CN117447693B - 耐高温、高折光聚醚多元醇及其制备方法 - Google Patents

耐高温、高折光聚醚多元醇及其制备方法 Download PDF

Info

Publication number
CN117447693B
CN117447693B CN202311733023.9A CN202311733023A CN117447693B CN 117447693 B CN117447693 B CN 117447693B CN 202311733023 A CN202311733023 A CN 202311733023A CN 117447693 B CN117447693 B CN 117447693B
Authority
CN
China
Prior art keywords
polyether polyol
formula
catalyst
initiator
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311733023.9A
Other languages
English (en)
Other versions
CN117447693A (zh
Inventor
李剑锋
户平峰
孙兆任
周玉波
李月坤
杨健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Inov New Material Co Ltd
Original Assignee
Shandong Inov New Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Inov New Material Co Ltd filed Critical Shandong Inov New Material Co Ltd
Priority to CN202311733023.9A priority Critical patent/CN117447693B/zh
Publication of CN117447693A publication Critical patent/CN117447693A/zh
Application granted granted Critical
Publication of CN117447693B publication Critical patent/CN117447693B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2606Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
    • C08G65/2612Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups containing aromatic or arylaliphatic hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2606Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
    • C08G65/2609Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups containing aliphatic hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2636Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2639Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing elements other than oxygen, nitrogen or sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2645Metals or compounds thereof, e.g. salts
    • C08G65/2648Alkali metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2645Metals or compounds thereof, e.g. salts
    • C08G65/2654Aluminium or boron; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2696Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the process or apparatus used

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyethers (AREA)

Abstract

本发明属于化工合成技术领域,具体涉及耐高温、高折光聚醚多元醇及其制备方法。以含苯环或硫元素的聚醚为起始剂,环氧烷烃和环硅氧烷为聚合单体,在最终制得的聚醚多元醇的分子结构中引入了刚性苯环基团、Si‑O‑Si链段,可以明显改善材料的耐高温、耐候性;分子结构中引入了苯环基团、硫元素,有利于提高材料的折光性、耐温性,拓展了聚醚多元醇材料在光学和耐温材料领域的应用。本发明所述的制备方法简单,催化工艺环保、高效,易于工业化生产。

Description

耐高温、高折光聚醚多元醇及其制备方法
技术领域
本发明属于化工合成技术领域,具体涉及耐高温、高折光聚醚多元醇及其制备方法。
背景技术
有机硅材料具有优异的热氧化稳定性、耐候性、电绝缘等性能,但是价格相对偏高,限制了其应用。聚醚多元醇生产工艺成熟,价格低廉,原料易得,耐水解性好,但是其耐热氧化稳定性差。以苯环结构含活性氢化合物为骨架结构合成聚醚多元醇,由于分子中的芳环和碳氧链结构,可以赋予材料特定的刚性和韧性,从而有效改善聚合物的结构和性质。芳环结构、含硫基团的引入可以提高材料的折射率和透光性,而高折射率高透明度材料是光学仪器都不可或缺的一类重要的光学材料。如果能将上述材料优势结合,将会极大的拓宽其应用领域。
中国专利CN110684199A,公开了一种有机硅氧烷-聚氧化丙烯嵌段共聚物及其制备方法,采用环硅氧烷为起始剂,环氧烷烃为聚合单元,通过阴离子聚合工艺得到含Si-O-Si和C-O-C链段的共聚物,该方法需要繁琐的后处理工艺,并且该过程会产生废水、废渣。中国专利CN105694047B,公开了一种主链含环状结构改性有机硅聚合物及其制备方法,采用甲苯等有机溶剂,还涉及到贵金属催化剂,制备方法相对繁琐,材料成本相对较高。中国专利CN116948589A,公开了一种以双酚A或双酚S为起始剂的有机硅氧烷-聚氧化丙烯共聚物,采用碱金属催化剂,需要精制过程,处理周期长,会产生废水、废渣。现有技术中存在生产周期长、材料成本高、对环境有不良影响等缺点,因此,开发出一种高效环保制备方法意义重大。
发明内容
针对现有技术的不足,本发明的目的在于提供一种耐高温、高折光聚醚多元醇,将分子结构中含苯环基团和硫元素的聚醚与有机硅材料相结合,所制得的材料具有优异的折光性和耐温性,拓宽了其在耐热材料和光学材料领域的应用;
本发明的另一个目的在于提供一种耐高温、高折光聚醚多元醇的制备方法,简单易行,环保高效,易于工业化生产。
本发明所采取的技术方案如下:
所述的耐高温、高折光聚醚多元醇,具有式(1)所示的结构表达式:
式(1);
其中,a,b>0;
n1,n2≥0;
c,d≥0;
n1、n2、c、d取值不同时为0;
R1、R2、R4为Me或Ph中的一种以上;
n1,n2取值不为0时,n1,n2≥3,且为2的倍数。
所述的聚醚多元醇的起始剂具有式(2)所示的结构表达式:
式(2);
其中,所述的R3具有式(3)或式(4)或式(5)所示的结构表达式:
式(3);
式(4);
式(5)。
所述的聚醚多元醇的起始剂是由对苯二酚二羟乙基醚(HQEE)、4,4'-硫代双苯硫酚或4,4'-二硫代二苯胺与环氧乙烷在催化剂的作用下进行开环聚合反应制备得到;所述的催化剂为碱金属催化剂或路易斯酸催化剂中的一种,优选为路易斯酸催化剂,所述的制备方法采用本领域常规制备方法,没有特别限定。例如,采用对苯二酚二羟乙基醚为起始剂、氢氧化钾为催化剂,催化环氧乙烷开环聚合,酸碱中和去除催化剂,制得式(2)所述的起始剂,其中,氢氧化钾催化剂的浓度为0.1~0.3wt.%,对苯二酚二羟乙基醚与环氧乙烷的质量比为1:(2.1~3.1)。采用4,4'-二硫代二苯胺为起始剂、四(五氟苯基)硼化锂乙醚共聚物为催化剂,催化环氧乙烷开环聚合,制得式(2)所述的起始剂,其中,四(五氟苯基)硼化锂乙醚共聚物催化剂的浓度为0.01~0.02wt.%,4,4'-二硫代二苯胺与环氧乙烷质量比为1:(1.4~2.3)。采用4,4'-硫代双苯硫酚为起始剂、四(五氟苯基)硼化锂乙醚共聚物为催化剂,催化环氧乙烷开环聚合,制得式(2)所述的起始剂,其中四(五氟苯基)硼化锂乙醚共聚物催化剂的浓度为0.01~0.02wt.%,4,4'-硫代双苯硫酚与环氧乙烷质量比为1:(1.4~2.3)。
所述的聚醚多元醇的起始剂的数均分子量为600~800g/mol。
所述的耐高温、高折光聚醚多元醇的制备方法,步骤如下:
S1:将配方量的起始剂和催化剂乳浊液加入到高压反应釜中,氮气置换,抽真空,升温至130~170℃,计时1h;
S2:负压状态下滴加环氧丙烷至釜内压力升高为0.10~0.15MPa,反应,观察釜内压力和温度变化情况;
S3:待釜内压力降至负压,开始缓慢加入配方量的环氧烷烃和环硅氧烷,加料完毕,内压反应,脱单体,真空脱除未反应的环氧丙烷和水分,降温至80℃以下添加配方量的抗氧剂,搅拌均匀,过滤,放料,即得耐高温、高折光聚醚多元醇,放料时加过滤网回收催化剂,重复利用。
所述的步骤S1中,催化剂乳浊液为催化剂、预处理后的强酸性苯乙烯系阳离子交换树脂与小分子聚醚的混合物,催化剂与小分子聚醚的质量比为1:(10~93);所述的小分子聚醚的数均分子量为400~700g/mol,起始剂为丙二醇、二乙二醇、丁二醇、乙二醇或双酚A中的一种。
所述的催化剂为双金属氰化物络合物(DMC)或四(五氟苯基)硼化锂乙醚共聚物中的一种;所述的预处理步骤为:将强酸性苯乙烯系阳离子交换树脂放入浓度为98wt.%的硫酸中浸泡22~24h,过滤备用。
所述的聚醚多元醇中催化剂的浓度为45~397mg/kg;所述的聚醚多元醇中强酸性苯乙烯系阳离子交换树脂的质量占总质量的1293~4605ppm。
所述的步骤S2中,环氧丙烷的加入量为起始剂的11~20wt.%。
所述的步骤S3中,环氧烷烃为环氧丙烷或苯基环氧乙烷中的一种以上,环硅氧烷为四甲基四苯基环四硅氧烷、三甲基三苯基环三硅氧烷或八苯基环四硅氧烷中的一种;所述的环氧烷烃与环硅氧烷的质量比为1:(2.1~3.1)。
通过在聚醚分子结构中引入刚性苯环基团,有利于提高材料的折光性、耐温性能。
与现有技术相比,本发明的有益效果如下:
(1)传统聚醚多元醇起始氧化热分解温度一般低于200℃,耐高温性能较差,在聚醚分子结构中引入刚性苯环基团、Si-O-Si链段可以明显改善材料的耐高温、耐候性;在聚醚分子结构中引入苯环基团、硫元素有利于提高材料的折光性、耐温性;聚醚多元醇原料易得,价格低廉,制备工艺简单,有机硅材料价格高昂,耐候性、耐化学性能、光学性能优势明显,本发明将两者有机结合,平衡材料成本控制和性能取舍,所制得的聚醚多元醇具有优异的折光性和耐温性,有利于拓宽其在耐热材料和光学材料领域的应用;
(2)本发明所述的耐高温、高折光聚醚多元醇的制备方法,不需要复杂的后处理工艺,生产周期短,“三废”产生少,环保高效,制备方法简单易行,易于工业化生产,且部分催化剂可以回收处理,重复利用,节约成本。
具体实施方式
以下结合实施例对本发明作进一步说明,但其并不限制本发明的实施。
实施例及对比例中使用的原料,如无特殊说明均为常规市售原料,实施例及对比例中所使用的工艺方法,如无特殊说明均为本领域常规方法。
实施例及对比例中所使用的部分原料说明如下:
抗氧剂ST-3610,购自上海石化西尼尔化工科技有限公司;
抗氧剂ST-3615,购自上海石化西尼尔化工科技有限公司。
实施例1
所述的耐高温、高折光聚醚多元醇的起始剂,数均分子量为700g/mol,具有式(2)所示的结构表达式,其中所述的R3具有式(3)所示的结构表达式;所述的耐高温、高折光聚醚多元醇的起始剂的制备方法为:采用198g对苯二酚二羟乙基醚为起始剂、1.4g氢氧化钾为催化剂,催化512g环氧乙烷开环聚合,酸碱中和去除催化剂,制得式(2)所述的起始剂。
所述的预处理步骤为:将强酸性苯乙烯系阳离子交换树脂放入浓度为98wt.%的硫酸中浸泡24h,过滤备用。
所述的耐高温、高折光聚醚多元醇的制备方法,步骤如下:
S1:将700g起始剂,4g预处理后的强酸性苯乙烯系阳离子交换树脂、0.15g DMC和12g数均分子量为400g/mol的丙二醇聚醚二元醇加入到高压反应釜中,用氮气充分置换釜内空气,抽真空,升温至150±20℃,计时1h;
S2:负压状态下快速滴加80g环氧丙烷至釜内压力升高为0.125±0.025MPa,反应,观察釜内压力和温度变化情况;
S3:待釜内压力降至-0.07MPa,开始缓慢加入658g环氧丙烷和1632g三甲基三苯基环三硅氧烷的混合物,加料完毕,内压反应1h,脱单体,真空脱除低沸物和水分,降温至77℃添加6g抗氧剂ST-3610,搅拌均匀,过滤,放料,即得耐高温、高折光聚醚多元醇。
实施例2
所述的耐高温、高折光聚醚多元醇的起始剂,数均分子量为700g/mol,具有式(2)所示的结构表达式,其中所述的R3具有式(4)所示的结构表达式;所述的耐高温、高折光聚醚多元醇的起始剂的制备方法为:采用248g 4,4'-二硫代二苯胺为起始剂、0.091g四(五氟苯基)硼化锂乙醚共聚物为催化剂,催化462g环氧乙烷开环聚合,充分反应后,脱除未反应的聚合单体和小分子物质,制得式(2)所述的起始剂。
所述的预处理步骤为:将强酸性苯乙烯系阳离子交换树脂放入浓度为98wt.%的硫酸中浸泡22h,过滤备用。
所述的耐高温、高折光聚醚多元醇的制备方法,步骤如下:
S1:将700g起始剂,5g预处理后的强酸性苯乙烯系阳离子交换树脂、0.16g四(五氟苯基)硼化锂乙醚共聚物和12g数均分子量为400g/mol的丙二醇聚醚二元醇加入到高压反应釜中,用氮气充分置换釜内空气,抽真空,升温至150±20℃,计时1h;
S2:负压状态下快速滴加80g环氧丙烷至釜内压力升高为0.125±0.025MPa,反应,观察釜内压力和温度变化情况;
S3:待釜内压力降至-0.08MPa,开始缓慢加入658g环氧丙烷和1632g四甲基四苯基环四硅氧烷的混合物,加料完毕,内压反应1h,脱单体,真空脱除低沸物和水分,降温至70℃添加6g抗氧剂ST-3610,搅拌均匀,过滤,放料,即得耐高温、高折光聚醚多元醇。
实施例3
所述的耐高温、高折光聚醚多元醇的起始剂,数均分子量为600g/mol,具有式(2)所示的结构表达式,其中所述的R3具有式(4)所示的结构表达式;所述的耐高温、高折光聚醚多元醇的起始剂的制备方法为:采用248g 4,4'-二硫代二苯胺为起始剂、0.084g四(五氟苯基)硼化锂乙醚共聚物为催化剂,催化362g环氧乙烷开环聚合,充分反应后,脱除未反应的聚合单体和小分子物质,制得式(2)所述的起始剂。
所述的预处理步骤为:将强酸性苯乙烯系阳离子交换树脂放入浓度为98wt.%的硫酸中浸泡24h,过滤备用。
所述的耐高温、高折光聚醚多元醇的制备方法,步骤如下:
S1:将600g起始剂,7g预处理后的强酸性苯乙烯系阳离子交换树脂、0.14g DMC和13g数均分子量为700g/mol的双酚A聚醚二元醇加入到高压反应釜中,用氮气充分置换釜内空气,抽真空,升温至150±20℃,计时1h;
S2:负压状态下快速滴加70g环氧丙烷至釜内压力升高为0.125±0.025MPa,反应,观察釜内压力和温度变化情况;
S3:待釜内压力降至-0.06MPa,开始缓慢加入768g环氧丙烷和1632g四甲基四苯基环四硅氧烷的混合物,加料完毕,内压反应1h,脱单体,真空脱除低沸物和水分,降温至60℃添加6g抗氧剂ST-3610,搅拌均匀,过滤,放料,即得耐高温、高折光聚醚多元醇。
实施例4
所述的耐高温、高折光聚醚多元醇的起始剂,数均分子量为700g/mol,具有式(2)所示的结构表达式,其中所述的R3具有式(5)所示的结构表达式;所述的耐高温、高折光聚醚多元醇的起始剂的制备方法为:采用250g 4,4'-硫代双苯硫酚为起始剂、0.09g 四(五氟苯基)硼化锂乙醚共聚物为催化剂,催化460g环氧乙烷开环聚合,充分反应后,脱除未反应的聚合单体和小分子物质,制得式(2)所述的起始剂。
所述的预处理步骤为:将强酸性苯乙烯系阳离子交换树脂放入浓度为98wt.%的硫酸中浸泡24h,过滤备用。
所述的耐高温、高折光聚醚多元醇的制备方法,步骤如下:
S1:将700g起始剂,8g预处理后的强酸性苯乙烯系阳离子交换树脂、0.15g DMC和12g数均分子量为400g/mol的丙二醇聚醚二元醇加入到高压反应釜中,用氮气充分置换釜内空气,抽真空,升温至150±20℃,计时1h;
S2:负压状态下快速滴加80g环氧丙烷至釜内压力升高为0.125±0.025MPa,反应,观察釜内压力和温度变化情况;
S3:待釜内压力降至-0.05MPa,开始缓慢加入668g环氧丙烷和1632g八苯基环四硅氧烷的混合物,加料完毕,内压反应1h,脱单体,真空脱除低沸物和水分,降温至60℃添加6g抗氧剂ST-3615,搅拌均匀,过滤,放料,即得耐高温、高折光聚醚多元醇。
实施例5
所述的耐高温、高折光聚醚多元醇的起始剂,数均分子量为800g/mol,具有式(2)所示的结构表达式,其中所述的R3具有式(5)所示的结构表达式;所述的耐高温、高折光聚醚多元醇的起始剂的制备方法为:采用250g 4,4'-硫代双苯硫酚为起始剂、0.15g四(五氟苯基)硼化锂乙醚共聚物为催化剂,催化560g环氧乙烷开环聚合,充分反应后,脱除未反应的聚合单体和小分子物质,制得式(2)所述的起始剂。
所述的预处理步骤为:将强酸性苯乙烯系阳离子交换树脂放入浓度为98wt.%的硫酸中浸泡23h,过滤备用。
所述的耐高温、高折光聚醚多元醇的制备方法,步骤如下:
S1:将700g起始剂,20g预处理后的强酸性苯乙烯系阳离子交换树脂、2g DMC和20g数均分子量为400g/mol的双酚A聚醚二元醇加入到高压反应釜中,用氮气充分置换釜内空气,抽真空,升温至150±20℃,计时1h;
S2:负压状态下快速滴加90g环氧丙烷至釜内压力升高为0.125±0.025MPa,反应,观察釜内压力和温度变化情况;
S3:待釜内压力降至-0.06MPa,开始缓慢加入948g环氧丙烷、100g苯基环氧乙烷和3172g八苯基环四硅氧烷的混合物,加料完毕,内压反应1h,脱单体,真空脱除低沸物和水分,降温至60℃添加10g抗氧剂ST-3610,搅拌均匀,过滤,放料,即得耐高温、高折光聚醚多元醇。
实施例6
所述的耐高温、高折光聚醚多元醇的起始剂,数均分子量为800g/mol,具有式(2)所示的结构表达式,其中所述的R3具有式(5)所示的结构表达式;所述的耐高温、高折光聚醚多元醇的起始剂的制备方法为:采用250g 4,4'-硫代双苯硫酚为起始剂、0.15g四(五氟苯基)硼化锂乙醚共聚物为催化剂,催化560g环氧乙烷开环聚合,充分反应后,脱除未反应的聚合单体和小分子物质,制得式(2)所述的起始剂。
所述的预处理步骤为:将强酸性苯乙烯系阳离子交换树脂放入浓度为98wt.%的硫酸中浸泡22h,过滤备用。
所述的耐高温、高折光聚醚多元醇的制备方法,步骤如下:
S1:将800g起始剂,40g预处理后的强酸性苯乙烯系阳离子交换树脂、2g DMC和20g数均分子量为700g/mol的双酚A聚醚二元醇加入到高压反应釜中,用氮气充分置换釜内空气,抽真空,升温至150±20℃,计时1h;
S2:负压状态下快速滴加160g环氧丙烷至釜内压力升高为0.125±0.025MPa,反应,观察釜内压力和温度变化情况;
S3:待釜内压力降至-0.06MPa,开始缓慢加入2000g苯基环氧乙烷和5650g三甲基三苯基环三硅氧烷的混合物,加料完毕,内压反应1h,脱单体,真空脱除低沸物和水分,降温至60℃添加16g抗氧剂ST-3610,搅拌均匀,过滤,放料,即得耐高温、高折光聚醚多元醇。
对比例1
与实施例1的区别在于,在步骤S3中,加入等量的环氧丙烷替代三甲基三苯基环三硅氧烷,最终制得的聚醚多元醇的羟值为37.5mgKOH/g,其他同实施例1。
对比例2
与实施例2的区别在于,在步骤S1中,使用的催化剂为DMC;在步骤S3中,加入等量的环氧丙烷替代四甲基四苯基环四硅氧烷,最终制得的聚醚多元醇的羟值为37.3mgKOH/g,其他同实施例2。
对比例3
与实施例2的区别在于,在步骤S3中,加入等量的苯基环氧乙烷替代四甲基四苯基环四硅氧烷,最终制得的聚醚多元醇的羟值为37.4mgKOH/g,其他同实施例2。
分别对实施例1~6及对比例1~3制备的聚醚多元醇进行性能测试,测试方法如下:
羟值(mgKOH/g),参照标准GB/T 12008-2010进行测试;
折光率(25℃),采用日本ATAGO公司的DTM-1阿贝折光仪;
起始热分解温度(℃),采用差示扫描量热仪测试。
测试结果如表1所示:
表1 测试结果
从表1可以看出,聚醚分子结构中引入Si-O-Si段后,起始热分解温度有明显的提升。另外,苯环的引入使得聚醚多元醇的折光率有明显提升,上述性能的改善可以拓展聚醚多元醇在耐热材料和光学材料领域的应用。
将实施例5制备的耐高温、高折光聚醚多元醇与纯MDI以1:2的摩尔比合成聚氨酯预聚体,然后采用HQEE硫化,放入硫化机内硫化成型,熟化后测试样品性能,结果显示,其折光率为1.63,起始热分解温度297℃。相较于常规的聚氨酯材料(25℃下折光率约为1.4-1.5,分解温度为200℃左右),采用本发明所述的聚醚多元醇制备的聚氨酯材料在上述性能中具备明显优势。

Claims (4)

1.一种耐高温、高折光聚醚多元醇的制备方法,其特征在于,所述的聚醚多元醇具有式(1)所示的结构表达式:
式(1);
其中,a,b>0;
n1,n2≥0;
c,d≥0;
n1、n2、c、d取值不同时为0;
R1、R2、R4为Me或Ph中的一种以上;
n1,n2取值不为0时,n1,n2≥3,且为2的倍数;
所述的聚醚多元醇的起始剂具有式(2)所示的结构表达式:
式(2);
其中,所述的R3具有式(3)或式(4)或式(5)所示的结构表达式:
式(3);
式(4);
式(5);
所述的聚醚多元醇的起始剂是由对苯二酚二羟乙基醚、4,4'-硫代双苯硫酚或4,4'-二硫代二苯胺与环氧乙烷在催化剂的作用下进行开环聚合反应制备得到;所述的催化剂为碱金属催化剂或路易斯酸催化剂中的一种;
所述的聚醚多元醇的制备方法,步骤如下:
S1:将配方量的起始剂和催化剂乳浊液加入到高压反应釜中,氮气置换,抽真空,升温;
S2:负压状态下滴加环氧丙烷至釜内压力升高为0.10~0.15MPa,反应;
S3:待釜内压力降至负压,开始加入配方量的环氧烷烃和环硅氧烷,加料完毕,内压反应,脱单体,降温,加入抗氧剂,即得耐高温、高折光聚醚多元醇;
所述的步骤S1中,催化剂乳浊液为催化剂、预处理后的强酸性苯乙烯系阳离子交换树脂与小分子聚醚的混合物,催化剂与小分子聚醚的质量比为1:(10~93);所述的小分子聚醚的数均分子量为400~700g/mol,起始剂为丙二醇、二乙二醇、丁二醇、乙二醇或双酚A中的一种;
所述的催化剂为双金属氰化物络合物或四(五氟苯基)硼化锂乙醚共聚物中的一种;所述的预处理步骤为:将强酸性苯乙烯系阳离子交换树脂放入浓度为98wt.%的硫酸中浸泡22~24h;
所述的步骤S3中,环氧烷烃为环氧丙烷或苯基环氧乙烷中的一种以上,环硅氧烷为四甲基四苯基环四硅氧烷、三甲基三苯基环三硅氧烷或八苯基环四硅氧烷中的一种;所述的环氧烷烃与环硅氧烷的质量比为1:(2.1~3.1)。
2.根据权利要求1所述的耐高温、高折光聚醚多元醇的制备方法,其特征在于,所述的聚醚多元醇的起始剂的数均分子量为600~800g/mol。
3.根据权利要求1所述的耐高温、高折光聚醚多元醇的制备方法,其特征在于,所述的聚醚多元醇中催化剂的浓度为45~397mg/kg;所述的聚醚多元醇中强酸性苯乙烯系阳离子交换树脂的质量占总质量的1293~4605ppm。
4.根据权利要求1所述的耐高温、高折光聚醚多元醇的制备方法,其特征在于,所述的步骤S2中,环氧丙烷的加入量为起始剂的11~20wt.%。
CN202311733023.9A 2023-12-18 2023-12-18 耐高温、高折光聚醚多元醇及其制备方法 Active CN117447693B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311733023.9A CN117447693B (zh) 2023-12-18 2023-12-18 耐高温、高折光聚醚多元醇及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311733023.9A CN117447693B (zh) 2023-12-18 2023-12-18 耐高温、高折光聚醚多元醇及其制备方法

Publications (2)

Publication Number Publication Date
CN117447693A CN117447693A (zh) 2024-01-26
CN117447693B true CN117447693B (zh) 2024-04-12

Family

ID=89583951

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311733023.9A Active CN117447693B (zh) 2023-12-18 2023-12-18 耐高温、高折光聚醚多元醇及其制备方法

Country Status (1)

Country Link
CN (1) CN117447693B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110684199A (zh) * 2019-09-25 2020-01-14 山东一诺威新材料有限公司 有机硅氧烷-聚氧化丙烯嵌段共聚物及其制法和制备的双组分led灌封胶及其制法
CN116948589A (zh) * 2023-09-20 2023-10-27 山东一诺威新材料有限公司 封闭型高模量中空玻璃封边胶及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009034607A1 (de) * 2009-07-24 2011-01-27 Evonik Goldschmidt Gmbh Neuartige Siliconpolyethercopolymere und Verfahren zu deren Herstellung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110684199A (zh) * 2019-09-25 2020-01-14 山东一诺威新材料有限公司 有机硅氧烷-聚氧化丙烯嵌段共聚物及其制法和制备的双组分led灌封胶及其制法
CN116948589A (zh) * 2023-09-20 2023-10-27 山东一诺威新材料有限公司 封闭型高模量中空玻璃封边胶及其制备方法

Also Published As

Publication number Publication date
CN117447693A (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
JP7265630B2 (ja) 反応型シーラント樹脂の調製方法
CN107674628B (zh) 一种三嵌段型烯基聚醚粘合剂及其合成方法
CN112029083A (zh) 一种聚醚碳酸酯多元醇及其制备方法
CN110591047A (zh) 一种可降解聚醚型聚氨酯及其制备方法
CN113563588A (zh) 一种端羟基硅氧烷、含有其的硅聚氨酯及其制备方法
US5003111A (en) Isobutylene oxide polyols
CN117447693B (zh) 耐高温、高折光聚醚多元醇及其制备方法
USRE30371E (en) Catalytic process for imide-alcohol condensation
CN110591070A (zh) 用于聚氨酯弹性体的蓖麻油基阻燃聚醚多元醇及其制备方法
CN114015036A (zh) 低粘度硅烷改性聚醚树脂及其制备方法
CN110684199A (zh) 有机硅氧烷-聚氧化丙烯嵌段共聚物及其制法和制备的双组分led灌封胶及其制法
CN114702658B (zh) 一种三羟甲基丙烷聚氧丙烯醚的合成方法
EP0004356B1 (en) Polyurethanes prepared with tetrahydrofuran-alkylene oxide polymerizates having low oligomeric cyclic ether content, processes for preparing the same, and articles and fibers of the polyurethanes
JP3442833B2 (ja) ポリ(テトラメチレンエーテル)グリコールのオキソニウムカップリングを経由するブロックコポリエーテル
CN105523905B (zh) 一种对苯二酚双羟乙醚的合成方法
CN111378107B (zh) 一种反应型密封胶树脂的制备方法
CN114479045B (zh) 一种二氧化碳基弹性体及其制备方法
CN111646957B (zh) 一种环氧化合物的制备方法
CN112480392A (zh) 一种双端烯键封端聚醚及其合成方法
CN113845656A (zh) 一种用于制备类玻璃体的组合物、类玻璃体及其制备方法和应用
CN110628027B (zh) 一种生物酚有机硅树脂、制备方法及应用
US5055496A (en) Polymer product containing isobutylene oxide polyols
CN115894466B (zh) 一种环氧树脂的制备方法
CN108441157B (zh) 一种端烯基聚己内酯粘合剂及其合成方法
KR102385163B1 (ko) 불포화 모노올의 감소된 양으로 폴리에테르를 제조하는 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant