WO2021235459A1 - 真空凍結乾燥装置及び真空凍結乾燥方法 - Google Patents

真空凍結乾燥装置及び真空凍結乾燥方法 Download PDF

Info

Publication number
WO2021235459A1
WO2021235459A1 PCT/JP2021/018879 JP2021018879W WO2021235459A1 WO 2021235459 A1 WO2021235459 A1 WO 2021235459A1 JP 2021018879 W JP2021018879 W JP 2021018879W WO 2021235459 A1 WO2021235459 A1 WO 2021235459A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum freeze
temperature
tubular portion
tubular
drying
Prior art date
Application number
PCT/JP2021/018879
Other languages
English (en)
French (fr)
Inventor
修司 盛本
誠 竹原
Original Assignee
株式会社エムアイアイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エムアイアイ filed Critical 株式会社エムアイアイ
Priority to EP21808426.7A priority Critical patent/EP4155642A4/en
Priority to US17/919,746 priority patent/US11644236B2/en
Priority to CN202180036069.8A priority patent/CN115943283A/zh
Priority to JP2022524502A priority patent/JP7218484B2/ja
Priority to KR1020227038803A priority patent/KR20220154833A/ko
Publication of WO2021235459A1 publication Critical patent/WO2021235459A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • F26B5/06Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing
    • F26B5/065Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing the product to be freeze-dried being sprayed, dispersed or pulverised
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • F26B5/06Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B11/00Machines or apparatus for drying solid materials or objects with movement which is non-progressive
    • F26B11/02Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles
    • F26B11/024Arrangements for gas-sealing the drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B11/00Machines or apparatus for drying solid materials or objects with movement which is non-progressive
    • F26B11/02Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles
    • F26B11/026Arrangements for charging or discharging the materials to be dried, e.g. discharging by reversing drum rotation, using spiral-type inserts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B11/00Machines or apparatus for drying solid materials or objects with movement which is non-progressive
    • F26B11/02Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles
    • F26B11/04Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles rotating about a horizontal or slightly-inclined axis
    • F26B11/0436Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles rotating about a horizontal or slightly-inclined axis comprising multiple stages, e.g. multiple rotating drums subsequently receiving the material to be dried; Provisions for heat recuperation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B11/00Machines or apparatus for drying solid materials or objects with movement which is non-progressive
    • F26B11/02Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles
    • F26B11/04Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles rotating about a horizontal or slightly-inclined axis
    • F26B11/0463Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles rotating about a horizontal or slightly-inclined axis having internal elements, e.g. which are being moved or rotated by means other than the rotating drum wall
    • F26B11/0477Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles rotating about a horizontal or slightly-inclined axis having internal elements, e.g. which are being moved or rotated by means other than the rotating drum wall for mixing, stirring or conveying the materials to be dried, e.g. mounted to the wall, rotating with the drum
    • F26B11/0481Machines or apparatus for drying solid materials or objects with movement which is non-progressive in moving drums or other mainly-closed receptacles rotating about a horizontal or slightly-inclined axis having internal elements, e.g. which are being moved or rotated by means other than the rotating drum wall for mixing, stirring or conveying the materials to be dried, e.g. mounted to the wall, rotating with the drum the elements having a screw- or auger-like shape, or form screw- or auger-like channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/18Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by rotating helical blades or other rotary conveyors which may be heated moving materials in stationary chambers, e.g. troughs
    • F26B17/20Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by rotating helical blades or other rotary conveyors which may be heated moving materials in stationary chambers, e.g. troughs the axis of rotation being horizontal or slightly inclined
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/26Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by reciprocating or oscillating conveyors propelling materials over stationary surfaces; with movement performed by reciprocating or oscillating shelves, sieves, or trays
    • F26B17/266Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by reciprocating or oscillating conveyors propelling materials over stationary surfaces; with movement performed by reciprocating or oscillating shelves, sieves, or trays the materials to be dried being moved in a helical, spiral or circular path, e.g. vibrated helix
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply
    • F26B21/10Temperature; Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/10Heating arrangements using tubes or passages containing heated fluids, e.g. acting as radiative elements; Closed-loop systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/06Chambers, containers, or receptacles
    • F26B25/14Chambers, containers, receptacles of simple construction
    • F26B25/16Chambers, containers, receptacles of simple construction mainly closed, e.g. drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • F26B5/041Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum for drying flowable materials, e.g. suspensions, bulk goods, in a continuous operation, e.g. with locks or other air tight arrangements for charging/discharging

Definitions

  • the present invention relates to a vacuum freeze-drying apparatus and a vacuum freeze-drying method.
  • Patent Document 2 a freeze-drying apparatus has been proposed in which a shelf for receiving frozen raw materials is tilted.
  • the present invention has been made in view of the above problems, and provides a vacuum freeze-drying apparatus and a vacuum freeze-drying method capable of continuously performing vacuum freeze-drying in a short time.
  • the present invention is a vacuum freeze-drying device having a vacuum freeze device for freezing a liquid and a drying device for sublimating and drying the frozen frozen product, and vacuum suction is performed.
  • the drying apparatus is provided with an inlet portion and an outlet portion, and is formed of a tubular portion having a tubular shape and a tubular portion around the tubular portion from the inlet portion to the outlet portion.
  • the temperature control means is provided in at least three or more regions where the temperature can be controlled, and the temperature control means for controlling the temperature of the plurality of regions on the outer surface of the tubular portion and the temperature control means are independent.
  • a temperature control unit for controlling the temperature and a rotating unit for rotating the tubular portion are provided, and the tubular portion is continuous from the inlet portion to the outlet portion in the vicinity of the inner wall of the tubular portion.
  • the transfer means has a spiral transfer means provided to be provided, and the transfer means sequentially transfers the frozen material entering from the inlet portion to a portion corresponding to the plurality of regions in the tubular portion by the transfer means.
  • the frozen product is continuously sublimated and dried.
  • the plurality of regions of the three or more locations are a negative temperature region from the inlet portion to the outlet portion, respectively, and a temperature region in the range of the negative temperature to the positive 40 ° C. It has at least a temperature range of plus 20 ° C. or higher.
  • the substance is an injectable or solid drug, and the periphery of the tubular portion is covered with clean air.
  • the rotating portion is provided at one or a plurality of axially oriented rotational drive transmitting portions, and a rotating roller or / and. It is composed of bearings and has a rotation support portion that supports rotation by the rotation drive transmission portion.
  • the rotating portion has a rotation speed of 1/30 rotations per minute or more and one rotation or less.
  • the transfer means is formed by providing a spiral wall portion on the inner wall of the tubular portion.
  • the transfer means is composed of a groove portion formed on the inner wall of the tubular portion, and the depth of the groove portion is 3 mm or more and 50 mm or less.
  • the tubular portion includes a contact type or non-contact type temperature detection unit, and the temperature control unit has the temperature detection unit of the tubular portion.
  • the temperature of the temperature controlling means is controlled according to the surface temperature or the detected temperature of the substance inside the tubular portion.
  • a moisture detection unit provided outside the tubular portion and detecting the water content of a substance in the tubular portion through a transparent glass or resin window portion.
  • the temperature control unit controls the temperature of the temperature control means according to the amount of water content of the substance in the tubular portion by the water content detection unit.
  • the tubular portion is made of stainless steel.
  • the present invention is a vacuum freeze-drying method, which includes a vacuum freeze step of freezing a liquid, a drying step of sublimating and drying the frozen frozen product, and a step of performing vacuum suction through an exhaust path.
  • the drying step is a tubular portion having an inlet portion and an outlet portion and having a tubular shape, and is provided continuously in the vicinity of the inner wall of the tubular portion from the inlet portion toward the outlet portion.
  • the step of adjusting the temperature of the region and the freeze-dried material entering from the inlet portion are continuously sublimated while sequentially transferring the freeze-dried material entering from the inlet portion to the portions corresponding to the plurality of regions in the tubular portion by the transfer means. And the step of drying.
  • the connecting portion is arranged in a transfer pipe having one end facing the collecting portion of the vacuum freeze device and the other end facing the inside of the tubular portion.
  • the rotation of the screw is configured to move the frozen material entering from the collecting portion in the axial direction of the screw.
  • the base end portion of the screw on the vacuum freeze device side is supported by a bearing portion, and a first suction port is provided in the vicinity of the bearing portion to provide the first suction port.
  • the inside of the transfer pipe is always maintained in a vacuum through the mouth, and the tip portion of the transfer pipe on the drying device side is configured as a bearing portion and the end of the tubular portion of the tubular portion of the drying device.
  • a member is rotatably supported, and a second suction port is desiredly provided between the end member and the bearing portion on the tip end side of the transfer pipe, and the inside of the transfer pipe and the inside of the transfer pipe are provided through the second suction port. It is configured to maintain the inside of the tubular portion in a vacuum.
  • the screw is a spiral coil structure located around a rotation axis, and is provided in a state close to the inner wall of the transfer pipe, and the screw thereof rotates. Is configured to feed the frozen material received from the collecting unit into the tubular portion.
  • the screw is rotationally driven by a rotation driving means different from the rotating portion for rotating the tubular portion.
  • FIG. 1 is a cross-sectional view taken along the line AA of FIG. Of the plurality of cylindrical portions 31A to 31F constituting the tubular portion 31, the cylindrical portion 31B is shown.
  • the vacuum freeze-drying apparatus according to the embodiment of the present invention will be described. Further, the same member or a member having the same function may be designated by the same reference numeral, and the description may be omitted as appropriate after the member is described.
  • FIG. 1 is an explanatory diagram of a vacuum freeze-drying apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a drying device, a connecting portion, and a collecting portion in the vacuum freeze-drying device of FIG.
  • the vacuum freeze-drying device 1 has a vacuum freeze-drying device 2, a drying device 3, a connecting portion 4, and a collecting portion 5.
  • the substance handled by the vacuum freeze-dryer 1 is an injection or a solid drug.
  • the vacuum freeze device 2 sprays, for example, a raw material liquid containing a raw material into a vacuum container from an injection nozzle 21, and the sprayed raw material liquid freezes to generate a frozen product.
  • the vacuum freeze device may be one in which the raw material liquid is dropped from the nozzle into the vacuum container, and the dropped droplets can be frozen to generate a frozen product.
  • the sprayed or dropped raw material liquid self-freezes due to the evaporation of water during the fall and the deprivation of latent heat of vaporization, resulting in frozen matter which is a fine frozen particle.
  • the frozen material falls toward the collecting unit 22 having a tapered shape with a small opening, and is collected by the collecting unit 22.
  • the connecting portion 4 connects the vacuum freeze device 2 and the drying device 3, and is for transporting the frozen material produced by the vacuum freeze device 2 to the drying device 3.
  • the drying device 3 continuously sublimates and dries the frozen product.
  • the collecting unit 5 collects the dried product formed by sublimation-drying with the drying device 3 because it is released from the outlet portion 31c of the tubular portion 31.
  • the vacuum freeze-drying device 1 is provided with an exhaust path for performing vacuum suction, and the exhaust path is provided in the connecting portion 4 in the present embodiment.
  • the exhaust path may be provided in any of the vacuum freeze device 2, the drying device 3, and the connecting portion 4.
  • the periphery of the tubular portion 31 and the collecting portion 5 is covered with clean air 6. It has a structure in which all the peripheral outer surface portions of the disassembleable connection portion of the tubular portion 3 are covered with clean air 6 and clean air enters against leaks.
  • FIG. 3 is a front view of the drying device of the vacuum freeze-drying device according to the embodiment of the present invention.
  • FIG. 4 is a plan view of the drying device of the vacuum freeze-drying device according to the embodiment of the present invention.
  • 5A is a left side view of the drying device, and
  • FIG. 5B is a right side view of the drying device.
  • FIG. 6 is a cross-sectional view taken along the line AA of FIG.
  • the drying device 3 includes a tubular portion 31, temperature control means 30a to 30j, a rotating portion 7, and a temperature control unit 8.
  • the tubular portion 31 has a tubular shape extending linearly in the horizontal direction, has an opening, and has an inlet portion 31b into which frozen matter enters and an outlet portion 31c which serves as an outlet for sublimated and dried dried matter. It is equipped (see Fig. 2).
  • a spiral transfer means 31a is provided near the inner wall of the tubular portion 31 so as to be continuously provided from the inlet portion 31b toward the outlet portion 31c.
  • the frozen material conveyed from the connecting portion 4 enters from the inlet portion 31b of the tubular portion 31 and is transferred to the outlet portion 31c by the spiral transfer means 31a, during which the frozen material is continuously sublimated and dried. It will be done.
  • the temperature controlling means 30a to 30j are provided on the outer peripheral portion of the tubular portion 31, and control the temperature of a plurality of regions 40a to 40j on the outer surface of the tubular portion 31.
  • the plurality of regions 40a to 40j are provided from the inlet portion 31b of the tubular portion 31 toward the outlet portion 31c, and each of them can independently control the temperature.
  • the temperature controlling means 30a to 30j adjust the temperature of the portion in the tubular portion 31 corresponding to the plurality of regions 40a to 40j by controlling the temperature in the plurality of regions 40a to 40j.
  • 10 temperature control means 30a to 30j are provided, and 10 plurality of regions formed by the temperature control means 30a to 30j are also provided.
  • the plurality of regions 40a to 40j preferably have at least three or more regions.
  • a plurality of temperature control means may be collectively referred to as a temperature control means, and each temperature control means may be referred to as a temperature control means.
  • the rotating portion 7 rotates the tubular portion 31 around the swivel shaft.
  • the frozen material entering from the inlet portion 31b of the tubular portion 31 passes through the spiral transfer means 31a and sequentially passes through the inside of the tubular portion 31 toward the outlet portion 31c. , Will be transferred.
  • the frozen material is continuously sublimated and dried.
  • the rotating portion 7 is configured to rotate only the tubular portion 31, and the temperature controlling means 30a to 30j outside the tubular portion 31 are configured not to rotate.
  • the temperature controlling means 30a to 30j are fixed so as not to rotate.
  • the temperature control unit 8 has a function of inputting / outputting information, and independently controls the temperature control means 30a to 30j for controlling the temperature of the plurality of regions 40a to 40j formed on the outer surface of the tubular portion 31. do.
  • the temperature controlling means 30a to 30j can independently control the temperature of the outer space around the tubular portion 31, and each space inside the tubular portion 31 can be controlled independently. Each can be adjusted in temperature.
  • the temperature controlling means 30a regulates the space in the region 40a and regulates the space inside the tubular portion 31 corresponding to the region 40a.
  • the temperature controlling means 30b regulates the space of the region 40b, and regulates the space inside the tubular portion 31 corresponding to the region 40b.
  • the temperature controlling means 30c regulates the space in the region 40c and regulates the space inside the tubular portion 31 corresponding to the region 40c.
  • the temperature controlling means 30d to 30j regulates the space in the regions 40d to 40j, and regulates the space inside the tubular portion 31 corresponding to the regions 40d to 40j.
  • the frozen matter that has entered from the inlet portion 31b of the tubular portion 31 advances continuously in the space whose temperature is adjusted by the temperature controlling means 30a to 30j in the tubular portion 31, so that the frozen material is continuously sublimated and dried. Will be.
  • each temperature control means 30a to 3j will be specifically described with reference to FIGS. 3 to 6.
  • the temperature controlling means 30b is surrounded by the wall portion 32 on the inlet portion 31b side of the tubular portion 31, the wall portion 33 on the exit portion 31c side, and the wall portions 32 and 33 so as to surround the tubular portion 31, respectively. It has a cover 34 that covers the space, and ducts 35a and 35b that supply gas to the wall portions 32 and 33, respectively. Both the wall portions 32 and 33 have a circular shape.
  • the cover 34 is made of a member such as a transparent resin so that the inside can be visually recognized, and covers the space surrounded by the wall portion 32 and the wall portion 33.
  • Ducts 35a and 35b are connected to the wall portion 32 and the wall portion 33, and gas can be supplied from the ducts 35a and 35b. The temperature in the regions 40a to 40j is adjusted to a target temperature by the supplied gas.
  • An air blowing means (not shown) is connected to the ducts 35a and 35b, and a temperature-controlled gas is supplied.
  • a temperature-controlled gas is supplied.
  • the gas for example, air can be supplied, but the gas is not limited to air.
  • the case where gas is used as the temperature controlling means 30a to 30j has been described as an example, but the present invention is not limited to this, and an electric heater, a refrigerant, or the like can also be used.
  • the inside of the wall portions 32 and 33 has a circular opening according to the outer shape of the tubular portion 31.
  • the inner openings of the wall portions 32 and 33 are preferably close to the outer periphery of the tubular portion 31.
  • the plurality of regions 40a to 40j have at least three or more regions from the inlet portion 31b of the tubular portion 31 toward the exit portion 31c, and the three or more regions include the following (1) to (1) to Includes the temperature range of (3).
  • the definition of the temperature region is a temperature measured by measuring the temperature of the tubular portion 31 itself, which is a tube when the process is in a stable operation state, in contact with or without contact with the outer surface of the tubular portion 31. It has at least a (1) minus temperature region, (2) a temperature region in the range of minus 40 ° C. to plus 40 ° C., and (3) a temperature range of plus 20 ° C. or higher.
  • the negative temperature region of (1) refers to a negative temperature region such as ⁇ 40 ° C., ⁇ 30 ° C., ⁇ 20 ° C., etc.
  • the temperature range in the range from the minus temperature to the plus 40 ° C. in (1) of (2) refers to the temperature range in the range of minus temperature to + 40 ° C. with the minus temperature range in (1), for example, in (1).
  • a certain temperature in the negative temperature region is ⁇ 40 ° C.
  • the temperature changes from ⁇ 40 ° C. to + 40 ° C., so that the temperature region (2) becomes the temperature region from ⁇ 40 ° C. to 0 ° C.
  • the temperature in the minus temperature region of (1) is ⁇ 20 ° C.
  • the temperature is in the range of ⁇ 20 ° C. to + 40 ° C. Therefore, the temperature region of (2) is the temperature of ⁇ 20 ° C. to 20 ° C. It becomes an area.
  • the temperature range of + 20 ° C. or higher in (3) means the temperature range of 0 ° C. + 20 ° C. or higher when the upper limit temperature of (2) is 0 ° C.
  • a plurality of regions 40a to 40j include at least three regions of the above (1) to (3), and the frozen or dried product is the (1).
  • the frozen or dried material is continuously sublimated and dried while sequentially transferring the portions in the tubular portion 31 corresponding to the plurality of regions 40a to 40j by the transfer means 31a. Will be done.
  • the tubular portion 31 is preferably made of stainless steel.
  • the length of the tubular portion 31 is preferably in the range of, for example, about 100 mm to 2000 mm, more preferably in the range of 150 mm to 1000 mm, and further preferably in the range of 200 mm to 500 mm.
  • the tubular portion 31 forms one cylindrical shape by connecting a plurality of tubular portions 31A to 31F with connecting portions 31G to 31K.
  • the tubular portion 31 may be formed in a single tubular shape without providing a joint.
  • the cylinder portions 31B, 31C, 31D, and 31E are formed of cylinder portions having the same shape.
  • the tubular portion 31A is a tubular portion having a slightly shorter length.
  • the tubular portion 31F is formed so that the cross-sectional shape becomes smaller toward the tip.
  • the connecting portions 31G to 31K are connected so that the adjacent cylinder portions do not come off.
  • the tubular portion 31 is provided with a spiral transfer means 31a that is continuously provided from the inlet portion 31b toward the outlet portion 31c in the vicinity of the inner wall of the tubular portion 31.
  • the transfer means 31a can form a spiral shape by providing a wall portion or a groove on the inner circumference of the tubular portion 31.
  • the formation of the spiral shape also includes a method of embedding a screw in the inner circumference of the tubular portion 31.
  • the transfer means 31a continuously sublimates and dries the frozen material while sequentially transferring the frozen material coming in from the inlet portion 31b into the tubular portion 31 located inside the plurality of regions 40a to 40j. The sublimated and dried product is guided to the outlet portion 31c.
  • the rotating portion 7 includes a motor 71, pulleys 72 and 73, a belt 74, rotating shafts 75 and 76, and rotating rollers 77 and 78.
  • the motor 71 serves as a rotational drive source.
  • the pulleys 72, 73, the belt 74, and the rotary shafts 75, 76 function as a rotary drive transmission unit that transmits the rotary drive.
  • the rotary rollers 77 and 78 are rotary support portions that support rotation by the rotary drive transmission unit.
  • the rotary support portion can be configured by adding a bearing to the rotary rollers 77 and 78, and can also be configured by a bearing instead of the rotary roller 77.
  • a belt 74 is hung on the pulleys 72 and 73.
  • the rotational force of the motor 71 is transmitted via the belt 74.
  • the rotary roller 77 is arranged below both sides of the tubular portion 31.
  • the tubular portion 31 is placed on the rotating rollers 77 arranged on both sides.
  • the pulley 73 is attached near one end of the rotating shaft 75.
  • a rotary roller 78 attached to the fixed base is provided inside the pulley 73, and a rotary roller 78 similarly attached to the fixed base is provided at the other end of the rotating shaft 75.
  • Eight rotating rollers 77 are attached to the rotating shaft 75 between the rotating rollers 78 and 78.
  • the rotary shaft 76 has a rotary roller 78 attached to a fixed table at one end and a rotary roller 78 attached to a fixing table at the other end. Eight rotating rollers 77 are attached to the rotating shaft 76 between the rotating rollers 78 and 78.
  • the rotary roller 77 attached to the rotary shaft 75 is a drive roller, and the rotary roller 77 attached to the rotary shaft 76 is a driven roller.
  • the belt 74 rotates through the pulley 72, the rotating shaft 75 rotates due to the rotation of the pulley 73, and the rotating roller 77 fixed to the rotating shaft 75 rotates, so that the tubular portion 31 rotates. Then, the rotary roller 77 rotates as a driven roller attached to the rotary shaft 76. Next, the rotation speed of the tubular portion 31 will be described. It is preferable that the cylindrical portion 31 is rotated by the rotating portion 7 in a range in which the rotation speed is 1/30 rotations per minute or more and 1 rotation or less.
  • glass windows (window portions) 36 are continuously provided at predetermined intervals in the circumferential direction, and the glass window 36 is provided with the tubular portion 31. It is provided at a plurality of locations (8 locations in the present embodiment) in the longitudinal direction.
  • the glass window 36 is provided so that the state of the substance inside can be detected and detected from the outside.
  • the glass window 36 can also be made of resin.
  • a detection unit 37 is provided at the lower portion of the tubular portion 31 where the glass window 36 is provided in the circumferential direction.
  • the detection unit 37 includes at least three types, and includes a temperature detection unit that detects the temperature of a substance inside the tubular portion 31, a temperature detection unit that detects the temperature of the outer surface (wall surface) of the tubular portion 31, and a temperature detection unit. It includes a moisture detection unit that detects the moisture content of the substance inside the tubular portion 31.
  • the detection unit 37 When the detection unit 37 functions as a temperature detection unit for detecting the temperature of the substance inside the tubular portion 31, it can be configured as a contact type or a non-contact type. When the detection unit 37 functioning as the temperature detection unit is a contact type, it detects the surface temperature of the tubular portion 31. When the detection unit 37 functioning as the temperature detection unit is a non-contact type, the temperature of the substance inside the tubular portion 31 is detected through the glass window 36 of the tubular portion 31. The temperature control unit 8 independently sets the temperature of the temperature controlling means 30a to 30j according to the surface temperature of the tubular portion 31 or the detection temperature of the substance inside the tubular portion 31 detected by the detection unit 37 through the glass window 36. Can be controlled.
  • the detection unit 37 functions as a water content detection unit for detecting the water content of the substance inside the tubular portion 31, the water content of the substance in the tubular portion 31 is detected through the transparent glass window 36. Can be done.
  • the temperature control unit 8 can independently control the temperature of the temperature control means 30a to 30j according to the water content of the substance in the tubular portion by the detection unit 37.
  • FIG. 9 shows how the detection unit detects the temperature of the substance inside or the water content of the substance.
  • the detection unit 37 functions as a temperature detection unit for detecting the temperature of the substance inside the tubular portion 31 and a moisture detection unit for detecting the water content of the substance inside the tubular portion 31.
  • the temperature of the substance X inside the tubular portion 31 and the moisture content of the substance inside the tubular portion 31 can be detected through the transparent glass window 36 of the tubular portion 31.
  • the detection unit 37 passes through the glass windows 36 provided at predetermined intervals in the circumferential direction of the tubular portion 31, and through the respective glass windows 36, the temperature of the substance X inside the tubular portion 31 and the inside of the tubular portion 31.
  • the water content of the substance can be detected. Further, since the glass window 36 and the detection unit 37 are provided at a plurality of positions in the longitudinal direction of the tubular portion 31, the temperature and water content of the substance can be accurately detected at each position in each tubular portion 31. can do.
  • FIG. 7 shows the cylindrical portion 31B among the plurality of tubular portions 31A to 31F constituting the tubular portion 31.
  • 7 (a) is a perspective view of the tubular portion 31B shown in FIG. 3, (b) is a front view of the tubular portion 31B, (c) is a side view of the tubular portion 31B, and (d) is a cross-sectional view of the tubular portion 31B. (E) is an enlarged view of part B of (d).
  • FIG. 8 is a diagram showing a semifield 31BX of the tubular portion 31B. In FIGS. 7 and 8, in the tubular portion 31B of FIG. 3, since the spiral transfer means 31a is centered, the glass window 36 is omitted.
  • the cylindrical portion 31B constituting the tubular portion 31 is formed in a cylindrical shape, and edge portions 31d protruding in the radial direction are formed on both sides of the opening end.
  • One cylindrical portion 31 is formed by fixing the edge portions 31d of the adjacent tubular portions 31A to 31F to each other.
  • the edge portions 31d of the adjacent tubular portions 31A to 31F are fixed by connecting ferrules, clamping or bolting.
  • a part of the spiral transfer means 31a is continuously formed in the tubular portion 31B from one end to the other end.
  • a wall portion is continuously formed on the inner wall of the tubular portion 31BX as a part of the transfer means 31a, such as the wall portion 31a1 on the first lap and the wall portion 31a2 on the second lap.
  • a part of the transfer means 31a can be formed in the tubular portion 31BX.
  • the height of the wall portion 31a1 and the wall portion 31a2 is the height of the transfer means 31a, and is preferably configured in the range of, for example, 3 mm or more and 50 mm or less.
  • the pitch of the wall portion 31a1 and the wall portion 31a2 is the pitch of the spiral transfer means 31a, and is preferably configured in the range of, for example, 5 mm or more and 20 mm or less.
  • FIG. 8 shows a semifield 31BX of the tubular portion 31B, and the tubular portion 31B can form one tubular portion 31B by connecting two of the semifields 31BX.
  • the semifield 31BX of the tubular portion 31B can form a part of the spiral transfer means 31a in the tubular portion 31B when the two are combined.
  • FIG. 10 is a cross-sectional view of a connecting portion of the vacuum freeze-drying apparatus according to the embodiment.
  • the connecting portion 4 is provided between the collecting portion 22 of the vacuum freeze device 2 and the end portion on the inlet 31b side of the drying device 3, and the frozen product produced by the vacuum freeze device 2 is provided. Is for transporting to the drying device 3. Near the end 301, there is a receiving port 302 for receiving the frozen material carried by the connecting portion 4.
  • the connecting portion 4 includes an inner pipe portion 41, an outer pipe portion 42, a screw 43 provided in the inner pipe portion 41, and an inner pipe portion 41 and an outer pipe portion of the connecting portion 4 from the end portion 301 of the drying device 3. It has an intermediate pipe portion 44 extending to 42.
  • a bearing 45 and an air seal 46 are provided between the outer pipe portion 42 and the intermediate pipe portion 44 from the drying device 3 side.
  • the air seal 46 seals the rotating shaft by supplying air from the flow path without contacting the rotating shaft.
  • FIG. 11 is a diagram showing another example of the semifield 31BX of the tubular portion 31B of FIG. 7.
  • a wall portion is formed on the inner wall of the tubular portion 31 to form the transfer means 31a, but as shown in FIG. 11, the groove portion 131a1 is formed on the inner wall of the tubular portion 31.
  • the transfer means 131a may be formed by forming 131a2, ....
  • the cylinder portion 31B can form one cylinder portion 31B by connecting two semifields 131BX.
  • the groove portions constituting the spiral transfer means 131a are formed so as to be continuous.
  • the depth of the groove portion 131a1 and the groove portion 31a2 is the depth of the transfer means 131a, and is preferably configured in the range of, for example, 3 mm or more and 50 mm or less.
  • the pitch of the groove portion 131a1 and the groove portion 131a2 is the pitch of the transfer means 131a, and is preferably configured in the range of, for example, 5 mm or more and 20 mm or less.
  • a spiral groove portion as a transfer means 131a centered on the rotation axis on the inner peripheral surface of the tubular portion 31, the action of spirally feeding the inside of the tubular portion 31 is imparted, and a frozen product or a dried product is provided. Can be continuously transferred.
  • the vacuum freeze-drying method of the present embodiment includes a vacuum freeze-free step for freezing a liquid, a drying step for sublimating and drying a frozen frozen product, and a step for performing vacuum suction through an exhaust path.
  • a tubular portion 31 having an inlet portion 31b and an outlet portion 31c and having a tubular shape, and is continuously provided in the vicinity of the inner wall of the tubular portion 31 from the inlet portion 31d toward the outlet portion 31c in a spiral shape.
  • a plurality of regions of at least three places where the step and the temperature formed from the inlet portion 31b to the outlet portion 31c at the peripheral portion of the tubular portion 31 can be controlled by rotating the tubular portion 31 having the means 31a.
  • the step of adjusting the temperature of 40a to 40j and the continuous transfer of the frozen matter entering from the inlet portion 31b while sequentially transferring the frozen matter entering from the inlet portion 31b to the portions corresponding to the plurality of regions 30a to 30j in the tubular portion 31 by the transfer means 31a. Includes steps of sublimation and drying.
  • FIG. 12 is a cross-sectional view of the connecting portion 4B of the vacuum freeze-drying apparatus according to another embodiment of the present invention.
  • a vacuum freeze device 2 for freezing the liquid
  • a drying device 3 for sublimating and drying the frozen frozen product.
  • the freeze-dried material is moved in the axial direction by the screw 58 provided in the transfer pipe 55 facing the collection unit 22 of the vacuum freeze-drying device 2. It is configured to be moved.
  • the transfer of the screw 43 does not necessarily have to be in the horizontal direction, and the frozen material may be transferred to the tubular portion 31.
  • the base end portion (left end portion) of the screw 58 is bearing by a bearing portion 56 (here, a bearing), a first suction port 53 is provided in the vicinity of the bearing portion, and the inside of the transfer pipe 55 is always inside. It is configured to maintain a vacuum (a high degree of vacuum is sufficient).
  • the first suction port 53 is connected to a vacuum pump, but the illustration and description thereof will be omitted.
  • the tip portion of the transfer pipe 55 is configured to be a bearing portion 51, is configured to rotatably support the end member 52 of the tubular portion 31A of the tubular portion 31 of the drying device, and is configured to rotatably support the end member 52.
  • a second suction port 54 is desired to be provided between the bearing portion 51 and the bearing portion 51, and is configured to maintain the inside of the transfer pipe 55 and the inside of the tubular portion 31 in a vacuum.
  • the suction port 54 is connected to the vacuum pump, but illustration and description thereof will be omitted here.
  • the screw 58 is a spiral coil structure located around the rotating shaft 57, and is provided in a state close to the inner wall of the transfer pipe 55, and the frozen material received from the collecting unit 22 is received by the rotation thereof. , Is configured to be fed into the tubular portion 31.
  • the coil structure may have a spiral shape, and the fragments may form a substantial coil.
  • the coil structure may be a structure capable of exhibiting a continuous feed function. The above-mentioned proximity installation is to provide a clearance between the coil structure and the transfer pipe 55 so that the frozen material is not caught and damaged.
  • a motor 60 for driving and a coupling 59 that transmits the rotational force of the motor 60 to the rotary shaft 57 are arranged at an end of the rotary shaft 57 on the opposite side of the tubular portion 31.
  • a motor 60 for rotationally driving the screw 58 separately from the motor 71 for rotationally driving the tubular portion 31, it is possible to arbitrarily change the transport of the frozen material to the drying device 3.
  • the rotation speed of the motor 60 can be increased to increase the transport amount.
  • the connecting portion 4 see FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

短時間で真空凍結乾燥を連続的に行うことができる真空凍結乾燥装置及び方法を提供する。本発明の真空凍結乾燥装置(1)は、真空吸引を行う排気経路を有し、乾燥装置(3)は、入口部と出口部とを備え、筒形状を有する筒状部(31)と、筒状部(31)の周辺部の入口部から出口部に向かって形成される温度の制御が可能な少なくとも3か所以上の複数の領域に設けられ、筒状部の外面の複数の領域(40a~40j)の温度を調温する調温手段(30a~30j)と、調温手段を独立して温度制御する温度制御部(8)と、筒状部(31)を回転させるための回転部(7)と、を備え、筒状部(31)は、筒状部の内壁近傍に入口部から出口部に向かって連続的に設けられる螺旋状の移送手段(31a)を有し、移送手段(31a)は、凍結物を、筒状部内の複数の領域に対応する箇所を移送手段によって順次移送しながら連続的に昇華及び乾燥させる。

Description

真空凍結乾燥装置及び真空凍結乾燥方法
本発明は、真空凍結乾燥装置及び真空凍結乾燥方法に関する。 
従来から、液滴を生成し、その液滴を凍結凝固させた凍結粒子を凍結乾燥する凍結乾燥装置が提案されている(特許文献1)。
また、凍結乾燥装置において、凍結した原料を受け取る棚を傾斜させるようにしたものも提案されている(特許文献2)。
 また、真空凍結乾燥装置において、噴霧時に得た運動エネルギーによって、凍結粒子を昇華乾燥させるものが提案されている(特許文献3)。
国際公開WO2013/050162号公報 国際公開WO2010/005021号公報 国際公開WO2019/235036号公報
 しかしながら、上記文献では、短時間で真空凍結乾燥を連続的に行うことができないという問題がある。
 そこで、本発明は以上の課題に鑑みてなされたものであり、短時間で真空凍結乾燥を連続的に行うことができる真空凍結乾燥装置及び真空凍結乾燥方法を提供する。
上記課題を解決するために、(1)本発明は、液を凍結させる真空凍結装置と、前記凍結させた凍結物を昇華及び乾燥させる乾燥装置とを有する真空凍結乾燥装置であって、真空吸引を行う排気経路を有し、前記乾燥装置は、入口部と出口部とを備え、筒形状を有する筒状部と、前記筒状部の周辺部の前記入口部から前記出口部に向かって形成される温度の制御が可能な少なくとも3か所以上の複数の領域に設けられ、前記筒状部の外面の前記複数の領域の温度を調温する調温手段と、前記調温手段を独立して温度制御する温度制御部と、前記筒状部を回転させるための回転部と、を備え、前記筒状部は、前記筒状部の内壁近傍に前記入口部から前記出口部に向かって連続的に設けられる螺旋状の移送手段を有し、前記移送手段は、前記入口部から入る前記凍結物を、前記筒状部内の前記複数の領域に対応する箇所を前記移送手段によって順次移送しながら前記凍結物を連続的に昇華及び乾燥させる。
(2)上記(1)の構成において、前記3か所以上の複数の領域は、前記入口部から出口部に向かってそれぞれマイナス温度領域と、前記マイナス温度からプラス40℃の範囲の温度領域と、プラス20℃以上の温度領域を少なくとも有する。
(3)上記(1)又は(2)の構成において、該物質は、注射剤又は固形剤の医薬品であって、筒状部の周辺をクリーンエアーで覆っている。
(4)上記(1)~(3)の構成において、前記回転部は、軸方向に1か所ないしは複数か所設けられた、回転駆動を伝達する回転駆動伝達部と、回転ローラー又は/及びベアリングによって構成され、前記回転駆動伝達部による回転を支持する回転支持部とを有する。
 (5)上記(1)~(4)のいずれかの構成において、前記回転部は、回転速度が毎分1/30回転以上1回転以下である。
(6)上記(1)~(5)の構成において、前記移送手段は、前記筒状部の内壁に螺旋状の壁部を設けることにより形成されている。
 (7)上記(1)~(5)の構成において、前記移送手段は、前記筒状部の内壁に形成された溝部により構成され、前記溝部の深さが3mm以上50mm以下である。
(8)上記(1)~(7)の構成において、前記筒状部は、接触式又は非接触式の温度検出部を備え、前記温度制御部は、前記温度検出部が前記筒状部の表面温度又は前記筒状部の内部の物質の検出温度に応じて前記調温手段の温度を制御する。
(9)上記(1)~(8)の構成において、前記筒状部の外部に設けられ、前記筒状部内の物質の水分量を透明体のガラス又は樹脂の窓部を通して検出する水分検出部を備え、前記温度制御部は、前記水分検出部による前記筒状部内の物質の水分量に応じて前記調温手段の温度を制御する。
(10)上記(1)~(9)の構成において、前記筒状部は、材質がステンレスである 。 
(11)本発明は、真空凍結乾燥方法であって、液を凍結させる真空凍結ステップと、前記凍結させた凍結物を昇華及び乾燥させる乾燥ステップと、排気経路を通じて真空吸引を行うステップとを含み、前記乾燥ステップは、入口部と出口部とを備え、筒形状を有する筒状部であって、前記筒状部の内壁近傍に前記入口部から前記出口部に向かって連続的に設けられる螺旋状の移送手段を有する筒状部を回転させるステップと、前記筒状部の周辺部の前記入口部から前記出口部に向かって形成される温度の制御が可能な少なくとも3か所以上の複数の領域の温度を調温するステップと、前記入口部から入る前記凍結物を、前記筒状部内の前記複数の領域に対応する箇所を前記移送手段によって順次移送しながら前記凍結物を連続的に昇華及び乾燥させるステップとを含む。
(12)上記(1)~(10)の構成において、前記連結部は、前記真空凍結装置の収集部に一方端を臨ませ、他方端を前記筒状部内に臨ませた移送管内に配置したスクリューの回転により、前記収集部から入る凍結物を前記スクリューの軸線方向に移動させるように構成されている。
(13)上記(14)の構成において、前記スクリューの前記真空凍結装置側の基端部は軸受け部によって軸承され、該軸受け部の近傍に第1の吸引口が設けられ、前記第1の吸引口を介して前記移送管内を常時真空に維持するように構成してあり、前記移送管の前記乾燥装置側の先端部は軸受け部に構成されて前記乾燥装置の筒状部の筒部の端部材を回転自在に支持し、その端部材と前記移送管の先端部側の軸受け部との間に第2の吸引口を望ませて設け、前記第2の吸引口を介して前記移送管内及び前記筒状部の内部を真空に維持するように構成されている。
(14)上記(12)又は(13)の構成において、前記スクリューは、回転軸の周囲に位置された螺旋状のコイル構造物で、前記移送管の内壁に近接状態で設けられおり、その回転によって、前記収集部から受けた凍結物を、前記筒状部に送り込むように構成されている。
(15)上記(12)~(14)の構成において、前記スクリューは、前記筒状部を回転させるための回転部とは別の回転駆動手段によって回転駆動される。
 
 
 
 
本発明によれば、短時間で真空凍結乾燥を連続的に行うことができる真空凍結乾燥装置及び真空凍結乾燥方法を提供することができる。
本発明の実施形態に係る真空凍結乾燥装置の説明図である。 図1の真空凍結乾燥装置において、乾燥装置、連結部及び捕集部を断面図で示したものである。 本発明の実施形態の真空凍結乾燥装置の乾燥装置の正面図である。 本発明の実施形態の真空凍結乾燥装置の乾燥装置の平面図である。 (A)は乾燥装置の左側面図、(B)は乾燥装置の右側面図である。 図1のA-A断面図である。 筒状部31を構成する複数の筒部31A~31Fのうち筒部31Bを示している。 筒部31Bの半体31BXを示す図である。 検出部が内部の物質の温度又は物質の水分量を検出する様子を示している。 実施形態に係る真空凍結乾燥装置の連結部の断面図である。 図7の筒部31Bの半体31BXの他の例を示す図である。 本発明の別の実施形態に係る真空凍結乾燥装置の連結部の断面図である。
 次に、本発明の実施形態に係る真空凍結乾燥装置について説明する。また、同一の部材または同一の機能を有する部材には同一の符号を付し、その部材を説明した後には適宜説明を省略する場合がある。
図1は、本発明の実施形態に係る真空凍結乾燥装置の説明図である。図2は、図1の真 空凍結乾燥装置において、乾燥装置、連結部及び捕集部を断面図で示したものである。
図1に示すように、真空凍結乾燥装置1は、真空凍結装置2と、乾燥装置3と、連結部4と、捕集部5とを有する。
真空凍結乾燥装置1が取り扱う物質は、注射剤又は固形剤の医薬品である。
 真空凍結装置2は、例えば、原料を含む原料液を真空容器内に噴射ノズル21から噴霧し、噴霧された原料液が凍結して凍結物を生成する。また、真空凍結装置は、原料液をノズルから真空容器内に滴下するものでも良く、滴下された液滴が凍結して凍結物を生成することができる。噴霧又は滴下された原料液は落下する途中において水分が蒸発して蒸発潜熱が奪われることにより自己凍結し、微小の凍結粒子である凍結物となる。凍結物は、開口が小さくなっているテーパー形状を有する収集部22に向けて落下し、収集部22によって集められる。
連結部4は、真空凍結装置2と乾燥装置3とを連結するものであり、真空凍結装置2で生成した凍結物を乾燥装置3に搬送するためのものである。
乾燥装置3は、凍結させた凍結物を連続的に昇華及び乾燥させるものである。捕集部5は、乾燥装置3で昇華乾燥することにより形成された乾燥物が筒状部31の出口部31cから放出されるため、これを捕集する。
 真空凍結乾燥装置1には、真空吸引を行う排気経路が設けられており、排気経路は、本実施形態では連結部4に設けられている。排気経路は、真空凍結装置2、乾燥装置3及び連結部4のいずれに設けられていてもよい。排気経路を設けることによって、内部は減圧雰囲気に維持され、液体が存在しにくく、固体または気体が存在する環境になっている。
 筒状部31と捕集部5は、周辺がクリーンエアー6によって覆われている。筒状部3の分解可能な接続部分の周辺外部表面部をすべてクリーンエアー6で覆い、リークに対してクリーンエアーが入る構造を有する。
 図3は、本発明の実施形態の真空凍結乾燥装置の乾燥装置の正面図である。図4は、本発明の実施形態の真空凍結乾燥装置の乾燥装置の平面図である。図5(A)は乾燥装置の左側面図、(B)は乾燥装置の右側面図である。図6は、図1のA-A断面図である。
 図1~図6に示すように、乾燥装置3は、筒状部31と、調温手段30a~30jと、 回転部7と、温度制御部8とを備える。
 筒状部31は、水平方向に直線状に延びる筒形状を有しており、開口を有し、凍結物が入る入口部31bと、昇華及び乾燥した乾燥物の出口となる出口部31cとを備えている (図2参照)。
筒状部31内には、筒状部31の内壁近傍に入口部31bから出口部31cに向かって 連続的に設けられる螺旋状の移送手段31aが設けられている。連結部4から搬送されて きた凍結物は、筒状部31の入口部31bから入り、螺旋状の移送手段31aによって出口部31cまで移送され、その間で、凍結物は連続的に昇華及び乾燥が行われる。
 調温手段30a~30jは、筒状部31の外側の周辺部に設けられており、筒状部31の外面の複数の領域40a~40jの温度を調温する。
 複数領域40a~40jは、筒状部31の入口部31bから出口部31cに向かって設けられており、それぞれが独立して温度の制御が可能である。調温手段30a~30jは、複数の領域40a~40j内を調温することで、複数の領域40a~40jに対応する筒状部31内の箇所の温度を調整する。
ここで、調温手段30a~30jは、10個設けられており、調温手段30a~30jによって形成される複数の領域も、10個設けられている。複数の領域40a~40jは、少なくとも3か所以上の領域を有することが好ましい。なお、複数の調温手段をまとめて調温手段ということもあり、各調温手段をそれぞれ調温手段ということもある。
 回転部7は、旋回軸を中心に、筒状部31を回転させるものである。回転部7によって筒状部31が回転すると、筒状部31の入口部31bから入ってくる凍結物が螺旋状の移送手段31aを通って、筒状部31内を出口部31cに向かって順次、移送される。その間で、凍結物は連続的に昇華及び乾燥が行われる。回転部7は、筒状部31だけを回転させるように構成されており、筒状部31の外側の調温手段30a~30jは回転しないように構成されている。調温手段30a~30jは、回転しないように固定されている。
 温度制御部8は、情報を入出力する機能を有し、筒状部31の外面に形成された複数の領域40a~40jの温度を調温する調温手段30a~30jを独立して温度制御する。
次に調温手段30a~30jについて説明する。
図1及び図2に示すように、調温手段30a~30jは、筒状部31の周囲の外側の空間をそれぞれ独立して温調することができ、筒状部31の内部の各空間をそれぞれ調温することができる。
調温手段30aは、領域40aの空間を調温し、領域40aに対応する筒状部31の内部の空間を調温する。また、調温手段30bは、領域40bの空間を調温し、領域40bに対応する筒状部31の内部の空間を調温する。調温手段30cは、領域40cの空間を調温し、領域40cに対応する筒状部31の内部の空間を調温する。同様にして、調温手段30d~30jは、領域40d~40jの空間を調温し、領域40d~40jに対応する筒状部31の内部の空間を調温する。
筒状部31の入口部31bから入ってきた凍結物は、筒状部31内のそれぞれ調温手段 30a~30jによって温度調整された空間を進んで行くことにより、連続的に昇華及び 乾燥が行われる。 
 次に、図3~図6を用いて、各調温手段30a~3jの一例について具体的に説明する。調温手段30bを例に取って説明するが、他の調温手段も同様の構成である。調温手段30bは、それぞれ、筒状部31の入口部31b側の壁部32と、出口部31c側の壁部33と、筒状部31を囲むように、壁部32、33に囲まれた空間を覆うカバー34と、壁部32、33にそれぞれガスを供給するダクト35a、35bとを有する。壁部32 、33は、ともに円形の形状を有する。カバー34は、内部が目視できるように透明の樹脂などの部材で形成されており、壁部32と壁部33とで囲まれた空間を覆うものである。壁部32と壁部33には、ダクト35a、35bが繋がっており、ダクト35a、35bからガスを供給することができる。供給されたガスによって領域40a~40j内が目的の温度に調温される。
ダクト35a、35bには、不図示の送風手段が接続されており、温度管理されたガスが供給される。壁部32と壁部33とカバー34で覆われた領域40a~40j内に、ダクト35a、35bからガスが供給されることにより、複数の領域40a~40j内の温度が独立して制御される。ガスとしては、例えば空気を供給することができるが、空気には限定されない。
なお、調温手段30a~30jとして、ガスを利用する場合を例にとって説明したが、 これに限定されることなく、電気ヒータ、冷媒等を用いることもできる。
 壁部32、33の内側は、筒状部31の外形に合せて円形の開口を有している。壁部32、33の内側の開口は、筒状部31の外周に近接していることが好ましい。
 次に、複数領域40a~40jの温度について説明する。
 複数の領域40a~40jには、筒状部31の入口部31bから出口部31cに向かって、少なくとも、3つ以上の領域を有し、この3つ以上の領域には、下記(1)~(3)の温度領域を含む。温度領域の定義は、プロセスが安定操業状態となった時の管である筒状部31自身の温度を、筒状部31の外面と接触・非接触で測定しての温度とする。
 (1)マイナス温度領域と、(2)マイナス温度からプラス40℃の範囲の温度領域と、(3)プラス20℃以上の温度領域を少なくとも有する。
(1)のマイナス温度領域は、例えば-40℃、-30℃、-20℃等のようにマイナスの温度領域のことをいう。
(2)の(1)のマイナス温度からプラス40℃の範囲の温度領域は、(1)のマイナス温度領域のあるマイナス温度~+40℃の範囲の温度領域のことをいい、例えば(1)のマイナス温度領域のある温度が、-40℃の場合は、この-40℃から+40℃になるため、(2)の温度領域は、-40℃から0℃の温度領域となる。また、(1)のマイナス温度領域のある温度が、-20℃の場合は、この-20℃から+40℃の範囲となるため、(2)の温度領域は、-20℃から20℃の温度領域となる。
(3)のプラス20℃以上の温度領域は、(2)の上限の温度が0℃の場合、0℃+20 ℃以上の温度領域のことをいう。
  筒状部31の入口部31bから出口部31cに向かって、複数の領域40a~40jが 、上記(1)~(3)の少なくとも3つの領域を含み、凍結物又は乾燥物が、この(1)~(3)の温度領域を含む複数の領域40a~40jに対応する筒状部31内の箇所を移送手段31aによって順次移送しながら、凍結物又は乾燥物は、昇華及び乾燥が連続的に行われる。
 次に、筒状部31について説明する。
 筒状部31は、材質がステンレスであることが好ましい。筒状部31は、長さが例えば100mm~2000mm程度の範囲であることが好ましく、より好ましくは150mm~1000mmの範囲であり、さらに好ましくは200mm~500mmの範囲である。
 筒状部31は、複数の筒部31A~31Fを繋ぎ部31G~31Kで接続することにより一つの筒形状を形成している。筒状部31は、繋ぎ目を設けることなく、一つの筒形状で形成するようにしてもよい。筒部31B、31C、31D、31Eは、同一形状の筒部からなる。筒部31Aは、少し短い長さの筒部である。筒部31Fは、先端に行くほど断面形状が小さくなるよう形成されている。繋ぎ部31G~31Kは、隣り合う筒部が外れないように繋ぎ止める。
 筒状部31は、上述したように、筒状部31の内壁近傍に入口部31bから出口部31cに向かって連続的に設けられる螺旋状の移送手段31aが設けられている。この移送手段31aは、筒状部31の内周に壁部又は溝を設けることで、螺旋形状を形成することができる。また、螺旋形状の形成は、筒状部31の内周にスクリューを埋入する方法も含む 。
 移送手段31aは、入口部31bから入ってくる凍結物を、複数の領域40a~40jの内側に位置する筒状部31内を順次移送しながら、凍結物を連続的に昇華及び乾燥させて、昇華乾燥された乾燥物を出口部31cに導く。
 次に回転部の構成について説明する。 図3~図6に示すように、回転部7は、モーター71、プーリー72、73、ベルト74、回転軸75、76及び、回転ローラー77、78を備えている。
 モーター71は、回転駆動源となる。プーリー72、73、ベルト74及び回転軸75 、76が回転駆動を伝達する回転駆動伝達部として機能する。回転ローラー77、78が、回転駆動伝達部による回転を支持する回転支持部である。なお、回転支持部は、回転ローラー77、78にベアリングを加えて構成することができ、回転ローラー77に代えて ベアリングによって構成することもできる。
 プーリー72及び73には、ベルト74が掛けられている。ベルト74を介してモーター71の回転力が伝達される。回転ローラー77は、筒状部31の両側の下方に配設されている。筒状部31は、両側に配設されている回転ローラー77上に載置されている。
 プーリー73は、回転軸75の一方端付近に取り付けられている。プーリー73の内側に、固定台に取り付けられた回転ローラー78が設けられており、回転軸75の他端にも 同様に固定台に取り付けられた回転ローラー78が設けられている。回転ローラー78、78の間には、8個の回転ローラー77が回転軸75に取り付けられている。 
回転軸76は、一方端には固定台に取り付けられた回転ローラー78と、他方端にも固 定台に取り付けられた回転ローラー78とを有する。回転ローラー78、78の間には、8個の回転ローラー77が回転軸76に取り付けられている。回転軸75に取り付けられた回転ローラー77は駆動ローラーであり、回転軸76に取り付けられた回転ローラー77は従動ローラーである。
モーター71が回転すると、プーリー72を通じてベルト74が回転し、プーリー73の回転によって、回転軸75が回転し、回転軸75に固定された回転ローラー77が回転することで、筒状部31が回転し、回転軸76に取り付けられている従動ローラーとして回転ローラー77が回転する。
次に、筒状部31の回転速度について説明する。筒状部31は、回転部7によって、回転速度が毎分1/30回転以上1回転以下の範囲 で回転することが好ましい。
 次に、温度検出部及び水分検出部について説明する。
 図3及び図4に示すように、筒状部31は、ガラス窓(窓部)36が周方向に所定の間隔で連続して設けられており、このガラス窓36は、筒状部31の長手方向に複数個所(本実施形態では8か所)に設けられている。このガラス窓36は、外部から内部の物質の状態を検知及び検出することができるようにするために設けられている。ガラス窓36は、樹脂で形成することもできる。
 筒状部31のガラス窓36が周方向設けられている下部には、検出部37が設けられている。検出部37は、少なくとも3種類を含み、筒状部31の内部の物質の温度を検出する温度検出部と、筒状部31の外表面(壁表面)の温度を検出する温度検出部と、筒状部31の内部の物質の水分量を検出する水分検出部とを含む。
 検出部37が、筒状部31の内部の物質の温度を検出する温度検出部として機能する場合、接触式又は非接触式で構成することができる。温度検出部として機能する検出部37が、接触式の場合は、筒状部31の表面温度を検出する。また、温度検出部として機能する検出部37が、非接触式の場合は、筒状部31のガラス窓36を通じて筒状部31の内部の物質の温度を検出する。
 温度制御部8は、検出部37が筒状部31の表面温度又はガラス窓36を通じて検出した筒状部31の内部の物質の検出温度に応じて、調温手段30a~30jの温度を独立して制御することができる。
 また、検出部37が、筒状部31の内部の物質の水分量を検出する水分検出部として機能する場合、透明体のガラス窓36を通して筒状部31内の物質の水分量を検出することができる。温度制御部8は、検出部37による筒状部内の物質の水分量に応じて、調温手段30a~30jの温度を独立して制御することができる。
 図9は、検出部が内部の物質の温度又は物質の水分量を検出する様子を示している。
 図9に示すように、検出部37が、筒状部31の内部の物質の温度を検出する温度検出部と、筒状部31の内部の物質の水分量を検出する水分検出部として機能する場合、筒状部31の透明体のガラス窓36を通じて、筒状部31内部の物質Xの温度と、筒状部31内部の物質の水分を検出することができる。
 検出部37は、筒状部31の周方向に所定の間隔で設けられた各ガラス窓36を通じて、それぞれのガラス窓36を通じて、筒状部31内部の物質Xの温度と、筒状部31内部の物質の水分量を検出することができる。また、ガラス窓36と検出部37は、筒状部31の長手方向の複数の位置に設けられているため、各筒状部31内のそれぞれの位置で正確に物質の温度と水分量を検出することができる。
 次に、移送手段31aについて説明する。
 図7は、筒状部31を構成するする複数の筒部31A~31Fのうち筒部31Bを示している。図7(a)は図3に示す筒部31Bの斜視図、(b)は筒部31Bの正面図、(c)は筒部31Bの側面図、(d)は筒部31Bの断面図、(e)は(d)のB部を拡大して示した図である。図8は、筒部31Bの半体31BXを示す図である。
 なお、図7及び図8では、図3の筒部31Bにおいて、螺旋状の移送手段31aを中心にするため、ガラス窓36については省略して示している。
 図7及び図8に示すように、筒状部31を構成する筒部31Bは、筒状に構成されており、開口端の両側に半径方向に突出する縁部31dが形成されている。隣り合う筒部31A ~31Fの縁部31d同士を固定することによって一つの筒状部31が構成される。隣り合う筒部31A~31Fの縁部31d同士は、ヘルールの接続、クランプやボルト締めにより固定する。
 筒部31Bには、螺旋状の移送手段31aの一部が一方の端部から他方の端部まで連続的に形成されている。
 図7(e)に示すように、筒部31BXの内壁に1周目の壁部31a1、2周目の壁部31a2ように、移送手段31aの一部として連続的に壁部が形成されることにより、筒部31BX内に移送手段31aの一部を形成することができる。
 壁部31a1と壁部31a2の高さは、移送手段31aの高さとなり、例えば3mm以上50mm以下の範囲で構成することが好ましい。 壁部31a1と壁部31a2のピッチは、螺旋状の移送手段31aのピッチとなり、例えば5mm以上20mm以下の範囲で構成することが好ましい。
 図8では、筒部31Bの半体31BXを示しており、筒部31Bは、この半体31BXを二つ結合すると、一つの筒部31Bを構成できる。筒部31Bの半体31BXは、二つを結合したときに、筒部31B内に螺旋状の移送手段31aの一部を形成することができる。
 図10は、実施形態に係る真空凍結乾燥装置の連結部の断面図である。
 図10に示すように、連結部4は、真空凍結装置2の収集部22と、乾燥装置3の入口31b側の端部との間に設けられており、真空凍結装置2で生成した凍結物を乾燥装置3に搬送するためのものである。端部301付近には、連結部4によって搬送される凍結物を受け取る受取口302を有する。
 連結部4は、内側管部41と、外側管部42と、内側管部41内に設けられたスクリュー43と、乾燥装置3の端部301から連結部4の内側管部41と外側管部42に延びる中間管部44を有する。外側管部42と中間管部44との間には、乾燥装置3側から、ベアリング45と、エアーシール46とを備えている。
 エアーシール46は、回転軸に接触させずに流路からエアーを供給して回転軸をシールするものである。
 図11は、図7の筒部31Bの半体31BXの他の例を示す図である。
 図7及び図8に示した例では、筒部31の内壁に壁部を形成して移送手段31aを形成するようにしたが、図11に示すように、筒部31の内壁に溝部131a1、131a2、…を形成することによって移送手段131aを形成するようにしてもよい。
 筒部31Bは、半体131BXを二つ結合すると、一つの筒部31Bを構成できる。筒部31Bの半体131BXは、二つを結合したときに、螺旋状の移送手段131aを構成する溝部は、連続するようにそれぞれ形成される。溝部131a1と溝部31a2の深さは、移送手段131aの深さとなり、例えば3mm以上50mm以下の範囲で構成することが好ましい。溝部131a1と溝部131a2のピッチは、移送手段131aのピッチとなり、例えば5mm以上20mm以下の範囲で構成することが好ましい。
 筒状部31の内周面には、回転軸を中心とする移送手段131aとして螺旋状の溝部を形成することで、筒状部31内を螺旋送りする作用が付与され、凍結物又は乾燥物を連続的に移送することができる。
 本実施形態によれば、短時間で真空凍結乾燥を連続的に行うことができる真空凍結乾燥装置及び真空凍結乾燥方法を提供することができる。
本実施形態の真空凍結乾燥方法は、液を凍結させる真空凍結ステップと、凍結させた凍結物を昇華及び乾燥させる乾燥ステップと、排気経路を通じて真空吸引を行うステップと 、を含み、乾燥ステップは、入口部31bと出口部31cとを備え、筒形状を有する筒状部31であって、筒状部31の内壁近傍に入口部31dから出口部31cに向かって連続的に設けられる螺旋状の移送手段31aを有する筒状部31を回転させステップと、筒状部31の周辺部の入口部31bから出口部31cに向かって形成される温度の制御が可能な少なくとも3か所以上の複数の領域40a~40jの温度を調温するステップと、入口部31bから入る凍結物を、筒状部31内の複数の領域30a~30jに対応する箇所を移送手段31aによって順次移送しながら凍結物を連続的に昇華及び乾燥させるステップとを含む。
 次に、上記連結部4の別構造について、図12に基づいて説明する。図12は本発明の別の実施形態に係る真空凍結乾燥装置の連結部4Bの断面図である。
 先ず、液を凍結させる真空凍結装置2と前記凍結させた凍結物を昇華及び乾燥させる乾燥装置3とからなり、前記真空凍結装置2から前記凍結物を、連結部4Bを介して前記乾燥装置3に移動させるように構成した真空凍結乾燥装置において、連結部4Bが、前記真空凍結装置2の収集部22に臨ませた移送管55内に設けたスクリュー58によって、前記凍結物がその軸線方向に移動されるように構成されている。尤も、スクリュー43の移送は、必ずしも水平方向でなくてもよく、前記筒状部31への凍結物の移送が行われればよい。
前記スクリュー58の基端部(左方端部)は、軸受け部56(ここではベアリング)によって軸承され、該軸受け部の近傍に第1の吸引口53が設けられ、前記移送管55内を常時真空(高い真空度であればよい)に維持するように構成してある。この第1の吸引口53は、真空ポンプに接続されるが、図示、説明は省略する。
前記移送管55の先端部は、軸受け部51に構成され、前記乾燥装置の筒状部31の筒部31Aの端部材52を回転自在に支持するように構成され、且つ、前記端部材52と前記軸受け部51との間に第2の吸引口54を望ませて設け、前記移送管55内及び前記筒状部31の内部を真空に維持するように構成されている。この吸引口54が真空ポンプに接続されるが、ここでは図示、説明を省略する。
 前記スクリュー58は、回転軸57の周囲に位置された螺旋状のコイル構造物で、前記移送管55の内壁に近接状態で設けられおり、その回転によって、前記収集部22から受けた凍結物を、前記筒状部31に送り込むように構成されている。このコイル構造物は、螺旋形状であればよく、断片体が実質的なコイルを形成するものであってもよく、要は、連続した送り機能を発現できる構造体であればよい。上述の近接状態の設置とは、コイル構造物と移送管55との間に凍結物が挟まれて損傷されることがないようにするためのクリアランスを持たせるものである。
回転軸57の筒状部31とは反対側の端部に駆動用のモーター60と、モーター60の回転力を回転軸57に伝えるカップリング59が配置してある。このように、筒状部31を回転駆動するためのモーター71とは、別にスクリュー58の回転駆動するモーター60を設けることにより、乾燥装置3への凍結物の搬送用を任意に変更することができ、例えば、モーター60の回転速度を上げて搬送量を増加せることができる。また、前記連結部4(図10参照)では、スクリュー43の乾燥装置3側に端部を筒状部31の筒部31Aに機械的に結合させる必要があるため、連結部4と筒状部31との境界部分の構造が複雑となるが、別形態の連結部4Bでは、スクリュー58の先端が筒状部31内に進入し、凍結物の搬送の搬入が効率よく行われる利点がある。
以上、本発明を、実施形態を用いて説明したが、本発明の技術的範囲は上記の実施形態の範囲には限定されないことは言うまでもなく、上記実施形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。また、そのような変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
 1 真空凍結乾燥装置
 2 真空凍結装置 
3 乾燥装置 
4 連結部
4B 連結部
6 クリーンエアー
7 回転部 
8 温度制御部 
30a~30j 調温手段 
31 筒状部 
31a 螺旋状の移送手段 
36 ガラス窓(窓部)
37 検出部(温度検出部、水分検出部)
40a~40j 領域
46 エアーシール
 

 

Claims (15)

  1.   液を凍結させる真空凍結装置と、前記凍結させた凍結物を昇華及び乾燥させる乾燥装置とを有する真空凍結乾燥装置であって、
      前記真空凍結装置及び前記乾燥装置の内部を減圧雰囲気にするために真空吸引を行う排気経路を有し、
      前記乾燥装置は、
      入口部と出口部とを備え、筒形状を有する一つの筒状部と、
      前記筒状部の周辺部の前記入口部から前記出口部に向かって形成される温度の制御が可能な少なくとも3か所以上の複数の領域に設けられ、前記筒状部の外面の前記複数の領域の温度をそれぞれ調温する調温手段と、
      前記調温手段により前記複数の領域をそれぞれ独立して温度制御する温度制御部と、
      前記筒状部を回転させるための回転部と、を備え、
      前記筒状部は、前記筒状部の内壁に前記入口部から前記出口部に向かって連続的に設けられる螺旋状の移送手段を有し、
      前記真空凍結装置と、前記乾燥装置とを連結する連結部を備え、
      前記連結部は、前記真空凍結装置側の第1管部と、前記回転する筒状部を有する乾燥装置側の第2管部と、前記第1管部と前記第2管部間をシールするシール部と、を有し、
      前記筒状部は、複数の筒部と、前記複数の筒部を繋ぐ繋ぎ部と、を有し、
      前記調温手段は、前記各温度領域に設けられ、第1壁部と、第2壁部と、前記第1壁部
    と前記第2壁部に囲まれた空間を前記領域として覆うカバーと、前記領域内にガスを供給する手段と、を有し、
      前記複数の筒部と前記繋ぎ部を有する前記筒状部の少なくとも一部を囲むよう前記カバーで覆われており、
      前記真空凍結装置及び前記乾燥装置内部の減圧雰囲気のもと、前記回転部が前記筒状部を回転させることによって、前記移送手段は、前記真空凍結装置から入る前記凍結物を、前記筒状部内の前記複数の領域に対応する箇所を前記移送手段によって順次移送しながら前記凍結物を連続的に昇華及び乾燥させる、真空凍結乾燥装置。
  2.   前記3か所以上の複数の領域は、前記入口部から出口部に向かってそれぞれマイナス温度領域と、前記マイナス温度からプラス40℃の範囲の温度領域と、プラス20℃以上の温度領域を少なくとも有する、請求項1に記載の真空凍結乾燥装置。
  3.   該物質は、注射剤又は固形剤の医薬品であって、筒状部の周辺をクリーンエアーで覆っている、請求項1又は請求項2に記載の真空凍結乾燥装置。
  4.   前記回転部は、軸方向に1か所ないしは複数設けられた、回転駆動を伝達する回転駆動伝達部と、
      回転ローラー又は/及びベアリングによって構成され、前記回転駆動伝達部による回転を支持する回転支持部と、を有する、請求項1から請求項3のいずれか1項に記載の真空凍結乾燥装置。
  5.   前記回転部は、回転速度が毎分1/30回転以上1回転以下である、請求項1から請求項4のいずれか1項に記載の真空凍結乾燥装置。
  6.   前記移送手段は、前記筒状部の内壁に螺旋状の壁部を設けることにより形成されている、請求項1から請求項5のいずれか1項に記載の真空凍結乾燥装置。
  7.   前記移送手段は、前記筒状部の内壁に形成された溝部により構成され、
      前記溝部の深さが3mm以上50mm以下である、請求項1から請求項5のいずれか1項に記載の真空凍結乾燥装置。
  8.   前記筒状部は、接触式又は非接触式の温度検出部を備え、
      前記温度制御部は、前記温度検出部が前記筒状部の表面温度又は前記筒状部の内部の物質の検出温度に応じて前記調温手段の温度を制御する、請求項1から請求項7のいずれか1に記載の真空凍結乾燥装置。
  9.   前記筒状部の外部に設けられ、前記筒状部内の物質の水分量を透明体の窓部を通して検出する水分検出部を備え、
      前記温度制御部は、前記水分検出部による前記筒状部内の物質の水分量に応じて前記調温手段の温度を制御する、請求項1から請求項8のいずれか1項に記載の真空凍結乾燥装置。
  10.   前記筒状部は、材質がステンレスである、請求項1から請求項9のいずれか1項に記載の真空凍結乾燥装置。
  11.   真空凍結乾燥方法であって、
      液を凍結させる真空凍結ステップと、
      前記凍結させた凍結物を昇華及び乾燥させる乾燥ステップと、
      前記真空凍結装置及び前記乾燥装置の内部を減圧雰囲気にするために排気経路を通じて真空吸引を行うステップと、を含み、
      前記真空凍結装置と、前記乾燥装置とを連結する連結部を備え、
      前記連結部は、前記真空凍結装置側の第1管部と、前記乾燥装置側の第2管部と、前記第1管部と前記第2管部間をシールするシール部と、を有し、
      前記筒状部は、複数の筒部と、前記複数の筒部を繋ぐ繋ぎ部と、を有し、
      前記調温手段は、前記各温度領域に設けられ、第1壁部と、第2壁部と、前記第1壁部と第2壁部に囲まれた空間を前記領域として覆うカバーと、前記領域内にガスを供給する手段と、を有し、
      前記複数の筒部と前記繋ぎ部を有する前記筒状部の少なくとも一部を囲むよう前記カバーで覆われており、
      前記乾燥ステップは、
      入口部と出口部とを備え、筒形状を有する一つの筒状部であって、前記筒状部の内壁に前記入口部から前記出口部に向かって連続的に設けられる螺旋状の移送手段を有する筒状部を回転させるステップと、
      前記一の筒状部の周辺部の前記入口部から前記出口部に向かって形成される温度の制御が可能な少なくとも3か所以上の複数の領域の温度をそれぞれ調温するステップと、
      前記真空凍結装置及び前記乾燥装置内部の減圧雰囲気のもと、前記回転部が前記筒状部を回転させることによって、前記真空凍結装置から入る前記凍結物を、前記筒状部内の前記複数の領域に対応する箇所を前記移送手段によって順次移送しながら前記凍結物を連続的に昇華及び乾燥させるステップと、を含む真空凍結乾燥方法。
  12.   前記連結部は、前記真空凍結装置の収集部に一方端を臨ませ、他方端を前記筒状部内に臨ませた移送管内に配置したスクリューの回転により、前記収集部から入る凍結物を前記スクリューの軸線方向に移動させるように構成されている請求項1乃至請求項10の何れか1項に記載の真空凍結乾燥装置。
  13.  前記スクリューの前記真空凍結装置側の基端部は軸受け部によって軸承され、該軸受け部の近傍に第1の吸引口が設けられ、前記第1の吸引口を介して前記移送管内を常時真空に維持するように構成してあり、前記移送管の前記乾燥装置側の先端部は軸受け部に構成されて前記乾燥装置の筒状部の筒部の端部材を回転自在に支持し、その端部材と前記移送管の先端部側の軸受け部との間に第2の吸引口を望ませて設け、前記第2の吸引口を介して前記移送管内及び前記筒状部の内部を真空に維持するように構成されていることを特徴とする請求項12に記載の真空凍結乾燥装置。
  14.  前記スクリューは、回転軸の周囲に位置された螺旋状のコイル構造物で、前記移送管の内壁に近接状態で設けられおり、その回転によって、前記収集部から受けた凍結物を、前記筒状部に送り込むように構成されている請求項12又は13に記載の真空凍結乾燥装置。
  15.  前記スクリューは、前記筒状部を回転させるための回転部とは別の回転駆動手段によって回転駆動される請求項12乃至請求項14の何れか1項に記載の真空凍結乾燥装置。
     
     

     
PCT/JP2021/018879 2020-05-18 2021-05-18 真空凍結乾燥装置及び真空凍結乾燥方法 WO2021235459A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21808426.7A EP4155642A4 (en) 2020-05-18 2021-05-18 VACUUM FREEZE DRYING APPARATUS AND VACUUM FREEZE DRYING METHOD
US17/919,746 US11644236B2 (en) 2020-05-18 2021-05-18 Vacuum freeze-drying apparatus and vacuum freeze-drying method
CN202180036069.8A CN115943283A (zh) 2020-05-18 2021-05-18 真空冷冻干燥设备及真空冷冻干燥方法
JP2022524502A JP7218484B2 (ja) 2020-05-18 2021-05-18 真空凍結乾燥装置及び真空凍結乾燥方法
KR1020227038803A KR20220154833A (ko) 2020-05-18 2021-05-18 진공동결건조장치 및 진공동결건조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020086652 2020-05-18
JP2020-086652 2020-05-18

Publications (1)

Publication Number Publication Date
WO2021235459A1 true WO2021235459A1 (ja) 2021-11-25

Family

ID=78707855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018879 WO2021235459A1 (ja) 2020-05-18 2021-05-18 真空凍結乾燥装置及び真空凍結乾燥方法

Country Status (7)

Country Link
US (1) US11644236B2 (ja)
EP (1) EP4155642A4 (ja)
JP (1) JP7218484B2 (ja)
KR (1) KR20220154833A (ja)
CN (1) CN115943283A (ja)
TW (1) TW202202792A (ja)
WO (1) WO2021235459A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114111302A (zh) * 2021-11-08 2022-03-01 西安交通大学 一种螺旋烘干输送机

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112980A (en) * 1979-02-26 1980-09-01 Nippon Oxygen Co Ltd Freezing drier
JPH11151080A (ja) * 1997-11-19 1999-06-08 Akira Horikane 凍結または凍結乾燥物、方法および装置
JP3117061U (ja) * 2005-09-26 2006-01-05 共和真空技術株式会社 食品・薬品等の密閉式粉末充填装置における粉末体の供給装置
EP2101131A1 (en) * 2007-12-31 2009-09-16 Terruzzi Fercalx S.p.A. Lyophilization method and system therefor
WO2010005021A1 (ja) 2008-07-10 2010-01-14 株式会社アルバック 凍結乾燥装置及び凍結乾燥方法
WO2013050162A1 (en) 2011-10-05 2013-04-11 Sanofi Pasteur Sa Process line for the production of freeze-dried particles
JP2017533397A (ja) * 2014-07-21 2017-11-09 サノフィ パスツール エスエー 液滴生成のための液体供給装置
KR20180086953A (ko) * 2017-01-24 2018-08-01 (주)조은인터내셔널 버섯분말 제조 장치
WO2019235036A1 (ja) 2018-06-08 2019-12-12 株式会社アルバック 凍結真空乾燥装置及び凍結真空乾燥方法
CN110595193A (zh) * 2019-09-30 2019-12-20 苏州蒂珀克制冷科技有限公司 铰龙式连续真空低温冻干机
JP6777350B1 (ja) * 2020-05-18 2020-10-28 株式会社エムアイアイ 真空凍結乾燥装置及び真空凍結乾燥方法

Family Cites Families (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1303982A (en) * 1919-05-20 stevens
US548573A (en) * 1895-10-22 moller g
US236677A (en) * 1881-01-18 Grain-drier
US430652A (en) * 1890-06-24 Grain steamer and drier for mills
US474568A (en) * 1892-05-10 Grain drier or moistener
US676165A (en) * 1901-03-30 1901-06-11 Charles Wacker Drier.
US986107A (en) * 1910-09-21 1911-03-07 Franz Wertenbruch Drying-machine.
US1051359A (en) * 1912-01-05 1913-01-21 Carl Wille Drying apparatus.
US1179192A (en) * 1912-03-28 1916-04-11 Frank Kleinschmidt Drying apparatus.
US1172479A (en) * 1913-05-19 1916-02-22 Mary A Motter Ore-roasting furnace.
US1328027A (en) 1919-01-30 1920-01-13 Sakizo Dry battery
US1735393A (en) * 1924-07-07 1929-11-12 Stanley Hiller Inc Apparatus for treating materials
US1735396A (en) * 1924-07-07 1929-11-12 Stanley Hiller, Inc. A cobpobation of califobnia
US2038904A (en) * 1934-10-24 1936-04-28 Allison J Gibbs Dehydrating machine
US2067506A (en) * 1936-05-11 1937-01-12 Frank V Silva Casein drier
US2411152A (en) * 1941-05-02 1946-11-19 Theodore R Folsom Method for freezing and drying liquids and semisolids
US2616604A (en) * 1941-05-02 1952-11-04 Theodore R Folsom Method for freezing and drying liquids and semisolids
US2388917A (en) * 1941-10-13 1945-11-13 Hormel & Co Geo A Process for preservation of biological materials and products resulting therefrom
US2743168A (en) * 1944-09-09 1956-04-24 Krohn Roy Sublimation apparatus
US2552360A (en) * 1945-01-10 1951-05-08 Zichis Joseph Method of and apparatus for dehydrating materials
US2515098A (en) * 1945-08-01 1950-07-11 Chain Belt Co Continuous low-temperature dehydration
US2636284A (en) * 1948-07-12 1953-04-28 Miami Boiler & Machine Company Handling of materials and apparatus therefor
US2751687A (en) * 1952-05-21 1956-06-26 Proctor Drying And Freezing Co Process and apparatus for producing stabilized products
US2803888A (en) * 1954-04-27 1957-08-27 Cerletti Santiago Apparatus for lyophilising products contained in small bottles
DE1098448B (de) * 1959-02-26 1961-01-26 Erwin Lothar Holland Merten Beschickungsvorrichtung fuer eine Trocknungstrommel
US3088222A (en) * 1959-07-01 1963-05-07 Robert C Mace Freeze drying system
US3266169A (en) * 1962-10-31 1966-08-16 Hupp Corp Vacuum freeze drying apparatus
DE1604803A1 (de) * 1962-03-01 1971-01-07 Carlo Barbareschi Verfahren zur kontinuierlichen Absorbierung und Beseitigung von Wasserdampf oder anderen Loesungsmitteln durch Verdampfung oder Sublimation bei niedriger Temperatur unter Vakuum
US3362835A (en) * 1964-01-15 1968-01-09 Fmc Corp Spray freeze drying system
US3264747A (en) * 1964-05-13 1966-08-09 Pennsalt Chemical Corp Method and apparatus for continuous freeze drying
US3445247A (en) * 1964-10-08 1969-05-20 Basic Vegetable Products Inc Freeze dried product and process for producing the same
DE1924793U (de) * 1965-05-20 1965-09-30 Erwin Lothar Holland-Merten Beschikkungsvorrichtung fuer eine trocknungstrommel zur behandlung von schuett- und rieselgutern.
US3316652A (en) * 1965-10-24 1967-05-02 Sun Freeze Inc Continuous dehydrating process
US3310881A (en) * 1966-03-14 1967-03-28 Pillsbury Co Apparatus and method for continuous drying
US3324565A (en) * 1966-07-21 1967-06-13 Hupp Corp Apparatus and method for freeze drying
GB1199285A (en) * 1966-12-07 1970-07-22 H J Heinz Company Ltd Improvements in or Relating to Freeze Drying Apparatus
DE1779393B1 (de) * 1968-08-06 1972-05-04 Leybold Heraeus Gmbh & Co Kg Vakuumtrocknungskammer zur kontinuierlichen Gefriertrocknung von grobstueckig anfallendem,im Endzustand kleinteiligem Gut
US3531872A (en) * 1968-09-13 1970-10-06 Envirotech Corp Process and apparatus for deliquifying fluent material
US3952541A (en) * 1968-11-05 1976-04-27 Mario Rigoli Apparatus for quick freezing of aqueous solutions or suspensions to be submitted to lyophilization
US3616542A (en) * 1969-02-24 1971-11-02 Earl L Rader Apparatus and processes for producing freeze dried products
US3601901A (en) * 1969-09-12 1971-08-31 Earl L Rader Freeze drying apparatus with removable conveyor and heater structures
US3605273A (en) * 1970-01-16 1971-09-20 Nat Distillers Chem Corp Continuous process and apparatus for drying titanium sponge
FR2298777A2 (fr) * 1975-01-22 1976-08-20 Air Liquide Appareil de lyophilisation
JPS56127168A (en) * 1980-03-13 1981-10-05 Nikku Ind Co Method of and apparatus for continuous vacuum drying of particulate matter
WO1984000604A1 (en) * 1982-08-05 1984-02-16 Buss Ag Uninterruptedly heated rotary drum furnace
JPS59161774A (ja) 1983-03-04 1984-09-12 Hitachi Ltd 乗算型a/d変換器
JPS60191177A (ja) * 1984-03-12 1985-09-28 日本真空技術株式会社 インライン式凍結真空乾燥装置
JPS60191179A (ja) * 1984-03-12 1985-09-28 日本真空技術株式会社 インライン式凍結真空乾燥装置
JPH0627624B2 (ja) * 1985-08-06 1994-04-13 株式会社大川原製作所 液状物質の凍結乾燥装置
US4746968A (en) * 1987-03-30 1988-05-24 Mcdonnell Douglas Corporation Combined microwave and thermal drying apparatus
GB9505523D0 (en) * 1995-03-18 1995-05-03 Wellcome Found Lyophilization process
FR2760524A1 (fr) * 1997-03-10 1998-09-11 Paul Christophe Four tournant etanche pour le sechage ou le traitement thermique de produits organiques
US7140122B1 (en) * 2001-10-13 2006-11-28 Micronics, Llc Vacuum treatment of waste stream with anti-incrustation measures
JP3942093B2 (ja) * 2003-01-28 2007-07-11 株式会社アルバック 噴霧式真空凍結乾燥装置
JP2007535652A (ja) * 2004-05-01 2007-12-06 アグリサーチ リミティド 乾燥工程及び装置
JP2006177640A (ja) * 2004-12-24 2006-07-06 Ulvac Japan Ltd 凍結真空乾燥装置
JP4145905B2 (ja) * 2005-08-01 2008-09-03 セイコーエプソン株式会社 減圧乾燥装置
CN201974015U (zh) 2011-01-25 2011-09-14 张红霞 磷脂真空连续式冷冻干燥机
ES2814824T3 (es) * 2011-02-08 2021-03-29 Kyowa Vacuum Eng Método de cálculo y dispositivo de cálculo para la temperatura de interfaz de sublimación, temperatura de la parte inferior y tasa de sublimación del material a secar en dispositivo de secado por congelación
CN103608438B (zh) * 2011-05-18 2016-08-31 拜奥恩德夫有限责任公司 逆流氧增强型烘焙
DE102011103021B4 (de) * 2011-05-24 2013-07-04 Mineralit Gmbh Trommeltrockner
DK3222952T3 (en) * 2011-09-06 2019-04-08 Rv Holding B V Method and system for freeze-drying injectable compositions, in particular pharmaceutical compositions
CN103292582A (zh) * 2013-06-06 2013-09-11 南通瑞翔新材料有限公司 一种氢氧化钴回转干燥装置
CN104110950B (zh) * 2014-07-24 2015-12-30 山西大学 一种湿物料烘干装置
JP2017003146A (ja) * 2015-06-05 2017-01-05 研機株式会社 乾燥装置
EP3167877A1 (en) * 2015-11-12 2017-05-17 Bayer Pharma Aktiengesellschaft Method for the production of freeze-dried pellets comprising factor viii
CN105318665B (zh) * 2015-11-17 2018-06-29 上海东富龙科技股份有限公司 一种全自动密闭式喷雾冻干生产设备及方法
WO2017178740A1 (fr) * 2016-04-14 2017-10-19 Jean Delaveau Dispositif et procede de lyophilisation
CN105712607B (zh) * 2016-04-28 2019-04-16 湖南科技大学 一种污泥的喷雾颗粒化冷冻真空干燥装置及方法
FR3052544B1 (fr) * 2016-06-08 2020-12-04 Haffner Energy Dispositif de deshydratation
JP7295032B2 (ja) * 2017-05-02 2023-06-20 マサチューセッツ インスティテュート オブ テクノロジー 凍結乾燥方法および関連製品
CN108731429A (zh) * 2018-06-15 2018-11-02 山东鲁北企业集团总公司 一种磷酸铁连续脱水及晶型可控系统及其控制方法
KR102028654B1 (ko) * 2019-03-08 2019-10-04 대성기계공업 주식회사 이차전지의 양극재 제조를 위한 분말원료 건조장치 및 이를 이용하는 분말원료 처리방법
CN209840540U (zh) * 2019-04-29 2019-12-24 四川百可馨生物制药有限公司 一种用于百可欣抑菌喷雾的密闭式冻干生产设备

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112980A (en) * 1979-02-26 1980-09-01 Nippon Oxygen Co Ltd Freezing drier
JPH11151080A (ja) * 1997-11-19 1999-06-08 Akira Horikane 凍結または凍結乾燥物、方法および装置
JP3117061U (ja) * 2005-09-26 2006-01-05 共和真空技術株式会社 食品・薬品等の密閉式粉末充填装置における粉末体の供給装置
EP2101131A1 (en) * 2007-12-31 2009-09-16 Terruzzi Fercalx S.p.A. Lyophilization method and system therefor
WO2010005021A1 (ja) 2008-07-10 2010-01-14 株式会社アルバック 凍結乾燥装置及び凍結乾燥方法
WO2013050162A1 (en) 2011-10-05 2013-04-11 Sanofi Pasteur Sa Process line for the production of freeze-dried particles
JP2017533397A (ja) * 2014-07-21 2017-11-09 サノフィ パスツール エスエー 液滴生成のための液体供給装置
KR20180086953A (ko) * 2017-01-24 2018-08-01 (주)조은인터내셔널 버섯분말 제조 장치
WO2019235036A1 (ja) 2018-06-08 2019-12-12 株式会社アルバック 凍結真空乾燥装置及び凍結真空乾燥方法
CN110595193A (zh) * 2019-09-30 2019-12-20 苏州蒂珀克制冷科技有限公司 铰龙式连续真空低温冻干机
JP6777350B1 (ja) * 2020-05-18 2020-10-28 株式会社エムアイアイ 真空凍結乾燥装置及び真空凍結乾燥方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114111302A (zh) * 2021-11-08 2022-03-01 西安交通大学 一种螺旋烘干输送机

Also Published As

Publication number Publication date
TW202202792A (zh) 2022-01-16
EP4155642A1 (en) 2023-03-29
CN115943283A (zh) 2023-04-07
US20230100406A1 (en) 2023-03-30
KR20220154833A (ko) 2022-11-22
JP7218484B2 (ja) 2023-02-07
EP4155642A4 (en) 2024-06-05
JPWO2021235459A1 (ja) 2021-11-25
US11644236B2 (en) 2023-05-09

Similar Documents

Publication Publication Date Title
JP6777350B1 (ja) 真空凍結乾燥装置及び真空凍結乾燥方法
WO2021235459A1 (ja) 真空凍結乾燥装置及び真空凍結乾燥方法
FI74536C (fi) Anordning foer kontinuerlig torkning och/eller granulering av massgods.
JPWO2003075689A1 (ja) 原料の調湿方法及び調湿機
CN105300063A (zh) 一种喷雾冻干设备用加热干燥装置及方法
RU2605348C1 (ru) Устройство для сушки свекловичного жома
US20220325954A1 (en) Dryer for herbaceous material with access heating
ES2958224T3 (es) Cámara de liofilización para un sistema de liofilización a granel
CN107530861A (zh) 用于抛光陶瓷物品或天然石料的头
JP5102498B2 (ja) ロータリー乾燥方法およびその装置
US4589234A (en) Article-treating apparatus
US6298575B1 (en) Passive spin dryer for continuous and batch processing
KR100789431B1 (ko) 캡슐 밀봉용 장치 및 방법
FI102782B (fi) Höyrykuivain
JP2003225599A (ja) コーティング装置
JPWO2021235459A5 (ja)
KR20120035540A (ko) 응축수 배출이 가능한 디스크 건조기
JP2011223934A (ja) 穀物の害虫駆除方法
US20220361554A1 (en) Dryer for herbaceous material having a channel-shaped collector
CN107062837A (zh) 迴旋滚筒干燥设备
WO2020245378A1 (en) Dryer for receiving herbaceous material with independently controlled heating subsystems
JPWO2005097212A1 (ja) 殺菌装置
RU2168684C1 (ru) Устройство для сушки корней и корневищ солодки голой " glycyrrhiza glabra l"
KR20010095436A (ko) 건조발효장치
RU2388979C1 (ru) Вращающаяся печь для термообработки комкующегося продукта

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21808426

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022524502

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227038803

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021808426

Country of ref document: EP

Effective date: 20221219