CN101014540B - 化学稳定固态锂离子导体 - Google Patents

化学稳定固态锂离子导体 Download PDF

Info

Publication number
CN101014540B
CN101014540B CN2005800117495A CN200580011749A CN101014540B CN 101014540 B CN101014540 B CN 101014540B CN 2005800117495 A CN2005800117495 A CN 2005800117495A CN 200580011749 A CN200580011749 A CN 200580011749A CN 101014540 B CN101014540 B CN 101014540B
Authority
CN
China
Prior art keywords
solid state
ionic conductor
state ionic
trivalent
purposes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2005800117495A
Other languages
English (en)
Other versions
CN101014540A (zh
Inventor
维尔纳·韦普内
文卡塔拉曼·坦加杜赖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority claimed from PCT/EP2005/002255 external-priority patent/WO2005085138A1/de
Publication of CN101014540A publication Critical patent/CN101014540A/zh
Application granted granted Critical
Publication of CN101014540B publication Critical patent/CN101014540B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • C01G33/006Compounds containing, besides niobium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • C01G35/006Compounds containing, besides tantalum, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/185Cells with non-aqueous electrolyte with solid electrolyte with oxides, hydroxides or oxysalts as solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及化学稳定固态锂离子导体,其生产方法,及其在电池、蓄电池、超级电容器和电致变色器件中的使用。

Description

化学稳定固态锂离子导体
本发明涉及化学稳定固态离子导体,特别是锂离子导体,它们的生产方法,以及它们在电池、蓄电池及电致变色器件中的应用。 
大量的技术装置,特别是移动电话及便携式计算机(即笔记本电脑),需要具有高能量密度(及高功率密度)的可移动能量存储器。在这方面,可充电的化学能量储存器,尤其是二次电池和超级电容器具有极大的重要性。 
早先0.2-0.4Wh/cm3范围的最高能量密度如今已通过所谓的锂离子电池在商业上实现。这些电池通常由含锂盐(如LiPF6)的液态有机溶剂(如EC/DEC)、带有嵌入锂的石墨制成的阳极和锂钴氧化物制成的阴极组成,该锂钴氧化物中的钴可被镍或锰部分或全部取代。 
众所周知,这种锂离子电池的寿命非常有限,因此即使在该装置需要提供的使用期限内,也必须经常将其替换。此外,替换通常较昂贵,而且由于电池中的一些成分对环境有害,所以旧电池的处理也会带来问题。 
在操作中,现有技术的电池经证明不能为许多应用提供足够的能量(如,笔记本电脑脱线工作的最长时间为几个小时)。当使用能提供如5V或更高电压的电极时,电池在化学上不稳定;有机电解质组分在高于2.5V的电压下开始分解。液态电解质在任何情况下都是一种安全隐患:除泄漏、着火及爆炸的危险以外,还可能出现枝晶的生长,这种生长可能导致高的自放电和发热。 
液态电解质电池基本上不适合一些技术目标,因为这些技术目标必须始终具有较小的厚度,因此,它们仅能在有限程度上用作薄的能量储存器,例如芯片卡上的能量存储器。 
固态锂离子导体,如Li2,9PO3,3N0,46(Li3-xPO4-yNy,LIPON),也是已知的,并已在实验室规模上用于薄层电池。然而,这些材料的锂传导率 通常比液态电解质低很多。具有最好的离子导电性的固态锂离子导体是Li3N和Li-β-氧化铝。这两种化合物均对水(潮湿)很敏感。Li3N在室温及0.445V电压下早已分解;Li-β-氧化铝在化学上是不稳定的。 
Thangadurai等人在文献“Novel fast lithium ion conduction ingarnet-type Li5La3M2O12(M=Nb,Ta)”(J.Am.Ceram.Soc.86,437-440,2003)中介绍了具有类石榴石结构的锂离子导体。 
石榴石是一般组成为A3B2(SiO4)3的正硅酸盐,其中A和B代表8-配位或6-配位的阳离子位置。单个的SiO4四面体通过离子键与填隙的B阳离子相连接。 
式为Li5La3M2O12(M=Nb,Ta)的化合物具有类石榴石结构。它们以立方对称结晶,并且对于其中M=Nb或Ta的相应化合物,分别具有晶格常数 
Figure G05811749520061023D000021
或 
Figure G05811749520061023D000022
与理想的石榴石结构相比,每一个式单元多出16个锂离子。La3+和M5+离子占据了8-配位或6-配位的位置,而锂离子占据了具有6-重配位的位置。理想石榴石结构和Li5La3M2O12之间的相似性在于:碱金属/稀土金属离子占据十二面体(8-)配位位置,而M原子占据6-配位位置。两者结构上的主要差别在于理想石榴石结构中硅占据具有4-重氧配位的位置,而在类石榴石结构的Li5La3M2O12中,Li占据了高度畸变的八面体位置。类石榴石结构具有两种类型的LiO6八面体;其中Li(I)O6比Li(II)O6畸变更大。MO6八面体被六个LiO6八面体和两个空缺的锂位置以立方体形式包围在其中。该空位位置位于相邻MO6八面体之间的轴线上。 
类石榴石Li5La3M2O12化合物具有较大的锂离子导电性。特别地,据证实在含钽化合物Li5La3Ta2O12中,该类石榴石结构中的体积电导率和晶界电导率往往在相当的数量级上。因此总的电导率非常高,甚至高于Li-β-氧化铝或Li9AlSiO8的电导率,但仍比LISICON或Li3N的电导率低很多。 
本发明的目标是提供具有高离子导电性,低电子导电性和高化学稳定性的改良固态离子导体。特别地,本发明的目标是提供改良的锂 离子导体。 
人们发现,类石榴石结构的材料具有非常高的离子导电性。这类新型固态离子导体形式上源于已知的类石榴石结构的化合物Li5La3M2O12。令人意外的是,通过异价(aliovalent)取代由这种化合物生产出离子导电性显著提高的类石榴石结构。 
异价取代被理解为一个离子被另一氧化态的离子的取代,所需的电荷补偿可以通过阳离子空位、阴离子空位、填隙阳离子和/或填隙阴离子来实现。 
从已知的类石榴石结构Li5La3M2O12开始,根据本发明可以通过异价取代提高网络的连通性,并改变可用空位位置的数量。在这方面,优选例如通过二价阳离子异价取代La3+位置。电荷补偿优选由Li+阳离子实现。可通过适当的掺杂定制该结构的传导率。 
此外,根据本发明,可使用任何其它元素或元素组合来代替Li,La,M和O。通过用其它金属阳离子,尤其是碱金属离子来部分或全部形式取代Li阳离子,可能得到任何离子导体。根据本发明的固态离子导体的特征在于上文所详述的类石榴石结构。 
因此,本发明提供了一种具有类石榴石晶体结构并且具有高于3.4×10-6S/cm的离子导电率的固态离子导体。 
因此,本发明还提供了一种具有类石榴石晶体结构的固态离子导体,该结构具有如下化学计量组成: 
L5+xAyGzM2O12
其中, 
L在各种情形中独立地是任意的优选单价阳离子, 
A在各种情形中独立地是单价、二价、三价或四价阳离子, 
G在各种情形中独立地是单价、二价、三价或四价阳离子, 
M在各种情形中独立地是三价、四价或五价阳离子, 
0<x≤3,0≤y≤3,0≤z≤3,并且 
其中O可被二价和/或三价阴离子部分或全部取代,如N3-。 
在这种形式组成结构中,L,A,G和M可分别相同或不同。 
L尤其优选为碱金属离子,如Li+,Na+或K+。在这方面,不同碱金属离子的组合对于L也是特别可能的。 
A代表任意的单价、二价、三价或四价阳离子,或它们的任何组合。优选使用二价金属阳离子作为A。特别优选碱土金属阳离子,如Ca,Sr,Ba和/或Mg以及二价过渡金属阳离子,如Zn。 
G代表任意的二价,三价,四价或五价离子或它们的任意组合。优选使用三价金属阳离子作为G。特别优选La。 
M代表任意的二价、三价、四价或五价阳离子或它们的任意组合。优选使用五价阳离子作为M。M也优选是过渡金属,优选选自Nb和Ta。其它适宜的五价阳离子的实例是Sb和V。当选择M时,选择具有高还原稳定性的过渡金属离子是有利的。M最优选为Ta。 
在上述组成的结构中,O2-可以被其它阴离子全部或部分取代。例如,通过其它的二价阴离子全部或部分取代O2-是有利的。此外,通过具有相应电荷补偿的三价阴离子也可以异价取代O2-。 
此外,在上述组成中, 
0≤x≤3,优选0<x≤2,且特别优选0<x≤1; 
0≤y≤3,且0≤z≤3。以类石榴石结构整体上不带电荷的方式选择各成分的化学计量比。 
在本发明的一个优选实施方案中,L为单价阳离子,A为二价阳离子,G为三价阳离子,M为五价阳离子。此外,在这个优选实施方案中,化合物的化学计量优选为: 
L5+xAxG3-xM2O12
其中X的限定同上文,且优选0<x≤1。 
本发明的特殊方面提供了化学计量组成为Li6ALa2M2O12的固态锂离子导体,其中A代表二价金属,M代表五价金属。在这种形式的组成结构中,A和M在各情形中可以相同或者不同。 
A优选选自碱土金属,优选选自Ca,Sr,Ba和/或Mg。A也可以优选选自二价过渡金属,例如A=Zn。A最优选为Sr或Ba。 
M可以是任何五价阳离子,例如氧化态为+V的金属,M优选为一种优选选自Nb和Ta的过渡金属。其它合适的五价阳离子的实例有Sb和V。当选择M时,选择对元素锂的还原具有高稳定性的过渡金属离 子是有利的。M最优选为钽。 
组成为Li6ALa2M2O12的锂离子导体具有类石榴石晶体结构。与已知的组成Li5La3M2O12相比,La被二价离子A和锂阳离子形式取代,因此锂在这种结构中的比例增加。结果,使用本发明的化合物可以提供大大改良的锂离子导体。 
与现有技术的化合物相比,组成Li6ALa2M2O12的材料具有提高的锂传导率。例如,20℃下Li6ALa2Ta2O12(A=Sr,Ba)的锂传导率为10-5S/cm,比LIPON高一个数量级。由于本发明化合物的石榴石结构是3维各向同性结构,锂离子传导在3个维度上都是可能的,不存在优选方向。 
相比之下,本发明化合物的电子导电性小至可忽略不计。本发明化合物的多晶试样具有低的晶界阻抗,所以总的导电性几乎完全来自体积导电性。 
该材料的另一优点是它们具有高的化学稳定性。当受热并与熔融锂接触时,该材料不会表现出可检测到的电荷。在最高为350℃的温度和最高为6V的直流电压下,不存在化学分解。 
另一方面,本发明涉及具有类石榴石结构的固态离子导体的生产方法。通过例如固相反应使其中包含该元素的适宜的盐和/或氧化物反应,可形成该化合物。特别适合的起始材料为硝酸盐、碳酸盐和氢氧化物,它们在转变过程中被转变成为相应的氧化物。 
本发明特别涉及生产组成为L5+xAxG3-xM2O12(例如Li6ALa2M2O12)的固态离子导体的方法。可通过固相反应,使A、G及M的适当的盐和/或氧化物与L的氢氧化物、硝酸盐或碳酸盐反应得到该材料。这里A和M的定义同上文。优选以硝酸盐的形式使用二价金属A。在这方面,优选Ca(NO3)2、Sr(NO3)2和Ba(NO3)2。优选使用La作为G,且优选La2O3 的形式。M最好为氧化物形式,且优选Nb2O5和Ta2O5。L优选为LOH、LNO3或L2CO3的形式。例如,优选使用LiOH·H2O。为了补偿在样品热处理过程中L(如L=Li)的重量损失,优选加入过量的相应盐,如过量10%为宜。 
第一步,将起始材料混合,例如可以在2-丙醇中通过氧化锆球磨 进行研磨。随后将以这种方式得到的混合物加热几小时,优选在空气中在优选400-1000℃的温度下加热2-10小时。700℃的温度和约6小时的热处理时间特别适合于此。随后再次进行研磨处理,同样优选在2-丙醇中通过氧化锆球磨进行研磨。随后,将反应产物在等静压力下压制成模制件,例如压成丸粒。然后,在优选700-1200℃,更优选800-1000℃的温度下,优选将这些模制件烧结数小时,优选10-50小时,更优选20-30小时。特别适宜的热处理条件为:约900℃的温度和约24小时的热处理时间。在该烧结处理中,用相同组成的粉体覆盖样品是有利的,以便避免L氢氧化物的过度损失。 
通过本发明的生产方法制得的固态离子导体(如锂导体),是一种有价值的固态电解质的起始材料。 
因为该材料具有非常高的离子导电性同时具有可忽略的电子导电性,因此可以使用它们作为极高能量密度电池(例如锂电池)中的固态电解质。本发明中的固态锂离子导体可以实际用于例如锂离子电池,由于该材料对诸如与元素锂的化学反应以及常规的电极材料具有高的抵抗性,因此非常适宜用于锂离子电池中。 
本发明的固态电解质与电极之间的相界阻抗与常见电极材料相比很小。因此,可以使用本发明的材料制作具有相对高功率(高电流)的电池。相比使用液态电解质,使用本发明的固态电解质提高了安全性。这对于机动车辆中的应用特别有利。 
本发明的另一方面涉及该固态离子导体(如锂离子导体)在电致变色系统(窗口、屏幕、外立面(facade)等)中的使用,以及在超级电容器中的瞬时能量储存和释放中的使用。在这方面,通过使用本发明的离子导体,可得到100F/cm3的电容能量密度。本发明的另一方面是使用类石榴石结构的固态离子导体作为传感器,例如许多气体的传感器。 
可以以晶态或非晶态形式,以丸粒形式或作为薄层使用本发明的固态离子导体。 
附图说明:
图1显示了Li5La3M2O12(M=Nb,Ta)晶体结构的一个单元晶胞。 
图2显示了Li6BaLa2Ta2O12的测量电导率与其它固态锂离子导体的比较。本发明的材料具有与Li3,5P0,5Si0,5O4或甚至Li3N相当的离子导电性。 
图3显示了通过使用锂离子阻挡电极并使用锂作为参比电极的Hebb-Wagner(HW)测量方法,在22℃和44℃下得到的作为Li6BaLa2Ta2O12外加电压函数的平衡电子流。在充有氩气,氧气偏压小于1ppm的手套箱中进行该测量。 
具体实施方式
通过下面的实施例进一步说明本发明。 
实施例:Li6ALa2Ta2O12(A=Ca,Sr,Ba)丸粒的制备。 
将La2O3(在900℃下预干燥24小时)、Nb2O5和A(NO3)2以化学计量比与过量10%的LiOH·H2O进行混合,并在2-丙醇中用锆球研磨12小时。将所得混合物在空气中在700℃下加热12小时,随后再次用锆球研磨。随后,在等静压力下将混合物压制成丸粒,并以相同组成的粉末覆盖,以避免氧化锂的过度损失。将该丸粒在900℃下烧结24小时。随后对所得固态锂离子导体的电导率和化学稳定性进行检测,结果如表1和图2及图3所示。 
                      表1空气中22℃下Li6ALa2Ta2O12(A=Sr,Ba)的阻抗 
  化合物   Rvol   [kΩ]   Cvol   [F]   Rgb   [kΩ]   Cgb   [F]   Cel   [F]   σ总计   [Scm-1]   Ea   [eV]
  Li6SrLa2Ta2O12   18.83   3.0×10-11   3.68   8.5×10-9   5.7×10-6   7.0×10-6   0.50
  Li6BaLa2Ta2O12   3.45   1.2×10-11   1.34   1.3×10-7   1.2×10-6   4.0×10-5   0.40
vol:体积 
gb:晶界 

Claims (24)

1.固态离子导体,其特征在于具有类石榴石晶体结构,并且具有在22℃下高于3.4×10-6S/cm的离子导电率。
2.固态离子导体,其特征在于具有类石榴石晶体结构,且具有化学计量组成L5+xAyGzM2O12,其中
L在各种情况下独立地为任意优选单价阳离子,
A在各种情形中独立地是单价、二价、三价或四价阳离子,
G在各种情形中独立地是单价、二价、三价或四价阳离子,
M在各种情形中独立地是三价、四价或五价阳离子,
0<x≤2,0≤y≤3,0≤z≤3,并且
其中0任选地被二价和/或三价阴离子部分或全部取代。
3.如权利要求2的固态离子导体,其中,所述三价阴离子是N3-
4.根据权利要求2或3的固态离子导体,其中该化学计量组成为L5+xAxG3-xM2O12
其中
0<x≤1
L为单价碱金属阳离子,
A为二价金属阳离子,
G为三价阳离子,
M为五价阳离子。
5.根据权利要求2或3的固态离子导体,其中L选自Li、Na和K,在各种情形中可以相同或者不同。
6.根据权利要求5的固态离子导体,其中L为Li。
7.根据权利要求2或3的固态离子导体,其中A选自二价阳离子。
8.根据权利要求7的固态离子导体,其中所述二价阳离子为碱土金属离子。
9.根据权利要求2或3的固态离子导体,其中M选自过渡金属离子。
10.根据权利要求2或3的固态离子导体,其中A选自Ca、Sr和/或Ba,M选自Nb和Ta。
11.权利要求10的固态离子导体,其中A选自Sr和Ba,且其中M为Ta。
12.根据权利要求2或3的固态离子导体,其特征在于,在对应于5V电压的锂活性下,该固态离子导体对锂稳定。
13.生产根据权利要求2至12任一项的固态离子导体的方法,其特征在于使L、A、G和M的盐和/或氧化物共同反应。
14.根据权利要求13的方法,其特征在于该反应以固相反应发生。
15.根据权利要求13或14的生产权利要求4所述固态离子导体的方法,其特征在于以硝酸盐、碳酸盐或氢氧化物的形式使用L和A,并与G2O3和M2O5反应。
16.根据权利要求13或14的方法,包括下列步骤:
(a)混合起始材料并进行球磨;
(b)在空气中将步骤(a)产生的混合物加热到400-1000℃持续2-10小时;
(c)球磨;
(d)使用等静压将混合物压制成丸粒;和
(e)用相同组成的粉末覆盖该丸粒并在700-1200℃下烧结10-50小时。
17.根据权利要求16的方法,其中步骤(a)中所述球磨为用氧化锆球在2-丙醇中研磨。
18.根据权利要求16的方法,其中步骤(c)中所述球磨为用锆球在2-丙醇中进行球磨。
19.根据权利要求16的方法,其中
步骤(b)中将混合物加热到700℃持续6小时;且
步骤(e)中在900℃条件下烧结丸粒24小时。
20.根据权利要求1到12中任一项的固态离子导体在以下方面中的用途:电池、超级电容器、传感器和/或电致变色装置。
21.根据权利要求20的用途,其中所述电致变色装置为窗户、屏幕和外立面。
22.根据权利要求20的用途,其中以晶态或非晶态形式,作为薄层或丸粒形式使用该固态离子导体。
23.根据权利要求20的用途,其中所述固态离子导体用于蓄电池。
24.根据权利要求20的用途,其中所述固态离子导体用于燃料电池。
CN2005800117495A 2004-03-06 2005-03-03 化学稳定固态锂离子导体 Active CN101014540B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102004010892.7 2004-03-06
DE102004010892A DE102004010892B3 (de) 2004-03-06 2004-03-06 Chemisch stabiler fester Lithiumionenleiter
EPPCT/EP2005/000809 2005-01-27
EP2005000809 2005-01-27
PCT/EP2005/002255 WO2005085138A1 (de) 2004-03-06 2005-03-03 Chemisch stabiler fester lithiumionenleiter

Publications (2)

Publication Number Publication Date
CN101014540A CN101014540A (zh) 2007-08-08
CN101014540B true CN101014540B (zh) 2012-04-04

Family

ID=35220150

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800117495A Active CN101014540B (zh) 2004-03-06 2005-03-03 化学稳定固态锂离子导体

Country Status (4)

Country Link
US (2) US7901658B2 (zh)
JP (1) JP5204478B2 (zh)
CN (1) CN101014540B (zh)
DE (1) DE102004010892B3 (zh)

Families Citing this family (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US8394522B2 (en) 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US20070264564A1 (en) 2006-03-16 2007-11-15 Infinite Power Solutions, Inc. Thin film battery on an integrated circuit or circuit board and method thereof
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US7993773B2 (en) 2002-08-09 2011-08-09 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
US8636876B2 (en) 2004-12-08 2014-01-28 R. Ernest Demaray Deposition of LiCoO2
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
KR20090069323A (ko) 2006-09-29 2009-06-30 인피니트 파워 솔루션스, 인크. 가요성 기판의 마스킹 및 가요성 기판에 배터리 층을 증착하기 위한 재료의 구속
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
US8211496B2 (en) * 2007-06-29 2012-07-03 Johnson Ip Holding, Llc Amorphous lithium lanthanum titanate thin films manufacturing method
US20120196189A1 (en) 2007-06-29 2012-08-02 Johnson Ip Holding, Llc Amorphous ionically conductive metal oxides and sol gel method of preparation
US9034525B2 (en) * 2008-06-27 2015-05-19 Johnson Ip Holding, Llc Ionically-conductive amorphous lithium lanthanum zirconium oxide
DE102007030604A1 (de) * 2007-07-02 2009-01-08 Weppner, Werner, Prof. Dr. Ionenleiter mit Granatstruktur
US20090092903A1 (en) * 2007-08-29 2009-04-09 Johnson Lonnie G Low Cost Solid State Rechargeable Battery and Method of Manufacturing Same
US8268488B2 (en) * 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
US9334557B2 (en) 2007-12-21 2016-05-10 Sapurast Research Llc Method for sputter targets for electrolyte films
EP2229706B1 (en) 2008-01-11 2014-12-24 Infinite Power Solutions, Inc. Thin film encapsulation for thin film batteries and other devices
EP2235782B1 (en) * 2008-01-23 2018-06-13 Sapurast Research LLC Thin film electrolyte for thin film batteries
KR101672254B1 (ko) 2008-04-02 2016-11-08 사푸라스트 리써치 엘엘씨 에너지 수확과 관련된 에너지 저장 장치를 위한 수동적인 과전압/부족전압 제어 및 보호
JP2010045019A (ja) * 2008-07-16 2010-02-25 Tokyo Metropolitan Univ 全固体リチウム二次電池及びその製造方法
KR102155933B1 (ko) 2008-08-11 2020-09-14 사푸라스트 리써치 엘엘씨 전자기 에너지를 수확하기 위한 일체형 컬렉터 표면을 갖는 에너지 디바이스 및 전자기 에너지를 수확하는 방법
JP5132639B2 (ja) * 2008-08-21 2013-01-30 日本碍子株式会社 セラミックス材料及びその製造方法
EP2332127A4 (en) 2008-09-12 2011-11-09 Infinite Power Solutions Inc ENERGY DEVICE HAVING AN INTEGRATED CONDUCTIVE SURFACE FOR DATA COMMUNICATION VIA ELECTROMAGNETIC ENERGY AND ASSOCIATED METHOD
WO2010042594A1 (en) * 2008-10-08 2010-04-15 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
JP5262572B2 (ja) * 2008-10-23 2013-08-14 株式会社豊田中央研究所 リチウム含有ガーネット型酸化物、リチウム二次電池及び固体電解質の製造方法
JP5083336B2 (ja) * 2009-02-04 2012-11-28 株式会社豊田中央研究所 ガーネット型リチウムイオン伝導性酸化物
US8574772B2 (en) 2009-07-17 2013-11-05 Toyota Jidosha Kabushiki Kaisha Solid electrolyte, solid electrolyte sheet, and method for producing solid electrolyte
JP5492998B2 (ja) 2009-09-01 2014-05-14 インフィニット パワー ソリューションズ, インコーポレイテッド 薄膜バッテリを組み込んだプリント回路基板
JP5283188B2 (ja) * 2009-09-03 2013-09-04 日本碍子株式会社 全固体二次電池およびその製造方法
JP5376252B2 (ja) * 2009-09-03 2013-12-25 日本碍子株式会社 セラミックス材料及びその利用
JP5525388B2 (ja) * 2009-09-03 2014-06-18 日本碍子株式会社 セラミックス材料及びその製造方法
US8877388B1 (en) 2010-01-20 2014-11-04 Sandia Corporation Solid-state lithium battery
JP5540179B2 (ja) * 2010-03-26 2014-07-02 国立大学法人東京工業大学 ヒドリドイオン導電体およびその製造方法
JP5392402B2 (ja) * 2010-04-13 2014-01-22 トヨタ自動車株式会社 固体電解質材料、リチウム電池および固体電解質材料の製造方法
WO2011128979A1 (ja) * 2010-04-13 2011-10-20 トヨタ自動車株式会社 固体電解質材料、リチウム電池および固体電解質材料の製造方法
JP5692221B2 (ja) * 2010-04-13 2015-04-01 トヨタ自動車株式会社 固体電解質材料、リチウム電池および固体電解質材料の製造方法
WO2011156392A1 (en) 2010-06-07 2011-12-15 Infinite Power Solutions, Inc. Rechargeable, high-density electrochemical device
US8449790B2 (en) * 2010-06-28 2013-05-28 Ut-Battelle, Llc Solid lithium ion conducting electrolytes and methods of preparation
JP5358522B2 (ja) * 2010-07-07 2013-12-04 国立大学法人静岡大学 固体電解質材料およびリチウム電池
WO2012112229A2 (en) * 2011-02-14 2012-08-23 Los Alamos National Security, Llc Anti-perovskite solid electrolyte compositions
US9246188B2 (en) * 2011-02-14 2016-01-26 Los Alamos National Security, Llc Anti-perovskite solid electrolyte compositions
JP5290337B2 (ja) 2011-02-24 2013-09-18 国立大学法人信州大学 ガーネット型固体電解質、当該ガーネット型固体電解質を含む二次電池、及び当該ガーネット型固体電解質の製造方法
KR101312275B1 (ko) 2011-03-30 2013-09-25 삼성에스디아이 주식회사 복합체, 이를 포함한 리튬 이차 전지용 전극 활물질, 그 제조방법, 이를 이용한 리튬 이차 전지용 전극 및 이를 채용한 리튬 이차 전지
JP5760638B2 (ja) * 2011-04-21 2015-08-12 株式会社豊田中央研究所 ガーネット型リチウムイオン伝導性酸化物の製造方法
DE102011079401A1 (de) * 2011-07-19 2013-01-24 Robert Bosch Gmbh Lithiumionen leitende, granatartige Verbindungen
US9660311B2 (en) 2011-08-19 2017-05-23 Polyplus Battery Company Aqueous lithium air batteries
WO2013085557A1 (en) * 2011-12-05 2013-06-13 Johnson Ip Holding, Llc Amorphous ionically-conductive metal oxides, method of preparation, and battery
WO2013100000A1 (ja) * 2011-12-28 2013-07-04 株式会社 村田製作所 全固体電池およびその製造方法
WO2013131005A2 (en) 2012-03-01 2013-09-06 Excellatron Solid State, Llc High capacity solid state composite cathode, solid state composite separator, solid-state rechargeable lithium battery and methods of making same
EP2683005B1 (en) * 2012-07-06 2016-06-01 Samsung Electronics Co., Ltd Solid ionic conductor, solid electrolyte including the same, lithium battery including said solid electrolyte, and method of manufacturing said lithium battery
CN102780031B (zh) * 2012-07-18 2016-03-30 宁波大学 一种Mg2+,Al3+,Zr4+,F-离子共掺杂石榴石型固体电解质
CN102769147B (zh) * 2012-07-18 2015-07-15 宁波大学 一种Mg2+,Al3+,Zr4+,S2-离子共掺杂石榴石型固体电解质
CN102780029B (zh) * 2012-07-18 2015-09-02 宁波大学 一种三组份阳离子共掺杂石榴石型固体锂离子电解质
JP6015762B2 (ja) 2012-09-13 2016-10-26 富士通株式会社 イオン導電体及び二次電池
US9793525B2 (en) 2012-10-09 2017-10-17 Johnson Battery Technologies, Inc. Solid-state battery electrodes
US9362546B1 (en) 2013-01-07 2016-06-07 Quantumscape Corporation Thin film lithium conducting powder material deposition from flux
US11888149B2 (en) 2013-03-21 2024-01-30 University Of Maryland Solid state battery system usable at high temperatures and methods of use and manufacture thereof
US10622666B2 (en) * 2013-03-21 2020-04-14 University Of Maryland, College Park Ion conducting batteries with solid state electrolyte materials
JP5741653B2 (ja) * 2013-09-02 2015-07-01 トヨタ自動車株式会社 硫化物固体電解質の製造方法
KR102478029B1 (ko) 2013-10-07 2022-12-15 퀀텀스케이프 배터리, 인코포레이티드 Li 이차 전지용 가넷 물질
DE102013222784A1 (de) 2013-11-08 2015-05-13 Robert Bosch Gmbh Elektrochemische Zelle und Verfahren zu deren Herstellung
CN103746141B (zh) * 2014-01-02 2016-08-17 东南大学 一种Li-B-N-H复合物快离子导体及其制备方法
ES2829924T3 (es) 2014-02-07 2021-06-02 Basf Se Unidad de electrodo para un dispositivo electroquímico
WO2015128834A1 (en) 2014-02-26 2015-09-03 Universidade Do Porto A solid electrolyte glass for lithium or sodium ions conduction
DE102014205945A1 (de) 2014-03-31 2015-10-01 Bayerische Motoren Werke Aktiengesellschaft Aktives Kathodenmaterial für sekundäre Lithium-Zellen und Batterien
CN106232526B (zh) 2014-04-24 2019-07-30 第一稀元素化学工业株式会社 石榴石型化合物的制造方法
KR101600476B1 (ko) * 2014-06-16 2016-03-08 한국과학기술연구원 리튬 전이금속 산화물을 포함하는 코어와 이의 전체 또는 일부에 코팅된 산화물계 고체 전해질로 이루어진 양극 활물질 및 이를 포함하는 리튬 이온 전지
FR3023417B1 (fr) * 2014-07-01 2016-07-15 I-Ten Batterie entierement solide comprenant un electrolyte solide et une couche de materiau polymere solide
US20170309955A1 (en) * 2014-10-31 2017-10-26 National Institute Of Advanced Industrial Science And Technology Lithium ion conductive crystal body and all-solid state lithium ion secondary battery
US10211481B2 (en) 2014-11-26 2019-02-19 Corning Incorporated Stabilized solid garnet electrolyte and methods thereof
US10593998B2 (en) 2014-11-26 2020-03-17 Corning Incorporated Phosphate-garnet solid electrolyte structure
US11984553B2 (en) 2014-12-02 2024-05-14 Polyplus Battery Company Lithium ion conducting sulfide glass fabrication
US10147968B2 (en) 2014-12-02 2018-12-04 Polyplus Battery Company Standalone sulfide based lithium ion-conducting glass solid electrolyte and associated structures, cells and methods
US11749834B2 (en) 2014-12-02 2023-09-05 Polyplus Battery Company Methods of making lithium ion conducting sulfide glass
US10164289B2 (en) 2014-12-02 2018-12-25 Polyplus Battery Company Vitreous solid electrolyte sheets of Li ion conducting sulfur-based glass and associated structures, cells and methods
KR102643560B1 (ko) 2015-04-16 2024-03-07 퀀텀스케이프 배터리, 인코포레이티드 고체 전해질 제조를 위한 세터 플레이트 및 그를 사용하여 치밀한 고체 전해질을 제조하는 방법
CN107750406B (zh) 2015-06-18 2021-02-12 德克萨斯大学系统董事会 水溶剂化玻璃/非晶态固体离子导体
EP3314681B1 (en) 2015-06-24 2021-07-21 QuantumScape Battery, Inc. Composite electrolytes
CN105336980A (zh) * 2015-10-21 2016-02-17 上海动力储能电池系统工程技术有限公司 一种通过中间相合成的钽掺杂立方石榴石结构Li7La3Zr2-xTaxO12材料及合成方法
US10987735B2 (en) 2015-12-16 2021-04-27 6K Inc. Spheroidal titanium metallic powders with custom microstructures
EP3389862B1 (en) 2015-12-16 2023-12-06 6K Inc. Method of producing spheroidal dehydrogenated titanium alloy particles
EP3394918A1 (en) 2015-12-21 2018-10-31 Johnson IP Holding, LLC Solid-state batteries, separators, electrodes, and methods of fabrication
US10218044B2 (en) 2016-01-22 2019-02-26 Johnson Ip Holding, Llc Johnson lithium oxygen electrochemical engine
US9966630B2 (en) 2016-01-27 2018-05-08 Quantumscape Corporation Annealed garnet electrolyte separators
WO2017197406A1 (en) 2016-05-13 2017-11-16 Quantumscape Corporation Solid electrolyte separator bonding agent
CN105811000A (zh) * 2016-06-12 2016-07-27 上海空间电源研究所 一种微波辅助制备锂镧锆氧固态电解质的工艺方法
EP3482443B1 (en) 2016-07-11 2021-08-25 Hydro-Québec Metal plating-based electrical energy storage cell
US10818965B2 (en) 2016-07-11 2020-10-27 The Regents Of The University Of Michigan Ceramic garnet based ionically conducting material
US11158880B2 (en) 2016-08-05 2021-10-26 Quantumscape Battery, Inc. Translucent and transparent separators
KR101886003B1 (ko) * 2016-09-30 2018-08-07 주식회사 엘지화학 Li 리치 안티페로브스카이트 화합물, 이를 포함하는 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2018068034A1 (en) 2016-10-07 2018-04-12 The Regents Of The University Of Michigan Stabilization coatings for solid state batteries
WO2018075809A1 (en) 2016-10-21 2018-04-26 Quantumscape Corporation Lithium-stuffed garnet electrolytes with a reduced surface defect density and methods of making and using the same
WO2018075972A1 (en) 2016-10-21 2018-04-26 Quantumscape Corporation Electrolyte separators including lithium borohydride and composite electrolyte separators of lithium-stuffed garnet and lithium borohydride
US10903484B2 (en) 2016-10-26 2021-01-26 The Regents Of The University Of Michigan Metal infiltrated electrodes for solid state batteries
EP4369453A2 (en) 2017-06-23 2024-05-15 QuantumScape Battery, Inc. Lithium-stuffed garnet electrolytes with secondary phase inclusions
US10347937B2 (en) 2017-06-23 2019-07-09 Quantumscape Corporation Lithium-stuffed garnet electrolytes with secondary phase inclusions
US10868293B2 (en) 2017-07-07 2020-12-15 Polyplus Battery Company Treating sulfide glass surfaces and making solid state laminate electrode assemblies
US10490360B2 (en) 2017-10-12 2019-11-26 Board Of Regents, The University Of Texas System Heat energy-powered electrochemical cells
US20210202982A1 (en) 2017-10-20 2021-07-01 Quantumscape Corporation Borohydride-sulfide interfacial layer in all solid-state battery
WO2019090360A1 (en) 2017-11-06 2019-05-09 Quantumscape Corporation Lithium-stuffed garnet thin films and pellets having an oxyfluorinated and/or fluorinated surface and methods of making and using the thin films and pellets
KR20200121827A (ko) 2018-02-15 2020-10-26 유니버시티 오브 매릴랜드, 칼리지 파크 정렬된 다공성 고체 전해질 구조, 이를 포함하는 전기 화학적 장치, 및 이를 제조하는 방법
CN110247105A (zh) * 2018-03-07 2019-09-17 重庆市科学技术研究院 一种提高固态电解质致密度的制备方法
US10673064B2 (en) * 2018-05-17 2020-06-02 Vissers Battery Corporation Molten fluid electrode apparatus with solid lithium iodide electrolyte having improved lithium ion transport characteristics
CN112654444A (zh) 2018-06-19 2021-04-13 6K有限公司 由原材料制造球化粉末的方法
US11223066B2 (en) 2018-08-01 2022-01-11 Samsung Electronics Co., Ltd. Solid-state electrolyte and method of manufacture thereof
US11251460B2 (en) 2018-08-01 2022-02-15 Samsung Electronics Co., Ltd. Solution-processed solid-state electrolyte and method of manufacture thereof
US11959166B2 (en) 2018-08-14 2024-04-16 Massachusetts Institute Of Technology Methods of fabricating thin films comprising lithium-containing materials
KR102101271B1 (ko) * 2018-08-16 2020-04-16 아주대학교산학협력단 이온 전도성 고체 전해질 화합물, 이의 제조방법 및 이를 포함하는 전기화학 장치
CA3118872A1 (en) 2018-11-06 2020-05-14 Quantumscape Battery, Inc. Electrochemical cells with catholyte additives and lithium-stuffed garnet separators
US11569527B2 (en) 2019-03-26 2023-01-31 University Of Maryland, College Park Lithium battery
US11611130B2 (en) 2019-04-30 2023-03-21 6K Inc. Lithium lanthanum zirconium oxide (LLZO) powder
SG11202111576QA (en) 2019-04-30 2021-11-29 6K Inc Mechanically alloyed powder feedstock
US11728510B2 (en) 2019-05-24 2023-08-15 Samsung Electronics Co., Ltd. Solid conductor, preparation method thereof, solid electrolyte including the solid conductor, and electrochemical device including the solid conductor
US11757127B2 (en) 2019-06-18 2023-09-12 Samsung Electronics Co., Ltd. Lithium solid electrolyte and method of manufacture thereof
US11837695B2 (en) 2019-08-05 2023-12-05 Samsung Electronics Co., Ltd. Oxide, method of preparing the same, solid electrolyte including the oxide, and electrochemical device including the oxide
US11145896B2 (en) 2019-09-13 2021-10-12 University Of Maryland, College Park Lithium potassium tantalate compounds as Li super-ionic conductor, solid electrolyte and coating layer for lithium metal battery and lithium-ion battery
US11018375B2 (en) 2019-09-13 2021-05-25 University Of Maryland, College Park Lithium potassium element oxide compounds as Li super-ionic conductor, solid electrolyte and coating layer for lithium metal battery and lithium-ion battery
KR20220100861A (ko) 2019-11-18 2022-07-18 6케이 인크. 구형 분말을 위한 고유한 공급원료 및 제조 방법
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
US11631889B2 (en) 2020-01-15 2023-04-18 Polyplus Battery Company Methods and materials for protection of sulfide glass solid electrolytes
US11677097B2 (en) 2020-06-02 2023-06-13 Samsung Electronics Co., Ltd. Solid electrolyte, method of preparing the same, and electrochemical device including the same
WO2021263273A1 (en) 2020-06-25 2021-12-30 6K Inc. Microcomposite alloy structure
US11575152B2 (en) 2020-06-29 2023-02-07 Samsung Electronics Co., Ltd. Oxide, preparation method thereof, solid electrolyte including the oxide, and electrochemical device including the oxide
KR20220003882A (ko) 2020-07-02 2022-01-11 삼성전자주식회사 고체이온전도체 화합물, 이를 포함하는 고체전해질, 이를 포함하는 전기화학 셀, 및 이의 제조방법
US12021238B2 (en) 2020-08-04 2024-06-25 Polyplus Battery Company Glassy embedded solid-state electrode assemblies, solid-state batteries and methods of making electrode assemblies and solid-state batteries
US12021187B2 (en) 2020-08-04 2024-06-25 Polyplus Battery Company Surface treatment of a sulfide glass solid electrolyte layer
JP2023542955A (ja) 2020-09-24 2023-10-12 シックスケー インコーポレイテッド プラズマを始動させるためのシステム、装置、および方法
CN112186242B (zh) * 2020-09-29 2022-04-15 清华大学深圳国际研究生院 无机氧化物固态电解质材料、制备方法、锂离子电池及电子装置
CA3196653A1 (en) 2020-10-30 2022-05-05 Sunil Bhalchandra BADWE Systems and methods for synthesis of spheroidized metal powders
EP4001213A1 (en) 2020-11-13 2022-05-25 Samsung Electronics Co., Ltd. Oxide, method of preparing the same, solid electrolyte including the oxide, and electrochemical device including the oxide
KR20220100297A (ko) 2021-01-08 2022-07-15 삼성전자주식회사 고체이온전도체, 이를 포함하는 고체전해질 및 전기화학소자, 및 상기 고체이온전도체의 제조방법
US11893278B2 (en) 2021-02-08 2024-02-06 Samsung Electronics Co., Ltd. Memory controller and memory control method for generating commands based on a memory request
US11868657B2 (en) 2021-02-08 2024-01-09 Samsung Electronics Co., Ltd. Memory controller, method of operating the memory controller, and electronic device including the memory controller
DE102022112792A1 (de) 2022-05-20 2023-11-23 Bayerische Motoren Werke Aktiengesellschaft Lithiumbatterie umfassend eine Lithiummetallanode mit einem porösen Stromableiter
CN115950941B (zh) * 2023-03-13 2023-06-20 华北理工大学 锂离子导体固体电解质型低温传感器及其制备方法与应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
D. Mazza.Remarks on a ternary phase in the La2O3-Me2O5-Li2Osystem (Me=Nb, Ta).Materials LettersVol.7 No.5-6.1988,Vol.7(No.5-6),205-207.
D. Mazza.Remarks on a ternary phase in the La2O3-Me2O5-Li2Osystem (Me=Nb, Ta).Materials LettersVol.7 No.5-6.1988,Vol.7(No.5-6),205-207. *
V. Thangadurai等.Novel fast lithium ion conduction in Garnet-typeLi5La3M2O12 (M=Nb, Ta).J. Am. Ceram. Soc.Vol.86 No.3.2003,Vol.86(No.3),437-440.
V. Thangadurai等.Novel fast lithium ion conduction in Garnet-typeLi5La3M2O12 (M=Nb, Ta).J. Am. Ceram. Soc.Vol.86 No.3.2003,Vol.86(No.3),437-440. *
V. Thangadurai等.Novel fast lithium ion conduction in Garnet-typeLi5La3M2O12(M=Nb, Ta).J. Am. Ceram. Soc.Vol.86 No.3.2003,Vol.86(No.3),437-440.
V. Thangadurai等.Novel fast lithium ion conduction in Garnet-typeLi5La3M2O12(M=Nb, Ta).J. Am. Ceram. Soc.Vol.86 No.3.2003,Vol.86(No.3),437-440. *

Also Published As

Publication number Publication date
JP5204478B2 (ja) 2013-06-05
US20070148553A1 (en) 2007-06-28
US20110133136A1 (en) 2011-06-09
US8092941B2 (en) 2012-01-10
CN101014540A (zh) 2007-08-08
JP2007528108A (ja) 2007-10-04
US7901658B2 (en) 2011-03-08
DE102004010892B3 (de) 2005-11-24

Similar Documents

Publication Publication Date Title
CN101014540B (zh) 化学稳定固态锂离子导体
KR101168253B1 (ko) 화학적으로 안정한 고체 리튬 이온 전도체
CN110800149B (zh) 锂二次电池的固体电解质及该固体电解质用硫化物系化合物
EP3454405B1 (en) Sulfide-based solid electrolyte for lithium secondary battery
Zhang et al. Preparation and electrochemical properties of Li1+ xAlxGe2-x (PO4) 3 synthesized by a sol-gel method
KR102637919B1 (ko) 리튬 이온 전기화학셀용 고체 전해질
Birke et al. A first approach to a monolithic all solid state inorganic lithium battery
CN102010182B (zh) 陶瓷材料及其利用
JP5701741B2 (ja) 硫化物系固体電解質
EP2900594B1 (en) High conductivity nasicon electrolyte for room temperature solid- state sodium ion batteries
WO2016009768A1 (ja) リチウムイオン電池用硫化物系固体電解質
CN101952223A (zh) 具有石榴石结构的离子导体
CN109643825A (zh) 陶瓷石榴石基离子传导材料
KR20040032951A (ko) 2차 전지용 양극 활물질 및 그 제조 방법
Thangadurai et al. Tailoring ceramics for specific applications: a case study of the development of all-solid-state lithium batteries
KR20170045011A (ko) 고분자 복합공정에 의한 llzo 고체전해질의 제조방법 및 그 방법을 포함하는 리튬이차전지의 제조방법
CN102473958A (zh) 固体电解质材料、锂电池及固体电解质材料的制造方法
Tsai et al. All-ceramic Li batteries based on garnet structured Li7La3Zr2O12
KR20170098199A (ko) 고체 전해질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
CN112573574A (zh) 一种通过调控锂空位含量制备石榴石型固态电解质的方法
JP5642696B2 (ja) 高い電流密度でのサイクル性能が改善された電池用カソード材料
KR20210018040A (ko) 산화물, 그 제조방법, 이를 포함하는 고체 전해질 및 전기화학소자
Stockham et al. Water based synthesis of highly conductive Ga x Li 7− 3x La 3 Hf 2 O 12 garnets with comparable critical current density to analogous Ga x Li 7− 3x La 3 Zr 2 O 12 systems
EP2767512B1 (de) Chemisch stabiler fester Lithiumionenleiter
CN114122501B (zh) 固体电解质、固体电解质的制造方法及复合体

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: BASF SE

Free format text: FORMER OWNER: WEPPNER WERNER

Effective date: 20140306

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20140306

Address after: Ludwigshafen, Germany

Patentee after: BASF SE

Address before: German Heiken Dov

Patentee before: Weppner Werner