WO2023221625A1 - 大粒径单晶三元正极材料及其制备方法和应用 - Google Patents

大粒径单晶三元正极材料及其制备方法和应用 Download PDF

Info

Publication number
WO2023221625A1
WO2023221625A1 PCT/CN2023/081689 CN2023081689W WO2023221625A1 WO 2023221625 A1 WO2023221625 A1 WO 2023221625A1 CN 2023081689 W CN2023081689 W CN 2023081689W WO 2023221625 A1 WO2023221625 A1 WO 2023221625A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
single crystal
nickel
cathode material
manganese
Prior art date
Application number
PCT/CN2023/081689
Other languages
English (en)
French (fr)
Inventor
余海军
谢英豪
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2023221625A1 publication Critical patent/WO2023221625A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium ion battery cathode materials, and specifically relates to a large particle size single crystal ternary cathode material and its preparation method and application.
  • lithium-ion batteries have been widely used in various fields. Especially with the rapid development of electric vehicles, there are higher requirements for the rate performance and cycle performance of lithium-ion batteries. Due to its relatively low cost and high energy density, NCM ternary cathode materials are considered to be the most promising candidate materials.
  • high-nickel ternary material batteries with significant advantages in energy density are generally favored by the market and have become a research hotspot for many power battery companies. .
  • the market demand for high-energy-density power batteries has driven many cathode material companies to research and develop high-nickel ternary materials.
  • domestic high-nickel ternary materials still cannot meet the needs of industrialization of high-nickel ternary batteries.
  • high-nickel ternary materials are accompanied by capacity attenuation during lithium battery cycling, and the resulting poor cycle life.
  • the reason for the capacity fading is that the structure of the high-nickel ternary cathode material itself changes irreversibly with cycles and reacts with the electrolyte.
  • the secondary balls of high-nickel ternary cathode materials rupture, resulting in exposed particles inside the material, increased side reactions, intensified dissolution of metal ions, and structural collapse, resulting in a decline in electrical performance. Therefore, how to improve the stability of high-nickel ternary cathode materials during battery cycling and reduce the degree of electrode side reactions is the key to improving the cycle life of lithium-ion batteries.
  • single crystal materials Compared with secondary particle spherical materials, single crystal materials have the advantages of high voltage and long cycle, mainly because single crystal
  • the primary particle size of the type material is larger and has higher pressure resistance. Therefore, cracks or micro-cracks are not likely to occur during the process of rolling to prepare the pole pieces, and thus the positive electrode active material is not easily damaged during the electrochemical cycle. Cracks may appear, the surface of the substrate may even peel off, and the pole pieces may become powdered.
  • larger crystals can ensure the stability of their structure during the electrochemical cycle, and thus have better room temperature and high temperature cycle performance.
  • single-crystal ternary cathode materials also have the following shortcomings, such as: (1) In the conventional manufacturing method, the single-crystal material is pulverized by airflow after sintering. This process will forcefully open the agglomerated particles. This creates sharp edges. Such sharp corners will cause severe wear and tear on the equipment during the battery electrode preparation process, shorten the service life of equipment accessories, and greatly increase the manufacturing cost of the battery; in addition, such sharp corners will cause material damage during the battery charging and discharging process. The degree of charge and discharge is uneven, resulting in strong polarization, and even particle breakage during the cycle, and the battery life quickly decreases.
  • the average particle size of single crystal cathode materials obtained by conventional production methods is about 2-3um, and the specific surface area is relatively large. Under high voltage, the contact surface with the electrolyte increases, which can easily lead to the dissolution of metal ions, resulting in Its safety and cycle performance are significantly reduced.
  • the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art. To this end, the present invention proposes a large particle size single crystal ternary cathode material and its preparation method and application.
  • the prepared single crystal ternary cathode material has a larger particle size, better cycle stability and excellent safety. properties and maintains a high specific capacity.
  • a large particle size single crystal ternary cathode material whose general chemical formula is LiNix Mn y Co 1-xy O 2 , where 0.5 ⁇ x ⁇ 0.85, 0.05 ⁇ y ⁇ 0.25,
  • the large-diameter single-crystal ternary cathode material is in the form of single-crystal granules with a smooth surface.
  • the D50 of the particles is 5.0-10.0 ⁇ m, and the specific surface area is 0.3-0.8 cm 2 /g.
  • the invention also provides a method for preparing the large particle size single crystal ternary cathode material, which includes the following steps:
  • S1 Mix the precursor with the first lithium source and sinter it in an oxygen atmosphere.
  • the resulting sintered material is crushed and sieved to obtain small-grain single crystal cathode material;
  • the precursor is nickel cobalt manganese oxide or nickel cobalt manganese hydride. at least one of the oxides;
  • S2 Mix nickel salt, cobalt salt, manganese salt, second lithium source, sodium hydroxide and growth agent, ball-mill the resulting mixture, and then perform first roasting in an oxygen atmosphere to melt the sodium hydroxide, and then Add the small particle single crystal cathode material, mix well, and perform a second roasting to obtain a roasted material;
  • the growth agent is at least one of SrO or SrCO 3 ;
  • step S1 the chemical formula of the nickel cobalt manganese oxide is Nix Mny Co 1-xy O, and the chemical formula of the nickel cobalt manganese hydroxide is Nix Mny Co 1-xy (OH) 2 .
  • x and y are as defined above.
  • step S1 the ratio of the total molar ratio of nickel, cobalt and manganese in the precursor to the molar ratio of lithium in the first lithium source is 1: (1.02-1.1).
  • step S1 the oxygen content of the oxygen atmosphere is ⁇ 98%. Further, the flow rate of oxygen during the sintering process is controlled to 0.15-10.0L/min.
  • the sintering process is: pre-sintering at 450-550°C for 2-5h, then raising the temperature to 850-950°C and sintering for 3-5h, and then cooling to 700-880°C. °C sintering 6-30h. Specifically, pre-sinter at 450-550°C for 2-5h, then heat up to 850-950°C for 3-5h at a heating rate of 2-5°C/min, and then cool to 700-880°C within 30-80min. Sintering 6-30h. Multi-stage sintering can better crystallize and produce single-crystal cathode materials.
  • the particle size D50 of the small particle single crystal cathode material is 2.5-5.0 ⁇ m.
  • the first lithium source is at least one of lithium hydroxide or lithium carbonate.
  • step S2 the molar ratio of the nickel salt, cobalt salt, and manganese salt is x:y: (1-x-y). x and y are as defined above.
  • step S2 the ratio of the total molar amount of nickel, cobalt and manganese in the nickel salt, cobalt salt and manganese salt to the molar amount of lithium in the second lithium source is 1: (4-5 ).
  • step S2 the ball milling time is 6-8 hours.
  • the second lithium source in step S2, includes 30-40 wt% LiOH and 60-70 wt% LiNO 3 by weight percentage.
  • the second lithium source has a lower melting point.
  • step S2 the ratio of the total molar amount of nickel, cobalt and manganese in the nickel salt, cobalt salt and manganese salt to the molar amount of sodium hydroxide is 1: (3-4).
  • step S2 the nickel salt, cobalt salt, manganese salt, second lithium source and sodium hydroxide are first mixed to obtain a mixed salt, and then mixed with the growth agent.
  • the dosage of growth agent is 1-2% of the total mass of the mixed salt.
  • step S2 the temperature of the first roasting is 320-350°C, and the temperature of the second roasting is 850-900°C. Further, the first roasting time is 1-3 hours, and the second roasting time is 6-9 hours.
  • step S2 the addition amount of the small particle single crystal cathode material is 10-20% of the total mass of the mixed salt.
  • step S2 the drying temperature is 80-120°C, and the drying time is 2-5 hours.
  • the present invention also provides the application of the large particle size single crystal ternary cathode material in lithium ion batteries.
  • the present invention first prepares small-particle single-crystal cathode materials by solid-phase sintering of precursors and lithium sources, and then sinters them through the molten salt method.
  • the small-particle single-crystal cathode materials are grown in the molten salt to obtain large-sized cathode materials.
  • the present invention by adding a crystal growth agent, in the molten salt phase, small single crystal particles are used as crystal seeds, and the single crystal is grown through thermal reaction crystallization of the molten salt, thereby further improving the granularity of the final single crystal material and solving the problem. It solves the current problem that it is difficult to obtain large-sized single crystals by solid-phase sintering and molten salt methods alone (the particle size of conventional solid-phase sintering single crystals is basically below 5 ⁇ m, while the particle size of materials sintered by the molten salt method is around 2 ⁇ m and is easy to agglomerate. ); through the combination of the two, small particle single crystal seeds are introduced to prepare a large particle size single crystal cathode, which has a small specific surface area, no sharp edges, and has good cycle stability and safety.
  • Figure 1 is an SEM image of the large particle size single crystal ternary cathode material prepared in Example 1 of the present invention
  • Figure 2 is an SEM image of the single crystal ternary cathode material prepared in Comparative Example 1 of the present invention.
  • a large-sized single crystal ternary cathode material is prepared.
  • the specific process is as follows:
  • Step 1 select nickel cobalt manganese hydroxide with the chemical formula Ni 0.8 Mn 0.1 Co 0.1 (OH) 2 as the precursor;
  • Step 2 According to the molar ratio of the total amount of nickel, cobalt and manganese to lithium is 1:1.06, uniformly mix the precursor and lithium hydroxide and then sinter in an oxygen atmosphere with an oxygen content of ⁇ 98%.
  • the oxygen flow rate is controlled to 5.0L. /min, pre-sinter at 500°C for 3h, then raise the temperature to 900°C for 4h at a heating rate of 3°C/min, then lower the temperature to 800°C for 18h in 60min;
  • Step 3 Cool the product sintered in Step 2 to room temperature, crush it, and sieve it to prepare a small-grain single-crystal cathode material with a D50 of 3.8 ⁇ m for later use;
  • Step 4 Take nickel chloride, cobalt chloride and manganese chloride respectively according to the molar ratio of nickel, cobalt and manganese elements of 8:1:1, and take the lithium source (including mass percentage) according to 4 times the sum of the molar amounts of nickel, cobalt and manganese. Take 35wt% LiOH and 65wt% LiNO 3 ) and 4 times sodium hydroxide (as molten salt), mix them to obtain a mixed salt;
  • Step 5 Take SrO accounting for 2% of the total mass of the mixed salt as a growth agent and mix it with the mixed salt;
  • Step 6 Mix the mixed salt on a planetary ball mill for 7 hours, then roast it at 330°C for 2 hours under an oxygen atmosphere with constant stirring;
  • Step 7 Add 15% of the total mass of the mixed salt of the small particle single crystal cathode material prepared in step 3, and mix evenly;
  • Step 8 Raise the temperature to 850°C and bake for 8 hours, then cool to room temperature naturally;
  • Step 9 Wash the roasted product with deionized water to remove the remaining molten salt, and dry it at 100°C for 4 hours to prepare a large particle size single crystal ternary cathode material.
  • Figure 1 is an SEM image of the large-grained single-crystal ternary cathode material of this embodiment. It can be seen from the figure that the material is single-crystal granular, with a smooth surface and no sharp corners; the D50 of the particles is 8.2 ⁇ m, and the specific surface area is 0.41 cm 2 /g.
  • a large-sized single crystal ternary cathode material is prepared.
  • the specific process is as follows:
  • Step 1 select nickel cobalt manganese oxide with the chemical formula Ni 0.8 Mn 0.1 Co 0.1 O as the precursor;
  • Step 2 According to the molar ratio of the total amount of nickel, cobalt and manganese to lithium is 1:1.1, uniformly mix the precursor and lithium hydroxide and then sinter in an oxygen atmosphere with an oxygen content of ⁇ 98%.
  • the oxygen flow rate is controlled to 10.0L /min, pre-sinter at 450°C for 5h, then raise the temperature to 950°C for 3h at a heating rate of 5°C/min, then lower the temperature to 880°C for 30h in 80min;
  • Step 3 Cool the product sintered in Step 2 to room temperature, crush it, and sieve it to prepare a small-grain single-crystal cathode material with a D50 of 3.6 ⁇ m for later use;
  • Step 4 Take nickel chloride, cobalt chloride and manganese chloride respectively according to the molar ratio of nickel, cobalt and manganese elements of 8:1:1, and take the lithium source (including mass percentage) according to 5 times the sum of the molar amounts of nickel, cobalt and manganese. 40wt% LiOH and 60wt% LiNO 3 ) and 3 times sodium hydroxide (as molten salt) were mixed to obtain a mixed salt;
  • Step 5 Take SrCO 3 accounting for 2% of the total mass of the mixed salt as a growth agent, and mix it with the mixed salt;
  • Step 6 Mix the salt on a planetary ball mill for 8 hours, then roast it at 350°C for 1 hour under constant stirring;
  • Step 7 Add 20% of the total mass of the mixed salt of the small particle single crystal cathode material prepared in step 3, and mix evenly;
  • Step 8 Raise the temperature to 900°C and bake for 6 hours, then cool to room temperature naturally;
  • Step 9 Wash the roasted product with deionized water to remove the remaining molten salt, and dry it at 120°C for 2 hours to prepare a large particle size single crystal ternary cathode material.
  • the product is single-crystal granular with a smooth surface and no sharp corners; the D50 of the particles is 9.3 ⁇ m and the specific surface area is 0.38 cm 2 /g.
  • a large-sized single crystal ternary cathode material is prepared.
  • the specific process is as follows:
  • Step 1 select nickel cobalt manganese hydroxide with the chemical formula Ni 0.6 Mn 0.2 Co 0.2 (OH) 2 as the precursor;
  • Step 2 According to the molar ratio of the total amount of nickel, cobalt and manganese to lithium is 1:1.02, uniformly mix the precursor and lithium carbonate and then sinter in an oxygen atmosphere with an oxygen content of ⁇ 98%.
  • the oxygen flow rate is controlled to 0.15L/ min, pre-sinter at 550°C for 2h, then raise the temperature to 850°C for 5h at a heating rate of 2°C/min, then lower the temperature to 700°C for 30h in 30min;
  • Step 3 Cool the product sintered in Step 2 to room temperature, crush it, and sieve it to prepare a small-grain single-crystal cathode material with a D50 of 2.5 ⁇ m for later use;
  • Step 4 Take nickel chloride, cobalt chloride and manganese chloride respectively according to the molar ratio of nickel, cobalt and manganese elements of 6:2:2, and take the lithium source (including mass percentage) according to 4 times the sum of the molar amounts of nickel, cobalt and manganese. Take 30wt% LiOH and 70wt% LiNO 3 ) and 4 times sodium hydroxide (as molten salt), mix them to obtain a mixed salt;
  • Step 5 Take SrO accounting for 1% of the total mass of the mixed salt as a growth agent, and mix it with the mixed salt;
  • Step 6 Mix the salt on a planetary ball mill for 6 hours, then roast it at 320°C for 3 hours under constant stirring;
  • Step 7 Add 10% of the total mass of the mixed salt of the small particle single crystal cathode material prepared in step 3, and mix evenly;
  • Step 8 Raise the temperature to 850°C and bake for 9 hours, then cool to room temperature naturally;
  • Step 9 Wash the roasted product with deionized water to remove remaining molten salt, and dry it at 80°C for 5 hours to prepare a large particle size single crystal ternary cathode material.
  • the product is in the form of single crystal granules with a smooth surface and no sharp corners; the D50 of the particles is 5.6 ⁇ m and the specific surface area is 0.54 cm 2 /g.
  • a single crystal ternary cathode material is prepared.
  • the difference between comparative example 1 and embodiment 1 is that single crystal growth is not performed in comparative example 1.
  • the specific process is:
  • Step 1 select nickel cobalt manganese hydroxide with the chemical formula Ni 0.8 Mn 0.1 Co 0.1 (OH) 2 as the precursor;
  • Step 2 According to the molar ratio of the total amount of nickel, cobalt and manganese to lithium is 1:1.06, uniformly mix the precursor and lithium hydroxide and then sinter in an oxygen atmosphere with an oxygen content of ⁇ 98%.
  • the oxygen flow rate is controlled to 5.0L. /min, pre-sinter at 500°C for 3h, then raise the temperature to 900°C for 4h at a heating rate of 3°C/min, then lower the temperature to 800°C for 18h in 60min;
  • Step 3 Cool the product sintered in Step 2 to room temperature, crush it, and sieve it to prepare a single crystal ternary cathode material.
  • Figure 2 is an SEM image of the single crystal ternary cathode material prepared in this comparative example. It can be seen from the image that the material is single crystal granular with sharp edges and corners; the D50 of the particles is 3.8 ⁇ m, and the specific surface area is 0.83 cm 2 /g.
  • a single crystal ternary cathode material is prepared.
  • the difference between comparative example 2 and embodiment 2 is that single crystal growth is not performed in comparative example 2.
  • the specific process is:
  • Step 1 select nickel cobalt manganese oxide with the chemical formula Ni 0.8 Mn 0.1 Co 0.1 O as the precursor;
  • Step 2 According to the molar ratio of the total amount of nickel, cobalt and manganese to lithium is 1:1.1, uniformly mix the precursor and lithium hydroxide and then sinter in an oxygen atmosphere with an oxygen content of ⁇ 98%.
  • the oxygen flow rate is controlled to 10.0L /min, pre-sinter at 450°C for 5h, then raise the temperature to 950°C for 3h at a heating rate of 5°C/min, then lower the temperature to 880°C for 30h in 80min;
  • Step 3 Cool the product sintered in Step 2 to room temperature, crush it, and sieve to prepare a single crystal ternary cathode material;
  • the product is in the form of single crystal granules with sharp edges and corners; the D50 of the granules is 3.6 ⁇ m, and the specific surface area is 0.96 cm 2 /g.
  • a single crystal ternary cathode material is prepared.
  • the difference between comparative example 3 and Example 3 is that single crystal growth is not performed in comparative example 3.
  • the specific process is:
  • Step 1 select nickel cobalt manganese hydroxide with the chemical formula Ni 0.6 Mn 0.2 Co 0.2 (OH) 2 as the precursor;
  • Step 2 According to the molar ratio of the total amount of nickel, cobalt and manganese to lithium is 1:1.02, uniformly mix the precursor and lithium carbonate and then sinter in an oxygen atmosphere with an oxygen content of ⁇ 98%.
  • the oxygen flow rate is controlled to 0.15L/ min, pre-sinter at 550°C for 2h, then raise the temperature to 850°C for 5h at a heating rate of 2°C/min, then lower the temperature to 700°C for 30h in 30min;
  • Step 3 Cool the product sintered in Step 2 to room temperature, crush it, and sieve to prepare a single crystal ternary cathode material;
  • the product is in the form of single crystal granules with sharp edges and corners; the D50 of the granules is 2.5 ⁇ m, and the specific surface area is 1.31 cm 2 /g.
  • the positive electrode materials obtained in the Examples and Comparative Examples were formed into button batteries for electrochemical performance testing of lithium ion batteries.
  • the specific steps were: using N-methylpyrrolidone as the solvent, the positive electrode was mixed in a mass ratio of 8:1:1.
  • the active material is mixed evenly with acetylene black and PVDF, coated on aluminum foil, air dried at 80°C for 8 hours, and then vacuum dried at 120°C for 12 hours.
  • the cathode is a metallic lithium sheet
  • the separator is a polypropylene film
  • the electrolytic The solution is 1M LiPF6-EC/DMC (1:1, v/v).
  • the charge and discharge cut-off voltage is 2.7-4.3V.
  • the cycle performance at a current density of 0.1C was tested, and the results are shown in Table 1.
  • the specific capacity and cycle performance of the embodiments are significantly better than those of the comparative examples. This is because the embodiments grow single crystals of small-grain single-crystal cathode materials in molten salt, which increases the particle size of the final single-crystal material. , its small specific surface area reduces the contact area between the material and the electrolyte, thereby reducing the dissolution of metal ions. The surface is rounded and has no sharp edges. The particles are not easily broken during the cycle, which improves cycle performance and maintains a high ratio. capacity.

Abstract

本发明公开了一种大粒径单晶三元正极材料及其制备方法和应用,其化学通式为LiNixMnyCo1-x-yO2,其中0.5≤x≤0.85,0.05≤y≤0.25,所述大粒径单晶三元正极材料为单晶颗粒状,表面圆滑,颗粒的D50为5.0-10.0μm,比表面积为0.3-0.8cm2/g。本发明先通过前驱体与锂源进行固相烧结制备小颗粒的单晶正极材料,再通过熔盐法烧结,将小颗粒单晶正极材料在熔盐中进行单晶生长,从而得到大粒径的单晶正极材料,其比表面积小,无尖锐边角,具备较好的循环稳定性和安全性。

Description

大粒径单晶三元正极材料及其制备方法和应用 技术领域
本发明属于锂离子电池正极材料技术领域,具体涉及一种大粒径单晶三元正极材料及其制备方法和应用。
背景技术
如今锂离子电池已被广泛应用于各种领域,尤其是随着电动汽车的快速发展,对锂离子电池的倍率性能和循环性能都有较高的要求。由于NCM三元正极材料相对较低的成本和较高的能量密度,被认为是最有潜力的候选材料。
随着三元材料在动力领域安全性逐步成熟,以及消费市场对于续航里程的需求提升,在能量密度上具有显著优势的高镍三元材料电池被市场普遍看好,成为众多动力电池企业的研究热点。高能量密度动力电池的市场需求带动了众多正极材料企业对高镍三元材料的研发布局。然而由于高镍三元材料的研发制备存在较高的行业技术壁垒,国产高镍三元材料仍无法满足高镍三元电池实现产业化的需求。一方面高镍三元材料在锂电池循环过程中伴随着容量的衰减,以及由此导致的较差的循环寿命。容量衰减的原因是高镍三元正极材料本身结构随着循环发生不可逆的改变以及与电解液发生反应。另一方面在较高的压实下高镍三元正极材料二次球破裂,导致材料内部颗粒裸露,副反应增加和金属离子溶出加剧,结构坍塌,导致电学性能下降。因此,如何提高高镍三元正极材料在电池循环过程中的稳定性,降低电极副反应程度,是提高锂离子电池循环寿命的关键。
研究发现,把高镍三元正极材料做成单晶形貌,不仅能够提高材料在高电压下的容量,还具有以下优点:(1)机械强度高,电极压实过程中不容易破碎,压实可达3.8g/cm3~4.0g/cm3,其较高的压实可减小内阻,减小极化损失,延长电池循环寿命,提高电池能量;(2)特殊的一次单晶粒子,比表面积低,有效降低了副反应;(3)单晶颗粒表面较为光滑,与导电剂可以较好的接触,利于锂离子的传输。
单晶型材料相较二次颗粒球状材料,具有高电压和长循环等优点,主要是因为单晶 型材料的一次颗粒尺寸较大,具有较高的抗压能力,因而在辊压制备极片的过程中不容易出现隐裂或微裂纹,进而在电化学循环过程中,不容易致使正极活性物质出现裂纹,甚至剥离基体表面,出现极片粉化现象。此外,较大的晶体在电化学循环过程中,能够很好的保障其结构的稳定性,进而拥有较好的常温和高温循环性能。
但是,单晶型三元正极材料也存在以下几个缺点,如:(1)在常规制法中,单晶材料一次烧结后会进行气流粉碎,此过程会将团聚在一起的颗粒强行打开,从而产生尖锐的边角。这种尖锐的边角在电池电极制备过程中会对设备造成严重的磨损,缩短设备配件的使用寿命,大大增加电池的制造成本;另外这种尖锐的边角在电池充放电过程中会造成材料充放电程度不均一,从而引起很强的极化作用,更甚至在循环过程中出现颗粒破碎,电池寿命迅速衰减。(2)常规制法得到的单晶正极材料的颗粒平均粒度约为2-3um,比表面积偏大,在高电压下,与电解液的接触面增大,极易导致金属离子的溶出,导致其安全性和循环性能大幅下降。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种大粒径单晶三元正极材料及其制备方法和应用,制备得到的单晶三元正极材料具有较大的粒径、较好的循环稳定性和优异的安全性,并保持着较高的比容量。
根据本发明的一个方面,提出了一种大粒径单晶三元正极材料,其化学通式为LiNixMnyCo1-x-yO2,其中0.5≤x≤0.85,0.05≤y≤0.25,所述大粒径单晶三元正极材料为单晶颗粒状,表面圆滑,颗粒的D50为5.0-10.0μm,比表面积为0.3-0.8cm2/g。
本发明还提供所述的大粒径单晶三元正极材料的制备方法,包括以下步骤:
S1:将前驱体与第一锂源混合,在氧气气氛下烧结,所得烧结料经破碎,过筛,得到小颗粒单晶正极材料;所述前驱体为镍钴锰氧化物或镍钴锰氢氧化物中的至少一种;
S2:将镍盐、钴盐、锰盐、第二锂源、氢氧化钠和生长剂混合,将所得混合物进行球磨,然后在氧气气氛下进行第一次焙烧使所述氢氧化钠熔化,再加入所述小颗粒单晶正极材料混匀后进行第二次焙烧,得到焙烧料;所述生长剂为SrO或SrCO3中的至少一种;
S3:将所述焙烧料进行水洗,烘干,即得所述大粒径单晶三元正极材料。
在本发明的一些实施方式中,步骤S1中,所述镍钴锰氧化物的化学式为NixMnyCo1-x-yO,镍钴锰氢氧化物的化学式为NixMnyCo1-x-y(OH)2。x、y如前文所定义。
在本发明的一些实施方式中,步骤S1中,所述前驱体中镍钴锰总摩尔量比与第一锂源中锂的摩尔量之比为1:(1.02-1.1)。
在本发明的一些实施方式中,步骤S1中,所述氧气气氛的氧气含量≥98%。进一步地,控制所述烧结过程中氧气的流量为0.15-10.0L/min。
在本发明的一些实施方式中,步骤S1中,所述烧结的过程为:在450-550℃下预烧结2-5h,再升温至850-950℃烧结3-5h,再降温至700-880℃烧结6-30h。具体地,在450-550℃下预烧结2-5h,再以2-5℃/min的升温速率升温至850-950℃烧结3-5h,在30-80min的时间内降温至700-880℃烧结6-30h。多段烧结能够更好地结晶,生成单晶类正极材料。
在本发明的一些实施方式中,步骤S1中,所述小颗粒单晶正极材料的粒径D50为2.5-5.0μm。
在本发明的一些实施方式中,步骤S1中,所述第一锂源为氢氧化锂或碳酸锂中的至少一种。
在本发明的一些实施方式中,步骤S2中,所述镍盐、钴盐、锰盐的摩尔比为x:y:(1-x-y)。x、y如前文所定义。
在本发明的一些实施方式中,步骤S2中,所述镍盐、钴盐和锰盐中镍钴锰的总摩尔量与第二锂源中锂的摩尔量之比为1:(4-5)。锂离子越多,熔融状态时,锂离子更容易进入镍钴锰晶格内,形成镍钴锰酸锂。
在本发明的一些实施方式中,步骤S2中,所述球磨的时间为6-8h。
在本发明的一些实施方式中,步骤S2中,按重量百分比计,所述第二锂源包括30-40wt%的LiOH和60-70wt%的LiNO3。第二锂源具有更低的熔点。
在本发明的一些实施方式中,步骤S2中,所述镍盐、钴盐和锰盐中镍钴锰的总摩尔量与氢氧化钠的摩尔量之比为1:(3-4)。
在本发明的一些实施方式中,步骤S2中,先将所述镍盐、钴盐、锰盐、第二锂源和氢氧化钠混合,得到混合盐,再与所述生长剂混合,所述生长剂的用量为所述混合盐总质量的1-2%。
在本发明的一些实施方式中,步骤S2中,所述第一次焙烧的温度为320-350℃,所述第二次焙烧的温度为850-900℃。进一步地,所述第一次焙烧的时间为1-3h,所述第二次焙烧的时间为6-9h。
在本发明的一些实施方式中,步骤S2中,所述小颗粒单晶正极材料的加入量为所述混合盐总质量的10-20%。
在本发明的一些实施方式中,步骤S2中,所述烘干的温度为80-120℃,烘干的时间为2-5h。
本发明还提供所述的大粒径单晶三元正极材料在锂离子电池中的应用。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、本发明首先通过前驱体与锂源进行固相烧结制备小颗粒的单晶正极材料,再通过熔盐法烧结,将小颗粒单晶正极材料在熔盐中进行单晶生长,从而得到大粒径的单晶正极材料。
2、本发明通过加入晶体生长剂,在熔盐相中,以小颗粒单晶为晶种,通过熔盐热反应结晶进行单晶的生长,从而进一步提升了最终单晶材料的颗粒度,解决了目前单独的固相烧结和单独的熔盐法难以得到大粒径单晶的难题(常规固相烧结单晶粒度基本在5μm以下,熔盐法烧结的材料粒径在2μm左右且极易团聚);通过两者的结合,引入小颗粒单晶晶种,制备出大粒径单晶正极,其比表面积小,无尖锐边角,具备较好的循环稳定性和安全性。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1制备的大粒径单晶三元正极材料SEM图;
图2为本发明对比例1制备的单晶三元正极材料SEM图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例制备了一种大粒径单晶三元正极材料,具体过程为:
步骤1,选取化学式为Ni0.8Mn0.1Co0.1(OH)2的镍钴锰氢氧化物作为前驱体;
步骤2,按照镍钴锰总量与锂的摩尔比为1:1.06,将前驱体与氢氧化锂均匀混合后在氧气含量≥98%的氧气气氛下烧结,烧结过程中控制氧气流量为5.0L/min,在500℃预烧结3h,再以3℃/min的升温速率升温至900℃烧结4h,在60min的时间内降温至800℃烧结18h;
步骤3,将步骤2烧结得到的产物冷却至室温,破碎,过筛,制得D50为3.8μm的小颗粒单晶正极材料,备用;
步骤4,按镍、钴和锰元素摩尔比8:1:1分别取氯化镍、氯化钴和氯化锰,并按照镍钴锰摩尔量之和的4倍取锂源(包括质量百分比35wt%的LiOH和65wt%的LiNO3)、4倍取氢氧化钠(作为熔盐),混合,得到混合盐;
步骤5,取占混合盐总质量2%的SrO作为生长剂,与混合盐混合;
步骤6,将混合盐放在行星球磨机上混合7h,在不断搅拌下,于氧气氛围下330℃焙烧2h;
步骤7,加入占混合盐总质量15%的步骤3制备的小颗粒单晶正极材料,混匀;
步骤8,升温至850℃焙烧8h,自然冷却至室温;
步骤9,将焙烧产物用去离子水洗涤,去除剩余熔盐,并于100℃下烘干4h,制得大粒径单晶三元正极材料。
按照《GB/T 19077粒度分析激光衍射法》、《GB/T 19587气体吸附BET法测 定固态物质比表面积》、《JY/T 010分析型扫描电子显微镜方法通则》,分别检测所得产物的粒度、比表面积以及外观形貌,结果如下:
图1为本实施例大粒径单晶三元正极材料SEM图,从图中可见材料为单晶颗粒状,表面圆滑,无尖锐边角;颗粒的D50为8.2μm,比表面积为0.41cm2/g。
实施例2
本实施例制备了一种大粒径单晶三元正极材料,具体过程为:
步骤1,选取化学式为Ni0.8Mn0.1Co0.1O的镍钴锰氧化物作为前驱体;
步骤2,按照镍钴锰总量与锂的摩尔比为1:1.1,将前驱体与氢氧化锂均匀混合后在氧气含量≥98%的氧气气氛下烧结,烧结过程中控制氧气流量为10.0L/min,在450℃预烧结5h,再以5℃/min的升温速率升温至950℃烧结3h,在80min的时间内降温至880℃烧结30h;
步骤3,将步骤2烧结得到的产物冷却至室温,破碎,过筛,制得D50为3.6μm的小颗粒单晶正极材料,备用;
步骤4,按镍、钴和锰元素摩尔比8:1:1分别取氯化镍、氯化钴和氯化锰,并按照镍钴锰摩尔量之和的5倍取锂源(包括质量百分比40wt%的LiOH和60wt%的LiNO3)、3倍取氢氧化钠(作为熔盐),混合,得到混合盐;
步骤5,取占混合盐总质量2%的SrCO3作为生长剂,与混合盐混合;
步骤6,将混合盐进行放在行星球磨机上混合8h,在不断搅拌下,于氧气氛围下350℃焙烧1h;
步骤7,加入占混合盐总质量20%的步骤3制备的小颗粒单晶正极材料,混匀;
步骤8,升温至900℃焙烧6h,自然冷却至室温;
步骤9,将焙烧产物用去离子水洗涤,去除剩余熔盐,并于120℃下烘干2h,制得大粒径单晶三元正极材料。
按照《GB/T 19077粒度分析激光衍射法》、《GB/T 19587气体吸附BET法测定固态物质比表面积》、《JY/T 010分析型扫描电子显微镜方法通则》,分别检测所得产 物的粒度、比表面积以及外观形貌,结果如下:
产物为单晶颗粒状,表面圆滑,无尖锐边角;颗粒的D50为9.3μm,比表面积为0.38cm2/g。
实施例3
本实施例制备了一种大粒径单晶三元正极材料,具体过程为:
步骤1,选取化学式为Ni0.6Mn0.2Co0.2(OH)2的镍钴锰氢氧化物作为前驱体;
步骤2,按照镍钴锰总量与锂的摩尔比为1:1.02,将前驱体与碳酸锂均匀混合后在氧气含量≥98%的氧气气氛下烧结,烧结过程中控制氧气流量为0.15L/min,在550℃预烧结2h,再以2℃/min的升温速率升温至850℃烧结5h,在30min的时间内降温至700℃烧结30h;
步骤3,将步骤2烧结得到的产物冷却至室温,破碎,过筛,制得D50为2.5μm的小颗粒单晶正极材料,备用;
步骤4,按镍、钴和锰元素摩尔比6:2:2分别取氯化镍、氯化钴和氯化锰,并按照镍钴锰摩尔量之和的4倍取锂源(包括质量百分比30wt%的LiOH和70wt%的LiNO3)、4倍取氢氧化钠(作为熔盐),混合,得到混合盐;
步骤5,取占混合盐总质量1%的SrO作为生长剂,与混合盐混合;
步骤6,将混合盐进行放在行星球磨机上混合6h,在不断搅拌下,于氧气氛围下320℃焙烧3h;
步骤7,加入占混合盐总质量10%的步骤3制备的小颗粒单晶正极材料,混匀;
步骤8,升温至850℃焙烧9h,自然冷却至室温;
步骤9,将焙烧产物用去离子水洗涤,去除剩余熔盐,并于80℃下烘干5h,制得大大粒径单晶三元正极材料。
按照《GB/T 19077粒度分析激光衍射法》、《GB/T 19587气体吸附BET法测定固态物质比表面积》、《JY/T 010分析型扫描电子显微镜方法通则》,分别检测所得产物的粒度、比表面积以及外观形貌,结果如下:
产物为单晶颗粒状,表面圆滑,无尖锐边角;颗粒的D50为5.6μm,比表面积为0.54cm2/g。
对比例1
本对比例制备了一种单晶三元正极材料,对比例1与实施例1的区别在于,对比例1不进行单晶生长,具体过程为:
步骤1,选取化学式为Ni0.8Mn0.1Co0.1(OH)2的镍钴锰氢氧化物作为前驱体;
步骤2,按照镍钴锰总量与锂的摩尔比为1:1.06,将前驱体与氢氧化锂均匀混合后在氧气含量≥98%的氧气气氛下烧结,烧结过程中控制氧气流量为5.0L/min,在500℃预烧结3h,再以3℃/min的升温速率升温至900℃烧结4h,在60min的时间内降温至800℃烧结18h;
步骤3,将步骤2烧结得到的产物冷却至室温,破碎,过筛,制得单晶三元正极材料。
按照《GB/T 19077粒度分析激光衍射法》、《GB/T 19587气体吸附BET法测定固态物质比表面积》、《JY/T 010分析型扫描电子显微镜方法通则》,分别检测所得产物的粒度、比表面积以及外观形貌,结果如下:
图2为本对比例制备的单晶三元正极材料SEM图,从图中可见材料为单晶颗粒状,具有尖锐边角;颗粒的D50为3.8μm,比表面积为0.83cm2/g。
对比例2
本对比例制备了一种单晶三元正极材料,对比例2与实施例2的区别在于,对比例2不进行单晶生长,具体过程为:
步骤1,选取化学式为Ni0.8Mn0.1Co0.1O的镍钴锰氧化物作为前驱体;
步骤2,按照镍钴锰总量与锂的摩尔比为1:1.1,将前驱体与氢氧化锂均匀混合后在氧气含量≥98%的氧气气氛下烧结,烧结过程中控制氧气流量为10.0L/min,在450℃预烧结5h,再以5℃/min的升温速率升温至950℃烧结3h,在80min的时间内降温至880℃烧结30h;
步骤3,将步骤2烧结得到的产物冷却至室温,破碎,过筛,制得单晶三元正极材料;
按照《GB/T 19077粒度分析激光衍射法》、《GB/T 19587气体吸附BET法测定固态物质比表面积》、《JY/T 010分析型扫描电子显微镜方法通则》,分别检测所得产物的粒度、比表面积以及外观形貌,结果如下:
产物为单晶颗粒状,具有尖锐边角;颗粒的D50为3.6μm,比表面积为0.96cm2/g。
对比例3
本对比例制备了一种单晶三元正极材料,对比例3与实施例3的区别在于,对比例3不进行单晶生长,具体过程为:
步骤1,选取化学式为Ni0.6Mn0.2Co0.2(OH)2的镍钴锰氢氧化物作为前驱体;
步骤2,按照镍钴锰总量与锂的摩尔比为1:1.02,将前驱体与碳酸锂均匀混合后在氧气含量≥98%的氧气气氛下烧结,烧结过程中控制氧气流量为0.15L/min,在550℃预烧结2h,再以2℃/min的升温速率升温至850℃烧结5h,在30min的时间内降温至700℃烧结30h;
步骤3,将步骤2烧结得到的产物冷却至室温,破碎,过筛,制得单晶三元正极材料;
按照《GB/T 19077粒度分析激光衍射法》、《GB/T 19587气体吸附BET法测定固态物质比表面积》、《JY/T 010分析型扫描电子显微镜方法通则》,分别检测所得产物的粒度、比表面积以及外观形貌,结果如下:
产物为单晶颗粒状,具有尖锐边角;颗粒的D50为2.5μm,比表面积为1.31cm2/g。试验例
将实施例和对比例得到的正极材料配成扣式电池进行锂离子电池电化学性能测试,其具体步骤为:以N-甲基吡咯烷酮为溶剂,按照质量比8︰1︰1的比例将正极活性物质与乙炔黑、PVDF混合均匀,涂覆于铝箔上,经80℃鼓风干燥8h后,于120℃真空干燥12h。在氩气保护的手套箱中装配电池,负极为金属锂片,隔膜为聚丙烯膜,电解 液为1M LiPF6-EC/DMC(1︰1,v/v)。充放电截止电压为2.7-4.3V。测试在0.1C电流密度下的循环性能,结果如表1所示所示。
表1
由表1可见,实施例的比容量和循环性能明显优于对比例,这是由于实施例将小颗粒单晶正极材料在熔盐中进行单晶的生长,提升了最终单晶材料的颗粒度,其比表面积小,减少材料与电解液的接触面,进而减少金属离子的溶出,且表面圆润,无尖锐边角,循环过程中颗粒不易破碎,提升了循环性能,并保持着较高的比容量。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种大粒径单晶三元正极材料,其特征在于,其化学通式为LiNixMnyCo1-x-yO2,其中0.5≤x≤0.85,0.05≤y≤0.25,所述大粒径单晶三元正极材料为单晶颗粒状,表面圆滑,颗粒的D50为5.0-10.0μm,比表面积为0.3-0.8cm2/g。
  2. 权利要求1所述的大粒径单晶三元正极材料的制备方法,其特征在于,包括以下步骤:
    S1:将前驱体与第一锂源混合,在氧气气氛下烧结,所得烧结料经破碎,过筛,得到小颗粒单晶正极材料;所述前驱体为镍钴锰氧化物或镍钴锰氢氧化物中的至少一种;
    S2:将镍盐、钴盐、锰盐、第二锂源、氢氧化钠和生长剂混合,将所得混合物进行球磨,然后在氧气气氛下进行第一次焙烧使所述氢氧化钠熔化,再加入所述小颗粒单晶正极材料混匀后进行第二次焙烧,得到焙烧料;所述生长剂为SrO或SrCO3中的至少一种;
    S3:将所述焙烧料进行水洗,烘干,即得所述大粒径单晶三元正极材料。
  3. 根据权利要求2所述的制备方法,其特征在于,步骤S1中,所述烧结的过程为:在450-550℃下预烧结2-5h,再升温至850-950℃烧结3-5h,再降温至700-880℃烧结6-30h。
  4. 根据权利要求2所述的制备方法,其特征在于,步骤S1中,所述小颗粒单晶正极材料的粒径D50为2.5-5.0μm。
  5. 根据权利要求2所述的制备方法,其特征在于,步骤S2中,所述镍盐、钴盐和锰盐中镍钴锰的总摩尔量与第二锂源中锂的摩尔量之比为1:(4-5)。
  6. 根据权利要求2所述的制备方法,其特征在于,步骤S2中,按重量百分比计,所述第二锂源包括30-40wt%的LiOH和60-70wt%的LiNO3
  7. 根据权利要求2所述的制备方法,其特征在于,步骤S2中,所述镍盐、钴盐和锰盐中镍钴锰的总摩尔量与氢氧化钠的摩尔量之比为1:(3-4)。
  8. 根据权利要求2所述的制备方法,其特征在于,步骤S2中,先将所述镍盐、钴盐、锰盐、第二锂源和氢氧化钠混合,得到混合盐,再与所述生长剂混合,所述生长剂 的用量为所述混合盐总质量的1-2%。
  9. 根据权利要求2所述的制备方法,其特征在于,步骤S2中,所述第一次焙烧的温度为320-350℃,所述第二次焙烧的温度为850-900℃。
  10. 如权利要求1所述的大粒径单晶三元正极材料在锂离子电池中的应用。
PCT/CN2023/081689 2022-05-18 2023-03-15 大粒径单晶三元正极材料及其制备方法和应用 WO2023221625A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210539770.8 2022-05-18
CN202210539770.8A CN115084506A (zh) 2022-05-18 2022-05-18 大粒径单晶三元正极材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023221625A1 true WO2023221625A1 (zh) 2023-11-23

Family

ID=83248202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081689 WO2023221625A1 (zh) 2022-05-18 2023-03-15 大粒径单晶三元正极材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115084506A (zh)
WO (1) WO2023221625A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115084506A (zh) * 2022-05-18 2022-09-20 广东邦普循环科技有限公司 大粒径单晶三元正极材料及其制备方法和应用
CN116169261A (zh) * 2022-12-22 2023-05-26 北京当升材料科技股份有限公司 单晶型多元正极材料及其制备方法和锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339804A (ja) * 1995-06-09 1996-12-24 Matsushita Electric Ind Co Ltd リチウム二次電池用正極活物質の製造法
CN109768231A (zh) * 2018-11-19 2019-05-17 上海紫剑化工科技有限公司 一种单晶型高镍三元正极材料及其制备方法
CN110422892A (zh) * 2019-08-08 2019-11-08 青岛新正锂业有限公司 一种微米级单晶一次颗粒三元正极材料的制备工艺
CN113644262A (zh) * 2021-07-21 2021-11-12 格林美(无锡)能源材料有限公司 一种层状大粒径高镍单晶三元正极材料及其制备方法
CN115084506A (zh) * 2022-05-18 2022-09-20 广东邦普循环科技有限公司 大粒径单晶三元正极材料及其制备方法和应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104241640A (zh) * 2014-10-10 2014-12-24 国家电网公司 一种镍钴铝酸锂正极材料、其制备方法及锂离子电池
CN109461925B (zh) * 2018-06-29 2022-01-25 北京当升材料科技股份有限公司 一种单晶镍钴锰酸锂正极材料、前驱体及其制备方法
CN109786731B (zh) * 2018-12-12 2021-12-10 上海紫剑化工科技有限公司 电极材料、锂离子电池及其制备方法、应用
CN109879333B (zh) * 2019-04-15 2021-07-27 常熟理工学院 二次熔盐法制备核壳结构锂电池正极材料的方法
KR102412692B1 (ko) * 2019-10-18 2022-06-24 주식회사 에코프로비엠 리튬 이차전지 양극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
CN112687866A (zh) * 2019-10-18 2021-04-20 Ecopro Bm有限公司 锂二次电池正极活性物质、其的制备方法及包含其的锂二次电池
CN110867580A (zh) * 2019-11-22 2020-03-06 四川新锂想能源科技有限责任公司 一种掺锶制备镍钴锰酸锂单晶正极材料的方法
CN111540890A (zh) * 2020-05-09 2020-08-14 宁夏中化锂电池材料有限公司 镍钴锰酸锂三元正极材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339804A (ja) * 1995-06-09 1996-12-24 Matsushita Electric Ind Co Ltd リチウム二次電池用正極活物質の製造法
CN109768231A (zh) * 2018-11-19 2019-05-17 上海紫剑化工科技有限公司 一种单晶型高镍三元正极材料及其制备方法
CN110422892A (zh) * 2019-08-08 2019-11-08 青岛新正锂业有限公司 一种微米级单晶一次颗粒三元正极材料的制备工艺
CN113644262A (zh) * 2021-07-21 2021-11-12 格林美(无锡)能源材料有限公司 一种层状大粒径高镍单晶三元正极材料及其制备方法
CN115084506A (zh) * 2022-05-18 2022-09-20 广东邦普循环科技有限公司 大粒径单晶三元正极材料及其制备方法和应用

Also Published As

Publication number Publication date
CN115084506A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
CN112750999B (zh) 正极材料及其制备方法和锂离子电池
CN108390022B (zh) 碳-金属氧化物复合包覆的锂电池三元正极材料、其制备方法及锂电池
US10573882B2 (en) Spherical or spherical-like lithium ion battery cathode material and preparation method and application thereof
CN110931768B (zh) 一种高镍类单晶锂离子电池正极材料及制备方法
CN113955809B (zh) 一种壳核壳结构的镍钴锰铝酸锂正极材料及其制备方法
CN111463411A (zh) 一种单晶形貌的高镍三元正极材料及其制备方法
WO2023221625A1 (zh) 大粒径单晶三元正极材料及其制备方法和应用
WO2022048346A1 (zh) 五氧化二钒/rGO包覆镍钴锰酸锂正极材料及制备方法
WO2022267187A1 (zh) 一种复合包覆改性的高镍nca正极材料及其制备方法
CN110233250A (zh) 一种单晶颗粒三元正极材料的制备方法
CN111952547A (zh) 一种表面包覆改性的锂离子电池正极材料及其制备方法
WO2023071409A1 (zh) 一种单晶三元正极材料及其制备方法和应用
WO2021109676A1 (zh) 锂离子电池的正极材料及制备方法
CN106025208A (zh) 一种碳包覆三元正极材料的制备方法
WO2023179245A1 (zh) 一种高镍三元正极材料及其制备方法和应用
CN113113590B (zh) 一种核壳结构的单晶正极材料及其制备方法
CN109888225A (zh) 正极材料及其制备方法和锂离子电池
CN112993241A (zh) 一种单晶锰酸锂材料的制备方法
CN103855372B (zh) 一种高锰复合正极材料及其制备方法
CN116031380A (zh) 类多晶钠离子正极材料及其制备方法和应用
CN115863604A (zh) 一种正极材料及包括该正极材料的正极片和电池
CN112952074B (zh) 硼氧化物包覆的四元正极材料及其制备方法和应用
CN113023790B (zh) 一种正极材料及其制备方法与应用
CN105958061A (zh) 一种镍钴铝三元正极材料的制备方法
CN113422039A (zh) 三元系复合氧化物基体材料、三元正极材料及制备方法与由其制备的锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806585

Country of ref document: EP

Kind code of ref document: A1