WO2022191084A1 - 硬化性組成物及び硬化物 - Google Patents

硬化性組成物及び硬化物 Download PDF

Info

Publication number
WO2022191084A1
WO2022191084A1 PCT/JP2022/009529 JP2022009529W WO2022191084A1 WO 2022191084 A1 WO2022191084 A1 WO 2022191084A1 JP 2022009529 W JP2022009529 W JP 2022009529W WO 2022191084 A1 WO2022191084 A1 WO 2022191084A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polymer
groups
reactive silicon
curable composition
Prior art date
Application number
PCT/JP2022/009529
Other languages
English (en)
French (fr)
Inventor
大輔 賀来
高 伊藤
佳孝 砂山
康介 山崎
和真 今野
吉 竹田
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to KR1020237025354A priority Critical patent/KR20230154796A/ko
Priority to CN202280017879.3A priority patent/CN116940635A/zh
Priority to EP22767041.1A priority patent/EP4306570A1/en
Priority to JP2023505513A priority patent/JPWO2022191084A1/ja
Publication of WO2022191084A1 publication Critical patent/WO2022191084A1/ja
Priority to US18/355,736 priority patent/US20230399464A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2645Metals or compounds thereof, e.g. salts
    • C08G65/2663Metal cyanide catalysts, i.e. DMC's
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/3311Polymers modified by chemical after-treatment with organic compounds containing oxygen containing a hydroxy group
    • C08G65/3312Polymers modified by chemical after-treatment with organic compounds containing oxygen containing a hydroxy group acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • C09J171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/10Block or graft copolymers containing polysiloxane sequences
    • C09J183/12Block or graft copolymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2170/00Compositions for adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2190/00Compositions for sealing or packing joints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterized by the type of post-polymerisation functionalisation
    • C08G2650/04End-capping
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterized by the type of post-polymerisation functionalisation
    • C08G2650/10Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterized by the type of post-polymerisation functionalisation characterized by the catalyst used in the post-polymerisation functionalisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/36Pre-polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the present invention relates to curable compositions and cured products.
  • This application claims priority to Japanese Patent Application No. 2021-040132 filed in Japan on March 12, 2021 and Japanese Patent Application No. 2021-107750 filed in Japan on June 29, 2021, the contents of which are hereby incorporated by reference. to refer to.
  • the present invention includes a curing polymer containing a silicon group having a hydroxyl group or a hydrolyzable group bonded to a silicon atom and having a silicon group capable of cross-linking by forming a siloxane bond (hereinafter referred to as "reactive silicon group"). relating to sexual compositions.
  • a polymer having at least one reactive silicon group in its molecule crosslinks even at room temperature due to the formation of siloxane bonds accompanied by hydrolysis reaction of the reactive silicon group due to moisture or the like, and a rubber-like cured product is obtained. known to be obtained.
  • polymers having these reactive silicon groups include oxyalkylene polymers, saturated hydrocarbon polymers, polyalkyl acrylate polymers, and polyalkyl methacrylate polymers.
  • Polymers having these reactive silicon groups have already been industrially produced and are widely used in applications such as sealants, adhesives and paints.
  • sealants adhesives and paints.
  • curable composition containing a polymer having these reactive silicon groups is used as a sealant, curability and elongation properties of the cured product are required.
  • repeated expansion and contraction durability and resilience that can follow the structural expansion and contraction of joints caused by exposure to the outdoor environment for a long time are required.
  • Patent Document 1 discloses an oxyalkylene polymer having a branched main chain, four terminal groups in one molecule, and a dialkoxyalkylsilyl group in the terminal group.
  • Patent Document 2 aims to shorten the curing time and improve the adhesiveness and shear strength. , discloses a polymer having a number average molecular weight of 25,000 in which 85 mol % of hydroxyl groups are converted to trimethoxysilyl groups.
  • the curable compositions containing the polymers in Patent Documents 1 and 2 have room for further improvement in order to improve repeated stretching durability when used as a sealant.
  • the present invention has been made in view of the above circumstances, and provides a curable composition from which a cured product having excellent durability against repeated stretching can be obtained.
  • R is a monovalent organic group having 1 to 20 carbon atoms and represents an organic group other than a hydrolyzable group, and X represents a hydroxyl group, a halogen atom, or a hydrolyzable group.
  • a is an integer from 0 to 2; When a is 2, R may be the same or different, and when a is 0 or 1, X may be the same or different.
  • the ratio of the reactive silicon group in which a is 0 in the formula (1) to the total of the reactive silicon group, the active hydrogen-containing group and the unsaturated group present in the oxyalkylene polymer A is The curable composition according to [1], which is less than 50 mol%.
  • an oxyalkylene polymer B having a reactive silicon group represented by the formula (1) and having two or three terminal groups is included, and the terminal group is represented by the formula (1)
  • the oxyalkylene polymer B contains at least one selected from the group consisting of a reactive silicon group, an active hydrogen-containing group, and an unsaturated group, and the oxyalkylene polymer B contains 0.0 of the reactive silicon group per terminal group.
  • the oxyalkylene polymer C has 0.2 to 1.0 reactive silicon groups per terminal group, and the number average molecular weight of the oxyalkylene polymer C is 2,000 to 15,000.
  • the curable composition according to any one of [1] to [5].
  • a numerical range represented by “ ⁇ ” means a numerical range with lower and upper limits of values before and after ⁇ .
  • “Active hydrogen-containing group” is at least one selected from the group consisting of a hydroxyl group, a carboxyl group, an amino group, a monovalent functional group obtained by removing one hydrogen atom from a primary amine and a sulfanyl group bonded to a carbon atom. It is the seed base.
  • “Active hydrogen” is a hydrogen atom derived from the active hydrogen-containing group and a hydrogen atom derived from the hydroxyl group of water.
  • An “initiator” is a compound having an active hydrogen-containing group.
  • "Unsaturated group” means a monovalent group containing an unsaturated double bond. Unless otherwise specified, it is at least one group selected from the group consisting of a vinyl group, an allyl group and an isopropenyl group.
  • oxyalkylene polymer is meant a polymer having a polyoxyalkylene chain formed from units based on cyclic ethers.
  • the "terminal group” refers to, among the oxygen atoms in the polyoxyalkylene chain, the oxygen atoms of the oxyalkylene polymer. It means an atomic group containing an oxygen atom closest to the terminal of the molecule.
  • the "precursor polymer” is a polymer before introduction of a reactive silicon group, and means an oxyalkylene polymer having a hydroxyl group as a terminal group obtained by polymerizing a cyclic ether on an active hydrogen of an initiator.
  • “Silylation ratio” is the ratio of the number of reactive silicon groups to the total number of reactive silicon groups, active hydrogen-containing groups and unsaturated groups in the oxyalkylene polymer. Silylation rate values can be determined by NMR analysis.
  • silylating agent is meant a compound having a functional group that reacts with an active hydrogen-containing group or unsaturated group and a reactive silicon group.
  • Hydrophilicity group equivalent molecular weight is calculated based on JIS K 1557 (2007) for the hydroxyl value of the initiator or precursor polymer, and is "56,100/(hydroxyl value) x (the number of active hydrogens in the initiator, or , the number of terminal groups of the precursor polymer)”.
  • the number average molecular weight (hereinafter referred to as "Mn”) and mass average molecular weight (hereinafter referred to as "Mw”) of the polymer are polystyrene equivalent molecular weights obtained by GPC measurement.
  • the molecular weight distribution is a value calculated from Mw and Mn, and is the ratio of Mw to Mn (hereinafter referred to as "Mw/Mn").
  • the curable composition of the present invention is a curable composition comprising an oxyalkylene polymer A having a reactive silicon group represented by the following formula (1) and having 6 or more terminal groups,
  • the group contains one or more selected from the group consisting of a reactive silicon group, an active hydrogen-containing group, and an unsaturated group represented by the following formula (1), and the oxyalkylene polymer A has one terminal group
  • the number average molecular weight of the oxyalkylene polymer A is more than 25,000 and 100,000 or less.
  • the oxyalkylene polymer A is also referred to as "polymer A".
  • R is a monovalent organic group having 1 to 20 carbon atoms and represents an organic group other than a hydrolyzable group, and X represents a hydroxyl group, a halogen atom, or a hydrolyzable group.
  • a is an integer from 0 to 2; When a is 2, R may be the same or different, and when a is 0 or 1, X may be the same or different.
  • Polymer A has a reactive silicon group represented by the formula (1), and has 6 or more terminal groups, the terminal group is a reactive silicon group represented by the formula (1), containing one or more selected from the group consisting of an active hydrogen-containing group and an unsaturated group, the polymer A has 0.3 or more of the reactive silicon groups per terminal group, the polymer A is a branched oxyalkylene polymer having a number average molecular weight of more than 25,000 and not more than 100,000. Two or more types of polymer A may be contained in the curable composition of the present invention.
  • Reactive silicon groups have hydroxyl groups or hydrolyzable groups bonded to silicon atoms and can form siloxane bonds to crosslink. The reaction to form siloxane bonds is accelerated by a curing catalyst.
  • the reactive silicon group in polymer A is represented by the following formula (1). —SiR a (X) 3-a (1)
  • R represents a monovalent organic group having 1 to 20 carbon atoms.
  • R does not contain hydrolyzable groups.
  • R is preferably at least one selected from the group consisting of hydrocarbon groups having 1 to 20 carbon atoms and triorganosiloxy groups.
  • R is preferably at least one selected from the group consisting of alkyl groups, cycloalkyl groups, aryl groups, ⁇ -chloroalkyl groups and triorganosiloxy groups. at least one selected from the group consisting of a linear or branched alkyl group having 1 to 4 carbon atoms, a cyclohexyl group, a phenyl group, a benzyl group, an ⁇ -chloromethyl group, a trimethylsiloxy group, a triethylsiloxy group and a triphenylsiloxy group; is more preferable.
  • a methyl group or an ethyl group is preferred from the viewpoint of good curability of the polymer having a reactive silicon group and good stability of the curable composition.
  • An ⁇ -chloromethyl group is preferred because the curing rate of the cured product is high.
  • a methyl group is particularly preferred because it is readily available.
  • X represents a hydroxyl group, a halogen atom, or a hydrolyzable group.
  • X may be the same or different.
  • hydrolyzable groups include hydrogen atoms, alkoxy groups, acyloxy groups, ketoximate groups, amino groups, amide groups, acid amide groups, aminooxy groups, sulfanyl groups and alkenyloxy groups.
  • An alkoxy group is preferred because it is mildly hydrolyzable and easy to handle.
  • the alkoxy group is preferably a methoxy group, an ethoxy group or an isopropoxy group, more preferably a methoxy group or an ethoxy group.
  • a is an integer of 0-2.
  • R may be the same or different.
  • X may be the same or different.
  • the value of a is preferably 0 because the curability is improved.
  • Examples of the reactive silicon group represented by formula (1) include a trimethoxysilyl group, a triethoxysilyl group, a triisopropoxysilyl group, a tris(2-propenyloxy)silyl group, a triacetoxysilyl group, and a methyldimethoxysilyl group. group, methyldiethoxysilyl group, ethyldimethoxysilyl group, methyldiisopropoxysilyl group, ( ⁇ -chloromethyl)dimethoxysilyl group, and ( ⁇ -chloromethyl)diethoxysilyl group.
  • a trimethoxysilyl group, a triethoxysilyl group, a methyldimethoxysilyl group, and a methyldiethoxysilyl group are preferred, and a methyldimethoxysilyl group or a trimethoxysilyl group is more preferred, from the viewpoint of high activity and good curability.
  • the cured product of the curable composition containing the polymer A has good restorability and excellent durability against repeated stretching.
  • the main chain of polymer A has an oxyalkylene chain formed by polymerization of one or more cyclic ethers.
  • cyclic ethers include alkylene oxides such as ethylene oxide, propylene oxide, 1,2-butylene oxide and 2,3-butylene oxide, and cyclic ethers other than alkylene oxides such as tetrahydrofuran. Ethylene oxide and propylene oxide are preferred, and propylene oxide is more preferred.
  • a polyoxyalkylene chain may be a copolymer chain having two or more oxyalkylene groups.
  • the copolymer chain may be a block copolymer chain or a random copolymer chain.
  • the polyoxyalkylene chain of the polymer A includes a polyoxypropylene chain, a polyoxyethylene chain, a poly(oxy-2-ethylethylene) chain, a poly(oxy-1,2-dimethylethylene) chain, and a poly(oxytetramethylene) chain. ) chain, poly(oxyethylene/oxypropylene) chain, and poly(oxypropylene/oxy-2-ethylethylene) chain. Polyoxypropylene chains and poly(oxyethylene-oxypropylene) chains are preferred, with polyoxypropylene chains being more preferred.
  • Polymer A has 6 or more terminal groups.
  • the number of terminal groups of the polymer A is preferably 6 to 8, more preferably 6 to 7, and even more preferably 6, from the viewpoint of improving the elastic recovery property of the cured product and the repeated stretching durability described later.
  • the cured product has a short tack-free time and excellent deep-part curability.
  • the terminal group of the polymer A contains one or more groups selected from the group consisting of reactive silicon groups, active hydrogen-containing groups and unsaturated groups represented by the formula (1). It preferably contains one or more groups selected from the group consisting of reactive silicon groups, active hydrogen-containing groups and allyl groups represented by the formula (1). Each terminal group may be the same or different.
  • the total number of reactive silicon groups, active hydrogen-containing groups and unsaturated groups present in polymer A is preferably 1.0 to 3.0, more preferably 1.0 to 2.5 per terminal group. , more preferably 1.0 to 2.0.
  • active hydrogen-containing groups examples include hydroxyl groups, carboxyl groups, amino groups, monovalent functional groups obtained by removing hydrogen atoms from primary amines, hydrazide groups, and sulfanyl groups.
  • the active hydrogen-containing group is preferably a hydroxyl group, an amino group, or a monovalent functional group obtained by removing a hydrogen atom from a primary amine, and more preferably a hydroxyl group.
  • the polymer A has 0.3 or more reactive silicon groups per terminal group, preferably 0.3 to 2.0, and 0.3 It is more preferable to have up to 1.0, more preferably 0.35 to 0.90, and particularly preferably 0.40 to 0.80.
  • the polymer A preferably has 1.8 to 12 reactive silicon groups per molecule, more preferably 1.8 to 8, even more preferably 2.1 to 7.2. , 2.4 to 6.4 are particularly preferred.
  • the ratio of the reactive silicon groups in which a is 0 in the formula (1) to the total of the reactive silicon groups, active hydrogen-containing groups and unsaturated groups in the polymer A is not particularly limited, but is 0 to 70 mol%. and preferably less than 50 mol% from the viewpoint of improving durability against repeated stretching.
  • the terminal group in polymer A may contain a group represented by the following formula (2) or (3).
  • X 1 in the following formula (3) is a monovalent group represented by any one of the following formulas (4) to (7).
  • Si 1 in the following formulas (2) and (4) to (7) represents a reactive silicon group represented by the above formula (1). When more than one Si 1 is present on one terminal group, they may be the same or different from each other.
  • R 1 and R 3 each independently represent a divalent bonding group having 1 to 6 carbon atoms, and the atoms bonded to the carbon atoms present in the bonding group are carbon atoms, A hydrogen atom, an oxygen atom, a nitrogen atom, or a sulfur atom.
  • R 1 is preferably -CH 2 -O-CH 2 -, -CH 2 O- or -CH 2 -, more preferably -CH 2 -O-CH 2 -.
  • R 3 is preferably -CH 2 - or -C 2 H 4 -, more preferably -CH 2 -.
  • R 2 and R 4 in formula (2) are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • a hydrocarbon group a linear or branched alkyl group having 1 to 10 carbon atoms is preferable.
  • linear alkyl groups include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl and octyl groups.
  • branched alkyl groups include isopropyl group, s-butyl group, t-butyl group, 2-methylbutyl group, 2-ethylbutyl group, 2-propylbutyl group, 3-methylbutyl group, 3-ethylbutyl group and 3-propylbutyl group.
  • R 2 and R 4 are each independently preferably a hydrogen atom, a methyl group or an ethyl group, more preferably a hydrogen atom or a methyl group.
  • n in formula (2) represents an integer of 1 to 10, preferably 1 to 7, more preferably 1 to 5, and even more preferably 1.
  • R 5 represents a single bond or a divalent bonding group having 1 to 6 carbon atoms, and the atoms bonded to the carbon atoms present in the bonding group are carbon atoms, hydrogen atoms, It is an oxygen atom, a nitrogen atom, or a sulfur atom.
  • Examples of the divalent linking group for R 5 are the same as the examples of the divalent linking group for R 1 and R 3 above.
  • R 5 is preferably a single bond or a hydrocarbon group having 1 to 4 carbon atoms, more preferably a single bond or an alkylene group having 1 to 3 carbon atoms, even more preferably a single bond or a methylene group.
  • R 6 represents a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • Examples of the monovalent hydrocarbon group for R 6 are the same as the above examples of the monovalent hydrocarbon group for R 2 and R 4 .
  • R6 is preferably a hydrogen atom, a methyl group or an ethyl group, more preferably a hydrogen atom or a methyl group.
  • R 7 and R 8 in formula (7) are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 9 carbon atoms.
  • hydrocarbon group a linear or branched alkyl group having 1 to 9 carbon atoms is preferable.
  • alkyl groups for R 7 and R 8 are the same as those for R 2 and R 4 above. Both R 7 and R 8 are preferably hydrogen atoms.
  • Mn of polymer A is more than 25,000 and 100,000 or less, preferably 27,000 to 90,000, more preferably 28,000 to 80,000, and even more preferably 30,000 to 60,000. Within the above range, the elongation properties and tensile strength of the cured product tend to be good.
  • the hydroxyl group-equivalent molecular weight of the polymer A is preferably 20,000 to 80,000, more preferably 21,000 to 70,000, even more preferably 22,000 to 60,000, particularly 23,000 to 50,000. preferable. Within the above range, the elongation properties and tensile strength of the cured product tend to be good.
  • the molecular weight distribution of polymer A is preferably 1.8 or less.
  • the molecular weight distribution is preferably small, more preferably from 1.0 to 1.5, even more preferably from 1.02 to 1.4, and particularly preferably from 1.04 to 1.3, since good elongation properties can be easily obtained.
  • Polymer A is obtained by introducing the reactive silicon group into the terminal group of the precursor polymer.
  • the precursor polymer is an oxyalkylene polymer obtained by ring-opening addition polymerization of a cyclic ether to active hydrogen of an initiator having an active hydrogen-containing group in the presence of a ring-opening polymerization catalyst.
  • the number of active hydrogens in the initiator, the number of terminal groups in the precursor polymer, and the number of terminal groups in polymer A are the same.
  • a polymer having a hydroxyl group as a terminal group obtained by ring-opening addition polymerization of a cyclic ether to an initiator having a hydroxyl group is preferable.
  • the method for producing polymer A includes introducing one unsaturated group to one terminal group of the precursor polymer, and then reacting the unsaturated group with a silylating agent, and the terminal group of the precursor polymer.
  • a method of subjecting an active hydrogen-containing group and an isocyanate silane compound to a urethanization reaction, or a method of subjecting an active hydrogen-containing group of a terminal group of the precursor polymer to a urethanization reaction of an isocyanate compound and then reacting an aminosilane is preferred. Since the main chain of the polymer A is branched, the curable composition containing the polymer A is likely to yield a cured product with excellent restorability.
  • an initiator having 6 or more active hydrogen-containing groups is preferred, an initiator having 6 to 8 groups is more preferred, and an initiator having 6 groups is even more preferred.
  • the active hydrogen-containing group in the initiator is preferably a hydroxyl group. Examples of the initiator having 6 or more active hydrogen-containing groups include sorbitol, dipentaerythritol, inositol and sucrose, and sorbitol is preferred from the viewpoint of elongation of the cured product.
  • a conventionally known catalyst can be used as a ring-opening polymerization catalyst for ring-opening addition polymerization of a cyclic ether as an initiator.
  • the resulting complexes include transition metal compound-porphyrin complex catalysts, double metal cyanide complex catalysts and catalysts composed of phosphazene compounds.
  • a double metal cyanide complex catalyst is preferable because the molecular weight distribution of the polymer A can be narrowed and a curable composition having a low viscosity can be easily obtained.
  • a conventionally known compound can be used as the double metal cyanide complex catalyst, and a known method can be employed as a method for producing a polymer using the double metal cyanide complex.
  • WO 2003/062301, WO 2004/067633, JP 2004-269776, JP 2005-15786, WO 2013/065802 and JP 2015-010162 The disclosed compounds and methods of preparation can be used.
  • the precursor polymer of the polymer A a precursor polymer in which all terminal groups are hydroxyl groups is preferable.
  • silylating agents include compounds having both a group capable of forming a bond by reacting with an unsaturated group (eg, a sulfanyl group) and the reactive silicon group, hydrosilane compounds (eg, HSiX a R 3-a , where X , R and a are the same as in the above formula (1).) can be exemplified.
  • examples include silane, ( ⁇ -chloromethyl)dimethoxysilane, ( ⁇ -chloromethyl)diethoxysilane, and 3-mercaptopropyltrimethoxysilane.
  • Trimethoxysilane, triethoxysilane, methyldimethoxysilane, and methyldiethoxysilane are preferred, and methyldimethoxysilane and trimethoxysilane are more preferred, from the viewpoint of high activity and good curability.
  • isocyanate silane compound for example, conventionally known isocyanate silane compounds described in JP-A-2011-178955 can be used.
  • a method of introducing 1.0 or less unsaturated groups per terminal group into one terminal group of the precursor polymer and then reacting the unsaturated group with a silylating agent, or a terminal of the precursor polymer can be used for the method of urethanizing the active hydrogen-containing group of the group and the isocyanate silane compound. 61-197631, JP-A-3-72527, JP-A-8-231707, JP-A-2011-178955, US Pat. No. 3,632,557 and US Pat. be done.
  • a method of introducing an average of more than 1.0 unsaturated groups per terminal group to one terminal group of the precursor polymer of polymer A, and then reacting the unsaturated group with the silylating agent can use a conventionally known method.
  • WO 2013/180203, WO 2014/192842, JP 2015-105293, JP 2015-105322, JP 2015-105323, JP 2015-105324, International Publication No. 2015/080067, International Publication No. 2015/105122, International Publication No. 2015/111577, International Publication No. 2016/002907, JP 2016-216633, JP 2017-39782 method can be used.
  • alkali metal salts include sodium hydroxide, sodium alkoxide, potassium hydroxide, potassium alkoxide, lithium hydroxide, lithium alkoxide, cesium hydroxide, and cesium alkoxide.
  • Sodium hydroxide, sodium methoxide, sodium ethoxide, potassium hydroxide, potassium methoxide and potassium ethoxide are preferred, and sodium methoxide and potassium ethoxide are more preferred, from the viewpoints of ease of handling and solubility.
  • Sodium methoxide is particularly preferred because of its availability.
  • Alkali metal salts may be used in a state of being dissolved in a solvent.
  • epoxy compounds having unsaturated groups include allyl glycidyl ether, methallyl glycidyl ether, glycidyl acrylate, glycidyl methacrylate, butadiene monoxide, and 1,4-cyclopentadiene monoepoxide. Allyl glycidyl ether is preferred.
  • a compound represented by the following formula (8) is preferable as the epoxy compound having an unsaturated group.
  • R 1 and R 2 are the same as R 1 and R 2 in formula (2) above.
  • halogenated hydrocarbon compound having an unsaturated group one or both of a halogenated hydrocarbon compound containing a carbon-carbon double bond and a halogenated hydrocarbon compound containing a carbon-carbon triple bond can be used.
  • halogenated hydrocarbon compounds containing carbon-carbon double bonds include vinyl chloride, allyl chloride, methallyl chloride, vinyl bromide, allyl bromide, methallyl bromide, vinyl iodide, allyl iodide, and methallyl iodide. can. Allyl chloride and methallyl chloride are preferred.
  • Halogenated hydrocarbon compounds containing carbon-carbon triple bonds include propargyl chloride, 1-chloro-2-butyne, 4-chloro-1-butyne, 1-chloro-2-octyne, 1-chloro-2-pentyne, 1,4-dichloro-2-butyne, 5-chloro-1-pentyne, 6-chloro-1-hexyne, propargyl bromide, 1-bromo-2-butyne, 4-bromo-1-butyne, 1-bromo- 2-octyne, 1-bromo-2-pentyne, 1,4-dibromo-2-butyne, 5-bromo-1-pentyne, 6-bromo-1-hexyne, propargyl iodide, 1-iodo-2-butyne, 4-iodo-1-butyne, 1-iodo-2-octyne, 1-iodo-2
  • the reaction yields a derivative in which more than 1.0 unsaturated groups are introduced per terminal group of the precursor polymer.
  • the derivative of the precursor polymer may contain an unreacted active hydrogen-containing group at the terminal group. From the viewpoint of storage stability, the number of active hydrogen-containing groups contained in the derivative of the precursor polymer is preferably 0.3 or less per molecule, more preferably 0.1 or less.
  • a polymer A is obtained by reacting the unsaturated group of the derivative of the precursor polymer with a silylating agent to introduce a reactive silicon group into the terminal group.
  • the polymer A obtained in this way has terminal groups containing groups represented by the above formula (2) or (3).
  • the silylation rate of the polymer A is preferably 25-100 mol %, more preferably 30-98 mol %.
  • the average silylation rate of the entire polymer A may be within the above range.
  • Polymer B has a reactive silicon group represented by the formula (1) and has two or three terminal groups, and the terminal group is a reactive silicon group represented by the formula (1). , an active hydrogen-containing group, and one or more selected from the group consisting of unsaturated groups, having 0.3 to 2.0 of the reactive silicon groups per terminal group, and having a number average molecular weight of 5, 000 to 20,000 oxyalkylene polymers. Two or more types of polymer B may be used in the curable composition of the present invention.
  • the main chain of polymer B is the same as the polymer chain exemplified as the main chain of polymer A.
  • the number of terminal groups present in one molecule of the polymer B is two or three.
  • the terminal group of the polymer B contains one or more groups selected from the group consisting of reactive silicon groups, active hydrogen-containing groups and unsaturated groups represented by the above formula (1). It preferably contains one or more groups selected from the group consisting of reactive silicon groups, active hydrogen-containing groups and allyl groups represented by the formula (1). Each said end group may be the same or different. Since the elongation properties and tensile strength of the cured product are likely to be good, the total number of reactive silicon groups, active hydrogen-containing groups and unsaturated groups present in polymer B is 1.0 to 3.0 per terminal group. is preferred, 1.0 to 2.5 is more preferred, and 1.0 to 2.0 is even more preferred.
  • the cured product of the curable composition containing the polymer B has good restorability and excellent durability against repeated stretching.
  • R and X in formula (1) are the same as the groups exemplified for polymer A, and the preferred groups are also the same.
  • the polymer B preferably has 0.3 to 2.0 reactive silicon groups per terminal group, and 0.35 to 1.90 more preferably 0.40 to 1.80.
  • the Mn of polymer B is preferably 5,000 to 20,000, more preferably 6,000 to 19,000, even more preferably 7,000 to 18,000. Within the above range, the elongation property of the cured product tends to be excellent, and the viscosity tends to be sufficiently low.
  • the hydroxyl group-equivalent molecular weight of polymer B is preferably 3,000 to 17,000, more preferably 4,000 to 15,000, and even more preferably 5,000 to 12,000. Within the above range, the elongation property of the cured product tends to be excellent, and the viscosity tends to be sufficiently low.
  • the molecular weight distribution of polymer B is preferably 1.8 or less.
  • the molecular weight distribution is preferably small, more preferably from 1.0 to 1.5, even more preferably from 1.02 to 1.4, and particularly preferably from 1.04 to 1.3, since good elongation properties can be easily obtained.
  • the number of terminal groups present in one molecule of the polymer B is 2 or 3, and it can be produced using an initiator having 2 or 3 active hydrogen-containing groups.
  • a compound having two active hydrogen-containing groups a compound having two hydroxyl groups is preferable.
  • Compounds having two hydroxyl groups include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, neopentyl glycol, 1,4-butanediol, 1,6-hexanediol, low molecular weight Polyoxypropylene glycol can be exemplified.
  • a compound having three active hydrogen-containing groups a compound having three hydroxyl groups is preferable.
  • Examples of compounds having three hydroxyl groups include glycerin, trimethylolpropane, trimethylolethane, low-molecular-weight polyoxypropylenetriol, and polyoxypropylenetriol having a hydroxyl-converted molecular weight of 150 to 3,000.
  • the precursor polymer of polymer B can be produced in the same manner as the precursor polymer of polymer A except that a compound having two or three active hydrogen-containing groups is used as the initiator.
  • Preferred is a precursor polymer having hydroxyl terminal groups, obtained by ring-opening addition polymerization of a cyclic ether to an agent. After introducing an average of 1.0 or less unsaturated groups per terminal group to one terminal group of the precursor polymer, the method of reacting the unsaturated group with the silylating agent is the same as for polymer A. method can be used.
  • a method of introducing an average of more than 1.0 unsaturated groups per terminal group to one terminal group of the precursor polymer of polymer B, and then reacting the unsaturated group with the silylating agent. can use the same method as for the polymer A.
  • the silylation rate of the polymer B is preferably more than 35 mol % and 100 mol % or less, more preferably 40 to 98 mol %, even more preferably 45 to 90 mol %.
  • the average silylation rate of the entire polymer B may be within the above range.
  • the ratio of the reactive silicon groups in which a is 0 in the formula (1) to the total of the reactive silicon groups, the active hydrogen-containing groups, and the unsaturated groups present in the polymer A and the polymer B is Although not particularly limited, it may be 0 to 60 mol %, and preferably less than 50 mol % from the viewpoint of improving durability against repeated stretching.
  • Polymer C has the reactive silicon group, has two terminal groups, one of the terminal groups is an inert monovalent organic group, and the other terminal group is , a reactive silicon group represented by the formula (1), an active hydrogen-containing group, and one or more selected from the group consisting of unsaturated groups, and the polymer C contains the reactive
  • the polymer C is an oxyalkylene polymer having 0.2 to 1.0 silicon groups and a number average molecular weight of 2,000 to 15,000. Two or more types of polymer C may be used in the curable composition of the present invention.
  • the cured product from the curable composition containing the polymer C has excellent elongation properties.
  • the main chain of polymer C is the same as the polymer chain exemplified as the main chain of polymer A.
  • the reactive silicon group represented by formula (1) possessed by the terminal group of the polymer C is the same as the reactive silicon group of the polymer A described above.
  • R and X in formula (1) are the same as the groups exemplified for polymer A, and the preferred groups are also the same.
  • the inert monovalent organic group which is one terminal group of the polymer C is preferably, for example, R 10 —O— (R 10 is a monovalent hydrocarbon group).
  • R 10 is preferably a branched or linear alkyl group having 1 to 20 carbon atoms, more preferably a branched or linear alkyl group having 1 to 10 carbon atoms, and a branched or linear alkyl group having 1 to 4 carbon atoms. Groups are more preferred, and methyl, ethyl, isopropyl, n-propyl, n-butyl or t-butyl groups are particularly preferred.
  • the other terminal group of the polymer C contains one or more groups selected from the group consisting of reactive silicon groups, active hydrogen-containing groups and unsaturated groups represented by the above formula (1). It preferably contains one or more groups selected from the group consisting of reactive silicon groups, active hydrogen-containing groups and allyl groups represented by the formula (1).
  • the other terminal group of the polymer C may be the terminal group represented by the formula (2) or (3).
  • the total number of reactive silicon groups, active hydrogen-containing groups and unsaturated groups present in polymer C is preferably 0.5 to 1.5, more preferably 0.5 to 1.0 per terminal group. .
  • the polymer C preferably has 0.2 to 1.0 reactive silicon groups per one terminal group, and 0.25 to 0.25 to 0.25 to 0.25 to 0.25 to 0.25 to 0.25 to 0.25 to 0.25. It is more preferable to have 95, more preferably 0.30 to 0.90.
  • the Mn of polymer C is preferably 2,000 to 15,000, more preferably 2,500 to 14,000, even more preferably 3,000 to 13,000. When it is within the above range, the elongation properties of the cured product and the resistance to paint staining are good, and the viscosity tends to be low.
  • the hydroxyl group-equivalent molecular weight of the polymer C is preferably 1,000 to 10,000, more preferably 1,500 to 9,000, and even more preferably 2,000 to 8,000. When it is within the above range, the elongation properties of the cured product and the resistance to paint staining are good, and the viscosity tends to be low.
  • the molecular weight distribution of polymer C is preferably 1.8 or less.
  • the molecular weight distribution is preferably small, more preferably from 1.0 to 1.5, even more preferably from 1.02 to 1.4, and particularly preferably from 1.04 to 1.3, since good elongation properties can be easily obtained.
  • Polymer C is obtained by introducing the reactive silicon group into a precursor polymer having a linear structure in which one terminal group is an inert monovalent organic group.
  • an inert monovalent organic group R 10 —O— (R 10 is a monovalent hydrocarbon group) is preferable.
  • the precursor polymer of polymer C is the same as the precursor polymer of polymer A or B, except that one terminal group is an inactive monovalent organic group and an initiator having one active hydrogen-containing group is used. can be similarly manufactured. Two or more initiators may be used in combination.
  • the active hydrogen-containing group of the initiator is preferably a hydroxyl group.
  • the precursor polymer is preferably a polymer having one hydroxyl group as a terminal group.
  • a monohydric alcohol having a linear or branched hydrocarbon group is preferred.
  • Examples include tridecanol, cetyl alcohol, stearyl alcohol, oleyl alcohol, and low molecular weight polyoxyalkylene monools.
  • a conventionally known method can be used as a method for producing the polymer C, and the same method as for the polymer B can be used.
  • Polymer C has two terminal groups in one molecule, one terminal group is a residue obtained by removing one active hydrogen from the initiator, that is, an inactive monovalent organic group, and the other terminal group is Preferably, the terminal group contains any of the above reactive silicon groups, active hydrogen-containing groups, or unsaturated groups.
  • the silylation rate of the polymer C is preferably more than 30 mol % and 100 mol % or less, more preferably 35 to 97 mol %, even more preferably 40 to 95 mol %.
  • the average silylation rate of the entire polymer C may be within the above range.
  • Polymer D is an oxyalkylene polymer having no reactive silicon group and having a number average molecular weight of 5,000 to 20,000. Two or more types of polymer D may be used in the curable composition of the present invention.
  • the polymer D functions as a plasticizer and contributes to lowering the viscosity of the curable composition, reducing contamination on the surface of the cured product, improving the drying properties of the paint on the surface of the cured product, and improving the resistance to paint contamination.
  • Examples of the polymer D main chain are the same as those of the polymer A main chain.
  • oxyalkylene polymers examples include polyether polyols (eg, polyoxyethylene glycol, polyoxypropylene glycol, polyoxytetramethylene glycol), and ester or ether derivatives obtained by blocking the hydroxyl groups of the above polyether polyols.
  • polyether polyols eg, polyoxyethylene glycol, polyoxypropylene glycol, polyoxytetramethylene glycol
  • ester or ether derivatives obtained by blocking the hydroxyl groups of the above polyether polyols examples of commercially available oxyalkylene polymers include Preminol S3011, Preminol S4012, and Preminol S4013F (all product names of AGC).
  • the Mn of polymer D is preferably 5,000 to 20,000, more preferably 6,000 to 18,000, even more preferably 7,000 to 16,000. When it is within the above range, the cured product tends to have good paint contamination resistance, and bleed-out tends to be suppressed.
  • the hydroxyl group-equivalent molecular weight of the polymer D is preferably 3,000 to 15,000, more preferably 4,000 to 14,000, and even more preferably 4,500 to 12,000. When it is within the above range, the cured product tends to have good paint contamination resistance, and bleed-out tends to be suppressed.
  • the molecular weight distribution of polymer D is preferably 1.8 or less. From the viewpoint of viscosity reduction, the molecular weight distribution is preferably as small as possible, more preferably 1.0 to 1.6, even more preferably 1.02 to 1.5, and particularly preferably 1.04 to 1.4.
  • Polymer D can be produced in the same manner as the precursor polymer of polymer A, except that an initiator having two active hydrogen-containing groups is used. Two or more initiators may be used in combination.
  • a compound having two active hydrogen-containing groups a compound having two hydroxyl groups is preferable. Examples of compounds having two hydroxyl groups include ethylene glycol, propylene glycol and tetramethylene glycol.
  • a curable composition is obtained by mixing the polymer A and other necessary components.
  • the ratio of the polymer A to the total mass of the curable composition is preferably 1-50% by mass, more preferably 2-45% by mass, and even more preferably 4-40% by mass.
  • the cured product of the curable composition is excellent in repeated stretching durability and elongation.
  • the ratio of the polymer B to the total weight of the curable composition is preferably 1 to 30% by mass, more preferably 2 to 28% by mass, and 3 to 25% by mass. More preferred.
  • the cured product of the curable composition is excellent in repeated stretching durability and elongation.
  • the ratio of the polymer A to the total weight of the polymer A and the polymer B is preferably 20 to 95% by mass, more preferably 30 to 90% by mass, 40 to 80% by mass is more preferred.
  • the cured product of the curable composition has good elongation properties and low viscosity.
  • the ratio of polymer C to the total mass of polymer A and polymer B is preferably 1 to 200% by mass, more preferably 20 to 190% by mass, 30 ⁇ 180% by mass is more preferred.
  • the cured product of the curable composition has good resistance to paint contamination and low viscosity.
  • the ratio of polymer D to the total mass of polymer A and polymer B is preferably 10 to 180% by mass, more preferably 15 to 100% by mass, 15 ⁇ 90% by mass is more preferable, and 20 to 80% by mass is particularly preferable.
  • the cured product of the curable composition has good resistance to paint contamination and low viscosity.
  • the value of the repeated expansion and contraction durability of the cured product obtained by curing the curable composition of the present invention tends to be 3500 times or more, and more likely to be 4000 times or more. If it is 3,500 times or more, it can follow structural shrinkage even when exposed to an outdoor environment for a long time, and has a repeated expansion and contraction durability suitable as a sealing material for construction.
  • the value of the maximum point elongation of the cured product obtained by curing the curable composition of the present invention tends to be 370% or more, and further tends to be 400% or more. If the value of maximum point elongation is 370% or more, good elongation can be obtained and it is suitable as a sealing material for construction.
  • the curable composition may be a one-liquid type in which all of the polymer and other components are blended in advance, sealed and stored, and cured by moisture in the air after application, and the main component contains at least a polymer having a reactive silicon group.
  • a two-pack type may be used in which the composition and the curing agent composition containing at least the curing catalyst are stored separately, and the curing agent composition and the main component composition are mixed before use.
  • a one-component curable composition is preferred due to ease of application.
  • the one-liquid curable composition preferably does not contain moisture. It is preferable to preliminarily dehydrate and dry the ingredients containing water, or dehydrate them by reducing the pressure during the mixing and kneading.
  • the curing agent composition may contain water, and the main composition does not readily gel even when containing a small amount of water. preferably.
  • a dehydrating agent may be added to the one-component curable composition or the two-component base composition.
  • the viscosity of the polymer A at 25° C. or the viscosity of the mixture of the polymer A and the polymer B at 25° C. is preferably 25 Pa s or less, more preferably 3 to 25 Pa s, and 4 to 20 Pa s. More preferred.
  • the viscosity of the polymer A or the viscosity of the mixture of the polymer A and the polymer B is at least the lower limit of the above range, dripping during operation is unlikely to occur, and when the viscosity is at most the upper limit, workability tends to be good. .
  • the curable composition contains a main composition, which is a mixture of polymer A and polymer B, and a curing agent composition containing other components.
  • the viscosity of the main composition at 25° C. is preferably 25 Pa ⁇ s or less, more preferably 3 to 25 Pa ⁇ s, and even more preferably 4 to 20 Pa ⁇ s.
  • Other components include polymers other than polymers A to E, curable compounds, curing catalysts (silanol condensation catalysts), fillers, plasticizers, thixotropic agents, stabilizers, antioxidants, and UV absorbers. , dehydrating agents, adhesion imparting agents, physical property modifiers, tackifying resins, reinforcing materials such as fillers, surface modifiers, flame retardants, foaming agents, solvents, and silicates.
  • the curable composition of the present invention is a curable composition comprising an oxyalkylene polymer A having a reactive silicon group represented by the formula (1) and having 6 or more terminal groups,
  • the group contains one or more selected from the group consisting of a reactive silicon group, an active hydrogen-containing group, and an unsaturated group represented by the following formula (1), and the oxyalkylene polymer A has one terminal group
  • the number average molecular weight of the oxyalkylene polymer A is more than 25,000 and 100,000 or less.
  • it has a reactive silicon group represented by the formula (1), has two or three terminal groups, and the terminal group is a reactive silicon group represented by the formula (1).
  • oxyalkylene polymer B having the reactive silicon group, having two terminal groups, one of the terminal groups being an inert monovalent organic group.
  • the other terminal group contains one or more selected from the group consisting of a reactive silicon group represented by the formula (1), an active hydrogen-containing group, and an unsaturated group, and one terminal group undergoes the reaction
  • oxyalkylene polymers C having 0.2 to 1.0 functional silicon groups and a number average molecular weight of 2,000 to 15,000 may be included.
  • the curable composition is particularly suitable as a sealing material for exterior walls that are exposed to the outdoors for a long period of time, because the cured product obtained from the curable composition has good durability against repeated expansion and contraction, as shown in the examples below.
  • the curable composition of the present invention When used as a sealing material for exterior walls, it exhibits excellent durability against repeated expansion and contraction, follows structural changes in adherends over time, and is resistant to cracking, resulting in good appearance. easy to maintain.
  • the curable composition can be used as a sealant or adhesive curable composition.
  • Specific uses of the curable composition include sealing materials (e.g., elastic sealing materials for construction, sealing materials for multi-layer glass, sealing materials for rust prevention and waterproofing of glass edges, back sealing materials for solar cells, construction material seals, marine seals, automobile seals, road seals), electrical insulating materials (insulating coatings for wires and cables), adhesives, coatings and potting materials are suitable.
  • sealing materials e.g., elastic sealing materials for construction, sealing materials for multi-layer glass, sealing materials for rust prevention and waterproofing of glass edges, back sealing materials for solar cells, construction material seals, marine seals, automobile seals, road seals
  • electrical insulating materials insulating coatings for wires and cables
  • adhesives, coatings and potting materials are suitable.
  • it is suitable for applications that require repeated expansion and contraction durability, and for example, sealing materials that are applied outdoors can be exemplified.
  • sealant When used as a sealant, paint may be applied onto the sealant, so it is necessary that the sealant does not degrade the curing performance of the paint as well as the adhesion between the sealant and the paint.
  • a sealant When a sealant is formed using the curable composition of the present invention and a paint is applied thereon, the sealant exhibits good stain resistance.
  • the molecular weight of the oxyalkylene polymer whose terminal group is a hydroxyl group (hereinafter referred to as "precursor polymer") obtained by polymerizing alkylene oxide with an initiator having a hydroxyl group is the hydroxyl group calculated based on JIS K 1557 (2007). It was calculated based on the formula of "56,100/(hydroxyl value of precursor polymer) x number of active hydrogens in initiator" (hereinafter referred to as "hydroxyl group-equivalent molecular weight").
  • the charged equivalent is equal to the silylation rate.
  • the charged equivalent of the isocyanate groups of the isocyanate silane compound with respect to the hydroxyl groups of the precursor polymer was defined as the silylation rate (mol %).
  • M50 stress at 50% elongation
  • Tmax the maximum point cohesive strength
  • % maximum elongation
  • M50 the stress at 50% elongation
  • the distance between the two aluminum plates of the obtained aluminum adherend was defined as L0.
  • the evaluation method for repeated stretching durability was measured as described below.
  • a surface anodized aluminum plate coated with a primer MP-2000 (product name of Cemedine) was used, and durability was measured according to the test method for building sealants of JIS A 1439 (2016).
  • a resistance test specimen type 1 was prepared and subjected to a repeated stretching durability test (also referred to as CR80). Specifically, the curable composition is poured into a space formed by sandwiching a spacer between the two aluminum plates, and cured at a temperature of 23 ° C. and a humidity of 50% for 7 days. After curing for 7 days at 50° C. and 65% humidity, a durability test piece 1 was obtained.
  • the obtained durability test specimen type 1 was fixed at a compressive deformation rate of 30% using a compression fixing spacer, left to stand at a temperature of 80 ° C. for 1 day, removed the compression fixing spacer, and was placed at a temperature of 23 ° C. and a humidity of 50. % for 1 day.
  • the initial joint width was set to 12 mm, and the expansion and contraction of the initial joint width by 30% were repeated at a speed of 5 times/minute.
  • the state of the vicinity of the interface between the aluminum plate of the test piece and the cured product of the curable composition was observed, and the number of expansions and contractions at which the depth of adhesive failure or cohesive failure reached 0.5 mm or more was measured.
  • Paint staining property represents the influence of a cured product on the curing performance of a paint, and was measured by the following evaluation method.
  • the curable composition was applied in a shape of 50 mm long, 50 mm wide and 10 mm thick on an aluminum plate, and cured for 48 hours at 23° C. and 50% humidity to cure.
  • a one-liquid water-based reaction-curing silicone resin paint (manufactured by Nippon Paint Co., Ltd., trade name: Oudefresh Si100II) was applied onto the obtained cured product.
  • the number of terminal groups of the obtained polymer A1, the terminal group structure, the molecular weight in terms of hydroxyl groups, Mn, Mw/Mn, the total number of reactive silicon groups, active hydrogen-containing groups, and unsaturated groups (described as the number of Z groups in Table 1 ), the silylation rate, the ratio of trialkoxysilyl groups to the number of Z groups, and the number of reactive silicon groups per terminal group are shown in Table 1.
  • Polymers obtained in the following Synthesis Examples are also shown in Table 1.
  • "dimethoxy" in the terminal group structure indicates that the reactive silicon group present in the terminal group is a methyldimethoxysilyl group
  • trimethoxy indicates that the reactive silicon group present in the terminal group is trimethoxy.
  • a silyl group indicates that the reactive silicon group present in the terminal group is a methyldimethoxysilyl group bonded to the main chain via a urethane bond
  • trimethoxySIU indicates a terminal It shows that the reactive silicon group present in the group is a trimethoxysilyl group bonded to the main chain via a urethane bond.
  • Synthesis Example 10 Polymer A10
  • An oxypropylene polymer (polymer A10) having a urethane bond with a trimethoxysilyl group introduced into the terminal group was obtained in the same manner as in Synthesis Example 9, except that the precursor polymer obtained in Synthesis Example 3 was used. .
  • Table 3 shows the mass ratio of the components contained in the "catalyst A" described in Table 2.
  • Whiten SB Ground calcium carbonate, product name of Shiraishi Kogyo Co., Ltd.
  • Whitening CCR Colloidal calcium carbonate, product name of Shiraishi Kogyo Co., Ltd.
  • Titanium oxide R820 Titanium oxide, product name of Ishihara Sangyo Co., Ltd.
  • Balloon 80GCA Organic balloon, product name of Matsumoto Yushi Co., Ltd. Gromax LL: calcined kaolin, product name of Takehara Chemical Industry Co., Ltd.
  • Sansocizer EPS 4,5-epoxycyclohexane-1,2-dicarboxylic acid-di-2-ethylhexyl, product name of Shin Nippon Rika Co., Ltd.
  • Disparlon 6500 Fatty acid amide wax, product name of Kusumoto Kasei Co., Ltd.
  • Disparon 305 Hydrogenated castor oil-based thixotropic agent, product name of Kusumoto Kasei Co., Ltd.
  • Aronix M-309 Photo-curing resin, product name of Toagosei Co., Ltd.
  • IRGANOX1010 Hindered phenolic antioxidant, BASF Japan product name.
  • IRGANOX1135 Hindered phenol antioxidant, BASF Japan product name.
  • TINUVIN326 benzotriazole-based UV absorber, product name of BASF Japan.
  • KBM-1003 Vinyltrimethoxysilane, product name of Shin-Etsu Chemical Co., Ltd.
  • KBM-403 3-glycidyloxypropyltrimethoxysilane, product name of Shin-Etsu Chemical Co., Ltd.
  • KBM-603 3-(2-aminoethylamino)propyltrimethoxysilane, product name of Shin-Etsu Chemical Co., Ltd.
  • DINP Vinicizer 90, diisononyl phthalate, product of Kao Corporation.
  • U-220H Dibutyltin bis(acetylacetonate), tin catalyst, product name of Nitto Kasei.
  • U-810 Dioctyl tin laurate, tin catalyst, product name of Nitto Kasei.
  • U-830 Dioctyl tin versatate, tin catalyst, product name of Nitto Kasei.
  • Stannoct stannous octoate, product name of Mitsubishi Chemical Corporation.
  • K-KAT670 Titanium catalyst, KING INDUSTRIES product name.
  • Examples 1-3, 6-22 and 27-35 are examples, and Examples 4, 5, 23-26 are comparative examples.
  • a curable composition was prepared by adding the polymer and additives having the formulation shown in Table 4 or 5.
  • the unit of the blending amount of each component shown in Tables 2 to 5 is "mass part”.
  • the tensile property test, elastic recovery test, evaluation of repeated stretching durability, evaluation of paint staining, and polymer A, polymer a, or heavy weight are performed by the above methods. Viscosity measurements of mixtures of Coalescing A and Polymer B were performed. These results are shown in Tables 4 and 5.
  • Example 27-35 For 100 parts by mass of polymers A1 to A9 in Table 1, the additive was changed to additive 2 in Table 2 to prepare curable compositions, respectively, and tensile tests and elastic recovery tests were performed. All of the obtained cured products had good elongation and good recovery properties in the above tensile test and elastic recovery test.
  • Examples 1 to 3 and 6 to 22 had good tensile properties, high elastic recovery rate, high durability against repeated expansion and contraction, and good paint contamination resistance.
  • Examples 4, 5 and 24, which did not contain the polymer A and contained the polymer E1 having three terminal groups in one molecule the elastic recovery rate and repeated stretching durability were inferior.
  • Examples 25 and 26, which did not contain the polymer A but contained the polymer E2 having four terminal groups in one molecule the elastic recovery rate, repeated stretching durability, and resistance to paint staining were inferior.
  • Example 23 containing polymer a1 which does not contain polymer A and has 6 terminal groups in one molecule but has a number average molecular weight of 20,000 has poor elongation and sufficient repeated stretching durability. was not obtained.
  • a curable composition was prepared by adding the polymer and additives of the formulation shown in Table 6.
  • the unit of the compounding amount of each component shown in Table 6 is "mass part”.
  • tack-free time measurement and deep-part curability test were carried out by the methods described below. Table 6 shows the results.
  • the obtained specimen was allowed to stand in the above atmosphere, and after 1 day, 3 days and 7 days, the degree of curing progressed from the surface to the inside of the curable composition was examined. Specifically, the surface layer (cured portion) where the curable composition is cured is removed with a spatula, the uncured curable composition attached to the removed cured portion is removed, and the cured portion obtained using a vernier caliper. The thickness (unit: mm) (height direction of the tube) was measured. The hardened portion taken out is often cylindrical, and the thickest portion of the hardened portion was measured in the measurement. Deep-part curability is excellent, so that the thickness of a hardened part is large.
  • Reference Example 1 had a shorter tack-free time and excellent deep-part curability.

Abstract

この硬化性組成物は、-SiR(X)3-aで表される反応性ケイ素基を有するオキシアルキレン重合体Aを含む硬化性組成物であって、オキシアルキレン重合体Aは、1分子あたり末端基を6個以上有し、末端基は、-SiR(X)3-aで表される反応性ケイ素基、活性水素含有基、及び不飽和基からなる群から選ばれる1種以上を含み、オキシアルキレン重合体Aは、末端基あたり反応性ケイ素基を0.3個以上有し、オキシアルキレン重合体Aの数平均分子量は、25,000超100,000以下である。

Description

硬化性組成物及び硬化物
 本発明は、硬化性組成物及び硬化物に関する。
 本願は、2021年3月12日に日本に出願された特願2021-040132号及び2021年6月29日に日本に出願された特願2021-107750ついて優先権を主張し、その内容をここに援用する。
 本発明は、ケイ素原子に結合した水酸基又は加水分解性基を有し、シロキサン結合を形成することにより架橋し得るケイ素基(以下、「反応性ケイ素基」という。)を有する重合体を含む硬化性組成物に関する。
 分子中に少なくとも1個の反応性ケイ素基を有する重合体は、室温においても、湿分等による反応性ケイ素基の加水分解反応等を伴うシロキサン結合の形成によって架橋し、ゴム状の硬化物が得られることが知られている。
 これらの反応性ケイ素基を有する重合体として、主鎖骨格がオキシアルキレン重合体、飽和炭化水素重合体、ポリアクリル酸アルキルエステル重合体、及びポリメタクリル酸アルキルエステル重合体がある。これらの反応性ケイ素基を有する重合体は、既に工業的に生産され、シーリング材、接着剤及び塗料等の用途に広く使用されている。これらの反応性ケイ素基を有する重合体を含む硬化性組成物をシーリング材として用いる場合には、硬化性、硬化物の伸び物性が求められる。さらに、屋外の環境に長時間さらされることにより発生する目地の構造的な伸縮に追随できる繰り返し伸縮耐久性及び復元性が求められる。
 硬化物の復元性を向上させるために、重合体1分子中の反応性ケイ素基の数を増やし、架橋密度を上げることが考えられる。特許文献1の実施例には、主鎖が分岐構造を有し、1分子中に末端基を4個有し、末端基にジアルコキシアルキルシリル基を有する、オキシアルキレン重合体が開示されている。
 特許文献2は、硬化時間の短縮と、接着性及びせん断強度の向上を課題とし、実施例には、主鎖が分岐構造を有し、1分子中に水酸基を6個有するオキシアルキレン重合体の、水酸基の85モル%をトリメトキシシリル基に変換した数平均分子量25,000の重合体が開示されている。
特開2020-176169号公報 特開2009-46539号公報
 しかしながら、特許文献1及び特許文献2における重合体を含む硬化性組成物は、シーリング材として用いた場合の繰り返し伸縮耐久性を向上させるため更なる改善の余地がある。
 本発明は、上記事情に鑑みてなされたものであり、繰り返し伸縮耐久性に優れる硬化物が得られる硬化性組成物を提供する。
 本発明は、以下の態様を有する。
[1]下式(1)で表される反応性ケイ素基を有し、末端基を6個以上有するオキシアルキレン重合体Aを含む硬化性組成物であって、前記末端基は、下記式(1)で表される反応性ケイ素基、活性水素含有基、及び不飽和基からなる群から選ばれる1種以上を含み、前記オキシアルキレン重合体Aは、1つの末端基あたり前記反応性ケイ素基を0.3個以上有し、前記オキシアルキレン重合体Aの数平均分子量は、25,000超100,000以下である、硬化性組成物。
 -SiR(X)3-a  (1)
 式中、Rは、炭素数1~20の1価の有機基であって、加水分解性基以外の有機基を示し、Xは水酸基、ハロゲン原子、又は加水分解性基を示す。aは0~2の整数である。aが2の場合、Rは、互いに同一でも異なっていてもよく、aが0又は1の場合、Xは、互いに同一でも異なっていてもよい。
[2]前記オキシアルキレン重合体Aに存在する前記反応性ケイ素基、前記活性水素含有基及び前記不飽和基の合計に対する、前記式(1)におけるaが0である反応性ケイ素基の割合が50モル%未満である、[1]に記載の硬化性組成物。
[3]さらに、前記式(1)で表される反応性ケイ素基を有し、末端基を2個又は3個有するオキシアルキレン重合体Bを含み、前記末端基は、前記式(1)で表される反応性ケイ素基、活性水素含有基、及び不飽和基からなる群から選ばれる1種以上を含み、前記オキシアルキレン重合体Bは、1つの末端基あたり前記反応性ケイ素基を0.3~2.0個有し、前記オキシアルキレン重合体Bの数平均分子量は、5,000~20,000である、[1]又は[2]に記載の硬化性組成物。
[4]前記オキシアルキレン重合体Aと前記オキシアルキレン重合体Bに存在する前記反応性ケイ素基、前記活性水素含有基、及び前記不飽和基の合計に対する前記式(1)におけるaが0である反応性ケイ素基の割合が50モル%未満である、[3]に記載の硬化性組成物。
[5]前記オキシアルキレン重合体Aと前記オキシアルキレン重合体Bの総質量に対する前記オキシアルキレン重合体Aの割合は、20~95質量%である、[3]又は[4]に記載の硬化性組成物。
[6]さらに、前記式(1)で表される反応性ケイ素基を有し、末端基を2個有するオキシアルキレン重合体Cを含み、前記末端基のうちの一方の末端基は、不活性な1価の有機基であり、他方の末端基は、前記式(1)で表される反応性ケイ素基、活性水素含有基、及び不飽和基からなる群から選ばれる1種以上を含み、前記オキシアルキレン重合体Cは、1つの末端基あたり前記反応性ケイ素基を0.2~1.0個有し、前記オキシアルキレン重合体Cの数平均分子量は、2,000~15,000である、[1]~[5]のいずれか1項に記載の硬化性組成物。
[7]さらに、前記式(1)で表される反応性ケイ素基を有さず、数平均分子量が5,000~20,000であるオキシアルキレン重合体Dを含む、[1]~[6]のいずれか一項に記載の硬化性組成物。
[8]シーラント用又は接着剤用である、[1]~[7]のいずれか一項に記載の硬化性組成物。
[9][1]~[8]のいずれか一項に記載の硬化性組成物を硬化してなる硬化物。
 本発明によれば、繰り返し伸縮耐久性に優れる硬化物が得られる硬化性組成物を提供できる。
 本明細書における用語の意味及び定義は、以下のとおりである。
 「~」で表される数値範囲は、~の前後の数値を下限値及び上限値とする数値範囲を意味する。
 「活性水素含有基」は、炭素原子に結合する水酸基、カルボキシ基、アミノ基、第一級アミンから1個の水素原子を除去した1価の官能基及びスルファニル基からなる群より選ばれる少なくとも1種の基である。
 「活性水素」とは、前記活性水素含有基に基づく水素原子、及び水の水酸基に基づく水素原子である。
 「開始剤」は、活性水素含有基を有する化合物である。
 「不飽和基」とは、不飽和性の二重結合を含む1価の基を意味する。特に断らない限り、ビニル基、アリル基、及びイソプロペニル基からなる群から選ばれる少なくとも1種の基である。
 「オキシアルキレン重合体」とは、環状エーテルに基づく単位から形成されるポリオキシアルキレン鎖を有する重合体を意味する。
 ポリオキシアルキレン鎖を含む主鎖と前記主鎖に結合する末端基を有するポリオキシアルキレン重合体において、「末端基」は、前記ポリオキシアルキレン鎖中の酸素原子のうち、前記オキシアルキレン重合体の分子末端に最も近い酸素原子を含む原子団を意味する。
 「前駆重合体」とは、反応性ケイ素基導入前の重合体であって、開始剤の活性水素に環状エーテルを重合させた末端基が水酸基であるオキシアルキレン重合体を意味する。
 「シリル化率」は、オキシアルキレン重合体の反応性ケイ素基、活性水素含有基及び不飽和基の数の合計に対する前記反応性ケイ素基の数の割合である。シリル化率の値は、NMR分析によって測定できる。また、後述するように、シリル化剤により前駆重合体の誘導体の末端基に前記反応性ケイ素基を導入する際の、前駆重合体の誘導体の活性水素含有基及び不飽和基の数の合計に対する添加した前記シリル化剤のシリル基の数の割合(モル%)でもよい。
 「シリル化剤」とは、活性水素含有基又は不飽和基と反応する官能基と反応性ケイ素基とを有する化合物を意味する。
 「水酸基換算分子量」とは、開始剤や前駆重合体の水酸基価をJIS K 1557(2007)に基づいて算出し、「56,100/(水酸基価)×(開始剤の活性水素の数、又は、前駆重合体の末端基の数)」として算出した値である。
 重合体の数平均分子量(以下、「Mn」と記す。)及び質量平均分子量(以下、「Mw」と記す。)は、GPC測定によって得られるポリスチレン換算分子量である。分子量分布は、MwとMnより算出した値であり、Mnに対するMwの比率(以下、「Mw/Mn」と記す。)である。
 本発明の硬化性組成物は、下式(1)で表される反応性ケイ素基を有し、末端基を6個以上有するオキシアルキレン重合体Aを含む硬化性組成物であって、前記末端基は、下式(1)で表される反応性ケイ素基、活性水素含有基、及び不飽和基からなる群から選ばれる1種以上を含み、前記オキシアルキレン重合体Aは、1つの末端基あたり前記反応性ケイ素基を0.3個以上有し、前記オキシアルキレン重合体Aの数平均分子量は、25,000超100,000以下である。以下、オキシアルキレン重合体Aを「重合体A」とも記す。
 -SiR(X)3-a  (1)
 式中、Rは、炭素数1~20の1価の有機基であって、加水分解性基以外の有機基を示し、Xは水酸基、ハロゲン原子、又は加水分解性基を示す。aは0~2の整数である。aが2の場合、Rは、互いに同一でも異なっていてもよく、aが0又は1の場合、Xは、互いに同一でも異なっていてもよい。
<重合体A>
 重合体Aは、前記式(1)で表される反応性ケイ素基を有し、末端基を6個以上有し、前記末端基は、前記式(1)で表される反応性ケイ素基、活性水素含有基、及び不飽和基からなる群から選ばれる1種以上を含み、前記重合体Aは、1つの末端基あたり前記反応性ケイ素基を0.3個以上有し、前記重合体Aの数平均分子量は、25,000超100,000以下である、分岐構造のオキシアルキレン重合体である。本発明の硬化性組成物における重合体Aは、2種類以上含んでいてもよい。
 反応性ケイ素基は、ケイ素原子に結合した水酸基又は加水分解性基を有し、シロキサン結合を形成して架橋し得る。シロキサン結合を形成する反応は、硬化触媒によって促進される。重合体Aにおける反応性ケイ素基は、下記式(1)で表される。
 -SiR(X)3-a  (1)
 前記式(1)において、Rは炭素数1~20の1価の有機基を示す。Rは加水分解性基を含まない。
 Rは、炭素数1~20の炭化水素基及びトリオルガノシロキシ基からなる群から選ばれる少なくとも1種が好ましい。
 Rは、アルキル基、シクロアルキル基、アリール基、α-クロロアルキル基及びトリオルガノシロキシ基からなる群から選ばれる少なくとも1種であることが好ましい。炭素数1~4の直鎖又は分岐のアルキル基、シクロヘキシル基、フェニル基、ベンジル基、α-クロロメチル基、トリメチルシロキシ基、トリエチルシロキシ基及びトリフェニルシロキシ基からなる群から選ばれる少なくとも1種であることがより好ましい。反応性ケイ素基を有する重合体の硬化性と硬化性組成物の安定性が良い点からメチル基又はエチル基が好ましい。硬化物の硬化速度が速い点からα-クロロメチル基が好ましい。容易に入手できる点からメチル基が特に好ましい。
 前記式(1)において、Xは水酸基、ハロゲン原子、又は加水分解性基を示す。Xは互いに同一でも異なっていてもよい。
 加水分解性基としては、水素原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、スルファニル基及びアルケニルオキシ基が例示できる。
 加水分解性が穏やかで取扱いやすい点からアルコキシ基が好ましい。アルコキシ基は、メトキシ基、エトキシ基又はイソプロポキシ基が好ましく、メトキシ基又はエトキシ基がより好ましい。アルコキシ基がメトキシ基又はエトキシ基であると、シロキサン結合を速やかに形成し硬化物中に架橋構造を形成しやすく、硬化物の物性値が良好となりやすい。
 前記式(1)において、aは0~2の整数である。aが2の場合、Rは互いに同一でも異なってもよい。aが0又は1の場合、Xは互いに同一でも異なってもよい。硬化性が良好となるため、aは0が好ましい。
 前記式(1)で表される反応性ケイ素基としては、トリメトキシシリル基、トリエトキシシリル基、トリイソプロポキシシリル基、トリス(2-プロペニルオキシ)シリル基、トリアセトキシシリル基、メチルジメトキシシリル基、メチルジエトキシシリル基、エチルジメトキシシリル基、メチルジイソプロポキシシリル基、(α-クロロメチル)ジメトキシシリル基、(α-クロロメチル)ジエトキシシリル基が例示できる。活性が高く良好な硬化性が得られる点から、トリメトキシシリル基、トリエトキシシリル基、メチルジメトキシシリル基、メチルジエトキシシリル基が好ましく、メチルジメトキシシリル基又はトリメトキシシリル基がより好ましい。
 重合体Aは、前記式(1)で表される反応性ケイ素基を有するため、重合体Aを含有する硬化性組成物による硬化物は、復元性が良好となり、繰り返し伸縮耐久性に優れる。
 重合体Aの主鎖は、1種類以上の環状エーテルの重合により形成されたオキシアルキレン鎖を有する。
 環状エーテルとしては、エチレンオキシド、プロピレンオキシド、1,2-ブチレンオキシド、2,3-ブチレンオキシド等のアルキレンオキシド、テトラヒドロフラン等のアルキレンオキシド以外の環状エーテルが例示できる。エチレンオキシド、プロピレンオキシドが好ましく、プロピレンオキシドがより好ましい。
 ポリオキシアルキレン鎖は2種以上のオキシアルキレン基を有する共重合鎖であってもよい。共重合鎖はブロック共重合鎖であってもよく、ランダム共重合鎖であってもよい。
 重合体Aのポリオキシアルキレン鎖としては、ポリオキシプロピレン鎖、ポリオキシエチレン鎖、ポリ(オキシ-2-エチルエチレン)鎖、ポリ(オキシ-1、2-ジメチルエチレン)鎖、ポリ(オキシテトラメチレン)鎖、ポリ(オキシエチレン・オキシプロピレン)鎖、ポリ(オキシプロピレン・オキシ-2-エチルエチレン)鎖が例示できる。ポリオキシプロピレン鎖及びポリ(オキシエチレン・オキシプロピレン)鎖が好ましく、ポリオキシプロピレン鎖がより好ましい。
 重合体Aは、末端基を6個以上有する。硬化物の弾性復元性及び後述の繰り返し伸縮耐久性がより良好となる観点から、重合体Aの末端基は、6~8個が好ましく、6~7個がより好ましく、6個がさらに好ましい。
 重合体Aは、末端基を6個以上有すると、硬化物のタックフリータイムが短く、深部硬化性に優れる。
 重合体Aの末端基は、前記式(1)で表される反応性ケイ素基、活性水素含有基及び不飽和基からなる群より選ばれる1種類以上の基を含む。前記式(1)で表される反応性ケイ素基、活性水素含有基及びアリル基からなる群より選ばれる1種類以上の基を含むことが好ましい。それぞれの末端基は互いに同じであっても、異なってもよい。
 重合体Aに存在する反応性ケイ素基、活性水素含有基及び不飽和基の合計は、1つの末端基あたり1.0~3.0個が好ましく、1.0~2.5個がより好ましく、1.0~2.0個有するものがさら好ましい。
 活性水素含有基としては、例えば、水酸基、カルボキシ基、アミノ基又は第一級アミンから水素原子を除去した1価の官能基、ヒドラジド基及びスルファニル基が挙げられる。活性水素含有基としては、水酸基、アミノ基、第一級アミンから水素原子を除去した1価の官能基が好ましく、水酸基がより好ましい。
 硬化物の伸び物性が良好となるため、重合体Aは、1つの末端基あたり反応性ケイ素基を0.3個以上有し、0.3~2.0個有することが好ましく、0.3~1.0個有することがより好ましく、0.35~0.90個有することがさらに好ましく、0.40~0.80個有することが特に好ましい。
 重合体Aは、1分子あたり前記反応性ケイ素基を1.8~12個有するものが好ましく、1.8~8個有するものがより好ましく、2.1~7.2個有するものがさらに好ましく、2.4~6.4個有するものが特に好ましい。
 重合体Aにおける反応性ケイ素基、活性水素含有基及び不飽和基の合計に対する、前記式(1)におけるaが0である反応性ケイ素基の割合は、特に限定されないが、0~70モル%であってもよく、繰り返し伸縮耐久性向上の観点から50モル%未満であることが好ましい。
 重合体Aにおける末端基は、下式(2)又は下式(3)で表される基を含んでもよい。下式(3)におけるXは、下式(4)~(7)のいずれかで表される1価の基である。
 下式(2)及び下式(4)~(7)におけるSiは、前記式(1)で表される反応性ケイ素基を示す。1つの末端基に複数のSiが存在する場合、それらは互いに同一でも異なってもよい。
Figure JPOXMLDOC01-appb-C000001
 式(2)において、R、Rは、それぞれ独立に炭素数1~6の2価の結合基を示し、前記結合基中に存在する炭素原子に結合している原子は、炭素原子、水素原子、酸素原子、窒素原子、又は硫黄原子である。
 R、Rとしては-CH-、-C-、-C-、-C-、-C10-、-C12-、-C(CH-、-CHO-、-CH-O-CH-、-CH-O-CH-O-CH-、-C=C-、-C≡C-、-C(=O)-、-C(=O)-O-、-C(=O)-NH-、-CH=N-、-CH=N-N=CH-が例示できる。
 Rは-CH-O-CH-、-CHO-、-CH-が好ましく、-CH-O-CH-がより好ましい。
 Rは、-CH-、-C-が好ましく、-CH-がより好ましい。
 式(2)におけるR、Rは、それぞれ独立に水素原子又は炭素数1~10の1価の炭化水素基である。
 前記炭化水素基としては、直鎖又は分岐の炭素数1~10のアルキル基が好ましい。
 直鎖のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基が例示できる。
 分岐のアルキル基としては、イソプロピル基、s-ブチル基、t-ブチル基、2-メチルブチル基、2-エチルブチル基、2-プロピルブチル基、3-メチルブチル基、3-エチルブチル基、3-プロピルブチル基、2-メチルペンチル基、2-エチルペンチル基、2-プロピルペンチル基、3-メチルペンチル基、3-エチルペンチル基、3-プロピルペンチル基、4-メチルペンチル基、4-エチルペンチル基、4-プロピルペンチル基、2-メチルヘキシル基、2-エチルヘキシル基、2-プロピルヘキシル基、3-メチルヘキシル基、3-エチルヘキシル基、3-プロピルヘキシル基、4-メチルヘキシル基、4-エチルヘキシル基、4-プロピルヘキシル基、5-メチルヘキシル基、5-エチルヘキシル基、5-プロピルヘキシル基が例示できる。
 R、Rは、それぞれ独立に、水素原子、メチル基又はエチル基が好ましく、水素原子又はメチル基がより好ましい。
 式(2)におけるnは、1~10の整数を示し、1~7が好ましく、1~5がより好ましく、1がさらに好ましい。
Figure JPOXMLDOC01-appb-C000002
 式(3)において、Rは、単結合又は炭素数1~6の2価の結合基を示し、前記結合基中に存在する炭素原子に結合している原子は、炭素原子、水素原子、酸素原子、窒素原子、又は硫黄原子である。
 Rにおける2価の結合基の例示は、前記R、Rにおける2価の結合基の例示と同様である。
 Rは、単結合又は炭素数1~4の炭化水素基が好ましく、単結合、炭素数1~3のアルキレン基がより好ましく、単結合又はメチレン基がさらに好ましい。
 式(6)において、Rは、水素原子又は炭素数1~10の1価の炭化水素基を示す。
 Rにおける1価の炭化水素基の例示は、前記R、Rにおける1価の炭化水素基の例示と同じである。
 Rは、水素原子、メチル基、エチル基が好ましく、水素原子又はメチル基がより好ましい。
 式(7)におけるR、Rは、それぞれ独立に水素原子又は炭素数1~9の1価の炭化水素基である。
 前記炭化水素基としては、直鎖又は分岐の炭素数1~9のアルキル基が好ましい。R、Rとしてのアルキル基の例示は、前記R、Rとしてのアルキル基の例示と同じである。
 R、Rは、いずれも水素原子であることが好ましい。
 重合体AのMnは、25,000超100,000以下であり、27,000~90,000が好ましく、28,000~80,000がより好ましく、30,000~60,000さらに好ましい。前記範囲内であると、硬化物の伸び物性及び引っ張り強度が良好となりやすい。
 重合体Aの水酸基換算分子量は、20,000~80,000が好ましく、21,000~70,000がより好ましく、22,000~60,000がさらに好ましく、23,000~50,000が特に好ましい。前記範囲内であると、硬化物の伸び物性及び引っ張り強度が良好となりやすい。
 重合体Aの分子量分布は、1.8以下が好ましい。良好な伸び物性が得られやすいため、分子量分布は小さいほうが好ましく、1.0~1.5がより好ましく、1.02~1.4がさらに好ましく、1.04~1.3が特に好ましい。
 重合体Aは、前駆重合体の末端基に前記反応性ケイ素基を導入して得られる。前駆重合体は、活性水素含有基を有する開始剤の活性水素に、開環重合触媒の存在下で、環状エーテルを開環付加重合させたオキシアルキレン重合体である。
 開始剤の活性水素の数と、前駆重合体の末端基の数と、重合体Aの末端基の数は同じである。
 前駆重合体としては、水酸基を有する開始剤に環状エーテルを開環付加重合させた、末端基が水酸基である重合体が好ましい。
 重合体Aの製造方法は、前記前駆重合体の1つの末端基に対して不飽和基を1個導入した後、前記不飽和基とシリル化剤を反応させる方法、前記前駆重合体の末端基の活性水素含有基とイソシアネートシラン化合物をウレタン化反応させる方法、又は前記前駆重合体の末端基の活性水素含有基とイソシアネート化合物をウレタン化反応させた後にアミノシランを反応させる方法が好ましい。
 重合体Aの主鎖は分岐状であるため、重合体Aを含む硬化性組成物は、復元性に優れる硬化物が得られやすい。
 開始剤としては、活性水素含有基を6個以上有する開始剤が好ましく、6~8個有する開始剤がより好ましく、6個有する開始剤がさらに好ましい。開始剤における活性水素含有基は、水酸基が好ましい。
 活性水素含有基を6個以上有する開始剤としてはソルビトール、ジペンタエリスリトール、イノシトール、及びスクロース、が例示でき、ソルビトールが硬化物の伸びの観点から好ましい。
 開始剤に環状エーテルを開環付加重合させる際の、開環重合触媒としては、従来公知の触媒を用いることができ、例えば、KOHのようなアルカリ触媒、有機アルミニウム化合物とポルフィリンとを反応させて得られる錯体のような遷移金属化合物-ポルフィリン錯体触媒、複合金属シアン化物錯体触媒及びホスファゼン化合物からなる触媒が挙げられる。
 重合体Aの分子量分布を狭くすることができ、粘度の低い硬化性組成物が得られやすい点から複合金属シアン化物錯体触媒が好ましい。複合金属シアン化物錯体触媒は、従来公知の化合物を用いることができ、複合金属シアン化物錯体を用いた重合体の製造方法も公知の方法を採用できる。例えば、国際公開第2003/062301号、国際公開第2004/067633号、特開2004-269776号公報、特開2005-15786号公報、国際公開第2013/065802号及び特開2015-010162号公報に開示される化合物及び製造方法を用いることができる。
 重合体Aの前駆重合体としては、全末端基が水酸基である前駆重合体が好ましい。
 シリル化剤としては、不飽和基と反応して結合を形成し得る基(例えばスルファニル基)及び前記反応性ケイ素基の両方を有する化合物、ヒドロシラン化合物(例えばHSiX3-a、ただし、X、R及びaは前記式(1)と同様である。)が例示できる。具体的には、例えば、トリメトキシシラン、トリエトキシシラン、トリイソプロポキシシラン、トリス(2-プロペニルオキシ)シラン、トリアセトキシシラン、メチルジメトキシシラン、メチルジエトキシシラン、エチルジメトキシシラン、メチルジイソプロポキシシラン、(α-クロロメチル)ジメトキシシラン、(α-クロロメチル)ジエトキシシラン、3-メルカプトプロピルトリメトキシシランが例示できる。活性が高く良好な硬化性が得られる点から、トリメトキシシラン、トリエトキシシラン、メチルジメトキシシラン、メチルジエトキシシランが好ましく、メチルジメトキシシラン又はトリメトキシシランがより好ましい。
 イソシアネートシラン化合物としては、例えば、特開2011-178955号公報に記載される、従来公知のイソシアネートシラン化合物を用いることができる。
 前駆重合体の1つの末端基に対して不飽和基を、1つの末端基あたり1.0個以下導入した後、前記不飽和基とシリル化剤を反応させる方法、又は前記前駆重合体の末端基の活性水素含有基とイソシアネートシラン化合物をウレタン化反応させる方法は、従来公知の方法を用いることができ、例えば、特公昭45-36319号公報、特開昭50-156599号公報、特開昭61-197631号公報、特開平3-72527号公報、特開平8-231707号公報、特開2011-178955号公報、米国特許3632557号及び米国特許4960844号の各公報に提案されている方法が挙げられる。
 また、重合体Aの前駆重合体の1つの末端基に対して不飽和基を、末端基あたりの平均で1.0個より多く導入した後、前記不飽和基とシリル化剤を反応させる方法は、従来公知の方法を用いることができる。
 例えば、国際公開第2013/180203号、国際公開第2014/192842号、特開2015-105293号公報、特開2015-105322号公報、特開2015-105323号公報、特開2015-105324号公報、国際公開第2015/080067号、国際公開第2015/105122号、国際公開第2015/111577号、国際公開第2016/002907号、特開2016-216633号公報、特開2017-39782号公報に記載される方法を用いることができる。
 前駆重合体の末端基に、1つの末端基あたり1.0個より多くの不飽和基を導入する方法としては、前駆重合体にアルカリ金属塩を作用させた後、不飽和基を有するエポキシ化合物を反応させ、次いで不飽和基を有するハロゲン化炭化水素化合物を反応させる方法、又は、前駆重合体にアルカリ金属塩を作用させた後、炭素-炭素三重結合を有するハロゲン化炭化水素化合物を反応させる方法が好ましい。
 アルカリ金属塩としては、水酸化ナトリウム、ナトリウムアルコキシド、水酸化カリウム、カリウムアルコキシド、水酸化リチウム、リチウムアルコキシド、水酸化セシウム、セシウムアルコキシドは例示できる。
 取り扱い容易性と溶解性の点から、水酸化ナトリウム、ナトリウムメトキシド、ナトリウムエトキシド、水酸化カリウム、カリウムメトキシド、カリウムエトキシドが好ましく、ナトリウムメトキシド、カリウムエトキシドがより好ましい。入手容易性の点でナトリウムメトキシドが特に好ましい。
 アルカリ金属塩は、溶剤に溶解した状態で使用してもよい。
 不飽和基を有するエポキシ化合物としては、アリルグリシジルエーテル、メタリルグリシジルエーテル、グリシジルアクリレート、グリシジルメタクリレート、ブタジエンモノオキシド、1,4-シクロペンタジエンモノエポキシドが例示できる。アリルグリシジルエーテルが好ましい。
 不飽和基を有するエポキシ化合物としては、下式(8)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000003
 式(8)において、R、Rは、前記式(2)のR、Rと同じである。
 不飽和基を有するハロゲン化炭化水素化合物として、炭素-炭素二重結合を含むハロゲン化炭化水素化合物、及び炭素-炭素三重結合を含むハロゲン化炭化水素化合物の一方又は両方を使用できる。
 炭素-炭素二重結合を含むハロゲン化炭化水素化合物としては、塩化ビニル、塩化アリル、塩化メタリル、臭化ビニル、臭化アリル、臭化メタリル、ヨウ化ビニル、ヨウ化アリル、ヨウ化メタリルが例示できる。塩化アリル、塩化メタリルが好ましい。
 炭素-炭素三重結合を含むハロゲン化炭化水素化合物としては、塩化プロパルギル、1-クロロ-2-ブチン、4-クロロ-1-ブチン、1-クロロ-2-オクチン、1-クロロ-2-ペンチン、1,4-ジクロロ-2-ブチン、5-クロロ-1-ペンチン、6-クロロ-1-ヘキシン、臭化プロパルギル、1-ブロモ-2-ブチン、4-ブロモ-1-ブチン、1-ブロモ-2-オクチン、1-ブロモ-2-ペンチン、1,4-ジブロモ-2-ブチン、5-ブロモ-1-ペンチン、6-ブロモ-1-ヘキシン、ヨウ化プロパルギル、1-ヨード-2-ブチン、4-ヨード-1-ブチン、1-ヨード-2-オクチン、1-ヨード-2-ペンチン、1,4-ジヨード-2-ブチン、5-ヨード-1-ペンチン、6-ヨード-1-ヘキシンが例示できる。塩化プロパルギル、臭化プロパルギル、ヨウ化プロパルギルが好ましい。
 不飽和基を有するハロゲン化炭化水素化合物は、2種以上を併用してもよい。
 前記反応により、前駆重合体の1つの末端基あたり1.0個より多くの不飽和基が導入された誘導体が得られる。前駆重合体の誘導体は、末端基に未反応の活性水素含有基を含んでいてもよい。
 前記前駆重合体の誘導体に含まれる活性水素含有基の数は、貯蔵安定性の点から、1分子あたり0.3個以下が好ましく、0.1個以下がより好ましい。
 前記前駆重合体の誘導体の不飽和基とシリル化剤とを反応させて、末端基に反応性ケイ素基を導入して重合体Aを得る。
 このようにして得られる重合体Aは、前記式(2)又は式(3)で表される基を含む末端基を有する。
 重合体Aのシリル化率は、25~100モル%が好ましく、30~98モル%がより好ましい。
 硬化性組成物が、2種類以上の重合体Aを含む場合、重合体A全体における平均のシリル化率が前記の範囲内であればよい。
<重合体B>
 重合体Bは、前記式(1)で表される反応性ケイ素基を有し、末端基を2個又は3個有し、末端基は、前記式(1)で表される反応性ケイ素基、活性水素含有基、及び不飽和基からなる群から選ばれる1種以上を含み、1つの末端基あたり前記反応性ケイ素基を0.3~2.0個有し、数平均分子量が5,000~20,000であるオキシアルキレン重合体である。本発明の硬化性組成物における重合体Bは、2種類以上でもよい。
 重合体Bの主鎖としては、重合体Aの主鎖として例示された重合鎖と同じである。重合体Bの1分子に存在する末端基の数は、2個又は3個である。
 重合体Bの末端基は、前記式(1)で表される反応性ケイ素基、活性水素含有基及び不飽和基からなる群より選ばれる1種類以上の基を含む。前記式(1)で表される反応性ケイ素基、活性水素含有基及びアリル基からなる群より選ばれる1種類以上の基を含むことが好ましい。それぞれの前記末端基は互いに同じであっても、異なってもよい。
 硬化物の伸び物性及び引張強度が良好となりやすいため、重合体Bに存在する反応性ケイ素基、活性水素含有基及び不飽和基の合計は、1つの末端基あたり1.0~3.0個が好ましく、1.0~2.5個がより好ましく、1.0~2.0個がさらに好ましい。
 重合体Bは、前記式(1)で表される反応性ケイ素基を有するため、重合体Bを含有する硬化性組成物による硬化物は、復元性が良好となり、繰り返し伸縮耐久性に優れる。前記式(1)におけるR及びXは、重合体Aにおいて例示された基と同じであり、好ましい基についても同じである。
 硬化物の伸び物性及び引張強度が良好となりやすいため、重合体Bは、1つの末端基あたり前記反応性ケイ素基を0.3~2.0個有することが好ましく、0.35~1.90個有することがより好ましく、0.40~1.80個有することがさらに好ましい。
 重合体BのMnは、5,000~20,000が好ましく、6,000~19,000がより好ましく、7,000~18,000がさらに好ましい。前記範囲内であると、硬化物の伸び物性に優れやすく、粘度が充分に低くなりやすい。
 重合体Bの水酸基換算分子量は、3,000~17,000が好ましく、4,000~15,000がより好ましく、5,000~12,000がさらに好ましい。前記範囲内であると、硬化物の伸び物性に優れやすく、粘度が充分に低くなりやすい。
 重合体Bの分子量分布は、1.8以下が好ましい。良好な伸び物性が得られやすいため、分子量分布は小さいほうが好ましく、1.0~1.5がより好ましく、1.02~1.4がさらに好ましく、1.04~1.3が特に好ましい。
 重合体Bの1分子に存在する末端基の数は、2個又は3個であり、活性水素含有基を2個又は3個有する開始剤を用いて製造できる。
 活性水素含有基を2個有する化合物としては、水酸基を2個有する化合物が好ましい。水酸基を2個有する化合物としては、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、ネオペンチルグリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、低分子量のポリオキシプロピレングリコールが例示できる。
 活性水素含有基を3個有する化合物としては、水酸基を3個有する化合物が好ましい。水酸基を3個有する化合物としては、グリセリン、トリメチロールプロパン、トリメチロールエタン、低分子量のポリオキシプロピレントリオール、水酸基換算分子量150~3000のポリオキシプロピレントリオールが例示できる。
 重合体Bの前駆重合体は、開始剤に活性水素含有基を2個又は3個有する化合物を用いる他は、重合体Aの前駆重合体と同様にして製造することができ、水酸基を有する開始剤に環状エーテルを開環付加重合させた、末端基が水酸基である前駆重合体が好ましい。前駆重合体の1つの末端基に対して不飽和基を、末端基あたりの平均で1.0個以下導入した後、前記不飽和基とシリル化剤を反応させる方法は、重合体Aと同様の方法を用いることができる。
 また、重合体Bの前駆重合体の1つの末端基に対して不飽和基を、末端基あたりの平均で1.0個より多く導入した後、前記不飽和基とシリル化剤を反応させる方法は、重合体Aと同様の方法を用いることができる。
 重合体Bのシリル化率は、35モル%超100モル%以下が好ましく、40~98モル%がより好ましく、45~90モル%がさらに好ましい。
 硬化性組成物が、2種類以上の重合体Bを含む場合、重合体B全体における平均のシリル化率が前記の範囲内であればよい。
 前記重合体Aと前記重合体Bに存在する前記反応性ケイ素基、前記活性水素含有基、及び前記不飽和基の合計に対する前記式(1)におけるaが0である反応性ケイ素基の割合は、特に限定されないが、0~60モル%であってもよく、繰り返し伸縮耐久性向上の観点から50モル%未満であることが好ましい。
<重合体C>
 重合体Cは、前記反応性ケイ素基を有し、末端基を2個有し、前記末端基のうちの一方の末端基は、不活性な1価の有機基であり、他方の末端基は、前記式(1)で表される反応性ケイ素基、活性水素含有基、及び不飽和基からなる群から選ばれる1種以上を含み、前記重合体Cは、1つの末端基あたり前記反応性ケイ素基を0.2~1.0個有し、前記重合体Cの数平均分子量は、2,000~15,000である、オキシアルキレン重合体である。本発明の硬化性組成物における重合体Cは、2種類以上でもよい。
 重合体Cの1分子に存在する末端基の数が2個であり、重合体Cが直鎖構造であるため、重合体Cを含有する硬化性組成物による硬化物は、伸び物性に優れる。
 重合体Cの主鎖としては、重合体Aの主鎖として例示された重合鎖と同じである。重合体Cの末端基が有する式(1)で表される反応性ケイ素基は、重合体Aの前記反応性ケイ素基と同じである。前記式(1)におけるR及びXは、重合体Aにおいて例示された基と同じであり、好ましい基についても同じである。
 重合体Cの一方の末端基である不活性な1価の有機基としては、例えばR10-O-(R10は1価の炭化水素基)が好ましい。R10としては、炭素数1~20の分岐又は直鎖のアルキル基が好ましく、炭素数1~10の分岐又は直鎖のアルキル基がより好ましく、炭素数1~4の分岐又は直鎖のアルキル基がさらに好ましく、メチル基、エチル基、イソプロピル基、n-プロピル基、n-ブチル基又はt-ブチル基が特に好ましい。
 重合体Cの他方の末端基は、前記式(1)で表される反応性ケイ素基、活性水素含有基及び不飽和基からなる群より選ばれる1種類以上の基を含む。前記式(1)で表される反応性ケイ素基、活性水素含有基及びアリル基からなる群より選ばれる1種類以上の基を含むことが好ましい。重合体Cの他方の末端基は、前記式(2)又は式(3)で表される末端基であってもよい。
 重合体Cに存在する反応性ケイ素基、活性水素含有基及び不飽和基の合計は、1つの末端基あたり0.5~1.5個が好ましく、0.5~1.0個がより好ましい。
 硬化物の伸び物性及び塗料汚染性が良好となりやすいため、重合体Cは、1つの末端基あたり前記反応性ケイ素基を0.2~1.0個有することが好ましく、0.25~0.95個有することがより好ましく、0.30~0.90個有することがさらに好ましい。
 重合体CのMnは、2,000~15,000が好ましく、2,500~14,000がより好ましく、3,000~13,000がさらに好ましい。前記範囲内であると、硬化物の伸び物性及び塗料汚染性が良好となり、粘度が低くなりやすい。
 重合体Cの水酸基換算分子量は、1,000~10,000が好ましく、1,500~9,000がより好ましく、2,000~8,000がさらに好ましい。前記範囲内であると、硬化物の伸び物性及び塗料汚染性が良好となり、粘度が低くなりやすい。
 重合体Cの分子量分布は、1.8以下が好ましい。良好な伸び物性が得られやすいため、分子量分布は小さいほうが好ましく、1.0~1.5がより好ましく、1.02~1.4がさらに好ましく、1.04~1.3が特に好ましい。
 重合体Cは、1つの末端基が不活性な1価の有機基である直鎖構造の前駆重合体に、前記反応性ケイ素基を導入して得られる。不活性な1価の有機基としては、前記R10-O-(R10は1価の炭化水素基)が好ましい。
 重合体Cの前駆重合体は、1つの末端基が不活性な1価の有機基であり、活性水素含有基を1個有する開始剤を用いる他は、重合体A又はBの前駆重合体と同様に製造できる。開始剤は2種類以上を併用してもよい。
 開始剤の活性水素含有基は、水酸基が好ましい。前駆重合体は、末端基が水酸基を1個有する重合体が好ましい。
 水酸基を1個有する開始剤としては、直鎖又は分岐の炭化水素基を有する1価のアルコールが好ましい。具体的には、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-プロピルアルコール、n-ブチルアルコール、イソブチルアルコール、2-ブチルアルコール、t-ブチルアルコール、2-エチルヘキサノール、デシルアルコール、ラウリルアルコール、トリデカノール、セチルアルコール、ステアリルアルコール、オレイルアルコール、低分子量のポリオキシアルキレンモノオールが例示できる。
 重合体Cの製造方法は、従来公知の方法を用いることができ、重合体Bと同様の方法を用いることができる。
 重合体Cは、1分子中に2個の末端基を有し、一方の末端基が開始剤から活性水素を1個除いた残基、つまり不活性な1価の有機基であり、他方の末端基が前記反応性ケイ素基、活性水素含有基又は不飽和基のいずれかを含むものが好ましい。
 重合体Cのシリル化率は、30モル%超100モル%以下が好ましく、35~97モル%がより好ましく、40~95モル%がさらに好ましい。
 硬化性組成物が、2種類以上の重合体Cを含む場合、重合体C全体における平均のシリル化率が前記の範囲内であればよい。
<重合体D>
 重合体Dは、前記反応性ケイ素基を有さず、数平均分子量が5,000~20,000であるオキシアルキレン重合体である。本発明の硬化性組成物における重合体Dは、2種類以上でもよい。重合体Dは、可塑剤として働き、硬化性組成物の低粘度化、硬化物の表面の汚染低減、硬化物の表面上の塗料の乾燥性向上、及び塗料汚染性の向上に寄与する。重合体Dの主鎖の例示は、重合体Aの主鎖の例示と同じである。
 オキシアルキレン重合体としては、ポリエーテルポリオール(例えばポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリオキシテトラメチレングリコール)、上記ポリエーテルポリオールの水酸基を封止してエステル又はエーテルにした誘導体が例示できる。市販のオキシアルキレン重合体としては、プレミノールS3011、プレミノールS4012、プレミノールS4013F(いずれもAGC社製品名)が例示できる。
 重合体DのMnは、5,000~20,000が好ましく、6,000~18,000がより好ましく、7,000~16,000がさらに好ましい。前記範囲内であると、硬化物の塗料汚染性が良好になりやすく、ブリードアウトが抑制されやすい。
 重合体Dの水酸基換算分子量は、3,000~15,000が好ましく、4,000~14,000がより好ましく、4,500~12,000がさらに好ましい。前記範囲内であると、硬化物の塗料汚染性が良好になりやすく、ブリードアウトが抑制されやすい。
 重合体Dの分子量分布は、1.8以下が好ましい。粘度低減の点から、分子量分布は小さいほうが好ましく、1.0~1.6がより好ましく、1.02~1.5がさらに好ましく、1.04~1.4が特に好ましい。
 重合体Dは、活性水素含有基を2個有する開始剤を用いる他は、重合体Aの前駆重合体の製造方法と同様にして製造できる。開始剤は、2種類以上を併用してもよい。活性水素含有基を2個有する化合物としては、水酸基を2個有する化合物が好ましい。水酸基を2個有する化合物としては、エチレングリコール、プロピレングリコール及びテトラメチレングリコールが例示できる。
<硬化性組成物>
 硬化性組成物は、重合体Aとその他の必要な成分とを混合して得られる。
 硬化性組成物の総質量に対する重合体Aの割合は、1~50質量%が好ましく、2~45質量%がより好ましく、4~40質量%がさらに好ましい。前記範囲内であると、硬化性組成物による硬化物は、繰り返し伸縮耐久性及び伸びに優れる。
 硬化性組成物が重合体Bを含有する場合、硬化性組成物総質量に対する重合体Bの割合は、1~30質量%が好ましく、2~28質量%がより好ましく、3~25質量%がさらに好ましい。前記範囲内であると、硬化性組成物による硬化物は、繰り返し伸縮耐久性及び伸びに優れる。
 硬化性組成物が重合体Bを含有する場合、重合体Aと重合体Bの総質量に対する重合体Aの割合は、20~95質量%が好ましく、30~90質量%がより好ましく、40~80質量%がさらに好ましい。前記範囲内であると、硬化性組成物による硬化物は、伸び物性が良好になり、粘度が低くなる。
 硬化性組成物が重合体Cを含有する場合、重合体Aと重合体Bの総質量に対する、重合体Cの割合は、1~200質量%が好ましく、20~190質量%がより好ましく、30~180質量%がさらに好ましい。前記範囲内であると、硬化性組成物による硬化物は、塗料汚染性が良好になり、粘度が低くなる。
 硬化性組成物が重合体Dを含有する場合、重合体Aと重合体Bの総質量に対する、重合体Dの割合は、10~180質量%が好ましく、15~100質量%がより好ましく、15~90質量%がさらに好ましく、20~80質量%が特に好ましい。前記範囲内であると、硬化性組成物による硬化物は、塗料汚染性が良好になり、粘度が低くなる。
 後述の実施例に示すように、本発明の硬化性組成物を硬化してなる硬化物の繰り返し伸縮耐久性の値は、3500回以上となりやすく、さらには4000回以上となりやすい。3500回以上であれば屋外の環境に長時間さらされた場合でも構造的な収縮に追随でき、建築用のシーリング材として好適な繰り返し伸縮耐久性を有する。
 後述の実施例に示すように、本発明の硬化性組成物を硬化してなる硬化物の最大点伸びの値は、370%以上となりやすく、さらには400%以上となりやすい。最大点伸びの値が370%以上であれば、良好な伸びが得られ、建築用のシーリング材として好適である。
 硬化性組成物は、重合体及びその他の成分のすべてを予め配合し密封保存して、施工後に空気中の湿気により硬化させる1液型でもよく、少なくとも反応性ケイ素基を有する重合体を含む主剤組成物と、少なくとも硬化触媒を含む硬化剤組成物とを別々に保存し、使用前に硬化剤組成物と主剤組成物を混合する2液型でもよい。施工が容易であるため、1液型の硬化性組成物が好ましい。
 1液型の硬化性組成物は、水分を含まないことが好ましい。水分を含む配合成分を予め脱水乾燥するか、また配合混練中に減圧して脱水することが好ましい。
 2液型の硬化性組成物において、硬化剤組成物は水を含んでもよい、主剤組成物は、少量の水分を含んでもゲル化し難いが、貯蔵安定性の点からは配合成分を予め脱水乾燥することが好ましい。
 貯蔵安定性を向上させるために、1液型の硬化性組成物又は2液型の主剤組成物に脱水剤を添加してもよい。
 重合体Aの25℃における粘度、又は重合体A及び重合体Bを混合した混合物の25℃における粘度は、25Pa・s以下が好ましく、3~25Pa・sがより好ましく、4~20Pa・sがさらに好ましい。重合体Aの粘度、又は重合体Aと重合体Bの混合物の粘度が前記範囲の下限値以上であると作業中の液だれが起こりにくく、上限値以下であると作業性が良好になりやすい。
 例えば、2液型の硬化性組成物である場合、硬化性組成物は、重合体A及び重合体Bの混合物である主剤組成物と、それ以外の成分を含む硬化剤組成物とを含んでいてもよい。この場合、主剤組成物の25℃における粘度は、25Pa・s以下が好ましく、3~25Pa・sがより好ましく、4~20Pa・sがさらに好ましい。
[その他の成分]
 上記その他の成分としては、重合体A~E以外の重合体、硬化性化合物、硬化触媒(シラノール縮合触媒)、充填剤、可塑剤、チクソ性付与剤、安定剤、酸化防止剤、紫外線吸収剤、脱水剤、接着性付与剤、物性調整剤、粘着性付与樹脂、フィラーなどの補強材、表面改質剤、難燃剤、発泡剤、溶剤、シリケートが例示できる。
 その他の成分は、国際公開第2013/180203号、国際公開第2014/192842号、国際公開第2016/002907号、特開2014-88481号公報、特開2015-10162号公報、特開2015-105293号公報、特開2017-039728号公報、特開2017-214541号公報などに記載される従来公知のものを、制限なく組み合わせて用いることができる。各成分は2種類以上を併用してもよい。
 [作用機序]
 本発明の硬化性組成物は、前記式(1)で表される反応性ケイ素基を有し、末端基を6個以上有するオキシアルキレン重合体Aを含む硬化性組成物であって、前記末端基は、下記式(1)で表される反応性ケイ素基、活性水素含有基、及び不飽和基からなる群から選ばれる1種以上を含み、前記オキシアルキレン重合体Aは、1つの末端基あたり前記反応性ケイ素基を0.3個以上有し、前記オキシアルキレン重合体Aの数平均分子量は、25,000超100,000以下である。さらに、前記式(1)で表される反応性ケイ素基を有し、末端基を2個又は3個有し、前記末端基が、前記式(1)で表される反応性ケイ素基、活性水素含有基、及び不飽和基からなる群から選ばれる1種以上を含み、1つの末端基あたり前記反応性ケイ素基を0.3~2.0個有し、数平均分子量が5,000~20,000であるオキシアルキレン重合体B、及び前記反応性ケイ素基を有し、末端基を2個有し、前記末端基のうちの一方の末端基が、不活性な1価の有機基であり、他方の末端基が、前記式(1)で表される反応性ケイ素基、活性水素含有基、及び不飽和基からなる群から選ばれる1種以上を含み、1つの末端基あたり前記反応性ケイ素基を0.2~1.0個有し、数平均分子量が2,000~15,000であるオキシアルキレン重合体Cのいずれか一方又は両方を含んでよい。前記硬化性組成物は、後述の実施例に示されるように、得られる硬化物の繰り返し伸縮耐久性が良好となるため、長期間屋外に曝露される外壁用のシーリング材に特に好適である。本発明の硬化性組成物を外壁用のシーリング材に用いた場合には、繰り返し伸縮耐久性に優れ、経時的な被着物の構造変化にも追随し、亀裂が生じにくいため、外観が良好に維持されやすい。
[用途]
 硬化性組成物は、シーラント用又は接着剤用の硬化性組成物として用いることができる。硬化性組成物の具体的な用途としては、シーリング材(例えば建築用弾性シーリング材、複層ガラス用シーリング材、ガラス端部の防錆・防水用封止材、太陽電池裏面封止材、建造物用密封材、船舶用密封材、自動車用密封材、道路用密封材)、電気絶縁材料(電線・ケーブル用絶縁被覆材)、接着剤、コーティング材及びポッティング材が好適である。
 特に、繰り返し伸縮耐久性が要求される用途に好適であり、例えば屋外に施工されるシーリング材が例示できる。シーリング材として用いる場合、シーリング材上に塗料を塗ることがあるため、シーリング材と塗料の密着性と共に、シーリング材が塗料の硬化性能を低下させないことが必要である。本発明の硬化性組成物を用いてシーリング材を形成し、その上に塗料を塗工した場合、シーリング材の塗膜汚染性は、良好である。
 以下、実施例を示して本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。
[前駆重合体の分子量]
 水酸基を有する開始剤にアルキレンオキシドを重合させた末端基が水酸基であるオキシアルキレン重合体(以下、「前駆重合体」という。)の分子量は、JIS K 1557(2007)に基づいて算出された水酸基価より、「56,100/(前駆重合体の水酸基価)×開始剤の活性水素の数」の式に基づいて算出した(以下、「水酸基換算分子量」という。)。
[数平均分子量(Mn)、及び分子量分布(Mw/Mn)]
 ゲル浸透クロマトグラフ分析装置HLC-8220GPC(東ソー社製品名)を用いて測定を行った。カラムは、TSKgel SupermultiporeHZ-M(東ソー社製品名)、溶媒は、テトラヒドロフランを用いた。サンプルポンプを0.350mL/min、リファレンスポンプを0.350mL/min、検出器の温度を40℃、収集時間を6分~15分に設定し、収集時間6分~11分に現れるピークを解析することにより、Mw、Mn及びMw/Mnを求めた。
[シリル化率、シリル基数]
 前駆重合体の末端基に塩化アリルを用いて不飽和基を導入し、シリル化剤を前記不飽和基と反応させて反応性ケイ素基を導入する方法において、前記末端基に導入された不飽和基に対する、シリル化剤の反応性ケイ素基の仕込み当量をシリル化率(モル%)とした。
 前駆重合体の末端基に塩化アリルを用いて導入された不飽和基とシリル化剤の反応において、副反応によりシリル化剤と反応しない不飽和基はおよそ10モル%である。したがって前記不飽和基の90モル%未満をシリル化剤と反応させる場合には、前記仕込み当量とシリル化率とは等しくなる。
 前駆重合体の水酸基とイソシアネートシラン化合物をウレタン化反応させる方法においては、前駆重合体の水酸基に対する、イソシアネートシラン化合物のイソシアネート基の仕込み当量をシリル化率(モル%)とした。
[粘度の測定]
 重合体の混合物の粘度は、E型粘度計(東機産業社製、製品名:RE80型)を用いて、測定温度25℃、ローターNo.4の条件で測定した。
[引張特性の評価]
 引張特性は、下記に記載の通り、測定した。
 被着体として、表面にプライマーのMP-2000(セメダイン社製品名)を塗工した表面陽極酸化アルミニウム板を使用し、JIS A 1439 5.2(2016)の建築用シーリング材の試験方法に準拠して試験体を作製し引張特性試験を実施した。
 具体的には、硬化性組成物を、2枚の上記アルミニウム板の間にスペーサーを挟み込んで形成された空間に、硬化性組成物を流し入れ、温度23℃、湿度50%で7日間養生し、更に温度50℃、湿度65%で7日間養生して試験体を得た。得られた試験体について、テンシロン試験機にて引張特性試験を行い、50%伸張した時の応力(以下、「M50」という。単位:N/mm)、最大点凝集力(単位:N/mm、表には「Tmax」)、最大点伸び(単位:%、表には「伸び」と記載する)を測定した。
 M50の値は小さいほど硬化物が柔らかく、最大点凝集力の値は大きいほど硬化物の引張強度が高く、最大点伸びの値は大きいほど硬化物の伸びが良く、最大点伸びは400%以上であれば、良好な伸びと評価した。
[弾性復元性の評価]
 上述の弾性復元率は、下記に記載の通り、測定した。
 被着体として、表面にプライマーのMP-2000(セメダイン社製品名)を塗工した表面陽極酸化アルミニウム板を使用し、JIS A 1439 5.2(2016)の建築用シーリング材の試験方法に準拠してアルミニウム被着体を作製し、弾性復元性試験を実施した。
 具体的には、上記引張特性の評価と同様に、2枚の上記アルミニウム板の間に硬化性組成物を流し込み、温度23℃、湿度50%で7日間養生し、更に温度50℃、湿度65%で7日間養生して、アルミニウム被着体を得た。得られたアルミニウム被着体の2枚のアルミニウム板の間の距離をL0とした。所定の治具を使用し、温度23℃、湿度50%の環境下において、2枚のアルミニウム板の間の距離をL0に対して100%伸長させる。このときの、2枚のアルミニウム板の間の距離をL1とした。2枚のアルミニウム板の間の距離をL1としたまま24時間保持した後、治具を外し、1時間静置して、2枚のアルミニウム板の間の距離をL2として測定した。上記L0、L1及びL2の値から、下記式(9)により弾性復元率(単位:%)を求めた。弾性復元率の値が高いほど、復元性に優れる。弾性復元率は50%以上であれば、復元性が良好と評価した。
 弾性復元率=((L1-L2)/(L1-L0))×100  (9)
[繰り返し伸縮耐久性の評価]
 繰り返し伸縮耐久性の評価方法は、下記に記載の通り、測定した。
 被着体として、表面にプライマーのMP-2000(セメダイン社製品名)を塗工した表面陽極酸化アルミニウム板を使用し、JIS A 1439(2016)の建築用シーリング材の試験方法に準拠して耐久性試験体1型を作製し、繰り返し伸縮耐久性試験(CR80ともいう)を実施した。
 具体的には、硬化性組成物を、2枚の上記アルミニウム板の間にスペーサーを挟み込んで形成された空間に、硬化性組成物を流し入れ、温度23℃、湿度50%で7日間養生し、更に温度50℃、湿度65%で7日間養生して耐久性試験体1型を得た。得られた耐久性試験体1型について、圧縮固定用スペーサーを用いて、圧縮変形率30%に固定し、温度80℃で1日間静置後に圧縮固定用スペーサーを外し、温度23℃、湿度50%で1日間静置した。この試験体について、初期の目地幅を12mmとして、5回/分の速度で初期の目地幅に対して30%の拡大、縮小を繰返した。試験体のアルミニウム板と硬化性組成物の硬化物との界面付近の状態を観察し、接着破壊又は凝集破壊の深さが0.5mm以上となった伸縮回数を測定した。
[塗料汚染性の評価]
 「塗料汚染性」とは、硬化物が塗料の硬化性能に与える影響を表し、以下の評価方法により測定した。
 アルミニウム板の上に縦50mm、横50mm、厚さ10mmの形状に硬化性組成物を施工し、23℃、湿度50%で48時間養生し硬化させた。得られた硬化物の上に1液水性反応硬化型シリコーン樹脂塗料(日本ペイント社製、商品名:オーデフレッシュSi100II)を塗布した。次いで50℃で1週間養生し、23℃で1日間置いた後、よく乾燥させた汚染粉を上記シリコーン樹脂塗料に塗った面の全体にふりかけて10分間静置し、付着しなかった汚染粉をふるい落とした。評価結果は、汚染粉の付着がほとんどなく硬化性組成物の色合いが保持されているものを「◎(優良)」、汚染粉が多く付着しており、硬化性組成物の色合いが損なわれているものを「×(不良)」と判断した。なお、汚染粉にはJIS試験用粉体1の8種(関東ローム)(社団法人日本粉体工業技術協会製)を使用した。
[重合体A、重合体B~重合体Eの合成]
 (合成例1:重合体A1)
 ソルビトールを開始剤とし、配位子がt-ブチルアルコールの亜鉛ヘキサシアノコバルテート錯体(以下、「TBA-DMC触媒」という。)を触媒として使用してプロピレンオキシドを重合し、オキシプロピレン重合体(前駆重合体)を得た。前駆重合体の水酸基換算分子量は、23,000であった。次いで、前駆重合体の水酸基に対して1.05モル当量のナトリウムメトキシドのメタノール溶液を添加して前駆重合体をアルコラート化した。次に、加熱減圧によりメタノールを留去し、さらに前駆重合体の水酸基量に対して過剰量の塩化アリルを添加して末端基をアリル基に変換した。次に、塩化白金酸六水和物の存在下、前駆重合体の変換されたアリル基に対して0.5モル当量のメチルジメトキシシランを添加し、70℃にて5時間反応させ、メチルジメトキシシリル基が末端基に導入されたオキシプロピレン重合体(重合体A1)を得た。
 得られた重合体A1の末端基数、末端基構造、水酸基換算分子量、Mn、Mw/Mn、反応性ケイ素基と活性水素含有基と不飽和基の合計の数(表1中ではZ基数と記載する)、シリル化率、Z基数に対するトリアルコキシシリル基の割合及び末端基あたりの反応性ケイ素基の数を表1に示す。以下の合成例で得られた重合体についても同様に表1に示す。
 なお、表1において、末端基構造の「ジメトキシ」は末端基に存在する反応性ケイ素基がメチルジメトキシシリル基であることを示し、「トリメトキシ」は末端基に存在する反応性ケイ素基がトリメトキシシリル基であることを示し、「ジメトキシSIU」は末端基に存在する反応性ケイ素基が、主鎖にウレタン結合を介して結合したメチルジメトキシシリル基であることを示し、「トリメトキシSIU」は末端基に存在する反応性ケイ素基が、主鎖にウレタン結合を介して結合したトリメトキシシリル基であることを示す。
 (合成例2:重合体A2)
 前駆重合体の水酸基換算分子量を30,000とした以外は、合成例1と同じ方法によりメチルジメトキシシリル基が末端基に導入されたオキシプロピレン重合体(重合体A2)を得た。
 (合成例3:重合体A3)
 前駆重合体の水酸基換算分子量を42,000とした以外は、合成例1と同じ方法によりメチルジメトキシシリル基が末端基に導入されたオキシプロピレン重合体(重合体A3)を得た。
 (合成例4:重合体A4)
 前駆重合体の変換されたアリル基に対して0.75モル当量のメチルジメトキシシランを添加した以外は、合成例3と同じ方法によりメチルジメトキシシリル基が末端基に導入されたオキシプロピレン重合体(重合体A4)を得た。
 (合成例5:重合体A5)
 合成例3で得られた前駆重合体の水酸基を合成例3と同様にしてアリル基に変換した。次に、2,2’-アゾビス(2-メチルブチロニトリル)の存在下、前駆重合体の変換されたアリル基に対して0.30モル当量の3-メルカプトプロピルトリメトキシシランを添加し、70℃にて12時間反応させ、トリメトキシシリル基が末端基に導入されたオキシプロピレン重合体(重合体A5)を得た。
 (合成例6:重合体A6)
 前駆重合体の変換されたアリル基に対して0.70モル当量の3-メルカプトプロピルトリメトキシシランを添加した以外は、合成例5と同じ方法によりトリメトキシシリル基が末端基に導入されたオキシプロピレン重合体(重合体A6)を得た。
 (合成例7:重合体A7)
 合成例2で得られた前駆重合体にウレタン化触媒としてジオクチル錫ビスイソオクチルチオグリコレートを50ppm加えた。前駆重合体の水酸基に対して0.50モル当量の3-イソシアネートプロピルメチルジメトキシシランを加え、80℃にて2時間反応させ、メチルジメトキシシリル基が末端基に導入されたウレタン結合を有するオキシプロピレン重合体(重合体A7)を得た。
 (合成例8:重合体A8)
 前駆重合体の水酸基に対して0.97モル当量の3-イソシアネートプロピルメチルジメトキシシランを加えた以外は、合成例7と同じ方法によりメチルジメトキシシリル基が末端基に導入されたウレタン結合を有するオキシプロピレン重合体(重合体A8)を得た。
 (合成例9:重合体A9)
 前駆重合体の水酸基に対して0.97モル当量の3-イソシアネートプロピルトリメトキシシランを加えた以外は、合成例7と同じ方法によりトリメトキシシリル基が末端基に導入されたウレタン結合を有するオキシプロピレン重合体(重合体A9)を得た。
 (合成例10:重合体A10)
 合成例3で得られた前駆重合体を用いた以外は、合成例9と同じ方法によりトリメトキシシリル基が末端基に導入されたウレタン結合を有するオキシプロピレン重合体(重合体A10)を得た。
 (合成例11:重合体a1)
 前駆重合体の水酸基換算分子量を15,000とした以外は、合成例1と同じ方法によりメチルジメトキシシリル基が末端基に導入されたオキシプロピレン重合体(重合体a1)を得た。
 (合成例12:重合体B1)
 プロピレングリコールを開始剤とし、水酸基換算分子量が10,000の前駆重合体を得た以外は、合成例1と同じ方法によりメチルジメトキシシリル基が末端基に導入されたオキシプロピレン重合体(重合体B1)を得た。
 (合成例13:重合体B2)
 水酸基換算分子量が8,000の前駆重合体を得た以外は、合成例12と同じ方法によりメチルジメトキシシリル基が末端基に導入されたオキシプロピレン重合体(重合体B2)を得た。
 (合成例14:重合体B3)
 プロピレングリコールを開始剤とし、TBA-DMC触媒の存在下に、プロピレンオキシドを重合し、水酸基換算分子量が12,000の前駆重合体を得た。次いで、前駆重合体の水酸基に対して1.05モル当量のナトリウムメトキシドのメタノール溶液を添加して前駆重合体をアルコラート化した。次に、加熱減圧によりメタノールを留去し、さらに前駆重合体の水酸基量に対して1.05モル当量のアリルグリシジルエーテルを添加し、130℃で2時間反応させた。その後、追加で0.28モル当量のナトリウムメトキシドのメタノール溶液を添加してメタノールを除去し、さらに前駆重合体の水酸基量に対して過剰量の塩化アリルを添加して130℃で2時間反応し、末端基をアリル基に変換した。次に、白金ジビニルジシロキサン錯体の存在下、前駆重合体の変換されたアリル基に対して0.6モル当量のメチルジメトキシシランを添加し、70℃にて5時間反応させ、メチルジメトキシシリル基が末端基に導入されたオキシプロピレン重合体(重合体B3)を得た。
 (合成例15:重合体B4)
 グリセリンを開始剤とし、水酸基換算分子量が10,000の前駆重合体を得た以外は、合成例1と同じ方法でメチルジメトキシシリル基が末端基に導入されたオキシプロピレン重合体(重合体B4)を得た。
 (合成例16:重合体B5)
 合成例14で得られた前駆重合体を用いた以外は、合成例9と同じ方法によりトリメトキシシリル基が末端基に導入されたウレタン結合を有するオキシプロピレン重合体(重合体B5)を得た。
 (合成例17:重合体C1)
 n-ブチルアルコールを開始剤とし、TBA-DMC触媒の存在下に、プロピレンオキシドを重合し、水酸基換算分子量が5,000の前駆重合体を得た。次いで、合成例1と同じ方法で前駆重合体の水酸基をアリル基に変換し、前記アリル基に対して0.80モル当量のメチルジメトキシシランを添加し、メチルジメトキシシリル基が末端基に導入されたオキシプロピレン重合体(重合体C1)を得た。
 (合成例18:重合体C2)
 n-ブチルアルコールを開始剤とし、TBA-DMC触媒の存在下に、プロピレンオキシドを重合し、水酸基換算分子量が5,000の前駆重合体を得た。次いで、前駆重合体の変換されたアリル基に対して0.80モル当量のメチルジメトキシシランを添加した以外は合成例14に記載の方法でメチルジメトキシシリル基が末端基に導入されたオキシプロピレン重合体(重合体C2)を得た。
 (合成例19:重合体D1)
 プロピレングリコールを開始剤とし、TBA-DMC触媒の存在下に、プロピレンオキシドを重合し、水酸基換算分子量が10,000のオキシアルキレン重合体(重合体D1)を得た。
 (合成例20:重合体D2)
 プロピレングリコールを開始剤とし、KOH触媒の存在下に、プロピレンオキシドを重合し、水酸基換算分子量が3,000のオキシアルキレン重合体(重合体D2)を得た。
 (合成例21:重合体E1)
 グリセリンを開始剤とし、TBA-DMC触媒の存在下に、プロピレンオキシドを重合し、水酸基換算分子量が24,000の前駆重合体を得た。次いで、合成例1と同様にして前駆重合体の水酸基をアリル基に変換し、前記アリル基に対して0.63モル当量のメチルジメトキシシランを添加し、メチルジメトキシシリル基が末端基に導入されたオキシプロピレン重合体(重合体E1)を得た。
 (合成例22:重合体E2)
 ペンタエリスリトールを開始剤とし、水酸基換算分子量が32,000の前駆重合体を得た以外は、合成例21と同じ方法によりメチルジメトキシシリル基が末端基に導入されたオキシプロピレン重合体(重合体E2)を得た。
 (合成例23:重合体E3)
 合成例21で得られた前駆重合体を用いた以外は、合成例9と同じ方法によりトリメトキシシリル基が末端基に導入されたウレタン結合を有するオキシプロピレン重合体(重合体E3)を得た。
[その他の成分]
 表2~5に記載の添加剤は、以下のとおりである。なお、表2に記載の「触媒A」に含まれる成分の質量比を表3に示す。
 ホワイトンSB:重質炭酸カルシウム、白石工業社製品名。
 白艶化CCR:膠質炭酸カルシウム、白石工業社製品名。
 酸化チタン R820:酸化チタン、石原産業社製品名。
 バルーン 80GCA:有機バルーン、松本油脂社製品名。
 グロマックスLL:焼成カオリン、竹原化学工業社製品名。
 サンソサイザーEPS:4,5-エポキシシクロヘキサン-1,2-ジカルボン酸-ジ-2-エチルヘキシル、新日本理化社製品名。
 ディスパロン 6500:脂肪酸アマイドワックス、楠本化成社製品名。
 ディスパロン 305:水添ひまし油系チクソ性付与剤、楠本化成社製品名。
 アロニックスM-309:光硬化型樹脂、東亞合成社製品名。
 IRGANOX1010:ヒンダードフェノール系酸化防止剤、BASFジャパン社製品名。
 IRGANOX1135:ヒンダードフェノール系酸化防止剤、BASFジャパン社製品名。
 TINUVIN326:ベンゾトリアゾール系紫外線吸収剤、BASFジャパン社製品名。
 KBM-1003:ビニルトリメトキシシラン、信越化学社製品名。
 KBM-403:3-グリシジルオキシプロピルトリメトキシシラン、信越化学社製品名。
 KBM-603:3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、信越化学社製品名。
 DINP:ビニサイザー90、ジイソノニルフタレート、花王社製品。
 U-220H:ジブチル錫ビス(アセチルアセトナート)、錫触媒、日東化成社製品名。
 U-810:ジオクチル錫ラウレート、錫触媒、日東化成社製品名。
 U-830:ジオクチル錫バーサテート、錫触媒、日東化成社製品名。
 スタノクト:オクチル酸第一錫、三菱ケミカル社製品名。
 K-KAT670:チタン触媒、KING INDUSTRIES製品名。
 [硬化性組成物の調製]
 例1~3、6~22及び27~35は実施例であり、例4、5、23~26は比較例である。
 (例1~26)
 表4又は5に示す配合の重合体及び添加剤を添加して硬化性組成物を調製した。表2~5に示す各成分の配合量の単位は「質量部」である。
 得られた硬化性組成物を使用して、上記の方法により、引張特性試験、弾性復元性試験、繰り返し伸縮耐久性の評価、塗料汚染性の評価、及び重合体A、重合体a、又は重合体A及び重合体Bの混合物の粘度の測定を実施した。これらの結果を表4及び5に示す。
 (例27~35)
 表1の重合体A1~A9の100質量部に対して、添加剤を表2の添加剤2に変更してそれぞれ硬化性組成物を調製し、引張試験及び弾性復元性試験を行った。得られた硬化物は、いずれも、上記引張試験及び弾性復元性試験において、伸びと復元性が良好であった。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表4~5に示すように、例1~3、6~22では引張特性が良好であり、弾性復元率、繰り返し伸縮耐久性が高く、塗料汚染性が良好だった。
 重合体Aを含まず、1分子内に末端基を3個有する重合体E1を含む例4、5及び24では、弾性復元率及び繰り返し伸縮耐久性が劣った。
 重合体Aを含まず、1分子内に末端基を4個有する重合体E2を含む例25及び26では、弾性復元率、繰り返し伸縮耐久性及び塗料汚染性が劣った。
 重合体Aを含まず、1分子内に末端基を6個有しているが、数平均分子量が20,000である重合体a1を含む例23では、伸びが悪く、充分な繰り返し伸縮耐久性が得られなかった。
(参考例1~3)
 表6に示す配合の重合体及び添加剤を添加して硬化性組成物を調製した。表6に示す各成分の配合量の単位は「質量部」である。得られた硬化性組成物を使用して後述の方法により、タックフリータイム測定及び深部硬化性試験を行った。結果を表6に示す。
[タックフリータイム測定]
 JIS A 1439(2016)の5.19「指触乾燥時間試験」に記載の方法に準拠して評価した。時間が短いほど硬化速度が速いことを意味する。
[深部硬化性試験]
 内径24mm、高さ55mmの円筒形のポリエチレン製チューブを、一方の開口部がアルミ製の板と接するように静置した。温度23℃、相対湿度50%の雰囲気中で、参考例1~3で得られた硬化性組成物を、他方の開口部から、泡が入らないように当該チューブ内部に充填した。硬化性組成物が充填されたチューブの上記他方の開口部からはみ出した硬化性組成物をヘラでかきとって、チューブ端部における硬化性組成物の表面を平坦にし、試験体を得た。得られた試験体を、前記雰囲気中に静置し、1日後、3日後及び7日後に、硬化性組成物の表面から内部へ向かって、どの程度硬化が進んだかを調べた。具体的には、硬化性組成物が硬化した表層(硬化部分)をヘラで取り出し、取り出した硬化部分に付着した未硬化の硬化性組成物を除去し、ノギスを用いて得られた硬化部分の厚さ(単位:mm)(チューブの高さ方向)を測定した。取り出した硬化部分は円柱状であることが多く、測定の際は硬化部分の厚さが一番厚い部分を測定した。硬化部分の厚さが大きいほど、深部硬化性が優れる。
Figure JPOXMLDOC01-appb-T000009
 表6に示すように、参考例2、3に比べ、参考例1では、タックフリータイムが短く、深部硬化性が優れた。
 本発明によれば、繰り返し伸縮耐久性に優れる硬化物が得られる硬化性組成物を提供できる。

Claims (9)

  1.  下式(1)で表される反応性ケイ素基を有し、末端基を6個以上有するオキシアルキレン重合体Aを含む硬化性組成物であって、
     前記末端基は、前記式(1)で表される反応性ケイ素基、活性水素含有基、及び不飽和基からなる群から選ばれる1種以上を含み、
     前記オキシアルキレン重合体Aは、1つの末端基あたり前記反応性ケイ素基を0.3個以上有し、
     前記オキシアルキレン重合体Aの数平均分子量は、25,000超100,000以下である、硬化性組成物。
     -SiR(X)3-a  (1)
     式中、Rは、炭素数1~20の1価の有機基であって、加水分解性基以外の有機基を示し、Xは水酸基、ハロゲン原子、又は加水分解性基を示す。aは0~2の整数である。aが2の場合、Rは、互いに同一でも異なっていてもよく、aが0又は1の場合、Xは、互いに同一でも異なっていてもよい。
  2.  前記オキシアルキレン重合体Aに存在する前記反応性ケイ素基、前記活性水素含有基及び前記不飽和基の合計に対する、前記式(1)におけるaが0である反応性ケイ素基の割合が50モル%未満である、請求項1に記載の硬化性組成物。
  3.  さらに、前記式(1)で表される反応性ケイ素基を有し、末端基を2個又は3個有するオキシアルキレン重合体Bを含み、
     前記末端基は、前記式(1)で表される反応性ケイ素基、活性水素含有基、及び不飽和基からなる群から選ばれる1種以上を含み、
     前記オキシアルキレン重合体Bは、1つの末端基あたり前記反応性ケイ素基を0.3~2.0個有し、
     前記オキシアルキレン重合体Bの数平均分子量は、5,000~20,000である、請求項1又は2に記載の硬化性組成物。
  4.  前記オキシアルキレン重合体Aと前記オキシアルキレン重合体Bに存在する前記反応性ケイ素基、前記活性水素含有基、及び前記不飽和基の合計に対する前記式(1)におけるaが0である反応性ケイ素基の割合が50モル%未満である、請求項3に記載の硬化性組成物。
  5.  前記オキシアルキレン重合体Aと前記オキシアルキレン重合体Bの総質量に対する前記オキシアルキレン重合体Aの割合は、20~95質量%である、請求項3又は4に記載の硬化性組成物。
  6.  さらに、前記式(1)で表される反応性ケイ素基を有し、末端基を2個有するオキシアルキレン重合体Cを含み、
     前記末端基のうちの一方の末端基は、不活性な1価の有機基であり、他方の末端基は、前記式(1)で表される反応性ケイ素基、活性水素含有基、及び不飽和基からなる群から選ばれる1種以上を含み、
     前記オキシアルキレン重合体Cは、1つの末端基あたり前記反応性ケイ素基を0.2~1.0個有し、
     前記オキシアルキレン重合体Cの数平均分子量は、2,000~15,000である、請求項1~5のいずれか1項に記載の硬化性組成物。
  7.  さらに、前記式(1)で表される反応性ケイ素基を有さず、数平均分子量が5,000~20,000であるオキシアルキレン重合体Dを含む、請求項1~6のいずれか一項に記載の硬化性組成物。
  8.  シーラント用又は接着剤用である、請求項1~7のいずれか一項に記載の硬化性組成物。
  9.  請求項1~8のいずれか一項に記載の硬化性組成物を硬化してなる硬化物。
PCT/JP2022/009529 2021-03-12 2022-03-04 硬化性組成物及び硬化物 WO2022191084A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237025354A KR20230154796A (ko) 2021-03-12 2022-03-04 경화성 조성물 및 경화물
CN202280017879.3A CN116940635A (zh) 2021-03-12 2022-03-04 固化性组合物及固化物
EP22767041.1A EP4306570A1 (en) 2021-03-12 2022-03-04 Curable composition, and cured product
JP2023505513A JPWO2022191084A1 (ja) 2021-03-12 2022-03-04
US18/355,736 US20230399464A1 (en) 2021-03-12 2023-07-20 Curable composition, and cured product

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-040132 2021-03-12
JP2021040132 2021-03-12
JP2021-107750 2021-06-29
JP2021107750 2021-06-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/355,736 Continuation US20230399464A1 (en) 2021-03-12 2023-07-20 Curable composition, and cured product

Publications (1)

Publication Number Publication Date
WO2022191084A1 true WO2022191084A1 (ja) 2022-09-15

Family

ID=83227950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009529 WO2022191084A1 (ja) 2021-03-12 2022-03-04 硬化性組成物及び硬化物

Country Status (5)

Country Link
US (1) US20230399464A1 (ja)
EP (1) EP4306570A1 (ja)
JP (1) JPWO2022191084A1 (ja)
KR (1) KR20230154796A (ja)
WO (1) WO2022191084A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127443A1 (ja) * 2021-12-27 2023-07-06 株式会社カネカ 硬化性組成物およびその硬化物

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3632557A (en) 1967-03-16 1972-01-04 Union Carbide Corp Vulcanizable silicon terminated polyurethane polymers
JPS50156599A (ja) 1974-06-07 1975-12-17
JPS61197631A (ja) 1985-02-28 1986-09-01 Kanegafuchi Chem Ind Co Ltd 分子量分布の狭いポリアルキレンオキシドの製造方法
US4960844A (en) 1988-08-03 1990-10-02 Products Research & Chemical Corporation Silane terminated liquid polymers
JPH0372527A (ja) 1989-05-09 1991-03-27 Asahi Glass Co Ltd ポリアルキレンオキシド誘導体の製造法
JPH08231707A (ja) 1994-07-18 1996-09-10 Asahi Glass Co Ltd ポリエーテルの精製方法
JPH0995609A (ja) * 1995-09-29 1997-04-08 Asahi Glass Co Ltd 室温硬化性組成物およびその製造方法
JP2004269776A (ja) 2003-03-11 2004-09-30 Asahi Glass Co Ltd アルキレンオキシド開環重合方法
JP2005015786A (ja) 2003-06-04 2005-01-20 Asahi Glass Co Ltd 複合金属シアン化物錯体触媒、その製造方法およびその利用
WO2009022743A1 (ja) * 2007-08-15 2009-02-19 Asahi Glass Company, Limited 硬化性組成物
JP2009527603A (ja) * 2006-02-23 2009-07-30 ズステック・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コムパニー・コマンディットゲゼルシャフト 多官能性星形プレポリマー、その製造方法および使用
CN101921393A (zh) * 2010-09-19 2010-12-22 东莞市普赛达密封粘胶有限公司 一种合成端硅烷基聚醚的方法
JP2011178955A (ja) 2010-03-03 2011-09-15 Asahi Glass Co Ltd 硬化性組成物
JP2013065802A (ja) 2011-08-26 2013-04-11 Juki Corp 電子部品供給装置及び電子部品実装装置
JP2014088481A (ja) 2012-10-29 2014-05-15 Kaneka Corp 硬化性組成物およびその硬化物
JP2015010162A (ja) 2013-06-28 2015-01-19 旭硝子株式会社 硬化性組成物
JP2015080067A (ja) 2013-10-16 2015-04-23 コニカミノルタ株式会社 画像処理装置、画像処理方法および画像処理プログラム
JP2015105122A (ja) 2013-11-29 2015-06-08 株式会社吉野工業所 蓋付カップ容器
JP2015105323A (ja) 2013-11-29 2015-06-08 株式会社カネカ 硬化性組成物
JP2015105324A (ja) 2013-11-29 2015-06-08 株式会社カネカ 硬化性組成物
JP2015105293A (ja) 2013-11-29 2015-06-08 株式会社カネカ 硬化性組成物
JP2015105322A (ja) 2013-11-29 2015-06-08 株式会社カネカ 反応性ケイ素基含有重合体および硬化性組成物
JP2015111577A (ja) 2014-12-26 2015-06-18 日立アプライアンス株式会社 誘導加熱調理器
JP2016002907A (ja) 2014-06-18 2016-01-12 本田技研工業株式会社 車両制御装置
JP2016216633A (ja) 2015-05-21 2016-12-22 株式会社カネカ 硬化性組成物及びその硬化物
JP2017039728A (ja) 2011-05-03 2017-02-23 イミュノバティブ セラピーズ,リミテッド 生細胞を含む生物学的薬剤の取り扱い方法
JP2017039782A (ja) 2014-01-09 2017-02-23 株式会社カネカ 硬化性組成物
JP2017214541A (ja) 2015-12-21 2017-12-07 旭硝子株式会社 硬化性組成物およびその製造方法、ならびに硬化物およびシーリング材
WO2020133062A1 (zh) * 2018-12-27 2020-07-02 万华化学集团股份有限公司 一种反应型密封胶树脂的制备方法
JP2020176169A (ja) 2019-04-15 2020-10-29 Agc株式会社 硬化性組成物、硬化物、及びシーリング材
JP2021040132A (ja) 2019-08-30 2021-03-11 Dowaエレクトロニクス株式会社 シリコン酸化物被覆Fe系軟磁性粉末およびその製造方法
JP2021107750A (ja) 2019-12-27 2021-07-29 中国電力株式会社 換気装置

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3632557A (en) 1967-03-16 1972-01-04 Union Carbide Corp Vulcanizable silicon terminated polyurethane polymers
JPS50156599A (ja) 1974-06-07 1975-12-17
JPS61197631A (ja) 1985-02-28 1986-09-01 Kanegafuchi Chem Ind Co Ltd 分子量分布の狭いポリアルキレンオキシドの製造方法
US4960844A (en) 1988-08-03 1990-10-02 Products Research & Chemical Corporation Silane terminated liquid polymers
JPH0372527A (ja) 1989-05-09 1991-03-27 Asahi Glass Co Ltd ポリアルキレンオキシド誘導体の製造法
JPH08231707A (ja) 1994-07-18 1996-09-10 Asahi Glass Co Ltd ポリエーテルの精製方法
JPH0995609A (ja) * 1995-09-29 1997-04-08 Asahi Glass Co Ltd 室温硬化性組成物およびその製造方法
JP2004269776A (ja) 2003-03-11 2004-09-30 Asahi Glass Co Ltd アルキレンオキシド開環重合方法
JP2005015786A (ja) 2003-06-04 2005-01-20 Asahi Glass Co Ltd 複合金属シアン化物錯体触媒、その製造方法およびその利用
JP2009527603A (ja) * 2006-02-23 2009-07-30 ズステック・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コムパニー・コマンディットゲゼルシャフト 多官能性星形プレポリマー、その製造方法および使用
WO2009022743A1 (ja) * 2007-08-15 2009-02-19 Asahi Glass Company, Limited 硬化性組成物
JP2009046539A (ja) 2007-08-15 2009-03-05 Asahi Glass Co Ltd 硬化性組成物
JP2011178955A (ja) 2010-03-03 2011-09-15 Asahi Glass Co Ltd 硬化性組成物
CN101921393A (zh) * 2010-09-19 2010-12-22 东莞市普赛达密封粘胶有限公司 一种合成端硅烷基聚醚的方法
JP2017039728A (ja) 2011-05-03 2017-02-23 イミュノバティブ セラピーズ,リミテッド 生細胞を含む生物学的薬剤の取り扱い方法
JP2013065802A (ja) 2011-08-26 2013-04-11 Juki Corp 電子部品供給装置及び電子部品実装装置
JP2014088481A (ja) 2012-10-29 2014-05-15 Kaneka Corp 硬化性組成物およびその硬化物
JP2015010162A (ja) 2013-06-28 2015-01-19 旭硝子株式会社 硬化性組成物
JP2015080067A (ja) 2013-10-16 2015-04-23 コニカミノルタ株式会社 画像処理装置、画像処理方法および画像処理プログラム
JP2015105323A (ja) 2013-11-29 2015-06-08 株式会社カネカ 硬化性組成物
JP2015105324A (ja) 2013-11-29 2015-06-08 株式会社カネカ 硬化性組成物
JP2015105293A (ja) 2013-11-29 2015-06-08 株式会社カネカ 硬化性組成物
JP2015105322A (ja) 2013-11-29 2015-06-08 株式会社カネカ 反応性ケイ素基含有重合体および硬化性組成物
JP2015105122A (ja) 2013-11-29 2015-06-08 株式会社吉野工業所 蓋付カップ容器
JP2017039782A (ja) 2014-01-09 2017-02-23 株式会社カネカ 硬化性組成物
JP2016002907A (ja) 2014-06-18 2016-01-12 本田技研工業株式会社 車両制御装置
JP2015111577A (ja) 2014-12-26 2015-06-18 日立アプライアンス株式会社 誘導加熱調理器
JP2016216633A (ja) 2015-05-21 2016-12-22 株式会社カネカ 硬化性組成物及びその硬化物
JP2017214541A (ja) 2015-12-21 2017-12-07 旭硝子株式会社 硬化性組成物およびその製造方法、ならびに硬化物およびシーリング材
WO2020133062A1 (zh) * 2018-12-27 2020-07-02 万华化学集团股份有限公司 一种反应型密封胶树脂的制备方法
JP2020176169A (ja) 2019-04-15 2020-10-29 Agc株式会社 硬化性組成物、硬化物、及びシーリング材
JP2021040132A (ja) 2019-08-30 2021-03-11 Dowaエレクトロニクス株式会社 シリコン酸化物被覆Fe系軟磁性粉末およびその製造方法
JP2021107750A (ja) 2019-12-27 2021-07-29 中国電力株式会社 換気装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023127443A1 (ja) * 2021-12-27 2023-07-06 株式会社カネカ 硬化性組成物およびその硬化物

Also Published As

Publication number Publication date
KR20230154796A (ko) 2023-11-09
JPWO2022191084A1 (ja) 2022-09-15
EP4306570A1 (en) 2024-01-17
US20230399464A1 (en) 2023-12-14

Similar Documents

Publication Publication Date Title
JP7367332B2 (ja) 硬化性組成物、硬化物、及びシーリング材
JP2024045556A (ja) 硬化性組成物並びに硬化物及びシーリング材
US20230399464A1 (en) Curable composition, and cured product
JP6652213B2 (ja) 硬化性組成物及び硬化物
JP6579206B2 (ja) 硬化性組成物、及び硬化物
JP7127302B2 (ja) オキシアルキレン重合体を含む硬化性組成物、シーリング材用のオキシアルキレン重合体を含む硬化性組成物、及び硬化物
JP6977747B2 (ja) 床用接着剤用硬化性組成物、及び硬化物
JP6610690B2 (ja) 硬化性組成物、及び硬化物
JP7135432B2 (ja) 硬化性組成物及びその製造方法、ならびに硬化物及びシーリング材
JP7375508B2 (ja) 硬化性組成物、及び硬化物
JP7259346B2 (ja) 硬化性組成物
JP7394783B2 (ja) ポリオキシアルキレン系重合体を含む硬化性組成物
JP2020109134A (ja) 硬化性組成物
WO2021200342A1 (ja) ポリオキシアルキレン系重合体の混合物及び硬化性組成物
CN116940635A (zh) 固化性组合物及固化物
JP7358950B2 (ja) 硬化性組成物、及び硬化物
WO2023282298A1 (ja) 硬化性組成物、硬化物、接着剤、及びシーリング材
US20240132718A1 (en) Curable composition, cured product, adhesive, and sealing material
JP7243332B2 (ja) 硬化性組成物、及び硬化物
JP2019206720A (ja) 硬化性組成物、及び硬化物
JP2023009597A (ja) 硬化性組成物、硬化物、接着剤、及びシーリング材
WO2024057984A1 (ja) ポリエーテルポリオールの製造方法、反応性ケイ素基を有するポリエーテルポリオールの製造方法、及びポリエーテルポリオール
CN117597395A (zh) 固化性组合物、固化物、粘接剂以及密封材料
WO2023095636A1 (ja) 加水分解性シリル基含有ポリオキシアルキレンの製造方法
WO2023171425A1 (ja) ポリオキシアルキレン系重合体の混合物および硬化性組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22767041

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023505513

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280017879.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022767041

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022767041

Country of ref document: EP

Effective date: 20231012