WO2022111008A1 - 一种氮磷共掺杂金属有机框架封装铂钴基合金及其制备方法与应用 - Google Patents

一种氮磷共掺杂金属有机框架封装铂钴基合金及其制备方法与应用 Download PDF

Info

Publication number
WO2022111008A1
WO2022111008A1 PCT/CN2021/119572 CN2021119572W WO2022111008A1 WO 2022111008 A1 WO2022111008 A1 WO 2022111008A1 CN 2021119572 W CN2021119572 W CN 2021119572W WO 2022111008 A1 WO2022111008 A1 WO 2022111008A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
metal
doped
platinum
preparation
Prior art date
Application number
PCT/CN2021/119572
Other languages
English (en)
French (fr)
Inventor
邵志刚
索妮
秦晓平
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Publication of WO2022111008A1 publication Critical patent/WO2022111008A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a preparation method of nano-alloy particles embedded in a metal-organic framework composite material, in particular to a nitrogen-phosphorus co-doped metal-organic framework encapsulated platinum-cobalt-based alloy and a preparation method and application thereof, belonging to the technical field of fuel cell nanocatalyst synthesis .
  • Cathode oxygen reduction catalysts for proton exchange membrane fuel cells are mainly divided into two categories: one is platinum (Pt)-based catalysts, mainly platinum carbon, platinum alloys, and core-shell, hollow and other special structures of platinum alloy catalysts; It is a non-platinum-based catalyst, including transition metal (Mn, Fe, Co, Ni, Cu) composite nitrogen-carbon catalysts, transition metal chalcogenide (S, Se, Te) compounds, non-metallic heteroatoms (B, N, S, P, B-N, N-P, N-S, F, Cl, Br, I) doped carbon catalysts.
  • Pt-based catalysts are used in Pt-exchange membrane fuel cell catalysts. Its status is irreplaceable in the short term, and it is a practical catalyst for large-scale commercial fuel cells in the future.
  • transition metal M Fe, Cr, Mn, Co, Ni, Zn, etc.
  • the transition metal atoms are doped in the platinum lattice disorderly in the form of solid solution, and the atomic arrangement still maintains the original face-centered cubic structure of platinum, and the electronic and geometric effects produced by the alloy catalyst are not uniform. , so the improvement of the catalytic activity for oxygen reduction is limited.
  • the disordered arrangement of transition metal atoms makes it easy to dissolve from the alloy particles under the acidic conditions of oxygen-rich and high voltage of the fuel cell cathode, and dissolves in the long-term cycle to form metal ions that diffuse into the exchange membrane, resulting in Battery performance degrades.
  • the structure of intermetallic compounds is different from that of alloys.
  • both Pt and M atoms occupy corresponding lattice points in the lattice in an orderly manner, and interact with metal bonds or ionic bonds, so that the whole crystal presents a long-range
  • the ordered crystal system structure enables it to exhibit better stability, oxidation resistance, corrosion resistance and CO poisoning resistance than the corresponding alloy materials in electrocatalytic reactions.
  • a common method for the synthesis of intermetallic compounds is to controllably synthesize disordered alloy nanoparticles of specific size and composition in a liquid phase system, and then convert them from disorder to order by high-temperature annealing.
  • the ordered structure enhances the stability of the catalyst, it also has some disadvantages: one is that the defect sites are reduced after the alloy is ordered, and the other is that such catalytic materials will sinter into large nanoparticles under harsh conditions. Both of these can lead to a decrease in catalytic activity. While improving the stability, it is also necessary to ensure that its catalytic performance will not be greatly reduced.
  • the purpose of the present invention is to provide a method for synthesizing Pt-based alloys on the carbon skeleton and in the pores of ZIF-67 host matrix by using ultrasonic solution immersion combined with isopropanol to stabilize NaBH 4 polyol, and combining the sample with adenine phosphate
  • the cavity it is finally mixed with adenine phosphate and calcined.
  • the purpose of encapsulating the synthesized material in the nitrogen-phosphorus co-doped ZIF-67 carrier and suppressing the sintered particles from becoming larger is to enhance the stability and enhance the catalytic activity, which can be effectively applied in various electrochemical fields.
  • a method for preparing a nitrogen-phosphorus co-doped metal-organic framework encapsulating a platinum-cobalt-based alloy comprising the following steps:
  • Steps (1) to (5) are all carried out under protective gas with stirring.
  • step (2) Immerse ZIF-67 into the mixed solution of metal salts obtained in step (1), seal and ultrasonicate and let stand for a period of time; ultrasonic immersion mainly uses ultrasonic vibration to uniformly disperse the active components and load them onto the carrier uniformly while overcoming the capillary resistance and entering the micropores of the carrier.
  • step (3) disperse the ZIF-67 dipped in the step (2) into a polyol solvent, and stir and reflux for heating reaction under the action of protective gas;
  • step ( 3 ) in the suspension obtained in step ( 3 ), add dropwise the NaBH aqueous solution dissolved in isopropanol, and react for a period of time;
  • the molar ratio of platinum atoms, cobalt atoms and doped metal atoms in the platinum precursor, cobalt precursor and doped metal precursor in step (1) is 1:0.1 ⁇ 0.4:0.1 ⁇ 0.4; in step (2), the molar ratio of cobalt atoms in ZIF-67 and the metal salt mixed solution is 3.5 to 40; in step (4), the concentration of NaBH 4 in the isopropanol-dissolved NaBH 4 solution is 0.5 to 2.5 mmol/mL.
  • the stirring time is 30-60 min, preferably 40-60 min;
  • the standing period of time in step (2) is 24-30 h; preferably 24 h;
  • the temperature is 130-180°C, preferably 160-180°C, the holding time is 10-60min, preferably 25-50min;
  • the reaction period of step (4) is 1-5h, preferably 2-4h; step (6) )
  • the conditions of the heat treatment are that the temperature is 600-900°C, preferably 700-850°C, the heating rate is 5°C/min, and the annealing time is 0.5-2h, preferably 0.5-1.5h.
  • the platinum precursor includes potassium chloroplatinate, chloroplatinic acid, potassium chloroplatinite, and hexahydroxyplatinate.
  • the cobalt precursor includes cobalt nitrate, cobalt chloride, cobalt sulfate, cobalt acetate, cobalt acetylacetonate, cobalt oxalate or cobalt carbonate.
  • the doped metal precursor includes metal atom doped nitrate, metal atom doped chloride, metal atom doped sulfate, metal atom doped acetate, Metal doped acetylacetonate, metal doped oxalate, or metal doped carbonate; the doped metal atoms include Ni, Zn, Mo, Cu, and Fe.
  • the alkaline substance includes KOH, NaOH or ammonia water.
  • the polyol solvent includes ethylene glycol, polyethylene glycol, diethylene glycol, triethylene glycol, propylene glycol or glycerol.
  • the protective gas includes nitrogen, argon, helium or neon.
  • the solvent in step (1) includes isopropanol, methanol and ethanol.
  • the present invention also provides the nitrogen-phosphorus co-doped metal-organic framework packaged platinum-cobalt-based alloy prepared by the above preparation method.
  • the invention also provides the application of the nitrogen-phosphorus co-doped metal organic framework encapsulating the platinum-cobalt-based alloy in the preparation of the proton exchange membrane fuel cell.
  • nitrogen and phosphorus co-doped metal organic framework encapsulates the application of platinum-cobalt-based alloy in the preparation of a cathode oxygen reduction catalyst for a proton exchange membrane fuel cell.
  • a Pt-based alloy was synthesized on the carbon skeleton of the host matrix and in the pores by using ultrasonic solution immersion combined with isopropanol to stabilize NaBH 4 polyol reduction method, and the sample was fully ground and mixed with adenine phosphate according to a certain proportion and then heat treated. .
  • the particle size of Pt-based alloy is determined by its mass ratio to adenine phosphate and the annealing temperature and time.
  • the doping amount of the tertiary transition metal is determined by the addition amount of metal salt, ultrasonic immersion time, and annealing temperature and time.
  • the method has the advantages of simplicity and safety, and is especially suitable for the preparation of cathode catalysts for fuel cells and metal-air batteries.
  • the third metal atom is introduced into the Pt-based alloy, and the lattice distortion of the bimetallic alloy caused by doping will cause electronic coupling and significantly improve the activity of the bimetallic nanocatalyst.
  • Doping transition metals can also make Pt atoms better embedded or anchored on the carbon surface, effectively controlling the accumulation or loss of metal catalysts on the carbon surface. Stability and oxygen reduction catalytic activity are balanced by optimizing the heat treatment temperature, which determines the degree of ordering, and the doping amount of a third transition metal, which characterizes the number of defect sites.
  • the easy-to-reduce doping metals are selected from the comprehensive consideration of the synthesis difficulty (such as the potential is too negative, higher reduction temperature and stronger reducing agent are required).
  • the method adopted in the present invention is to mix the synthesized catalytic sample with a certain proportion of adenine phosphate (the drug is the active part of nucleic acid and some coenzymes, which participate in the metabolism of the organism in vivo). Function, often used together with hormones or other vitamins and other drugs and blood transfusion, green, non-toxic and pollution-free.)
  • High temperature treatment after grinding and mixing can not only inhibit the growth of particles, but also can be used as nitrogen and phosphorus sources to synthesize nitrogen and phosphorus co-doped carrier materials .
  • ZIF-67 Due to the large specific surface, high porosity, good electrical conductivity and chemical stability of ZIF-67 with metal-organic framework porous structure, a large number of catalytic active centers can be built on its carbon skeleton and in the cavity, making it Has good electrochemical activity.
  • the metal alloy nanoparticles are dispersed in it, and the porous structure of the carbon-based framework facilitates the transfer of mass and charge.
  • ZIF-67 is an important carrier material.
  • FIG. 1 is a linear scan curve of the nitrogen-phosphorus co-doped metal-organic framework packaged platinum-cobalt-based alloy prepared in Example 1 and a commercial Pt/C catalyst.
  • FIG. 2 is a linear scan curve of the nitrogen-phosphorus co-doped metal-organic framework-encapsulated platinum-cobalt-based alloy prepared by adding different proportions of adenine phosphate in Example 2.
  • FIG. 2 is a linear scan curve of the nitrogen-phosphorus co-doped metal-organic framework-encapsulated platinum-cobalt-based alloy prepared by adding different proportions of adenine phosphate in Example 2.
  • a method for preparing a nitrogen-phosphorus co-doped metal-organic framework encapsulating a platinum-cobalt-based alloy comprising the following steps:
  • Steps (2) to (5) were all carried out under nitrogen protection with magnetic stirring.
  • step (3) 30 mg of ZIF-67 synthesized in step (1) was immersed in the metal salt mixed solution obtained in step (2), sealed and sonicated and left to stand for 24h.
  • Ultrasonic impregnation mainly uses the vibration of ultrasonic waves to make the active components evenly dispersed and evenly loaded on the ZIF-67 carrier, and at the same time overcome the capillary resistance and enter the micropores of the carrier.
  • the adenine phosphate and the dried product are fully ground and mixed according to the mass ratio of 1:1 and placed in a porcelain boat, then placed in the central area of the quartz tube with flowing nitrogen, and the temperature is set to 800 ° C, The heating rate was 5°C/min, the annealing time was 1.5h, and it was naturally lowered to room temperature.
  • Figure 1 is the linear scan curve of the nitrogen-phosphorus co-doped metal-organic framework packaged platinum-cobalt-based alloy and commercial Pt/C catalyst prepared in Example 1. It can be seen from the figure that the nitrogen and phosphorus co-doped obtained by adding adenine phosphate and then heat treatment The heterometal-organic framework encapsulates a platinum-cobalt-based alloy with better oxygen reduction catalytic activity than commercial 20 wt.% Pt/C catalysts.
  • a method for preparing a nitrogen-phosphorus co-doped metal-organic framework encapsulating a platinum-cobalt-based alloy comprising the following steps:
  • Steps (2) to (5) are all carried out in an environment with protective gas and accompanied by magnetic stirring.
  • step (3) 80mg of ZIF-67 synthesized in step (1) was immersed in the metal salt mixed solution obtained in step (2), sealed and sonicated and left to stand for 24h.
  • Ultrasonic impregnation mainly uses the vibration of ultrasonic waves to make the active components evenly dispersed and evenly loaded on the ZIF-67 carrier, and at the same time overcome the capillary resistance and enter the micropores of the carrier.
  • Fig. 2 is the linear scanning curve diagram of the nitrogen-phosphorus co-doped metal-organic framework encapsulated platinum-cobalt-based alloy obtained after adding 0.5 and 1.5 times the mass of adenine phosphate after drying in Example 2. It can be seen from the figure that adenine phosphate When the amount of salt added is 1.5 times that of the sample, the catalytic activity of the sample decreases compared with 0.5 times.
  • a method for preparing a nitrogen-phosphorus co-doped metal-organic framework encapsulating a platinum-cobalt-based alloy comprising the following steps:
  • Steps (2) to (5) were all carried out under nitrogen protection with magnetic stirring.
  • step (3) 30 mg of ZIF-67 synthesized in step (1) was immersed in the metal salt mixed solution obtained in step (2), sealed and sonicated and left to stand for 24h.
  • Ultrasonic impregnation mainly uses the vibration of ultrasonic waves to make the active components evenly dispersed and evenly loaded on the ZIF-67 carrier, and at the same time overcome the capillary resistance and enter the micropores of the carrier.
  • the adenine phosphate and the dried product are fully ground and mixed according to the mass ratio of 1:2 and then placed in a porcelain boat, then placed in the central area of the quartz tube with flowing nitrogen, and the temperature is set to 800 ° C, The heating rate was 5°C/min, the annealing time was 1.5h, and it was naturally lowered to room temperature.
  • the prepared nitrogen-phosphorus co-doped metal organic framework packaged platinum-cobalt-based alloy has good dispersion and uniform size. Compared with commercial 20 wt.% Pt/C, the oxygen reduction catalytic activity is better.
  • a method for preparing a nitrogen-phosphorus co-doped metal-organic framework encapsulating a platinum-cobalt-based alloy comprising the following steps:
  • Steps (2) to (5) were all carried out under nitrogen protection with magnetic stirring.
  • step (3) 30 mg of ZIF-67 synthesized in step (1) was immersed in the metal salt mixed solution obtained in step (2), sealed and sonicated and left to stand for 24h.
  • Ultrasonic impregnation mainly uses the vibration of ultrasonic waves to uniformly disperse the active components and evenly load them on the ZIF-67 carrier, and at the same time overcome the capillary resistance and enter the micropores of the carrier.
  • the adenine phosphate and the dried product are fully ground and mixed according to the mass ratio of 1:2 and then placed in a porcelain boat, then placed in the central area of the quartz tube with flowing nitrogen, and the temperature is set to 800 ° C, The heating rate was 5°C/min, the annealing time was 1h, and it was naturally lowered to room temperature.
  • the prepared nitrogen-phosphorus co-doped metal organic framework packaged platinum-cobalt-based alloy has good dispersion and uniform size. Compared with commercial 20 wt.% Pt/C, the oxygen reduction catalytic activity is better.
  • a method for preparing a nitrogen-phosphorus co-doped metal-organic framework encapsulating a platinum-cobalt-based alloy comprising the following steps:
  • Steps (2) to (5) were all carried out under nitrogen protection with magnetic stirring.
  • step (3) 30 mg of ZIF-67 synthesized in step (1) was immersed in the metal salt mixed solution obtained in step (2), sealed and sonicated and left to stand for 24h.
  • Ultrasonic impregnation mainly uses the vibration of ultrasonic waves to make the active components evenly dispersed and evenly loaded on the ZIF-67 carrier, and at the same time overcome the capillary resistance and enter the micropores of the carrier.
  • the adenine phosphate and the dried product are fully ground and mixed according to the mass ratio of 1:2 and then placed in a porcelain boat, then placed in the central area of the quartz tube with flowing nitrogen, and the temperature is set to 800 ° C, The heating rate was 5°C/min, the annealing time was 1.5h, and it was naturally lowered to room temperature.
  • a method for preparing a nitrogen-phosphorus co-doped metal-organic framework encapsulating a platinum-cobalt-based alloy comprising the following steps:
  • Steps (2) to (5) were all carried out under nitrogen protection with magnetic stirring.
  • step (3) 30 mg of ZIF-67 synthesized in step (1) was immersed in the metal salt mixed solution obtained in step (2), sealed and sonicated and left to stand for 24h.
  • Ultrasonic impregnation mainly uses the vibration of ultrasonic waves to make the active components evenly dispersed and evenly loaded on the ZIF-67 carrier, and at the same time overcome the capillary resistance and enter the micropores of the carrier.
  • the adenine phosphate and the dried product are fully ground and mixed according to the mass ratio of 1:2 and then placed in a porcelain boat, then placed in the central area of the quartz tube with flowing nitrogen, and the temperature is set to 800 ° C, The heating rate was 5°C/min, the annealing time was 1.5h, and it was naturally lowered to room temperature.
  • a method for preparing a nitrogen-phosphorus co-doped metal-organic framework encapsulating a platinum-cobalt-based alloy comprising the following steps:
  • Steps (2) to (5) were all carried out under nitrogen protection and accompanied by magnetic stirring.
  • step (3) 30 mg of ZIF-67 synthesized in step (1) was immersed in the metal salt mixed solution obtained in step (2), sealed and sonicated and left to stand for 24h.
  • Ultrasonic impregnation mainly uses the vibration of ultrasonic waves to make the active components evenly dispersed and evenly loaded on the ZIF-67 carrier, and at the same time overcome the capillary resistance and enter the micropores of the carrier.
  • the adenine phosphate and the dried product are fully ground and mixed according to the mass ratio of 1:2 and then placed in a porcelain boat, then placed in the central area of the quartz tube with flowing nitrogen, and the temperature is set to 800 ° C, The heating rate was 5°C/min, the annealing time was 1.5h, and it was naturally lowered to room temperature.
  • a method for preparing a nitrogen-phosphorus co-doped metal-organic framework encapsulating a platinum-cobalt-based alloy comprising the following steps:
  • Steps (2) to (5) were all carried out under nitrogen protection and accompanied by magnetic stirring.
  • step (3) 30 mg of ZIF-67 synthesized in step (1) was immersed in the metal salt mixed solution obtained in step (2), sealed and sonicated and left to stand for 24h.
  • Ultrasonic impregnation mainly uses the vibration of ultrasonic waves to make the active components evenly dispersed and evenly loaded on the ZIF-67 carrier, and at the same time overcome the capillary resistance and enter the micropores of the carrier.
  • the adenine phosphate and the dried product are fully ground and mixed according to the mass ratio of 1:2 and then placed in a porcelain boat, then placed in the central area of the quartz tube with flowing nitrogen, and the temperature is set to 800 ° C, The heating rate was 5°C/min, the annealing time was 1.5h, and it was naturally lowered to room temperature.
  • a method for preparing a nitrogen-phosphorus co-doped metal-organic framework encapsulating a platinum-cobalt-based alloy comprising the following steps:
  • Steps (2) to (5) were all carried out under nitrogen protection and accompanied by magnetic stirring.
  • step (3) 30 mg of ZIF-67 synthesized in step (1) was immersed in the metal salt mixed solution obtained in step (2), sealed and sonicated and left to stand for 24h.
  • Ultrasonic impregnation mainly uses the vibration of ultrasonic waves to make the active components evenly dispersed and evenly loaded on the ZIF-67 carrier, and at the same time overcome the capillary resistance and enter the micropores of the carrier.
  • the adenine phosphate and the dried product are fully ground and mixed according to the mass ratio of 1:2 and then placed in a porcelain boat, then placed in the central area of the quartz tube with flowing nitrogen, and the temperature is set to 800 ° C, The heating rate was 5°C/min, the annealing time was 1.5h, and it was naturally lowered to room temperature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种氮磷共掺杂金属有机框架封装铂钴基合金及其制备方法与应用,属于燃料电池纳米催化剂合成技术领域。将铂前驱体、钴前驱体和掺杂金属前驱体溶解于异丙醇中,调溶液pH>11;在室温具有保护气的环境下,搅拌得到金属盐混合溶液;将ZIF-67浸渍到金属盐混合溶液中,密封超声后静置后分散到多元醇溶剂中,在保护气的氛围下搅拌回流加热反应;滴加用异丙醇溶解的NaBH 4溶液,反应一段时间;停止反应后,冷却至室温,离心分离固体产物、洗涤、干燥;将腺嘌呤磷酸盐与干燥后的固体产物研磨混合后进行热处理,降至室温,即得。此方法具有简易、安全等优点,特别适用于作燃料电池与金属-空气电池阴极催化剂的制备。

Description

一种氮磷共掺杂金属有机框架封装铂钴基合金及其制备方法与应用 技术领域
本发明涉及一种纳米合金粒子嵌入金属有机框架复合材料的制备方法,特别涉及一种氮磷共掺杂金属有机框架封装铂钴基合金及其制备方法与应用,属于燃料电池纳米催化剂合成技术领域。
背景技术
质子交换膜燃料电池的阴极氧还原催化剂主要分为两大类:一类为铂(Pt)基催化剂,主要有铂碳、铂合金以及核壳、空心等特殊结构的铂合金催化剂;另一类是非铂基催化剂,包括过渡金属(Mn、Fe、Co、Ni、Cu)复合氮碳催化剂、过渡金属硫族(S、Se、Te)化合物、非金属杂原子(B、N、S、P、B-N、N-P、N-S、F、Cl、Br、I)掺杂碳催化剂。非Pt基催化剂的催化性能只有在碱性环境下才优于或相当于商用Pt/C催化剂,而质子交换膜燃料电池的工作环境为酸性,因此,Pt基催化剂在质子交换膜燃料电池催化剂中的地位短期内不可替代,是未来大规模商品化燃料电池的实用催化剂。
针对金属Pt价格昂贵以及其在工况下因迁移团聚、溶解再沉积、脱落等因素所导致的质子交换膜燃料电池催化活性以及稳定性衰减的问题,减少Pt用量降低成本及增强催化剂的稳定性是目前的关键举措。在纯Pt中添加过渡金属M(M=Fe、Cr、Mn、Co、Ni、Zn等)构成二元合金催化剂不仅可以减少铂用量降低催化剂成本,还能起到增强稳定性及提高催化活性的作用。但在这类合金中,过渡金属原子以固溶体形式无序的掺杂在铂晶格中,原子排列仍保持原有铂的面心立方结构,合金催化剂所产生的电子效应和几何效应都不均匀,因此氧还原催化活性的提高受到限制。同时,过渡金属原子的无序排列使其在燃料电池阴极富氧和高电压的酸性条件下极易从合金颗粒中 溶出,并在长时间循环下溶解而形成金属离子扩散至交换膜内,致使电池性能衰减。金属间化合物与合金结构不同,在金属间化合物的晶格结构内,Pt和M原子都有序的占据晶格中相应格点,并以金属键或离子键相互作用,使整个晶体呈现出长程有序的晶系结构,该结构使其在电催化反应中表现出比相应的合金材料更好的稳定性、抗氧化、耐腐蚀和耐CO中毒的能力。常见的金属间化合物合成方法是先在液相体系下可控的合成特定尺寸和成分的无序合金纳米颗粒,然后通过高温退火处理使其从无序向有序转变。有序结构虽然使催化剂的稳定性得到了增强,但也存在一些缺点:一是合金有序化后缺陷位点减少,二是这类催化材料在苛刻的条件下会烧结成大的纳米颗粒,这两者均可导致催化活性降低。提高稳定性的同时还要确保其催化性能不会大幅度衰减。
发明内容
本发明的目的是提供了一种利用超声溶液浸渍结合异丙醇稳定NaBH 4多元醇在ZIF-67宿主基质的碳骨架上及孔道内合成Pt基合金的方法,以及将样品与腺嘌呤磷酸盐按照一定比例充分研磨混合后抑制热处理中过渡金属掺杂Pt基金属间化合物颗粒增大的方案。具体为将ZIF-67添加到含有金属盐的异丙醇溶剂中,金属盐溶液通过超声浸渍渗透到ZIF-67腔内,然后再利用异丙醇稳定NaBH 4多元醇还原法将金属离子还原于腔体内,最后与腺嘌呤磷酸盐混合煅烧。将合成材料封装在氮磷共掺杂ZIF-67载体中与抑制烧结颗粒变大的目的均是为了增强稳定性与提升催化活性,可有效地应用于各电化学领域范围内。
本发明的技术方案:
一种氮磷共掺杂金属有机框架封装铂钴基合金的制备方法,包括如下步骤:
步骤(1)~(5)均在保护气下进行并伴随搅拌。
(1)将铂前驱体、钴前驱体和掺杂金属前驱体溶解于溶剂中,用碱性物质调节混 合溶液pH>11;在室温有保护气的条件下,搅拌一定时间,得到金属盐混合溶液;
(2)将ZIF-67浸渍到步骤(1)所得的金属盐混合溶液中,密封超声后静置一段时间;超声波浸渍,主要是利用超声波的振动,使活性组分均匀分散并均匀负载到载体上,同时克服毛细管阻力,进入载体的微孔。
(3)将步骤(2)中浸渍后的ZIF-67分散到多元醇溶剂中,在保护气作用下搅拌回流加热反应;
(4)向步骤(3)所得悬浮液中滴加用异丙醇溶解的NaBH 4水溶液,反应一段时间;
(5)停止反应后,自然冷却至室温,离心(10000rpm)分离固体产物、再用乙醇与超纯水反复洗涤,最后在80℃下真空干燥;
(6)将腺嘌呤磷酸盐与干燥后的固体产物按质量比0.25~1.00研磨混合后置于瓷舟中,随后将其推进放置在高温管式炉上通有流动氩气的石英管中心区域,进行热处理,降至室温,即得。
进一步地,上述技术方案中,步骤(1)所述铂前驱体、钴前驱体和掺杂金属前驱体中铂原子、钴原子和掺杂金属原子的摩尔比为1:0.1~0.4:0.1~0.4;步骤(2)中ZIF-67与金属盐混合溶液中的钴原子的摩尔比为3.5~40;步骤(4)所述异丙醇溶解的NaBH 4溶液中NaBH 4的浓度为0.5~2.5mmol/mL。
进一步地,上述技术方案中,搅拌的时间为30~60min,优选为40~60min;步骤(2)所述静置一段时间为24~30h;优选为24h;步骤(3)中回流加热反应的温度为130~180℃,优选为160~180℃,保温时间为10~60min,优选为25~50min;步骤(4)所述反应一段时间为1~5h,优选为2~4h;步骤(6)所述热处理的条件为温度为600~900℃,优选为700~850℃,升温速度为5℃/min,退火时间为0.5~2h,优选为0.5~1.5h。
进一步地,上述技术方案中,所述的铂前驱体包括氯铂酸钾、氯铂酸、氯亚铂酸 钾、六羟基铂酸盐。
进一步地,上述技术方案中,所述钴前驱体包括硝酸钴、氯化钴、硫酸钴、乙酸钴、乙酰丙酮钴、草酸钴或碳酸钴。
进一步地,上述技术方案中,所述掺杂金属前驱体包括掺杂金属原子的硝酸盐、掺杂金属原子的氯化盐、掺杂金属原子的硫酸盐、掺杂金属原子的乙酸盐、掺杂金属原子的乙酰丙酮盐、掺杂金属原子的草酸盐或掺杂金属原子的碳酸盐;所述掺杂金属原子包括Ni、Zn、Mo、Cu和Fe。
进一步地,上述技术方案中,所述碱性物质包括KOH、NaOH或氨水。
进一步地,上述技术方案中,所述的多元醇溶剂包括乙二醇、聚乙二醇、二乙二醇、三乙二醇、丙二醇或丙三醇。
进一步地,上述技术方案中,所述的保护气包括氮气、氩气、氦气或氖气。
进一步地,上述技术方案中,步骤(1)所述溶剂包括异丙醇、甲醇、乙醇。
本发明还提供了上述制备方法制备得到的氮磷共掺杂金属有机框架封装铂钴基合金。
本发明还提供了氮磷共掺杂金属有机框架封装铂钴基合金在制备质子交换膜燃料电池中的应用。
进一步地,上述技术方案中,氮磷共掺杂金属有机框架封装铂钴基合金在制备质子交换膜燃料电池阴极氧还原催化剂中的应用。
本发明的有益效果:
(1)利用超声溶液浸渍结合异丙醇稳定NaBH 4多元醇还原法在宿主基质的碳骨架上及孔道内合成Pt基合金,并将样品与腺嘌呤磷酸盐按照一定比例充分研磨混合后进行热处理。Pt基合金颗粒尺寸由其与腺嘌呤磷酸盐的质量比及退火温度与时间确定,第三元过渡金属的掺杂量由金属盐的添加量、超声浸渍时间以及退火的温度与时间确 定。此方法具有简易、安全等优点,特别适用于作燃料电池与金属-空气电池阴极催化剂的制备。
(2)本发明针对高温致使缺陷位点减少的问题,将第三金属原子引入Pt基合金中,掺杂所导致的双金属合金晶格畸变会引起电子耦合使双金属纳米催化剂的活性显著提高。掺杂过渡金属还可使Pt原子更好地嵌入或锚定在碳表面,有效地控制金属催化剂在碳表面的集聚或从碳表面流失。通过优化决定有序化程度的热处理温度以及表征缺陷位点数量的第三种过渡金属的掺杂量,平衡稳定性与氧还原催化活性。根据还原电位,从合成难易程度(如电位过负,需要更高的还原温度和更强的还原剂)等多方面综合考虑,选择易被还原的掺杂金属。
(3)为了解决烧结使纳米颗粒变大的问题,本发明采用的方法是将合成的催化样品与一定比例的腺嘌呤磷酸盐(该药品为核酸和某些辅酶的活性部分,参与生物体内代谢功能,经常和激素或其他维生素等药及输血并用,绿色无毒无污染。)研磨混合后再进行高温处理,不仅可以抑制颗粒长大,还可以作为氮磷源合成氮磷共掺杂载体材料。
(4)由于具有金属有机框架多孔结构的ZIF-67比表面大与孔隙率高,导电性和化学稳定性好,在其碳骨架上以及空腔内均可构建大量的催化活性中心,使其具有良好的电化学活性。金属合金纳米颗粒在其内分散式排布,碳基骨架的多孔结构易于质量与电荷的转移。ZIF-67作为铂基合金粒子的宿主基质,是重要的载体材料。
附图说明
图1是实施例1制备的氮磷共掺杂金属有机框架封装铂钴基合金与商用Pt/C催化剂的线性扫描曲线。
图2是实施例2中添加不同比例的腺嘌呤磷酸盐制备的氮磷共掺杂金属有机框架封装铂钴基合金的线性扫描曲线。
具体实施方式
下述非限定性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
实施例1
一种氮磷共掺杂金属有机框架封装铂钴基合金的制备方法,包括如下步骤:
(1)在ZIF-67的典型合成中,将1.7mmol硝酸钴溶于25.0mL甲醇中,在搅拌下加入溶于40.0mL甲醇的15.2mmol 2-甲基咪唑透明溶液。将混合物在室温下搅拌30min以产生不均匀的紫色混合物,然后将其密封并在室温下保持12h。通过离心分离(5000rpm)收集紫罗兰色晶体,在甲醇中洗涤三次,然后在80℃下真空干燥过夜,得到ZIF-67。
步骤(2)~(5)均在氮气保护下进行并伴随磁力搅拌。
(2)取0.1mmol氯亚铂酸钾、0.026mmol硝酸钴和0.016mmol硝酸镍溶解在20mL异丙醇中,添加1mol/L KOH使溶液pH值为12~13。在室温氮气保护下,磁力搅拌30min,得到金属盐混合溶液;
(3)将步骤(1)中合成的30mg ZIF-67浸渍到步骤(2)得到的金属盐混合溶液中,密封超声后静置24h。超声波浸渍,主要是利用超声波的振动,使活性组分均匀分散并均匀负载到ZIF-67载体上,同时克服毛细管阻力,进入载体的微孔。
(4)安装回流装置后将步骤(3)中浸渍后的ZIF-67分散到50mL乙二醇溶剂中,在氮气保护下搅拌加热至140℃并保温25min;
(5)向步骤(4)所得悬浮液中快速滴加2mL异丙醇稳定的170mg NaBH 4水溶液(3s内滴加完成),还原金属离子反应持续4h;
(6)停止反应后,冷却至室温,对样品进行离心(10000rpm)分离固体产物、再用乙醇与超纯水反复洗涤,最后在80℃下真空干燥。
(7)将腺嘌呤磷酸盐与干燥后产物按照质量比为1:1充分研磨混合后置于瓷舟中,随后将其置于通有流动氮气的石英管中心区域,温度设为800℃,升温速度5℃/min,退火时间为1.5h,自然降到室温,即得。
图1是实施例1制备的氮磷共掺杂金属有机框架封装铂钴基合金与商用Pt/C催化剂的线性扫描曲线,从图中可知添加腺嘌呤磷酸盐再经热处理获得的氮磷共掺杂金属有机框架封装铂钴基合金,其氧还原催化活性优于商用20wt.%Pt/C催化剂。
实施例2
一种氮磷共掺杂金属有机框架封装铂钴基合金的制备方法,包括如下步骤:
(1)在ZIF-67的典型合成中,将1.7mmol硝酸钴溶于25.0mL甲醇中,在搅拌下加入溶于40.0mL甲醇的15.2mmol 2-甲基咪唑透明溶液。将混合物在室温下搅拌30min以产生不均匀的紫色混合物,然后将其密封并在室温下保持12h。通过离心分离(5000rpm)收集紫罗兰色晶体,在甲醇中洗涤三次,然后在80℃下真空干燥过夜,得到ZIF-67。
步骤(2)~(5)均在具有保护气的环境下进行并伴随磁力搅拌。
(2)取0.1mmol氯铂酸、0.016mmol乙酸钴、0.026mmol乙酸镍溶解在35mL异丙醇中,添加1mol/L NaOH使溶液pH值为12~13。在室温氩气保护下,磁力搅拌60min,得到金属盐混合溶液;
(3)将步骤(1)中合成的80mg ZIF-67浸渍到步骤(2)得到的金属盐混合溶液中,密封超声后静置24h。超声波浸渍,主要是利用超声波的振动,使活性组分均匀分散并均匀负载到ZIF-67载体上,同时克服毛细管阻力,进入载体的微孔。
(4)安装回流装置后将步骤(3)中浸渍后的ZIF-67分散到70mL三乙二醇溶剂中,在氩气保护下搅拌加热至180℃并保温45min;
(5)向步骤(4)所得悬浮液中快速滴加2mL异丙醇稳定的170mg NaBH 4水溶液 (3s内滴加完成),还原金属离子反应持续3h;
(6)停止反应后,冷却至室温,对样品进行离心(10000rpm)分离固体产物、再用乙醇与超纯水反复洗涤,最后在80℃下真空干燥。
(7)将腺嘌呤磷酸盐与干燥后产物分别按质量比1:2与3:2两种比例研磨后置于瓷舟中,随后将其置于通有流动氮气的石英管中心区域,温度设为900℃,升温速度5℃/min,退火时间为1h,自然降到室温,即得。
图2是实施例2中添加干燥后产物质量0.5和1.5倍腺嘌呤磷酸盐热处理后得到的氮磷共掺杂金属有机框架封装铂钴基合金的线性扫描曲线图,从图中可知腺嘌呤磷酸盐添加量是样品的1.5倍时,样品的催化活性相比于0.5倍时出现衰减。
实施例3
一种氮磷共掺杂金属有机框架封装铂钴基合金的制备方法,包括如下步骤:
(1)在ZIF-67的典型合成中,将1.7mmol硝酸钴溶于25.0mL甲醇中,在搅拌下加入溶于40.0mL甲醇的15.2mmol 2-甲基咪唑透明溶液。将混合物在室温下搅拌30min以产生不均匀的紫色混合物,然后将其密封并在室温下保持12h。通过离心分离(5000rpm)收集紫罗兰色晶体,在甲醇中洗涤三次,然后在80℃下真空干燥过夜,得到ZIF-67。
步骤(2)~(5)均在氮气保护下进行并伴随磁力搅拌。
(2)取0.1mmol氯铂酸钾、0.026mmol硝酸钴和0.016mmol硝酸镍溶解在20mL异丙醇中,添加1mol/L KOH使溶液pH值为12~13。在室温氮气保护下,磁力搅拌30min,得到金属盐混合溶液;
(3)将步骤(1)中合成的30mg ZIF-67浸渍到步骤(2)得到的金属盐混合溶液中,密封超声后静置24h。超声波浸渍,主要是利用超声波的振动,使活性组分均匀分散并均匀负载到ZIF-67载体上,同时克服毛细管阻力,进入载体的微孔。
(4)安装回流装置后将步骤(3)中浸渍后的ZIF-67分散到50mL乙二醇溶剂中,在氮气保护下搅拌加热至140℃并保温30min;
(5)向步骤(4)所得悬浮液中快速滴加2mL异丙醇稳定的170mg NaBH 4水溶液(3s内滴加完成),还原金属离子反应持续4h;
(6)停止反应后,冷却至室温,对样品进行离心(10000rpm)分离固体产物、再用乙醇与超纯水反复洗涤,最后在80℃下真空干燥。
(7)将腺嘌呤磷酸盐与干燥后产物按照质量比为1:2充分研磨混合后置于瓷舟中,随后将其置于通有流动氮气的石英管中心区域,温度设为800℃,升温速度5℃/min,退火时间为1.5h,自然降到室温,即得。制备出的氮磷共掺杂金属有机框架封装铂钴基合金分散性好,尺寸均匀。与商用20wt.%Pt/C相比,氧还原催化活性更好。
实施例4
一种氮磷共掺杂金属有机框架封装铂钴基合金的制备方法,包括如下步骤:
(1)在ZIF-67的典型合成中,将1.7mmol硝酸钴溶于25.0mL甲醇中,在搅拌下加入溶于40.0mL甲醇的15.2mmol 2-甲基咪唑透明溶液。将混合物在室温下搅拌30min以产生不均匀的紫色混合物,然后将其密封并在室温下保持12h。通过离心分离(5000rpm)收集紫罗兰色晶体,在甲醇中洗涤三次,然后在80℃下真空干燥过夜,得到ZIF-67。
步骤(2)~(5)均在氮气保护下进行并伴随磁力搅拌。
(2)取0.1mmol六羟基铂酸盐、0.026mmol硝酸钴和0.016mmol硝酸镍溶解在20mL异丙醇中,添加1mol/L KOH使溶液pH值为12~13。在室温氮气保护下,磁力搅拌30min,得到金属盐混合溶液;
(3)将步骤(1)中合成的30mg ZIF-67浸渍到步骤(2)得到的金属盐混合溶液中,密封超声后静置24h。超声波浸渍,主要是利用超声波的振动,使活性组分均匀分散 并均匀负载到ZIF-67载体上,同时克服毛细管阻力,进入载体的微孔。
(4)安装回流装置后将步骤(3)中浸渍后的ZIF-67分散到50mL乙二醇溶剂中,在氮气保护下搅拌加热至160℃并保温35min;
(5)向步骤(4)所得悬浮液中快速滴加2mL异丙醇稳定的170mg NaBH 4水溶液(3s内滴加完成),还原金属离子反应持续4h;
(6)停止反应后,冷却至室温,对样品进行离心(10000rpm)分离固体产物、再用乙醇与超纯水反复洗涤,最后在80℃下真空干燥。
(7)将腺嘌呤磷酸盐与干燥后产物按照质量比为1:2充分研磨混合后置于瓷舟中,随后将其置于通有流动氮气的石英管中心区域,温度设为800℃,升温速度5℃/min,退火时间为1h,自然降到室温,即得。制备出的氮磷共掺杂金属有机框架封装铂钴基合金分散性好,尺寸均匀。与商用20wt.%Pt/C相比,氧还原催化活性更好。
实施例5
一种氮磷共掺杂金属有机框架封装铂钴基合金的制备方法,包括如下步骤:
(1)在ZIF-67的典型合成中,将1.7mmol硝酸钴溶于25.0mL甲醇中,在搅拌下加入溶于40.0mL甲醇的15.2mmol 2-甲基咪唑透明溶液。将混合物在室温下搅拌30min以产生不均匀的紫色混合物,然后将其密封并在室温下保持12h。通过离心分离(5000rpm)收集紫罗兰色晶体,在甲醇中洗涤三次,然后在80℃下真空干燥过夜,得到ZIF-67。
步骤(2)~(5)均在氮气保护下进行并伴随磁力搅拌。
(2)取0.1mmol氯亚铂酸钾、0.026mmol氯化钴和0.016mmol氯化镍溶解在20mL异丙醇中,添加1mol/L KOH使溶液pH值为12~13。在室温氮气保护下,磁力搅拌30min,得到金属盐混合溶液;
(3)将步骤(1)中合成的30mg ZIF-67浸渍到步骤(2)得到的金属盐混合溶液中, 密封超声后静置24h。超声波浸渍,主要是利用超声波的振动,使活性组分均匀分散并均匀负载到ZIF-67载体上,同时克服毛细管阻力,进入载体的微孔。
(4)安装回流装置后将步骤(3)中浸渍后的ZIF-67分散到50mL乙二醇溶剂中,在氮气保护下搅拌加热至140℃并保温25min;
(5)向步骤(4)所得悬浮液中快速滴加2mL异丙醇稳定的170mg NaBH 4水溶液(3s内滴加完成),还原金属离子反应持续4h;
(6)停止反应后,冷却至室温,对样品进行离心(10000rpm)分离固体产物、再用乙醇与超纯水反复洗涤,最后在80℃下真空干燥。
(7)将腺嘌呤磷酸盐与干燥后产物按照质量比为1:2充分研磨混合后置于瓷舟中,随后将其置于通有流动氮气的石英管中心区域,温度设为800℃,升温速度5℃/min,退火时间为1.5h,自然降到室温,即得。
实施例6
一种氮磷共掺杂金属有机框架封装铂钴基合金的制备方法,包括如下步骤:
(1)在ZIF-67的典型合成中,将1.7mmol硝酸钴溶于25.0mL甲醇中,在搅拌下加入溶于40.0mL甲醇的15.2mmol 2-甲基咪唑透明溶液。将混合物在室温下搅拌30min以产生不均匀的紫色混合物,然后将其密封并在室温下保持12h。通过离心分离(5000rpm)收集紫罗兰色晶体,在甲醇中洗涤三次,然后在80℃下真空干燥过夜,得到ZIF-67。
步骤(2)~(5)均在氮气保护下进行并伴随磁力搅拌。
(2)取0.1mmol氯亚铂酸钾、0.026mmol硫酸钴和0.016mmol硫酸镍溶解在20mL异丙醇中,添加1mol/L KOH使溶液pH值为12~13。在室温氮气保护下,磁力搅拌30min,得到金属盐混合溶液;
(3)将步骤(1)中合成的30mg ZIF-67浸渍到步骤(2)得到的金属盐混合溶液中, 密封超声后静置24h。超声波浸渍,主要是利用超声波的振动,使活性组分均匀分散并均匀负载到ZIF-67载体上,同时克服毛细管阻力,进入载体的微孔。
(4)安装回流装置后将步骤(3)中浸渍后的ZIF-67分散到50mL乙二醇溶剂中,在氮气保护下搅拌加热至140℃并保温25min;
(5)向步骤(4)所得悬浮液中快速滴加2mL异丙醇稳定的170mg NaBH 4水溶液(3s内滴加完成),还原金属离子反应持续4h;
(6)停止反应后,冷却至室温,对样品进行离心(10000rpm)分离固体产物、再用乙醇与超纯水反复洗涤,最后在80℃下真空干燥。
(7)将腺嘌呤磷酸盐与干燥后产物按照质量比为1:2充分研磨混合后置于瓷舟中,随后将其置于通有流动氮气的石英管中心区域,温度设为800℃,升温速度5℃/min,退火时间为1.5h,自然降到室温,即得。
实施例7
一种氮磷共掺杂金属有机框架封装铂钴基合金的制备方法,包括如下步骤:
(1)在ZIF-67的典型合成中,将1.7mmol硝酸钴溶于25.0mL甲醇中,在搅拌下加入溶于40.0mL甲醇的15.2mmol 2-甲基咪唑透明溶液。将混合物在室温下搅拌30min以产生不均匀的紫色混合物,然后将其密封并在室温下保持12h。通过离心分离(5000rpm)收集紫罗兰色晶体,在甲醇中洗涤三次,然后在80℃下真空干燥过夜,得到ZIF-67。
步骤(2)~(5)均在氮气保护下进行并伴随磁力搅拌。
(2)取0.1mmol氯亚铂酸钾、0.026mmol乙酰丙酮钴和0.016mmol乙酰丙酮镍溶解在20mL异丙醇中,添加1mol/L KOH使溶液pH值为12~13。在室温氮气保护下,磁力搅拌30min,得到金属盐混合溶液;
(3)将步骤(1)中合成的30mg ZIF-67浸渍到步骤(2)得到的金属盐混合溶液中, 密封超声后静置24h。超声波浸渍,主要是利用超声波的振动,使活性组分均匀分散并均匀负载到ZIF-67载体上,同时克服毛细管阻力,进入载体的微孔。
(4)安装回流装置后将步骤(3)中浸渍后的ZIF-67分散到50mL乙二醇溶剂中,在氮气保护下搅拌加热至140℃并保温25min;
(5)向步骤(4)所得悬浮液中快速滴加2mL异丙醇稳定的170mg NaBH 4水溶液(3s内滴加完成),还原金属离子反应持续4h;
(6)停止反应后,冷却至室温,对样品进行离心(10000rpm)分离固体产物、再用乙醇与超纯水反复洗涤,最后在80℃下真空干燥。
(7)将腺嘌呤磷酸盐与干燥后产物按照质量比为1:2充分研磨混合后置于瓷舟中,随后将其置于通有流动氮气的石英管中心区域,温度设为800℃,升温速度5℃/min,退火时间为1.5h,自然降到室温,即得。
实施例8
一种氮磷共掺杂金属有机框架封装铂钴基合金的制备方法,包括如下步骤:
(1)在ZIF-67的典型合成中,将1.7mmol硝酸钴溶于25.0mL甲醇中,在搅拌下加入溶于40.0mL甲醇的15.2mmol 2-甲基咪唑透明溶液。将混合物在室温下搅拌30min以产生不均匀的紫色混合物,然后将其密封并在室温下保持12h。通过离心分离(5000rpm)收集紫罗兰色晶体,在甲醇中洗涤三次,然后在80℃下真空干燥过夜,得到ZIF-67。
步骤(2)~(5)均在氮气保护下进行并伴随磁力搅拌。
(2)取0.1mmol氯亚铂酸钾、0.026mmol草酸钴和0.016mmol草酸镍溶解在20mL异丙醇中,添加1mol/L KOH使溶液pH值为12~13。在室温氮气保护下,磁力搅拌30min,得到金属盐混合溶液;
(3)将步骤(1)中合成的30mg ZIF-67浸渍到步骤(2)得到的金属盐混合溶液中, 密封超声后静置24h。超声波浸渍,主要是利用超声波的振动,使活性组分均匀分散并均匀负载到ZIF-67载体上,同时克服毛细管阻力,进入载体的微孔。
(4)安装回流装置后将步骤(3)中浸渍后的ZIF-67分散到50mL乙二醇溶剂中,在氮气保护下搅拌加热至140℃并保温25min;
(5)向步骤(4)所得悬浮液中快速滴加2mL异丙醇稳定的170mg NaBH 4水溶液(3s内滴加完成),还原金属离子反应持续4h;
(6)停止反应后,冷却至室温,对样品进行离心(10000rpm)分离固体产物、再用乙醇与超纯水反复洗涤,最后在80℃下真空干燥。
(7)将腺嘌呤磷酸盐与干燥后产物按照质量比为1:2充分研磨混合后置于瓷舟中,随后将其置于通有流动氮气的石英管中心区域,温度设为800℃,升温速度5℃/min,退火时间为1.5h,自然降到室温,即得。
实施例9
一种氮磷共掺杂金属有机框架封装铂钴基合金的制备方法,包括如下步骤:
(1)在ZIF-67的典型合成中,将1.7mmol硝酸钴溶于25.0mL甲醇中,在搅拌下加入溶于40.0mL甲醇的15.2mmol 2-甲基咪唑透明溶液。将混合物在室温下搅拌30min以产生不均匀的紫色混合物,然后将其密封并在室温下保持12h。通过离心分离(5000rpm)收集紫罗兰色晶体,在甲醇中洗涤三次,然后在80℃下真空干燥过夜,得到ZIF-67。
步骤(2)~(5)均在氮气保护下进行并伴随磁力搅拌。
(2)取0.1mmol氯亚铂酸钾、0.026mmol碳酸钴和0.016mmol碳酸镍溶解在20mL异丙醇中,添加1mol/L KOH使溶液pH值为12~13。在室温氮气保护下,磁力搅拌30min,得到金属盐混合溶液;
(3)将步骤(1)中合成的30mg ZIF-67浸渍到步骤(2)得到的金属盐混合溶液中, 密封超声后静置24h。超声波浸渍,主要是利用超声波的振动,使活性组分均匀分散并均匀负载到ZIF-67载体上,同时克服毛细管阻力,进入载体的微孔。
(4)安装回流装置后将步骤(3)中浸渍后的ZIF-67分散到50mL乙二醇溶剂中,在氮气保护下搅拌加热至140℃并保温25min;
(5)向步骤(4)所得悬浮液中快速滴加2mL异丙醇稳定的170mg NaBH 4水溶液(3s内滴加完成),还原金属离子反应持续4h;
(6)停止反应后,冷却至室温,对样品进行离心(10000rpm)分离固体产物、再用乙醇与超纯水反复洗涤,最后在80℃下真空干燥。
(7)将腺嘌呤磷酸盐与干燥后产物按照质量比为1:2充分研磨混合后置于瓷舟中,随后将其置于通有流动氮气的石英管中心区域,温度设为800℃,升温速度5℃/min,退火时间为1.5h,自然降到室温,即得。

Claims (10)

  1. 一种氮磷共掺杂金属有机框架封装铂钴基合金的制备方法,其特征在于,包括如下步骤:
    (1)将铂前驱体、钴前驱体和掺杂金属前驱体溶解于溶剂中,用碱性物质调节混合溶液pH>11;在室温有保护气的条件下,搅拌一定时间,得到金属盐混合溶液;
    (2)将ZIF-67浸渍到步骤(1)所得的金属盐混合溶液中,密封超声后静置一段时间;
    (3)将步骤(2)中浸渍后的ZIF-67分散到多元醇溶剂中,在保护气作用下搅拌回流加热反应;
    (4)向步骤(3)所得悬浮液中滴加用异丙醇溶解的NaBH 4溶液,反应一段时间;
    (5)停止反应后,冷却至室温,离心分离固体产物、再用乙醇与超纯水反复洗涤,真空干燥;
    (6)将腺嘌呤磷酸盐与干燥后的固体产物按质量比0.25~1.00研磨混合后进行热处理,降至室温,即得。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤(1)所述铂前驱体、钴前驱体和掺杂金属前驱体中铂原子、钴原子和掺杂金属原子的摩尔比为1:0.1~0.4:0.1~0.4;步骤(2)中ZIF-67与金属盐混合溶液中的钴原子的摩尔比为3.5~40;步骤(4)所述异丙醇溶解的NaBH 4溶液中NaBH 4的浓度为0.5~2.5mmol/mL。
  3. 根据权利要求1所述的制备方法,其特征在于,搅拌的时间为30~60min;步骤(2)所述静置一段时间为24~30h;步骤(3)中回流加热反应的温度为130~180℃,时间为10~60min;步骤(4)所述反应一段时间为1~5h;步骤(6)所述热处理的条件为温度为600~900℃,升温速度为5℃/min,退火时间为0.5~2h。
  4. 根据权利要求1所述的制备方法,其特征在于,所述铂前驱体包括氯铂酸钾、氯铂酸、氯亚铂酸钾、六羟基铂酸盐。
  5. 根据权利要求1所述的制备方法,其特征在于,所述钴前驱体包括硝酸钴、氯化钴、硫酸钴、乙酸钴、乙酰丙酮钴、草酸钴或碳酸钴。
  6. 根据权利要求1所述的制备方法,其特征在于,所述掺杂金属前驱体包括掺杂金属原子的硝酸盐、掺杂金属原子的氯化盐、掺杂金属原子的硫酸盐、掺杂金属原子的乙酸盐、掺杂金属原子的乙酰丙酮盐、掺杂金属原子的草酸盐或掺杂金属原子的碳酸盐;所述掺杂金属原子包括Ni、Zn、Mo、Cu和Fe。
  7. 根据权利要求1所述的制备方法,其特征在于,所述碱性物质包括KOH、NaOH或氨水;所述保护气包括氮气、氩气、氦气或氖气。
  8. 根据权利要求1所述的制备方法,其特征在于,步骤(3)所述的多元醇溶剂包括乙二醇、聚乙二醇、二乙二醇、三乙二醇、丙二醇、丙三醇;步骤(1)所述溶剂包括异丙醇、甲醇、乙醇。
  9. 权利要求1-8中任一项所述的制备方法制备得到的氮磷共掺杂金属有机框架封装铂钴基合金。
  10. 权利要求9所述的氮磷共掺杂金属有机框架封装铂钴基合金在制备质子交换膜燃料电池中的应用。
PCT/CN2021/119572 2020-11-26 2021-09-22 一种氮磷共掺杂金属有机框架封装铂钴基合金及其制备方法与应用 WO2022111008A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011349911.7 2020-11-26
CN202011349911.7A CN112467150B (zh) 2020-11-26 2020-11-26 一种氮磷共掺杂金属有机框架封装铂钴基合金及其制备方法与应用

Publications (1)

Publication Number Publication Date
WO2022111008A1 true WO2022111008A1 (zh) 2022-06-02

Family

ID=74807986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119572 WO2022111008A1 (zh) 2020-11-26 2021-09-22 一种氮磷共掺杂金属有机框架封装铂钴基合金及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN112467150B (zh)
WO (1) WO2022111008A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115142086A (zh) * 2022-06-10 2022-10-04 景德镇陶瓷大学 一种氧还原/氢析出反应电催化剂Pt3Co/Co@C及其制备方法和应用
CN115411276A (zh) * 2022-09-20 2022-11-29 陕西科技大学 用于氧还原反应的核壳纳米笼电催化剂的制备方法
CN115566207A (zh) * 2022-10-12 2023-01-03 北京科技大学 一种锚定在MOFs衍生碳骨架上的过渡金属焦磷酸盐ORR催化剂及其制备方法和应用
CN115579481A (zh) * 2022-11-14 2023-01-06 中国石油大学(华东) 一种氟掺杂的纳米催化材料及其制备方法和应用
CN115602862A (zh) * 2022-10-24 2023-01-13 同济大学(Cn) 一种高电催化活性的低铂催化剂及其制备方法和应用
CN115990493A (zh) * 2022-12-28 2023-04-21 电子科技大学 一种钴基多金属硫化物异质结构纳米材料的制备方法
CN116053492A (zh) * 2023-01-10 2023-05-02 福州大学 超薄多孔碳层保护的Pt基合金催化剂的制备方法
CN116586093A (zh) * 2023-05-12 2023-08-15 太原理工大学 核壳结构的zif-67@zif-8钴基催化剂的制备方法和应用
CN116632219A (zh) * 2023-07-19 2023-08-22 兰溪博观循环科技有限公司 核壳结构的金属磷酸盐复合材料及其制备方法、应用
CN117161374A (zh) * 2023-09-07 2023-12-05 苏州大学 一种氮掺杂多孔碳负载多元有序金属合金纳米颗粒及其制备方法
CN117299184A (zh) * 2023-11-24 2023-12-29 北京中航天业科技有限公司 氮掺杂Al-MOFs@MAl-LDHs衍生复合氧化物的制备方法及其应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467150B (zh) * 2020-11-26 2021-09-24 中国科学院大连化学物理研究所 一种氮磷共掺杂金属有机框架封装铂钴基合金及其制备方法与应用
CN114709438A (zh) * 2022-04-02 2022-07-05 中汽创智科技有限公司 一种铂基多元金属催化剂及其制备方法和用途
CN114899437B (zh) * 2022-05-27 2024-06-14 北京理工大学 一种掺氮介孔碳负载Pt燃料电池阴极催化剂的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103165916A (zh) * 2013-03-01 2013-06-19 北京化工大学常州先进材料研究院 一种高稳定性Pt-M/MOFs-石墨烯电催化剂及制备方法
CN105958085A (zh) * 2016-05-09 2016-09-21 北京化工大学常州先进材料研究院 一种金属有机骨架负载的铂基催化剂的制备方法
CN106328960A (zh) * 2016-10-08 2017-01-11 华南理工大学 Zif‑67模板法制备钴铂核壳颗粒/多孔碳复合材料以及在燃料电池阴极中的催化应用
JP2017033754A (ja) * 2015-07-31 2017-02-09 アイシン精機株式会社 酵素電極、酵素電極を備えるバイオ電池用セル、酵素電極の作製方法、及び酵素電極の保存方法
CN107331877A (zh) * 2017-08-03 2017-11-07 重庆大学 一种三维碳骨架镶嵌纳米铂基合金催化剂的制备方法
CN111933960A (zh) * 2020-08-18 2020-11-13 哈尔滨工业大学(深圳) 一种PtCo@N-GNS催化剂及其制备方法与应用
CN112467150A (zh) * 2020-11-26 2021-03-09 中国科学院大连化学物理研究所 一种氮磷共掺杂金属有机框架封装铂钴基合金及其制备方法与应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8835343B2 (en) * 2010-09-27 2014-09-16 Uchicago Argonne, Llc Non-platinum group metal electrocatalysts using metal organic framework materials and method of preparation
CN103219531A (zh) * 2013-03-01 2013-07-24 北京化工大学常州先进材料研究院 一种金属有机骨架为载体的高活性电催化剂及制备方法
US9825308B1 (en) * 2016-07-06 2017-11-21 Uchicago Argonne, Llc Low platinum catalyst and method of preparation
CN107790164B (zh) * 2017-10-12 2020-01-21 郑州大学 氮磷共掺杂多孔碳包覆磷化亚铜复合型催化剂及其制备方法
EP3900088A1 (en) * 2018-12-21 2021-10-27 3M Innovative Properties Company Fluoropolymer ionomers with reduced catalyst poisoning and articles therefrom
CN110215930A (zh) * 2019-06-17 2019-09-10 西南石油大学 氮掺杂碳包覆的Co基MOF衍生材料和制备方法及其应用
CN110518261B (zh) * 2019-08-02 2021-07-20 三峡大学 氮磷共掺杂碳纳米管包覆钴铁双金属合金原位电极的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103165916A (zh) * 2013-03-01 2013-06-19 北京化工大学常州先进材料研究院 一种高稳定性Pt-M/MOFs-石墨烯电催化剂及制备方法
JP2017033754A (ja) * 2015-07-31 2017-02-09 アイシン精機株式会社 酵素電極、酵素電極を備えるバイオ電池用セル、酵素電極の作製方法、及び酵素電極の保存方法
CN105958085A (zh) * 2016-05-09 2016-09-21 北京化工大学常州先进材料研究院 一种金属有机骨架负载的铂基催化剂的制备方法
CN106328960A (zh) * 2016-10-08 2017-01-11 华南理工大学 Zif‑67模板法制备钴铂核壳颗粒/多孔碳复合材料以及在燃料电池阴极中的催化应用
CN107331877A (zh) * 2017-08-03 2017-11-07 重庆大学 一种三维碳骨架镶嵌纳米铂基合金催化剂的制备方法
CN111933960A (zh) * 2020-08-18 2020-11-13 哈尔滨工业大学(深圳) 一种PtCo@N-GNS催化剂及其制备方法与应用
CN112467150A (zh) * 2020-11-26 2021-03-09 中国科学院大连化学物理研究所 一种氮磷共掺杂金属有机框架封装铂钴基合金及其制备方法与应用

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115142086B (zh) * 2022-06-10 2023-12-08 景德镇陶瓷大学 一种氧还原/氢析出反应电催化剂Pt3Co/Co@C及其制备方法和应用
CN115142086A (zh) * 2022-06-10 2022-10-04 景德镇陶瓷大学 一种氧还原/氢析出反应电催化剂Pt3Co/Co@C及其制备方法和应用
CN115411276B (zh) * 2022-09-20 2023-10-20 陕西科技大学 用于氧还原反应的核壳纳米笼电催化剂的制备方法
CN115411276A (zh) * 2022-09-20 2022-11-29 陕西科技大学 用于氧还原反应的核壳纳米笼电催化剂的制备方法
CN115566207A (zh) * 2022-10-12 2023-01-03 北京科技大学 一种锚定在MOFs衍生碳骨架上的过渡金属焦磷酸盐ORR催化剂及其制备方法和应用
CN115602862A (zh) * 2022-10-24 2023-01-13 同济大学(Cn) 一种高电催化活性的低铂催化剂及其制备方法和应用
CN115602862B (zh) * 2022-10-24 2024-03-26 同济大学 一种高电催化活性的低铂催化剂及其制备方法和应用
CN115579481A (zh) * 2022-11-14 2023-01-06 中国石油大学(华东) 一种氟掺杂的纳米催化材料及其制备方法和应用
CN115990493A (zh) * 2022-12-28 2023-04-21 电子科技大学 一种钴基多金属硫化物异质结构纳米材料的制备方法
CN115990493B (zh) * 2022-12-28 2024-06-07 电子科技大学 一种钴基多金属硫化物异质结构纳米材料的制备方法
CN116053492A (zh) * 2023-01-10 2023-05-02 福州大学 超薄多孔碳层保护的Pt基合金催化剂的制备方法
CN116586093A (zh) * 2023-05-12 2023-08-15 太原理工大学 核壳结构的zif-67@zif-8钴基催化剂的制备方法和应用
CN116632219A (zh) * 2023-07-19 2023-08-22 兰溪博观循环科技有限公司 核壳结构的金属磷酸盐复合材料及其制备方法、应用
CN116632219B (zh) * 2023-07-19 2023-10-24 兰溪博观循环科技有限公司 核壳结构的金属磷酸盐复合材料及其制备方法、应用
CN117161374A (zh) * 2023-09-07 2023-12-05 苏州大学 一种氮掺杂多孔碳负载多元有序金属合金纳米颗粒及其制备方法
CN117299184A (zh) * 2023-11-24 2023-12-29 北京中航天业科技有限公司 氮掺杂Al-MOFs@MAl-LDHs衍生复合氧化物的制备方法及其应用
CN117299184B (zh) * 2023-11-24 2024-02-13 北京中航天业科技有限公司 氮掺杂Al-MOFs@MAl-LDHs衍生复合氧化物的制备方法及其应用

Also Published As

Publication number Publication date
CN112467150A (zh) 2021-03-09
CN112467150B (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
WO2022111008A1 (zh) 一种氮磷共掺杂金属有机框架封装铂钴基合金及其制备方法与应用
CN109216712B (zh) 基于金属有机框架的非贵金属/碳复合材料的制备方法、非贵金属/碳复合材料及其应用
CN111697239B (zh) 一种钴铁合金、氮共掺杂炭氧气还原催化剂及其制备方法和应用
CN111987326B (zh) 超细m-n-c非贵金属碳基氧还原催化剂、制备方法及应用
CN113113621B (zh) 有序低铂合金催化剂的制备方法和应用
CN110518257B (zh) 一种碳载过渡金属@Pt核壳结构催化剂的制备方法
CN112510221B (zh) 一种燃料电池电催化剂及其制备方法与应用
CN113422073A (zh) 钴修饰的碳载超细铂纳米合金催化剂的制备方法
CN110350205B (zh) ZIFs衍生金属氮化物/碳复合材料及制备方法和用途
CN114284516B (zh) 一种低Pt负载量的催化剂、制备方法及其应用
CN110265667A (zh) 一种应用于氧还原的新型纳米复合催化剂及其制备方法
CN111342069B (zh) 一种表面金修饰的高载量碳载铂钴催化剂及其制备方法和应用
CN113707897A (zh) 一种燃料电池用抗反极催化剂及其制备方法
CN111916775A (zh) 一种燃料电池铂基合金催化剂及其制备方法
CN103706375A (zh) 用于质子交换膜燃料电池的PtFe/C催化剂的制备方法
CN112490453B (zh) 一种氮磷共掺杂碳载铂钴基纳米合金催化剂及其制备方法与应用
CN114256470B (zh) 一种基于空心立方体碳材料的钴铁合金纳米颗粒及其制备方法和应用
CN113346094B (zh) 一种负载型高分散、小尺寸铂基有序合金电催化剂的宏量制备方法
CN114050280A (zh) 一种高载量负载稀贵金属碳基材料的制备方法
CN114824319A (zh) 一种N掺杂TiO2-x负载的PtCu合金纳米催化剂的制备方法和应用
CN115050972A (zh) 一种多面体碳壳层负载过渡金属基氢氧化催化剂载体及其制备方法和应用
CN116364961B (zh) 一种氧还原催化剂及其制备方法、燃料电池
CN116565240B (zh) 一种稀土金属Ln掺杂NC载体担载的PtLn合金催化剂及其制备方法与应用
CN113410483B (zh) 燃料电池PtNi金属间化合物催化剂的有序化促进制备方法及金属间化合物催化剂
CN115954490A (zh) 一种PtCo合金催化剂及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896512

Country of ref document: EP

Kind code of ref document: A1