WO2022000889A1 - 正极材料、其制备方法及锂离子电池 - Google Patents

正极材料、其制备方法及锂离子电池 Download PDF

Info

Publication number
WO2022000889A1
WO2022000889A1 PCT/CN2020/124464 CN2020124464W WO2022000889A1 WO 2022000889 A1 WO2022000889 A1 WO 2022000889A1 CN 2020124464 W CN2020124464 W CN 2020124464W WO 2022000889 A1 WO2022000889 A1 WO 2022000889A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
electrode material
sintering
preparation
Prior art date
Application number
PCT/CN2020/124464
Other languages
English (en)
French (fr)
Inventor
白艳
张树涛
潘海龙
王壮
Original Assignee
蜂巢能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蜂巢能源科技有限公司 filed Critical 蜂巢能源科技有限公司
Priority to KR1020227027193A priority Critical patent/KR20220127277A/ko
Priority to US17/764,212 priority patent/US20230327082A1/en
Priority to JP2022538278A priority patent/JP7416956B2/ja
Priority to EP20942519.8A priority patent/EP4002520A4/en
Publication of WO2022000889A1 publication Critical patent/WO2022000889A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/10One-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of lithium ion battery manufacturing, in particular, to a positive electrode material, a preparation method thereof and a lithium ion battery.
  • Lithium-ion batteries are widely used in electric vehicles, hybrid vehicles and energy storage systems due to their high capacity and high energy density.
  • cathode materials have a significant impact on the performance of lithium-ion batteries.
  • the synthesis process is mostly three sintering process (ie the first sintering, the first coating, the second sintering, washing and drying, the second coating, the third sintering), and some use the second sintering (ie the first sintering).
  • the coating agent all adopts conventional coating agent such as carbon coating agent.
  • the preparation process of the positive electrode material multiple coating and multiple sintering processes and water washing processes need to be carried out, which leads to its complex synthesis process.
  • the cycle is long, the energy consumption is large, the material loss in the intermediate process is large, the yield is low, the water pollution problem, and the water washing process washes away the residual alkali and causes the loss of circulation capacity.
  • the main purpose of the present invention is to provide a positive electrode material, its preparation method and lithium ion battery, so as to solve the problems of complicated synthesis process, high energy consumption, unenvironmental protection, low positive electrode material yield and cause The problem of cycle capacity loss.
  • one aspect of the present invention provides a method for preparing a positive electrode material, the preparation method comprising: performing a first sintering treatment on a lithium source material and a positive electrode precursor material to obtain a first sintered product; The surface of the first sintered product is covered, and then a second sintering treatment is performed to obtain a positive electrode material, wherein the coating agent is a nickel source material and/or a manganese source material.
  • the manganese source material is one or more selected from the group consisting of Mn(OH) 2 , MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , Mn 2 O 7 , and MnCO 3 ; nickel source The material is one or more selected from the group consisting of Ni(OH) 2 , NiSO 4 , NiCO 3 , NiF 2 , NiCl 2 , NiBr 2 , NiI 2 and Ni 2 O 3 .
  • the ratio of the weight of the first sintered product to the total weight of the nickel element and the manganese element in the coating agent is 1: (0.0008-0.0015).
  • the temperature of the second sintering treatment process is 150-250° C., and the treatment time is 4-8 h.
  • the temperature of the first sintering treatment process is 700-1000°C, and the sintering time is 8-20 h; preferably, the temperature of the first sintering treatment process is 800-950°C.
  • the lithium source material is one or more of the group consisting of lithium hydroxide, lithium carbonate, lithium acetate, lithium oxide, lithium nitrate and lithium oxalate;
  • the positive electrode precursor material is Ni a Co b Mn c Al d M
  • M is one or more of Y, Sr, Mo, La, Al, Zr, Ti, Mg, B, Nb, Ba, Si, P, W elements, and a is 0.5 to 0.92, b is 0.02 to 0.06, c is 0.01 to 0.03, d is 0.01 to 0.03, and y is 0.00 to 0.01.
  • the positive electrode material is a single crystal-like positive electrode material formed by a plurality of single crystal particles, the particle size of the single crystal particles is 0.10-2 ⁇ m, and the particle size of the single crystal-like positive electrode material is D50 It is 2 to 7.5 ⁇ m, including: nickel-cobalt-manganese-lithium composite oxide and a coating layer coated on nickel-cobalt-manganese-aluminate lithium, and the coating layer is manganese formed by sintering nickel source material and/or manganese source material Lithium oxide and/or lithium nickelate; or the positive electrode material is prepared by the above-mentioned preparation method provided in this application.
  • the particle size D50 of the lithium nickel cobalt manganese aluminate is 2-7.5 ⁇ m, and the particle size of the particles in the coating layer is 0.01-0.45 ⁇ m.
  • Another aspect of the present application also provides a lithium ion battery, including a positive electrode material, and the positive electrode material includes the above-mentioned positive electrode material provided in the present application.
  • a specific coating agent is selected and combined with the secondary sintering process (ie, the first sintering, the first coating, and the second sintering) to synthesize the quasi-single crystal positive electrode material
  • the single-crystal positive electrode material is formed by agglomeration of a plurality of primary particles with a morphology similar to the single-crystal positive electrode material.
  • the above preparation method can simplify the synthesis process, reduce the energy consumption, improve the yield, and eliminate the water washing process (using the coating agent to react with the residual alkali on the surface of the positive electrode material to generate lithium nickelate or lithium manganate with cyclic capacity) to reduce the residual lithium At the same time, it can not lose the cycle capacity, reduce the side reaction between the electrolyte and the particles, and improve the cycle retention rate and prolong the battery life.
  • FIG. 1 is an SEM picture of the single-crystal-like quaternary cathode material synthesized in Example 1.
  • FIG. 1 is an SEM picture of the single-crystal-like quaternary cathode material synthesized in Example 1.
  • the existing methods for preparing cathode materials have the problems of cumbersome synthesis process, high energy consumption, unenvironmental protection, low yield of cathode materials and loss of cycle capacity.
  • the present application provides a preparation method of a positive electrode material, the preparation method includes: performing a first sintering treatment on a lithium source material and a positive electrode precursor material (precursor material containing nickel, cobalt, manganese, and aluminum) to obtain The first sintered product; the surface of the first sintered product is covered with a coating agent, and then a second sintering treatment is performed to obtain a positive electrode material, wherein the coating agent is a nickel source material and/or a manganese source material.
  • the lithium source material and the positive electrode precursor material form a single-crystal nickel-cobalt-manganese-like lithium oxide; the surface of the first sintered product is coated with a coating agent containing the nickel source material and the manganese source material, And carry out the second sintering process.
  • the residual alkalis (Li 2 CO 3 and LiOH) on the surface of the single-crystal-like nickel-cobalt-manganese lithium oxide react with the coating agent to form lithium manganate and lithium nickelate, and form a variety of single A single-crystal-like cathode material formed by agglomeration of crystal particles.
  • lithium manganate and lithium nickelate themselves have a certain cycle capacity.
  • a specific coating agent is selected and combined with the secondary sintering process (ie, the first sintering, the first coating, and the second sintering) to synthesize a single-crystal positive electrode material
  • the single-crystal positive electrode material is: It is formed by the agglomeration of multiple primary particles with a morphology similar to that of a single crystal cathode material.
  • the above preparation method can simplify the synthesis process, reduce the energy consumption, improve the yield, and eliminate the water washing process (using the coating agent to react with the residual alkali on the surface of the positive electrode material to generate lithium nickelate or lithium manganate with cyclic capacity) to reduce the residual lithium At the same time, it can not lose the cycle capacity, reduce the side reaction between the electrolyte and the particles, and improve the cycle retention rate and prolong the battery life.
  • the manganese source material and the nickel source material can be selected from manganese-containing compounds or nickel-containing compounds commonly used in the art.
  • the manganese source material is one selected from the group consisting of Mn(OH) 2 , MnO, MnO 2 , Mn 2 O 3 , Mn 3 O 4 , Mn 2 O 7 and MnCO 3 , or Multiple;
  • the nickel source material is one or more selected from the group consisting of Ni(OH) 2 , NiSO 4 , NiCO 3 , NiF 2 , NiCl 2 , NiBr 2 , NiI 2 and Ni 2 O 3 .
  • the ratio of the weight of the first sintered product to the total weight of the nickel element and the manganese element in the coating agent is 1: (0.0008-0.0015).
  • the ratio of the weight of the first sintered product to the total weight of nickel and manganese in the coating agent includes but is not limited to the above range, and limiting it to the above range is conducive to further reducing the amount of residual alkali in the positive electrode material, refining the The particle size of the quasi-single crystal particles is beneficial to further improve the cycle performance and service life of the cathode material.
  • the above-mentioned first sintering process and second sintering process are aerobic sintering processes, which can be implemented by using devices and processes commonly used in the art.
  • the cathode material prepared by the above preparation method has the advantages of simple process, low energy consumption, high yield of cathode material and good cycle performance.
  • the ratio of the number of moles of lithium element in the positive electrode precursor material to the lithium source material is 1:(1.00-1.35). Limiting the molar ratio of the lithium element in the positive electrode precursor material to the lithium source material within the above range is beneficial to further improve the energy density, electric capacity and structural stability of the positive electrode material.
  • the lithium source material and the positive electrode precursor material can be selected from those commonly used in the art.
  • the lithium source material is one or more of the group consisting of lithium hydroxide, lithium carbonate, lithium acetate, lithium oxide, lithium nitrate and lithium oxalate;
  • the positive electrode precursor material is Ni a Co A compound represented by b Mn c Al d My (OH) 2 , where M is one of Y, Sr, Mo, La, Al, Zr, Ti, Mg, B, Nb, Ba, Si, P, and W elements or more, and a is 0.5-0.92, b is 0.02-0.06, c is 0.01-0.03, d is 0.01-0.03, and y is 0.00-0.01.
  • the temperature of the first sintering treatment process is 700-1000° C., and the sintering time is 8-20 h.
  • the temperature and sintering time of the first sintering treatment include but are not limited to the above ranges, and limiting them to the above ranges is beneficial to further improve the structural stability of the positive electrode material. More preferably, the temperature of the first sintering process is 800-950°C.
  • the above preparation method further includes: performing first crushing and first sieving on the product obtained in the first sintering process to remove particles with a particle size ⁇ 38 ⁇ m to obtain the first sintered product and subjecting the product obtained in the second sintering process to a second crushing and a second screening process to remove particles with a particle size of ⁇ 38 ⁇ m to obtain a positive electrode material.
  • the crushing and screening of the products after the first sintering treatment and the products after the second sintering treatment is beneficial to improve the stability of the structure and electrochemical performance of the positive electrode material.
  • a single-crystal-like positive electrode material formed by agglomeration of a plurality of single-crystal particles can be formed.
  • the temperature of the second sintering treatment process is 150-250° C.
  • the treatment time is 4-8 hours. Limiting the temperature and treatment time of the second sintering process within the above ranges is conducive to further improving the degree of bonding between the coating layer and the nickel-cobalt-manganese-aluminate lithium, thereby further improving the structural stability of the positive electrode material and improving its service life.
  • the positive electrode material is a single-crystal-like positive electrode material formed by agglomeration of a plurality of single-crystal particles, and the particle size of the single-crystal particles is 100-2000 nm, and the size of the single-crystal-like positive electrode material is The particle size D50 is 2 to 7.5 ⁇ m, including: nickel-cobalt-manganese-aluminate lithium and a coating layer coated on nickel-cobalt-manganese-aluminate lithium, wherein the coating layer is a sintered nickel source material and/or a manganese source material The lithium manganate and/or lithium nickelate formed later; or the above-mentioned positive electrode material is prepared by the above-mentioned preparation method provided in this application.
  • the positive electrode material with the above composition or prepared by the preparation method provided in the present application has the advantages of good electrochemical cycle performance, stable structure and long service life.
  • the particle size D100 of the quasi-single-crystal positive electrode material is ⁇ 38 ⁇ m.
  • the positive electrode material with the above-mentioned composition can make each element component play a greater synergistic effect, thereby helping to further improve the comprehensive performance of the positive electrode material.
  • the particle size of the lithium nickel cobalt manganese aluminate is 2-7.5 ⁇ m, and the particle size of the particles in the coating layer is 0.01-0.45 ⁇ m.
  • Another aspect of the present application also provides a lithium ion battery, including a positive electrode material, and the positive electrode material includes the above positive electrode material.
  • the positive electrode material with the above composition or prepared by the preparation method provided in the present application has the advantages of good electrical cycle performance, stable structure and long service life. Therefore, the lithium ion battery prepared by using it also has good electrochemical performance.
  • the quasi-single-crystal positive electrode material obtained in step (1) for the first sintering and the Mn and Ni elements in the coating agents Mn(OH) 2 and Ni(OH) 2 are in a mass ratio of 1:0.0004 and 1, respectively : 0.000425 dry mixed uniformly, at 200 °C, oxygen atmosphere, secondary sintering 6h, cooling, pulverizing and sieving to obtain the final quasi-single crystal cathode material MN-NCMA.
  • Example 2 The difference from Example 2 is that the quasi-single-crystal positive electrode material sintered for the first time and the Ni element in the coating agent Ni(OH) 2 are uniformly dry-mixed according to a mass ratio of 1:0.0015.
  • Example 2 The difference from Example 2 is that the quasi-single-crystal positive electrode material sintered for the first time and the Ni element in the coating agent Ni(OH) 2 are uniformly dry-mixed according to a mass ratio of 1:0.0025.
  • Example 2 The difference from Example 2 is that the ratio of the moles of lithium element in the positive electrode precursor material to the lithium source material is 1:1.35.
  • Example 2 The difference from Example 2 is that the ratio of the moles of lithium element in the positive electrode precursor material to the lithium source material is 1:0.8.
  • Example 2 The difference from Example 2 is that the ratio of the moles of lithium element in the positive electrode precursor material to the lithium source material is 1:1.6.
  • Example 2 The difference from Example 2 is that the first sintering temperature is 950°C.
  • Example 2 The difference from Example 2 is that the first sintering temperature is 1050°C.
  • Example 2 The difference from Example 2 is that the second sintering temperature is 150°C.
  • Example 2 The difference from Example 2 is that the second sintering temperature is 250°C.
  • Example 2 The difference from Example 2 is that the second sintering temperature is 300°C.
  • Example 2 After the first roasting process, after crushing and sieving, it passes through a 200-mesh sieve, and the second roasting process is directly carried out.
  • Example 2 After the first roasting process, it passes through a 200-mesh sieve after being crushed and screened, and after the second roasting process, it is not crushed and screened.
  • the first sintered single-crystal-like positive electrode material obtained in the step (1) and the water are in a mass ratio of 1:1, stirred with an electric stirrer, washed with water at 600 r/min for 5 minutes, and then vacuumed in an electric heating oven at 150 ° C. Drying for ⁇ 8h, the dried material and the Mn element in the coating agent Mn(OH)2 are uniformly dry-mixed according to the mass ratio of 1:0.012, and the secondary sintering is carried out at 200 ° C in an oxygen atmosphere for 6h, cooling, pulverizing and The final single-crystal-like positive electrode material is obtained by sieving.
  • Example 1 The residual alkalis of the synthesized single-crystal quaternary positive electrode materials in Example and Comparative Example 1 are shown in Table 1, and the electrical properties of the synthesized single-crystal quaternary positive electrode materials are shown in Table 2.
  • Button battery production using the positive electrode materials produced in the above-mentioned Examples 1 to 15, Comparative Example 1 and Comparative Example 2, respectively, the positive electrode material, carbon black conductive agent, and binder PVDF with a weight ratio of 95:2.5:2.5:5 were used. Mix with NMP to prepare battery cathode slurry.
  • the slurry was coated on aluminum foil with a thickness of 20-25um, vacuum-dried and rolled to form a positive pole piece, with a lithium metal piece as the negative pole, and the electrolyte was 1.5mol lithium hexafluorophosphate (LiPF 6 ) dissolved in 1L of carbonic acid It was prepared in a mixed solvent of vinyl ester (EC) and dimethyl carbonate (DMC), wherein the volume ratio of EC and DMC in the mixed solvent was 1:1, and a button battery was assembled.
  • EC vinyl ester
  • DMC dimethyl carbonate
  • the electrical performance test of the material was carried out using a blue battery test system at 25°C, and the test voltage range was 3V to 4.5V; the first charge-discharge specific capacity and the 50-cycle capacity retention rate were tested.
  • the test results are shown in Table 2.
  • the cathode materials in Examples 1 to 15 can reduce the residual alkali without losing the electric cycle capacity.
  • Comparative Example 2 although the residual alkali was reduced after washing with water, the specific capacity was lower. The reason is that the water washing process washes away the residual alkali on the surface of the positive electrode material, which reduces the lithium content in the positive electrode material. Even if it is also coated with Mn(OH) 2 , lithium manganate cannot be generated, so the water washing causes the loss of electric cycle capacity.
  • the cycle retention rate data in Table 2 it can be known that Example 1, Example 2 and Example 3 have higher cycle retention rate.

Abstract

本发明提供了一种正极材料、其制备方法及锂离子电池。该制备方法包括:将锂源材料与正极前驱体材料进行第一烧结处理,得到第一烧结产物;采用包覆剂包覆在第一烧结产物的表面,然后进行第二烧结处理,得到正极材料,其中,包覆剂为镍源材料和/或锰源材料。选用特定的包覆剂,并结合二次烧结工艺(即第一次烧结、第一次包覆、第二次烧结)合成类单晶正极材料,该类单晶正极材料为由多个形貌类似单晶正极材料的一次颗粒团聚而成。采用上述制备方法能够简化合成工艺、降低能耗、提高产率、取消水洗工艺、降低残锂的同时,能够不损失循环容量,减少电解液与颗粒内部发生副反应,并提高循环保持率,延长电池寿命。

Description

正极材料、其制备方法及锂离子电池 技术领域
本发明涉及锂离子电池制造领域,具体而言,涉及一种正极材料、其制备方法及锂离子电池。
背景技术
锂离子电池因具有高容量和高能量密度被广泛应用于电动汽车、混合动力汽车和储能系统,正极材料作为锂离子电池的核心组成部分之一,对锂离子电池的性能有重大影响。
常规二次球型正极材料在制作极片碾压过程中二次球型颗粒易出现裂痕,导致循环衰减快,会缩短电池使用寿命,同时电解液与正极材料颗粒内部直接接触造成产气量过高,从而出现鼓包等安全问题。其合成工艺多为三烧工艺(即第一次烧结、第一次包覆、第二次烧结、水洗干燥、第二次包覆、第三次烧结),也有部分采用二次烧结(即第一次烧结、水洗干燥、第一次包覆、第二次烧结)。上述现有工艺中包覆剂均采用常规的包覆剂比如碳包覆剂,在正极材料的制备过程中需要进行多次包覆和多次烧结过程以及水洗工艺,这导致其合成工艺繁琐、周期较长、能耗大、中间过程物料损失较多等,产率低、水污染问题且水洗过程洗去残碱的同时造成循环容量损失。
鉴于上述问题的存在,有必有提供一种流程短、环保、正极材料的产率高及循环容量损失小的正极材料的制备方法。
发明内容
本发明的主要目的在于提供一种正极材料、其制备方法及锂离子电池,以解决现有正极材料的制备方法存在的合成工艺繁琐、能耗大、不环保、正极材料产率低及会造成循环容量损失的问题。
为了实现上述目的,本发明一方面提供了一种正极材料的制备方法,该制备方法包括:将锂源材料与正极前驱体材料进行第一烧结处理,得到第一烧结产物;采用包覆剂包覆在第一烧结产物的表面,然后进行第二烧结处理,得到正极材料,其中,包覆剂为镍源材料和/或锰源材料。
进一步地,锰源材料选自Mn(OH) 2、MnO、MnO 2、Mn 2O 3、Mn 3O 4、Mn 2O 7、和MnCO 3组成的组中的一种或多种;镍源材料选自Ni(OH) 2、NiSO 4、NiCO 3、NiF 2、NiCl 2、NiBr 2、NiI 2和Ni 2O 3组成的组中的一种或多种。
进一步地,第一烧结产物的重量与包覆剂中镍元素和锰元素的总重量的比值为1:(0.0008~0.0015)。
进一步地,第二烧结处理过程的温度为150~250℃,处理时间为4~8h。
进一步地,第一烧结处理过程的温度为700~1000℃,烧结时间为8~20h;优选地,第一烧结处理过程的温度为800~950℃。
进一步地,锂源材料为氢氧化锂、碳酸锂、醋酸锂、氧化锂、硝酸锂和草酸锂组成的组中的一种或多种;正极前驱体材料为Ni aCo bMn cAl dM y(OH) 2所示的化合物,M为Y、Sr、Mo、La、Al、Zr、Ti、Mg、B、Nb、Ba、Si、P、W元素中的一种或多种,且a为0.5~0.92,b为0.02~0.06,c为0.01~0.03,d为0.01~0.03,y为0.00~0.01。
本申请的另一方面还提供了一种正极材料,正极材料为多个单晶颗粒形成的类单晶正极材料,单晶颗粒的粒径为0.10~2μm,类单晶正极材料的粒径D50为2~7.5μm,包括:镍钴锰锂复合氧化物和包覆在镍钴锰铝酸锂上的包覆层,包覆层为镍源材料和/或锰源材料经烧结后形成的锰酸锂和/或镍酸锂;或正极材料采用本申请提供的上述制备方法制得。
进一步地,正极材料的化学通式为Li xNi aCo bMn cAl dM yR zO 2,其中,1.00≤x≤1.35、0<y≤0.01、0<z≤0.01、0<a≤0.92、0<b≤0.06、0<c≤0.03,0<d≤0.03,a+b+c+d+z=1,M为Y、Sr、Mo、La、Al、Zr、Ti、Mg、B、Nb、Ba、Si、P、W元素中的一种或多种,R为Ni元素和/或Mn元素。
进一步地,镍钴锰铝酸锂的粒径D50为2~7.5μm,包覆层中颗粒物的粒径为0.01~0.45μm。
本申请的又一方面还提供了一种锂离子电池,包括正极材料,正极材料包括本申请提供的上述正极材料。
应用本发明的技术方案,上述制备方法中,选用特定的包覆剂,并结合二次烧结工艺(即第一次烧结、第一次包覆、第二次烧结)合成类单晶正极材料,该类单晶正极材料为由多个形貌类似单晶正极材料的一次颗粒团聚而成。采用上述制备方法能够简化合成工艺、降低能耗、提高产率、取消水洗工艺(利用包覆剂与正极材料表面的残碱发生反应生成有循环容量的镍酸锂或锰酸锂)降低残锂的同时,能够不损失循环容量,减少电解液与颗粒内部发生副反应,并提高循环保持率,延长电池寿命。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是实施例1合成的类单晶四元正极材料的SEM图片。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。
正如背景技术所描述的,现有正极材料的制备方法存在的合成工艺繁琐、能耗大、不环保、正极材料产率低及会造成循环容量损失的问题。为了解决上述技术问题,本申请提供了一种正极材料的制备方法,该制备方法包括:将锂源材料与正极前驱体材料(含镍钴锰铝的前驱体材料)进行第一烧结处理,得到第一烧结产物;采用包覆剂包覆在第一烧结产物的表面,然后进行第二烧结处理,得到正极材料,其中,包覆剂为镍源材料和/或锰源材料。
在第一烧结处理过程中,锂源材料与正极前驱体材料形成类单晶镍钴锰锂氧化物;将含有镍源材料和锰源材料的包覆剂包覆在第一烧结产物的表面,并进行第二烧结过程。在第二烧结过程中,类单晶镍钴锰锂氧化物表面的残碱(Li 2CO 3和LiOH)与包覆剂发生化学反应生成锰酸锂和镍酸锂,并形成由多种单晶颗粒物团聚而成的类单晶正极材料。其中,锰酸锂和镍酸锂本身具有一定的循环容量。
上述制备方法中,选用特定的包覆剂,并结合二次烧结工艺(即第一次烧结、第一次包覆、第二次烧结)合成类单晶正极材料,该类单晶正极材料为由多个形貌类似单晶正极材料的一次颗粒团聚而成。采用上述制备方法能够简化合成工艺、降低能耗、提高产率、取消水洗工艺(利用包覆剂与正极材料表面的残碱发生反应生成有循环容量的镍酸锂或锰酸锂)降低残锂的同时,能够不损失循环容量,减少电解液与颗粒内部发生副反应,并提高循环保持率,延长电池寿命。
锰源材料和镍源材料可以选用本领域常用的含锰化合物或含镍化合物。在一种优选的实施例中,锰源材料选自Mn(OH) 2、MnO、MnO 2、Mn 2O 3、Mn 3O 4、Mn 2O 7和MnCO 3组成的组中的一种或多种;镍源材料选自Ni(OH) 2、NiSO 4、NiCO 3、NiF 2、NiCl 2、NiBr 2、NiI 2和Ni 2O 3组成的组中的一种或多种。
在一种优选的实施例中,第一烧结产物的重量与包覆剂中镍元素和锰元素的总重量的比值为1:(0.0008~0.0015)。第一烧结产物的重量与包覆剂中镍元素和锰元素的总重量的比值包括但不限于上述范围,而将其限定在上述范围内有利于进一步降低正极材料中的残碱量,细化类单晶颗粒的粒度,从而有利于进一步提高正极材料的循环性能和使用寿命。
上述第一烧结过程和第二烧结过程为有氧烧结过程,可以采用本领域常用的装置和工艺实现。采用上述制备方法制得的正极材料具有工艺简单、能耗低、正极材料产率高和循环性能好等优点。在一种优选的实施例中,正极前驱体材料与锂源材料中锂元素的摩尔数之比为1:(1.00~1.35)。将正极前驱体材料与锂源材料中锂元素的摩尔数之比限定在上述范围内有利于进一步提高正极材料的能量密度和电容量及结构稳定性。
上述制备方法中,锂源材料和正极前驱体材料可以选用本领域常用的种类。在一种优选的实施例中,锂源材料为氢氧化锂、碳酸锂、醋酸锂、氧化锂、硝酸锂和草酸锂组成的组中的一种或多种;正极前驱体材料为Ni aCo bMn cAl dM y(OH) 2所示的化合物,M为Y、Sr、Mo、 La、Al、Zr、Ti、Mg、B、Nb、Ba、Si、P、W元素中的一种或多种,且a为0.5~0.92,b为0.02~0.06,c为0.01~0.03,d为0.01~0.03,y为0.00~0.01。
在一种优选的实施例中,第一烧结处理过程的温度为700~1000℃,烧结时间为8~20h。第一烧结处理的温度和烧结时间包括但不限于上述范围,而将其限定在上述范围内有利于进一步提高正极材料的结构稳定性。更优选地,第一烧结处理过程的温度为800~950℃。
在一种优选的实施例中,上述制备方法还包括:将第一烧结处理过程得到的产物进行第一破碎及第一筛分处理,以去除粒度≥38μm的颗粒,得到所述第一烧结产物;及将第二烧结处理过程得到的产物进行第二破碎及第二筛分处理,以去除粒度≥38μm的颗粒,得到正极材料。将第一烧结处理后的产物和第二烧结处理后的产物进行破碎和筛选有利于提高正极材料的结构和电化学性能的稳定性。
通过第一烧结过程和第二烧结过程能够形成多个单晶颗粒团聚形成的类单晶正极材料。在一种优选的实施例中,第二烧结处理过程的温度为150~250℃,处理时间为4~8h。将第二烧结处理过程的温度和处理时间限定在上述范围内有利于进一步提高包覆层与镍钴锰铝酸锂的结合程度,从而进一步提高正极材料的结构稳定性,提高其使用寿命。
本申请的另一方面还提供了一种正极材料,该正极材料为多个单晶颗粒团聚形成的类单晶正极材料,且单晶颗粒的粒径为100~2000nm,类单晶正极材料的粒径D50为2~7.5μm,,包括:镍钴锰铝酸锂和包覆在镍钴锰铝酸锂上的包覆层,其中包覆层为镍源材料和/或锰源材料经烧结后形成的锰酸锂和/或镍酸锂;或上述正极材料采用本申请提供上述制备方法制得。
具有上述组成或采用本申请提供的制备方法制得的正极材料具有电化学循环性能好和结构稳定及使用寿命长等优点。优选地,类单晶正极材料的粒径D100粒度≤38μm。
在一种优选的实施例中,正极材料的化学通式为Li xNi aCo bMn cAl dM yR zO 2,其中,1.00≤x≤1.35、0<y≤0.01、0<z≤0.01、0<a≤0.92、0<b≤0.06、0<c≤0.03,0<d≤0.03,a+b+c+d+z=1,M为Y、Sr、Mo、La、Al、Zr、Ti、Mg、B、Nb、Ba、Si、P、W元素中的一种或多种,R为Ni元素和/或Mn元素。具有上述组成的正极材料可以使各元素组分发挥更大的协同作用,从而有利于进一步提高正极材料的综合性能。
更优选地,镍钴锰铝酸锂的粒径为2~7.5μm,包覆层中颗粒物的粒径为0.01~0.45μm。
本申请的又一方面还提供了一种锂离子电池,包括正极材料,正极材料包括上述正极材料。
具有上述组成或采用本申请提供的制备方法制得的正极材料具有电学循环性能好和结构稳定及使用寿命长等优点。因而采用其制得的锂离子电池同样具有较好的电化学性能。
以下结合具体实施例对本申请作进一步详细描述,这些实施例不能理解为限制本申请所要求保护的范围。
实施例1
(1)将前驱体Ni 0.92Co 0.05Mn 0.02Al 0.01(OH) 2和锂源按一定比例进行干法混合,其中前驱体和锂源中的Li元素按摩尔比1:1.05混合后,在850℃、氧气气氛中进行一次烧结10h,冷却、粉碎并用400目筛过筛得到第一次烧结的类单晶正极材料。
(2)将步骤(1)中所得的第一次烧结的类单晶正极材料与包覆剂Mn(OH) 2中的Mn元素按照质量比1:0.0008干法混合均匀后,在200℃、氧气气氛中进行二次烧结6h,冷却、粉碎并用400目筛过筛得到类单晶正极材料M-NCMA,SEM图见图1。
实施例2
(1)将前驱体Ni 0.92Co 0.05Mn 0.02Al 0.01(OH) 2和锂源按一定比例进行干法混合,其中前驱体和锂源中的Li元素按一定摩尔比1:1.05混合后,在850℃、氧气气氛中进行一次烧结10h,冷却、粉碎并用400目筛过筛得到第一次烧结的类单晶正极材料。
(2)将步骤(1)中所得第一次烧结的类单晶正极材料与包覆剂Ni(OH) 2中的Ni元素按照质量比1:0.00085干法混合均匀,在200℃、氧气气氛中进行二次烧结6h,冷却、粉碎并用400目筛过筛得到最终类单晶正极材料N-NCMA。
实施例3
(1)将前驱体Ni 0.92Co 0.05Mn 0.02Al 0.01(OH) 2和锂源按一定比例进行干法混合,其中前驱体和锂源中的Li元素按一定摩尔比1:1.05混合后,在850℃、氧气气氛中,进行一次烧结10h,冷却、粉碎并过筛得到第一次烧结的类单晶正极材料。
(2)将步骤(1)中所得第一次烧结的类单晶正极材料与包覆剂Mn(OH) 2和Ni(OH) 2中的Mn和Ni元素分别按照质量比1:0.0004和1:0.000425干法混合均匀,在200℃,氧气气氛中,进行二次烧结6h,冷却、粉碎并过筛得到最终类单晶正极材料MN-NCMA。
实施例4
与实施例2的区别为:第一次烧结的类单晶正极材料与包覆剂Ni(OH) 2中的Ni元素按照质量比1:0.0015干法混合均匀。
实施例5
与实施例2的区别为:第一次烧结的类单晶正极材料与包覆剂Ni(OH) 2中的Ni元素按照质量比1:0.0025干法混合均匀。
实施例6
与实施例2的区别为:正极前驱体材料与锂源材料中锂元素的摩尔数之比为1:1.35。
实施例7
与实施例2的区别为:正极前驱体材料与锂源材料中锂元素的摩尔数之比为1:0.8。
实施例8
与实施例2的区别为:正极前驱体材料与锂源材料中锂元素的摩尔数之比为1:1.6。
实施例9
与实施例2的区别为:第一次烧结温度为950℃。
实施例10
与实施例2的区别为:第一次烧结温度为1050℃。
实施例11
与实施例2的区别为:第二次烧结温度为150℃。
实施例12
与实施例2的区别为:第二次烧结温度为250℃。
实施例13
与实施例2的区别为:第二次烧结温度为300℃。
实施例14
与实施例2的区别为:第一焙烧过程后经破碎筛分后过200目筛,直接进行第二焙烧过程。
实施例15
与实施例2的区别为:第一焙烧过程后经破碎筛分后过200目筛,第二焙烧过程后也不经过破碎筛分。
对比例1
(1)将前驱体Ni 0.92Co 0.05Mn 0.02Al 0.01(OH) 2和锂源按一定比例进行干法混合,其中前驱体和锂源中的Li元素按一定摩尔比1:1.05混合后,在850℃,氧气气氛中,进行一次烧结10h,冷却、粉碎并过筛得到第一次烧结的类单晶正极材料。
对比例2
(1)将前驱体Ni 0.92Co 0.05Mn 0.02Al 0.01(OH) 2和锂源按一定比例进行干法混合,其中前驱体和锂源中的Li元素按一定摩尔比1:1.05混合后,在850℃,氧气气氛中,进行一次烧结10h,冷却、粉碎并过筛得到第一次烧结的类单晶正极材料。
(2)将步骤(1)中所得第一次烧结的类单晶正极材料与水按照质量比1:1,利用电动搅拌器搅拌在600r/min下水洗5min,再在150℃的电热烘箱真空干燥≥8h,干燥后的物料与包覆剂Mn(OH) 2中的Mn元素按照质量比1:0.012干法混合均匀,在200℃,氧气气氛中,进行二次烧结6h,冷却、粉碎并过筛得到最终类单晶正极材料。
实施例及对比例1中合成类单晶四元正极材料的残碱见表1,合成类单晶四元正极材料的电性能见表2。
表1
Figure PCTCN2020124464-appb-000001
由表1可以看出对比例1残碱含量较高,但实施例1至15中经过一次包覆和第二次烧结后残碱明显降低。原因是类单晶正极材料表面的残碱(Li 2CO 3和LiOH)与包覆剂Mn(OH) 2和Ni(OH) 2发生化学反应生成锰酸锂和镍酸锂,而锰酸锂和镍酸锂本身具有一定的循环容量。
扣式电池制作:分别利用上述实施例1至15、对比例1和对比例2制作的正极材料,将重量比为95:2.5:2.5:5的正极材料、炭黑导电剂、粘结剂PVDF和NMP混合均匀制备电池正极浆料。将该浆料涂布在厚度为20~25um的铝箔上,经过真空干燥和辊压做成正极极片,以锂金属片为负极,电解液由1.5mol六氟磷酸锂(LiPF 6)溶解在1L的碳酸乙烯酯(EC)和二甲基碳酸酯(DMC)混合溶剂中制得,其中混合溶剂中EC和DMC的体积比为1:1,并组装扣式电池。
材料的电性能测试采用蓝电电池测试系统在25℃下进行测试,测试电压范围为3V~4.5V;测试首次充放电比容量和50周容量保持率。测试结果如表2。
表2
Figure PCTCN2020124464-appb-000002
根据表2的实施例1至15、对比例1和对比例2的电性能可知,实施例1至15的中的正极材料在降低残碱的同时又不损失电循环容量。而对比例2经过水洗虽然降低了残碱,但比容量较低。原因是水洗过程洗去了正极材料表面的残碱,造成正极材料中锂含量降低,即使同样用Mn(OH) 2包覆,但无法生成锰酸锂,因此水洗造成电循环容量损失。且根据表2中循环保持率数据可知,实施例1、实施例2和实施例3具有较高的循环保持率。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
比较实施例1至5可知,将第一次烧结的类单晶正极材料与包覆剂中的Ni和Mn元素重量之和的比值限定在本申请优选的范围内有利于提高正极材料的综合性能。
比较实施例1、6至8可知,将正极前驱体材料与锂源材料中锂元素的摩尔数之比限定在本申请优选的范围内有利于提高正极材料的综合性能。
比较实施例1、9至13可知,将第一烧结过程和第二烧结过程的温度限定在本申请优选的范围内有利于提高正极材料的综合性能。
比较实施例1、14和15可知,将在第一烧结过程和第二烧结过程后的筛分粒径限定在本申请优选的范围内有利于提高正极材料的综合性能。
需要说明的是,本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里描述的那些以外的顺序实施。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种正极材料的制备方法,其特征在于,所述制备方法包括:
    将锂源材料与正极前驱体材料进行第一烧结处理,得到第一烧结产物;
    采用包覆剂包覆在所述第一烧结产物的表面,然后进行第二烧结处理,得到所述正极材料,其中,所述包覆剂为镍源材料和/或锰源材料。
  2. 根据权利要求1所述的制备方法,其特征在于,所述锰源材料选自Mn(OH) 2、MnO、MnO 2、Mn 2O 3、Mn 3O 4、Mn 2O 7、和MnCO 3组成的组中的一种或多种;所述镍源材料选自Ni(OH) 2、NiSO 4、NiCO 3、NiF 2、NiCl 2、NiBr 2、NiI 2和Ni 2O 3组成的组中的一种或多种。
  3. 根据权利要求1或2所述的制备方法,其特征在于,所述第一烧结产物的重量与所述包覆剂中镍元素和锰元素的总重量的比值为1:(0.0008~0.0015)。
  4. 根据权利要求3的制备方法,其特征在于,所述第二烧结处理过程的温度为150~250℃,处理时间为4~8h。
  5. 根据权利要求1至4中任一项所述的制备方法,其特征在于,所述第一烧结处理过程的温度为700~1000℃,烧结时间为8~20h;
    优选地,所述第一烧结处理过程的温度为800~950℃。
  6. 根据权利要求1的制备方法,其特征在于,所述锂源材料为氢氧化锂、碳酸锂、醋酸锂、氧化锂、硝酸锂和草酸锂组成的组中的一种或多种;所述正极前驱体材料为Ni aCo bMn cAl dM y(OH) 2所示的化合物,M为Y、Sr、Mo、La、Al、Zr、Ti、Mg、B、Nb、Ba、Si、P、W元素中的一种或多种,且a为0.5~0.92,b为0.02~0.06,c为0.01~0.03,d为0.01~0.03,y为0.00~0.01。
  7. 一种正极材料,其特征在于,所述正极材料为多个单晶颗粒形成的类单晶正极材料,所述单晶颗粒的粒径为0.10~2μm,所述类单晶正极材料的粒径D50为2~7.5μm,包括:镍钴锰锂复合氧化物和包覆在所述镍钴锰铝酸锂上的包覆层,所述包覆层为镍源材料和/或锰源材料经烧结后形成的锰酸锂和/或镍酸锂;或所述正极材料采用权利要求1至6中任一项所述的制备方法制得。
  8. 根据权利要求7所述的正极材料,其特征在于,所述正极材料的化学通式为Li xNi aCo bMn cAl dM yR zO 2,其中,1.00≤x≤1.35、0<y≤0.01、0<z≤0.01、0<a≤0.92、0<b≤0.06、0<c≤0.03,0<d≤0.03,a+b+c+d+z=1,M为Y、Sr、Mo、La、Al、Zr、Ti、Mg、B、Nb、Ba、Si、P、W元素中的一种或多种,R为Ni元素和/或Mn元素。
  9. 根据权利要求7所述的正极材料,其特征在于,所述镍钴锰铝酸锂的粒径D50为2~7.5μm,所述包覆层中颗粒物的粒径为0.01~0.45μm。
  10. 一种锂离子电池,包括正极材料,其特征在于,所述正极材料包括权利要求7至9中任一项所述的正极材料。
PCT/CN2020/124464 2020-06-30 2020-10-28 正极材料、其制备方法及锂离子电池 WO2022000889A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227027193A KR20220127277A (ko) 2020-06-30 2020-10-28 양극 재료, 이의 제조 방법 및 리튬 이온 전지
US17/764,212 US20230327082A1 (en) 2020-06-30 2020-10-28 Cathode material, method for preparing cathode material and lithium ion battery
JP2022538278A JP7416956B2 (ja) 2020-06-30 2020-10-28 正極材料、その製造方法及びリチウムイオン電池
EP20942519.8A EP4002520A4 (en) 2020-06-30 2020-10-28 POSITIVE ELECTRODE MATERIAL AND PREPARATION METHOD THEREFOR, AND LITHIUM-ION BATTERY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010617393.6A CN111628157B (zh) 2020-06-30 2020-06-30 正极材料、其制备方法及锂离子电池
CN202010617393.6 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022000889A1 true WO2022000889A1 (zh) 2022-01-06

Family

ID=72259433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124464 WO2022000889A1 (zh) 2020-06-30 2020-10-28 正极材料、其制备方法及锂离子电池

Country Status (6)

Country Link
US (1) US20230327082A1 (zh)
EP (1) EP4002520A4 (zh)
JP (1) JP7416956B2 (zh)
KR (1) KR20220127277A (zh)
CN (1) CN111628157B (zh)
WO (1) WO2022000889A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114784265A (zh) * 2022-05-19 2022-07-22 巴斯夫杉杉电池材料有限公司 一种改性高镍类单晶镍钴锰酸锂正极材料及其制备方法和锂离子电池

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111628157B (zh) * 2020-06-30 2024-03-26 蜂巢能源科技有限公司 正极材料、其制备方法及锂离子电池
CN113060774B (zh) * 2021-03-26 2023-04-07 蜂巢能源科技有限公司 一种无钴正极材料及其制备方法和应用
CN113258055A (zh) * 2021-04-25 2021-08-13 浙江帕瓦新能源股份有限公司 一种锶掺杂的电池四元正极材料前驱体及其制备方法
CN113258056A (zh) * 2021-04-26 2021-08-13 浙江帕瓦新能源股份有限公司 双重改性的锂离子电池正极材料前驱体及正极材料
CN113443659B (zh) * 2021-06-25 2022-05-03 浙江帕瓦新能源股份有限公司 湿法掺杂与碳包覆共修饰的四元正极材料及其制备方法
CN113451567B (zh) * 2021-06-25 2022-10-21 浙江帕瓦新能源股份有限公司 一种多元素掺杂富镍四元正极材料前驱体及其制备方法
CN115636430B (zh) * 2021-07-20 2024-04-09 深圳市研一新材料有限责任公司 一种锂离子电池用复合锂盐及其制备方法
CN113683128A (zh) * 2021-08-19 2021-11-23 蜂巢能源科技有限公司 一种镍锰酸锂材料、其制备方法和用途
CN113764638A (zh) * 2021-08-31 2021-12-07 蜂巢能源科技有限公司 正极材料、其制备方法、包括其的正极和锂离子电池
CN114023932A (zh) * 2021-09-30 2022-02-08 宜宾锂宝新材料有限公司 降低锂离子电池高镍正极材料残碱量的方法
CN113903884B (zh) * 2021-09-30 2022-07-22 清华大学深圳国际研究生院 正极活性材料及其制备方法、正极、锂离子电池
CN115072796B (zh) * 2021-10-08 2024-04-02 宁夏汉尧石墨烯储能材料科技有限公司 一种电池正极材料的制备方法及其应用
CN114438590B (zh) * 2022-01-25 2023-05-05 蜂巢能源科技股份有限公司 类单晶材料的制备方法及类单晶材料、复合正极材料及其制备方法和应用
CN114772659B (zh) * 2022-06-20 2022-09-23 宜宾锂宝新材料有限公司 一种改性三元材料前驱体、三元材料及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633308A (zh) * 2013-11-28 2014-03-12 宁波金和新材料股份有限公司 一种富锂镍钴铝氧正极材料及其制备方法
CN103825016A (zh) * 2014-02-13 2014-05-28 宁波金和新材料股份有限公司 一种富锂高镍正极材料及其制备方法
CN105070908A (zh) * 2015-08-31 2015-11-18 宁波金和锂电材料有限公司 一种高镍正极材料的制备方法和锂离子电池
CN105958062A (zh) * 2016-06-12 2016-09-21 湖南杉杉新能源有限公司 锂离子电池用多晶高镍正极材料及其制备方法
CN108075115A (zh) * 2016-11-18 2018-05-25 三星电子株式会社 复合正极活性材料、包含其的正极和锂电池、以及制备复合正极活性材料的方法
CN109686931A (zh) * 2018-12-12 2019-04-26 无锡晶石新型能源股份有限公司 一种高镍三元材料的包覆方法
CN110061225A (zh) * 2019-05-06 2019-07-26 湖南金富力新能源股份有限公司 一种单晶高容量镍钴锰酸锂正极材料及其制备方法
CN110336020A (zh) * 2019-07-22 2019-10-15 广东邦普循环科技有限公司 一种高电压复合钴酸锂正极材料及其制备方法和应用
JP2019185920A (ja) * 2018-04-04 2019-10-24 株式会社豊田自動織機 リチウムイオン二次電池
CN110676452A (zh) * 2019-10-10 2020-01-10 山东友邦科思茂新材料有限公司 一种锂离子电池ncm811三元正极材料的制备方法
CN111628157A (zh) * 2020-06-30 2020-09-04 蜂巢能源科技有限公司 正极材料、其制备方法及锂离子电池

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3195175B2 (ja) * 1994-11-11 2001-08-06 株式会社東芝 非水溶媒二次電池
JP3258841B2 (ja) * 1994-12-16 2002-02-18 三洋電機株式会社 リチウム二次電池
JP3582161B2 (ja) * 1995-08-11 2004-10-27 ソニー株式会社 正極活物質及びそれを用いた非水電解質二次電池
JP4586991B2 (ja) * 2006-03-24 2010-11-24 ソニー株式会社 正極活物質およびその製造方法、並びに二次電池
WO2009063613A1 (ja) 2007-11-12 2009-05-22 Toda Kogyo Corporation 非水電解液二次電池用Li-Ni系複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
CN103840148A (zh) * 2012-11-22 2014-06-04 广饶格林新能源有限公司 一种通过二次烧结制备多元复合锂离子电池正极材料的方法
CN103066261B (zh) * 2012-12-28 2015-07-29 龙能科技(苏州)有限公司 高容量高镍多元金属氧化物正极材料的合成方法
CN103811744B (zh) * 2014-02-13 2016-09-21 北大先行科技产业有限公司 一种锂离子电池三元正极材料的制备方法
CN105161710A (zh) * 2015-08-31 2015-12-16 宁波金和锂电材料有限公司 一种电池正极材料及其制备方法和锂离子电池
CN105304893A (zh) * 2015-09-25 2016-02-03 湖北宇电能源科技股份有限公司 一种锂离子电池正极活性材料镍锰酸锂的制备方法
CN105355907B (zh) * 2015-12-10 2018-03-30 哈尔滨工业大学 具有“年轮”式结构的锂金属氧化物前驱体材料和该材料制备的正极材料及制备方法
CN105938917A (zh) * 2016-07-01 2016-09-14 深圳市振华新材料股份有限公司 锂离子二次电池钴酸锂正极材料及其制法和应用
CN105932274A (zh) * 2016-07-06 2016-09-07 福建师范大学 包覆二氧化钛的尖晶石富锂锰酸锂正极材料的制备方法
KR101918719B1 (ko) * 2016-12-12 2018-11-14 주식회사 포스코 리튬 이차전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차전지
CN106532035A (zh) * 2016-12-16 2017-03-22 无锡晶石新型能源有限公司 一种锂离子电池三元正极材料及其制备方法
CN107394160B (zh) * 2017-07-24 2019-09-10 合肥国轩高科动力能源有限公司 一种锂离子电池正极材料及其制备方法
JP6894419B2 (ja) 2017-11-15 2021-06-30 エコプロ ビーエム カンパニー リミテッドEcopro Bm Co., Ltd. 二次電池用正極活物質及びその製造方法
JP7066223B2 (ja) * 2017-11-21 2022-05-13 エルジー エナジー ソリューション リミテッド リチウム二次電池用正極材、これを含む正極及びリチウム二次電池
CN107946579B (zh) * 2017-11-27 2020-07-10 中南大学 一种锰酸锂包覆的镍钴铝酸锂正极材料及其制备方法
CN109994726B (zh) * 2017-12-29 2022-04-29 湖北九邦新能源科技有限公司 一种正极材料前驱体及其制备方法、正极材料及锂离子电池
CN110660961B (zh) * 2018-06-28 2021-09-21 宁德时代新能源科技股份有限公司 正极片及锂离子电池
CN111029536A (zh) * 2018-10-09 2020-04-17 北大先行科技产业有限公司 一种锂离子电池正极材料及其制备方法
CN109449391A (zh) * 2018-10-09 2019-03-08 郑州中科新兴产业技术研究院 一种高容量类单晶镍钴铝酸锂正极材料及其制备方法
CN109336193B (zh) * 2018-10-21 2022-02-08 圣戈莱(北京)科技有限公司 多元素原位共掺杂三元材料前驱体及其制备方法和应用
CN109216688B (zh) * 2018-10-23 2021-09-17 桑顿新能源科技有限公司 一种三元锂电材料、其制备方法与锂离子电池
CN109244436A (zh) * 2018-11-20 2019-01-18 宁波容百新能源科技股份有限公司 一种高镍正极材料及其制备方法以及一种锂离子电池
CN109309229A (zh) * 2018-12-03 2019-02-05 林奈(中国)新能源有限公司 一种包覆改性的高镍四元正极材料、制备方法及用途
CN109778301A (zh) * 2019-01-03 2019-05-21 北京工业大学 一种类单晶富锂层状氧化物材料制备及应用
CN111009646B (zh) * 2019-12-09 2022-10-11 宁波容百新能源科技股份有限公司 一种具有包覆层的高倍率类单晶型镍钴铝酸锂正极材料及其制备方法
CN111302407A (zh) * 2020-02-28 2020-06-19 新奥石墨烯技术有限公司 高镍四元正极材料前驱体及制备方法、高镍四元正极材料及制备方法、锂离子电池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633308A (zh) * 2013-11-28 2014-03-12 宁波金和新材料股份有限公司 一种富锂镍钴铝氧正极材料及其制备方法
CN103825016A (zh) * 2014-02-13 2014-05-28 宁波金和新材料股份有限公司 一种富锂高镍正极材料及其制备方法
CN105070908A (zh) * 2015-08-31 2015-11-18 宁波金和锂电材料有限公司 一种高镍正极材料的制备方法和锂离子电池
CN105958062A (zh) * 2016-06-12 2016-09-21 湖南杉杉新能源有限公司 锂离子电池用多晶高镍正极材料及其制备方法
CN108075115A (zh) * 2016-11-18 2018-05-25 三星电子株式会社 复合正极活性材料、包含其的正极和锂电池、以及制备复合正极活性材料的方法
JP2019185920A (ja) * 2018-04-04 2019-10-24 株式会社豊田自動織機 リチウムイオン二次電池
CN109686931A (zh) * 2018-12-12 2019-04-26 无锡晶石新型能源股份有限公司 一种高镍三元材料的包覆方法
CN110061225A (zh) * 2019-05-06 2019-07-26 湖南金富力新能源股份有限公司 一种单晶高容量镍钴锰酸锂正极材料及其制备方法
CN110336020A (zh) * 2019-07-22 2019-10-15 广东邦普循环科技有限公司 一种高电压复合钴酸锂正极材料及其制备方法和应用
CN110676452A (zh) * 2019-10-10 2020-01-10 山东友邦科思茂新材料有限公司 一种锂离子电池ncm811三元正极材料的制备方法
CN111628157A (zh) * 2020-06-30 2020-09-04 蜂巢能源科技有限公司 正极材料、其制备方法及锂离子电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4002520A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114784265A (zh) * 2022-05-19 2022-07-22 巴斯夫杉杉电池材料有限公司 一种改性高镍类单晶镍钴锰酸锂正极材料及其制备方法和锂离子电池
CN114784265B (zh) * 2022-05-19 2023-11-21 巴斯夫杉杉电池材料有限公司 一种改性高镍类单晶镍钴锰酸锂正极材料及其制备方法和锂离子电池

Also Published As

Publication number Publication date
CN111628157B (zh) 2024-03-26
EP4002520A1 (en) 2022-05-25
KR20220127277A (ko) 2022-09-19
JP2023507023A (ja) 2023-02-20
EP4002520A4 (en) 2023-09-13
JP7416956B2 (ja) 2024-01-17
CN111628157A (zh) 2020-09-04
US20230327082A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
WO2022000889A1 (zh) 正极材料、其制备方法及锂离子电池
JP7352727B2 (ja) ニッケルマンガン酸リチウム複合材、その製造方法及びリチウムイオン電池
WO2021238051A1 (zh) 无钴正极材料、其制备方法及锂离子电池
CN106532005B (zh) 球形或类球形锂电池正极材料、电池及制法和应用
CN109461925A (zh) 一种单晶镍钴锰酸锂正极材料、前驱体及其制备方法
WO2020043140A1 (zh) 三元正极材料及其制备方法、锂离子电池
WO2016107237A1 (zh) 锂离子电池用梯度结构的多元材料、其制备方法、锂离子电池正极以及锂离子电池
WO2022127324A1 (zh) 一种高镍三元正极材料及其制备方法和应用
KR101470092B1 (ko) 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR102357836B1 (ko) 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
EP3965188A1 (en) Composite positive electrode material for lithium ion battery, lithium ion battery, and vehicle
CN106910887B (zh) 一种富锂锰基正极材料、其制备方法及包含该正极材料的锂离子电池
WO2022206910A1 (zh) 无钴高镍正极材料、其制备方法及应用
KR20190060705A (ko) 양극 활물질의 제조방법
CN110233250A (zh) 一种单晶颗粒三元正极材料的制备方法
WO2022062320A1 (zh) 一种含有金属元素梯度掺杂的负极材料及其应用
CN105185982A (zh) 一种正极材料及其制备方法和锂离子电池
CN114243014A (zh) 一种单晶三元正极材料及其制备方法和应用
WO2023221625A1 (zh) 大粒径单晶三元正极材料及其制备方法和应用
CN111592053A (zh) 一种镍基层状锂离子电池正极材料及其制备方法与应用
CN114447315A (zh) 一种超小粒径单晶镍钴锰三元正极材料及其制备方法
JPWO2021238050A5 (zh)
CN115498171A (zh) 一种高镍三元正极材料及其制备方法和应用
KR20190007801A (ko) 양극 활물질의 제조방법
WO2022237823A1 (zh) 具有多腔室结构的正极材料及其制备方法和锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942519

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020942519

Country of ref document: EP

Effective date: 20220216

ENP Entry into the national phase

Ref document number: 2022538278

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE