WO2020133062A1 - 一种反应型密封胶树脂的制备方法 - Google Patents

一种反应型密封胶树脂的制备方法 Download PDF

Info

Publication number
WO2020133062A1
WO2020133062A1 PCT/CN2018/124350 CN2018124350W WO2020133062A1 WO 2020133062 A1 WO2020133062 A1 WO 2020133062A1 CN 2018124350 W CN2018124350 W CN 2018124350W WO 2020133062 A1 WO2020133062 A1 WO 2020133062A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyether
mol
catalyst
polyether polyol
preparation
Prior art date
Application number
PCT/CN2018/124350
Other languages
English (en)
French (fr)
Inventor
鞠昌迅
刘斌
王明永
叶天
石正阳
黎源
华卫琦
Original Assignee
万华化学集团股份有限公司
万华化学(宁波)有限公司
上海万华科聚化工科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万华化学集团股份有限公司, 万华化学(宁波)有限公司, 上海万华科聚化工科技发展有限公司 filed Critical 万华化学集团股份有限公司
Priority to EP18945060.4A priority Critical patent/EP3904482A4/en
Priority to PCT/CN2018/124350 priority patent/WO2020133062A1/zh
Priority to US17/413,858 priority patent/US20220056209A1/en
Priority to JP2021530157A priority patent/JP7265630B2/ja
Publication of WO2020133062A1 publication Critical patent/WO2020133062A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2606Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
    • C08G65/2609Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups containing aliphatic hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • C09J171/02Polyalkylene oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/323Hydrometalation, e.g. bor-, alumin-, silyl-, zirconation or analoguous reactions like carbometalation, hydrocarbation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/828Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/26Cyanides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/165Polymer immobilised coordination complexes, e.g. organometallic complexes
    • B01J31/1658Polymer immobilised coordination complexes, e.g. organometallic complexes immobilised by covalent linkages, i.e. pendant complexes with optional linking groups, e.g. on Wang or Merrifield resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2170/00Compositions for adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2190/00Compositions for sealing or packing joints

Definitions

  • the invention relates to the field of sealants, in particular to a method for preparing a reactive sealant resin, which is mainly used for preparing elastic sealants.
  • the curing mechanism of the reactive sealant is that its terminal alkoxy group reacts with the water in the air under the action of the catalyst, removes the small molecule alcohol, and the main chain crosslinks to form a three-dimensional network structure, which combines the silicone and polyurethane. ⁇ Advantages.
  • this type of reactive sealant has attracted more and more attention. It has been widely used in Europe, America and other countries. Because of its wide bonding range and adaptability to substrates, it has been used in construction, automotive, Various fields such as rail transit, containers, equipment manufacturing and industry also indicate that it will have broad application prospects.
  • the basic polymer of the end-capping reactive sealant is siloxane-terminated polyether, which can currently be achieved by the following methods:
  • End-capped modified polyurethane sealant which uses terminal-NCO polyether prepolymer and allyl alcohol to synthesize modified polyether, which is catalyzed by chloroplatinic acid with organic silicon compounds (such as methyldimethoxysilane) ) Siloxane addition reaction is used to prepare siloxane-terminated polyether.
  • the polyether used has a low molecular weight.
  • the main chain of the silicone modified polyether contains multiple urethane groups, which easily forms hydrogen bonds and polymerizes. The viscosity of the substance is large, and the amount of filler added is relatively small when preparing the sealant, and the mixing operation is also difficult.
  • the hydroxyl-terminated polyether with lower molecular weight is reacted with alkali metal or alkali metal hydroxide by Williamson ether synthesis method, coupled with dichloromethane to multiply its molecular weight, and then reacted with allyl chloride to produce terminal double bond polyether It can be made into siloxane-terminated polyether by silicone addition reaction, but the molecular weight distribution of the dichloromethane chain extension product is wider, which directly affects the performance of the sealant, and can only be used to prepare dual-degree resin.
  • a bimetallic catalyst is used to synthesize a high molecular weight hydroxyl-terminated polyether, and then the polyether is modified and made into a silicone-terminated polyether by hydrosilylation, but the removal of by-product salts in the process is a difficult point. There is no reasonable solution yet.
  • An object of the present invention is to provide a method for preparing a reactive sealant resin, in order to better prepare the reactive sealant resin in view of the deficiencies of the prior art.
  • a method for preparing a reactive sealant resin includes the following steps:
  • Silane capping using the modified polyether obtained in step (2) as a raw material and a hydrogen-containing silane under the action of a hydrosilylation catalyst, a silane capping reaction is performed to obtain the target product reaction type sealant resin.
  • step (1) of the present invention the hydroxyl-containing initiator used to prepare the first polyether polyol, the base catalyst, and the epoxide (also known as the polymerization monomer) can all be well known in the art for preparing polyether polyols Commonly used raw materials.
  • the hydroxyl-containing initiator may be a small molecule monohydric alcohol or a small molecule polyol with a molecular weight not greater than 400, for example, methanol, ethanol, ethylene glycol, 1,2-propanediol, 1,3-propanediol, glycerin , Trimethylolpropane, pentaerythritol, sorbitol, mannitol, sucrose, glucose and xylitol one or more, preferably 1,2-propanediol and/or glycerin.
  • the alkali catalyst may be one or more of alkali metal, alkali metal hydride, alkali metal hydroxide, alkali metal alkyl oxide, composite metal cyanide and phosphazene catalyst, preferably, the alkali catalyst It is a composite metal cyanide, such as zinc hexacyanocobaltate; in the reaction system of step (1), the content of the alkali catalyst may be 10-100 ppm, preferably 20-80 ppm, more preferably 30-60 ppm.
  • the epoxy compound may be one or more of ethylene oxide, propylene oxide, isobutylene oxide and tetrahydrofuran, preferably ethylene oxide and/or propylene oxide, more preferably propylene oxide, or A mixture of ethylene oxide and propylene oxide with an ethylene oxide content not exceeding 15% by weight.
  • the reaction temperature for preparing polyether polyol is 90-180°C, preferably 100-160°C; the reaction pressure is 0.05-0.8 MPa, such as 0.1 MPa, 0.3 MPa or 0.5 MPa Preferably it is 0.2-0.6 MPa.
  • the molecular weight of the first polyether polyol is 3000-50000 g/mol, and the functionality is between 2-8; further preferably, the molecular weight of the first polyether polyol is 8000-35000 g/ mol, functionality 2-6.
  • the first polyether polyol is obtained through n stages of polymerization, n ⁇ 2, such as 4, 6, 8 Or 10; in the present invention, "through n stages of polymerization” refers to the completion of the previous stage of polymerization, then add a certain amount of epoxide to continue the new stage of polymerization, and so on, until the completion of n One-stage polymerization; those skilled in the art understand that when the target molecular weight of the final polyether is larger, n can be set larger. For example, when the target molecular weight of the final polyether is not less than 18000 g/mol, preferably n ⁇ 5.
  • the target molecular weight of each stage of polymerization is sequentially set to M1...Mi...Mn, at this time, the polymerization route can be expressed as: hydroxyl-containing initiator -M1-...,...-Mn, Mn is the final polyether polyol product
  • the polymerization route is expressed as: hydroxyl-containing initiator-M1-M2-M3-M4-M5; preferably, M1 ⁇ 1000g/mol, and Mi-M(i-1) ⁇ 12000g/mol, such as 2000, 4000, 6000, 8000, or 10000g/mol, that is, the target molecular weight of adjacent stages should not be set too large, which is beneficial to reduce the molecular weight distribution
  • the synthesis of the polyether polyol uses a small molecule polyol as an initiator and adopts a staged polymerization process to prepare a narrow molecular weight distribution, low viscosity, and high molecular weight polyether polyol product.
  • the polymerization route is as follows: 400g/mol-2000g/mol-8000g/mol-12000g/mol-18000g/mol-24000g/mol; or ternary alcohol-800g/mol-3000g/mol-12000g/mol-18000g/mol-24000g/mol-30000g /mol; or tetra- or pentol or hexanol -800g/mol-4000g/mol-8000g/mol-12000g/mol-18000g/mol-24000g/mol-30000g/mol-40000g/mol.
  • a staged polymerization process is used to control the molecular weight of the intermediate by controlling the amount of raw materials added, thereby achieving the above polymerization route.
  • the average molecular weight of the epoxide added at each stage is X
  • the molecular weight of the hydroxyl-containing initiator is Y
  • the polyether polyol is modified by Williamson reaction to obtain a crude product of a double-bonded polyether.
  • the alkoxide reagent used in the above modification treatment may be a mixture of one or more of alkali metal, alkali metal hydride, alkali metal hydroxide, and alkali metal alkoxy compound, preferably alkali metal sodium, sodium hydride Or one or more of sodium methoxide; the polyether-modifying compound used, ie the halide containing double bonds, is preferably allyl chloride or methallyl chloride.
  • the molar ratio of the amount of the alkoxide reagent to the hydroxyl equivalent of the polyether polyol is 1-3:1, preferably 1.2-2.4 :1, such as 1.5:1 or 2:1; the molar ratio of the amount of the double bond-containing halide to the polyether polyol hydroxyl equivalent is 1-3:1, preferably 1.2-2.4:1, such as 1.5: 1 or 2:1.
  • the reaction temperature for the modification of the polyether polyol to prepare the double-bonded polyether is 80-160°C, preferably 100-140°C, such as 120°C or 130°C; the reaction time is 3-18 Hours, preferably 5-15 hours, such as 8, 10 or 12 hours.
  • the modified product is a crude product of double-bonded polyether, which needs further purification to remove impurities.
  • a neutralizer to neutralize, for example, neutralize to a pH value of 4-8, then add water and organic solvent, and then use a coalescence separator to separate water (and dissolved salts), and then further remove
  • the modified polyether product is obtained after the organic solvent, for example, the organic solvent is removed by vacuum distillation, and the available device may be a thin film evaporator.
  • the neutralizing agent used may be one or more of hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid and lactic acid, preferably acetic acid or lactic acid, the amount may be 0.1-5wt% of the amount of crude polyether product, preferably 0.5-3wt%, For example, 1wt% or 2wt%.
  • the organic solvent is an alkane, benzene compound or nitrile compound, preferably n-hexane; the mass ratio of the organic solvent, water and crude product is 0.1-3 (such as 1 or 2): 0.1-2 (such as 0.5, 0.8 or 1.5): 1, preferably 0.5-1.5: 0.3-1:1.
  • the above-mentioned modified polyether and hydrogen-containing silane are subjected to a silane end-capping reaction under the action of a hydrosilylation catalyst (for example, a Custer catalyst).
  • a hydrosilylation catalyst for example, a Custer catalyst.
  • This end-capping reaction is often used in the preparation of reactive sealant resins .
  • the hydrogen-containing silane used may be one or more of trimethoxysilane, triethoxysilane, methyldimethoxysilane and methyldiethoxysilane, preferably methyldimethoxysilane Silane and/or trimethoxysilane.
  • the molar ratio of the amount of hydrogen-containing silane to the equivalent of double bonds of the modified polyether is 0.9-2:1, such as 1.2:1 or 1.8:1, preferably 1-1.5:1; reaction temperature is 50-140°C, such as 80 or 100°C, preferably 60-120°C; reaction time is 1-8 hours, preferably 2-6 hours, such as 4 hours.
  • the hydrosilylation catalyst is a supported platinum metal catalyst that catalyzes the hydrosilylation reaction.
  • the amount of platinum in the reaction system in step (3) is 0.1 ppm-50 ppm, preferably 1ppm-30ppm, such as 5ppm, 10ppm or 20ppm.
  • the supported platinum metal catalyst is obtained by impregnating a chloroplatinic acid solution with a polyurethane flexible foam as a carrier and reducing and drying;
  • the second polyether polyol is obtained by polymerizing a hydroxyl-containing initiator and a polymerization monomer including an epoxide containing a C ⁇ C double bond in the molecule under the action of an alkali catalyst ;
  • the hydroxyl group-containing initiator, alkali catalyst and reaction conditions can be the same as described above.
  • the molecular weight of the second polyether polyol is 700 to 10000, such as 1000, 3000, 5000 or 8000, and the nominal functionality is 1 to 6, preferably 2 to 6, such as 3 or 5.
  • the prepared second polyether polyol can be further refined to remove impurities, for example, after the crude product (crude polyether) of the prepared second polyether polyol is neutralized, after adding water, adsorbent and filter aid Filter to obtain the refined second polyether polyol.
  • the neutralizing agent may be an aqueous solution of phosphoric acid; the amount of phosphoric acid is 0.1% to 1% of the total mass of the crude polyether, and the amount of water is 1% to 10% of the total mass of the crude polyether; the adsorbent It is magnesium silicate with an amount of 0.1% to 8% of the total mass of crude polyether.
  • the filter aid is diatomaceous earth with an amount of 0.01 to 1% of the total mass of crude polyether.
  • the flexible polyurethane foam can be obtained by foaming with the following formula by weight:
  • Second polyether polyol 100 parts (parts by weight, the same below)
  • Foaming catalyst 0.01 ⁇ 1 share
  • Antioxidant 0 ⁇ 1 serving
  • Anti-yellowing agent 0 ⁇ 1 serving
  • Isocyanate 30 ⁇ 100 servings
  • the isocyanate index is 50-200.
  • the physical blowing agent is selected from one or more of 141b, dichloromethane, and acetone.
  • the cross-linking agent is selected from one or more of diethanolamine, triethanolamine, glycerin, and trimethylolpropane.
  • the foaming catalyst may be selected from tertiary amine catalysts, commercially available brands A1, A33, etc.
  • the catalysts include but are not limited to the above commercial catalysts.
  • the gel catalyst may be selected from stannous octoate (T9), stannous dilaurate (T12) and the like, including but not limited to the above-mentioned commercial catalysts.
  • the antioxidant is selected from hindered phenol products such as 1135, and the anti-yellowing agent is selected from phosphate products.
  • the mass of chloroplatinic acid in the impregnation solution is 0.01*n to 0.6*n (n is the mass of the double bond calculated by the degree of unsaturation contained in the added polyurethane flexible foam).
  • the solvent used in the chloroplatinic acid solution can be one or more of toluene, xylene, methanol, ethanol, and isopropanol, and the solvent used for cleaning is the same;
  • the reducing agent used can be sodium bicarbonate, carbonic acid
  • One or more of potassium hydrogen, sodium carbonate and potassium carbonate, the amount of reducing agent can be 100% to 1000% of the mass of chloroplatinic acid.
  • the pressures mentioned in the present invention are absolute pressures, and the molecular weights mentioned are number average molecular weights unless otherwise specified.
  • the reactive sealant resin prepared by the present invention uses small molecular polyol as a raw material, and the reactive sealant resin is better prepared through the process of polyether polyol preparation, modification and end capping, especially the modification process, The coalescence separation process is adopted to avoid the technical problems of filtration and solid waste treatment;
  • the reactive sealant resin prepared by the present invention has the characteristics of narrow molecular distribution, low product viscosity, high functional group end capping rate, etc., so it is easy to use, has excellent performance, and can be directly used in the preparation of sealant because of its excellent mechanical properties , Weather resistance, stain resistance, good adhesion and paintability, low toxicity and environmental protection, mainly used in the preparation of elastic sealants, widely used in construction, home improvement, industry and other fields;
  • the supported platinum metal catalyst of the present invention is a Custer catalyst supported on a high specific surface area polyurethane flexible foam. Since the catalyst ligand vinyl bridge is fixed on the polyurethane foam through reaction, the zero value of the ligand chelation The platinum catalyst can also be well loaded and not easy to fall off or run off.
  • the catalyst is a supported platinum metal catalyst with excellent characteristics such as high specific surface area, easy recovery, high catalytic efficiency, low catalyst deactivation, and controllable catalyst shape.
  • the catalyst has high catalytic efficiency, and is particularly suitable for some high solubility and easy catalysts.
  • the reagents used are all analytically pure unless otherwise specified; the contents are mass contents unless otherwise specified.
  • the hydroxyl value test is tested according to GB/T12008.3-2009; the acid value test is tested according to GB/T12008.5-2010; the unsaturation is referred to GB/T12008.6-2010 Test for determination; water content test refers to the determination of the water content of the polyol used in the production of polyurethane in GB/T22313-2008 plastics, and the specific surface area of the foam catalyst refers to the determination of the specific surface area of solid materials according to the GB/T 19587-2004 gas adsorption BET method .
  • Foaming catalyst A1, A33 (Aladdin reagent), gel catalyst is selected from stannous octoate (T9) (Aladdin reagent).
  • the antioxidant is selected from hindered phenolic product 1135 (BASF), and the anti-yellowing agent is selected from phosphate ester anti-yellowing agent 168 (Dongguan Tongda Chemical).
  • the physical blowing agent is dichloromethane, and the crosslinking agent is diethanolamine.
  • the product's water content and acid value are qualified (moisture ⁇ 0.05%, acid value ⁇ 0.1mgKOH/g, the same below); hydroxyl value 80.1mgKOH/g (theoretical hydroxyl value 80.14mgKOH/g), which proves that the molecular weight has reached the calculated molecular weight 700, the measured unsaturation is 0.08mmol/g (theoretical unsaturation is 0.084mmol/g).
  • Second polyether polyol 100 parts (parts by weight, the same below)
  • Silicone oil 0.5 serving
  • Foaming catalyst 0.01 parts
  • Antioxidant 0.3 servings
  • Anti-yellowing agent 0.2 servings
  • the components other than isocyanate (TDI) in the above formula are mixed in advance and cooled to room temperature. After adding isocyanate at room temperature and stirring rapidly, it is poured into the foaming mold. After the foaming is completed and the aging is completed, the mold is released to obtain a density of 40kg/ m 3 , foam with white appearance and good air permeability; the measured product unsaturation is 0.05 mmol/g.
  • the product's water content and acid value were qualified; the measured hydroxyl value of the above product was 11.2mgKOH/g (theoretical hydroxyl value 11.22mgKOH/g), which proved that the molecular weight had reached the calculated molecular weight of 10000, and the measured unsaturation was 0.022mmol/g( The theoretical degree of unsaturation is 0.235 mmol/g).
  • Second polyether polyol 100 parts
  • Silicone oil 0.5 serving
  • Foaming catalyst 0.01 parts
  • Antioxidant 0.3 servings
  • Anti-yellowing agent 0.2 servings
  • a foam with a density of 40 kg/m 3 , a white appearance, and good air permeability is obtained.
  • the measured product unsaturation is 0.15mmol/g.
  • ethylene glycol monomethyl ether 0.38g, 1,2-propanediol monomethyl ether 0.45g, diethylene glycol monomethyl ether 2.4g, ethylene glycol 0.62g, 1,2-propanediol/1,3 -Propylene glycol 3.04, neopentyl glycol 1.04g and sorbitan 1.64g are used as starters, the catalyst sodium methoxide 2.5g is added, and nitrogen is substituted.
  • the product's water content and acid value are qualified; the hydroxyl value is 21.4mgKOH/g (theoretical hydroxyl value 21.32mgKOH/g), which proves that the molecular weight has reached the calculated molecular weight of 5000, and the measured unsaturation is 0.020mmol/g (theoretical unsaturation 0.235 mmol/g).
  • Second polyether polyol 100 parts
  • Silicone oil 0.5 serving
  • Foaming catalyst 0.01 parts
  • Antioxidant 0.3 servings
  • Anti-yellowing agent 0.2 servings
  • a foam with a density of 40 kg/m 3 , a white appearance, and good air permeability was obtained; the measured product unsaturation was 0.15 mmol/g.
  • the product's water content and acid value are qualified; the hydroxyl value is 21.4mgKOH/g (theoretical hydroxyl value is 21.32mgKOH/g), which proves that the molecular weight has reached the calculated molecular weight of 5000, and the measured unsaturation is 0.020mmol/g.
  • Second polyether polyol 100 parts
  • Silicone oil 0.5 serving
  • Foaming catalyst 0.01 parts
  • Antioxidant 0.3 servings
  • Anti-yellowing agent 0.2 servings
  • a foam with a density of 40 kg/m 3 , a white appearance, and good air permeability was obtained; the measured product unsaturation was 0.15 mmol/g.
  • Example 5 The process conditions of Example 5 are basically the same as those of Example 4, except that propylene oxide is used instead of ethylene oxide, and potassium carbonate is used as the reducing agent.
  • the specific surface area of the prepared catalyst was detected to be 2100m 2 /g.
  • the average molecular weight of the epoxide added in each stage is X
  • the molecular weight of the hydroxyl-containing initiator is Y
  • the epoxide needs to be added in the i stage
  • 1,2-propanediol to the reactor, use zinc hexacyanocobaltate as the catalyst, the dosage is 30ppm (based on the total weight of the reaction system during the reaction, the same below), control the reaction temperature 120 °C, the reaction pressure 0.4MPa, add Propylene oxide, the first polyether polyol is prepared according to the polymerization route of 1,2-propanediol-500g/mol-2000g/mol-8000g/mol, and by GPC analysis, the polyether molecular weight is 7950g/mol, molecular weight distribution 1.02, viscosity 2000cp@25°C.
  • the first polyether polyol obtained in the above step is used as a raw material.
  • the temperature is raised to 120°C.
  • the sodium metal catalyst is added at a molar ratio of 1.2:1 to the hydroxyl equivalent of the polyether polyol, followed by the addition of allyl chloride.
  • the molar ratio of the hydroxyl equivalent of the polyol is 1.4:1, and the crude product of the double bond-terminated modified polyether is obtained by constant temperature reaction for 12 hours.
  • the modified polyether obtained in the above step is used as a raw material, the temperature is raised to 60°C, and the supported platinum metal catalyst of Example 1 is added in an amount of 30 ppm (based on the platinum content, based on the total mass of the reaction system during the reaction, the same below), followed by continuous After adding methyldimethoxysilane, the molar ratio of the dosage and the equivalent of the double bond of modified polyether is 1:1, and the final product reaction type sealant resin is obtained after 3 hours of constant temperature reaction.
  • the product is silane terminated by nuclear magnetic analysis and GPC analysis. Rate>99.5%, viscosity 2100cp@25°C, molecular weight distribution 1.073.
  • the first polyether polyol is prepared by GPC analysis showed that the molecular weight of the polyether was 17,800 g/mol, the molecular weight distribution was 1.105, and the viscosity was 16000 cp@25°C.
  • the first polyether polyol obtained in the above step is used as a raw material.
  • the temperature is raised to 100°C, the catalyst sodium hydride is added, and the molar ratio of the amount to the polyether polyol hydroxyl equivalent is 2:1, followed by the addition of methallyl chloride.
  • the molar ratio of hydroxyl equivalents of the polyether polyol is 1.8:1, and the crude product of the double bond-terminated modified polyether is obtained by reacting at a constant temperature for 6 hours.
  • the modified polyether obtained in the above step is used as a raw material, the temperature is raised to 80°C, and the platinum metal catalyst supported in Example 7 is added at an amount of 15 ppm, followed by continuous addition of trimethoxysilane, the molar ratio of the amount to the double bond equivalent of the modified polyether It is 1.2:1. After 2 hours of constant temperature reaction, the final product reactive sealant resin is obtained. Through nuclear magnetic analysis and GPC analysis, the silane end-capping rate of the product is >99.2%, the viscosity is 16500cp@25°C, and the molecular weight distribution is 1.110.
  • the first polyether polyol obtained in the above step is used as a raw material.
  • the temperature is raised to 140°C, the catalyst sodium methoxide is added, and the molar ratio of the amount to the polyether polyol hydroxyl equivalent is 2.4:1, followed by the addition of methallyl chloride.
  • the molar ratio of the hydroxyl equivalent of the polyether polyol is 2:1, and the crude product of the double bond-terminated modified polyether is obtained by reacting at a constant temperature for 10 hours.
  • the modified polyether obtained in the above step is used as a raw material.
  • the temperature is raised to 120° C., and the platinum metal catalyst supported in Example 3 is added in an amount of 5 ppm, followed by continuous addition of trimethoxysilane, the molar ratio of the amount to the double bond equivalent of the modified polyether. It is 1.3:1.
  • the final product reactive sealant resin is obtained.
  • the silane end-capping rate of the product is >99%, the viscosity is 6100cp@25°C, and the molecular weight distribution is 1.093.
  • sorbitol Add an appropriate amount of sorbitol to the reaction kettle, use zinc hexacyanocobaltate as the catalyst, the dosage is 30ppm, control the reaction temperature 140 °C, reaction pressure 0.3MPa, add propylene oxide, according to sorbitol -800g/mol-4000g/mol -8000g/mol-12000g/mol-18000g/mol-24000g/mol–30000g/mol-40000g/mol polymerization route to prepare the first polyether polyol, by GPC analysis, the polyether molecular weight 38000g/mol, molecular weight distribution 1.152 , Viscosity 9000cp@25°C.
  • the first polyether polyol obtained in the above step is used as a raw material.
  • the temperature is raised to 120°C, and the catalyst metal sodium and sodium methoxide are added, and the molar ratio of the amount to the polyether polyol hydroxyl equivalent is 0.8:0.8:1, followed by the addition of methallyl
  • the molar ratio of the base chlorine to the amount of polyether polyol hydroxyl equivalent is 1.6:1, and the crude product of double bond-terminated modified polyether is obtained by constant temperature reaction for 10 hours.
  • the modified polyether obtained in the above step is used as a raw material.
  • the temperature is raised to 100°C, and the platinum metal catalyst supported in Example 4 is added in an amount of 1 ppm, followed by continuous addition of a quantitative amount of hydrogen-containing silane in an amount equivalent to the molar equivalent of the double bond equivalent of the modified polyether
  • the ratio is 1:1, and the final product reaction type sealant resin is obtained after 2 hours of constant temperature reaction.
  • the silane end-capping rate of the product is >99.1%
  • the viscosity is 9200cp@25°C
  • the molecular weight distribution is 1.160.
  • the first polyether polyol was prepared by the polymerization route of mol-12000g/mol-18000g/mol-24000g/mol, and GPC analysis showed that the polyether had a molecular weight of 24200g/mol, a molecular weight distribution of 1.125, and a viscosity of 10000cp@25°C.
  • the first polyether polyol obtained in the above step is used as a raw material.
  • the temperature is raised to 120°C, the catalyst sodium methoxide is added, and the molar ratio of the amount to the polyether polyol hydroxyl equivalent is 1.8:1, followed by the addition of allyl chloride, the amount and the polyether
  • the molar ratio of the hydroxyl equivalent of the polyol is 1.8:1
  • the crude product of the double bond-terminated modified polyether is obtained by constant temperature reaction for 12 hours.
  • the modified polyether obtained in the above step is used as a raw material.
  • the temperature is raised to 100°C, and the platinum metal catalyst supported in Example 5 is added in an amount of 8 ppm, followed by continuous addition of methyldimethoxysilane in an amount equivalent to the double bond equivalent of the modified polyether
  • the molar ratio is 1.1:1.
  • the final product reactive sealant resin is obtained.
  • the silane end-capping rate of the product is >99.2%
  • the viscosity is 10500cp@25°C
  • the molecular weight distribution is 1.126.
  • the above polyether polyol was modified and refined to obtain a double bond-terminated modified polyether polyol.
  • the molecular weight of the polyether polyol was 24800 g/mol , The molecular weight distribution is 1.20.

Abstract

本发明公开了一种反应型密封胶树脂的制备方法,所述方法包括:(1)含羟基起始剂在碱催化剂作用下,通过与环氧化合物聚合而得到聚醚多元醇;(2)在步骤(1)得到的聚醚多元醇中加入醇盐化试剂和含有双键的卤代封端剂反应,以得到双键封端聚醚粗产品,并对得到的粗产品进行精制,得到改性聚醚产品;(3)使改性聚醚与含氢硅烷在硅氢加成催化剂的作用下,进行硅烷封端反应得到目标产物反应型密封胶树脂。该树脂性质优异,具有良好的粘接性和可涂饰性。

Description

一种反应型密封胶树脂的制备方法 技术领域
本发明涉及密封胶领域,尤其涉及一种反应型密封胶树脂的制备方法,主要用于制备弹性密封胶。
背景技术
八十年代以来,随着城市建筑现代化发展和对建筑功能要求的提高,我国建筑结构接缝密封用高性能密封胶的品种和数量越来越多,最早用于建筑的是聚硫型,以后相继发展了丙烯酸、硅酮和聚氨酯型密封胶,发展十分迅速。其中以硅酮型密封胶发展最快,具有固化速度快、耐高温和耐候性优异等优点,但存在强度较低、表面不可涂饰等缺点。聚氨酯类密封胶强度高、耐油耐溶剂性、耐磨性好,但存在固化过程中易发泡、耐候性差、粘接需用底胶等缺点。市场的发展对综合功能和经济性更优的密封胶提出了需求,以有效改善和提高密封胶的适应性和可靠性。
反应型密封胶其固化机理是其端烷氧基在催化剂的作用下与空气中的水发生反应,脱去小分子醇,主链交联形成三维网状结构,从而结合了有机硅及聚氨酯两者优点。近年来,该类反应型密封胶越来越受到关注,在欧美等国家已得到了广泛的应用,由于其具有广泛的粘接范围和对基材的适应性,而被用于建筑、汽车、轨道交通、集装箱、设备制造和工业等各个领域,也预示着它将具有广阔的应用前景。
封端反应型密封胶的基础聚合物是端硅氧烷聚醚,目前主要可通过以下方法实现:
1、封端改性聚氨酯密封胶,采用端-NCO聚醚预聚体与烯丙醇反应合成改性聚醚,在氯铂酸催化作用下同有机硅化合物(如甲基二甲氧基硅烷)进行硅氢加成反应制备端硅氧烷聚醚,所用聚醚分子量较低,制成的有机硅改性聚醚主链中含多个氨基甲酸酯基团,易形成氢键,聚合物粘度大,配制密封胶时填料加入量相对减少,混合操作也较难。
2、先合成一端为双键、一端为羟基的高分子量聚醚,然后用偶联剂 (如二异氰酸酯等)倍增为分子量更大的改性聚醚,经封端工艺制成端硅氧烷基聚醚,所用聚醚分子量较高,分子链上所含氨基甲酸酯基团少,可由偶联剂进行一次偶联反应,对聚合物粘度影响不大,且无偶联反应的副产物,工艺操作较为简单,但产品中有偶联剂残留,且耐候性偏差。
3、将分子量较低的端羟基聚醚用Williamson醚合成法与碱金属或碱金属氢氧化物反应,以二氯甲烷偶联倍增其分子量,再同烯丙基氯反应生成端双键聚醚,经硅氧加成反应制成端硅氧烷基聚醚,但以二氯甲烷扩链产物分子量分布较宽,直接影响密封胶性能,同时只能用于制备双官度树脂。
4、采用双金属催化剂合成高分子量端羟基聚醚,然后对聚醚进行改性,经硅氢加成制成端硅氧烷聚醚,但过程中副产物盐的脱除是一个难点,目前尚未有较合理的解决方案。
发明内容
本发明的目的在于提供一种反应型密封胶树脂的制备方法,以针对现有技术的不足,更好地制备反应型密封胶树脂。
为实现上述发明目的,本发明采用以下技术方案:
一种反应型密封胶树脂的制备方法,所述制备方法包括以下步骤:
(1)聚醚多元醇的制备:含羟基起始剂在碱催化剂作用下,通过与环氧化合物聚合而得到第一聚醚多元醇;
(2)聚醚改性:在步骤(1)得到的第一聚醚多元醇中加入醇盐化试剂和含有双键的卤代封端剂反应,以得到双键封端聚醚的粗产品,并对得到的粗产品进行精制,得到改性聚醚产品;精制时,先采用中和剂进行中和,然后加入水和有机溶剂,随后采用聚结分离器进行分离,脱除溶剂后得到改性聚醚产品;
(3)硅烷封端:使步骤(2)得到的改性聚醚为原料与含氢硅烷在硅氢加成催化剂的作用下,进行硅烷封端反应得到目标产物反应型密封胶树脂。
聚醚多元醇制备
在本发明的步骤(1)中,用于制备第一聚醚多元醇的含羟基起始剂、碱催化剂和环氧化物(也称为聚合单体)均可以是本领域熟知制备聚醚多元的常用原料。其中,所述含羟基起始剂可以为分子量不大于400的小分子一元醇或小分子多元醇,例如可以为甲醇、乙醇、乙二醇、1,2-丙二醇、1,3-丙二醇、甘油、三羟甲基丙烷、季戊四醇、山梨醇、甘露醇、蔗糖、葡萄糖和木糖醇中的一种或多种,优选为1,2-丙二醇和/或甘油。
所述碱催化剂可以为碱金属、碱金属氢化物、碱金属氢氧化物、碱金属烷基氧化物、复合金属氰化物和磷腈催化剂中的一种或多种,优选地,所述碱催化剂为复合金属氰化物,例如六氰钴酸锌;在步骤(1)的反应体系中,所述碱催化剂的含量可以为10-100ppm,优选20-80ppm,更优选30-60ppm。
所述环氧化合物可以为环氧乙烷、环氧丙烷、环氧异丁烷及四氢呋喃中的一种或多种,优选环氧乙烷和/或环氧丙烷,更优选环氧丙烷、或环氧乙烷含量不超过15wt%的环氧乙烷与环氧丙烷的混合物。
在一种实施方式中,步骤(1)中,制备聚醚多元醇的反应温度为90-180℃,优选100-160℃;反应压力为0.05-0.8MPa,比如0.1MPa、0.3MPa或0.5MPa优选为0.2-0.6MPa。
根据本发明的方法,优选地,所述第一聚醚多元醇分子量为3000-50000g/mol,官能度为2-8之间;进一步优选地,第一聚醚多元醇分子量为8000-35000g/mol,官能度为2-6。
聚醚多元醇的制备为本领域所熟知,在本发明中,优选地,在步骤(1)中,第一聚醚多元醇通过n个阶段聚合得到,n≥2,比如4、6、8或10;在本发明中,“通过n个阶段聚合”是指在前一阶段的聚合完成后,再加入一定量的环氧化物以继续进行新一阶段的聚合,并依次类推,直至完成n个阶段的聚合;本领域技术人员理解,当最终聚醚的目标分子量越大,n可以设定越大,比如最终聚醚的目标分子量不小于18000g/mol时,优选n≥5。研究发现,通过分阶段聚合,相对于一步聚合,可以有 效减小目标产物中聚醚多元醇分子之间的分子量差距,得到分子量分布窄的聚醚多元醇。各阶段聚合的目标分子量依次设定为M1…Mi…Mn,此时,其聚合路线可以表示为:含羟基起始剂-M1-…,…-Mn,Mn即为最终聚醚多元醇产品的目标分子量,例如n=5时,其聚合路线表示为:含羟基起始剂-M1-M2-M3-M4-M5;优选地,M1≤1000g/mol,并且Mi-M(i-1)≤12000g/mol,比如2000、4000、6000、8000或10000g/mol,也即相邻阶段的目标分子量不宜设定得差值过大,有利于减小最终聚醚多元醇产品的分子量分布,其中i为1~n的整数,例如n=2时,i为1或2,n=3时,i为1、2或3,M0则表示起始剂的分子量;进一步优选地,当Mi≤10000g/mol时,比如为2000、4000、6000或8000g/mol时,Mi-M(i-1)≤5000g/mol,比如2000、3000或4000g/mol,也即当目标分子量不大于10000g/mol时,其与前一阶段的目标分子量不宜设定得与其差值大于5000g/mol,有利于减小最终聚醚多元醇产品的分子量分布。
例如,所述聚醚多元醇的合成以小分子多元醇为起始剂,采用分阶段聚合工艺,制备窄分子量分布、低粘度、高分子量聚醚多元醇产品,聚合路线如下:二官醇-400g/mol-2000g/mol-8000g/mol-12000g/mol-18000g/mol-24000g/mol;或者三官醇-800g/mol-3000g/mol-12000g/mol-18000g/mol-24000g/mol-30000g/mol;或者四官醇或五官醇或六官醇-800g/mol-4000g/mol-8000g/mol-12000g/mol-18000g/mol-24000g/mol-30000g/mol-40000g/mol。
在本发明中,为得到窄分布、低粘度产品采用分阶段聚合工艺,通过控制原料加入量控制中间体分子量,从而实现上述聚合路线,具体地,当各阶段加入的环氧化物的平均分子量为X,含羟基起始剂的分子量为Y(当含羟基起始剂为混合物时,则计为平均分子量),则第i阶段需要添加的环氧化物摩尔量为起始剂摩尔量的Z倍,满足如下关系:Z=(Mi-M(i-1))/X,其中i为1~n的整数,当i=1时的M0=Y。
聚醚多元醇改性
在本发明中,通过Williamson反应对聚醚多元醇进行改性,得到双 键封端聚醚的粗产品。上述改性处理所采用的醇盐化试剂可以为碱金属、碱金属氢化物、碱金属氢氧化物、碱金属烷氧基化合物中的一种或多种的混合,优选碱金属钠、氢化钠或甲醇钠中一种或多种;所用到的聚醚改性化合物即含有双键的卤化物优选烯丙基氯或甲基烯丙基氯。
在一种实施方式中,所述的醇盐化试剂的用量与聚醚多元醇羟基当量(即聚醚多元醇中羟基的总摩尔量)的摩尔比为1-3:1,优选1.2-2.4:1,比如1.5:1或2:1;所述的含有双键的卤化物的用量与聚醚多元醇羟基当量的摩尔比为1-3:1,优选1.2-2.4:1,比如1.5:1或2:1。
在一种实施方式中,所述聚醚多元醇改性制备双键封端聚醚的反应温度为80-160℃,优选100-140℃,比如120℃或130℃;反应时间为3-18小时,优选5-15小时,比如8、10或12小时。
经改性后所得的是双键封端聚醚的粗产品,需要进一步精制以脱除杂质。精制时,先采用中和剂进行中和,例如中和至pH值为4-8,然后加入水和有机溶剂,随后采用聚结分离器进行分离水(及溶解的盐),然后进一步脱除有机溶剂后得到改性聚醚产品,例如通过减压蒸馏脱除有机溶剂,可用装置可以为薄膜蒸发器。所采用的中和剂可以为盐酸、硫酸、磷酸、醋酸和乳酸中的一种或多种,优选醋酸或乳酸,用量可以为聚醚粗产品用量的0.1-5wt%,优选0.5-3wt%,比如1wt%或2wt%。所述有机溶剂为烷烃、苯类化合物或腈类化合物,优选正己烷;所述有机溶剂、水和粗产品质量比为0.1-3(比如1或2):0.1-2(比如0.5、0.8或1.5):1,优选0.5-1.5:0.3-1:1。
硅烷封端
在本发明中,上述改性聚醚与含氢硅烷在硅氢加成催化剂(例如卡斯特催化剂)的作用下,进行硅烷封端反应,该封端反应常用于反应型密封胶树脂的制备。其中,所采用含氢硅烷可以为三甲氧基硅烷、三乙氧基硅烷、甲基二甲氧基硅烷和甲基二乙氧基硅烷中的一种或多种,优选为甲基二甲氧基硅烷和/或三甲氧基硅烷。在一种实施方式中,所述含氢硅烷用量与改性聚醚双键当量(即改性聚醚中双键的总摩尔量)的摩 尔比为0.9-2:1,比如1.2:1或1.8:1,优选1-1.5:1;反应温度为50-140℃,比如80或100℃,优选60-120℃;反应时间为1-8小时,优选2-6小时,比如4小时。
在一种实施方式中,所述硅氢加成催化剂为催化硅氢加成反应的负载型铂金属催化剂,其以铂含量计在步骤(3)反应体系中的用量为0.1ppm-50ppm,优选1ppm-30ppm,比如5ppm、10ppm或20ppm。
负载型铂金属催化剂
在一种实施方式,所述负载型铂金属催化剂通过以聚氨酯软质泡沫为载体浸渍氯铂酸溶液并还原干燥得到;所述聚氨酯软质泡沫为包括第二聚醚多元醇的原料经发泡反应制得,其中,用于制备第二聚醚多元醇的聚合单体中包括分子中含有C=C双键的环氧化物,其在聚合单体中的含量为1wt%~40wt%,优选10wt%~30wt%,比如20wt%;优选地,所述含有C=C双键的环氧化物为烯丙基缩水甘油醚
Figure PCTCN2018124350-appb-000001
甲基烯丙基缩水甘油醚、丙烯酸缩水甘油醚、甲基丙烯酸缩水甘油醚
Figure PCTCN2018124350-appb-000002
中的一种或多种。
在一种实施方式中,所述第二聚醚多元醇是由含羟基起始剂,与包括所述分子中含有C=C双键的环氧化物的聚合单体在碱催化剂作用下聚合得到;优选地,所述聚合单体由环氧乙烷和环氧丙烷中的至少一种,以及所述分子中含有C=C双键的环氧化物组成;进一步优选地,在加入聚合单体的过程中,最后加入的聚合单体不含所述的分子中含有C=C双键的环氧化物,例如首先加入所述分子中含有C=C双键的环氧化物。其中,所述含羟基起始剂、碱催化剂以及反应条件可以同前所述。优选地,所述第二聚醚多元醇分子量为700~10000,比如1000、3000、5000或8000,标称官能度为1~6,优选2~6,比如3或5。制得的第二聚醚多元醇可以进一步经过精制除杂,例如,制得的第二聚醚多元醇的粗产品(粗聚醚)经中和后,加入水、吸附剂和助滤剂后过滤得到精制后的第二聚醚多元醇。在一种实施方式中,中和剂可以为磷酸水溶液;磷酸用量为粗聚醚总质量的0.1%~1%,水用量为粗聚醚总质量的1%~10%;所述的 吸附剂为硅酸镁,用量为粗聚醚总质量的0.1%~8%,所述的助滤剂为硅藻土,用量为粗聚醚总质量的0.01~1%。
所述聚氨酯软质泡沫的配方及制备方法均为本领域技术人员公知,例如可以参考专利CN102408538A等相关文献所公开的聚氨酯软质泡沫的配方及制备方法。在一种实施方式中,所述聚氨酯软质泡沫可以采用以下重量份配方进行发泡得到:
第二聚醚多元醇:100份(重量份,下同)
水:1~10份
物理发泡剂:0.01~50份
硅油:0~5份
交联剂:0~5份
发泡催化剂:0.01~1份
凝胶催化剂:0.01~1份
抗氧剂:0~1份
抗黄变剂:0~1份
异氰酸酯:30~100份
异氰酸酯指数为50~200。
其中,物理发泡剂选自141b、二氯甲烷、丙酮中的一种或多种。
交联剂选自二乙醇胺、三乙醇胺、甘油、三羟甲基丙烷中的一种或多种。
发泡催化剂可以选自叔胺类催化剂,市售牌号A1、A33等,催化剂包括但不限于上述商品化催化剂。凝胶催化剂可以选自辛酸亚锡(T9)、二月桂酸亚锡(T12)等,包括但不限于上述商品化催化剂。
抗氧剂选自受阻酚类产品如1135,抗黄变剂选自磷酸酯类产品。
浸渍时,向氯铂酸溶液中加入聚氨酯软质泡沫,在反应温度为10~80℃,比如20℃、40℃或60℃下进行浸渍,然后加入还原剂,反应10~30h,比如15、20或25h后拿出泡沫,采用溶剂清洗、干燥后得到所述负载型铂金属催化剂备用,上述反应过程的压力并无特别要求,例如可以是常压或微正压(不超过常压的10%)。优选地,浸渍溶液中氯铂酸 的物质量为0.01*n~0.6*n(n为所加入的聚氨酯软质泡沫中所含的以不饱和度计算的双键的物质量)。
氯铂酸溶液中所采用的溶剂可以为甲苯、二甲苯、甲醇、乙醇、异丙醇中的一种或多种,清洗所采用的溶剂相同;所采用的还原剂可以是碳酸氢钠、碳酸氢钾、碳酸钠、碳酸钾中的一种或多种,还原剂用量可以为氯铂酸质量的100%~1000%。
本发明中所述的压力均为绝对压力,所述的分子量,如未特别说明,为数均分子量。
与现有技术相比,本发明的有益效果在于:
1.本发明制备的反应型密封胶树脂是以小分子多元醇为原料,通过聚醚多元醇制备、改性及封端等工艺更好地制备反应型密封胶树脂,尤其是改性工艺,采用聚结分离工艺,避免了过滤和固废处理等工艺难题;
2.本发明制备的反应型密封胶树脂具有分子分布窄,产品粘度低,官能团封端率高等特点,因此使用方便,性能优异,可直接用于密封胶的制备,由于其具有优异的力学性能、耐候性、耐污性、良好的粘接性和可涂饰性,低毒环保等性能,主要用于弹性密封胶的制备,被广泛用于建筑、家装、工业等各个领域;
3、本发明的负载型铂金属催化剂为负载于高比表面积聚氨酯软质泡沫上的卡斯特催化剂,由于催化剂配体乙烯基桥通过反应固定在聚氨酯泡沫上,通过配体螯合的0价铂催化剂也能很好地负载并不易脱落、流失。该催化剂是一种具有高比表面积、易回收、催化效率高、催化剂不易失活、催化剂外形可控等优良特点的负载型铂金属催化剂,催化剂催化效率高,特别适合一些高溶解性、催化剂易流失、失活体系的加成反应,特别是硅氢加成反应,并且由于泡沫可模块化定制,催化剂更适合工业化放大。
具体实施方式
以下通过实施例对本发明做进一步的详细说明,但不应将此理解为本发明的范围仅限于以下的实例。在不脱离本发明上述方法思想的情况下,根据本领域普通技术知识和惯用手段做出的各种替换或变更,均应包含在本发明的范围内。
以下实施例/对比例中,所用试剂如未特别说明,均为分析纯;所述含量如未特别说明,为质量含量。
实施例或对比例中涉及到的测试方法中羟值测试参照GB/T12008.3-2009进行测试;酸值测试参照GB/T 12008.5-2010进行测试;不饱和度参照GB/T12008.6-2010测定进行测试;水含量测试参照GB/T22313-2008塑料用于聚氨酯生产的多元醇水含量的测定进行测试,泡沫催化剂比表面积参照GB/T 19587-2004气体吸附BET法测定固态物质比表面积进行测定。
发泡催化剂:A1、A33(阿拉丁试剂),凝胶催化剂选自辛酸亚锡(T9)(阿拉丁试剂)。
抗氧剂选自受阻酚类产品1135(BASF),抗黄变剂选自磷酸酯类抗黄变剂168(东莞同达化工)。
物理发泡剂为二氯甲烷,交联剂为二乙醇胺。
GPC仪器型号Waters-2707-1515-2414,设备厂家Waters,采用的色谱柱为安捷伦PL1113-6500(300×7.5mm),分析测试方法:称取0.04g样品加入到4ml样品瓶中,用一次性滴管加入四氢呋喃稀释样品至浓度为1%左右,经过0.45um尼龙滤膜过滤后,进行GPC分析。
核磁共振波普仪型号AVANCEIII 400MHz,设备厂家Bruker,分析测试条件:5mm BBO探头,实验类型PROTON,脉冲序列zg30,扫描次数64次,温度298k。
负载型铂金属催化剂制备:
实施例1
向1L釜中加入甲醇32g(1mol)为起始剂,加入催化剂氢氧化钠0.7g,氮气置换。
加入6.68g烯丙基缩水甘油醚,升温至100℃,加压至0.05MPa反应1h;然后加入460.92g环氧丙烷,反应至压力不再变化后加入环氧乙烷200.4g,总计反应时间1h,至反应压力不再变化后熟化1h后得到粗聚醚产物,并加入占粗聚醚总质量0.1%的中和剂磷酸为、1%的水、0.1%的吸附剂硅酸镁和0.01%的助滤剂硅藻土进而过滤后得到精制后的第二聚醚多元醇。
经测定,产品水含量、酸值合格(水分<0.05%,酸值<0.1mgKOH/g,下同);羟值80.1mgKOH/g(理论羟值80.14mgKOH/g),证明分子量已达计算分子量700,测得不饱和度为0.08mmol/g(理论不饱和度为0.084mmol/g)。
制备聚氨酯软质泡沫的配方如下:
第二聚醚多元醇:100份(重量份,下同)
水:3.3份
物理发泡剂:10份
硅油:0.5份
交联剂:1份
发泡催化剂:0.01份
凝胶催化剂:0.02份
抗氧剂:0.3份
抗黄变剂:0.2份
异氰酸酯(TDI):47份
异氰酸酯指数:100
上述配方中除异氰酸酯(TDI)以外的组份预先混合均匀并冷却至室温,室温下加入异氰酸酯快速搅拌后倒入发泡模具,待其发泡完成、老化结束后脱模,制得密度40kg/m 3、外观白色、透气性良好的泡沫;实测产品不饱和度为0.05mmol/g。
取100g泡沫切割成1cm 3小块加入氯铂酸(0.05mmol)、10g甲苯分散后加入碳酸氢钠0.0205g,在反应温度10℃下反应10h后,用30g甲苯洗涤泡沫后50℃下干燥1h后,制得最终负载型铂金属催化剂。催化剂的 比表面积为2300m 2/g。
为验证该催化剂,在3L反应瓶中加入100g烯丙基聚醚(分子量1000,双键官能度2,不饱和度2mmol/g),加热至80℃,将上述负载型铂金属催化剂加入反应器后,加入含氢硅油(分子量2000,硅氢键含量0.1mmol/g)2100g(硅氢:双键=1.05:1),反应1h后,取出催化剂,降温出料,经不饱和度检测,反应液不饱和度为痕量,表明反应效率极高。
重复上述硅烷封端反应100次,每次反应结束后采用与制备催化剂相同的溶剂对泡沫进行清洗,以验证其循环寿命实验,检测发现反应收率基本没有变化(各次反应收率之间的差值不超过收率平均值的±0.5%)。
实施例2
向1L釜中加入乙醇2.3g(0.05mol)、甘油三醇4.6g(0.05mol)为起始剂,加入催化剂氢氧化钾10g,氮气置换。
加入14g甲基烯丙基缩水甘油醚、13.7g丙烯酸缩水甘油醚,升温至150℃,加压至0.5MPa反应10h。至反应压力不再变化后熟化5h后得到粗聚醚产物,加入占粗聚醚总质量1%的中和剂磷酸、10%的水、8%的吸附剂硅酸镁和1%的助滤剂硅藻土,进而过滤后得到精制后的第二聚醚多元醇。
经测定,产品水含量、酸值合格;上述产品测得羟值11.2mgKOH/g(理论羟值11.22mgKOH/g),证明分子量已达计算分子量10000,测得不饱和度为0.022mmol/g(理论不饱和度为0.235mmol/g)。
制备聚氨酯软质泡沫的配方如下:
第二聚醚多元醇:100份
水:3.3份
物理发泡剂:10份
硅油:0.5份
交联剂:1份
发泡催化剂:0.01份
凝胶催化剂:0.02份
抗氧剂:0.3份
抗黄变剂:0.2份
异氰酸酯(TDI):47份
异氰酸酯指数:100
制得密度40kg/m 3、外观白色、透气性良好的泡沫。实测产品不饱和度为0.15mmol/g。
100g泡沫切割成1cm 3小块加入氯铂酸(0.09mol)、68.5g的25%二甲苯和75%甲醇的混合溶剂分散后加入碳酸氢钾369g,在反应温度80℃下反应30h后,用205g上述溶剂洗涤泡沫后120℃下干燥20h后,制得最终负载型铂金属催化剂。催化剂的比表面积为2100m 2/g。
实施例3
向10L釜中加入乙二醇单甲醚0.38g、1,2-丙二醇单甲醚0.45g、二乙二醇单甲醚2.4g、乙二醇0.62g、1,2-丙二醇/1,3-丙二醇3.04、新戊二醇1.04g和失水山梨醇1.64g为起始剂,加入催化剂甲醇钠2.5g,氮气置换。
加入250g甲基烯丙基缩水甘油醚、750g丙烯酸缩水甘油醚,升温至125℃,加压至0.3MPa反应5h。然后加入80g环氧丙烷,反应至压力不再变化,总计反应时间5h,熟化2.5h后得到粗聚醚产物,并加入占粗聚醚总质量0.5%的中和剂磷酸、5%的水、4%的吸附剂硅酸镁和0.5%的助滤剂硅藻土,进而过滤后得到精制后的第二聚醚多元醇。
经测定,产品水含量、酸值合格;羟值21.4mgKOH/g(理论羟值21.32mgKOH/g),证明分子量已达计算分子量5000,测得不饱和度为0.020mmol/g(理论不饱和度为0.235mmol/g)。
制备聚氨酯软质泡沫的配方如下:
第二聚醚多元醇:100份
水:3.3份
物理发泡剂:10份
硅油:0.5份
交联剂:1份
发泡催化剂:0.01份
凝胶催化剂:0.02份
抗氧剂:0.3份
抗黄变剂:0.2份
异氰酸酯(TDI):47份
异氰酸酯指数:100
制得密度40kg/m 3、外观白色、透气性良好的泡沫;实测产品不饱和度为0.15mmol/g。
100g泡沫切割成1cm 3小块加入18.4g氯铂酸(0.045mol)、35.52g的50%乙醇和50%异丙醇的混合溶剂分散后加入碳酸氢钾92g,在反应温度45℃下反应20h后,用106.56g上述溶剂洗涤泡沫后在85℃下干燥10h后,制得最终负载型铂金属催化剂。催化剂的比表面积为2200m 2/g。
实施例4
向10L釜中加入水1.8g、乙二醇0.62g、1,2-丙二醇3.04g、新戊二醇1.04g、三羟甲基丙烷134g、山梨醇1.82g和葡萄糖3.6g为起始剂,加入催化剂甲醇钾2.5g,氮气置换。
加入27.5g甲基烯丙基缩水甘油醚、22.5g甲基丙烯酸缩水甘油醚,升温至125℃,加压至0.3MPa反应5h。然后加入99g环氧乙烷,反应至压力不再变化,总计反应时间5h,至反应压力不再变化后熟化2.5h后得到粗聚醚产物,并加入占粗聚醚总质量1%的中和剂磷酸、10%的水、8%的吸附剂硅酸镁和1%的助滤剂硅藻土,进而过滤后得到精制后的第二聚醚多元醇。
经检测,产品水含量、酸值合格;羟值21.4mgKOH/g(理论羟值21.32mgKOH/g),证明分子量已达计算分子量5000,测得不饱和度为0.020mmol/g。
制备聚氨酯软质泡沫的配方如下:
第二聚醚多元醇:100份
水:3.3份
物理发泡剂:10份
硅油:0.5份
交联剂:1份
发泡催化剂:0.01份
凝胶催化剂:0.02份
抗氧剂:0.3份
抗黄变剂:0.2份
异氰酸酯(TDI):47份
异氰酸酯指数:100
制得密度40kg/m 3、外观白色、透气性良好的泡沫;实测产品不饱和度为0.15mmol/g。
100g泡沫切割成1cm 3小块加入氯铂酸(0.045mol)、35.52g的50%乙醇和50%异丙醇的混合溶剂分散后加入碳酸钠92g,在反应温度45℃下反应20h后,用106.56g上述溶剂洗涤泡沫后50℃下干燥10h后,制得最终负载型铂金属催化剂。催化剂的比表面积经过检测为2300m 2/g。
实施例5
实施例5工艺条件基本同实施例4,不同之处在于使用环氧丙烷代替环氧乙烷,并采用碳酸钾作为还原剂。制备的催化剂比表面积经过检测为2100m 2/g。
反应型密封胶树脂的制备
以下实施例6-10中,制备第一聚醚多元醇时,各阶段加入的环氧化物的平均分子量为X,含羟基起始剂的分子量为Y,则第i阶段需要添加的环氧化物摩尔量为小分子多元醇起始剂摩尔量的Z倍,满足如下关系:Z=(Mi-M(i-1))/X,其中i为1~n的整数,当i等于1时的M0=Y。
实施例6
将适量1,2-丙二醇加入到反应釜中,采用六氰钴酸锌为催化剂,用量为30ppm(基于反应时反应体系总重量,下同),控制反应温度120℃,反应压力0.4MPa,加入环氧丙烷,按照1,2-丙二醇-500g/mol-2000g/mol-8000g/mol的聚合路线制备第一聚醚多元醇,通过GPC分析,得到聚醚分子量7950g/mol,分子量分布1.02,粘度2000cp@25℃。
以上步得到的第一聚醚多元醇为原料,升温至120℃,加入催化剂金属钠,用量与聚醚多元醇羟基当量的摩尔比为1.2:1,随后加入烯丙基氯,用量与聚醚多元醇羟基当量的摩尔比为1.4:1,恒温反应12小时得到双键封端改性聚醚粗产品。随后加入改性聚醚粗产品质量0.5%的醋酸、50%的正己烷溶剂和30%的水,搅拌混合2小时,随后采用聚结分离器进行水分离,然后采用薄膜蒸发器减压蒸馏脱除有机溶剂得到精制的改性聚醚产品,通过核磁和GPC分析,产品双键封端率>99.8%,粘度2050cp@25℃,分子量分布1.073;
以上步得到的改性聚醚为原料,升温至60℃,加入实施例1的负载型铂金属催化剂,用量为30ppm(以铂含量计,基于反应时反应体系总质量,下同),随后连续加入甲基二甲氧基硅烷,用量与改性聚醚双键当量的摩尔比为1:1,恒温反应3小时后得到终产品反应型密封胶树脂,通过核磁和GPC分析,产品硅烷封端率>99.5%,粘度2100cp@25℃,分子量分布1.073。
实施例7
将适量1,2-丙二醇加入到反应釜中,采用六氰钴酸锌为催化剂,用量为30ppm,控制反应温度160℃,反应压力0.2MPa,加入环氧丙烷和环氧乙烷,环氧乙烷用量占环氧化合物总量的10%,按照1,3-丙二醇-500g/mol-2000g/mol-8000g/mol–12000g/mol–18000g/mol的聚合路线制备第一聚醚多元醇,通过GPC分析,得到聚醚分子量17800g/mol,分子量分布1.105,粘度16000cp@25℃。
以上步得到的第一聚醚多元醇为原料,升温至100℃,加入催化剂氢化钠,用量与聚醚多元醇羟基当量的摩尔比为2:1,随后加入甲基烯丙 基氯,用量与聚醚多元醇羟基当量的摩尔比为1.8:1,恒温反应6小时得到双键封端改性聚醚粗产品。随后加入改性聚醚粗产品质量1%的醋酸、100%的正己烷溶剂和50%的水,搅拌混合2小时,随后参照实施例6分离水和有机溶剂,得到最终的改性聚醚产品,通过核磁和GPC分析,产品双键封端率>99.5%,粘度16200cp@25℃,分子量分布1.106;
以上步得到的改性聚醚为原料,升温至80℃,加入实施例7负载型铂金属催化剂,用量为15ppm,随后连续加入三甲氧基硅烷,用量与改性聚醚双键当量的摩尔比为1.2:1,恒温反应2小时后得到终产品反应型密封胶树脂,通过核磁和GPC分析,产品硅烷封端率>99.2%,粘度16500cp@25℃,分子量分布1.110。
实施例8
将适量甘油加入到反应釜中,采用六氰钴酸锌为催化剂,用量为50ppm,控制反应温度110℃,反应压力0.3MPa,加入环氧丙烷,按照三官醇-800g/mol-3000g/mol-12000g/mol-18000g/mol的聚合路线制备第一聚醚多元醇,通过GPC分析,得到聚醚分子量17900g/mol,分子量分布1.090,粘度6000cp@25℃。
以上步得到的第一聚醚多元醇为原料,升温至140℃,加入催化剂甲醇钠,用量与聚醚多元醇羟基当量的摩尔比为2.4:1,随后加入甲基烯丙基氯,用量与聚醚多元醇羟基当量的摩尔比为2:1,恒温反应10小时得到双键封端改性聚醚粗产品。随后加入改性聚醚粗产品质量3%的醋酸、150%的正己烷溶剂和50%的水,搅拌混合2小时,随后参照实施例6脱除水和有机溶剂,得到最终的改性聚醚产品,通过核磁和GPC分析,产品双键封端率>99.2%,粘度6000cp@25℃,分子量分布1.091;
以上步得到的改性聚醚为原料,升温至120℃,加入实施例3负载型铂金属催化剂,用量为5ppm,随后连续加入三甲氧基硅烷,用量与改性聚醚双键当量的摩尔比为1.3:1,恒温反应4小时后得到终产品反应型密封胶树脂,通过核磁和GPC分析,产品硅烷封端率>99%,粘度6100cp@25℃,分子量分布1.093。
实施例9
将适量山梨醇加入到反应釜中,采用六氰钴酸锌为催化剂,用量为30ppm,控制反应温度140℃,反应压力0.3MPa,加入环氧丙烷,按照山梨醇-800g/mol-4000g/mol-8000g/mol-12000g/mol-18000g/mol-24000g/mol–30000g/mol-40000g/mol的聚合路线制备第一聚醚多元醇,通过GPC分析,得到聚醚分子量38000g/mol,分子量分布1.152,粘度9000cp@25℃。
以上步得到的第一聚醚多元醇为原料,升温至120℃,加入催化剂金属钠和甲醇钠,用量与聚醚多元醇羟基当量的摩尔比为0.8:0.8:1,随后加入甲基烯丙基氯,用量与聚醚多元醇羟基当量的摩尔比为1.6:1,恒温反应10小时得到双键封端改性聚醚粗产品。随后加入改性聚醚粗产品质量2%的醋酸、80%的正己烷溶剂和60%的水,搅拌混合2小时,随后参照实施例6脱除水和溶剂,得到最终的改性聚醚产品,通过核磁和GPC分析,产品双键封端率>99.5%,粘度9200cp@25℃,分子量分布1.159;
以上步得到的改性聚醚为原料,升温至100℃,加入实施例4负载型铂金属催化剂,用量为1ppm,随后连续加入定量的含氢硅烷,用量与改性聚醚双键当量的摩尔比为1:1,恒温反应2小时后得到终产品反应型密封胶树脂,通过核磁和GPC分析,产品硅烷封端率>99.1%,粘度9200cp@25℃,分子量分布1.160。
实施例10
将适量甘油加入到反应釜中,采用六氰钴酸锌为催化剂,用量为30ppm,控制反应温度120℃,反应压力0.4MPa,加入定量环氧丙烷,按照三官醇-800g/mol-3000g/mol-12000g/mol-18000g/mol-24000g/mol的聚合路线制备第一聚醚多元醇,通过GPC分析,得到聚醚分子量24200g/mol,分子量分布1.125,粘度10000cp@25℃。
以上步得到的第一聚醚多元醇为原料,升温至120℃,加入催化剂甲醇钠,用量与聚醚多元醇羟基当量的摩尔比为1.8:1,随后加入烯丙基 氯,用量与聚醚多元醇羟基当量的摩尔比为1.8:1,恒温反应12小时得到双键封端改性聚醚粗产品。随后加入改性聚醚粗产品质量1.5%的醋酸、120%的正己烷溶剂和60%的水,搅拌混合2小时,随后参照实施例6脱除水和溶剂,后得到最终的改性聚醚产品,通过核磁和GPC分析,产品双键封端率>99.4%,粘度10100cp@25℃,分子量分布1.126;
以上步得到的改性聚醚为原料,升温至100℃,加入实施例5负载型铂金属催化剂,用量为8ppm,随后连续加入甲基二甲氧基硅烷,用量与改性聚醚双键当量的摩尔比为1.1:1,恒温反应6小时后得到终产品反应型密封胶树脂,通过核磁和GPC分析,产品硅烷封端率>99.2%,粘度10500cp@25℃,分子量分布1.126。
对比例1
将适量的以1.5mol甘油为起始剂的分子量1000的聚醚多元醇加入到反应釜中,然后采用六氰钴酸锌为催化剂,用量为30ppm,控制反应温度120℃,反应压力0.4MPa,加入定量的环氧丙烷(以聚醚多元醇的目标分子量24000计)直接反应得到聚醚多元醇。
同实施例10的制备改性聚醚的方法对上述聚醚多元醇进行改性和精制,得到双键封端的改性聚醚多元醇,通过GPC分析,聚醚多元醇的分子量为24800g/mol,分子量分布为1.20。
取1mol上述改性聚醚多元醇,升温至100℃,加入3mol的甲基二甲氧基硅烷,在催化剂氯铂酸(以Pt计在反应体系中的含量为8ppm)作用下反应,恒温反应6小时后生成硅烷封端的聚烷氧基化合物,通过GPC分析,产物分子量为25100g/mol,分子量分布为1.20,产品粘度15600cp@25℃。

Claims (15)

  1. 一种反应型密封胶树脂的制备方法,所述制备方法包括以下步骤:
    (1)聚醚多元醇的制备:含羟基起始剂在碱催化剂作用下,通过与环氧化合物聚合而得到第一聚醚多元醇;
    (2)聚醚改性:在步骤(1)得到的第一聚醚多元醇中加入醇盐化试剂和含有双键的卤代封端剂反应,以得到双键封端聚醚的粗产品,并对得到的粗产品进行精制,得到改性聚醚产品;
    (3)硅烷封端:使步骤(2)得到的改性聚醚为原料与含氢硅烷在硅氢加成催化剂的作用下,进行硅烷封端反应得到目标产物反应型密封胶树脂。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述第一聚醚多元醇分子量为3000-50000g/mol,官能度为2-8之间;优选第一聚醚多元醇分子量为8000-35000g/mol,官能度为2-6。
  3. 根据权利要求1或2所述的制备方法,其特征在于,步骤(1)中,第一聚醚多元醇通过n个阶段聚合得到,n≥2;将各阶段聚合的目标分子量依次设定为M1…Mi…Mn时,M1≤1000g/mol,并且Mi-M(i-1)≤12000g/mol,优选Mi-M(i-1)≤10000g/mol,其中i为1~n的整数,当i=1时的M0为含羟基起始剂的分子量。
  4. 根据权利要求3所述的制备方法,其特征在于,当Mi≤10000g/mol时,Mi-M(i-1)≤5000g/mol,优选Mi-M(i-1)≤4000g/mol。
  5. 根据权利要求1-4中任一项所述的制备方法,其特征在于,步骤(1)中,所述的环氧化合物为环氧乙烷和环氧丙烷或其任意比例混合物,优选为环氧丙烷,或环氧乙烷含量不超过15wt%的环氧乙烷与环氧丙烷的混合物。
  6. 根据权利要求1-5中任一项所述的制备方法,其特征在于,步骤(1)中,所述的含羟基起始剂为分子量不大于400的小分子多元醇,优选为乙二醇、1,2-丙二醇、1,3-丙二醇、甘油、三羟甲基丙烷、季戊四醇、山梨醇、甘露醇、葡萄糖、蔗糖、木糖醇中的一种或多种,更优选为1,2-丙二醇和/或甘油;
    优选地,步骤(1)的反应体系中,所述碱催化剂的含量为10-100ppm,优选20-80ppm,更优选30-60ppm;所述碱催化剂为碱金属、碱金属氢化物、碱金属氢氧化物、碱金属烷基氧化物、复合金属氰化物和磷腈催化剂中的一种或多种,优选为复合金属氰化物;
    优选地,步骤(1)中,制备第一聚醚多元醇的反应温度为90-180℃,优选100-160℃;反应压力为0.05-0.8MPa,优选为0.2-0.6MPa。
  7. 根据权利要求1-6中任一项所述的制备方法,其特征在于,步骤(2)所述醇盐化试剂为碱金属钠、氢化钠和甲醇钠的一种或多种;所用到的含有双键的卤化物为烯丙基氯或甲基烯丙基氯。
  8. 根据权利要求1-7中任一项所述的制备方法,其特征在于,步骤(2)中,所述醇盐化试剂的用量与聚醚多元醇羟基当量的摩尔比为1-3:1,优选1.2-2.4:1;所述含有双键的卤化物的用量与聚醚多元醇羟基当量的摩尔比为1-3:1,优选1.2-2.4:1。
  9. 根据权利要求1-8中任一项所述的制备方法,其特征在于,步骤(2)中,所述聚醚多元醇改性制备双键封端聚醚的反应温度为80-160℃,优选100-140℃;反应时间为3-18小时,优选为5-15小时。
  10. 根据权利要求1-9中任一项所述的制备方法,其特征在于,步骤(2)中,对粗产品进行精制时,先采用中和剂进行中和,然后加入水和有机溶剂,随后采用聚结分离器分离粗产品中的水,并蒸发脱除有机溶剂,以得到改性聚醚产品;优选地,所述有机溶剂、水和聚醚粗产品的质量比为0.1-3:0.1-2:1,优选0.5-1.5:0.3-1:1;
    优选地,所述中和剂为盐酸、硫酸、磷酸、醋酸和乳酸中一种或多种,优选醋酸或乳酸,用量为聚醚粗产品质量的0.1-5wt%,优选0.5-3wt%;
    优选地,所述有机溶剂为烷烃、苯类化合物或腈类化合物,优选正己烷。
  11. 根据权利要求1-10中任一项所述的制备方法,其特征在于,步骤(3)中,所述含氢硅烷为三甲氧基硅烷、三乙氧基硅烷、甲基二甲氧 基硅烷和甲基二乙氧基硅烷中的一种或多种的混合物,优选为甲基二甲氧基硅烷和/或三甲氧基硅烷;
    优选地,所述含氢硅烷用量与改性聚醚双键当量的摩尔比为0.9-2:1,优选1-1.5:1;反应温度为50-140℃,优选60-120℃;反应时间为1-8小时,优选2-6小时。
  12. 根据权利要求1-11中任一项所述的制备方法,其特征在于,步骤(3)中,所述硅氢加成催化剂为负载型铂金属催化剂,以铂含量计的用量为0.1ppm-50ppm,优选1ppm-30ppm。
  13. 根据权利要求12所述的制备方法,其特征在于,所述负载型铂金属催化剂通过以聚氨酯软质泡沫为载体浸渍氯铂酸溶液并还原得到;所述聚氨酯软质泡沫为包括第二聚醚多元醇的原料经发泡反应制得,其中,用于制备第二聚醚多元醇的聚合单体中包括分子中含有C=C双键的环氧化物,其在聚合单体中的含量为1wt%~40wt%,优选10wt%~30wt%;优选地,所述含有C=C双键的环氧化物为烯丙基缩水甘油醚
    Figure PCTCN2018124350-appb-100001
    甲基烯丙基缩水甘油醚、丙烯酸缩水甘油醚、甲基丙烯酸缩水甘油醚
    Figure PCTCN2018124350-appb-100002
    中的一种或多种。
  14. 根据权利要求13所述的制备方法,其特征在于,所述第二聚醚多元醇是以含羟基起始剂,与包括所述分子中含有C=C双键的环氧化物的聚合单体在碱催化剂作用下聚合得到;所述第二聚醚多元醇分子量为700~10000g/mol,标称官能度为1~6,优选2~6;
    优选地,所述聚合单体由环氧乙烷和环氧丙烷中的至少一种,以及所述分子中含有C=C双键的环氧化物组成;进一步优选地,在加入聚合单体的过程中,首先加入所述分子中含有C=C双键的环氧化物。
  15. 根据权利要求13或14所述的制备方法,其特征在于,浸渍时,向氯铂酸溶液中加入聚氨酯软质泡沫,在反应温度为10~80℃下进行浸渍,然后加入还原剂,反应10~30h后,取出清洗、干燥得到所述负载型铂金属催化剂;
    优选地,浸渍溶液中氯铂酸的物质量为0.01*n~0.6*n,n为所加入的聚氨酯软质泡沫中所含的以不饱和度计算的双键的物质量。
PCT/CN2018/124350 2018-12-27 2018-12-27 一种反应型密封胶树脂的制备方法 WO2020133062A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18945060.4A EP3904482A4 (en) 2018-12-27 2018-12-27 PROCESS FOR MAKING A REACTIVE SEALING RESIN
PCT/CN2018/124350 WO2020133062A1 (zh) 2018-12-27 2018-12-27 一种反应型密封胶树脂的制备方法
US17/413,858 US20220056209A1 (en) 2018-12-27 2018-12-27 Method for preparing reactive sealant resin
JP2021530157A JP7265630B2 (ja) 2018-12-27 2018-12-27 反応型シーラント樹脂の調製方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/124350 WO2020133062A1 (zh) 2018-12-27 2018-12-27 一种反应型密封胶树脂的制备方法

Publications (1)

Publication Number Publication Date
WO2020133062A1 true WO2020133062A1 (zh) 2020-07-02

Family

ID=71129344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124350 WO2020133062A1 (zh) 2018-12-27 2018-12-27 一种反应型密封胶树脂的制备方法

Country Status (4)

Country Link
US (1) US20220056209A1 (zh)
EP (1) EP3904482A4 (zh)
JP (1) JP7265630B2 (zh)
WO (1) WO2020133062A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112795001A (zh) * 2020-12-30 2021-05-14 武汉奥克特种化学有限公司 低模量硅烷改性聚醚及其制备方法与应用
CN112898557A (zh) * 2021-03-23 2021-06-04 浙江皇马科技股份有限公司 一种乙二醇嵌段聚醚及合成方法
CN114479051A (zh) * 2020-10-26 2022-05-13 中国石油化工股份有限公司 一种山梨醇基聚醚多元醇的制备方法、得到的聚醚多元醇
WO2022191084A1 (ja) * 2021-03-12 2022-09-15 Agc株式会社 硬化性組成物及び硬化物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113956465B (zh) * 2021-10-22 2024-04-09 南京清奇新材料科技有限公司 一种烯丙基聚醚的封端方法
CN115845920B (zh) * 2022-12-20 2024-03-22 江西晨光新材料股份有限公司 固体铂催化剂及聚醚改性甲基二甲氧基硅烷的制备方法
CN116676067B (zh) * 2023-06-03 2024-01-12 佛山市创意新材料科技有限公司 一种胶粘剂及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2093244A1 (de) * 2008-02-21 2009-08-26 Evonik Goldschmidt GmbH Neue Alkoxysilylgruppen tragende Polyetheralkohole durch Alkoxylierung epoxidfunktioneller Alkoxysilane an Doppelmetallcyanid (DMC)-Katalysatoren, sowie Verfahren zu deren Herstellung
CN101921393A (zh) * 2010-09-19 2010-12-22 东莞市普赛达密封粘胶有限公司 一种合成端硅烷基聚醚的方法
JP2012031412A (ja) * 2010-08-02 2012-02-16 Evonik Goldschmidt Gmbh 少なくとも1つの非末端アルコキシシリル基を有する変性アルコキシル化生成物、および、貯蔵安定性及び伸展性が増した硬化性材料におけるその使用
CN102408538A (zh) 2011-09-15 2012-04-11 南京金浦锦湖化工有限公司 一种聚氨酯软质泡沫及其生产方法
CN104350084A (zh) * 2012-05-31 2015-02-11 株式会社钟化 具有有多个反应性硅基的末端结构的聚合物及其制造方法和利用
CN106833481A (zh) * 2017-02-06 2017-06-13 山东诺威新材料有限公司 环保型有机硅改性聚醚密封胶及其制备方法
CN108102089A (zh) * 2017-12-15 2018-06-01 上海东大化学有限公司 一种硅烷改性聚醚中间体,硅烷改性聚醚聚合物及其制备方法
CN109071798A (zh) * 2016-04-26 2018-12-21 信越化学工业株式会社 含有末端硅烷醇基的聚氧化烯系化合物及其制造方法、室温固化性组合物、密封材料以及物品

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3971751A (en) * 1975-06-09 1976-07-27 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Vulcanizable silylether terminated polymer
JPH07179744A (ja) * 1993-12-22 1995-07-18 Sanyo Chem Ind Ltd 常温硬化性組成物
JP5070766B2 (ja) 2006-08-25 2012-11-14 旭硝子株式会社 硬化性組成物
WO2009011329A1 (ja) * 2007-07-19 2009-01-22 Kaneka Corporation 硬化性組成物
US9593271B2 (en) 2011-09-22 2017-03-14 Kaneka Corporation Curable composition and cured product thereof
EP3165572B1 (en) * 2014-07-02 2019-05-22 Kaneka Corporation Curable composition and cured object obtained therefrom
JP6837867B2 (ja) 2016-02-26 2021-03-03 株式会社カネカ 硬化性組成物
JP6872975B2 (ja) 2017-05-23 2021-05-19 株式会社カネカ 硬化性組成物
CN110614122B (zh) * 2018-06-20 2023-03-24 万华化学集团股份有限公司 一种负载型硅氢加成催化剂的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2093244A1 (de) * 2008-02-21 2009-08-26 Evonik Goldschmidt GmbH Neue Alkoxysilylgruppen tragende Polyetheralkohole durch Alkoxylierung epoxidfunktioneller Alkoxysilane an Doppelmetallcyanid (DMC)-Katalysatoren, sowie Verfahren zu deren Herstellung
JP2012031412A (ja) * 2010-08-02 2012-02-16 Evonik Goldschmidt Gmbh 少なくとも1つの非末端アルコキシシリル基を有する変性アルコキシル化生成物、および、貯蔵安定性及び伸展性が増した硬化性材料におけるその使用
CN101921393A (zh) * 2010-09-19 2010-12-22 东莞市普赛达密封粘胶有限公司 一种合成端硅烷基聚醚的方法
CN102408538A (zh) 2011-09-15 2012-04-11 南京金浦锦湖化工有限公司 一种聚氨酯软质泡沫及其生产方法
CN104350084A (zh) * 2012-05-31 2015-02-11 株式会社钟化 具有有多个反应性硅基的末端结构的聚合物及其制造方法和利用
CN109071798A (zh) * 2016-04-26 2018-12-21 信越化学工业株式会社 含有末端硅烷醇基的聚氧化烯系化合物及其制造方法、室温固化性组合物、密封材料以及物品
CN106833481A (zh) * 2017-02-06 2017-06-13 山东诺威新材料有限公司 环保型有机硅改性聚醚密封胶及其制备方法
CN108102089A (zh) * 2017-12-15 2018-06-01 上海东大化学有限公司 一种硅烷改性聚醚中间体,硅烷改性聚醚聚合物及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3904482A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114479051A (zh) * 2020-10-26 2022-05-13 中国石油化工股份有限公司 一种山梨醇基聚醚多元醇的制备方法、得到的聚醚多元醇
CN114479051B (zh) * 2020-10-26 2023-08-29 中国石油化工股份有限公司 一种山梨醇基聚醚多元醇的制备方法、得到的聚醚多元醇
CN112795001A (zh) * 2020-12-30 2021-05-14 武汉奥克特种化学有限公司 低模量硅烷改性聚醚及其制备方法与应用
WO2022191084A1 (ja) * 2021-03-12 2022-09-15 Agc株式会社 硬化性組成物及び硬化物
CN112898557A (zh) * 2021-03-23 2021-06-04 浙江皇马科技股份有限公司 一种乙二醇嵌段聚醚及合成方法

Also Published As

Publication number Publication date
EP3904482A1 (en) 2021-11-03
JP2022509658A (ja) 2022-01-21
US20220056209A1 (en) 2022-02-24
JP7265630B2 (ja) 2023-04-26
EP3904482A4 (en) 2022-08-03

Similar Documents

Publication Publication Date Title
WO2020133062A1 (zh) 一种反应型密封胶树脂的制备方法
CN110885435B (zh) 高官能度聚醚多元醇的制备方法
KR20110104976A (ko) 선형 아민 작용화된 폴리(트라이메틸렌 에테르) 조성물
CN109293912B (zh) 一种可控硅含量的聚醚及其制备方法和应用
CN1264889C (zh) 由膦酸铝催化的聚醚醇生产的聚氨酯产物
CN109970961B (zh) 一种端烯基封端不饱和聚醚的制备方法
US5003111A (en) Isobutylene oxide polyols
CN110614122B (zh) 一种负载型硅氢加成催化剂的制备方法
CN111378107B (zh) 一种反应型密封胶树脂的制备方法
CN110684199A (zh) 有机硅氧烷-聚氧化丙烯嵌段共聚物及其制法和制备的双组分led灌封胶及其制法
JP3145022B2 (ja) 硬化性組成物
EP3710497B1 (en) Recyclable cross-linked diene elastomers comprising furanyl groups and precursors thereof
CN104558583A (zh) 聚醚多元醇的制备方法
CN116814211B (zh) 一种反应型密封胶树脂及其制备方法和应用
CN114479054A (zh) 一种单元醇聚醚的制备方法及应用
JP3034163B2 (ja) ポリオキシアルキレンポリオールならびにその製造方法
JPH09296046A (ja) 常温硬化性組成物
CN108148191B (zh) 一种支链聚醚、中间体及其制备方法
JPS59152923A (ja) ポリオキシアルキレンジオ−ル−α,ω−ビスアリルポリカ−ボネ−トの製法
CN106397136B (zh) 一种双酚a聚四氢呋喃醚的合成方法
CN105646806B (zh) 乙炔改性的烷基酚甲醛超级增粘树脂的制备方法
CN117447693B (zh) 耐高温、高折光聚醚多元醇及其制备方法
KR102385163B1 (ko) 불포화 모노올의 감소된 양으로 폴리에테르를 제조하는 방법
CN113817154A (zh) 一种新型聚醚多元醇及制备方法和由其制备的聚氨酯泡沫
JPS59204694A (ja) ブレ−キ液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18945060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021530157

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018945060

Country of ref document: EP

Effective date: 20210727