設定されていることにある。
この場合、前記異常時アシスト特性および前記正常時アシスト特性は、前記操舵トルクが予め設定された上限制限開始トルク以上になると前記目標操舵アシストトルクが上限値制限されるように、前記操舵トルクと前記目標操舵アシストトルクとの関係が設定されており、前記異常時アシスト特性における上限制限開始トルクは、前記正常時アシスト特性における上限制限開始トルクよりも小さいとよい。
モータが脱調した場合、目標操舵アシストトルクをモータで発生できなくなり操舵トルクが増加して低トルク域を超えるが、本発明においては、異常時アシスト特性が正常時アシスト特性に比べて目標操舵アシストトルクが急激に増加するように設定されている。また、目標操舵アシストトルクが上限値にまで早く到達するように設定されている。このため、モータが脱調したときには、モータ電流を素早く増加させることができる。これにより、モータが脱調したときに、確実に、操舵ハンドルの振動を低減し、この振動により運転者に与える違和感を低減することができる。
本発明の他の特徴は、前記回転方向推定手段は、前記操舵トルクセンサで検出された操舵トルクの方向に基づいて、前記永久磁石同期モータの回転方向を推定することにある。
本発明においては、操舵トルクで検出された操舵トルクの方向に基づいてモータの回転方向を推定するため、モータ回転方向を検出する特別なセンサを設ける必要が無く、低コストにてセンサレス制御を行うことができる。こうした構成においては、操舵ハンドルの戻し操作を行うときや、路面からの外部入力の変動によりアシストトルクが不足して操舵ハンドルが戻された場合には、モータの回転方向の推定を誤ることがあり、その場合には、モータが脱調しやすいが、本発明では、センサレス制御を行うときには、異常時アシスト特性を用いて目標操舵アシストトルクを設定するため、操舵ハンドルの振動を低減し、この振動により運転者に与える違和感を低減することができる。
本発明の他の特徴は、前記目標操舵アシストトルク設定手段は、前記回転角センサの異常が検出されていないときの前記操舵トルクと前記目標操舵アシストトルクとを関係付けた正常時アシストマップと、前記正常時アシストマップに基づいて前記回転角センサの異常が検出されているときの前記操舵トルクから前記目標操舵アシストトルクを取得するために必要な計算式とにより、前記正常時アシスト特性と前記異常時アシスト特性とを記憶することにある。
本発明においては、目標操舵アシストトルク設定手段が、正常時アシストマップと、正常時アシストマップに基づいて回転角センサの異常が検出されているときの操舵トルクから目標操舵アシストトルクを取得するために必要な計算式とを記憶している。回転角センサの異常が検出されていないときには、正常時アシストマップを使って目標操舵アシストトルクを設定する。また、回転角センサの異常が検出されているときには、正常時アシストマップと計算式とを使って目標操舵アシストトルクを設定する。従って、回転角センサの正常時用と異常時用とで独立したアシストマップを記憶しておく必要がないため、記憶容量を削減することができる。
本発明の実施形態に係る電動パワーステアリング装置の概略構成図である。 アシストECUのマイクロコンピュータの処理を表す機能ブロック図である。 電気角推定部の処理を表す機能ブロック図である。 d−q座標、γ―δ座標を説明する説明図である。 アシストマップを表すグラフである。 アシストマップを表すグラフである。 アシストマップを表すグラフである。 誘起電圧の計算に用いるモータの回路図である。 不感帯処理マップを表すグラフである。 推定電気角が固着された状態を表す説明図である。 電流ベクトルをq軸方向に向けたときの力の関係を表した説明図である。 電流ベクトルの方向に対するアシストトルク特性を表すグラフである。 電気角補正量の算出メカニズムを説明するグラフである。 d−q座標におけるδ軸の設定角度領域を表すグラフである。 角度θ1を説明する説明図である。 角度θ3を説明する説明図である。 検出値eγ/eと電気角誤差Δθeとの関係を表すグラフである。 電気角補正量算出マップを表すグラフである。 電流ベクトルの方向に対するアシストトルク特性を表すグラフである。 脱調により電流ベクトルの方向が変化する様子を表す説明図である。 モータ脱調時における各検出値の波形を表すグラフである。 変形例としてのアシストマップを表すグラフである。 変形例としてのアシストマップを表すグラフである。
以下、本発明の一実施形態に係る電動パワーステアリング装置について図面を用いて説明する。図1は、同実施形態に係る車両の電動パワーステアリング装置の概略構成を表している。
この電動パワーステアリング装置は、操舵ハンドル11の操舵操作により転舵輪を転舵するステアリング機構10と、ステアリング機構10に組み付けられ操舵アシストトルクを発生するモータ20と、モータ20を駆動するためのモータ駆動回路30と、モータ20の作動を制御する電子制御装置100とを主要部として備えている。以下、電子制御装置100をアシストECU100と呼ぶ。
ステアリング機構10は、操舵ハンドル11の回転操作により左右前輪FWL,FWRを転舵するための機構で、操舵ハンドル11を上端に一体回転するように接続したステアリングシャフト12を備える。このステアリングシャフト12の下端には、ピニオンギヤ13が一体回転するように接続されている。ピニオンギヤ13は、ラックバー14に形成されたラック歯と噛み合って、ラックバー14とともにラックアンドピニオン機構を構成する。ラックバー14の両端には、タイロッド15L,15Rを介して左右前輪FWL,FWRのナックル(図示略)が操舵可能に接続されている。左右前輪FWL,FWRは、ステアリングシャフト12の軸線回りの回転に伴うラックバー14の軸線方向の変位に応じて左右に操舵される。
ラックバー14には、電動モータ20が組み付けられている。電動モータ20は、本発明の永久磁石同期モータに相当するものであり、本実施形態においては、その代表例である3相ブラシレスDCモータが用いられる。電動モータ20(以下、単にモータ20と呼ぶ)の回転軸は、ボールねじ機構16を介してラックバー14に動力伝達可能に接続されていて、その回転により左右前輪FWL,FWRに転舵力を付与して操舵操作をアシストする。ボールねじ機構16は、減速機および回転−直線変換器として機能するもので、モータ20の回転を減速するとともに直線運動に変換してラックバー14に伝達する。
ステアリングシャフト12には、操舵トルクセンサ21が設けられる。操舵トルクセンサ21は、例えば、ステアリングシャフト12の中間部に介装されたトーションバー(図示略)の捩れ角度をレゾルバ等により検出し、この捩れ角に基づいてステアリングシャフト12に働いた操舵トルクTrを検出する。操舵トルクTrは、正負の値により操舵ハンドル11の操作方向が識別される。本実施形態においては、操舵ハンドル11の右方向への操舵時における操舵トルクTrを正の値で、操舵ハンドル11の左方向への操舵時における操舵トルクTrを負の値で示す。尚、本実施形態においては、トーションバーの捩れ角度をレゾルバにより検出するが、エンコーダ等の他の回転角センサにより検出することもできる。
モータ20には、回転角センサ22が設けられる。この回転角センサ22は、モータ20内に組み込まれ、モータ20の回転子の回転角度位置に応じた検出信号を出力するもので、例えば、レゾルバにより構成される。回転角センサ22は、モータ20の回転角θmを表す検出信号をアシストECU100に出力する。アシストECU100は、この回転角θmからモータ20の電気角θeを検出する。尚、モータ20の電気角θeは、回転角センサ22により検出された電気角と、後述する推定により求めた電気角との2種類あるため、両者を区別する必要がある場合には、回転角センサ22により検出された電気角を実電気角θeaと呼び、推定により求めた電気角を推定電気角θebと呼ぶ。また、本実施形態においては、回転角センサ22としてレゾルバを使用しているが、エンコーダ等の他の回転角センサを用いることもできる。
モータ駆動回路30は、MOS−FET(Metal Oxide Semiconductor Field Effect Transistor)からなる6個のスイッチング素子31〜36により3相インバータ回路を構成したものである。具体的には、第1スイッチング素子31と第2スイッチング素子32とを直列接続した回路と、第3スイッチング素子33と第4スイッチング素子34とを直列接続した回路と、第5スイッチング素子35と第6スイッチング素子36とを直列接続した回路とを並列接続し、各直列回路における2つのスイッチング素子間(31−32,33−34,35−36)からモータ20への電力供給ライン37を引き出した構成を採用している。
モータ駆動回路30には、モータ20に流れる電流を検出する電流センサ38が設けられる。この電流センサ38は、各相(U相,V相,W相)ごとに流れる電流をそれぞれ検出し、その検出した電流値Iu,Iv,Iwに対応した検出信号をアシストECU100に出力する。以下、この測定された3相の電流値をモータ電流Iuvwと総称する。また、モータ駆動回路30には、モータ20の端子電圧を検出する電圧センサ39が設けられる。電圧センサ39は、各相(U相,V相,W相)の端子電圧をそれぞれ検出し、その検出した電圧値Vu,Vv,Vwに対応した検出信号をアシストECU100に出力する。以下、この測定された3相の端子電圧をモータ端子電圧Vuvwと総称する。
モータ駆動回路30の各スイッチング素子31〜36は、それぞれゲートがアシストECU100に接続され、アシストECU100から出力されるPWM制御信号によりデューティ比が制御される。これによりモータ20の駆動電圧が目標電圧に調整される。
アシストECU100は、CPU,ROM,RAM等からなるマイクロコンピュータを主要部として構成される。アシストECU100は、操舵トルクセンサ21、回転角センサ22、電流センサ38、電圧センサ39、および、車速を検出する車速センサ25を接続し、操舵トルクTr、回転角θm、モータ電流Iu,Iv,Iw、モータ端子電圧Vu,Vv,Vw、車速vを表す検出信号を入力する。そして、入力した検出信号に基づいて、運転者の操舵操作に応じた最適な操舵アシストトルク(以下、単にアシストトルクと呼ぶ)が得られるようにモータ20に流す指令電流を演算し、その指令電流が流れるようにモータ駆動回路30の各スイッチング素子31〜36のデューティ比を制御する。
次に、電動パワーステアリング装置の電源供給系統について説明する。電動パワーステアリング装置は、車載電源装置80から電源供給される。車載電源装置80は、定格出力電圧12Vの一般的な車載バッテリである主バッテリ81と、エンジンの回転により発電する定格出力電圧14Vのオルタネータ82とを並列接続して構成される。車載電源装置80には、電源供給元ライン83と接地ライン84が接続される。電源供給元ライン83は、制御系電源ライン85と駆動系電源ライン86とに分岐する。制御系電源ライン85は、アシストECU100に電源供給するための電源ラインとして機能する。駆動系電源ライン86は、モータ駆動回路30とアシストECU100との両方に電源供給する電源ラインとして機能する。
制御系電源ライン85には、イグニッションスイッチ87が接続される。駆動系電源ライン86には、主電源リレー88が接続される。この主電源リレー88は、アシストECU100からの制御信号によりオンしてモータ20への電力供給回路を形成するものである。制御系電源ライン85は、アシストECU100の電源+端子に接続されるが、その途中で、イグニッションスイッチ87よりも負荷側(アシストECU100側)においてダイオード89を備えている。このダイオード89は、カソードをアシストECU100側、アノードを車載電源装置80側に向けて設けられ、電源供給方向にのみ通電可能とする逆流防止素子である。
駆動系電源ライン86には、主電源リレー88よりも負荷側において制御系電源ライン85と接続する連結ライン90が分岐して設けられる。この連結ライン90は、制御系電源ライン85におけるダイオード89の接続位置よりもアシストECU100側に接続される。また、連結ライン90には、ダイオード91が接続される。このダイオード91は、カソードを制御系電源ライン85側に向け、アノードを駆動系電源ライン86側に向けて設けられる。従って、連結ライン90を介して駆動系電源ライン86から制御系電源ライン85には電源供給できるが、制御系電源ライン85から駆動系電源ライン86には電源供給できないような回路構成となっている。駆動系電源ライン86および接地ライン84は、モータ駆動回路30の電源入力部に接続される。また、接地ライン84は、アシストECU100の接地端子にも接続される。
次に、アシストECU100が行うモータ20の制御について説明する。アシストECU100は、図4に示すように、モータ20の回転子に設けられた永久磁石の磁界が貫く方向にd軸、d軸に直交する方向(d軸に対して電気角がπ/2だけ進んだ方向)にq軸を定めたd−q座標を用いた電流ベクトル制御によってモータ20の回転を制御する。電気角θeは、U相コイルを貫く軸とd軸との回転角となる。電流ベクトルのd軸成分をd軸電流と呼び、q軸成分をq軸電流と呼ぶ。q軸電流は、q軸方向に磁界が発生するように作用する。従って、q軸電流は、モータトルクを発生させる。一方、d軸電流は、d軸方向に磁界を発生させるため、モータトルクを発生できず、弱め界磁制御に使用される。アシストECU100は、最大のモータトルク効率を得るために、電流ベクトルがq軸上を移動するように電流位相を制御する(d軸電流をゼロ)。
アシストECU100は、こうした電流ベクトル制御を行うにあたって、電気角θeを検出することによりd−q座標を定める。この電気角θeは、回転角センサ22により検出される回転角信号から求められるが、回転角センサ22が故障した場合には、電気角θeを求めることができない。そこで、アシストECU100は、回転角センサ22が故障した場合には、後述する処理により推定電気角θebを算出し、その推定電気角θebを使って電流ベクトル制御を行う。この場合、d軸を推定した制御上の軸をγ軸と呼び、q軸を推定した制御上の軸をδ軸と呼ぶ。また、推定電気角θebを使って行うモータ制御をセンサレス制御と呼ぶ。
次に、アシストECU100の機能について図2を用いて説明する。図2は、アシストECU100のマイクロコンピュータのプログラム制御により処理される機能を表す機能ブロック図である。アシストECU100は、アシストトルク設定部101を備えている。アシストトルク設定部101は、図5(a)に示す正常時アシストマップと、図5(b)に示す異常時アシストマップとを記憶している。各アシストマップは、代表的な複数の車速vごとに、操舵トルクTrと目標アシストトルクT*との関係を設定した関係付けデータである。アシストトルク設定部101は、車速センサ25により検出される車速vと、操舵トルクセンサ21により検出される操舵トルクTrを入力し、正常時アシストマップまたは異常時アシストマップを参照して、車速vと操舵トルクTrとから目標アシストトルクT*を算出する。尚、図5は、右方向の操舵時におけるアシストマップであって、左方向の操舵時におけるアシストマップは、右方向のものに対して操舵トルクTrと目標アシストトルクT*の符号をそれぞれ反対(つまり負)にしたものとなる。尚、本明細書においては、トルクの大きさを論じる場合には、その方向を区別せずに、絶対値を使うものとする。
アシストトルク設定部101は、後述するセンサ異常検出部131の出力するセンサ異常判定信号Fを入力し、センサ異常判定信号Fが「0」である場合には、正常時アシストマップを選択し、センサ異常判定信号Fが「1」である場合には、異常時アシストマップを選択する。そして、選択したアシストマップを使用して目標アシストトルクT*を算出する。各アシストマップにおいては、目標アシストトルクT*は、操舵トルクTrの増加にしたがって増加するとともに車速vの増加にしたがって減少するように設定されている。
図6は、正常時アシストマップと異常時アシストマップとの特性を比較するために、両方を重ねた特性図である。また、図7は、特定の車速vにおける(この例では高速時)正常時アシストマップと異常時アシストマップとを重ねた特性図で、後述する各トルク値および領域を記入したものである。図6,図7中において、実線が異常時アシストマップであり、破線が正常時アシストマップである。各アシストマップには目標アシストトルクT*がゼロに設定される操舵トルクTrの不感帯が設定される。正常時アシストマップにおける不感帯を正常時不感帯X01と呼び、異常時アシストマップにおける不感帯を異常時不感帯X11と呼び、これらを総称する場合には不感帯X1と呼ぶ。全車速vにおいて、異常時不感帯X11は、正常時不感帯X01に比べて広く設定されている。不感帯X1が終了する操舵トルクTrを不感帯終了トルクTr1と呼び、特に、正常時アシストマップにおける不感帯終了トルクを不感帯終了トルクTr01と呼び、異常時アシストマップにおける不感帯終了トルクを不感帯終了トルクTr11と呼ぶ。
また、各アシストマップにおいては、目標アシストトルクT*の上限値制限が設定される。正常時アシストマップにおける目標アシストトルクT*の上限値T0maxは、車速vに応じて異なるように、つまり、車速vが高いほど小さな値に設定されている。一方、異常時アシストマップにおける目標アシストトルクT*の上限値T1maxは、車速vに関係なく一定値に設定されている。以下、正常時アシストマップにおいて目標アシストトルクT*が上限値T0maxに制限される操舵トルクTrの範囲を上限制限トルク域X02と呼び、異常時アシストマップにおいて目標アシストトルクT*が上限値T1maxに制限される操舵トルクTrの範囲を上限制限トルク域X12と呼び、これらを総称する場合には上限制限トルク域X2と呼ぶ。操舵トルクTrが増加すると上限制限トルク域X2に到達するが、その上限制限トルク域X2に到達する時点における操舵トルクTrの大きさは、正常時アシストマップと異常時アシストマップとでは異なるように設定されている。正常時アシストマップにおける上限制限トルク域X02の開始点となる操舵トルクTrを上限制限開始トルクTr02と呼び、異常時アシストマップにおける上限制限トルク域X12の開始点となる操舵トルクTrを上限制限開始トルクTr12と呼び、それらを総称する場合には上限制限開始トルクTr2と呼ぶ。上限制限開始トルクTr12は、上限制限開始トルクTr02よりも小さな値に設定されている。また、上限制限開始トルクTr12は、車速vに関係なく一定値に設定されている。
不感帯X1と上限制限トルク域X2との間の領域が、操舵トルクTrに応じて目標アシストトルクT*が変化する(操舵トルクTRが大きくなるにしたがって目標アシストトルクT*が大きくなる)変化域X3となる。この変化域X3においては、全車速vにおいて、操舵トルクTrの増加にともなって、その途中で、正常時アシストマップにおける目標アシストトルクT*と異常時アシストマップにおける目標アシストトルクT*との大小関係が切り替わる。つまり、設定トルクTrsを境にして、操舵トルクTrが設定トルクTrsよりも小さいときには、正常時アシストマップにおける目標アシストトルクT*に比べて異常時アシストマップにおける目標アシストトルクT*が小さく、操舵トルクTrが設定トルクTrsよりも大きいときには、正常時アシストマップにおける目標アシストトルクT*に比べて異常時アシストマップにおける目標アシストトルクT*が大きく設定される。
この変化域X3において操舵トルクTrが設定トルクTrsより小さくなる範囲が、本発明の低トルク域に相当する。以下、正常時アシストマップにおける変化域X3を変化域X03と呼び、異常時アシストマップにおける変化域X3を変化域X13と呼ぶ。また、正常時アシストマップにおける変化域X03において、操舵トルクTrが設定トルクTrsより小さくなる範囲を低トルク域X03Lと呼び、操舵トルクTrが設定トルクTrsより大きくなる範囲を高トルク域X03Hと呼ぶ。同様に、異常時アシストマップにおける変化域X13において、操舵トルクTrが設定トルクTrsより小さくなる範囲を低トルク域X13Lと呼び、操舵トルクTrが設定トルクTrsより大きくなる範囲を高トルク域X13Hと呼ぶ。また、低トルク域X03Lと低トルク域X13Lと総称する場合には低トルク域X3Lと呼び、また、高トルク域X03Hと高トルク域X13Hとを総称する場合には高トルク域X3Hと呼ぶ。
操舵トルクTrの増加に対して目標アシストトルクT*の増加する増加率を増加率rとすると、異常時アシストマップの変化域X13における増加率rは、正常時アシストマップの変化域X03における増加率rよりも大きく設定される。特に、高トルク域X3Hにおいては、異常時アシストマップにおける増加率rが、正常時アシストマップにおける増加率rよりも大きく設定される。また、異常時アシストマップにおいては、低トルク域X13Lにおける増加率rに比べて、高トルク域X13Hの増加率rの方が大きく設定されている。従って、異常時アシストマップにおいては、正常時アシストマップに比べて、操舵トルクTrが設定トルクTrsを越えると急激に増加するように設定されている。
尚、増加率rは、アシストマップの特性ラインの微小部分を捉えた傾き(ΔT*/ΔTr)として表されるものである。また、低トルク域X3L、高トルク域X3Hにおける増加率rの比較は、その領域における平均的な増加率rにて行えばよい。
アシストトルク設定部101は、このような特性の正常時アシストマップおよび異常時アシストマップを記憶し、センサ異常判定信号Fに応じてその一方を選択し、目標アシストトルクT*を算出する。このアシストマップを選択する理由は、モータ20が脱調したときに発生する操舵ハンドル11の振動を低減するためである。これについては、後述する。
アシストトルク設定部101は、目標アシストトルクT*をアシスト電流指令部102に出力する。アシスト電流指令部102は、目標アシストトルクT*をトルク定数で除算することにより、d−q座標におけるq軸指令電流Iq*を算出する。また、アシスト電流指令部102は、d軸指令電流Id*をゼロ(Id*=0)に設定する。
このように計算されたq軸指令電流Iq*とd軸指令電流Id*は、フィードバック制御部103に出力される。フィードバック制御部103は、q軸指令電流Iq*からq軸実電流Iqを減算した偏差ΔIqを算出し、この偏差ΔIqを使った比例積分制御によりq軸実電流Iqがq軸指令電流Iq*に追従するようにq軸指令電圧Vq*を計算する。同様に、d軸指令電流Id*からd軸実電流Idを減算した偏差ΔIdを算出し、この偏差ΔIdを使った比例積分制御によりd軸実電流Idがd軸指令電流Id*に追従するようにd軸指令電圧Vd*を計算する。
q軸実電流Iqおよびd軸実電流Idは、モータ20のコイルに実際に流れた3相電流の検出値Iu,Iv,Iwをd−q座標の2相電流に変換したものである。この3相電流Iu,Iv,Iwからd−q座標の2相電流Id,Iqへの変換は、3相/2相座標変換部104によって行われる。3相/2相座標変換部104は、電気角選択部132から出力される電気角θeを入力し、その電気角θeに基づいて、電流センサ38により検出した3相電流Iu,Iv,Iwをd−q座標の2相電流Id,Iqに変換する。
3相座標からd−q座標に変換する変換行列Cは次式(1)にて表される。
Figure 0005257374
尚、電気角選択部132は、後述するが、回転角センサ22の異常が検出されていないときは、モータ20の実電気角θeaを電気角θeとして出力し、回転角センサ22の異常が検出されているときは、モータ20の推定電気角θebを電気角θeとして出力する。
フィードバック制御部103により算出されたq軸指令電圧Vq*とd軸指令電圧Vd*は、2相/3相座標変換部105に出力される。2相/3相座標変換部105は、電気角選択部132から出力される電気角θeに基づいて、q軸指令電圧Vq*とd軸指令電圧Vd*を3相指令電圧Vu*,Vv*,Vw*に変換して、その変換した3相指令電圧Vu*,Vv*,Vw*をPWM信号発生部106に出力する。PWM信号発生部106は、3相指令電圧Vu*,Vv*,Vw*に対応したPWM制御信号をモータ駆動回路30のスイッチング素子31〜36に出力する。これによりモータ20が駆動され、目標アシストトルクT*に追従したアシストトルクがステアリング機構10に付与される。
回転角センサ22から出力される回転検出信号は、実電気角変換部130とセンサ異常検出部131とに出力される。実電気角変換部130は、回転角センサ22により出力される回転検出信号からモータ20の実電気角θeaを算出し、算出した実電気角θeaを電気角選択部132に出力する。本発明における回転角センサは、この回転角センサ22と実電気角変換部130とから構成される。センサ異常検出部131は、回転角センサ22から出力される回転検出信号に基づいて、回転角センサ22の異常を検出する。回転角センサ22としてレゾルバを採用した場合には、レゾルバ内の検出用コイルや励磁用コイルが断線したり絶縁不良を起こしたりすることが考えられる。そこで、センサ異常検出部131は、検出用コイルの出力信号の振幅を監視し、その振幅が予め設定した許容範囲から外れた場合には、センサ異常と判定する。また、検出用コイルは、出力信号がπ/2だけ位相がずれるように一対設けられるため、2つの出力信号を比較して異常を検出することもできる。例えば、一方の検出用コイルから正弦波信号が出力されているときに、他方の検出用コイルから一定値信号が出力されているときなど、2つの出力信号の組み合わせが矛盾するケースにおいても異常であると判定することができる。センサ異常検出部131は、このようにして回転角センサ22の異常の有無を判定し、異常の有無を表すセンサ異常判定信号Fを出力する。センサ異常検出部131は、例えば、異常有りと判定した場合には、センサ異常判定信号Fを「1」に設定し、異常無しと判定した場合にはセンサ異常判定信号Fを「0」に設定する。
回転角センサ22に異常が発生した場合には、電気角を検出できなくなるため、電流ベクトル制御にてモータ20を駆動できなくなる。そこで、アシストECU100には、回転角センサ22の異常時においてもモータ20の回転制御を継続できるように、電気角を推定する電気角推定部110を備えている。電気角推定部110は、センサ異常判定信号(F=1)を入力すると作動を開始するもので、プログラム制御により実施される機能に着目すると、図3に示すように、誘起電圧演算部111と、不感帯処理部112と、推定角速度演算部113と、電気角加算量演算部114と、回転方向推定部115と、推定電気角演算部116と、電気角誤差検出部117と、電気角補正量演算部118とから構成される。
誘起電圧演算部111は、電圧センサ39から出力されるモータ端子電圧Vu,Vv,Vwを表す検出信号と、電流センサ38から出力されるモータ電流Iu,Iv,Iwを表す検出信号とを入力し、モータ20で発生する誘起電圧e’を以下のように計算する。
図8に示すように、モータ20のU相の誘起電圧をeu、V相の誘起電圧をev、W相の誘起電圧をewとすると、誘起電圧eu,ev,ewは次式(2),(3),(4)にて求められる。
eu=Vu−Iu・R−Vm ・・・(2)
ev=Vv−Iv・R−Vm ・・・(3)
ew=Vw−Iw・R−Vm ・・・(4)
ここで、Vmは中点電圧、Rは各相のコイルの巻線抵抗である。中点電圧Vmは、Vm=(Vu+Vv+Vw)/3として計算すればよい。
この場合、正確には、各相のコイルのインダクタンスLによる電圧分(L・dI/dt)を加えるべきであるが、誘起電圧の計算においてはインダクタンスLによる影響が非常に小さいため、本実施形態においてはそれをゼロとみなしている。尚、インダクタンスLによる電圧分(L・dI/dt)を加味して計算するようにしてもよい。
モータ20の誘起電圧e’は、次式(5)により、3相の誘起電圧eu,ev,ewを2相のd−q座標系における誘起電圧ed,eqに変換した後に、次式(6)により求められる。
Figure 0005257374
Figure 0005257374
誘起電圧演算部111は、誘起電圧e’の演算結果を不感帯処理部112に出力する。以下、誘起電圧演算部111により演算された誘起電圧e’を演算誘起電圧e’と呼ぶ。尚、式(5)における電気角θeは、現時点において推定されている電気角となる。つまり、後述するように所定の短い周期で繰り返し計算される推定電気角θebの最新値が使用される。
不感帯処理部112は、操舵トルクセンサ21により検出される操舵トルクTrと、誘起電圧演算部111により演算された演算誘起電圧e’を入力する。不感帯処理部112は、操舵トルクTrの大きさ|Tr|が予め設定された基準トルクTr0より大きい場合に、演算誘起電圧e’に対して不感帯処理を行い、操舵トルクTrの大きさ|Tr|が基準トルクTr0以下の場合には、演算誘起電圧e’に対して不感帯処理を行わないように構成されている。不感帯処理部112は、図9に示すような不感帯処理マップを記憶している。この不感帯処理マップにおいて、横軸は誘起電圧演算部111により演算された演算誘起電圧e’を表し、縦軸は不感帯処理後の誘起電圧e(ここでは、補正誘起電圧eと呼ぶ)を表す。不感帯処理部112は、演算誘起電圧e’が0〜e1の範囲に入る場合には、補正誘起電圧eを0(ゼロ)に設定する。また、演算誘起電圧e’がe1〜e2の範囲に入る場合には、演算誘起電圧e’にゲインKを乗じた値(K・e’)を補正誘起電圧eに設定する。このKは、演算誘起電圧e’がe1〜e2の範囲において大きくなるにしたがって、0から1にまで増大されるように設定される。また、演算誘起電圧e’がe2を越える場合には、演算誘起電圧e’をそのまま補正誘起電圧eとして設定する。不感帯処理部112は、こうした不感帯処理により演算誘起電圧e’を補正した補正誘起電圧eを出力する。以下、この補正誘起電圧eを、単に、誘起電圧eと呼ぶ。また、操舵トルクTrの大きさ|Tr|が基準トルクTr0以下の場合には、演算誘起電圧e’をそのままモータ20で発生した誘起電圧eとして出力する。
ここで、このような不感帯処理を行う理由について説明する。モータ20で発生する誘起電圧は、モータ角速度に比例するため、この誘起電圧を検出することにより単位時間当たりのモータ回転角度を推定することができ、このモータ回転角度分だけ電気角を加算していくことよって推定電気角を求めることができる。従って、本実施形態における電気角推定部110は、こうした原理を利用して電気角を推定する(後述する)。しかし、誘起電圧演算部111で演算した演算誘起電圧e’には、電流値、電圧値の測定誤差や巻線抵抗値の誤差等が含まれるため、モータ20(回転子)が回転していない状態であっても演算誘起電圧e’がゼロにならない。そのため、誘起電圧演算部111で演算した演算誘起電圧e’をそのまま使って電気角を推定すると、保舵中であっても電気角が進められてしまいモータ20のトルクが変動する。このトルク変動が操舵ハンドル11に振動として現れる。そこで、誤差による演算誘起電圧e’の出力を抑えるために、演算誘起電圧e’に不感帯を設ける。
演算誘起電圧e’に不感帯を設定すると、モータ20の回転が停止している状態においては、推定電気角が変化しないようになる。このため、保舵中においては操舵ハンドル11が振動しない。しかし、運転者が操舵ハンドル11を切り出すとき(中立位置から回し始めるとき)に推定電気角が進みにくく、操舵操作に引っ掛かり感を与えてしまう。
操舵ハンドル11の切り出しにより操舵トルクが検出されてモータコイルに通電されると、回転子に設けた永久磁石がモータコイルで発生する磁界により引き寄せられる。このとき、演算誘起電圧e’が不感帯を乗り越えられないと推定電気角が進まないため、モータコイルで発生する磁界が回転しない。従って、図10に示すように、回転子は、永久磁石がモータコイルの磁界に吸着された位置で落ち着いてしまう。つまり、電流ベクトルがd軸方向を向いた状態に保持されてしまう。このため、操舵アシストトルクを発生させることができず、操舵操作に引っ掛かり感を与えることになる。
そこで、不感帯処理部112は、操舵トルクTrの大きさが小さい場合には、不感帯を設けないようにして、推定電気角が固定されないようにする。従って、運転者は、操舵ハンドル11を中立位置から回し始める時(操舵トルクTrがまだ小さい)に、操舵操作に引っ掛かりを感じない。また、操舵ハンドル11を操作していないときには、操舵トルクTrがゼロとなりモータ20に通電されないため、トルク変動による操舵ハンドル11の振動は発生しない。一方、操舵トルクTrの大きさが大きい場合には、不感帯を設けていないとモータ20が回転していない状態であっても電気角が進められてしまい、保舵中にモータ20でトルク変動が発生し、これにより操舵ハンドル11が振動する。そこで、不感帯処理部112は、操舵トルクTrの大きさが大きい場合には、不感帯を設けて操舵ハンドル11が振動しないようにする。
不感帯処理部112から出力された誘起電圧eは、推定角速度演算部113に入力される。推定角速度演算部113は、モータ20で発生する誘起電圧eとモータ角速度とが比例関係を有することを利用して、モータ角速度ωを次式(7)により推定する。
ω=e/Ke ・・・(7)
Keは、モータ20の角速度と誘起電圧との関係を表すモータ誘起電圧定数〔V/(rad/s)〕である。以下、推定されたモータ角速度ωを推定角速度ωと呼ぶ。
推定角速度演算部113は、演算結果である推定角速度ωを電気角加算量演算部114に出力する。電気角推定部110は、マイクロコンピュータにより所定の短い演算周期にて各種の演算処理を行う。従って、推定角速度ωと演算周期とから、1演算周期の間にモータ20の回転子が回転した電気角を求めることができる。そこで、電気角加算量演算部114は、1演算周期の間にモータ20の回転子が回転した電気角を電気角加算量Δθaとして計算する。
この場合、電気角を加算する方向、つまり、モータ20の回転方向を判別する必要があるため、電気角加算量演算部114は、回転方向推定部115からモータ20の回転方向を表す情報を入力する。回転方向推定部115は、操舵トルクセンサ21により検出される操舵トルクTrの向きをモータ20の回転方向とみなして、操舵トルクTrの向き(符号)を表す情報として出力する。
電気角加算量Δθaは次式(8)により算出される。
Δθa=Kf・sign(Tr)・ω ・・・(8)
ここでKfは、モータ角速度(rad/s)から1演算周期のあいだにモータ20の回転子が回転する電気角(rad)を求めるための定数であり、演算周期(s)に相当する。また、sign(Tr)は、操舵トルクTrの符号(ステアリングシャフト12に働くトルクの方向)を表し、操舵トルクTrが正の値またはゼロであればsign(Tr)=1、操舵トルクTrが負の値であればsign(Tr)=−1となる。
電気角加算量演算部114は、演算結果である電気角加算量Δθaを推定電気角演算部116に出力する。推定電気角演算部116は、電気角加算量Δθaと、電気角補正量演算部118から出力される電気角補正量Δθcとを入力する。電気角補正量Δθcは、後述するが、モータ20の脱調に対するロバスト性を向上させるために、δ軸がq軸に対して所定角度遅れるように推定電気角を補正するため補正量である。
推定電気角演算部116は、1周期前の演算タイミングで算出した推定電気角θeb(n-1)を記憶しており、この推定電気角θeb(n-1)に電気角加算量Δθaと電気角補正量Δθcとの合計値Δθ(=Δθa+Δθc)を加算することにより現在の推定電気角θeb(n)を算出する。推定電気角θeb(n)は、次式(9)にて表される。
θeb(n)=θeb(n-1)+Δθ ・・・(9)
この場合、推定電気角θeb(n-1)の初期値は、センサ異常検出部131により回転角センサ22の異常が検出される直前の値としている。推定電気角演算部116は、回転角センサ22の異常が検出されていない時から、実電気角変換部130が出力する実電気角θeaを入力して記憶更新し、センサ異常検出部131の出力するセンサ異常判定信号Fが回転角センサ22の異常を表す「1」に切り替わったことを検出すると、異常検出直前の実電気角θeaを推定電気角θeb(n-1)に設定して、上述した推定電気角θeb(n)の演算を開始する。また、その後は、算出した推定電気角θeb(n)を次の演算周期における式(9)での推定電気角θeb(n-1)として使用するため、推定電気角θeb(n)を推定電気角θeb(n-1)として逐次記憶更新する。以下、推定電気角θeb(n)を単に推定電気角θebと呼ぶ。
推定電気角演算部116は、算出した推定電気角θebを電気角選択部132に出力する。電気角選択部132は、実電気角θeaと推定電気角θebとを入力し、センサ異常検出部131からセンサ異常判定信号Fを読み込んで、センサ異常判定信号Fが回転角センサ22が異常であることを表す「1」である場合には推定電気角θebを選択する。また、センサ異常判定信号Fが回転角センサ22が正常であることを表す「0」である場合には実電気角θeaを選択する。電気角選択部132は、選択した実電気角θeaまたは推定電気角θebを電気角θeとして出力する。
電気角θeは、3相/2相座標変換部104,2相/3相座標変換部105に出力され、上述した座標変換演算に用いられる。従って、アシストECU100は、回転角センサ22の異常が検出されているときは、推定電気角により定義されるd−q座標、つまり、γ―δ座標を使って電流ベクトル制御を行う。
次に、電気角補正量Δθcを算出する構成について説明する。上述したように、アシスト電流指令部102は、モータトルク効率を最大にするために、電流ベクトルがq軸方向に向くように電流指令値を設定する。この場合、図11に示すように、アシストトルクTmと運転者の操舵力Tsとを合わせた力が、軸力Fと釣り合うようにモータコイルの通電量が制御される。この軸力Fとは、ラックバー14を変位させるために必要な力を表す。
軸力が急激に増加してモータ20で発生するアシストトルクが不足した場合には、回転子が操舵方向に対して逆方向に回される。回転角センサ22が正常に作動している場合であれば、電気角を高精度に検出できるため、回転子の回転に合わせて電流ベクトルの向きをq軸方向に追従させることができる。従って、図12のP1位置に示すように、アシストトルクを最大限発生できる状態を維持できる。この図12は、電流ベクトルの方向(電気角)に対するアシストトルク(モータトルク)の特性を表す。しかし、回転角センサ22が故障して推定電気角を用いたセンサレス制御を行っている場合には、操舵トルクの働く方向と回転子の回転方向とが反対となり、相対的に推定角速度ωが大きくなる。このため、図12の矢印に示すように、推定電気角が回転子に対して進んでしまいモータ20が脱調する。これにより、モータ20で発生できるアシストトルクが低下し、電流ベクトルの方向がd軸よりも180°以上進んだ逆アシスト領域に入ってしまう。モータ20が逆アシスト方向の力を発生するように電流ベクトルが向く範囲を逆アシスト領域と呼び、モータ20がアシスト方向の力を発生するように電流ベクトルが向く範囲を正アシスト領域と呼ぶ。この逆アシスト領域におけるアシストトルク特性は、正アシスト領域(q軸を中心にして±90°の範囲)のアシストトルク特性に対して符号が反対(波形が反転した特性)となる。
また、センサレス制御を行っている場合には、推定電気角の誤差分だけ、実際のd−q座標とそれらを推定したγ―δ座標とがずれてしまう。このため、γ−δ座標を基準として電流ベクトル制御を行うと、電流ベクトルの方向がq軸方向からずれる。この場合、電流ベクトルがq軸よりも遅れた方向に向けられていれば、軸力の増加により回転子が操舵方向に対して逆方向に回されて電気角が相対的に進んでも、モータ20で発生できるアシストトルクが増加するため回転子の逆回転が抑制されてモータ20の脱調を防止することができる。しかし、電流ベクトルがq軸方向、あるいはq軸よりも進んだ方向に向けられている場合には、回転子が逆回転して電気角が相対的に進むと、モータ20で発生できるアシストトルクが低下する。従って、回転子の逆回転を抑制できずモータ20が脱調する。
そこで、本実施形態においては、δ軸がq軸よりも電気角の遅れた方向を向くように推定電気角を補正する電気角補正量Δθcを算出し、この電気角補正量Δθcを推定電気角演算部116に供給することでモータ20の脱調を抑制する。電気角補正量Δθcは、電気角誤差検出部117と電気角補正量演算部118とによって算出される。
電気角補正量Δθcを算出するにあたっては、q軸とδ軸との電気角の相違状態を把握する必要がある。q軸とδ軸との相違状態は、γ軸方向に発生するγ軸誘起電圧(q軸方向に発生する誘起電圧eのγ軸方向成分)に基づいて検出することができる。γ軸誘起電圧eγは次式(10)にて表すことができる。
eγ=Vγ−R・Iγ+ω・L・Iδ ・・・(10)
ここで、Vγは電機子電圧のγ軸方向成分、Rはコイルの巻線抵抗、Iγは電機子電流のγ軸方向成分、Lはコイルのインダクタンス、Iδは電機子電流のδ軸方向成分を表す。
誘起電圧eは必ずq軸上に発生する。従って、図13(a)に示すように、q軸とδ軸とが一致している場合には、γ軸誘起電圧eγはゼロとなる(eγ=0)。また、図13(b)に示すように、q軸に対してδ軸が遅れている場合には、γ軸誘起電圧eγの値は負の値となる(eγ<0)。また、図13(c)に示すように、q軸に対してδ軸が進んでいる場合には、γ軸誘起電圧eγの値は正の値となる(eγ>0)。
また、q軸とδ軸との電気角誤差も検出することができる。q軸とδ軸との電気角誤差をΔθeとすると、q軸方向に発生する誘起電圧(実際の誘起電圧)eと、γ軸誘起電圧eγとの関係は、次式(11)にて表すことができる。
eγ=e・sinΔθe ・・・(11)
従って、
sinΔθe=eγ/e=(Vγ−R・Iγ+ω・L・Iδ)/e ・・・(12)
という関係式(12)により、電気角誤差Δθeを求めることができる。
ここで式(12)の右辺における、Vγ,Iγ,Iδは、3相座標からd−q座標に変換する式(1)の変換行列Cを用いて、モータ端子電圧Vu,Vv,Vw、モータ電流Iu,Iv,Iwから算出することができる。
q軸とδ軸との電気角誤差Δθeを検出することができれば、その電気角誤差Δθe分だけ推定電気角を補正すれば、δ軸をq軸位置にほぼ一致させることができる。しかし、上述したように、δ軸をq軸と一致させるように補正してしまうと、モータトルク効率は最大となるものの、軸力の変動によりモータ20で脱調が発生しやすくなる。そこで、本実施形態においては、δ軸の電気角がq軸の電気角よりも遅れるように、つまり、δ軸がq軸よりも電気角の遅れた方向を向くように推定電気角を補正する。この場合、モータ20脱調に対するロバスト性とモータトルク効率とをバランス良く確保するために、図14に示すように、δ軸がd−q座標における設定角度領域Aに入るように推定電気角を補正する。設定角度領域Aにおいて、q軸からの電気角の遅れが最小となる境界角度を最小遅れ電気角θminと呼び、q軸からの電気角の遅れが最大となる境界角度を最大遅れ電気角θmaxと呼ぶ。
最小遅れ電気角θminは、負荷増加に対する余裕度から設定される角度θ1と、各種誤差分を考慮した角度θ2と、推定電気角補正フィードバックによって補正可能な角度θ3とに基づいて、次のように設定される。
θmin=θ1+θ2−θ3
尚、角度θ1、θ2、θ3は、q軸から図14の反時計方向(電気角の遅れ方向)に回る方向を正の角度[deg]とする。
電流指令値Iq*が大きくなるほどモータ20の脱調による振動の影響が大きくなる。そこで、角度θ1は、振動の影響が大きくなる電流指令値Iq*が所定値I0となるときの、負荷増加に対してモータ20で脱調が発生しないような余裕角度を設定したものである。図15に示すように、電流指令値Iq*がI0となるときのモータトルクをT0、モータトルクT0と釣り合う軸力をF、予め見込んだ負荷増加量をΔF、角度θ1の方向に向いた力でモータトルクT0を発生させるモータトルクをT1とすると、
F=T0
F+ΔF=T1
T1・cosθ1=T0
という関係から、角度θ1は、次式にて表すことができる。
θ1=cos−1{(T0/(T0+ΔF)}
また、角度θ2は、各種の演算誤差、電流測定誤差を考慮して設定される。また、角度θ3は、図16に示すように、電流ベクトルの方向がq軸よりも進んでしまっても、後述する推定電気角の補正フィードバックによって電流ベクトルの方向をq軸側に戻して脱調しないようにできる補正可能な限界角度を設定したもので、予め実験により求めて設定される。
一方、最大遅れ電気角θmaxは、熱性能とアシスト性能とを考慮して設定される。電流ベクトルの向きをd軸側に接近させるほどモータコイルやモータ駆動回路30が発熱する。従って、センサレス制御を行うときの熱性能を満たす限界となる電流ベクトルのq軸からの遅れ角度を角度θ4として設定する。また、電流ベクトルの向きをd軸側に接近させるほど、アシストトルクが減少する。従って、センサレス制御を行うときのアシスト性能を満たす限界となる電流ベクトルのq軸からの遅れ角度を角度θ5として設定する。センサレス制御を行うときのアシスト性能とは、必要最小限のアシスト性能であって、例えば、車両の走行中に運転者が最大舵角まで操舵操作できるようなアシストトルクを出力できる能力に設定される。最大遅れ電気角θmaxは、熱性能とアシスト性能との両方が満たされるように、角度θ4と角度θ5とのうち、q軸からの遅れ角度が小さい方の角度に設定される。
このように、最小遅れ電気角θminと最大遅れ電気角θmaxとの間に設定された設定角度領域Aにδ軸が入るように推定電気角を補正することにより、センサレス制御中において電流ベクトルの方向が設定角度領域Aに向けられることになる。本実施形態においては、設定角度領域Aの範囲(最小遅れ電気角θminから最大遅れ電気角θmaxまでの角度θx)に比べて、q軸から最小遅れ電気角θminまでの範囲が小さく設定されている。
図3の電気角推定部110の説明に戻る。電気角推定部110は、電気角誤差検出部117と電気角補正量演算部118とを備えている。電気角誤差検出部117は、電圧センサ39から出力されるモータ端子電圧Vu,Vv,Vwを表す検出信号と、電流センサ38から出力されるモータ電流Iu,Iv,Iwを表す検出信号と、不感帯処理部112から出力される誘起電圧eと、推定角速度演算部113から出力される推定角速度ωとを入力し、上述したeγ/eの値(q軸方向に発生する誘起電圧eに対するγ軸誘起電圧eγの比)を計算する。上述したように、sinΔθe=eγ/eという関係が成立する。従って、eγ/eは、q軸とδ軸との電気角誤差Δθeに応じた値となる。そこで、電気角誤差検出部117は、電気角誤差Δθeを計算することなく、eγ/eの値を検出値として電気角補正量演算部118に出力する。図17は、検出値e/eγと電気角誤差Δθeとの関係を表す。
電気角補正量演算部118は、電気角誤差検出部117から出力された検出値eγ/eを入力し、電気角補正量算出マップを参照して1演算周期における電気角補正量Δθcを計算する。電気角補正量算出マップは、図18に示すように、検出値eγ/eと電気角補正量Δθcとの対応関係を設定したものである。
電気角補正量Δθcは、脱調に対するロバスト性とモータトルク効率とを両立させるために、δ軸がd−q座標における設定角度領域Aに入るように推定電気角を補正する値である。従って、電気角補正量算出マップは、設定角度領域Aの境界である最小遅れ電気角θminと最大遅れ電気角θmaxとに対応する検出値eγ/eの範囲において不感帯Zが設定されている。ここで、最小遅れ電気角θminに対応する検出値eγ/eの値をx1とし、最大遅れ電気角θmaxに対応する検出値eγ/eの値をx2とする。この場合、検出値eγ/eの不感帯Zは、x1〜x2の間に設定される。このx1、x2は、電気角誤差Δθeと検出値eγ/eとの関係(式(12)、図17参照)から求められて設定される。
検出値eγ/eが正の値となる場合、δ軸はq軸よりも電気角の進んだ方向を向いている。従って、この場合には、電気角補正量Δθcは、負の値に設定される。また、検出値eγ/eが負の値となる場合、δ軸はq軸よりも電気角の遅れた方向に向いている。この場合、電気角補正量Δθcは、検出値eγ/eがx1を越える値であれば、モータ20の脱調に対するロバスト性を向上させるために負の値に設定される。また、検出値eγ/eがx1以下でx2以上の場合は、δ軸が設定角度領域Aに入っているため、電気角補正量Δθcは、0(ゼロ)に設定される。また、検出値eγ/eがx2未満の場合には、電気角補正量Δθcは、正の値に設定される。
また、電気角補正量算出マップにおいては、検出値eγ/eがx1より大きなx0以上となる場合、および、検出値eγ/eがx2より小さなx3以下となる場合に、電気角補正量Δθcが一定の上限値に制限される。本実施形態においては、図18に示すように、δ軸の電気角が設定角度領域Aよりも遅れている場合の電気角補正量Δθcの上限値をΔθcmaxlagとし、δ軸の電気角が設定角度領域Aよりも進んでいる場合の電気角補正量Δθcの上限値をΔθcmaxleadとすると、上限値Δθcmaxleadのほうが上限値Δθcmaxlagよりも大きな値に設定されている(絶対値の比較)。
また、電気角補正量Δθcは、検出値eγ/eがx0〜x1の範囲に入る場合、および、検出値eγ/eがx2〜x3の範囲に入る場合に、検出値eγ/eが不感帯Zから外れている量に比例した大きさの電気角補正量Δθcが設定される。この場合、電気角の補正感度は、δ軸の電気角が設定角度領域Aよりも進んでいるか遅れているかによって異なるように設定されている。電気角の補正感度とは、検出値eγ/eが不感帯Zから外れている量に対する電気角補正量Δθcの比を表す。本実施形態においては、δ軸の電気角が設定角度領域Aよりも進んでいる場合における補正感度(図18の特性ラインG1の傾き)が、δ軸の電気角が設定角度領域Aよりも遅れている場合における補正感度(図18の特性ラインG2の傾き)よりも大きく設定されている。
電気角補正量演算部118は、電気角補正量算出マップを参照して電気角補正量Δθcを計算すると、この電気角補正量Δθcに回転方向推定部115から入力した操舵トルクの向き(符号)を乗算し、この値を新たな電気角補正量Δθcに設定する(Δθc←Δθc・sign(Tr))。電気角補正量演算部118は、こうして算出した電気角補正量Δθcを推定電気角演算部116に出力する。推定電気角演算部116は、上述したように、電気角加算量演算部114から出力された電気角加算量θaと電気角補正量演算部118から出力された電気角補正量Δθcとの合計値Δθ(=Δθa+Δθc)を1周期前の演算タイミングで算出した推定電気角θeb(n-1)に加算することで推定電気角θebを算出する。
アシストECU100は、短い演算周期にて上述した処理を繰り返す。従って、回転角センサ22の異常が検出されていないとき(センサ異常判定信号F=0)には、実電気角θeaに基づいて設定されたd−q座標を用いて電流ベクトル制御が行われる。また、回転角センサ22の異常が検出されているとき(センサ異常判定信号F=1)には、電気角推定部110が推定電気角θebを算出し、この推定電気角θebによりd−q座標を推定したγ−δ座標を用いて電流ベクトル制御が行われる。センサレス制御時においては、電気角補正量算出マップにしたがって電気角補正量Δθcが演算されて推定電気角が補正されるため、図14の矢印に示すように、δ軸が設定角度領域Aに入るようにフィードバック制御される。これにより、電流ベクトルの向きが、実際のq軸よりも遅れた方向に向けられる。従って、図19のP2位置に示すように、モータトルク効率は最大にはならないものの、軸力の急増により回転子が逆回転して電流ベクトルの方向が進んでもアシストトルクが増加するため、モータ20の脱調を抑制することができる。
このようにセンサレス制御においては、δ軸が設定角度領域Aに入るように推定電気角を補正するためモータ20の脱調が抑制される。しかし、操舵ハンドル11の戻し操作を行うときには、操舵ハンドル11を握っている力を緩めるようにして操舵ハンドル11を中立位置側に戻すため、操舵トルクの方向とモータ20の回転方向とが互いに反対となる。従って、回転方向推定部115にて推定したモータ20の回転方向が誤ったものとなる。このため、推定電気角演算部116は、モータ20の回転とは逆方向に推定電気角を進めてしまう。従って、図20に示すように、δ軸がq軸に対して進んでしまう。この結果、図12、20の矢印に示すように、電流ベクトルの方向がq軸よりも進んでいき、モータ20で発生できるアシストトルクが減少して、逆アシスト領域に入ってしまう。このようにして、モータ20は脱調する。
モータ20が脱調しているときには、電流ベクトルの方向が回転子に対して相対的に変化していくため、モータ20は、操舵操作をアシストする方向の力と、その逆方向である逆アシスト方向の力とを交互に発生するようになる。このため、平均的なモータトルクが低下してハンドル操作が重くなるとともに、モータトルクの周期的な変動が発生し、そのトルク変動が操舵ハンドル11の振動として現れる。これにより、運転者に対して大きな違和感を与えてしまう。そこで、本実施形態においては、アシストトルク設定部101に、正常時アシストマップと異常時アシストマップとを記憶し、回転角センサ22の異常が検出されているとき、つまり、センサレス制御を行うときには、異常時アシストマップを用いてアシスト制御を行うようにすることで、操舵操作の違和感を低減する。
上述したように、異常時アシストマップは、正常時アシストマップに比べて、不感帯X1が広く設定され、低トルク域X3Lにおいて目標アシストトルクT*が小さく設定されている。この場合、保舵中における操舵トルクTrが低トルク域X3Lに入るように設定トルクTrsが設定されている。従って、センサレス制御中においては、正常時アシストマップを使用する場合に比べて、通常のハンドル操舵操作が重くなる。モータ20が脱調すると、目標アシストトルクT*をモータ20で発生できなくなり、運転者が操舵ハンドル11を操作する操舵力が増加し操舵トルクTrが増加する。従って、操舵トルクTrは、高トルク域X3Hに到達する。
異常時アシストマップは、正常時アシストマップに比べて、高トルク域X3Hにおいて目標アシストトルクT*が大きく設定されている。また、異常時アシストマップは、低トルク域X13Lにおける増加率rに比べて、高トルク域X13Hの増加率rの方が大きく設定されている。従って、モータ20が脱調して操舵トルクTrが高トルク域X13Hに入ると、目標アシストトルクT*が急激に増加する。また、異常時アシストマップは、正常時アシストマップに比べて、上限制限開始トルクTr2が小さく設定されている。このため、モータ20が脱調したときには、正常時アシストマップを使用する場合に比べて、操舵トルクTrが早く上限制限開始トルクTr2に達する。
これにより、センサレス制御中においては、モータ20が脱調すると、正常時アシストマップを使用する場合に比べて、目標アシストトルクT*が急激に増加し、それに伴って、アシスト電流指令部102により、大きな電流指令値(q軸指令電流Iq*)が設定される。
モータ20が脱調しているときには、電流ベクトルは、回転子に対して相対回転するため、図20に示すように、正アシスト領域と逆アシスト領域とを交互に進むようになる。このとき、電流ベクトルが正アシスト領域に入っている場合には、モータトルクの向きとモータ20かかる負荷の向きが異なるため、電流ベクトルが回転子に対して相対的に進む速度が遅くなり、逆に、電流ベクトルが逆アシスト領域に入っている場合には、モータトルクの向きとモータ20にかかる負荷の向きが同じであるため、電流ベクトルが回転子に対して相対的に進む速度が速くなる。
センサレス制御中においては、異常時アシストマップを使用するため、モータ20が脱調したときには、正常時アシストマップを使用する場合に比べて大きなモータ電流を流すことができることから、電流ベクトルが正アシスト領域に入っている期間に比べて、電流ベクトルが逆アシスト領域に入っている期間を一層短くすることができる。このため、正常時アシストマップを使用する場合に比べて、モータトルク変動幅が少なくなる。これにより、ハンドル操作に必要となる操作力の振幅が小さくなり、運転者が感じる操舵ハンドルの振動を低減することができる。さらに振動の周波数も高くなる。このため、操舵ハンドル11の振動による違和感が低減される。また、モータ20が脱調した場合には、ハンドル操作が重くなるが、モータ20が脱調していない場合においても、異常時アシストマップによりハンドル操作が重くなるように設定してあるため、脱調時とそうでない時とにおける操舵操作力の変動幅を少なくすることができ、モータ20が脱調したときの違和感を低減することができる。
図21は、脱調時における、実電気角θab、推定電気角θeb、電流指令値Iq*、操舵トルクTrの推移を同じ時間軸で表した実験データを示す。図中(a)は、正常時アシストマップを使った場合の実験データ、図中(b)は、異常時アシストマップを使った場合の実験データである。(a),(b)ともに、同じ条件にて実験したもので、横軸は、同じ時間幅である。図示するように、異常時アシストマップを使った場合は、正常時アシストマップを使った場合に比べて、操舵トルクTrの変動幅ΔTrが小さいことがわかる。この実験データ(a)においては、操舵トルクTrがトルクセンサの検出範囲の上限を越えているため、波形の頂上平坦部はトルクセンサの検出上限値となっている。従って、実際の操舵トルクTrの変動幅ΔTrは、図に示す幅よりも大きいものである。また、図示するように、異常時アシストマップを使った場合は、正常時アシストマップを使った場合に比べて、操舵トルクTrの変動の周期が短くなることがわかる。従って、運転者の感じる操舵ハンドル11の振動周波数が大きくなる。
以上説明した本実施形態の電動パワーステアリング装置によれば、以下の作用効果を奏する。
1.異常時アシストマップは、正常時アシストマップに比べて、操舵トルクTrの増加に対して目標アシストトルクT*が急激に増加するように設定されているため、モータ20が脱調したときに、大きなモータ電流を流すことができる。これにより、電流ベクトルが逆アシスト領域に入っている期間を短くすることができ、操舵操作に必要な力の変動(操舵トルクTrの振幅)を小さくすることができる。この結果、モータ20が脱調したときに操舵ハンドル11に発生する振動を小さくすることができ、操舵フィーリングの低下を抑制することができる。
2.異常時アシストマップは、正常時アシストマップに比べて、不感帯X1が広く、低トルク域X3において目標アシストトルクT*が小さく設定されているため、センサレス制御中においては、ハンドル操作が重くなる。このため、モータ20の脱調時とそうでない時とにおける操舵操作力の変動幅を少なくすることができ、モータ20が脱調したときの違和感を低減することができる。
3.モータ20が脱調したときに、大きなモータ電流を流すため、操舵ハンドル11に発生する振動の周波数を高くすることができる。これにより、運転者の感じる違和感を低減することができる。
4.回転角センサ22の異常が検出されているときには、δ軸の電気角がq軸の電気角よりも遅れるように推定電気角が補正される。従って、軸力が急増してモータ20の回転子が操舵方向に対して逆方向に回転しても、モータ20で発生するアシストトルクが増加するため、回転子の逆回転を抑制することができる。この結果、モータ20の脱調に対するロバスト性が向上する。
5.推定電気角の算出にあたって必要となるモータ回転方向の情報を、操舵トルクセンサ21により検出された操舵トルクTrの方向から取得するため、モータ回転方向を検出するための特別なセンサを要しなく低コストにて実施することができる。操舵トルクTrから回転方向の情報を取得する場合には、モータ20の回転子が操舵方向に対して逆方向に回転したときに、回転子の回転方向と推定電気角を進める方向とが反対となって相対的な推定角速度ωが増大するためモータ20が脱調しやすい。しかし、本実施形態においては、δ軸の電気角がq軸の電気角よりも遅れるように推定電気角を補正するため、回転子の逆回転を抑制することができる。この結果、モータ20の脱調に対するロバスト性と低コスト化とを両立させることができる。
6.電気角補正量Δθcは、δ軸の電気角がq軸よりも電気角の遅れた設定角度領域Aに入るように設定される。この設定角度領域Aは、負荷増加に対する余裕度、各種誤差分、推定電気角補正フィードバックによって補正可能な角度分、熱性能、アシスト性能を考慮して設定されているため、モータ20の脱調に対するロバスト性とモータトルク効率とをバランス良く確保することができる。また、必要最小限のアシスト性能を確保することができる。
7.電気角補正量Δθcの算出にあたっては、δ軸とq軸との電気角の相違状態を検出する必要があるが、本実施形態においては、検出値eγ/eを算出しているため、δ軸とq軸との角度差(電気角誤差)まで検出することができる。この結果、δ軸を設定角度領域Aに適正に維持することができる。また、電気角補正量算出マップを参照して、検出値eγ/eから電気角補正量Δθcを算出するため、検出値eγ/eの不感帯Zを設けることで、簡単に設定角度領域Aを設定することができる。
8.電気角補正量Δθcの算出にあたっては、推定電気角を1回で補正できる上限値が設定されている。この場合、δ軸の電気角が設定角度領域Aよりも遅れている場合の上限値Δθcmaxlagよりも、δ軸の電気角が設定角度領域Aよりも進んでいる場合の上限値Δθcmaxleadのほうが大きな値に設定されている。このため、δ軸の電気角がモータ20の脱調が発生しやすい領域に入っている場合には、電気角補正量Δθcを大きく設定できるためモータ20の脱調を速やかに回避することができる。一方、δ軸の電気角がモータトルク効率の低い領域に入っている場合には、安定した制御速度で推定電気角を補正して、モータトルク効率を高めることができる。
9.電気角補正量Δθcの算出にあたっては、δ軸の電気角が設定角度領域Aよりも遅れている場合の補正感度よりも、δ軸の電気角が設定角度領域Aよりも進んでいる場合の補正感度のほうが大きく設定されている。このため、δ軸の電気角がモータ20の脱調が発生しやすい領域に入っている場合には、電気角補正量Δθcを大きく設定できるためモータの脱調を速やかに回避することができる。一方、δ軸の電気角がモータトルク効率の低い領域に入っている場合には、安定した制御速度で推定電気角を補正して、モータトルク効率を高めることができる。
10.設定角度領域Aの範囲(最小遅れ電気角θminから最大遅れ電気角θmaxまでの角度θx)に比べて、q軸から最小遅れ電気角θminまでの範囲が小さく設定されている。従って、モータ20の脱調を抑制しつつ、できるだけモータトルク効率を高い状態に維持することができる。
11.推定誘起電圧eの算出にあたって、操舵トルクTrの大きさが小さい場合には、誘起電圧eに不感帯が設定されない。これにより、推定電気角が固定されないため、操舵ハンドル11を中立位置から回し始める時に、運転者に操舵操作の引っ掛かりを感じさせない。一方、操舵トルクTrの大きさが大きい場合には、誘起電圧eに不感帯が設定される。これにより、操舵ハンドル11が振動しないため、操舵フィーリングの低下を抑制することができる。
以上、本実施形態の電動パワーステアリング装置について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。
例えば、本実施形態では、図5,図6に示すように、異常時アシストマップにおいて、上限制限開始トルクTr12が車速vに関係なく一定値に設定されるが、図22に示すように、車速vが大きいほど上限制限開始トルクTr12を大きく設定するようにしてもよい。この場合でも、上限制限開始トルクTr12は、上限制限開始トルクTr02に比べて小さく設定されるものである。また、本実施形態では、異常時アシストマップにおいて、目標アシストトルクT*の上限値T1maxを車速vに関係なく一定値に設定されるが、車速vに応じて変更するようにしてもよい。
また、図23に示すように、異常時アシストマップにおける高トルク域X13Hにおいては、操舵トルクTrの増加に正比例して増加する目標アシストトルクT*を設定するようにしてもよい。尚、図23は、特定の車速vにおけるアシストマップである。
また、本実施形態においては、アシストトルク設定部101は、正常時アシストマップと異常時アシストマップの両方を記憶してその一方を選択して使用するが、異常時アシストマップを記憶せずに、正常時アシストマップと、正常時アシストマップから異常時アシスト特性を導く計算式を記憶するようにして、目標アシストトルクT*を算出するようにしてもよい。ここで、図23の異常時アシストマップで表される異常時アシスト特性を正常時アシストマップから計算する例について説明する。
アシストトルク設定部101は、センサレス制御の実行時において、操舵トルクTrが不感帯終了トルクTr11未満であるか(Tr<Tr11)、不感帯終了トルクTr11〜設定トルクTrsの間に入るか(Tr11≦Tr≦Trs)、設定トルクTrs〜上限制限開始トルクTr12の間に入るか(Trs<Tr≦Tr12)、上限制限開始トルクTr12を越えるか(Tr>Tr12)を判別する。そして、操舵トルクTrが不感帯終了トルクTr11未満である場合には、目標アシストトルクT*をゼロに設定する(T*=0)。
また、アシストトルク設定部101は、操舵トルクTrが不感帯終了トルクTr11〜設定トルクTrsの間に入る場合、つまり、低トルク域X13Lに入る場合には、次式により目標アシストトルクT*を計算する。
T*=T*0×((Tr−Tr11)/(Trs−Tr11)
ここで、T*0は正常時アシストマップにおける操舵トルクTrに対応する目標アシストトルクの値である。従って、この計算を行う場合は、正常時アシストマップを参照する。
また、アシストトルク設定部101は、操舵トルクTrが設定トルクTrs〜上限制限開始トルクTr12の間に入る場合、つまり、高トルク域X13Hに入る場合には、次式により目標アシストトルクT*を計算する。
T*=T*0s+Kt×(Tr−Trs)
ここで、T*0sは、正常時アシストマップにおける設定トルクTrsに対応する目標アシストトルクの値である。また、Ktは、車速v毎に設定されるゲインであり、図23のa点とb点とを線形補間するように予め設定された値である。従って、この計算を行う場合にも、正常時アシストマップを参照する。
また、アシストトルク設定部101は、操舵トルクTrが上限制限開始トルクTr12を越える場合には、目標アシストトルクT*を上限値T1maxに設定する(T*=T1max)。このように、アシストトルク設定部101は、正常時アシストマップから異常時アシスト特性を取得するために必要な計算式を記憶することにより、異常時アシストマップを記憶する必要がなく、メモリ容量を削減することができる。
また、本実施形態においては、電気角補正量Δθcを用いて、δ軸の電気角がq軸の電気角よりも遅れるように推定電気角を補正するようにしているが、必ずしも、そのようにする必要はなく、電気角誤差検出部117,電気角補正量演算部118を省略した構成であってもよい。
また、本実施形態においては、操舵トルクTrの大きさに応じて誘起電圧eの不感帯を切り替えるようにしているが、必ずしも、そのようにする必要はなく、一定の不感帯を設けたものであっても良い。
また、本実施形態では、操舵トルクセンサ21により検出される操舵トルクTrの方向をモータ20の回転方向とみなして推定電気角を演算するが、操舵角センサ等、モータ20の回転方向を検出できるセンサを備えている場合には、そのセンサの検出値を使ってモータ20の回転方向を推定するようにしてもよい。
また、本実施形態においては、推定電気角の初期値θeb(n-1)として、回転角センサ22の異常が検出される直前の実電気角θeaの値を用いているが、それに代えて固定値など任意の値を用いても良い。これは、初期の推定電気角が実電気角と相違していても、モータ20が回転しているうちに、電流ベクトルの方向に永久磁石が引き寄せられて同期するからである。
また、本実施形態においては、モータ20の発生するトルクをラックバー14に付与するラックアシスト式の電動パワーステアリング装置について説明したが、モータの発生するトルクをステアリングシャフト12に付与するコラムアシスト式の電動パワーステアリング装置であってもよい。
10…ステアリング機構、11…操舵ハンドル、20…電動モータ、21…操舵トルクセンサ、22…回転角センサ、25…車速センサ、30…モータ駆動回路、38…電流センサ、39…電圧センサ、100…電子制御装置(アシストECU)、101…アシストトルク設定部、102…アシスト電流指令部、103…フィードバック制御部、104…3相/2相座標変換部、105…2相/3相座標変換部、106…PWM制御信号発生部、110…電気角推定部、111…誘起電圧演算部、112…不感帯処理部、113…推定角速度演算部、114…電気角加算量演算部、115…回転方向推定部、116…推定電気角演算部、117…電気角誤差検出部、118…電気角補正量演算部、130…実電気角変換部、131…センサ異常検出部、132…電気角選択部。

Claims (6)

  1. ステアリング機構に設けられて操舵アシストトルクを発生する永久磁石同期モータと、
    操舵ハンドルからステアリングシャフトに入力された操舵トルクを検出する操舵トルクセンサと、
    前記操舵トルクセンサで検出される操舵トルクが大きくなるにしたがって目標操舵アシストトルクを大きく設定するように前記操舵トルクと前記目標操舵アシストトルクとを関係付けたアシスト特性を記憶し、前記アシスト特性に基づいて前記操舵トルクから目標操舵アシストトルクを設定する目標操舵アシストトルク設定手段と、
    前記永久磁石同期モータの電気角を検出するための回転角センサと、
    前記回転角センサの異常を検出するためのセンサ異常検出手段と、
    前記永久磁石同期モータの回転方向を推定する回転方向推定手段と、
    前記センサ異常検出手段により前記回転角センサの異常が検出されているとき、前記永久磁石同期モータで発生する誘起電圧と前記永久磁石同期モータの回転方向とに基づいて前記永久磁石同期モータの推定電気角を算出する電気角推定手段と、
    前記永久磁石同期モータで前記目標操舵アシストトルクを発生するように、前記回転角センサの異常が検出されていないときには前記回転角センサにより検出された電気角を用いて前記永久磁石同期モータを駆動制御し、前記回転角センサの異常が検出されているときには前記電気角推定手段により算出された推定電気角を用いて前記永久磁石同期モータを駆動制御するモータ制御手段と
    を備えた電動パワーステアリング装置において、
    前記目標操舵アシストトルク設定手段は、前記回転角センサの異常が検出されているときに使用する異常時アシスト特性と、前記回転角センサの異常が検出されていないときに使用する正常時アシスト特性とを記憶し、
    前記異常時アシスト特性は、前記操舵トルクが予め設定された低トルク域に入る場合には前記正常時アシスト特性に比べて前記目標操舵アシストトルクが小さく、前記操舵トルクが増加して前記低トルク域を越えた場合には前記正常時アシスト特性に比べて前記目標操舵アシストトルクが大きくなるように、前記操舵トルクと前記目標操舵アシストトルクとの関係が設定されていることを特徴とする電動パワーステアリング装置。
  2. 前記異常時アシスト特性および前記正常時アシスト特性は、前記目標操舵アシストトルクをゼロに設定する前記操舵トルクの不感帯が設けられており、前記異常時アシスト特性における不感帯は、前記正常時アシスト特性における不感帯よりも広いことを特徴とする請求項1記載の電動パワーステアリング装置。
  3. 前記異常時アシスト特性は、前記操舵トルクの増加に対して前記目標操舵アシストトルクの増加する増加率が、前記操舵トルクが前記低トルク域に入っているときよりも前記低トルク域を超えているときのほうが大きくなるように、前記操舵トルクと前記目標操舵アシストトルクとの関係が設定されていることを特徴とする請求項1または2記載の電動パワーステアリング装置。
  4. 前記異常時アシスト特性および前記正常時アシスト特性は、前記操舵トルクが予め設定された上限制限開始トルク以上になると前記目標操舵アシストトルクが上限値制限されるように、前記操舵トルクと前記目標操舵アシストトルクとの関係が設定されており、前記異常時アシスト特性における上限制限開始トルクは、前記正常時アシスト特性における上限制限開始トルクよりも小さいことを特徴とする請求項1ないし請求項3の何れか一項記載の電動パワーステアリング装置。
  5. 前記回転方向推定手段は、前記操舵トルクセンサで検出された操舵トルクの方向に基づいて、前記永久磁石同期モータの回転方向を推定することを特徴とする請求項1ないし請求項4の何れか一項記載の電動パワーステアリング装置。
  6. 前記目標操舵アシストトルク設定手段は、前記回転角センサの異常が検出されていないときの前記操舵トルクと前記目標操舵アシストトルクとを関係付けた正常時アシストマップと、前記正常時アシストマップに基づいて前記回転角センサの異常が検出されているときの前記操舵トルクから前記目標操舵アシストトルクを取得するために必要な計算式とにより、前記正常時アシスト特性と前記異常時アシスト特性とを記憶することを特徴とする請求項1ないし請求項5の何れか一項記載の電動パワーステアリング装置。
JP2010021271A 2010-02-02 2010-02-02 電動パワーステアリング装置 Active JP5257374B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010021271A JP5257374B2 (ja) 2010-02-02 2010-02-02 電動パワーステアリング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010021271A JP5257374B2 (ja) 2010-02-02 2010-02-02 電動パワーステアリング装置

Publications (2)

Publication Number Publication Date
JP2011157004A JP2011157004A (ja) 2011-08-18
JP5257374B2 true JP5257374B2 (ja) 2013-08-07

Family

ID=44589351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010021271A Active JP5257374B2 (ja) 2010-02-02 2010-02-02 電動パワーステアリング装置

Country Status (1)

Country Link
JP (1) JP5257374B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5570401B2 (ja) * 2010-12-01 2014-08-13 本田技研工業株式会社 電動パワーステアリング装置
US20160233804A1 (en) * 2013-10-22 2016-08-11 Mitsubishi Electric Corporation Motor control device
WO2015182928A1 (ko) * 2014-05-30 2015-12-03 한국델파이주식회사 전동식 파워 스티어링 장치의 목표 조향 파워 산출 방법 및 장치
EP3196096B1 (en) * 2014-09-17 2019-02-20 NSK Ltd. Electric power steering device
JP6083428B2 (ja) * 2014-12-16 2017-02-22 トヨタ自動車株式会社 車両の電動パワーステアリング装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4329792B2 (ja) * 2006-08-10 2009-09-09 トヨタ自動車株式会社 電動パワーステアリング装置
JP5012258B2 (ja) * 2006-09-07 2012-08-29 日本精工株式会社 電動パワーステアリング装置
JP2008068777A (ja) * 2006-09-15 2008-03-27 Toyota Motor Corp 電動パワーステアリング装置
JP5534292B2 (ja) * 2008-06-30 2014-06-25 株式会社ジェイテクト 車両用操舵装置

Also Published As

Publication number Publication date
JP2011157004A (ja) 2011-08-18

Similar Documents

Publication Publication Date Title
JP5365701B2 (ja) 電動パワーステアリング装置
JP5263090B2 (ja) 電動パワーステアリング装置
JP6022951B2 (ja) 電動パワーステアリング装置
EP2110941B1 (en) Motor control apparatus and electric power steering system
JP5672191B2 (ja) 電動パワーステアリング装置
US9407177B2 (en) Rotating electric machine control device and electric power steering apparatus
JP5453714B2 (ja) モータ制御装置および電動パワーステアリング装置
WO2009123107A1 (ja) モータ制御装置および電動パワーステアリング装置
JP5257374B2 (ja) 電動パワーステアリング装置
JP2014168341A (ja) モータ制御装置
JP2017226305A (ja) 電動パワーステアリング装置
JP5263079B2 (ja) 電動パワーステアリング装置
EP3495235B1 (en) Steering control unit
US8981690B2 (en) Electric power steering system
JP5719177B2 (ja) 電動パワーステアリング装置
JP2011131643A (ja) 電動パワーステアリング装置
JP6288408B2 (ja) モータ制御方法、モータ制御装置および電動パワーステアリング装置
JP2011131726A (ja) 電動パワーステアリング装置
JP2011230531A (ja) モータ制御装置
JP2010167878A (ja) 電動パワーステアリング装置
JP5287698B2 (ja) 電動パワーステアリング装置
JP5444697B2 (ja) モータ制御装置および電動パワーステアリング装置
US10577014B2 (en) Steering control apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5257374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151