CN100485373C - 短波长x射线衍射测量装置和方法 - Google Patents

短波长x射线衍射测量装置和方法 Download PDF

Info

Publication number
CN100485373C
CN100485373C CNB2004100688802A CN200410068880A CN100485373C CN 100485373 C CN100485373 C CN 100485373C CN B2004100688802 A CNB2004100688802 A CN B2004100688802A CN 200410068880 A CN200410068880 A CN 200410068880A CN 100485373 C CN100485373 C CN 100485373C
Authority
CN
China
Prior art keywords
ray
angular instrument
circle
detector
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2004100688802A
Other languages
English (en)
Other versions
CN1588019A (zh
Inventor
郑林
何长光
彭正坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOUTH EAST TECHNOLOGIAL ENGINEERING INST
Original Assignee
SOUTH EAST TECHNOLOGIAL ENGINEERING INST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOUTH EAST TECHNOLOGIAL ENGINEERING INST filed Critical SOUTH EAST TECHNOLOGIAL ENGINEERING INST
Priority to CNB2004100688802A priority Critical patent/CN100485373C/zh
Publication of CN1588019A publication Critical patent/CN1588019A/zh
Priority to EP12183863.5A priority patent/EP2541238B1/en
Priority to EP05759557A priority patent/EP1767928A4/en
Priority to JP2007520648A priority patent/JP2008506127A/ja
Priority to US11/572,128 priority patent/US7583788B2/en
Priority to PCT/CN2005/000950 priority patent/WO2006005246A1/zh
Application granted granted Critical
Publication of CN100485373C publication Critical patent/CN100485373C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials

Abstract

本发明涉及一种用于较低原子序数的晶体材料试样或工件的短波长X射线衍射断层扫描测量装置和方法。其装置包括X射线管、入射光阑、工作台、限位接收狭缝、测角仪、探测器、能量分析器,其特征在于:所述X射线管与所述探测器位于所述工作台两侧。本发明采用短波长X射线衍射透射法,在不破坏原子序数较低的晶体材料工件的前提下,能测得厚度更厚的工件不同深度不同部位的X射线衍射谱及其分布。本发明所述具有操作简便,检测时间不长,测得的X射线衍射谱真实、可靠。

Description

短波长X射线衍射测量装置和方法
技术领域
本发明涉及一种X射线衍射的测量,特别是一种用于较低原子序数的晶体材料试样或工件的短波长X射线衍射断层扫描测量装置和方法。
背景技术
目前的X射线衍射分析,常用Cu、Cr、Fe、Mo材料作为阳极靶的X射线管,由于这种X射线管发出的标识X射线波长较长,在镁、铝、硅等材料中的穿透深度不大于10-4m,所以至今只能对这类材料试样或工件的表面进行X射线衍射分析。大家也明白,对工件进行X射线衍射分析可以测定晶体物质的结构(如物相分析),以及晶体物质的结构变化(如测定残余应力)等。
CN1049496C公开了一种“X射线残余应力测定装置和方法”,其装置是在现有X射线残余应力测定装置的基础上改X射线管为短波长X射线管,且管电压高,所用接收狭缝为限位接收狭缝,其方法是在现有装置的测定方法中采用短波长标识X射线,使被测点位于测角仪圆圆心,且通过限位接收狭缝,只允许被测点的衍射线进入辐射探测器,而将来自工件其它部位的衍射线和散射线屏蔽,可测定X射线穿透深度范围内的被测工件内部任意一点的残余应力;平移工件,X射线应力分析仪就可测定工件的另一点的残余应力,解决了残余应力在铍合金等材料工件的三维分布。但是由于X射线应力分析仪是采用X射线衍射背反射法来收集衍射谱,当采用短波长X射线辐射时,没能充分利用短波长X射线强穿透能力,导致被测工件的可测深度较小。
发明内容
本发明的目的在于提供一种主要用于铝、镁、硅等较低原子序数的晶体材料试样或工件,使得工件的可测深度或厚度提高10倍左右的短波长X射线衍射分析的断层扫描装置。
本发明的另一目的在于提供一种操作简便、检测时间短的采用上述装置的短波长X射线衍射测量方法。
众所周知,X射线波长越短,被辐射工件所用的材料原子序数越小,入射X射线的穿透工件的厚度就越大,本发明正是基于这一原理,采用X射线衍射透射法,而不是X射线衍射背反射法,将使得入射X射线与衍射线在工件中走过的路程之和大大减小,因此可收集来自厚度更厚的工件不同深度不同部位的X射线衍射线,以实现对整个工件内部进行无损地X射线衍射分析,从而测得物相、应力等的三维分布。
本发明的目的是这样实现的:一种短波长X射线衍射测量装置,包括X射线管、入射光阑、工作台、接收狭缝、测角仪、探测器、能量分析器,其特征在于:所述X射线管与所述探测器位于所述工作台两侧。
上述接收狭缝、探测器固定在测角仪上,同步绕以工作台上被测工件被测点为圆心转动,此被测点位于测角仪的转轴上;测角仪固定在一个平台上;工作台或固定在测角仪上,或固定在平台上;X射线管或固定于测角仪上,或固定于平台上;入射光阑或固定于测角仪上,或固定于平台上,或固定于X射线管上的夹具;入射光阑出口或在测角仪圆周上,或在测角仪圆周内;工作台上的工件或随工作台分别作X、Y、Z三维方向平移或绕测角仪转轴转动Ψ角度或作X、Y、Z、Ψ联动。另外,本发明中的接收狭缝还起着只允许工件被测点的衍射线进入探测器而将散射线和来自工件其它部位的衍射线屏蔽的作用。
上述X射线管的阳极靶的材质为钨、金、银等重金属材料,使其发出穿透能力强的波长为0.01nm-0.07nm的短波长标识X射线,对原子序数比较低的(Z<20)金属、非金属材料和陶瓷材料等(如铝、镁、硅等),可以穿透厘米一分米数量级的深度;管电压为120-350KV,管电流为2-10mA,连续可调;上述探测器或为辐射探测器或为位敏探测器或为一维半导体探测器阵列;上述入射光阑为入射准直光阑;上述接收狭缝或为平行限位接收狭缝,或为锥度限位接收狭缝,以屏蔽入射到探测器的散射X射线和来自工件其他部位的衍射线;上述能量分析器或为单道能量分析器,或为多道能量分析器,其输出信号输入计算机;上述工作台由计算机控制,作X、Y、Z三维方向平行移动或绕测角仪转轴转动。
上述X射线管到测角仪圆的圆心距离与探测器到测角仪圆的圆心距离相等或不等,且距离可调;测角仪圆的圆心到辐射探测器或位敏探测器的距离为200-800mm。本发明所述的测角仪圆的圆心是测角仪的转轴与辐射探测器或位敏探测器的转动平面的交点,入射的X射线在辐射探测器或位敏探测器的转动平面上且经过测角仪圆的圆心,位于测角仪圆的圆心的被测工件部位就是被测部位。
上述入射准直光阑或为圆孔入射准直光阑,或为矩形孔入射准直光阑;入射准直光阑的遮挡材料为铅或者比铅吸收X射线能力更强的重金属,比如金等。当采用闪烁计数器等单点辐射探测器扫描收集衍射谱时,平行限位接收狭缝采用圆孔入射准直光阑或矩形孔入射准直光阑,且平行限位接收狭缝与辐射探测器联动。
上述圆孔入射准直光阑的内径尺寸为0.1-2mm,长度为50-200mm;上述矩形孔入射准直光阑由2个或2个以上光阑构成,每个光阑互相同向平行且中心线重合,每个光阑遮挡材料厚度≥4mm,且间距20-200mm,每个光阑内孔尺寸为(1-4)×(0.1-0.8)mm,整个矩形孔入射准直光阑的遮挡材料总厚度不小于15mm。
上述辐射探测器或位敏探测器用大于2mm厚的铅皮或者比铅吸收X射线能力更强的重金属皮封闭来屏蔽X射线,只留正对接收狭缝的窗口和引出电线的小孔。
上述锥度限位接收狭缝的锥度由位敏探测器可探测的有限角度决定,外壳由厚度大于2mm的铅皮包覆,内镶3-10片钨或钼片且均分锥度限位接收狭缝的锥度;该狭缝的大口尺寸与位敏探测器的有效尺寸吻合且与位敏探测器固定连接,锥度限位接收狭缝的锥面和内镶的钨或钼片的延伸均相交于测角仪的转轴;锥度限位接收狭缝和位敏探测器联动。当采用位敏探测器收集衍射谱时,接收狭缝采用锥度限位接收狭缝。
本发明的另一目的是这样实现的:一种实施上述装置的短波长X射线衍射测量方法,其特征在于:它采用的是短波长X射线衍射透射法,(1)选择辐射和衍射测试参数,包括管电压、管电流、光阑和狭缝系统以及测角仪圆的圆心到辐射探测器或位敏探测器的距离等;(2)由计算机控制将工件被测点置于测角仪圆的圆心;(3)计算机控制测量衍射谱;(4)根据需要,由计算机控制工作台作X、Y、Z三维方向移动或绕测角仪转轴转动,便可测得工件内任意一点及其任一Ψ角的衍射谱;(5)由计算机进行数据处理,求得各点物相、残余应力参量及其分布。
选择辐射和衍射测试参数:采用W Kα、Au Kα、Ag Kα短波长X射线辐射;采用X射线衍射透射法;采用平行限位接收狭缝或锥度限位接收狭缝,只允许被测点的衍射线进入探测器,而将其余射线遮挡。
由计算机控制将工件被测点置于测角仪圆的圆心;所述工件被测点为工件表面或工件内部的任一部位。
测衍射谱时,可根据需要,由计算机控制被测工件位移转动台作X、Y、Z三维方向移动,其步长为0.1-2mm和绕测角仪转轴转动,以测得工件内任意一点及其任一绕测角低度转轴转动角度的衍射谱。
本发明所述装置在不破坏原子序数较低的铝、镁、硅、碳、氮、氧等元素构成的晶体材料工件的前提下,能测得厚度更厚的工件不同深度不同部位的X射线衍射谱。本发明克服了短波长X射线不适用于X射线衍射分析领域的惯性思维束缚,采用短波长X射线辐射+X射线衍射透射法,使得可测工件厚度约为现有技术CN1049496C所述装置和方法可测工件厚度的10倍左右,特别是对硅、铝、镁等材料工件的可测厚度达到厘米一分米数量级,能测得工件不同深度不同部位的X射线衍射谱,进而可获得物相、残余应力等参量及其分布;而且,本发明也突破了现有的X射线衍射仪及其方法在不破坏试样的情况下,只能对试样表面几十微米厚进行X射线衍射分析的局限;并且,具有操作简便,检测时间不长,测得的X射线衍射谱真实、可靠。
附图说明
图1为本发明所述装置框图;
图2为本发明所采用的圆孔入射准直光阑结构剖面图;
图3为图2的A向视图;
图4为本发明所采用的矩形孔入射准直光阑结构剖面图;
图5为图4的A向视图;
图6为本发明所采用的锥度限位接收狭缝的结构剖面图,其中上端14为大口,下端15为小口;
图7为图6的俯视图;
图8为本发明的具体实施例中工件移动测量示意图;
图9为本发明所采用的测量和计算框图;
图10为25mm厚镁合金工件内部中心部位的衍射谱。
图中1为X射线管、2为入射准直光阑、3为工件、4为工作台、5为接收狭缝、6为探测器、7为测角仪、8为X射线发生器电源、9为能量分析器、10为计算机、11为数据输出设备、12为稳压电源、13为测量装置的固定平台、14为锥度限位接收狭缝的上端大口、15为锥度限位接收狭缝的下端小口。
具体实施方式
实施例1:参见上述附图:一种短波长X射线衍射测量装置,包括X射线管1、入射光阑2、工作台4、接收狭缝5、测角仪7、探测器6、能量分析器9,其特征在于:所述X射线管1与所述探测器6位于所述工作台4两侧,也即被测工件两侧。
上述接收狭缝5、探测器6固定在测角仪7上,同步绕以工作台4上被测工件3被测点为圆心转动,此被测点位于测角仪7的转轴上;测角仪7固定在一个平台13上;工作台4固定在测角仪7上,或固定于平台13上;X射线管1或固定于测角仪7上,或固定于平台13上;入射光阑2或固定于测角仪7上,或固定于平台13上,或固定于X射线管1上的夹具;入射光阑2出口或在测角仪7的圆周上,或在测角仪7圆周内;工作台4上的被测工件3或随平台13分别作X、Y、Z三维方向平移或绕测角仪7转轴转动Ψ角度或作X、Y、Z、Ψ联动。
在本发明中,上述X射线管1的阳极靶的材质为钨、金、银等重金属材料,管电压为320KV,管电流为5mA,连续可调,使其发出穿透能力强的波长为0.01nm-0.07nm的短波长标识X射线,对原子序数比较低的(Z<20)金属、非金属材料和陶瓷材料等,如铝、镁、硅等,可以穿透厘米一分米数量级的深度;上述探测器6为位敏探测器;上述入射光阑2为入射准直光阑;上述接收狭缝5为锥度限位接收狭缝,屏蔽入射到探测器6的散射X射线和来自工件其他部位的衍射线,也即只允许被测点的衍射线进入探测器,而将其余射线遮挡;上述能量分析器9为多道能量分析器;上述工作台4由计算机10控制,作X、Y、Z三维方向移动、绕测角仪7转轴转动,多道能量分析器9的信号输入到计算机10。
上述X射线管1到测角仪7圆的圆心距离与探测器6到测角仪7圆的圆心距离相等或不等,且距离可调;测角仪圆的圆心到辐射探测器或位敏探测器的距离为600mm。
上述入射准直光阑或为圆孔入射准直光阑,或为矩形孔入射准直光阑;入射准直光阑的遮挡材料为铅或者比铅吸收X射线能力更强的重金属;当采用闪烁计数器等单点辐射探测器扫描收集衍射谱时,平行限位接收狭缝采用圆孔入射准直光阑或矩形孔入射准直光阑。
上述圆孔入射准直光阑的内径尺寸为0.1-2mm,长度为50-200mm;上述矩形孔入射准直光阑由2个或2个以上光阑构成,每个光阑互相同向平行且中心线重合,每个光阑遮挡材料厚度5mm,且间距180mm,每个光阑内孔尺寸为(1-4)×(0.1-0.8)mm,整个矩形孔入射准直光阑的遮挡材料总厚度不小于15mm。
上述辐射探测器或位敏探测器用大于2mm厚的铅皮或者比铅吸收X射线能力更强的重金属皮封闭来屏蔽X射线,只留正对接收狭缝5的窗口和引出电线的小孔。
上述锥度限位接收狭缝的锥度由位敏探测器可探测的有限角度决定,外壳由厚度大于2mm的铅皮包覆,内镶3-10片钨或钼片且均分锥度限位接收狭缝的锥度;该狭缝的大口14尺寸与位敏探测器的有效尺寸吻合且与位敏探测器固定连接,锥度限位接收狭缝的锥面和内镶的钨或钼片的延伸均相交于测角仪的转轴,其中心线相交于测角仪圆的圆心;锥度限位接收狭缝和位敏探测器联动。当采用位敏探测器收集衍射谱时,接收狭缝采用锥度限位接收狭缝。
一种实施上述装置的短波长X射线衍射测量方法,其特征在于:它采用短波长X射线衍射透射法,(1)选择辐射和衍射测试参数,包括管电压、管电流、光阑和狭缝系统以及测角仪圆的圆心到辐射探测器或位敏探测器的距离等;(2)由计算机控制将工件被测点置于测角仪圆的圆心;(3)计算机控制测量衍射谱;(4)根据需要,由计算机控制工作台作X、Y、Z三维方向移动或绕测角仪转轴转动,便可测得工件内任意一点及其任一Ψ角的衍射谱;(5)由计算机进行数据处理,求得各点物相、残余应力参量及其分布。
选择辐射和衍射测试参数:采用W Kα、Au Kα、Ag Kα短波长X射线辐射;采用X射线衍射透射法;采用平行限位接收狭缝或锥度限位接收狭缝,只允许被测点的衍射线进入探测器,而将其余射线遮挡。
由计算机控制工作台将其上的工件被测点置于测角仪圆的圆心,所述工件被测点为工件表面或工件内部的任一部位。为了实现断层逐点扫描,由计算机控制图8中工作台4上的被测工件3作空间三维运动,其步长为0.1-2mm,为了测量被测部位不同方向的衍射谱,也可以由计算机控制图8中的工作台4上的被测工件3绕测角仪转轴转动一定的角度。计算机对测得的数据进行处理,由输出设备输出被测工件内部各点的物相、残余应力等参量及其分布。
实施例2:参见图8,本例所采用的装置和方法同实施例1,所不同的是各参数的选择:本例采用W Kα辐射,管电压为280KV,管电流为3mA,测角仪圆的圆心到辐射探测器的距离为220mm±1.0,NaI闪烁计数器6接多道能量分析器9,入射准直光阑采用内径为2mm±0.1、长120mn±0.5的圆孔入射准直光阑,限位接收狭缝采用内径为0.5mm±0.1、长120mm±0.5的圆孔入射准直光阑,NaI闪烁计数器6用8mm±0.1厚的铅皮屏蔽。光路调好后,将厚度为25mm±0.5的镁合金铸件3置于工作台4上,调整工作台4使得镁合金铸件3的中心位于测角仪圆的圆心,图8中虚线所示为镁合金铸件3的实际位置,此时测角仪圆的圆心在镁合金铸件3的内部且距其表面12.5mm±0.1。2θ的扫描范围为2-10°,步长0.05°,每步的测量时间为10s。测得的X射线衍射谱见图10。
实施例3:本例所采用的装置和方法同实施例1,所不同的是各参数的选择:本例采用W Kα辐射,管电压为320KV,管电流为6mA,测角仪圆的圆心到辐射探测器的距离为500mm±1.0,NaI闪烁计数器6接多道能量分析器9,入射准直光阑采用内径为1mrn±0.1、长150mm±0.5的圆孔入射准直光阑,限位接收狭缝采用内径为0.8mm±0.1、长120mm±0.5的圆孔入射准直光阑,NaI闪烁计数器6用10mm±0.1厚的铅皮屏蔽。光路调好后,将工件3置于工作台4上,调整工作台4使得工件3的中心位于测角仪圆的圆心,此时测角仪圆的圆心在工件3的内部。2θ的扫描范围为2-10°,步长0.05°,每步的测量时间为10s。

Claims (9)

1、一种短波长X射线衍射测量装置,包括X射线管(1)、入射光阑(2)、工作台(4)、接收狭缝(5)、测角仪(7)、探测器(6)、能量分析器(9),其特征在于:所述X射线管(1)与所述探测器(6)位于所述工作台(4)及其上的被测工件(3)两侧,采用短波长X射线衍射透射法对被测工件(3)进行断层扫描测量;
所述接收狭缝(5)、探测器(6)固定在测角仪(7)上,同步绕以工作台(4)上被测工件(3)被测点为圆心转动,此被测点位于测角仪(7)的转轴上;测角仪(7)固定在一个平台(13)上;工作台(4)或固定在测角仪(7)上,或固定于平台(13);X射线管(1)或固定于测角仪(7)上,或固定于平台(13)上;入射光阑(2)或固定于测角仪(7)上,或固定于平台(13)上,或固定于X射线管(1)上的夹具;入射光阑(2)出口或在测角仪(7)圆周上,或在测角仪(7)圆周内:工作台(4)上的被测工件(3)或随工作台(4)分别作X、Y、Z三维方向平移或绕测角仪转轴转动Ψ角度或作X、Y、Z、Ψ联动。
2、如权利要求1所述的短波长X射线衍射测量装置,其特征在于:所述X射线管(1)的阳极靶的材质为钨、金、银重金属材料,管电压为120-350KV,管电流为2-10mA,连续可调;所述探测器(6)或为辐射探测器或为位敏探测器或为一维半导体探测器阵列;所述入射光阑(2)为入射准直光阑;所述接收狭缝(5)或为平行限位接收狭缝,或为锥度限位接收狭缝,以屏蔽入射到探测器(6)的散射X射线和来自工件其他部位的衍射线;所述能量分析器(9)或为单道能量分析器,或为多道能量分析器;所述工作台(4)由计算机(10)控制,作X、Y、Z三维方向平行移动或绕测角仪(7)转轴转动;所述能量分析器(9)输出信号到计算机(10)。
3、如权利要求2所述的短波长X射线衍射测量装置,其特征在于:所述X射线管(1)到测角仪(7)圆的圆心距离与探测器(6)到测角仪(7)圆的圆心距离相等或不等,且距离可调;测角仪(7)圆的圆心到辐射探测器或位敏探测器的距离为200-800mm;所述测角仪圆的圆心是测角仪的转轴与辐射探测器或位敏探测器的转动平面的交点,入射的X射线在辐射探测器或位敏探测器的转动平面上且经过测角仪圆的圆心,位于测角仪圆的圆心的被测工件部位就是被测部位;所述入射准直光阑或为圆孔入射准直光阑,或为矩形孔入射准直光阑;入射准直光阑的遮挡材料为铅或者比铅吸收X射线能力更强的重金属;当采用单点辐射探测器扫描收集衍射谱时,平行限位接收狭缝采用圆孔入射准直光阑或矩形孔入射准直光阑。
4、如权利要求3所述的短波长X射线衍射测量装置,其特征在于:所述圆孔入射准直光阑的内径尺寸为0.1-2mm,长度为50-200mm;所述矩形孔入射准直光阑由2个或2个以上光阑构成,每个光阑互相同向平行且中心线重合,每个光阑遮挡材料厚度≥4mm,且间距20-200mm,每个光阑内孔尺寸为(1-4)X(0.1-0.8)mm,整个矩形孔入射准直光阑的遮挡材料总厚度不小于15mm。
5、如权利要求2所述的短波长X射线衍射测量装置,其特征在于:所述辐射探测器或位敏探测器用大于2mm厚的铅皮或者比铅吸收X射线能力更强的重金属皮封闭来屏蔽X射线,只留正对接收狭缝(5)的窗口和引出电线的小孔;所述锥度限位接收狭缝的锥度由位敏探测器可探测的有限角度决定,外壳由厚度大于2mm的铅皮包覆,内镶3-10片钨或钼片均分锥度限位接收狭缝的锥度;该狭缝的大口(14)尺寸与位敏探测器的有效尺寸吻合且与位敏探测器固定连接,锥度限位接收狭缝的锥面和内镶的钨或钼片的延伸均相交于测角仪(7)的转轴,其中心线相交于所述测角仪(7)的圆心;锥度限位接收狭缝和位敏探测器联动;当采用位敏探测器收集衍射谱时,接收狭缝采用锥度限位接收狭缝。
6、一种采用权利要求1-5任一权利要求所述装置的短波长X射线衍射测量方法,其特征在于:它采用短波长X射线衍射透射法,(1)选择辐射和衍射测试参数,包括管电压、管电流、光阑和狭缝系统以及测角仪圆的圆心到辐射探测器或位敏探测器的距离;(2)将工件被测点置于测角仪圆的圆心;(3)测量衍射谱;(4)由计算机进行数据处理,求得各点物相、残余应力参量及其分布。
7、如权利要求6所述的短波长X射线衍射测量方法,其特征在于:选择辐射和衍射测试参数:采用W Kα、Au Kα、Ag Kα短波长X射线辐射;采用平行限位接收狭缝或锥度限位接收狭缝,只允许被测点的衍射线进入探测器,而将其余射线遮挡。
8、如权利要求6所述的短波长X射线衍射测量方法,其特征在于:由计算机控制将工件被测点置于测角仪圆的圆心;所述工件被测点为工件表面或工件内部的任一部位。
9、如权利要求6所述的短波长X射线衍射测量方法,其特征在于:测衍射谱时,根据需要,由计算机控制被测工件(3)的工作台(4)作X、Y、Z三维方向移动,其步长为0.1-2mm和绕测角仪转轴转动,以测得工件内任意一点及其任一绕测角仪(7)转轴转动角度的衍射谱。
CNB2004100688802A 2004-07-14 2004-07-14 短波长x射线衍射测量装置和方法 Active CN100485373C (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CNB2004100688802A CN100485373C (zh) 2004-07-14 2004-07-14 短波长x射线衍射测量装置和方法
EP12183863.5A EP2541238B1 (en) 2004-07-14 2005-06-30 A measuring device for the short-wavelength X-ray diffraction and a method thereof
EP05759557A EP1767928A4 (en) 2004-07-14 2005-06-30 MEASURING DEVICE FOR SHORT-WAVE X-RAY DIFFUSION AND METHOD THEREFOR
JP2007520648A JP2008506127A (ja) 2004-07-14 2005-06-30 短波長x線回折測定装置及びその方法
US11/572,128 US7583788B2 (en) 2004-07-14 2005-06-30 Measuring device for the shortwavelength x ray diffraction and a method thereof
PCT/CN2005/000950 WO2006005246A1 (fr) 2004-07-14 2005-06-30 Dispositif de mesure destine a la diffraction de rayons x a longueur d'onde courte et procede correspondant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100688802A CN100485373C (zh) 2004-07-14 2004-07-14 短波长x射线衍射测量装置和方法

Publications (2)

Publication Number Publication Date
CN1588019A CN1588019A (zh) 2005-03-02
CN100485373C true CN100485373C (zh) 2009-05-06

Family

ID=34604191

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100688802A Active CN100485373C (zh) 2004-07-14 2004-07-14 短波长x射线衍射测量装置和方法

Country Status (5)

Country Link
US (1) US7583788B2 (zh)
EP (2) EP1767928A4 (zh)
JP (1) JP2008506127A (zh)
CN (1) CN100485373C (zh)
WO (1) WO2006005246A1 (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7840237B2 (en) 2007-02-08 2010-11-23 Microsoft Corporation Enabling user interface elements based on short range wireless devices
JP2009025234A (ja) * 2007-07-23 2009-02-05 Rigaku Corp 硬組織の評価方法
US7978820B2 (en) * 2009-10-22 2011-07-12 Panalytical B.V. X-ray diffraction and fluorescence
US8477904B2 (en) * 2010-02-16 2013-07-02 Panalytical B.V. X-ray diffraction and computed tomography
CN102435626A (zh) * 2011-09-13 2012-05-02 丹东通达科技有限公司 一种台式x射线衍射仪
CN102706905A (zh) * 2012-06-28 2012-10-03 丹东奥龙射线仪器有限公司 X射线晶体定向仪数据记录仪
CN103245445A (zh) * 2013-05-17 2013-08-14 北京师范大学 一种应力仪
JP6127717B2 (ja) * 2013-05-24 2017-05-17 株式会社島津製作所 X線分析装置
EP3036532B1 (en) * 2013-08-21 2018-05-16 United Technologies Corporation Method for in-situ markers for thermal mechanical structural health monitoring
CN103592321A (zh) * 2013-11-13 2014-02-19 常熟市宝华建筑装璜材料有限公司 基于x射线检测的钢管检测装置
CN104634799A (zh) * 2013-11-15 2015-05-20 郑琪 一种多波长特征x射线衍射测量装置和方法
CN103901063A (zh) * 2014-04-23 2014-07-02 哈尔滨工业大学 一种用x射线衍射测定c纤维增强树脂基复合材料的方法
CN105021331A (zh) * 2014-04-29 2015-11-04 上海理工大学 基于x射线衍射全谱的多晶材料残余应力测量方法
KR102303973B1 (ko) 2014-12-22 2021-09-23 삼성전자주식회사 박막 형성 장치 및 이를 이용한 박막 형성 방법
CN104502385A (zh) * 2014-12-30 2015-04-08 西南技术工程研究所 一种短波长x射线衍射的板状内部应力定点无损检测方法
CN104597065A (zh) * 2015-01-23 2015-05-06 中国工程物理研究院材料研究所 一种x射线衍射仪
CN104764761B (zh) * 2015-04-23 2017-05-10 中国工程物理研究院材料研究所 一种测量静高压下物质相变的方法
JP6656519B2 (ja) * 2016-06-15 2020-03-04 株式会社リガク X線回折装置
EP3550292B1 (en) * 2016-11-29 2021-10-27 Rigaku Corporation X-ray reflectometer
CN109324072B (zh) * 2017-07-28 2021-05-14 中国科学院苏州纳米技术与纳米仿生研究所 高通量组合材料芯片的检测系统及其检测方法
CN107703168A (zh) * 2017-10-13 2018-02-16 中国工程物理研究院材料研究所 一种晶体衍射信号获取方法
CN109374659B (zh) * 2017-12-28 2020-12-29 中国兵器工业第五九研究所 一种短波长x射线衍射测试样品的定位方法
JP6871629B2 (ja) * 2018-06-29 2021-05-12 株式会社リガク X線分析装置及びその光軸調整方法
CN111380880B (zh) * 2018-12-28 2023-04-07 中国兵器工业第五九研究所 衍射装置及无损检测工件内部晶体取向均匀性的方法
CN109444948A (zh) * 2018-12-29 2019-03-08 中国原子能科学研究院 一种用于空气比释动能绝对测量的电离室
JP2022547046A (ja) 2019-09-12 2022-11-10 オーソスキャン インコーポレイテッド 無段階コリメーションを備えたミニcアーム撮像システム
CN110596160B (zh) * 2019-09-19 2020-12-25 西安交通大学 单色x射线的单晶/定向晶应力测量系统和测量方法
CN113740366B (zh) * 2020-05-27 2023-11-28 中国兵器工业第五九研究所 无损检测单晶体或定向结晶体内部晶体取向差异和晶界缺陷的方法及装置
CN113176285B (zh) * 2021-04-23 2023-12-15 中国兵器工业第五九研究所 一种短波长特征x射线内部残余应力无损测试方法
CN115598157A (zh) * 2021-06-25 2023-01-13 中国兵器工业第五九研究所(Cn) 一种基于阵列探测的短波长特征x射线衍射装置和方法
CN117168372B (zh) * 2023-10-23 2024-01-23 北京华力兴科技发展有限责任公司 一种x射线金属镀层测厚仪

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1598413A1 (de) 1966-01-20 1970-04-23 Exxon Research Engineering Co Vorrichtung zur Anfertigung verzerrungsfreier Roentgenbeugungsbilder
US3527942A (en) * 1967-11-09 1970-09-08 Atlantic Richfield Co Automatic sample changer for positioning a plurality of pellets in an x-ray analyzer
DE2312507A1 (de) * 1973-03-13 1974-09-26 Max Planck Gesellschaft Geraet fuer roentgenbeugungsmessungen mittels weisser roentgenstrahlen
JPS6093335A (ja) * 1983-10-27 1985-05-25 Natl Inst For Res In Inorg Mater 多結晶体の結晶粒子状態の検出測定装置
JPH01265146A (ja) * 1988-04-16 1989-10-23 Mc Sci:Kk X線回折装置
US4877080A (en) 1988-06-13 1989-10-31 Ahlstromforetagen Svenska Ab Process and apparatus for cooling a fluid
GB8830466D0 (en) 1988-12-31 1989-03-01 Salje Ekhard K H X-ray diffractometer
CA2022190C (en) 1989-08-11 2002-06-04 Andrew W. Gross Thiol-terminated hydroxyamides
JP2899057B2 (ja) * 1990-04-09 1999-06-02 理学電機株式会社 試料固定型x線回折装置の自動光軸調整装置
CN2077546U (zh) * 1990-05-24 1991-05-22 中国科学院物理研究所 两用x-射线双晶衍射仪
GB9122085D0 (en) * 1991-10-17 1991-11-27 Cambridge Surface Analytics X-ray diffractometer
US5259013A (en) * 1991-12-17 1993-11-02 The United States Of America As Represented By The Secretary Of Commerce Hard x-ray magnification apparatus and method with submicrometer spatial resolution of images in more than one dimension
GB2266040B (en) * 1992-04-09 1996-03-13 Rigaku Ind Corp X-ray analysis apparatus
JPH05296948A (ja) * 1992-04-17 1993-11-12 Nippon Steel Corp X線回折環全方位測定装置
JP2905659B2 (ja) * 1993-02-26 1999-06-14 シャープ株式会社 X線装置と該装置を用いた評価解析方法
JPH06258260A (ja) * 1993-03-05 1994-09-16 Seiko Instr Inc X線回折装置
CN1038874C (zh) * 1994-04-12 1998-06-24 中国科学院上海原子核研究所 微区x射线荧光黄金首饰分析装置
DE19512819C2 (de) * 1995-04-05 1999-05-27 Siemens Ag Röntgen-Computertomograph
GB9519687D0 (en) * 1995-09-27 1995-11-29 Schlumberger Ltd Method of determining earth formation characteristics
US6005913A (en) * 1996-04-01 1999-12-21 Siemens Westinghouse Power Corporation System and method for using X-ray diffraction to detect subsurface crystallographic structure
US5949811A (en) * 1996-10-08 1999-09-07 Hitachi Medical Corporation X-ray apparatus
CN1049496C (zh) 1997-02-03 2000-02-16 重庆大学 X射线残余应力测定装置和方法
JP4040770B2 (ja) * 1998-01-20 2008-01-30 ジーイー横河メディカルシステム株式会社 X線ct装置
DE19839472C1 (de) * 1998-08-29 2000-11-02 Bruker Axs Analytical X Ray Sy Automatischer Probenwechsler für Röntgen-Diffraktometer
JP3950239B2 (ja) * 1998-09-28 2007-07-25 株式会社リガク X線装置
EP1149282A2 (en) 1998-12-18 2001-10-31 Symyx Technologies, Inc. Apparatus and method for characterizing libraries of different materials using x-ray scattering
JP4155538B2 (ja) * 1999-06-30 2008-09-24 株式会社リガク X線測定装置及びx線測定方法
JP2001095789A (ja) * 1999-09-30 2001-04-10 Shimadzu Corp X線透視撮影装置
CN1291720A (zh) * 1999-10-11 2001-04-18 成都理工学院 便携式管激发x射线荧光仪的制造方法
US6895075B2 (en) * 2003-02-12 2005-05-17 Jordan Valley Applied Radiation Ltd. X-ray reflectometry with small-angle scattering measurement
JP4533553B2 (ja) * 2001-04-13 2010-09-01 株式会社リガク X線管
CN2496018Y (zh) 2001-10-08 2002-06-19 中国科学院物理研究所 一种多功能x射线衍射仪
WO2003060497A1 (en) 2002-01-15 2003-07-24 Avantium International B.V. Method for performing powder diffraction analysis
GB0201773D0 (en) * 2002-01-25 2002-03-13 Isis Innovation X-ray diffraction method
JP2003329620A (ja) * 2002-05-13 2003-11-19 Hitachi Ltd 積層薄膜検査方法
CN1270176C (zh) 2002-12-02 2006-08-16 中国科学技术大学 对组合样品的结构和成分进行测量分析的方法及装置
JP3731207B2 (ja) * 2003-09-17 2006-01-05 株式会社リガク X線分析装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
X射线光电子能谱技术及其应用. 王文生.电子元件与材料,第10卷第1期. 1991
X射线光电子能谱技术及其应用. 王文生.电子元件与材料,第10卷第1期. 1991 *
单晶X射线衍射技术的进展评述. 王哲明等.现代仪器,第6期. 2001
单晶X射线衍射技术的进展评述. 王哲明等.现代仪器,第6期. 2001 *
聚乙烯醇与钛酸酯偶联剂化学反应的X射线光电子能谱研究. 李北星等.硅酸盐学报,第29卷第4期. 2001
聚乙烯醇与钛酸酯偶联剂化学反应的X射线光电子能谱研究. 李北星等.硅酸盐学报,第29卷第4期. 2001 *

Also Published As

Publication number Publication date
EP1767928A4 (en) 2011-03-16
EP2541238A1 (en) 2013-01-02
US7583788B2 (en) 2009-09-01
US20080095311A1 (en) 2008-04-24
EP1767928A1 (en) 2007-03-28
CN1588019A (zh) 2005-03-02
WO2006005246A1 (fr) 2006-01-19
EP2541238B1 (en) 2015-12-16
JP2008506127A (ja) 2008-02-28

Similar Documents

Publication Publication Date Title
CN100485373C (zh) 短波长x射线衍射测量装置和方法
CA2713383C (en) Apparatus and method for x-ray fluorescence analysis of a mineral sample
US7152002B2 (en) Method and apparatus for analysis of elements in bulk substance
EP2773950B1 (en) Scanning method and apparatus
US8548123B2 (en) Method and apparatus for using an area X-ray detector as a point detector in an X-ray diffractometer
EP2171435B1 (en) Detection of x-ray scattering
US7852983B2 (en) X-ray diffractometer for mechanically correlated movement of the source, detector, and sample position
CN101358938A (zh) 一种工件内部缺陷的x射线衍射扫描无损检测方法及装置
CN104634799A (zh) 一种多波长特征x射线衍射测量装置和方法
JP6075522B2 (ja) 放射線モニタ
JP5403728B2 (ja) 中性子回折装置
CA1241460A (en) Method for monitoring the crystallographic texture of metallic tubes by use of x-ray diffraction
JP6009156B2 (ja) 回折装置
CN116359259A (zh) 一种材料内部荧光和衍射组合分析装置及分析方法
EP3458847B1 (en) Pulsed neutron generated prompt gamma emission measurement system for surface defect detection and analysis
JP2000206061A (ja) 蛍光x線測定装置
JP6630207B2 (ja) 粉体又は造粒物の熱中性子透過量測定装置及び方法、並びに粉体又は造粒物中元素の定量分析装置及び方法
JP2000258366A (ja) 微小部x線回折装置
JP2798270B2 (ja) 中性粒子ビーム測定装置
JPS62168080A (ja) 放射能濃度測定装置
JP2016011866A (ja) 放射能濃度測定システム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant